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A B S T R A C T

In this thesis, a two-axis high-performance compliant positioning sys-
tem (whereby movements are performed through the deflection of its
flexible components) is analyzed and controlled. A high-performance
positioning system is a mechatronic motion system capable of high-
quality motion (as for the system described here), in the microme-
ter or the nanometer ranges. While the mechanical structure was de-
signed to perform movements in the nanometer range, the noise in-
troduced by the available servo amplifiers limits the attainable system
performance.
Starting from previous works related to single-axis movements, this
thesis focuses on the improvement of the control algorithm perfor-
mance, implemented in Matlab-Simulink, and on its extension to two-
axis movements. Each axis can be accurately modelled using linear
equations only within in a small motion range of up to ±0.2 mm. Be-
yond this threshold, the axis movement has a significantly non-linear
behaviour. To achieve high-performance motion over a wide range of
up to ±1 mm in each axis, a non-linear model has to be used in the
control algorithm.
The control algorithm for each axis is based on a PID feedback con-
troller and a force feed-forward controller. In addition, when both
axes are to move simultaneously two cross-coupling interactions arise
between them. It was found that these effects are quite small, but not
negligible. Static compensations for these two undesired phenomena
were implemented.
Finally, with the target of repeatedly carrying out some physically
useful shapes in the XY-plane, such as circular or square trajecto-
ries, periodic reference signals have been used. When these refer-
ence signal are used, the system performance improves, especially at
the higher frequency movements, using high-performance controllers,
such as repetitive control (RPC) or iterative learning control (ILC).
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S O M M A R I O

In questa tesi vengono presentate le prestazioni ed il sistema di con-
trollo di un sistema di posizionamento biassiale ad elevate prestazioni
basato sulla tecnologia compliant, che perciò permette di realizzare
il movimento sfruttando la deformazione dei suoi componenti flessi-
bili. Un sistema di posizionamento ad alte prestazioni è un sistema
meccatronico che esegue movimenti con un’elevata qualità di funzio-
namento. Il sistema descritto in questa tesi può operare nel range dei
micrometri o dei nanometri. Purtroppo, anche se la struttura meccani-
ca è stata progettata per eseguire movimenti con qualità nanometrica,
il rumore introdotto dai servo amplifiers limita le prestazioni del si-
stema.
Basandosi sulle attività di tesi svolte in precedenza e relative ai movi-
menti lungo un singolo asse, questo lavoro si focalizza sul migliora-
mento dell’algoritmo di controllo, implementato in Matlab-Simulink,
e sulla sua estensione a movimenti simultanei di due assi complanari.
L’uso di un modello lineare permette di descrivere accuratamente il
comportamento di un singolo asse solamente nel caso di piccoli mo-
vimenti, con un’ampiezza massima dell’escursione fino a ±0.2 mm.
Superato questo limite, l’approssimazione lineare non permette più
di ottenere l’accuratezza richiesta. Per garantire elevate prestazioni
su un range di movimento più ampio, fino ad ±1 mm per ciascun
asse, nel sistema di controllo è necessario utilizzare le equazioni che
descrivono le non linearità del sistema.
L’algoritmo di controllo per un singolo asse è costituito da un PID
in retroazione e da un feed-forward di forza. Inoltre, durante il moto
simultaneo dei due assi considerati, sono state rilevate ed analizzate
due tipi di interazioni di cross-coupling tra di essi. L’effetto di entram-
be queste interazioni sulla qualità del movimento è risultato piuttosto
ridotto, ma comunque non trascurabile. Conseguentemente, gli effetti
statici di questi fenomeni indesiderati sono stati compensati.
Il sistema è stato inoltre alimentato con segnali di riferimento pe-
riodici, con l’obiettivo di tracciare ripetutamente forme geometriche
significative nel piano XY, come per esempio circonferenze o quadra-
ti. Utilizzando controllori ad alte prestazioni, come il repetitive con-
trol (RPC) o l’iterative learning control (ILC) è stato inoltre possibile
migliorare drasticamente le prestazioni del sistema specialmente nel
caso di movimenti a più elevata frequenza.
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1
I N T R O D U C T I O N

1.1 high-performance positioning systems

High-performance positioning systems, such as micro-positioning sys-
tems and nano-positioning systems, are mechatronic motion systems
capable of micrometric or nanometric motion quality. Many applica-
tions of micro-technologies or nano-technologies require an extremely
high level of movement quality, which is not achievable by humans;
thus high-performance positioning mechanisms are required more
and more frequently.
High-performance motion quality is determined by three main pa-
rameters below. These are easily and clearly defined in terms of mea-
surement, but parameters defined in terms of actuation can also be
defined similarly.

• Precision: defined as the "closeness of agreement between indi-
cations or measured quantity values obtained by replicate mea-
surements on the same or similar objects under specified condi-
tions" [1].

• Accuracy: defined as the "closeness of agreement between a
measured quantity value and a true quantity value of a mea-
surand" [1].

• Resolution: defined as the "smallest change in a quantity being
measured that causes a perceptible change in the corresponding
indication" [1].

Besides high motion quality, high-performance positioning systems
are required to exhibit also a high bandwidth and a large range of
motion. To ensure these characteristics both the choice of the compo-
nents and the manipulator design have to be considered very care-
fully. Compliant mechanisms are an excellent choice for the mechan-
ical structure of high-performance positioning systems, due to their
specific features, as it will be described in the next section. The choice
of the actuator is also critical. Usually direct-drive linear electromag-
netic actuators, piezo-electric actuators, or inchworm style actuators
are adopted [2]. The voice coil actuators, which belong to the category
of direct-drive linear electromagnetic actuators, are the best option for
large range high-performance positioning systems due to their linear
behaviour and because they are frictionless, hysteresis free and cog-
free. In addition they allow direct control of actuation force [2]. More-
over, the choice of the sensors is also relevant in a high-performance
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2 introduction

positioning system. Linear optical encoders are considered one of the
best options [2].
Possible high-performance positioning systems applications are: super-
resolution microscopes, spectroscopy, scanning probe microscopes and
surface profilometry, optical tweezers and optical traps, medical/health
devices, nanofabrication, MEMS and NEMS development, assembly
and testing [3], [4], [2], [5].

1.2 compliant mechanisms

A mechanism is a mechanical device used to transfer or transform
input force, displacement and energy into output force, displacement
and energy. [6], [5].
Traditional rigid-body mechanisms are assemblies of rigid compo-
nents connected at movable joints, such as sliding joints or rolling
joints. The mechanism motion are performed through the operation
of the joints [6], [5].
A compliant mechanism, unlike the rigid-body mechanisms, exploits
the deflection of its flexible components to perform at least part of its
movement [7], [6].
Compliant mechanisms, compared to rigid-body mechanisms, have
several advantages. The first one is the reduced number of compo-
nents, which simplify their manufacturing and assembly, thus sav-
ing production time and cost. Moreover, compliant mechanisms have
less movable joints or they can be jointless. This characteristic re-
duces wear and the need of lubrication, and so makes the compliant
mechanism more suitable for application in harsh environments, that
can affect the joints, or where access is not easy. In addition, mecha-
nism precision is increased as compared to the traditional rigid-body
solution because backlash is reduced or eliminated due to the re-
duced number of joints. Furthermore, compliant mechanisms usually
weight less than their rigid-body counterparts. Another advantage is
that they are easy to be miniaturized. In addition, compliant mech-
anism are a good choice for applications requiring clean or sterile
environments, as occurs in the medical field or in extreme vacuum
environments. Unfortunately, compliant mechanisms have also some
drawbacks. Comparing to the traditional rigid-body solution, their
design and analysis are more difficult. Indeed, due to the large de-
flections of their flexible components, the equations that describe a
compliant mechanism are usually non-linear. In addition, the motion
range of a compliant mechanism can be limited due to physical con-
straints on the deflection of its components [6], [7], [8].
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1.3 the analyzed system

The high-performance positioning system analyzed in this thesis work
is a two-axis compliant parallel manipulator. It was designed to per-
form high-quality movement in a large motion range (±1mm on both
axes). A photo of the system is shown in Figure 1.1 and a detailed de-
scription of all its components is reported in Chapter 3.

Figure 1.1: Two-axis high-performance positioning system analyzed

The most innovative part of the mechanical system is the XYZ com-
pliant mechanism designed in [5]. It is symmetric and allows motion
translation along three orthogonal directions. Moreover, it provides
reduced cross-coupling between the axes, minimum lost motion and
relatively small parasitic motion. The XYZ compliant mechanism has
several possible applications, summarized in Table 1.1 [5].

The project of the high-performance positioning system analyzed
in this work has been developed by a number of students:

• Haiyang Li designed the XYZ compliant mechanism.
PhD thesis [UCC]: "Approaches to the synthesis, modelling and
optimisation of spatial translational compliant parallel mecha-
nisms", 2016 [5].

• Fabiana Federica Ferro completed the system setup and imple-
mented the close-loop control algorithm.
Master thesis [UNIPD]:" Nonlinear Control of a Flexure-Based
Single Degree of Freedom Nanopositioning System", 2016 [9]

• Riccardo Sandon completed the control algorithm introducing
the force feed-forward assuming that the system is operating in
its linear range (up to ±0.2 mm) and performed a deep analysis
of the system performance.
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Application field Application description

Micro assembly Assembly of micro components
Nano-/micro-positioning High performance micro-/nano-

positioning along X-,Y and Z-axes
Optics Handling of small components

and assemblies
Optical tweezers and optical traps Manipulating nanometer and mi-

crometer sized electric particles
Optical fibre alignment Accurate motion and placement of

individual fibres for alignment
Metrology Accurate measurement of motion

and placement
AFM (Atomic Force Microscope) Accurate placement of specimen

for examination
Spectroscopy Measurement of radiation inten-

sity as a function of wavelength
Super resolution microscopy Accurate placement of specimen

for examination
Photovoltaics Component alignment
MEMS Accurate handling of nano- and

micro-electronic mechanical sys-
tems

Nano-fabrication, nano-pattering
and nano-machining

Accurate positioning with preci-
sion motion is needed to manufac-
ture small, detailed components

Magnetic tweezers, traps and ma-
nipulation

Scientific instruments for the ma-
nipulation of biomolecules

Table 1.1: Possible applications of the XYZ compliant mechanism [5]
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Master thesis [UNIPD]: "Modelling, Control and Performance
Evaluation of a Single-Axis Compliant Nano-Positioning Sys-
tem", 2017 [10]

• Aldo Marchi extended the control algorithm to the non-linear
range, modifying both the feedback and the feed-forward con-
trollers. The motion range was extended to ±1 mm.
Master thesis [UNIPD]: "Wide Range Control and Performance
Evaluation of a Single-Axis Compliant Nano-Positioning Sys-
tem", 2019 [8].

All of the theses reported above are related only to the one-axis
system (that axis is called X-axis in the following). The system op-
eration capability was then extended to two axes and the main pur-
pose of this project was to extend the control algorithm, implemented
in Matlab-Simulink, to both axes of the system in order to allow a
controlled movement on a plane surface. For this reason the starting
point of this thesis work was the control scheme reported in [8] for
the one-axis system operating in the non-linear range. Improving the
system performance is also a major objective of the work. Since the
two axes are moving simultaneously, a cross-coupling interaction be-
tween them can arise. Thus, this must be analyzed (and compensated
as necessary). An additional target is to achieve a high-bandwidth
control. Hence, the resonant frequencies of the system must be iden-
tified in order to avoid movements that can break the manipulator.

1.4 outline of the content

This thesis is organized as follows:

• Chapter 2: in this chapter the theory behind the control algo-
rithm employed in this thesis work is described.

• Chapter 3: in this chapter all components of the analyzed sys-
tem are described and the related equations are provided. More-
over, both the linear and the non-linear models of the manipu-
lator are described.

• Chapter 4: in this chapter a brief description of the control sys-
tem designed by Marchi [8] for a high-performance, single-axis
positioning system is reported. That work formed the starting
point of this project work. Moreover, meaningful measurements
performed on the one-axis system are also provided.

• Chapter 5: The high-precision positioning system was extended
from one axis to two axes. In this chapter the performance asso-
ciated to the added axis are shown. Moreover, new reference sig-
nals are designed in order to drive the system in such a way that
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some significant shapes in the XY-plane are performed. The re-
sults achieved when moving both axes simultaneously are also
shown in this chapter.

• Chapter 6: when both axes are moving simultaneously, two dif-
ferent kinds of cross-coupling interaction between them were
detected: kinematic and kinetostatic cross-coupling. In this chap-
ter, they are analyzed and possible compensation solutions are
provided.

• Chapter 7: when periodic reference signal are used, the sys-
tem performance can be improved using high-performance con-
trollers, such as the repetitive control (RPC) and the iterative
learning control (ILC). These controllers have been added to
the control scheme of the system and the achieved results are
shown and discussed in this chapter.



2
C O N T R O L T H E O RY

2.1 introduction

Different techniques were used to control the system analyzed in this
thesis work. This chapter briefly describes the basic theory behind
them.
A control system usually is based on the simultaneous action of feed-
back and feed-forward control. In this way the advantages of both
controllers are exploited.
The feedback controller action is based on the error between a refer-
ence and a measured signal. This technique tends to eliminate (or re-
duce) this error, and it reduces the influence of unmodeled error due
to external disturbance or difference between the real system and its
model. Unfortunately, due to measurement, the action of a feedback
controller is slow and it exhibits transients. To reduce the transient
time and therefore improve the control action, the feed-forward con-
trol is added.
The feed-forward control is a non error-based control action. This
means that the action of this controller depends only on the knowl-
edge of the system and not on the real-time measured signals. This
knowledge can come from theoretical models and equations or from
previous measurements of the system behaviour. Unfortunately, be-
ing based only on the knowledge of the system, and not on the real
signal measurements, the feed-forward control is not robust to exter-
nal noise and to possible differences between the model and the real
system.
The combination of the two control models combines the advantages
of the fast response of the feed-forward term and the high accuracy
of the feedback term, which compensates the unmodeled effects of
the physical system and the external disturbances [11].
Consequently, the control for both axes of the manipulator is based
on a simultaneous action of feedback and feed-forward controllers.
The feedback control is based on a PID controller, described in sec-
tion 2.2. In the feedback control, the output signal x(t) is compared
with the reference r(t) to produce the error signal e(t) = r(t) − x(t),
which is the controller input signal. The system output signal can be
measured or estimated. In the positioning system studied, the feed-
back controller uses the position and velocity signals. The first one is
directly measured by a linear encoder, while the second is estimated
through an observer, which will be described in section 2.3.
The feed-forward control is based on the theoretical stiffness equa-

7
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tion and it is described in section 2.4. Moreover, some experimental
results show a cross-coupling interaction between the two axes and
this behaviour is compensated using a feed-forward action.
With the target of drawing circumferences on the XY plane, sinusoidal
reference signals were used on both axes. When periodic or repetitive
reference signals are used, the control can be improved using Repet-
itive Control (RPC) or Iterative Learning Control (ILC) techniques,
that will be explained in section 2.5 and 2.6, respectively. Both these
methods enable the design of a new control signal starting from previ-
ous information and therefore they improve the control performance
"learning" from experience [12].

2.2 pid control

The PID (Proportional Integral Derivative) controller is a feedback
controller widely used in industrial applications. The PID controller’s
popularity can be due to both its functional simplicity and its robust-
ness in a wide range of operating conditions [13]. The input of this
controller is the error e(t) between the reference and the measure-
ment. As explained by the name, this controller processes the input
error using a proportional, an integral and a derivative term. The time
domain equation of the PID controller is:

PID(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

d

dt
e(t) (2.1)

In the Laplace domain this equation becomes:

PID(s) = KpE(s)+Ki
1

s
E(s)+KdsE(s) = Kp(1+ sTd+

1

sTi
)E(s) (2.2)

where: Ti =
Kp

Ki
is the integral time constant and Td = Kd

Kp
is the deriva-

tive time constant.
The PID’s gains need to be tuned in order to have the desired system
response. Increasing the proportional gain Kp will increase the speed
of the control system response; however, it will reduce the phase mar-
gin and therefore the system will tend to oscillate and then it will
diverge as the gain increased further. The integral gain Ki sums the
error over time and thus leads to eliminate the steady - state error. The
bigger is this gain, the faster this action occurs, but the unwanted inte-
grator wind-up effect increases. The derivative term is sensitive to the
rate of change of the error signal. Increasing the derivative gain Kd

will cause the control system to react more strongly to changes in the
error term and so this increases the speed of the overall control sys-
tem. Unfortunately, the derivative term amplifies the high frequency
signals, thus the system is more sensitive at higher frequency noise
[13].
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There are different methods to tune the PID controller gains. The one
used in this thesis work is the Ziegler-Nichols method. This heuristic
method is performed initially by setting the integral and the deriva-
tive gains to zero (Ki = Kd = 0). In this configuration the proportional
gain Kp is increased (starting from 0) until it reaches the ultimate gain
Ku, at which the output of the control loop has a stable and consistent
oscillation. Higher proportional gains will produce divergent oscilla-
tions. With the proportional gain set to Ku, the oscillation period Tu
is measured. The PID gains are then calculated using table 2.1 and
the values of Ku and Tu found [14].

Control type Kp Ti Td

PI 0.45Ku Tu/1.2 -
Classic PID 0.6Ku Tu/2 Tu/8

PID no overshoot 0.2Ku Tu/2 Tu/3

Table 2.1: Ziegler-Nichols’s Gains Table [14]

For the compliant mechanism studied in this thesis work, the over-
shoot could be a problem. Therefore, the "PID no overshoot" gains
are chosen.

2.3 observer

The feedback control requires knowledge of the system output sig-
nals, which can be measured or estimated. The feedback signals used
in the high-performance positioning system studied in this thesis
work are the position and velocity signals. The system analyzed is
equipped with a linear encoder which returns position measurements,
but no velocity sensor is available and so the system velocity needs
to be estimated. Velocity can be easily estimated through the deriva-
tive of the position signal. Unfortunately, this method provides poor
results since it amplifies the wide band noise superimposed to the po-
sition signal. To overcome this problem, the feedback velocity signal
is estimate through an observer.
All the theory behind the observer described in this section can be
found in [15] and [8].

2.3.1 Continuous Time Analysis

The observer block diagram in the Laplace domain is shown in Fig-
ure 2.1. As can be seen, the observer estimates both the position and
velocity signals via the following equations.
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Figure 2.1: Observer Block Diagram in the Laplace Domain [8]

Neglecting the force feed-forward input, from the block diagram in
Figure 2.1, we obtain:

x̂ =
1

s
[
1

s
K1(x− x̂) +K2(x− x̂)] (2.3)

Thus:

x̂+
1

s2
K1x̂+

1

s
K2x̂ =

1

s2
K1x+

1

s
K2x (2.4)

Therefore:

x̂ =
K1 +K2s

s2 +K2s+K1
x (2.5)

Equation (2.5) is a second order system with: K1 = ω2
0 and K2 =

2ρω0, where: ω0 is the natural frequency and ρ is the damping
factor [8]. This transfer-function is the closed-loop observer transfer-
function and therefore it defines the observer poles and consequently
its dynamics.
Considering now the force feed-forward term, which acts to reduce
the position transient error [8], the equation becomes:

x̂ =
1

s
[
1

s
(K1(x− x̂) +

Fm

m
) +K2(x− x̂)] (2.6)

Thus:

x̂+
1

s2
K1x̂+

1

s
K2x̂ =

1

s2
K1x+

1

s
K2x+

1

s

Fm

m
(2.7)
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Therefore:

x̂ =
K1 +K2s

s2 +K2s+K1
x+

Fm/m

s2 +K2s+K1
(2.8)

As a consequence, the estimation error is:

x− x̂ = x−
K1 +K2s

s2 +K2s+K1
x−

Fm/m

s2 +K2s+K1
(2.9)

Or:

x− x̂ =
s2 +K2s+K1

s2 +K2s+K1
x−

K1 +K2s

s2 +K2s+K1
x−

Fm/m

s2 +K2s+K1
(2.10)

and therefore:

x− x̂ =
s2

s2 +K2s+K1
x−

â

s2 +K2s+K1
(2.11)

where: â = Fm

m is the estimated acceleration.
Recognizing that s2x is the Laplace term for the acceleration a:

x− x̂ =
a

s2 +K2s+K1
−

â

s2 +K2s+K1
=

a− â

s2 +K2s+K1
(2.12)

2.3.2 Discrete Time Analysis

The control algorithm used in this thesis work is implemented in the
discrete time domain using Matlab-Simulink. As described with the
continuous time model, the velocity observer uses a second order
model to estimate both position and velocity [15].
Figure 2.2 shows the observer block diagram in the Z-trasform do-
main.

Figure 2.2: Observer Block Diagram in the Z-Trasform Domain [8]
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In the discrete time domain, the block z+1
z−1 has a feedthrough path

which results in an algebraic loop. To overcome this problem an extra
delay element is introduced in the observer’s error path [15] [8].
As was done before with the continuous time observer, the equation
for the estimated position x̂ can be evaluated by neglecting the feed-
forward term:

x̂ =
z+ 1

z− 1
(

1

z(z− 1)
L1(x− x̂) +

1

z
L2(x− x̂)) (2.13)

Thus:

[1+
z+ 1

z− 1
(

1

z(z− 1)
L1 +

1

z
L2)]x̂ =

z+ 1

z− 1
(

1

z(z− 1)
L1 +

1

z
L2)x (2.14)

Furthermore:

x̂ =
(z+ 1)(L1 + L2(z− 1))

z(z− 1)2 + (z+ 1)(L1 + L2(z− 1))
x (2.15)

Or:

x̂ =
L2z

2 + L1z+ L1 − L2
z3 + z2(L2 − 2) + z(L1 + 1) + L1 − L2

x (2.16)

Thus, due to the presence of a delay in the error path, the discrete
time observer is no longer a second order system (as occurs in the
continuous time domain), but a third-order system. As a consequence,
tuning the observer gains in the discrete time domain is more difficult
than in the continuous time domain. In [15] three sets of possible
gains L1 and L2 were found:

Set L1 L2

Low 0.01125 0.10
Medium 0.02473 0.1716

High 0.035 0.30

Table 2.2: Observer Gains Table [15]

In [15] the observer gain selection was obtained as a trade off
between noise filtering and disturbance rejection. Indeed, the noise
filtering requires lower gains, while the disturbance rejection is im-
proved by increasing the gain value.

2.4 feed-forward control : non linear stiffness and cross-
coupling

The two-axis high-performance positioning system has been controlled
by applying different feed-forward controllers. The first one is a force
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feed-forward control, based on the theoretical equations of the system
(described in chapter 3). These equations evaluate the force needed to
perform a certain movement on each axis, starting from the position,
velocity and acceleration references.
Unfortunately, when both axes of the manipulator are moved simul-
taneously, two kinds of cross-coupling interaction arise between the
two axes. The first one is the kinematic cross-coupling, which means
that a movement of one axis produces an unwanted movement on the
other axis. This effect was measured statically and its compensation
was performed by modifying the input of the force feed-forward con-
trol, as it will be explained in chapter 6.
The second type of cross-coupling interaction is the kinetostatic cross-
coupling. In fact, the force needed to feed one axis in order to obtain
a specific displacement depends not only on that displacement, but
also on the position of the orthogonal axis. This effect is theoretically
described in [5] and the related equations will be reported in chapter
6. Moreover, the kinetostatic cross-coupling interaction was measured
and the data collected allowed for the compensation of that effect.
Both the theoretical equations and the measurements show that the
force needed to perform a movement on one axis is function of the
position (x, y) of both axes. Therefore the force needed to perform a
displacement on the X-axis can be expressed as:

Fx = f(x,y) (2.17)

Since the effect of y on Fx is small compared to the effect of x, equa-
tion (2.17) can be approximated using the Taylor’s series about y = 0

truncated to the first order term:

Fx = f(x,y) = f(x, 0) + f ′(x, 0)y (2.18)

The terms f(x, 0) and f ′(x, 0) can be evaluated using the theoretical
cross-coupling equation or experimental data. The same compensa-
tion approach can be used on all the system axes. In this way, the
force feed-forward control has been modified by introducing the kine-
tostatic cross-coupling compensation.
Better approximations can be performed using higher order terms of
the Taylor series about y = 0. However, on one hand, if the coefficients
are evaluated from measurements, it would require more experimen-
tal data and an high repeatability of the system behaviour. On the
other hand, if the coefficients of the Taylor series are evaluated from
the theoretical model of the cross-coupling, significant modelling er-
rors can arise thus making the contribution of higher order terms
useless.
For the high-precision positioning system studied in this thesis work,
the first order term of the Taylor series is sufficient to compensate the
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kinetostatic cross-coupling interaction between the two axes of the
system, as will be explained in chapter 6.

2.5 rpc : repetitive control

The Repetitive Control (RPC) is an advanced control technique used
when the reference is a periodic or repetitive signal, or to reject peri-
odic or repetitive disturbances. In this thesis work the RPC has been
used to improve the system’s capability to follow periodic reference
signals. The theory behind the RPC described in this section can be
found in [16] and [17].
There are two hypothesis behind the RPC. The first one is the knowl-
edge of the period of the periodic or repetitive signal (whether if it
is the reference or the disturbance), which is assumed constant. The
second hypothesis is the knowledge of the system model.
In the discrete time, a periodic signal with period NT , where N is
the number of samples in a period and T is the sample time, can be
represented as a delay chain with a positive feedback loop, as shown
in Figure 2.3.

Figure 2.3: Discrete Time Periodic Signal [17]

Considering Figure 2.3, the periodic discrete time signal in the z-
trasform domain can be expressed by:

D(z) =
1

1− z−N
D0(z) (2.19)

where:D0(z) = d0+d1z
−1+ ...+dN−1z

N−1 represents the z-trasform
of one period of the discrete time periodic signal and d0, d1,..., dN−1

are the N signal samples.
Therefore, the RPC structure has to be:

Gr(z) = T(z)
1

1− z−N
(2.20)

The RPC is not the only controller of the system. Indeed it is added in
parallel to another controller the task of which is to guarantee the sta-
bility of the controlled system and the pole allocation to achieve the
desired dynamic performance. In such a way, the only requirement
of the RPC is the minimization of the position error signal in the case
of a periodic reference or the rejection of periodic disturbances.
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Let us consider a generic causal continuous time system described by
the open loop transfer function G(s). The close loop transfer-function
is:

W(s) =
Y(s)

R(s)
=

G(s)

1+G(s)
(2.21)

where Y(s) and R(s) are the output signal and the input reference sig-
nal in the Laplace domain, respectively. A block diagram of the RPC
in the Laplace domain is shown in Figure 2.4. The additional input
Ur(s) = Gr(s)E(s) is added to the system with the aim of reducing
the tracking error E(s) in the case of a periodic or repetitive reference
signal, or the effect of a periodic or repetitive disturbance D(s).

Figure 2.4: RPC block diagram in the Laplace domain [17]

Neglecting the disturbance D(s) (as can be considered using the
superposition principle), the output is expressed by:

Y(s) = G(s)Ur(s) +G(s)E(s) (2.22)

If R = 0, the error E(s) is: E(s) = −Y(s) and therefore equation (2.22)
becomes:

Y(s) = G(s)Ur(s)−G(s)Y(s)→ Y(s) =
G(s)

1+G(s)
Ur(s) =W(s)Ur(s)

(2.23)

Using the same approach in the Z-trasform domain it can be shown
that we obtain the discrete RPC block diagram reported in Figure 2.5,
where W(z) is the the close-loop transfer function in the Z-trasform
domain:

W(z) = (1− z−1)Z[
W(s)

s
] =

z−dB(z−1)

A(z−1)
(2.24)

where d is relative degree of the transfer-function.
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Figure 2.5: RPC block diagram in the Z-transform domain [17]

In [16] the following structure for the RPC controller was proposed:

Gr(z) =
z−N

1− z−N

1

W(z)
=
z−N+d

1− z−N

A(z−1)

B(z−1)
(2.25)

The controller in equation (2.25) is realizable if N > d and it is stable
if the zeros of B(z−1) are located inside the unit radius circumference.
Assuming for the moment that this is true, we have:

Gr(z)W(z) =
z−N+d

1− z−N

A(z−1)

B(z−1)

z−dB(z−1)

A(z−1)
=

z−N

1− z−N
(2.26)

and the input-output transfer-function is:

Gr(z)W(z)

1+Gr(z)W(z)
=

z−N

1− z−N + z−N
= z−N (2.27)

Thus, the RPC introduces a one period delay.
Unfortunately, this structure of the repetitive controller Gr(z) could
be implemented only if all the zeros of the discrete close-loop transfer-
functionW(z) are inside the unit radius circumference. This condition
is not always verified. Moreover, if the relative degree of the contin-
uous time transfer-function is equal or bigger than 3, then it can be
shown that the corresponding discrete time transfer function has at
least one zero outside the unit radius circumference. In addition, if
the relative degree of the continuous time transfer-function is equal
to 2, the corresponding discrete time transfer-function has a zero lo-
cated on the unit radius circumference (limit condition for stability)
[17].
In this case, the discrete time transfer-function W(z) cannot be re-
versed because it has one or more unstable zeros and consequently
the RPC controller structure reported in equation (2.25) cannot be
used. To get around this problem, in [16] a new RPC controller struc-
ture, applicable also when the discrete time transfer function is not
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reversible, was proposed. To that aim, let us first split the numera-
tor of the close-loop discrete transfer-function W(z) as a product of
B+(z−1) and B−(z−1). The first term exhibits the m unstable zeros of
W(z) (deg(B+(z−1)) = m), while B−(z−1) is stable. Thus, we have:

W(z) =
z−dB(z−1)

A(z−1)
=
z−dB+(z−1)B−(z−1)

A(z−1)
(2.28)

The Gr(z) controller proposed in [16] is:

Gr(z) =
1

1− z−N
Kr
z−N+d+mA(z−1)z−mB+(z)

bB−(z−1)
(2.29)

where:
- 1

1−z−N is a common factor for all the repetitive controllers (as de-
scribed before),
- Kr is the controller gain,
- z−N+d+m is necessary for physical feasibility,
- A(z−1) is the denominator polynomial of W(z)

- b > max[B+(ejωT )]2 with 0 6 ωT 6 π,
- N > d+m for the controller physical feasibility,
- B+(z) is equal to B+(z−1), where z−1 is substituted with z: B+(z) is
not physically feasible, but z−mB+(z) is physically feasible.
In [16] a theorem regarding the stability for this repetitive control sys-
tem is provided. Let us determine the roots of 1+Gr(z)W(z), that is
the denominator of the close loop transfer-function:

1+Gr(z)W(z) = 1+
1

1− z−N
Kr
z−N+d+mA(z−1)z−mB+(z)

bB−(z−1)

z−dB(z−1)

A(z−1)
=

= 1+Krz
−NB

+(z)B+(z−1)

b(1− z−N)
=

= 1+ z−N[Kr
B+(z)B+(z−1)

b
− 1] =

= 0

(2.30)

Equation (2.30) can be represented by the system of Figure 2.6, that
does not have instable poles. Therefore, using the Small Gain Theo-
rem [18], the system is stable if the following constraint is satisfied:

∣∣∣∣z−N[Kr
B+(z)B+(z−1)

b
− 1]

∣∣∣∣ < 1 (2.31)

Since |z−N| 6 1, the system stability is guaranteed if:∣∣∣∣Kr
B+(z)B+(z−1)

b
− 1

∣∣∣∣ < 1 (2.32)
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Figure 2.6: Equivalent feedback system for stability analysis [16]

Since for z = ejωT , we have B+(z)B+(z−1) = |B+(e−jωT )|2. Defining:

|B+(e−jωT )|2

b
= a (2.33)

and remembering that for definition b > max|B+(e−jωT )|2, then we
have a 6 1. Consequently the problem becomes:

|Kra− 1| < 1 (2.34)

which yields:

0 < Kr < 2 (2.35)

In conclusion, the RPC controller has to be added in parallel to the
feedback controller, which is usually already implemented on the sys-
tem to guarantee the system stability and the desired dynamics. A
schematic structure is shown in Figure 2.7, where the controller block
Gr implements equation (2.29) and it is stable if: 0 < Kr < 2.

SystemFeedback Controller

Gr

R E Y

Ur

+
+

-

Figure 2.7: RPC Structure Scheme

2.6 ilc : iterative learning control

The Iterative Learning Control (ILC) is an advanced control technique
used when the reference is a periodic or repetitive signal, or to reject
periodic or repetitive disturbances. In this thesis work the ILC has
been used to improve the system’s capability to follow periodic refer-
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ence signals. The theory behind the ILC described in this section can
be found in [17], [12] and [19].
This high-performance control technique is based on the idea that it
is possible to improve the behaviour of a system that perform the
same operation multiple times by learning from previous executions.
This is because for a system that executes the same task repeatedly
and under the same operating condition, the non-learning controller
produces the same tracking error each time. This error signal is rich
in information and can be used to improve the control performance
[19].
A single repetitive movement is called a batch.
The ILC is typically implemented in the discrete time because it re-
quires the storage of the error samples related to the last input cycle.
[19].
The control objective is to ensure that the system output signal y(k)
tracks the input reference signal r(k). Thus, the tracking error signal
related to the i-th batch, is defined as:

e(k, i) = r(k) − y(k, i) (2.36)

The concept is to reduce that error by exploiting the recorded values
of the tracking error signal e(k, i− 1) and the input signal u(k, i− 1)
corresponding to the previous batch. In the simplest ILC formulation,
called proportional-type ILC (P-type ILC), the input of the current
batch (u(k, i)) is obtained by adding the input signal of the previous
batch (u(k, i− 1)) and a contribution proportional to the tracking er-
ror of the previous batch (e(k, i− 1)) [12]:

u(k, i) = u(k, i− 1) +KILCe(k, i− 1) (2.37)

This type of ILC is the one used in this thesis work. Other more com-
plex types of ILC can be found in [12] and [19].
Theoretically, the updating expression (2.37) should converge to a
zero tracking error signal.

As explained in [19], in most physical implementations the ILC is
used in combination with an already existing feedback controller. In
[19] two ways to combine the two controllers are proposed. In the
first arrangement, the ILC is connected in series with the feedback
controller, while in the second one it is connected in parallel. Ac-
cording to this latter architecture, schematized in Figure 2.8, the ILC
output signal uILC directly alters the control signal to the plant and
therefore when the ILC controller improves the system performance
and reduces the tracking error, the feedback controller will apply less
effort. In this thesis work, the parallel approach was used.
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Figure 2.8: ILC Structure Scheme



3
S Y S T E M D E S C R I P T I O N A N D M O D E L

3.1 introduction

The system analyzed in this thesis work is a high-performance com-
pliant positioning manipulator. The system is designed with a compli-
ant mechanical structure in order to achieve high performance move-
ments, with resolution, accuracy and precision of the order of several
nanometers. Unfortunately, due to the electrical noise of the amplifier
adopted, the system is limited to movements with micrometer accu-
racy.
In this chapter, the main components of the manipulator are described
and a system model is given. The manipulator is composed of:

• Mechanical Structure

• Voice Coil Actuator

• Linear Encoder

• Servo Amplifier

• Power Supply

• Controller Board, including a dSPACE controller with 64-bit
floating-point processor

• Computer with Matlab 2013b and Simulink

These components will be described in detail in the next sections.
The system is composed by two orthogonal axes designed identically.
Some of the components listed above are shared between the two axes.
These are: power supply, controller board and computer. The non-
shared components are: actuator, encoder and servo amplifier. The
mechanical structure is composed by three parts, as will be described
in section 3.2: Compliant Basic Parallelogram Mechanism (CBPM),
XYZ Compliant Parallel Manipulator (CPM) and a base frame. The
former and the base are duplicated separately on both axes, while
the CPM is shared between the two axes.

Figure 3.1 shows the block diagram of one axis in which the method
of connection of the system components is explained. While Figure 3.2
is a photo of the system, showing the mechanical structure (with actu-
ators and encoders), the dSPACE board and the two servo amplifiers.

21
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PC with Matlab -
Simulink

dSPACE
Controller Board

Encoder

Position
Feedback

Servo Amplifier Power Supply
Power

Voltage
 Reference

Voice Coil Actuator

Current

Mechanical Structure

Force

Control 
Model and 
Reference

Encoder 
Feedback

Movement

Figure 3.1: One Axis Block Diagram

Figure 3.2: Photo of the System
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3.2 mechanical structure

The mechanical structure of the system is composed by three main
parts: a Compliant Basic Parallelogram Mechanism (CBPM, described
in subsection 3.2.1), a fully symmetrical XYZ Compliant Parallel Ma-
nipulator (CPM, described in subsection 3.2.2) and a base frame (de-
scribed in subsection 3.2.3).
All the components are made of Aluminium 6061 (Young’s Modulus
E = 69000MPa).
Figure 3.3 shows a photo of the system with labeled components.

Figure 3.3: Photo of the System

3.2.1 Compliant Basic Parallelogram Mechanism (CBPM)

The Compliant Basic Parallelogram Mechanism (CBPM) is an exam-
ple of a compound parallel mechanism, which consists of two identi-
cal Basic Parallelogram Mechanisms (BPMs), arranged in a mirror-
symmetrical configuration [20]. The CBPM is a compliant version
of the traditional prismatic-joint mechanism, which has good charac-
teristics, such as: alleviated stress concentration, simple symmetrical
structure, non-underconstrained design, large parasitic motion stiff-
ness, mitigated buckling and avoidance of thermal sensitivity. Unfor-
tunately, the CBPM stiffness exhibits non-linear characteristics [20],
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[8].
A CBPM Representation, of the two BPMs that comprise it and a
Photo are shown in Figure 3.4.

Figure 3.4: CBPM Representation [8] and Photo

This compliant component is needed in the system to constrain the
motion of the Voice Coil Actuator to the axial direction, to prevent
its damage. Moreover, the CBPM increases the overall stiffness of the
system to an appropriate value for the actuator size [8]. Furthermore,
a bigger stiffness ensure also a better dynamic performance [10].
Referring to Figure 3.4, the CBPM sizes are:

• WCBPM = half of the spanning size = 50 mm

• HCBPM = thickness of the moving stage = 60 mm

• TCBPM = beam in-plane thickness = 1 mm

• LCBPM = beam actual length = 50 mm

• UCBPM = beam out-of-plane thickness = 40 mm

3.2.2 XYZ Compliant Parallel Manipulator (CPM)

The shared member between the two axes of the mechanical struc-
ture is the fully symmetrical XYZ Compliant Parallel Manipulator, de-
scribed in [21]. It has desired motion characteristics such as: reduced
cross-axis coupling, minimized lost motion, and relatively small par-
asitic motion. These CPM motion characteristics are derived from
both its symmetric configuration and the rigid linkage between non-
adjacent rigid stages [21]. The XYZ CPM is shown in Figure 3.5. In
the representation on the left side Fy is the actuating force originating
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from the CBPM component. The image in Figure 3.5 (a) is a disassem-
bled representation and Figure 3.5 (b) shows the beams involved in
the motion along only one axis. As can be seen in Figure 3.5, 24 beams
contribute to the stiffness of the actuated axis [10].

Figure 3.5: XYZ CPM Representation [22] and Photo

The design of the XYZ Compliant Parallel Manipulator provides
three DOF (Degree of Freedom) with maximal decoupled motion
along the three axes. Consequently, each axis to be moved requires
an actuator and a CBPM component. Figure 3.6 shows the XYZ CPM
with the three axes highlighted (a) and a motion along the X-axis (b)
[21].

Figure 3.6: XYZ CPM with the three axes highlighted (a) and the motion
along the X-axis (b) [21]

Due to symmetry and decoupled motion along the two axes, each
axis can be controlled separately with the same control strategy. Un-
fortunately, there is a small coupling interaction between two axes,
that need to be considered when controlling the system. This will be
discussed, analyzed and compensated for in chapter 6.
The XYZ CPM beams sizes are:

• UXYZ = beam width = 1 mm

• TXYZ = beam thickness = 1 mm

• LXYZ = beam length = 50 mm
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3.2.3 Base Frame

The function of the base frame is to support and connect the com-
pliant structure (CBPMs and XYZ CPM), the voice coil actuators and
the encoders. To reduce vibrations on the mechanism, suitable anti-
vibrational feet are used; the chosen ones are the DSD 40(60Sh) pro-
duced by AMC [10].

3.3 voice coil actuator

The actuator chosen for both system axes is a voice coil actuator
(VCA), model LA30-48-000A manufactured by BEI Technologies INC;
a picture of it is shown in Figure 3.7, together with a schematic repre-
sentation of the actuator [23]. Voice coils are direct drive linear motors
and are hysteresis-free, frictionless and cog-free. Due to these charac-
teristics they are the best choice for a large-range high-precision po-
sitioning system. Unfortunately these actuators cannot tolerate trans-
verse force; for this reason the CBPM is required for both axes.

Figure 3.7: Voice Coil Actuator: Photo and Scheme [23]

Voice Coil Actuators are made up by two main parts: a coil and
a permanent magnet. In the system studied, the coil is the moving
part connected to the compliant mechanism and the permanent mag-
net is fixed on the aluminium frame. Voice Coil Actuators work on a
principle based on the Lorenz force. According to this principle, if a
current-carrying conductor is placed in a magnetic field, a force will
act on it. These actuators utilize a magnetic field and a coil winding
(conductor) to produce a force that is proportional to the current ap-
plied to the coil [24]. The linear equation (3.1) for the actuation force
is:

F = (kBLN)i = Kfi (3.1)

where:
- k = Force Costant [Nm−1],
- B = Magnetic Flux Density [T],
- L = Length of Wire [m],
- N = Number of Conductors,
- i = Current [A],
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and
- Kf = Force Sensitivity = 35.14 [NA−1] for the VCA used.

On the physical system studied, the VCA coil is directly connected
to the compliant mechanism. Consequently, the force produced by
the actuator is directly apply to the compliant structure.
The actuator specifications are shown in table 3.1.

Table 3.1: Specification of the Voice Coil Actuator [25]

3.4 linear encoder

High-precision positioning systems require high resolution encoders.
The most accurate relevant encoders are optical linear encoders and
consequently they dominate the high resolution market.
The optical linear encoders used in both system axes are the: SI-HN-
4000-01-0-FN-403-003-3, readhead number SRO15A, by Renishaw. One
of these encoders is shown in Figure 3.8. The encoder resolution is 5
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nm and it responds to changes of at most 0.135 ms−1. The encoder
resolution does not limit the quality of the measurement because it is
dominated by the output noise of the amplifier, as written in section
3.5. The datasheet of the encoder can be found in [26].

Figure 3.8: Optical Linear Encoder: Real Photo and Datasheet Image[26]

This optical encoder is composed of two components: a readhead
and a scale. The scale is fixed on the CBPM joint and consequently it
moves together with the axis. Thanks to the characteristics of the com-
pliant component, the lost motion of the axis is negligible and for this
reason the position read by the encoder mounted on the CBPM rep-
resents the position of the XYZ compliant joint. The readhead, which
reads the position from the scale, is fixed on a support directly above
the CBPM compliant mechanism (The distance between the readhead
and the scale must be in the range 0.8± 0.08 mm [26]). The encoder
output is connected to the encoder input on the dSPACE controller
board and its feedback signal allows the creation of a closed loop con-
trol system by using Matlab/Simulink running on the computer.
Moreover, Renishaw provides the SIGNUM software that can be used
to read the encoder output signal strength, to configure the compo-
nents and to verify their correct installation [27].

3.5 servo amplifier

The voltage provided by the DAC output of the dSPACE controller
board needs to be converted into a current that feeds the voice coil
actuator. This action is performed by a brushless PWM servo ampli-
fier for both axes. The B25A20 by Advanced Motion Control, shown
in Figure 3.9, is used. Its specifications are shown in table 3.2, while
the datasheet of this component can be found in [28].

Table 3.2 shows that the device allows four operating modes. In
order to have an output current proportional to the input voltage, the
current mode was used for both the servo amplifiers. The correspond-
ing I/O relationship is (3.2):

i = Kdv (3.2)
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Figure 3.9: Brushless PWM Servo Amplifiers

where:
- i is the output current [A],
- Kd is the amplifier gain [A/V],
and
- v is the input voltage [V].

The value of the gain Kd between the voltage input and the current
output was determined experimentally for both servo amplifiers as:
1.804 A/V and 1.615 A/V for the X-axis and the Y-axis amplifier, re-
spectively.
The system resolution is limited by the output electrical noise of
the amplifiers, whose amplitude has been experimentally determined
and it resulted around 0.2µm and 0.5µm for the X-axis and the Y-axis,
respectively.

Table 3.2: Specification of the Servo Amplifiers [28]
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3.6 power supply

The power supply used in the system is the SM 52-30 by Delta Elek-
tronika. The voltage range is: 0− 52 V and the current range is: 0− 30
A. A photo of the power supply employed is shown in Figure 3.10.

Figure 3.10: Power Supply

3.7 dspace controller board

The DS1104 R&D Controller Board allows the upgrading of the PC
to a development system for rapid control prototyping. It is a single-
board system with real-time hardware and comprehensive I/O. This
controller is connected to the PC through a PCI (Pheripheral Com-
ponent Interconnect) interface. Using the dSPACE ControlDesk 5.4
software, that interface allows uploading of the control programs de-
veloped in Matlab/Simulink on the board and real-time visualization
on the PC of acquired data.
All the characteristics of the dSPACE controller board can be found
in [29]. It has several input and output devices, such as:

• 8 ADC (Analog to Digital Converter) input

• 8 DAC (Digital to Analog Converter) output

• a Digital I/O connector

• a I/O Slave DSP

• 2 Digital incremental encoder interface

• 2 Single UART serial interface connectors

This thesis work used two DAC outputs and two encoder inputs, as
shown in Figure 3.11.

The DAC outputs are used to convert the digital voltage reference
values returned by the control model developed in Simulink, to the
analog voltage signals that feed the amplifiers. The DACs have a res-
olution of 16 bits and an output range of ±10V. Moreover, since the
DAC exhibits a gain of 10, a factor equal to 0.1 is added before the
DAC block in the Simulink model, as shown in Figure 3.13.
The system position is acquired by the optical linear encoders and
forwarded to the computer. It has 24 bit resolution and selectable



3.7 dspace controller board 31

Figure 3.11: dSPACE DS1104 controller board with amplifiers and encoders
connections

single-ended (TTL) or differential (RS422) input (the latter option is
used in this thesis).
To interface the dSPACE board to the PC, some specific blocks need to
be used in the Simulink control model. These blocks could be find in
the DS1104 MASTER PPC section of the dSPACE RTI1104 section of
the Simulink Library Browser, when the dSPACE board is connected.
The real system implementation in Simulink is shown in Figure 3.12

while the DAC and the Encoder Blocks are shown in Figure 3.13.

1
x[m]

1
V[V]

In1

Dac

Out1

Encoder

Figure 3.12: Real System implementation in Simulink

1
In1

DAC

DS1104DAC_C1

0.1

DAC gain

Scope

1
Out1

Enc position

Enc delta position

DS1104ENC_POS_C1

ENCODER
MASTER SETUP

DS1104ENC_SETUP

Terminator

-K-

enc_resolution

Figure 3.13: dSPACE DS1104 DAC and Encoder blocks implementation in
Simulink

Figure 3.13 shows that only one block is needed to drive to the cho-
sen DACH channel. Instead, the encoder input requires two blocks.
In particular, the Encoder Master Setup Block allows the choice of
the global encoder settings, such as the type of input (single-ended
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TTL or differential RS422), while the Enc position/Enc delta position
block provides read access to the position and delta position of the
encoder interface channel (here the channel number must be choose).
The scope added between the DAC gain and the DAC block allows
the signal on the controller board to be viewed. Without that scope,
no signal was available on the DAC output of the dSPACE board, so
that the system was not driven. Moreover, the gain after the Enc posi-
tion is required to convert the encoder output, expressed in encoder
lines, in meters.
Once the Simulink control model is designed, it has to be built and
downloaded on the DS1104 controller board, in order to work with
the dSPACE ControlDesk 5.4 software.

3.7.1 dSPACE ControlDesk 5.4 Software

The dSPACE ControlDesk 5.4 software [30] represents the PC graph-
ical interface between the controller board and the user. It allows
a real-time communication between the PC and the dSPACE Con-
troller Board. Moreover, this software permits the real-time visual-
ization and storage of the measured signals and the variation of the
model parameters. The measured signals can be exported in Matlab
to be analyzed in depth, or plotted on a graph.

3.8 system model

The real system exhibits a non-linear behavior due to the compliant
mechanism stiffness. According to [22], non-linearity can be neglected
when the axis movement is up to ±0.2 mm. In this range of move-
ments, each axis can be modelled as a Mass-Spring-Damper system
and it is possible to represent it with a linear transfer function be-
tween the voltage input (from the DAC on the dSPACE Controller
Board) and the position signal output returned by the encoder. This
model will be described in subsection 3.8.1. When the displacements
are larger than ±0.2 mm, the stiffness non-linearity cannot be ne-
glected, this will be analyzed in subsection 3.8.2.

3.8.1 Linear Model

According to [8], in the linear range each axis can be modelled as a
Mass-Spring-Damper system, shown in Figure 3.14.

Applying the Newton’s law to the system in Figure 3.14, the fol-
lowing equation can be obtained:

F(t) + Fe(t) + Fv(t) = mtotẍ(t) (3.3)
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Figure 3.14: Mass-Spring-Damper System [8]

where:
- F(t) is the force produced by the actuator [N],
- Fe(t) is the elastic force [N],
- Fv(t) is the viscous force [N],
- mtot is the total mass of one axis [kg],
and
- ẍ is the acceleration of the system [m/s2].
The force produced by the actuator can be expressed by combining
the equations (3.1) and (3.2):

F(t) = Kfi(t) = KfKdv(t) (3.4)

Moreover, the elastic force and the viscous force are:

Fe(t) = −ktx(t) Fv(t) = −cẋ(t) (3.5)

where: kt is the axis stiffness and c is the viscous damping coefficient.
Therefore, each axis can be represented by the following equation:

F(t) = KfKdv(t) = mtotẍ(t) + cẋ(t) + ktx(t) (3.6)

Expressing this equation in the Laplace domain:

F(s) = KfKdV(s) = mtots
2X(s) + csX(s) + ktX(s) (3.7)

Thus the axis linear transfer function is expressed by:

X(s)

V(s)
=

KfKd

mtots2 + cs+ kt
(3.8)

The transfer-function numerators are different for the two axes due
to the different servo amplifier gains Kd. They are equal to 1.804 A/V
and 1.615 A/V for the X-axis and the Y-axis amplifiers, respectively.
The axis stiffness in the linear range was theoretically and experi-
mentally evaluated in [10] for the X-axis. The resulting experimen-
tal value is equal to 129.46 N/mm. The Y-axis linear stiffness was
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supposed to be equal to that of the X-axis one due to the same axis
structure. Moreover, the linear model is valid only in a small range
and for this reason the small difference between the stiffness of the
two axes is less relevant than the non-linear behaviour of the system.
In the same paper [10], the the viscous damping coefficient was also
evaluated on the basis of the damping factor estimated through the
logarithmic decrement method. The estimated damping factor was: ξ
= 0.023 and, consequently, the following viscous damping coefficient
resulted: c = 2ξ

√
ktmtot = 22.35

√
kgN/m. Moreover, the axis total

mass is 1.824 kg.
Using the above values in equation (3.8) the voltage/position transfer-
functions of the two axes are:

Xx(s)

Vx(s)
=

KfKdx

mtots2 + cs+ kt
=

35.14 · 1.804
1.824s2 + 22.35s+ 129460

(3.9)

Xy(s)

Vy(s)
=

KfKdy

mtots2 + cs+ kt
=

35.14 · 1.615
1.824s2 + 22.35s+ 129460

(3.10)

for the X-axis and the Y-axis, respectively.

The bode diagram of the X-axis transfer-function is shown in Fig-
ure 3.15. The bode plot of the Y-axis transfer-function is very similar,
since there is only a small difference in the DC gain of the two sys-
tems.

Figure 3.15: Bode diagram of the X-axis transfer-function

The first resonance frequency can be evaluated using equation (3.11)
and can be verified using the bode plot. The resonance frequency is
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the same for both axes because the denominator coefficients are iden-
tical.

wn =

√
Kt

mtot
=

√
129460

1.824
= 266.413rad/s= 42.40Hz (3.11)

3.8.2 Non Linear Model

Since the CBPM stiffness non-linearity cannot be neglected for dis-
placements larger than ±0.2 mm, a non-linear model of the system
must be identified.
In [31] the non-linear model for the CBPM is explained and the non-
linear equation for the CBPM stiffness was obtained. In this section,
these equations are reported and the non-linear model of the system
(considering also the XYZ component) is shown.
In [31] a kinematostatic modelling is employed to capture the load-
displacement relationship of the CBPM. Both load and displacement
are defined at the centre of the motion stage, as shown in Figure 3.16.
The CBPM equations reported refer to this Figure.

Figure 3.16: CBPM with actual geometry, loading and displacement indica-
tion [31]

In this paper, a normalization strategy was employed: all the trans-
lational displacements and length parameters are normalized to the
beam actual length L, while the forces and the moments are normal-
ized by EI/L2 and EI/L, respectively, where E is the Young’s modu-
lus and I is the second moment of area of a rectangular cross-section
(I = 1

12WT
3). All the normalized parameters are denoted by the corre-

sponding lower-case letters. In [31] it has been shown that the normal-
ized primary translational motion (ys) of the CBPM can be expressed
by:

ys =
fy

48+ 1.2( 2.4y2
s

1/d+y2
s/700

)
(3.12)
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where:
- fy is the normalized primary force
and
- d = 12

(T/L)2
, where T is the beam in-plane thickness and L is the

beam length.
Therefore, the normalized primary actuation force fy is:

fy = 48ys +
2.88y3s
1
d + y2

s

700

(3.13)

Considering the normalization factors, we have:

Fy

(EI
L2 )

= 48
Ys

L
+
2.88(Ys

L )3

1
d +

(Ys
L )2

700

(3.14)

and thus the primary actuation force is:

Fy = 48
EI

L3
Ys +

2.88EI
L5

d + L3Y2
s

700

Y3s (3.15)

Using the numerical value of the CBPM component reported in sec-
tion 3.2, the primary actuation force behaviour versus the displace-
ment is shown in Figure 3.17.
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Figure 3.17: CBPM primary actuation force as a function of the displacement

As can be seen from Figure 3.17, the relationship between the pri-
mary actuation force and the displacement is strongly non-linear and
therefore non-linearity effects cannot be neglected.
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Using equation (3.13), the normalized primary motion stiffness can
be evaluated [31]:

ky =
dfy

dys
= 48+

8.64y2s
( 1d + y2

s

700)
−

5.76y4s
700( 1d + y2

s

700)
2

(3.16)

Considering the normalization factors, the primary motion stiffness
becomes:

Ky =
dFy

dYs
=
48EI

L3
+
8.64EIY2s
L5

d + L3Y2
s

700

−
5.76EIL3Y4s

700(L
5

d + L3Y2
s

700 )2
(3.17)

Using the numerical value of the CBPM component reported in sec-
tion 3.2, the primary motion stiffness behaviour versus the displace-
ment is shown in Figure 3.18.
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Figure 3.18: CBPM primary motion stiffness as a function of the displace-
ment

To obtain the system model, the theoretical stiffness equation of the
XYZ CPM also needs to be evaluated. According to [10], the single
beam that composes the XYZ CPM component can be represented as
in Figure 3.19.

Under the assumption of small deflection, it is possible to evaluate
the beam stiffness using the simplified Euler-Bernoulli equation [10]:

M(x)

EI
=
d2y

dx2
(3.18)
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Figure 3.19: Deformed Beam [10]

where:
- M(x) = F(L− x) − FL

2 = FL
2 − Fx,

- E is the Young’s module,
and
- I is the second moment of area of a rectangular section (I = 1

12WT
3).

Substituting the M(x) expression in equation (3.18):

d2y

dx2
=

FL
2 − Fx

EI
(3.19)

Therefore:

dy

dx
=

∫
(
FL
2 − Fx

EI
)dx =

1

EI
(
FLX

2
−
FX2

2
) (3.20)

Consequently:

y =

∫L
0

1

EI
(
FLX

2
−
FX2

2
)dx =

FL3

12EI
(3.21)

Thus, the stiffness of a single beam of the XYZ CPM component is:

ksinglebeamXYZ =
F

y
= 12

EIXYZ

L3XYZ

=
EUXYZT

3
XYZ

L3XYZ

(3.22)

Using the numerical value for the XYZ CPM parameters reported in
subsection 3.2.2, the single beam stiffness is found to be: ksinglebeamXYZ =

552N/m. Furthermore, knowing that 24 beams are included in the
XYZ CPM axis stiffness, the total linear stiffness of the XYZ CPM
compliant component is:

kXYZ = 24 · ksinglebeamXYZ = 24 · 552 = 13248N/m (3.23)
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The primary actuation force of one axis of the system is obtained
adding the XYZ CPM stiffness to the linear stiffness of the equation
(3.15):

Fy = (48
EICBPM

L3CBPM

+ 24
12EIXYZ

L3XYZ

)Ys +
2.88EICBPM

L5
CBPM

d +
L3
CBPMY2

s

700

Y3s (3.24)

Moreover, adding the XYZ stiffness to equation (3.17), the total axis
stiffness can be found:

Ky =
48EICBPM

L3CBPM

+24
12EIXYZ

L3XYZ

+
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2
s
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−
5.76EICBPML

3
CBPMY

4
s
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CBPMY2

s

700 )2

(3.25)

The behaviour of the total axis force as a function of the axis displace-
ment is shown in Figure 3.20, together with the primary actuation
force of the CBPM and the force of the XYZ CPM separately.
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Figure 3.20: Total Axis Force and CBPM and XYZ CPM Components Force

3.9 non-linear model simulink

In a previous thesis work on this project [8], the behaviour of the sys-
tem was simulated only in the linear range by modelling the system
with the linear transfer-function reported in (3.9). The non-linear be-
haviour was analyzed only experimentally.
During this thesis work, the non-linear equations were used to imple-
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ment also a non-linear model of the system in Simulink.
As wrote above, the non-linear behaviour is mainly due to the non-
linear stiffness of the CBPM component of the manipulator. Therefore,
the linear force expression reported in equation (3.6) can be modified
replacing the linear stiffness kt, with the non-linear stiffness function
k(x):

F(t) = mtotẍ(t) + cẋ(t) + k(x)x(t) (3.26)

Expressing this equation in the Laplace domain, we have:

F(s) = mtots
2X(s) + csX(s) + k(x)X(s) (3.27)

or:

F(s) − k(x)X(s) = mtots
2X(s) + csX(s) (3.28)

Let us define: F(s) − k(x)X(s) = U(s), it can be seen that there is a
linear relation between U(s) and the Laplace transform of the system
velocity sX(s):

sX(s)

U(s)
=

1

mtots+ c
(3.29)

This equation can be represented using the block diagram reported
in Figure 3.21.

1

   mtots + c   
U(s) sX(s)

Figure 3.21: Linear Transfer-Function that links U(s) and sX(s)

Integrating the velocity sX(s), that is multiplying by 1
s in the Laplace

domain, we obtain the position signal X(s).
Remembering the non-linear relation (3.24) between actuating force
and position, it is possible to obtain U(s) by calculating the term
k(x)X(s) and subtracting it from the actuating force F(s).
Hence, the schematic representation of the non-linear system that rep-
resent the relationship between the actuating force and the system
position is shown in Figure 3.22.

This model was implemented in Simulink and placed instead of the
real system to simulate the system behaviour in the non-linear range.
The Simulink non-linear model is shown in Figure 3.23 and the k(x)
Matlab Function is reported in appendix A.1.
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B A C K G R O U N D : O N E A X I S S Y S T E M ( X - A X I S )

4.1 introduction

The project of the compliant high performance positioning system is
quite complex and a number of students worked on its design and
control, as written in the introduction (Chapter 1).
All the prior activities were concerned only the movement of one of
the two system axes (the X-axis). In this chapter, the one axis control
algorithm (described in [8]) is summarized. It was implemented by
the last student that worked on the manipulator, improving the work
of previous students. This was the starting point for the control algo-
rithm implemented in this thesis work.
The control structure implemented in Simulink is shown in Figure 4.1,
in which different subsystems are reported. The first one is the Input
subsystem, shown in Figure 4.2. This block imports the position, ve-
locity and acceleration reference signals from the Matlab workspace
and, applying appropriate gains, it scales the reference signals to ob-
tain the desired amplitude of physical movement. In [8] the motion
trajectory was chosen in order to use a reference signal that the ma-
nipulator can follow. This will be described in Section 4.2.

The Scope subsystem of the Simulink Control Scheme of Figure 4.1
is reported in Figure 4.3. This subsystem allows the visualization of
both the reference and the measured signals on the same plot.

In the Real System subsystem, the physical connections to the dSPACE
controller board are implemented. This Simulink subsystem was de-
scribed in the dSPACE controller board section (Section 3.7). The
real system block can be replaced with a system model in order to
simulate the system behaviour. The system model can be the linear
transfer-function reported in Section 3.8.1 or the non-linear Simulink
model reported in Section 3.9.
All the remaining subsystems require a more detailed description
and therefore they will be explained in the next sections. The PID
controller and the Newton subsystem constitute the feedback control.
They are described in Section 4.3. The feed-forward controller is de-
scribed in Sections 4.4. Finally, a velocity observer was implemented
to obtain a velocity less noisy feedback signal than the velocity sig-
nal obtained as a derivative of the position feedback returned by the
encoder. This subsystem will be described in Section 4.5.
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Figure 4.1: One Axis Control Scheme in Simulink [8]
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Figure 4.3: Scope Subsystem of One Axis Control Scheme in Simulink [8]

4.2 reference

In a motion control system achieving precise motion with a minimum
vibration and overshoot is extremely important. To fulfill this aim
different trajectory planning has been researched, with the target of
finding a position reference that provides a mechanically feasible and
smooth path while optimizing time and minimizing overshoots of the
movement [8]. The ideal step positioning is not feasible because it
requires infinite velocity (and of course higher order derivatives are
infinite as well), that is impossible to perform in a real system.
For this reason, in [8], the chosen position reference signal for the
one-axis system is the one shown in Figure 4.4. Before this signal
transition the reference is fixed at 0 while it is held constant at 1
when the transition is over.

The Matlab code that generates this reference signal is reported in
Appendix A.2.

The reference signal transition is composed by a half period of
a sinewave, shifted and normalized to obtain values in the interval
(0, 1). It is defined by the following equation [8]:

c
1− cos(2πft)

2
(4.1)
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defining:

c =
2sdes

1− cos(2πftdes)

and

f =
1

2tdes

(4.2)

where sdes is the desired amplitude and tdes is the desired rise time.
This reference signal is a good choice because it has a null derivative
at both beginning and end and thus it provides a velocity continuous
signal.
In [8] the system behaviour with different rise times tdes was ana-
lyzed and it was concluded that the best choice is tdes = 0.1, as it is
a good trade off between limited overshoot of the system output and
fast system response time.
The velocity and the acceleration reference signals are calculated through
one or two discrete derivatives of the position reference signal, respec-
tively. This was implemented in Simulink, as shown in Figure 4.5.

The two step Simulink blocks are used to ensure zero velocity and
zero acceleration values at the last sample [8]. This program to eval-
uate the derivatives references signals can be used for any chosen
position reference signal.

4.3 feedback controller

The feedback controller is composed of two Simulink subsystems: the
Newton subsystem (described in subsection 4.3.1) and the PID sub-
system (described in subsection 4.3.2).
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erence signal. [8]

4.3.1 Newton Subsystem

The Newton subsystem Simulink block, shown in Figure 4.6, was im-
plemented to evaluate the force required to compensate the position
and velocity errors.

1
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1
ex[m]

2
ev[m/s]

c

ex

x_FDBK

Kx

K(x)*x

3
x_FDBK[m]

Figure 4.6: Newton Subsystem of One Axis Control Scheme in Simulink [8]

The K_function block is a Matlab function used to evaluate the non-
linear stiffness of the manipulator. This function has two inputs: the
position measurement returned by the encoder and the position error
signal. The first input is needed to calculate the non-linear stiffness
using equation (3.25), while the second one is needed to evaluate the
force. The theoretical non-linear stiffness equation was experimen-
tally corrected using an error term to compensate for the difference
between the theoretical expression (3.25) and the real system. This
error term was experimentally tuned. Unfortunately, during this the-
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sis work it was discovered that, to achieve the best performance, this
error parameter needs to be tuned again every time the system was
fixed (also if a screw was turned).
The K_function Matlab code is reported in Appendix A.3.
Considering that the velocity has a linear behaviour in the force ex-
pression, a simple gain (equal to the viscous damping coefficient c)
was used to consider the velocity error effect. However, this term
could be useless because of the presence of the derivative term in the
PID action. This consideration is supported by the PID tuning results
reported in the next section, where the derivative gain is small.

4.3.2 PID controller

The PID control subsystem is shown in Figure 4.7. During this thesis
work the PID control gains was retuned because the servo amplifier
was replaced and therefore its gain is different. The gain tuning was
performed using the Ziegler-Nichols method, explained in Section 2.2.
The resulting ultimate gain Ku is equal to 0.53376 and the oscillation
period Tu was measured to be equal to 0.022 s. Therefore, using the
"PID no overshoot" gains formulas shown in Table 2.1, the resultant
PID gains are:

• Kp = 0.2Ku = 0.10675

• Ti =
Tu

2 = 0.011s→ Ki =
Kp

Ti
= 9.7047

• Td = Tu

3 = 0.00733s→ Kd = KpTd = 0.000783

Ki

Kp

Kd

K	Ts
z-1

K	(z-1)
Ts	z

1
F*[N]

1
V[V]

N2V

Figure 4.7: PID Subsystem of One Axis Control Scheme in Simulink [8]

4.4 feed-forward controller

The feed-forward control implemented in the high-precision position-
ing system is based on the theoretical value of the force required
to perform a specific movement. The related Simulink subsystem is
shown in Figure 4.8.
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As it can be noticed from Figure 4.8, the required force is evalu-
ated based on the position, velocity and acceleration reference signals.
Both velocity and acceleration have a linear relationship with the actu-
ating force. Therefore their contributions are simply scaled using an
suitable gain (equal to the viscous damping coefficient c and the total
mass mtot for the velocity and acceleration, respectively), and added
up. Conversely, the stiffness is not linear and therefore the relation
between the position reference signal and the force is calculated by a
Matlab function implementing the force equation (3.24). The related
Matlab code is reported in Appendix A.4.
As occurred in the non-linear stiffness function (in the Newton sub-
system 4.3.1), some error terms, tuned experimentally, were added
to this Matlab function to compensate for the difference between the
theoretical expression and the real behaviour of the system. Also in
this case, this error coefficients need to be tuned experimentally every
time the system was set up.

4.5 velocity observer

The velocity observer subsystem estimates the velocity used in the
feedback control. The Simulink block is shown in Figure 4.9 and it
was implemented using the information reported in the observer the-
ory explained in Section 2.3.

In [8], the observer gain values were chosen by considering the
three possible options reported in Table 2.2. It was verified that the
medium configuration provided the best compromise between noise
filtering and disturbance rejection. Therefore, the gains used in the
Simulink Observer subsystem are:

• L1 = 0.2473

• L2 = 0.1716
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During this thesis work, the three possible gain pairs were tested and
the previous selection was confirmed to be the best choice.

4.6 x-axis results

Some meaningfull measurements were performed using the control
algorithm presented in this chapter. The simulation and experimental
results achieved for ±0.1mm (linear range) and ±1mm (non-linear
range) position reference on the X-axis are shown in this section.

4.6.1 Simulations
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Figure 4.10: X-axis position, ±100 µm displacement. Reference signals and
simulation results

The maximum absolute and RMS (Root Mean Square) values of the
error between the measurement results and the reference signal are
reported in Table 4.1 for the different amplitudes chosen.
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Figure 4.11: X-axis position, ±1000 µm displacement. Reference signals and
simulation results

Axis X X X X
Displacement Amplitude [µm] 100 1000 -100 -1000

Maximum Absolute Error Value [µm] 0.671 7.059 0.561 5.995

RMS Error Value [µm] 0.05 0.48 0.05 0.43

Table 4.1: Maximum absolute error and RMS error Values for the different
displacements chosen. X-axis. Simulation results

The data show that the maximum error is in the micro-meters
range, while the RMS error values are always smaller than 1µm in
the simulation analysis.

4.6.2 Experiments

The maximum absolute and RMS (Root Mean Square) values of the
error between the measurement results and the reference signal are
reported in Table 4.2 for the different amplitudes chosen.

Axis X X X X
Displacement Amplitude [µm] 100 1000 -100 -1000

Maximum Absolute Error Value [µm] 0.762 12.27 1.434 9.860

RMS Error Value [µm] 0.16 5.91 0.32 1.82

Table 4.2: Maximum absolute error and RMS error values for the different
displacements chosen. X-axis. Experimental Results

The data show that the maximum error is in the micro-meter range
and, as expected, they are slightly larger than that obtained in the sim-
ulation. Furthermore, the RMS error values, as expected, are bigger
than those obtain in simulation. This is probably due to the external
noise that is always present in the real system.
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Figure 4.12: X-axis position, ±100 µm displacement. Reference signal and
experimental results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

-200

0

200

400

600

800

1000

1200

X-
ax

is
 p

os
iti

on
 [

m
]

X-axis position. 1000 m displacement. Experimental

Reference
Measurement

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time [s]

-1200

-1000

-800

-600

-400

-200

0

200

X-
ax

is
 p

os
iti

on
 [

m
]

X-axis position. -1000 m displacement. Experimental

Reference
Measurement

Figure 4.13: X-axis position, ±1000 µm displacement. Reference signal and
experimental results
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5.1 introduction

During this thesis work, the high-precision compliant positioning sys-
tem was extended from one to two axes. The XYZ CPM was designed
in [5] to allow motion performance along the three motion directions
to be isotropic. Due to this structure, which decouples the three-axes
movements, the control algorithm of each axis can be implemented
separately, with each using the same structure. Therefore, to perform
movements in two of the three possible degrees of freedom of the
XYZ CPM, the physical components of the first axis (amplifier, actu-
ator, CBPM mechanical mechanism, encoder,etc.) were replicated on
the second axis.
Specifically, the control algorithm implemented in [8] for the X-axis
was replicated for the Y-axis. The only difference between the two
algorithms regards the proportional gain of the amplifier, which was
measured and discussed in Chapter 3.
The tuning of the Y-axis control system, which has been implemented
identically to that of the X-axis one described in the Chapter 4, is il-
lustrated in Section 5.2, where the experimental results obtained us-
ing the reference signal designed for the X-axis are also shown. Con-
versely, simulation results are not reported because, as the amplifier
gain is the only difference between the X-axis and the Y-axis, the sim-
ulation results are extremely similar to those obtained for the X-axis,
which are reported in Chapter 4.
In order to draw some significant shapes on the XY-plane, meaning-
ful reference signals should be selected. The first target shape was
a circle on the XY-plane, which was obtaining by feeding both axes
with sinusoidal reference signals that have equal amplitude and 90◦

phase-shift. The choice of this shape was suggested by both its rel-
evance in industrial application and the mathematical simplicity of
the reference signals, which have continuous derivatives of all orders.
This reference signal and the simulation and experimental results are
reported in Section 5.3.
The subsequent target shape was a square in the XY-plane. Draw-
ing this shape is more difficult than the circumference because of
the edges. The choice of this reference signal was made because this
shape increases the industrial applications of the manipulator. A pos-
sible reference signal for both axes to draw a square on the XY-plane
is a square wave. However, this option has been discarded because
the signal discontinuities cannot be followed accurately by the sys-

53
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tem. Another reference signal that can be used to produce a square
in the XY-plane is the triangular signal. In this case, the square shape
is rotated of 45 degrees with respect to the shape obtained with a
square reference signal. The triangular wave reference signal with
simulation and experimental results will be illustrated in Section 5.4.
Unfortunately, triangular signal has a discontinuous derivative (the
velocity waveform is a square wave); therefore it would require an in-
finite system acceleration to be followed accurately. To overcome this
problem, another reference signal was designed in order to draw a
square on the XY-plane. This reference signal is a smooth trapezoidal
signal and it will be described in Section 5.5.

5.2 y-axis control

The Y-axis control algorithm was implemented to be identical to the
X-axis one, illustrated in chapter 4. The only difference was the am-
plifier gain and therefore the PID gains. The PID was tuned using
the Ziegler-Nichols method, explained in Section 2.2. For the Y-axis,
the ultimate gain Ku and the oscillation period Tu resulted in param-
eters that are equal to 0.53372 and to 0.015 s, respectively. Therefore,
using the "PID no overshoot" gain formulas showed in Table 2.1, the
following PID gains resulted:

• Kp = 0.2Ku = 0.10674

• Ti =
Tu

2 = 0.0075s→ Ki =
Kp

Ti
= 14.233

• Td = Tu

3 = 0.005s→ Kd = KpTd = 0.000534

As for the X-axis, also the error terms in the Y-axis Matlab functions,
related to the feed-forward force and non-linear stiffness, were tuned
experimentally.

5.2.1 Experimental Results

Some experimental results about the Y-axis performance are shown
in this subsection. Figure 5.1 shows the Y-axis capability to follow a
±100 µm (linear range) smooth step reference with a rise time of 0.1s,
while in Figure 5.2 the behaviour related to a ±1000 µm (non-linear
range) smooth step reference with the same time rise is shown.

The maximum absolute and RMS (Root Mean Square) values of
the error between the measurement results and the reference signal is
reported in Table 5.1 for the different amplitudes chosen. Data show
that both the maximum error and the RMS error are in the micro-
meter range and they assume values close to those obtained for the
experimental analysis of the X-axis (reported in section 4.6).
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Figure 5.1: Y-axis position, ±100 µm displacement. Reference signals and
experimental results
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Figure 5.2: Y-axis position, ±1000 µm displacement. Reference signals and
experimental results

Axis Y Y Y Y
Displacement Amplitude [µm] 100 1000 -100 -1000

Maximum Absolute Error Value [µm] 0.84 11.8 0.68 17.9
RMS Error Value [µm] 0.28 2.66 0.23 3.33

Table 5.1: Maximum absolute error and RMS error values for the different
displacements chosen on the Y-axis. Experimental results.
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5.3 sinusoidal wave reference signal

The first shape performed in the XY-plane, moving both axes simul-
taneously, was a circular trajectory. To achieve this target, two sinu-
soidal reference signals of equal amplitude and with a 90◦ phase-
shift each other were applied on the axes concurrently. The Matlab
script that generate these reference signals is reported in Appendix
A.5, while the time domain signals and the related XY-plane plot are
shown in Figure 5.3.
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Figure 5.3: Sinusoidal wave reference signals on both axes

Simulations and experiments were performed considering these
reference signals with different amplitude and frequency. The results
achieved with amplitude 100 µm (linear range) and 500 µm (non-
linear range), and frequency 1 Hz and 10 Hz are reported in this sec-
tion. The simulation results can be found in Subsection 5.3.1, while
the experimental results are shown in Subsection 5.3.2.
Different shapes on the XY-plane obtained with the sinusoidal refer-
ence signal with different amplitude and phase-shift between the two
axes are reported in Subsection 5.3.3.

5.3.1 Simulation Results

The simulation results achieved in the XY-plane with the 100 µm am-
plitude sinusoidal reference signal at 1 Hz and 10 Hz frequency on
both axes are shown in Figure 5.4, while the results achieved when
the amplitude is 500 µm are shown in Figure 5.5.

The maximum absolute and the RMS values of the position error
are reported in Table 5.2 for the different amplitudes and frequencies
considered.

As it can be noticed both from the plots and the RMS error values,
the difference between the output and the reference signals increases
with frequency. This is clearly due to the system inertial behavior,
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Figure 5.4: Sinusoidal wave reference signals 100 µm on both axes. XY-plane.
Reference signals and simulation results
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Figure 5.5: Sinusoidal wave reference signals 500 µm on both axes. XY-plane.
Reference signals and simulation results

Axis X Y X Y X Y X Y
Amplitude [µm] 100 100 100 100 500 500 500 500

Frequency [Hz] 1 1 10 10 1 1 10 10

Maximum Absolute Error Value [µm] 0.90 0.91 2.94 3.49 5.49 5.07 17.4 18.2
RMS Error Value [µm] 0.14 0.12 1.96 1.93 3.61 3.17 11.4 11.4

Table 5.2: Maximum absolute error and RMS error values obtained with si-
nusoidal reference signal. Simulation results
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because when the frequency is increased, the system is required to
move faster and therefore it is more difficult to follow correctly the
reference.
However, the simulation results show a good overall system perfor-
mance on the whole over the range of amplitude and frequency val-
ues chosen.

5.3.2 Experimental Results

The experimental results achieved in the XY-plane with the sinusoidal
reference signal of 100 µm amplitude at 1 Hz and 10 Hz frequency on
both axes are shown in Figure 5.6, while the results achieved when
the amplitude is 500 µm are shown in Figure 5.7.
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Figure 5.6: Sinusoidal wave reference signals 100 µm on both axes. XY-plane.
Reference signals and experimental results
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Figure 5.7: Sinusoidal wave reference signals 500 µm on both axes. XY-plane.
Reference signals and experimental results



5.3 sinusoidal wave reference signal 59

The maximum absolute and the RMS values of the position error
are reported in Table 5.3 for the different amplitudes and frequencies
considered.

Axis X Y X Y X Y X Y
Amplitude [µm] 100 100 100 100 500 500 500 500

Frequency [Hz] 1 1 10 10 1 1 10 10

Maximum Absolute Error Value [µm] 10.6 9.57 13.5 15.9 13.0 9.44 30.3 33.8
RMS error value [µm] 1.84 1.57 5.41 7.71 2.51 1.74 16.7 19.8

Table 5.3: Maximum absolute error and RMS error values obtained with si-
nusoidal reference signal. Experimental results

Comparing these results with the simulation ones, in the experi-
mental data the performance difference between the analyses at 1 Hz
and 10 Hz is most relevant informative. As expected, in most cases
both the maximum absolute error and the RMS error values are big-
ger than the corresponding values returned by simulations.

5.3.3 Different Shapes using Sinusoidal Reference Signal

Changing the amplitude and/or the phase-shift of the two sinusoidal
reference signals, different shapes can be plotted on the XY-plane.
Modifying the amplitude of one of the two signals and maintaining
the 90◦ phase-shift between them, it is possible to obtain an ellipse.
Moreover, if the phase-shift is modified, the ratio between the ellipse
axes change and they also rotate on the XY-plane. With a 0◦ phase-
shift, a diagonal line on the XY-plane is plotted.
In Figure 5.8, two examples of different shapes obtained experimen-
tally with sinusoidal reference signals at 1 Hz are shown.
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Figure 5.8: Examples of XY-plane results with modified sinusoidal reference
signal. Reference signals and experimental results
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5.4 triangular wave reference signal

A couple of triangular waveforms with 90◦ phase-shift were first con-
sidered as reference signals to performed a square in the XY-plane.
The square is rotated of 45◦ with respect to the X and Y axes. The
Matlab script that generate these reference signals is reported in Ap-
pendix A.6, while the time-domain signals and the related XY-plane
plot are shown in Figure 5.9.
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Figure 5.9: Triangular wave reference signals on both axes

As for the sinusoidal reference signal, simulations and experiments
were performed considering triangular reference signals of different
amplitudes and frequencies. The results achieved with amplitude 100
µm (linear range) and 500 µm (non-linear range) and frequency at
1Hz and 10Hz are reported in this section. The simulation results
can be found in Subsection 5.4.1, while the experimental results are
shown in Subsection 5.4.2.

5.4.1 Simulation Results

The simulation results achieved in the XY-plane with the 100 µm tri-
angular reference signal at 1Hz and 10Hz frequency on both axes are
shown in Figure 5.10, while the results obtained when the amplitude
is 500µm are shown in Figure 5.11.

The maximum absolute and the RMS values of the position error
are reported in Table 5.4 for the different amplitudes and frequencies
considered for the triangular reference signals.

As it can be noticed from both the plots and the error data, when
the amplitude or the frequency increases, it is more difficult to fol-
low accurately the reference signal and therefore the position error
increases (in terms of both maximum and RMS values).
Due to the nature of the triangular signal, that is less smooth than
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Figure 5.10: Triangular wave reference signals 100 µm on both axes. XY-
plane. Reference signals and simulation results
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Figure 5.11: Triangular wave reference signals 500 µm on both axes. XY-
plane. Reference signals and simulation results

Axis X Y X Y X Y X Y
Amplitude [µm] 100 100 100 100 500 500 500 500

Frequency [Hz] 1 1 10 10 1 1 10 10

Maximum Absolute Error Value [µm] 1.23 1.22 9.75 9.07 7.19 5.72 57.3 60.9
RMS error value [µm] 0.66 0.73 3.76 3.89 3.84 3.79 23.1 26.8

Table 5.4: Maximum absolute error and RMS error values obtained with tri-
angular reference signal. Simulation results
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the sinusoidal signal, the displacement error is larger than in the si-
nusoidal case.

5.4.2 Experimental Results

The experimental results achieved in the XY-plane with the 100 µm
triangular reference signal at 1 Hz and 10 Hz frequency on both axes
are shown in Figure 5.12, while the results obtained when the ampli-
tude is 500µm are shown in Figure 5.13.
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Figure 5.12: Triangular wave reference signals 100 µm on both axes. XY-
plane. Reference signals and experimental results
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Figure 5.13: Triangular wave reference signals 500 µm on both axes. XY-
plane. Reference signals and experimental results

The maximum absolute and the RMS values of the position error
are reported in Table 5.5 for different amplitudes and frequencies of
the triangular reference signals.

As for the simulations, when the amplitude or frequency increases
it is more difficult to follow accurately the reference signal and there-
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Axis X Y X Y X Y X Y
Amplitude [µm] 100 100 100 100 500 500 500 500

Frequency [Hz] 1 1 10 10 1 1 10 10

Maximum Absolute Error Value [µm] 9.51 8.90 16.2 18.3 47.8 57.2 66.1 92.0
RMS error value [µm] 1.91 1.62 6.15 7.62 25.2 39.7 33.6 44.0

Table 5.5: Maximum absolute error and RMS error values obtained with tri-
angular reference signal. Experimental results

fore the position error increases (in terms of both maximum and RMS
values). Moreover, as expected, the experimental position errors (both
maximum and RMS values) are worse than in simulations. In addi-
tion, due to the signal discontinuities, the error is bigger than with
the sinusoidal reference signal.

5.5 smooth trapezoidal wave reference signal

To overcome the velocity discontinuity problem present in the trian-
gular waveform, a new reference signal was designed with the target
drawing a square in the XY-plane. In addition, the resulting square
shape is not rotated, as happens when using the triangular reference
signal.
The idea was to exploit a couple of trapezoidal waveforms, with 90◦

phase-shift between the two signals. In this way, when one axis is
moving, as the result of the application of the linear "ramp" of the
trapezoidal signal, the other axis is fixed at a specified position. Un-
fortunately, the "ramp" of the trapezoid exhibits the same problem
of discontinuity of the triangular waveform. Since the axis velocity is
not required to be constant, the "ramp" of the trapezoidal signal was
implemented by using half of a sinewave period (designed similarly
to the one-axis reference signal reported in section 4.2). In this way,
the velocity at both the beginning and at the end of the "ramp" is zero
and the continuity of the signal’s first derivative is guaranteed. It is
important to observe that the time dedicated to the movement of one
axis must coincide with the time in which the other axis remains in
a fixed position. Therefore, the trapezoidal signal period was split in
four equal in time parts (sinusoidal positive ramp, constant higher
level, sinusoidal negative ramp, constant lower level).
The Matlab script that generates this reference signal is reported in
Appendix A.7 while the time domain signals for both axes and the
related XY-plane plot are shown in Figure 5.14.

As done with the sinusoidal and triangular reference signals, some
simulations and experiments were performed by considering differ-
ent amplitudes and frequencies of the trapezoidal reference signal.
The results achieved with amplitude of 100 µm (linear range) and
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Figure 5.14: Smooth trapezoidal wave reference signals on both axes

500 µm (non-linear range) at 1Hz and 10Hz are reported in this sec-
tion. The simulation results can be found in Subsection 5.5.1, while
the experimental results are shown in Subsection 5.5.2.

5.5.1 Simulation Results

The simulation results achieved in the XY-plane with the 100 µm am-
plitude trapezoidal reference signal at 1 Hz and 10 Hz frequency on
both axes are shown in Figure 5.15, while the results obtained when
the amplitude is 500 µm are shown in Figure 5.16.
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Figure 5.15: Smooth trapezoidal wave reference signals 100 µm on both axes.
XY-plane. Reference signals and simulation results

The maximum absolute and RMS (Root Mean Square) values of the
position error are reported in Table 5.6 for different amplitudes and
frequencies of the trapezoidal reference signals.
From both the plots and data it can be noticed that the position error
(expressed in terns of RMS or maximum values) is slightly worse
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Figure 5.16: Smooth trapezoidal wave reference signals 500 µm on both axes.
XY-plane. Reference signal and simulation results

than the one obtained with the sinusoidal reference signal. Moreover,
the difference increases at the higher frequency and higher amplitude
chosen. This is probably due to the acceleration signal discontinuities.
However, comparing the results with those related to the triangular
reference signal, the improvement achieved is clear and the advantage
of using this reference when drawing a square in the XY-plane is
evident, especially in terms of RMS error value.

Axis X Y X Y X Y X Y
Amplitude [µm] 100 100 100 100 500 500 500 500

Frequency [Hz] 1 1 10 10 1 1 10 10

Maximum Absolute Error Value [µm] 0.55 0.48 8.52 9.05 9.93 8.87 62.1 71.5
RMS error value [µm] 0.23 0.19 2.08 2.35 3.50 2.84 14.3 17.3

Table 5.6: Maximum absolute error and RMS error values obtained with
smooth trapezoidal reference signal. Simulation results

5.5.2 Experimental Results

The experimental results achieved in the XY-plane with the 100 µm
amplitude trapezoidal reference signals at 1 Hz and 10 Hz frequency
on both axes are shown in Figure 5.17, while the results obtained
when the amplitude is 500 µm are shown in Figure 5.18.

The maximum absolute and RMS values of the position error are
reported in Table 5.7 for different amplitudes and frequencies of the
trapezoidal reference signals.

From both the plot and the error values, the big error produced
with the 500 µm amplitude trapezoidal reference signal at 10 Hz
frequency is evident. The obtained result is very different from the
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Figure 5.17: Smooth trapezoidal wave reference signals 100 µm on both axes.
XY-plane. Reference signal and experimental results
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Figure 5.18: Smooth trapezoidal wave reference signals 500 µm on both axes.
XY-plane. Reference signal and experimental results

Axis X Y X Y X Y X Y
Amplitude [µm] 100 100 100 100 500 500 500 500

Frequency [Hz] 1 1 10 10 1 1 10 10

Maximum Absolute Error Value [µm] 10.7 10.5 21.1 24.3 9.03 12.8 375 416

RMS error value [µm] 1.58 1.82 8.78 10.48 3.24 2.40 261 284

Table 5.7: Maximum absolute error and RMS error values obtained with
smooth trapezoidal reference signal. Experimental Results
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one returned by the simulation. To understand the cause of this bad
behaviour, the discrete Fourier transforms of the three selected ref-
erence signals at frequency 10 Hz and normalized amplitude were
evaluated over an observation interval of duration 10 periods. The
result is shown in Figure 5.19. Moreover, the amplitudes of the first
and the third harmonics were measured and the obtained results are
reported in Table 5.8.

5 10 15 20 25 30 35 40 45 50
Frequency [Hz]

0

100

200

300

400

500

600

Fo
ur

ie
r T

ra
ns

fo
rm

Fourier transform over 10 periods of the reference signals at 10 Hz

Sinusoidal
Trapezoidal
Triangular

Figure 5.19: Fourier transform over 10 periods of the reference signals at 10

Hz

Sinusoidal Trapezoidal Triangular Trapezoidal
Sinusoidal

Trapezoidal
Triangular

1st harmonic 495 607 405 1.23 1.49
3rd harmonic 0 113 38 - 2.97

Table 5.8: Reference signal Fourier transform analysis

Both the plot and the numerical values in Table 5.8 show that, for
the same signal amplitude and frequency, the fundamental of the
smooth trapezoidal signal is about 1.23 and 1.49 times that of the
sinusoidal and the triangular waveform fundamentals, respectively.
Moreover, to make the behaviour even worse the third harmonic of
the smooth trapezoidal signal is about 2.97 times that of the triangular
one. Due to these higher amplitudes of both the first and the third
harmonic, to perform a given movement at a given speed, the system
needs to absorb more power from the supply when a trapezoidal
reference signal is used.
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As a further check, the powers of the three selected reference signals
were evaluate over exactly 10 periods, obtaining the following values:

• Sinusoidal reference signal power: 0.496

• Trapezoidal reference signal power: 0.753

• Triangular reference signal power: 0.337

These values confirm that the power required by the smooth trape-
zoidal reference signal is higher than the one associate to the other
two signals. In particular, it can be noticed that the trapezoidal refer-
ence signal power requires more than double the signal power asso-
ciated with the triangular signal.
Therefore, it can reasonably be concluded that the bad system be-
haviour achieved with the 500 µm trapezoidal reference signal at 10
Hz is due the higher power request to perform the movement, and
that this is probably bigger than the power limit of the power supply
or the amplifiers. This justifies also the cause of the extremely differ-
ent behaviour between the experimental and the simulation (where
there is no power limit) analysis.
In contrast, for lower values of the smooth trapezoidal reference sig-
nal amplitude and frequency, the simulation and experimental re-
sults show a similar behaviour. At 1 Hz, in most cases the error is
only slightly higher than the one obtained with the sinusoidal refer-
ence signal, but smaller than the one obtained with triangular wave-
form. When the reference signal frequency is at 10Hz with 100 µm
amplitude, the system performance is quite poor and the error is
slightly higher than the one obtained with the triangular reference
signal. This behaviour is probably due to the significant power of the
third harmonic of the trapezoidal signal. Therefore, we can conclude
that the smooth trapezoidal reference signal provides a significant im-
provement in the system behaviour compared to the triangular refer-
ence signal as long as the adopted frequency is low enough. Moreover,
it has the advantage that the obtained square shape in the XY-plane is
not rotated with respect to the axis of the XY-plane. However, when
the frequency grows, the trapezoidal reference signal provides poor
performance, probably due to the limited power capabilities of the
adopted circuits, whose effect overcome the one due to the disconti-
nuity in the derivatives of the triangular reference signal.

5.5.3 Rectangular Shape using Smooth Trapezoidal Reference Signal

Using trapezoidal reference signals of different amplitudes it is pos-
sible to obtain rectangular trajectories on the XY-plane. With this aim,
the amplitudes related to the two axes reference signals have to be
different. As an example, two different rectangular trajectories were
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plotted using a couple of trapezoidal reference signals at 2 Hz. The
related experimental results are shown in Figures 5.20.
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Figure 5.20: Smooth trapezoidal wave reference signals with different am-
plitudes on both axes. Examples of rectangular shape in the
XY-plane. Reference signal and experimental results





6
C R O S S - C O U P L I N G

6.1 introduction

In a multi-axis system, the cross-coupling interaction is an unwanted
motion interference along one degree of freedom due to the motion,
performed intentionally, along another degree of freedom, as shown
in Figure 6.1 [8].

Figure 6.1: Cross-axis coupling along the X-axis in a compliant mechanism
[8]

The multi-axis component of the high-precision positioning system
analyzed in this thesis work is the XYZ CPM, described in Section
3.2.2; therefore, the cross-coupling effect is due to this compliant com-
ponent. The manipulator studied in this thesis work is affected by
two different kinds of cross-coupling interactions. The first one is the
kinematic cross-coupling, which means that a movement of one axis
produces an unwanted movement on the other axis. This will be an-
alyzed in Section 6.2. The second kind of cross-coupling that arises
in the system is the kinetostatic cross-coupling, which increases the
actuation force required to perform a movement on one axis if the or-
thogonal axis is not in the null position. It will be explained in Section
6.3.

71
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6.2 kinematic cross-coupling

The XYZ CPM shared between the two axes was designed in [5] to
be symmetric. This design feature should lead to produce parasitic
rotation and parasitic translation of the XYZ CPM component much
smaller than that due to the primary translation. However, measure-
ments showed a non-negligible parasitic movement on one axis when
the other axis is moving. The data collected and analyzed in such sit-
uation are reported in Subsection 6.2.1, while the static compensation
of this unwanted effect and the results after its implementation are
reported in Subsection 6.2.2.

6.2.1 Analysis

To analyze the kinematic cross-coupling interaction between the two
axes, the primary axis was fed with position reference signals and the
movement inducted on the other axis was measured. The position ref-
erence signal designed in [8] for one axis movement and reported in
chapter 4 was used. This reference signal was chosen because it al-
lows static measurement of the kinematic cross-coupling interaction
and, due to its continuous derivative, the system can follow it with
an extremely small error.
To quantify the magnitude of the kinematic cross-coupling interac-
tion, the movement of the non-fed axis (due to the displacement
performed on the orthogonal axis) was recorded and its amplitude
was measured. Three measurements were performed for each chosen
amplitude of the primary axis movement and then the average was
evaluated in order to obtain more accurate results. Initially, the X-axis
was fed and the movement of the Y-axis was measured, later the same
analysis was performed exchanging the role of the axes. The ampli-
tude of the position reference chosen varied in a range of ±1000 µm,
with a step of 100 µm. The data collected when the X-axis was fed are
reported in Table 6.1, while the data collected when Y is the primary
axis are reported in Table 6.2. In Table 6.1 X refers to the movement
of the primary axis, <YX > is the average (of the three measurement
performed) of the parasitic movement of the Y-axis due to the inten-
tional movement on the X-axis and δYX is half-width of the range of
the three performed measurements. In Table 6.2, the roles of the axes
are swapped.

Data reported in tables 6.1 and 6.2 show that the magnitude of the
kinematic cross-coupling interaction differs between the two axes and,
moreover, it is not symmetric around the null position of the primary
axis. This behaviour is justified by the fact that this is an unwanted
effect.
In Figures 6.2 and 6.3, the amplitude of the parasitic movement of
the Y-axis and the X-axis, respectively, are plotted together with the
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X [µm] <YX> [µm] δYX [µm] X [µm] <YX> [µm] δYX [µm]

100 0.00 0.00 -100 0.00 0.00

200 0.00 0.00 -200 0.00 0.00

300 -0.35 0.00 -300 0.00 0.00

400 -0.52 0.01 -400 0.00 0.00

500 -0.87 0.02 -500 -0.22 0.01

600 - 1.16 0.02 -600 -0.52 0.01

700 -1.55 0.04 -700 -0.74 0.01

800 -2.04 0.04 -800 -1.17 0.02

900 -2.54 0.02 -9000 -1.52 0.03

1000 -3.28 0.01 -1000 -1.83 0.02

Table 6.1: Kinematic Cross-Coupling interaction on the Y-axis due to the
movement of the X-axis. X represents to the movement of the X-
axis, <YX> is the average of three measurements of the parasitic
movement of the Y-axis and δYX is the half-width of the range of
the performed measurements

Y [µm] <XY> [µm] δXY [µm] Y [µm] <XY> [µm] δXY [µm]

100 -0.13 0.00 -100 0.00 0.00

200 -0.29 0.01 -200 0.12 0.01

300 -0.51 0.02 -300 0.00 0.00

400 -0.74 0.02 -400 0.00 0.00

500 -1.06 0.04 -500 -0.17 0.02

600 -1.45 0.03 -600 -0.30 0.02

700 -1.96 0.02 -700 -0.51 0.01

800 -2.53 0.05 -800 -0.77 0.03

900 -3.40 0.05 -9000 -1.08 0.01

1000 -4.16 0.04 -1000 -1.43 0.03

Table 6.2: Kinematic Cross-Coupling interaction on the X-axis due to the
movement of the Y-axis. Y represents to the movement of the Y-
axis, <XY> is the average of three measurements of the parasitic
movement of the X-axis and δXY is the half-width of the range of
the performed measurements
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corresponding linear and cubic fittings. It is clear from the figures, the
kinematic cross-coupling interaction exhibits a cubic behaviour with
respect to the movement of the fed-axis.
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Figure 6.2: Kinematic Cross- Coupling. Y-axis parasitic movement due to X-
axis displacement
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Figure 6.3: Kinematic Cross- Coupling. X-axis parasitic movement due to
Y-axis displacement

Data show that the unwanted kinematic cross-coupling interaction
is always less than 1% of the amplitude of the movement on the pri-
mary axis. However, since the target is to perform high-precision
movement with the manipulator, it was decided to compensate for
this unwanted effect, even if it is quite small.

6.2.2 Compensation

Although the analysis performed in the previous subsection shows
that the kinematic cross-coupling interaction exhibits a cubic behaviour,
due to its small magnitude, it was decided to compensate only its lin-
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ear contribution since this can be implemented more simply and the
residual effect can be neglected.
The information about the amplitude of the kinematic cross-coupling
was used to modify the feed-forward inputs.
The Simulink model for the control of both axes, which includes also
the kinematic cross-coupling compensation block, is reported in Fig-
ure 6.4, while the compensation block is shown in Figure 6.5. As
can be seen from Figure 6.4 the feed-forward block was split into
two equal blocks. This choice allows the compensation only of the di-
rect feed-forward system, without affecting the observer input (that
is used for feedback).

The Matlab function that implements the compensation can be
found in appendix A.8 and it is based on the following matrix, where
the values A and B in the matrix are the opposite of the slopes of the
linear fittings shown Figures 6.2 and 6.3.



Xo

Ẋo

Ẍo

Yo

Ẏo

Ÿo


=



1 0 0 A 0 0

0 1 0 0 A 0

0 0 1 0 0 A

B 0 0 1 0 0

0 B 0 0 1 0

0 0 B 0 0 1





Xi

Ẋi

Ẍi

Yi

Ẏi

Ÿi


(6.1)

Matrix (6.1) provides only a static compensation of the kinematic
cross-coupling effect since only steady-state position data are used.
Indeed, a dynamic compensation would require a more complex com-
pensation based also on velocity and acceleration measurements. There-
fore, in this work only the static compensation is implemented. In the
next figures, some examples of the position plots related to the non-
fed axis are reported without, and with, the implementation of the
static compensation. Figures 6.6 and 6.7 show the Y-axis movement
when the displacement on the X-axis was 800 µm or −800 µm, respec-
tively; while Figure 6.8 and 6.9 show the X-axis movement when the
displacement on the Y-axis was 800 µm or −800 µm, respectively.

As it can be seen from Figures 6.6 - 6.9, without the compensa-
tion the kinematic cross-coupling effect produces an unwanted move-
ment on the non-fed axis and there is a measurable steady-state effect.
Conversely, when the compensation is implemented, the steady-state
effect becomes negligible, and only a transient behaviour can be de-
tected. Therefore it can be concluded that the proposed static com-
pensation works as expected.
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Figure 6.5: Kinematic Cross - Coupling Simulink Block
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Figure 6.6: Y-Axis Movement due to X-axis 800µm displacement. Without
and With Kinematic Cross-Coupling Compensation
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Figure 6.7: Y-Axis Movement due to X-axis −800µm displacement. Without
and With Kinematic Cross-Coupling Compensation
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Figure 6.8: X-Axis Movement due to Y-axis 800µm displacement. Without
and With Kinematic Cross-Coupling Compensation
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Figure 6.9: X-Axis Movement due to Y-axis −800µm displacement. Without
and With Kinematic Cross-Coupling Compensation
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6.3 kinetostatic cross-coupling

In [5] it has been proved that the actuation stiffness along the X-axis
increases when the primary translation along the Y-axis direction in-
creases. This was verified both analytically and experimentally. As
the motion characteristics of the symmetric XYZ CPM along the three
axes are isotropic, what is true for the X-axis holds also for the other
axes.

6.3.1 Analysis

In chapter 3, the theoretical actuation force required to perform a
movement along one axis was evaluated without considering the kine-
tostatic cross-coupling interaction with the other axes. In [5] the nor-
malized actuation force equations, considering also the kinetostatic
cross-coupling interaction between the axes, were obtained neglect-
ing the dynamic contribution because the primary translation was
considered to be slow varying. The same normalization factors used
in Chapter 3 were adopted in the following: the translational displace-
ments are normalized by the beam actual length L, while the forces
are normalized by EI/L2, where E is the Young’s modulus and I is the
second moment of area of a rectangular cross-section. The normalized
actuation force equations are reported in the following equations:
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where:
- fx is the normalized actuation force of the x-axis,
- fy is the normalized actuation force of the y-axis,
- fz is the normalized actuation force of the z-axis,
- xs is the normalized displacement of the x-axis,
- ys is the normalized displacement of the y-axis,
- zs is the normalized displacement of the z-axis,
and
- t is the normalized thickness of the beam.

An evaluation of the increase ∆fxy of the X-axis actuation force
due to the kinetostatic cross-coupling with the Y-axis is required.
This increase is evaluated as the difference between the force along
the X-axis related to given displacements along the X-axis and Y-axis
(fx(zs = 0)) and the force along the X-axis related to a given displace-
ment along only the X-axis (fx(ys = 0, zs = 0)).
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Considering the normalization factors, equation (6.5) become:
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The same analysis can be done for the other axes and the same results
will be obtained, due to the symmetry of the XYZ CPM. Using the
equation (6.7), the behaviour of the X-axis actuation force increases
due to the kinetostatic cross-coupling with the Y-axis. This is plotted
and the obtained result is shown in Figure 6.10.

Figure 6.10: 3D plot of the X-axis actuation force increment due to the kine-
tostatic cross-coupling interaction with the Y-axis

As it can be seen from Figure 6.10, the increment of the X-axis ac-
tuation force is significant only when both axes are far from the null
position. Indeed, the 3D plot is flat and the force increment is negligi-
ble when at least one of the two axes position is small.
As written above, the theoretical analysis performed for the X-axis ac-
tuation force increment due to kinetostatic cross-coupling interaction
with the Y-axis holds also for all the other axes combinations.

The effect of the kinetostatic cross-coupling interaction was veri-
fied experimentally. For this purpose, one axis was held in a constant
position (0 mm, 0.5 mm, 1 mm , −0.5 mm and −1 mm) and the ac-
tuation force needed to perform a given displacement on the other
axis was recorded. Three measurements were performed and the av-
erage value was evaluated in order to obtain more accurate results. In
Table 6.3, the data regarding the average < Fx > of the X-axis force
when the position of the Y-axis is null and the half-width δFx of the
range of the three performed measurements are reported. Moreover,
the averages of the X-axis actuation force increment < ∆Fxy > due to
the kinetostatic cross-coupling corresponding to different Y-axis con-
stant positions are also reported. The range of variation of the X-axis
actuation force increment is not reported in the table for the sake of
conciseness. However, it is similar to δFx. The data reported in Table
6.3 for the average X-axis actuation force are shown in Figure 6.11 for
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different Y-axis constant positions; the corresponding cubic fitting is
also reported. Moreover, the increments of the X-axis force due to the
kinetostatic cross-coupling are shown in Figure 6.12 in the case when
the Y-axis is held at ±1 mm, the corresponding linear fitting is also
reported. The same analysis was performed on the Y-axis actuation
force, considering different X-axis constant positions. The results are
shown in Table 6.4 and Figures 6.13 and 6.14.

x [µm] <Fx> [N] δFx [N] <∆Fxy> [N] <∆Fxy> [N] <∆Fxy> [N] <∆Fxy> [N]
y = 0 mm y = 0 mm y = 0.5 mm y = 1 mm y = −0.5 mm y = −1 mm

100 9.61 0.01 +0.08 +0.18 +0.02 +0.07

200 19.72 0.01 +0.09 +0.21 +0.02 +0.08

300 30.66 0.02 +0.15 +0.38 +0.09 +0.19

400 42.41 0.02 +0.18 +0.44 +0.05 +0.13

500 54.25 0.03 +0.29 +0.83 +0.71 +0.99

600 68.62 0.01 +0.39 +0.96 +0.86 +1.11

700 84.44 0.03 +0.41 +1.12 +0.47 +0.87

800 101.75 0.05 +0.46 +0.93 +0.60 +0.80

900 120.58 0.07 +0.83 +1.27 +0.63 +1.07

1000 141.19 0.07 +1.41 +1.60 +0.72 +0.39

-100 -10.59 0.01 -0.09 -0.18 -0.12 -0.16

-200 -20.38 0.01 -0.15 -0.37 -0.16 -0.29

-300 -30.51 0.01 -0.20 -0.63 -0.19 -0.35

-400 -40.68 0.01 -0.24 -0.88 -0.09 -0.55

-500 -52.56 0.01 -0.29 -0.79 -0.65 -0.98

-600 -64.68 0.02 -0.28 -0.84 -0.29 -0.79

-700 -77.80 0.02 -0.32 -0.98 -0.30 -0.85

-800 -90.75 0.06 -0.51 -1.59 -2.63 -3.57

-900 -106.55 0.02 -0.36 -1.39 -3.61 -4.32

-1000 -126.19 0.07 -0.28 -1.02 -0.99 -2.23

Table 6.3: Kinetostatic Cross-Coupling interaction. X-Axis force needed to
perform a specific X-axis movement with the Y-Axis fixed at differ-
ent positions. x represents to the movement of the X-axis, <Fx> is
the average of three actuation force measurements, δFx is the half-
width of the range of the performed measurements and <∆Fxy>
is the average of the X-axis actuation force increment due to the
kinetostatic cross-coupling.

6.3.2 Compensation

Since data shows that the required force increase is around 1% when
the largest displacement is considered, (that is about 10 µm for a dis-
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Figure 6.11: X-Axis force needed to cause a movement on the X-axis consid-
ering different constant displacement on the Y-axis
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Figure 6.12: Increment of the X-Axis force needed to cause a movement on
the X-axis with different constant displacement on the Y-axis
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Figure 6.13: Y-Axis force needed to cause a movement on the Y-axis consid-
ering different constant displacement on the X-axis
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y [µm] <Fy> [N] δFy [N] <∆Fyx> [N] <∆Fyx> [N] <∆Fyx> [N] <∆Fyx> [N]
x = 0 mm x = 0 mm x = 0.5 mm x = 1 mm x = −0.5 mm x = −1 mm

100 8.66 0.01 +0.02 +0.13 +0.01 +0.05

200 17.57 0.01 +0.09 +0.30 +0.07 +0.18

300 27.05 0.01 +0.13 +0.53 +0.05 +0.23

400 37.31 0.01 +0.18 +0.60 +0.10 +0.35

500 48.58 0.01 +0.19 +0.73 +0.15 +0.45

600 61.01 0.01 +0.23 +0.81 +0.08 +0.37

700 74.77 0.01 +0.30 +1.04 +0.23 +0.59

800 90.03 0.01 +0.51 +1.25 +0.09 +0.62

900 107.32 0.03 +0.25 +1.13 +0.04 +0.40

1000 126.36 0.07 +0.28 +1.27 +0.02 +0.45

-100 -8.91 0.02 -0.09 -0.23 -0.14 -0.25

-200 -17.71 0.02 -0.11 -0.30 -0.08 -0.24

-300 -26.90 0.01 -0.10 -0.39 -0.02 -0.23

-400 -36.46 0.02 -0.12 -0.50 -0.02 -0.24

-500 -46.77 0.01 -0.18 -0.64 -0.05 -0.35

-600 -58.12 0.01 -0.23 -0.80 -0.03 -0.36

-700 -70.61 0.02 -0.22 -0.87 -0.04 -0.54

-800 -84.75 0.01 -0.24 -0.94 -0.01 -0.37

-900 -100.07 0.05 -0.31 -1.05 -0.02 -0.55

-1000 -117.58 0.03 -0.25 -1.03 -0.02 -0.33

Table 6.4: Kinetostatic Cross-Coupling interaction. Y-Axis force needed to
perform a specific Y-axis movement with the X-Axis fixed at differ-
ent positions. y represents to the movement of the Y-axis, <Fy> is
the average of three actuation force measurements, δFy is the half-
width of the range of the performed measurements and <∆Fyx>
is the average of the Y-axis actuation force increment due to the
kinetostatic cross-coupling.
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Figure 6.14: Increment of the Y-axis force needed to cause a movement on
the Y-axis with different constant displacement on the X-axis

placement of 1 mm), it has to be compensate to ensure high system
performance.
The approach used to compensated the kinetostatic cross-coupling
interaction has been described in section 2.4. Measurement results
show that the force needed to perform a movement on the X-axis is
a function of the position of both axes, but the effect of y is much
smaller than the effect of x. Consequently, the behaviour of the actua-
tion force can be accurately expressed using the Taylor’s series about
y = 0, truncated to the first order term.

Fx = f(x,y) = f(x, 0) + f ′(x, 0)y (6.8)

In (6.8), the first term, f(x, 0) is the output of the feed-forward term
when the cross-coupling interaction is not considered. Due to the
small contribution of the second term of (6.8), the factor f ′(x, 0) can
be reasonably approximated with the linear fitting reported in Fig-
ure 6.12, , assuming that a similar behaviour occurs also for |y| < 1.
The same approach can be used also on the Y-axis and the term
f ′(0,y) has been approximated with the linear fitting reported in Fig-
ure 6.14.
To implement the compensation in the Simulink control scheme, the
feed-forward block in the two axes control scheme was modified, as
shown in Figure 6.15, while the modified X-axis feed-forward block
is shown in Figure 6.16. (The corresponding Y-axis block has been
implemented in the same way). The KinetostaticCC Matlab function
included in the feed-forward block is reported in Appendix A.9. This
function simply implements the term f ′(x, 0)y (or f ′(0,y)x in the Y-
axis case) of the truncated Taylor’s series (6.8) which is then added to
the one axis feed-forward force.

To verify the effectiveness of the compensation, different measure-
ments were performed. The X-axis displacement were: 100 µm, 500
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Figure 6.15: Two Axes Control Scheme in Simulink with Kinetostatic Cross-
Coupling Compensation
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Figure 6.16: Kinetostatic Cross-Coupling Feed-Forward Simulink Block

µm and ±1000 µm when the Y-axis was held fixed at 0 µm, 500 µm
and ±1000 µm. The same movements were performed also on the Y-
axis when the X-axis was held in a fixed position.
For all the considered configurations, the following quantities where
measured, with or without the application of the kinetostatic cross-
coupling compensation: axis input force, total feed-forward force (as
defined as the sum of the one axis feed-forward force and the com-
pensation force), PID output force and the kinetostatic cross-coupling
compensation force.
The data collected for the PID output force are reported in Tables 6.5
and 6.6, for the X-axis and Y-axis displacements, respectively.

As expected, when the perpendicular axis is not in a null fixed po-
sition and no compensation is implemented, the PID output force of
the moving axis is greater than the force required when the perpen-
dicular axis is in the null position. This is a consequence of the cross-
coupling effect, according to which a greater input force is required
to perform a given displacement. Without the compensation, the in-
crease of the force required to perform a movement is not provided
and therefore greater position and velocity errors are expecting, so in-
creasing the feedback force. When the compensation is implemented,
independently on the position of the perpendicular axis, the PID out-
put force is close to the one measured when the perpendicular axis
is at 0 µm. This means that the compensation works and it signifi-
cantly reduces the kinetostatic cross-coupling effect. To support such
a conclusion, the position error was measured with and without the
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X-axis movement [µm] Y-axis fixed position [µm] Compensation PID output force [N]

100 0 - 0.01

100 500 NO 0.09

100 500 YES 0.06

100 1000 NO 0.16

100 1000 YES 0.01

500 0 - 0.27

500 500 NO 0.52

500 500 YES 0.23

500 1000 NO 0.97

500 1000 YES 0.26

1000 0 - 1.52

1000 500 NO 2.08

1000 500 YES 1.30

1000 1000 NO 3.26

1000 1000 YES 1.68

1000 -1000 NO 2.63

1000 -1000 YES 1.59

-1000 0 - -0.29

-1000 1000 NO -1.73

-1000 1000 YES -0.33

-1000 -1000 NO -0.81

-1000 -1000 YES -0.11

Table 6.5: Kinetostatic Cross-Coupling compensation. Effect on the PID out-
put force. X-axis displacement, Y-axis fixed
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Y-axis movement [µm] X-axis fixed position [µm] Compensation PID output force [N]

100 0 - 0.20

100 500 NO 0.25

100 500 YES 0.18

100 1000 NO 0.36

100 1000 YES 0.21

500 0 - 0.71

500 500 NO 1.01

500 500 YES 0.70

500 1000 NO 1.50

500 1000 YES 0.85

1000 0 - 1.77

1000 500 NO 2.11

1000 500 YES 1.61

1000 1000 NO 3.12

1000 1000 YES 1.71

1000 -1000 NO 2.39

1000 -1000 YES 1.60

-1000 0 - -2.50

-1000 1000 NO -3.71

-1000 1000 YES -2.42

-1000 -1000 NO -3.26

-1000 -1000 YES -2.69

Table 6.6: Kinetostatic Cross-Coupling compensation. Effect on the PID out-
put force. Y-axis displacement, X-axis fixed
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kinetostatic cross-coupling compensation. As an example, the result
achieved when a 500 µm displacement on the X-axis was performed
while the Y-axis was held fixed at 1000 µm, with and without the
kinetostatic cross-coupling compensation, is shown in Figure 6.17.
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Figure 6.17: X-axis position error with and without kinematic cross-coupling
compensation. 500 µm displacement on the X-axis, Y-axis con-
stant at 1000 µm

As expected, the application of the compensation reduces the X-
axis position error during the transient, thus reducing the involve-
ment of the PID controller.
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R E P E T I T I V E C O N T R O L A N D I T E R AT I V E
L E A R N I N G C O N T R O L

7.1 introduction

When performing circular or square trajectories in the XY-plane, the
system performance can be improved using high-performance con-
trollers designed for periodic reference signals, such as RPC (Repeti-
tive Control) or ILC (Iterative Learning Control). These controllers are
added in parallel to the control scheme already implemented in the
system and discussed in the previous chapters of this thesis. In this
chapter, it will be explained how these high-performance controllers
have been implemented using Matlab-Simulink and the background
theory presented in Chapter 2. Both simulation and experimental re-
sults achieved will be discussed. The RPC implementation and results
are presented in section 7.2, while the ILC implementation and results
are presented in section 7.3. The RPC and ILC controllers have been
added to the control scheme without cross-coupling compensation.
Indeed, that compensation holds for static signals and it is useless
when repetitive reference signals are applied.

7.2 repetitive control (rpc)

As explained in Section 2.5, the RPC is an high-performance con-
troller used with periodic or repetitive reference signals. It is added in
parallel to the feedback controller (as shown in Figure 2.7). Therefore,
in the Matlab-Simulink control scheme, the RPC block was added in
parallel to the Newton and PID subsystems, as shown in Figure 7.1
for the two-axis system, where the Repetitive Control subsystem im-
plements the RPC.

As explained in Section 2.5, the RPC algorithm is based on the
system closed-loop transfer function, which needs to be known. In
particular, the linear model of the system was used to implement the
RPC on the compliant manipulator. The open loop transfer-function
G(s) in the Laplace domain is:

G(s) =
X(s)

V(s)
=

KfKd

mtots2 + cs+ kt
(7.1)

where:
- X(s) is the axis position in the Laplace domain,
- V(s) is the input voltage in the Laplace domain,

91
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Figure 7.1: Two axes control scheme in Simulink with the RPC
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- Kf is the voice coil actuator gain,
- Kd is the servo amplifier gain,
- mtot is the axis total mass,
- c is the viscous damping coefficient
and
- kt is the axis linear stiffness.
Thus, the close-loop transfer function is:

W(s) =
G(s)

1+G(s)
=

KfKd

mtots2 + cs+ kt +KfKd
(7.2)

The RPC is implemented in the discrete domain, so that the closed-
loop transfer function needs to be discretized. Moreover, the loca-
tions of the discrete function zeros need to be identified to check if
the transfer-function can be reversed, so that the RPC can be imple-
mented using Equation (2.25). If not the RPC has to be implemented
with Equation (2.29). The zero of the discrete closed-loop transfer-
function W(z) for both system axes is located at −1, so that it is
marginally stable. As a consequence, it was decided to consider that
zero unstable and thus equation (2.29) has been used to implement
the RPC. The resulting RPC structure Gr(z) is:

Gr(z) =
1

1− z−N
Kr
z−N+d+mA(z−1)z−mB+(z)

bB−(z−1)
(7.3)

where:
- N is the number of samples in a period of the periodic signal,
- 1

1−z−N is a common factor for all the repetitive controllers,
- Kr is the controller gain. To make the RPC controller stable, it was
proved in Section 2.5 that the condition 0 < Kr < 2 is required.
- d is the relative degree of the transfer-function, which, in this case,
is equal to 1
- The zeros of the discrete time transfer function W(z) were split in
order to consider separately the stable zeros (related to B−(z), which
in this case is equal to 1), and in the unstable zeros (related to B+(z),
which in this case is equal to the whole discrete transfer-function nu-
merator),
- m is the number of unstable zeros, which, in this case, is equal to 1,
- z−N+d+m is necessary for physical feasibility,
- A(z−1) is the denominator polynomial of W(z)

- b > max[B+(ejωT )]2 with 0 6 ωT 6 π,
- N > d+m for the controller physical feasibility,
- B+(z) is equal to B+(z−1), where z−1 is substituted with z: B+(z) is
not physically feasible, but z−mB+(z) is physically feasible.
The Simulink RPC controller subsystem, implemented with the struc-
ture reported in Equation (7.3), is shown in Figure 7.2. A clock is also
added to switch off the RPC action after an appropriate time. This
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was necessary so that the position error would not diverge. The clock
stop time was tuned experimentally for each specific periodic refer-
ence signal analyzed.

	>=	 Z-d

Z-2

num(z)
den(z)

RPC	output[V]

Position	error[um]m2um

1 Position	error	[m]

1
RPC	output	[V]

Figure 7.2: Simulink RPC Block

The Matlab code used to evaluate the discrete transfer-function and
to produce all the numerical parameters needed in the RPC imple-
mentation is reported in A.10. To run the Simulink model with the
implemented RPC controller, it is first necessary to run this Matlab
script. To achieve the best performance, the value of the Kr gain used
in the Matlab script was experimentally tuned. The higher is this gain,
the faster is the compensation action. However, a higher gain can also
lead to a system that will diverge faster, perhaps it do not reach the
minimum position error possible. It follows that the tuning of Kr is
the result of a trade-off between the controller speed and the position
error reduction. It is also important to ensure that 0 < Kr < 2 to en-
sure system stability.
The system performance improvement due to the RPC controller was
verified using both simulation and experimental results. The results
related to the sinusoidal reference signals are reported in Section 7.2.1,
those achieved using the triangular reference are reported in Section
7.2.2 and finally the results achieved using the trapezoidal reference
signals are reported in Section 7.2.3. Most of the reported results are
related to the real system, while only few significant simulation re-
sults are shown.
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7.2.1 Sinusoidal Reference Signal

To improve the system performance in drawing a circumference in the
XY-plane the RPC was implemented with a sinusoidal reference sig-
nals on both axes. Simulations and experiments were performed con-
sidering sinusoidal reference signals with different amplitudes and
frequencies.

7.2.1.1 Simulations

The simulation time plots are reported only for one axis because the
obtained results for the two axes are very similar. Indeed the related
models differ only by the servo amplifier gain. The results achieved
for the position error with a sinusoidal reference signal of amplitude
1000 µm and 10 Hz frequency are shown in Figure 7.3. These simula-
tions were performed using the system non-linear model explained in
Section 3.9. The results achieved without adding an external random
noise to the system input are shown in the plot on the left, while
those obtained when external noise is added are shown in the plot
on the right in order to better reproduce the real system behaviour.
Both plots show the position error signal returned by the simulation
performed in different situations: without the RPC action, with con-
tinuous RPC action (thus showing the divergence of the position error
after a certain time), and with RPC action interrupted after a suitable
time.
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Figure 7.3: Simulation results for the position error without and with the
RPC action (continuous or stopped after a suitable time). 1000
µm, 10 Hz sinusoidal wave reference signal. Non-linear model,
without and with external noise.

As can be seen from the figures, when the RPC was implemented
the position error diverges both without, and with,the external noise
added to the system input. Moreover, in both cases it is clear that,
if the RPC is interrupted at an appropriate time, the position error is
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significantly reduced so that the improvement obtained with the RPC
action is clear.
The theory of the RPC does not explain the divergent behaviour of
the system. On the contrary, the position error is expected to be null
after a certain time when the RPC is implemented if no external noise
is superimposed to the system input. The behaviour showed by sim-
ulations (and confirmed by experimental results) probably happens
because the RPC design is based on the linear model of the system,
while a non-linear model was used for simulating the real system. To
verify this hypothesis, further simulations using the same reference
signal, but considering the linear model instead of the non-linear one,
were performed. The obtained results are shown in Figure 7.4.
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Figure 7.4: Simulation results for the position error without and with the
RPC action. 1000 µm, 10 Hz sinusoidal wave reference signal.
Linear model, without and with external noise.

As expected, when the RPC is implemented and no noise is added,
after an initial transient the position error becomes null. Moreover,
when the external random noise is added, the position error ampli-
tude is similar to that of the external noise, which can not be eliminate
by the RPC because it is not a periodic or repetitive signal.
Thus, it is reasonable to conclude that the divergent behaviour shown
by simulation results when using the non-linear model, occurs be-
cause the RPC is based on a linear model assumption. However, the
RPC action is useful also under such simplifying condition if it is
stopped at an appropriate time that can be determined experimen-
tally.

7.2.1.2 Experiments

Because the real system is non-linear, it is expected that it exhibits a
divergent behaviour on the position error when the RPC is used, as
happened in the simulation with the non-linear system. However, if
the RPC action is stopped after an appropriate time, the system per-
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formance is expected to be improved.
The amplitudes chosen for the sinusoidal reference signals on both
axes are: 100 µm and 500 µm, while the frequencies are: 1 Hz, 5 Hz
and 10Hz. For the smaller amplitude selected (100 µm) the frequency
of the sinusoidal reference was also increased to 20Hz and 50Hz. The
available power supply did not allow the system to be driven at these
frequencies when the sinusoidal reference amplitude was 500 µm.
Some examples of position error measurements, without and with
the RPC action (continuous or interrupted), are shown in Figure 7.5.
The figure on the left represents the X-axis position error signal with
100 µm amplitude and a 10 Hz frequency sinusoidal reference signal,
while the plot on the right represent the Y-axis position error with
500 µm amplitude and a 10 Hz frequency sinusoidal reference signal.
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Figure 7.5: Experimental results for the position error without and with the
RPC action (continuous or stopped after a suitable time). X-axis
example on the left, Y-axis example on the right.

As it can be seen from Figure 7.5, the behaviour of experimental
results and simulation results obtained with the non-linear model are
equivalent. When the RPC is used, the position error is reduced, but
if it is not interrupted at the appropriate time the position error tends
to diverge. However, if the RPC action is stopped, the position error
reduction remains.
In Figure 7.6 the position errors measured, without the RPC action
and with the RPC action interrupted at the appropriate time, when
feeding both axes with a 100 µm amplitude and 50 Hz frequency
sinusoidal reference signal are shown.

As it can be seen, the position error without the RPC is very high
(about 90 µm), that it is almost equal to the reference signal amplitude
(100 µm). Conversely, when the RPC is applied, the position error
amplitude greatly decreases, thus significantly improving the system
performance. The steady-state plots on the XY-plane related to the
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Figure 7.6: Experimental result for the position error without and with the
RPC action. Sinusoidal wave reference signal 100 µm 50 Hz on
both axes.

same experiment, without and with the RPC action, are shown in
Figure 7.7.
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Figure 7.7: Experimental plots of the XY-plane with sinusoidal wave refer-
ence signal of 100 µm amplitude and 50 Hz frequency on both
axes. Without RPC action (left plots) and with the RPC action
interrupted at the appropriate time (right plots).

Moreover, the steady-state XY-plane plots obtained, without and
with the RPC action, when feeding both axes with a 500 µm ampli-
tude, and 1 Hz and 10 Hz frequency sinusoidal reference signals on
both axes are shown in Figure 7.8 and 7.9, respectively.

The RMS values of the position error, without and with the RPC
action, are reported in Tables 7.1 and 7.2 for 100 µm amplitude sinu-
soidal wave reference signals for the X-axis and the Y-axis respectively.
Moreover, the RMS values of the position error, without and with the
RPC action, are reported in Tables 7.3 and 7.4 for the sinusoidal ref-
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Figure 7.8: Experimental plots of the XY-plane with sinusoidal wave refer-
ence signal of 500 µm amplitude and 1 Hz frequency on both
axes. Without RPC action (left plots) and with the RPC action
interrupted at the appropriate time (right plots).
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Figure 7.9: Experimental plots of the XY-plane with sinusoidal wave refer-
ence signal of 500 µm amplitude and 10 Hz frequency on both
axes. Without RPC action (left plots) and with the RPC action
interrupted at the appropriate time (right plots).
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erence signal with 500 µm amplitude for the X-axis and the Y-axis,
respectively.

Frequency [Hz] 1 1 5 5 10 10 20 20 50 50

RPC No Yes No Yes No Yes No Yes No Yes
RMSE [µm] 1.84 1.19 3.61 0.74 5.41 0.55 6.45 2.98 78.87 1.57

Table 7.1: RMS position error value without and with RPC action when feed-
ing the X-axis sinusoidal reference signal of 100 µm amplitude.

Frequency [Hz] 1 1 5 5 10 10 20 20 50 50

RPC No Yes No Yes No Yes No Yes No Yes
RMSE [µm] 1.57 1.46 3.81 2.66 7.71 1.78 11.39 2.28 57.82 2.43

Table 7.2: RMS position error value without and with RPC action when feed-
ing the Y-axis sinusoidal reference signal of 100 µm amplitude.

Frequency [Hz] 1 1 5 5 10 10

RPC No Yes No Yes No Yes
RMSE [µm] 2.50 1.46 8.20 0.29 16.69 1.54

Table 7.3: RMS position error value without and with RPC action when feed-
ing the X-axis sinusoidal reference signal of 500 µm amplitude.

As it can be seen from Figure 7.7, 7.8 and 7.9 and from the data in
Tables 7.1 - 7.4, the RPC improves the system performance in all the
chosen configurations. However, the improvement is more significant
at higher frequencies. This is probably due to a higher position error
without the RPC, so the RPC action is more evident. At the lowest
frequency chosen (1 Hz), the system provides good performance also
when the RPC is not used and thus, the improvement achieved with
the RPC action is smaller.

7.2.2 Triangular Reference Signal

To improve the system performance when drawing a square in the
XY-plane, the RPC was implemented also when feeding both axes
with a triangular reference signal.

7.2.2.1 Simulations

As for the sinusoidal reference signal, the simulations were performed
using a triangular reference signal with 1000 µm amplitude and 10
Hz frequency. The position error results using the system non-linear
model, without and with the RPC action, are shown in Figure 7.10.
The results achieved without adding an external random noise to
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Frequency [Hz] 1 1 5 5 10 10

RPC No Yes No Yes No Yes
RMSE [µm] 1.74 1.34 6.95 3.52 19.88 1.39

Table 7.4: RMS position error value without and with RPC action when feed-
ing the Y-axis sinusoidal reference signal of 500 µm amplitude.

the system input are shown in the plot on the left, while the results
achieved when the external noise is added are shown in the plot on
the right in order to better reproduce the real system behaviour. Simu-
lations show that, to avoid a divergent behaviour of the position error,
the RPC action needs to be interrupted also when the triangular ref-
erence signal is used.
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Figure 7.10: Simulation results for the position Error without and with RPC
action (continuous or stopped after a suitable time). 1000 µm, 10
Hz triangular wave reference signal. Non-Linear Model, with-
out and with external noise.

Compared to the improvement achieved in the simulation of the
sinusoidal reference signal, the figures show that the positive impact
of the RPC action on the reduction of the position error amplitude
is significantly lower with the triangular reference signal. Moreover,
simulation using the linear system model showed that the RPC action
is theoretically capable of nullifying the position error and that the
divergent behaviour is due to the system non-linearity and to the fact
that the RPC was implemented based on the assumption of a linear
transfer-function. The obtained results are shown in Figure 7.11. Thus
the same conclusions as for the sinusoidal reference signal can be
drawn.

7.2.2.2 Experiments

Different experimental analyses were performed also with the trian-
gular reference signal. The signal amplitudes chosen for both axes
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Figure 7.11: Simulation results for the position error without and with RPC
action. 1000 µm, 10 Hz triangular wave reference signal. Linear
model, without and with external noise.

were: 100 µm and 500 µm, while the frequencies used were: 1 Hz, 5
Hz and 10 Hz. Only for the smallest amplitude selected (100 µm) the
frequency of the triangular reference signal was increased to 20 Hz
and 50 Hz. As with the sinusoidal reference signal, the power supply
was not able to drive the system at these frequencies when the ampli-
tude is 500 µm.
As happened during the simulation analysis, the experimental results
also show a divergence of the position error after some periods of the
triangular signal when the RPC is used. However, also in this case, if
the RPC action is stopped at the appropriate time, it allows the reduc-
tion of the position error amplitude and it does not diverge. Therefore
the system performances are improved. Two examples of the position
errors measured, without the RPC action and with the RPC action
stopped at the appropriate time, are shown in Figure 7.12. The plot
on the left is related to the X-axis position error signal with a 500 µm
amplitude and of 10 Hz frequency triangular reference signal, while
the figure on the right shows the Y-axis position error measured with
a 100 µm amplitude and 10 Hz frequency triangular reference signal.

The results reported in Figure 7.12 show that the RPC action sig-
nificantly improved the system performance also when the triangular
reference signal is used. Moreover, improvement shown by measure-
ment is more relevant than that achieved in simulations.
In Figure 7.13, position errors measured, without and with the RPC
action, with 100 µm amplitude and 50 Hz frequency triangular ref-
erence signal on both axes are shown. The improvement provided
by the RPC is evident also in these situations. The XY-plane plots
obtained, without and with the RPC action, when feeding both axes
with a triangular reference signal are shown in Figure 7.15 and Fig-
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Figure 7.12: Experimental results for the position Error without and with
RPC action stopped after a suitable time. X-axis example on the
left, Y-axis example on the right.

ure 7.14. The first one is for 500 µm amplitude and 10 Hz frequency,
while the second one is for 100 µm amplitude and 50 Hz frequency.
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Figure 7.13: Experimental results for the position error without and with
RPC action. Triangular wave reference signal 100 µm 50 Hz on
both axes.

The RMS values of the position error obtained without and with
the RPC action, are reported in Tables 7.5 and 7.6 for the triangular
reference signal with 100 µm amplitude. Moreover, the RMS values
of the position error, without and with the RPC action are reported
in Tables 7.7 and 7.8 for the triangular reference signal with 500 µm
amplitude.

As it can be seen from Tables 7.5 and 7.6 when the amplitude of
the reference signal is 100 µm the RPC does not improve the system
performance at the lower frequencies selected (1 Hz and 5 Hz), but
conversely it disimproves them. However, at 10 Hz or above, the RPC
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Figure 7.14: Experimental plots of the XY-plane with triangular wave refer-
ence signal 500 µm amplitude and 10 Hz frequency on both
axes. Without RPC action (left plot) and with RPC action inter-
rupted at the appropriate time (right plot).
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Figure 7.15: Experimental plots of the XY-plane with triangular wave refer-
ence signal 100 µm amplitude and 50 Hz frequency on both
axes. Without RPC action (left plot) and with RPC action inter-
rupted at the appropriate time (right plot).

Frequency [Hz] 1 1 5 5 10 10 20 20 50 50

RPC No Yes No Yes No Yes No Yes No Yes
RMSE [µm] 1.90 2.90 3.82 4.35 6.04 2.50 9.21 3.01 64.78 2.97

Table 7.5: RMS position error value without and with RPC action when feed-
ing the X-axis triangular reference signal of 100 µm amplitude.
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Frequency [Hz] 1 1 5 5 10 10 20 20 50 50

RPC No Yes No Yes No Yes No Yes No Yes
RMSE [µm] 1.58 3.10 3.99 3.47 8.43 2.41 13.73 5.25 44.71 3.75

Table 7.6: RMS position error value without and with RPC action when feed-
ing the Y-axis triangular reference signal of 100 µm amplitude.

Frequency [Hz] 1 1 5 5 10 10

RPC No Yes No Yes No Yes
RMSE [µm] 25.72 12.38 12.30 3.13 35.99 8.86

Table 7.7: RMS position error value without and with RPC action when feed-
ing the X-axis triangular reference signal of 500 µm amplitude.

significantly reduces the amplitude of the position error. When the
amplitude is 500 µm, the position error is always reduced when the
RPC is applied, as shown in Tables 7.7 and 7.8. Therefore, it can be
concluded that, when a triangular wave reference signal is applied,
the RPC always improves the system performance at the higher fre-
quencies selected, while at lower frequencies its action is beneficial
only if the signal amplitude is at least about 500 µm.

7.2.3 Smooth Trapezoidal Reference Signal

The RPC was applied also when a smooth trapezoidal reference sig-
nal is applied to both axes. Some simulation and experimental results
are reported in this section.

7.2.3.1 Simulations

As done with the sinusoidal and the triangular reference signals,
some meaningful simulations were performed using also a trape-
zoidal reference signal with 1000 µm amplitude and 1 Hz frequency.
The position error results obtained using the system non-linear model,
without and with the RPC action, are shown in Figure 7.16. The re-
sults achieved without the addiction of an external random noise to
the system input are shown in the plot on the left, while the results
achieved when the external noise is added are shown in the plot on
the right, in order to better reproduce the real system behaviour.

Frequency [Hz] 1 1 5 5 10 10

RPC No Yes No Yes No Yes
RMSE [µm] 39.18 35.58 34.48 10.97 44.72 29.90

Table 7.8: RMS position error value without and with RPC action when feed-
ing the Y-axis triangular reference signal of 500 µm amplitude.
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Figure 7.16: Simulation results for the position error without and with RPC
(continuous or stopped after a suitable time). 1000 µm, 1 Hz
trapezoidal wave reference signal. Non-linear model, without
and with external noise.

As happened with the sinusoidal and the triangular reference sig-
nals, simulations show that the position error exhibits a divergent
behaviour when the RPC action is applied. To avoid this undesirable
behaviour, the RPC action was interrupted at an appropriate time
when a sinusoidal or a triangular reference signals are applied. On
the contrary, when the trapezoidal reference signal is used, simula-
tions show that the position error increases even if the RPC action is
stopped, even if the error amplitude increasing rate decreases when
the RPC action is interrupted. However, since this behaviour is not
acceptable, the use of the RPC should be avoided with trapezoidal
reference signals.
For the sinusoidal and the triangular reference signals, it was con-
cluded that the position error divergent behaviour is due to the sys-
tem non-linearity and to the fact that the RPC was implemented
based on the linear transfer-function. To test if the same hypothe-
sis holds also with the trapezoidal reference signal some simulations
were performed using the system linear model. The obtained results,
without (left plot) and with (right plot) the addition of the external
random noise to the system input, are shown in Figure 7.17. That
figure confirms that the divergent behaviour of the position error is
due to the the system non-linearity also for the trapezoidal reference
signal.

7.2.3.2 Experiments

Being the system non-linear, simulations suggest that the position er-
ror exhibits a divergent behaviour when the RPC is used, even if its
action is interrupted at the appropriate time.
The amplitudes chosen for the smooth trapezoidal reference signals
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Figure 7.17: Simulation results for the position error without and with RPC.
1000 µm, 1 Hz trapezoidal wave reference signal. Linear model,
without and with external noise.

on both axes were: 100 µm and 500 µm, while the frequency was
firstly set at 1 Hz. The results achieved with 500 µm amplitude, with-
out and with the RPC action (continuous or interrupted) are shown
in Figure 7.18.
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Figure 7.18: Experimental results for the position error without and with
RPC action (continuous or stopped after a suitable time). Trape-
zoidal wave reference signal 500 µm 1 Hz on both axes.

As shown in Figure 7.18, the behaviour of the experimental results
and the simulation results obtained using the non-linear model coin-
cide: the position error start to decrease, but it diverges after a certain
time independently of the RPC action interruption. Unlike simula-
tions, in the experimental results the increasing rate of the position
error is faster when the RPC action is stopped compared to when it
is not stopped.
Since this undesirable behaviour was present both in simulations and
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experiments performed at 1 Hz, experiments at higher frequencies
were not performed to avoid movements that could have broken the
system.
Since the "ramp" of the smooth trapezoidal reference signal was built
using a half period of a sinusoidal wave, by removing the signal
constant segments, a sinewave is obtained with a frequency of twice
the trapezoidal signal frequency. It was verified that the RPC works
properly with the sinusoidal reference signal. Hence it can be reason-
ably concluded that the undesirable behaviour of the RPC when the
smooth trapezoidal reference signal is used can be related to the pres-
ence of its constant segments.
In conclusion, RPC can greatly improve the system performance when
drawing circular trajectories in the XY-plane. To avoid the divergent
behaviour of the position error, the RPC action needs to be inter-
rupted after a suitable time that is determined experimentally. More-
over, to perform a square trajectory in the XY-plane two reference
signals can be used: the triangular or the smooth trapezoidal refer-
ence signals. Both simulations and experiments show that without
the RPC action the smooth trapezoidal reference signal allows the
achievement of better performance than the triangular one due to
the continuity of the signal derivative. Unfortunately, the RPC ac-
tion does not work properly with this reference signal because the
position error diverges even if the RPC action is interrupted at the
optimum time. Conversely, the RPC action improves the system per-
formance when the triangular reference signal is used, particularly at
the higher frequencies analyzed. Therefore, the best solution to the
drawing of a square trajectory in the XY-plane is the trapezoidal ref-
erence signal without the RPC action when the frequency is low and
using the triangular reference signal with the RPC interrupted at the
suitable time at higher frequencies.

7.3 iterative learning control (ilc)

As explained in Section 2.6, the ILC is a high-performance controller
that can be applied with periodic or repetitive reference signals. It is
added in parallel to the feedback controller (as shown in Figure 2.8).
Therefore, in the Matlab-Simulink control scheme, the ILC block is
added in parallel to the Newton and PID subsystems, as shown in
Figure 7.19 for the two-axis system. In that figure, the Iterative Learn-
ing Control subsystem implements the ILC and its Simulink scheme
is shown in Figure 7.20.

As explained in Section 2.6, the ILC is a high performance control
technique based on the idea that, when a periodic signal reference
is used, the system performance can be improved by learning from
the knowledge of the error signal related to the previous periods.
The simplest ILC formulation, called the proportional type ILC, has



7.3 iterative learning control (ilc) 109

Po
si
tio
n	
er
ro
r

F*
[N
]

V[
V]

PI
D

x*
[u
m
]

x*
[m
]

v*
[m
/s
]

a*
[m
/s
^2
]

In
pu
t

[u
m
]

[m
] Sc

op
e

ex
[m
]

ev
[m
/s
]

x_
FD
BK
[m
]F*
[N
]

N
ew
to
n

x*
[m
]

v*
[m
/s
]

a*
[m
/s
^2
]

V*
_e
ff

F*
_e
ff

FF

V[
V]

x[
m
]

R
ea
l	S
ys
te
m

x[
m
]

FF
	(F
*_
ef
f	[
N
])

v_
es
t[m
/s
]

O
BS
ER
VE
R
di
sc
re
te

FO
R
C
E

V2
N

F*
[N
]

V[
V]

PI
D
1

x*
[u
m
]

x*
[m
]

v*
[m
/s
]

a*
[m
/s
^2
]

In
pu
t1

[u
m
]

[m
] Sc

op
e

1

ex
[m
]

ev
[m
/s
]

x_
FD
BK
[m
]F*
[N
]

N
ew
to
n1

x*
[m
]

v*
[m
/s
]

a*
[m
/s
^2
]

V*
_e
ff

F*
_e
ff

FF
1

V[
V]

x[
m
]

R
ea
l	S
ys
te
m
1

x[
m
]

FF
	(F
*_
ef
f	[
N
])

v_
es
t[m
/s
]

O
BS
ER
VE
R
di
sc
re
te
1

FO
R
C
E1

V2
N
1

R
TI
	D
at
a

Po
si
tio
nE
rro
r	[
um
]

Sy
st
em
In
pu
t	[
V]

Ite
ra
tiv
e	
Le
ar
ni
ng
	C
on
tro
l

Po
si
tio
nE
rro
r	[
um
]

Sy
st
em
In
pu
t	[
V]

Ite
ra
tiv
e	
Le
ar
ni
ng
	C
on
tro
l1

Figure 7.19: Two axes control scheme in Simulink with the ILC
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Figure 7.20: Simulink ILC Block

been used in this thesis work. Like in the application of the RPC, a
clock has been added to switch off the ILC action after an appropriate
time is elapsed, as shown in Figure 7.20. This solution was necessary
to avoid the divergence of the position error. The clock stop time
was tuned experimentally for each specific periodic reference signal
analyzed.

7.3.1 Sinusoidal Reference Signal

Simulations and experiments were performed by feeding the system
with sinusoidal reference signals of different amplitudes and frequen-
cies in order to draw a circular shape in the XY-plane. The ILC was
implemented to improve system performance.

7.3.1.1 Simulations

As for the RPC, only the simulation results related to one axis are re-
ported because the results obtained on the other axis are very similar.
The results achieved considering the non-linear model of the system
for the position error when a sinusoidal reference signal with 1000
µm amplitude and 10 Hz frequency is used are shown in Figure 7.21.
The plot on the left shows the results obtained without considering
the addition of an external random noise to the system input, while
the results achieved when the external random noise is added to bet-
ter reproduce the real system behaviour are shown in the plot on the
right. In both plots, three different condition are considered: without
ILC action, with continuous ILC action and with ILC action inter-
rupted after a suitable time.
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Figure 7.21: Simulation results for the position error without and with the
ILC action (continuous or stopped after a suitable time). 1000
µm, 10 Hz sinusoidal wave reference signal. Non-linear model,
without and with external noise.

As can be seen, when the ILC is used the position error diverges
independently of the presence the external random noise added to
the system input. However, in both cases, if the ILC action is inter-
rupted at an appropriate time, the position error is significantly re-
duced and it does not diverge. Simulations related to the RPC showed
that the error’s divergent behaviour was due to the system’s non-
linearities and by the fact that the RPC implemention is based on
the system linear transfer-function. To check if the ILC divergent be-
haviour shown in Figure 7.21 is due to the same cause, meaningful
simulations were performed using the linear model. The results are
shown in Figure 7.22. The plot on the left shows the results obtained
without considering the addition of an external random noise to the
system input, while the results achieved when the external random
noise is added are shown in the plot on the right.

Unlike RPC, when the ILC is used, the divergent behaviour of the
position error appears also when the linear model is used. Quite sur-
prisingly, the error increases at a higher rate when the linear model is
adopted. However, if the ILC action is interrupted at a suitable time,
this undesirable behaviour is avoided.

7.3.1.2 Experiments

The sinusoidal reference signal amplitudes chosen in the experiments
were: 100 µm and 500 µm, while the frequencies were: 1Hz, 5Hz and
10 Hz. The frequency of the sinusoidal reference signal was increased
to 20 Hz only for the smaller amplitude selected (100 µm). Some
meaningful examples of the measured position error, without and
with the ILC (either continuous or interrupted after a suitable time)
are shown in Figures 7.23 and 7.24. The first figure shows the results
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Figure 7.22: Simulation results for the position error without and with the
ILC action (continuous or stopped after a suitable time). 1000
µm, 10Hz sinusoidal wave reference signal. Linear model, with-
out and with external noise.

achieved with the sinusoidal reference signal of 500 µm amplitude
and 10 Hz frequency on both axes, while the second figure shows the
results with amplitude 100 µm and frequency 20 Hz.
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Figure 7.23: Experimental result for the position error without and with the
ILC action (continuous or stopped after a suitable time). Sinu-
soidal wave reference signal 500 µm, 10 Hz on both axes.

As can be seen from Figures 7.23 and 7.24, the behaviours of the
experimental and simulations results correspond well. Indeed, when
the ILC is used, the position error is reduced, but, if it is not stopped
at the appropriate time, the position error diverges.
As done for the RPC, the RMS value of the position error obtained
without and with the ILC action was evaluated for all the configu-
ration chosen, and the results are reported in Tables 7.9-7.12. Tables
7.9 and 7.10 show the results obtained when the sinusoidal reference
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Figure 7.24: Experimental result for the position error without and with the
ILC action (continuous or stopped after a suitable time). Sinu-
soidal wave reference signal 100 µm, 20 Hz on both axes.

signal with 100 µm amplitude was applied on both axes. Tables 7.11

and 7.12 show the results obtained when the amplitude was 500 µm
for both axes.

Frequency [Hz] 1 1 5 5 10 10 20 20

ILC No Yes No Yes No Yes No Yes
RMSE [µm] 1.63 1.34 3.58 2.80 5.54 3.12 11.79 5.52

Table 7.9: RMS position error value without and with ILC action when feed-
ing the X-axis sinusoidal reference signal of 100 µm amplitude.

Frequency [Hz] 1 1 5 5 10 10 20 20

ILC No Yes No Yes No Yes No Yes
RMSE [µm] 1.74 1.71 5.98 5.76 8.24 2.53 7.67 2.22

Table 7.10: RMS position error value without and with ILC action when feed-
ing the Y-axis sinusoidal reference signal of 100 µm amplitude.

As Figures 7.23 and 7.24 and Tables 7.9-7.12 show, the ILC improves
the system performance when the sinusoidal reference signal is used.
However, a comparison with the results obtained when the RPC was
applied, the RPC outperforms the ILC when it is used in a given
configuration. Therefore, it can be concluded that when a sinusoidal
reference signal is used, the RPC resulted to be the best choice for
the system analyzed in this work when the aim is the minimization
of the position error. For this reason, no measurements with the ILC
action were performed when feeding the system with the triangular
or the smooth trapezoidal reference signals.
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Frequency [Hz] 1 1 5 5 10 10

ILC No Yes No Yes No Yes
RMSE [µm] 2.70 2.29 8.22 5.23 18.25 10.00

Table 7.11: RMS position error value without and with ILC action when feed-
ing the X-axis sinusoidal reference signal of 500 µm amplitude.

Frequency [Hz] 1 1 5 5 10 10

ILC No Yes No Yes No Yes
RMSE [µm] 2.32 2.59 7.71 7.39 15.65 7.39

Table 7.12: RMS position error value without and with ILC action when feed-
ing the Y-axis sinusoidal reference signal of 500 µm amplitude.



C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, a two-axis high-performance compliant positioning sys-
tem has been described and controlled using Matlab-Simulink. Dif-
ferent reference signals were used in order to draw distinct shapes in
the XY-plane by moving both axes simultaneously over the complete
permissible motion range. For example, sinusoidal reference signals
on both axes were used to perform a circular shape, while triangu-
lar or smooth trapezoidal reference signals allowed the drawing of a
square shape. The performance of both axes was analyzed using dif-
ferent amplitudes and frequencies of the reference signals. Due to a
power limitation it was not possible to increase the signal frequency
above 50 Hz. Moreover, that frequency was achieved only for small
amplitude movements (up to 100 µm). Indeed, if the amplitude was
increased to 500 µm, the system was able to work properly only up to
a maximum frequency of 10 Hz. In addition, not all the reference sig-
nals selected allowed these values of amplitude and frequency to be
achieved. For example, experimental results showed that the smooth
trapezoidal reference signals do not work properly when the ampli-
tude was 500 µm and the frequency was 10Hz, because the associated
power is greater than the one related to other reference signals se-
lected. Thus, it was clear that the maximum power available imposes
a trade-off between amplitude and frequency of the reference signals
adopted. Consequently, a deep analysis of the resonant frequencies
of the system was not necessary. Indeed, the knowledge of the first
resonance frequency of a single axis (42.4 Hz) suffices to ensure that
critical system excitations can be avoided.
When moving both axes simultaneously, two kinds of cross-coupling
interaction were detected: kinematic and kinetostatic cross-coupling.
Both of them are shown to be quite small, but to ensure the best
achievable system performance, static compensations were implemented
using extensive experimental data. In both cases, experiments show
that the proposed compensations perform well for the working con-
ditions considered. On the contrary, when dynamic reference signals
were used (such as sinusoidal, triangular or smooth trapezoidal sig-
nals) the compensations implemented become useless. However, the
cross-coupling effects are negligible compared to the system dynamic
limitations, so that dynamic compensation of their effect, which would
have required complex analysis and implementation procedures, was
not implemented.
Measurements showed that the system performance significantly re-
duces when the signal reference frequency increases. Therefore high-
performance control techniques specifically designed for periodic sig-
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nals, such as the repetitive control (RPC) and the iterative learning
control (ILC), were used to improve the system performance. Differ-
ent simulation and experimental analyses showed that the RPC leads
to the decrease of the position error, but after a certain time it tends to
diverge. Simulation showed that this behaviour is related to the sys-
tem non-linearity and to the use of a system linear transfer-function
for the RPC implementation. However, when using sinusoidal or tri-
angular reference signals, the interruption of the RPC action at a suit-
able time allowed a consistent reduction of the position error to be
achieved, avoiding divergence. In such a way, the system performance
were significantly improved, especially at the higher frequencies se-
lected. Unfortunately, when the smooth trapezoidal reference signal
was used, the RPC leads to a divergent behaviour also when its ac-
tion was stopped. Thus the RPC is not suitable with this reference
signal. The system performance was improved also using the ILC
when the sinusoidal reference signal was selected. However, in that
case, the RPC outperforms the ILC and so the ILC was not imple-
mented when applying the other reference signals. In conclusion, the
best solution to perform a circular trajectory in the XY-plane is us-
ing a sinusoidal reference signal on both axes and implementing the
RPC interrupting its action at an appropriate time. Conversely, the
best way to carry out a square shape in the XY-plane is to use the
smooth trapezoidal reference signal on both axes without the RPC
action when the frequency is low, and the triangular reference signal
on both axes with the RPC interrupted at an appropriate time if the
frequency is sufficiently high.

possible future work directions

To further improve the system performance, a number of future works
should be considered. Among them:

• Replace the servo amplifiers in order to obtain a lower output
noise. Use of servo amplifiers with better characteristics will
possible allow the system to perform movements in the nanome-
ter range.

• Increase the power available to supply the system in order to
enable axes movements at higher frequencies, hopefully over
the full motion range. If this improvement is implemented, an
in-depth vibrational analysis of the system should be performed
to avoid movements at the resonant frequencies, which could
break the manipulator.

• Implement a dynamic compensation of the detected cross-coupling
effects. Dynamic compensation will be useful if the system per-
formance approaches the nanometer range, because the cross-
coupling interaction will be more relevant.
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• Theoretically analyze the cause of the issue that arises when
the RPC is used with the smooth trapezoidal reference signal
and implement a possible solution, firstly using simulations and
later by validating the obtained results in the real system.

• Modify the control scheme and implement a state-space con-
trol for the system. Since the state-space representation allows
different and more effective controllers to be implemented, the
system performance is expected to be improved.

• Extend the movement from two to three axes, adding an addi-
tional axis on the Z-direction of the XYZ compliant mechanism,
with its associated actuator, CBPM component, servo amplifier
and encoder.





A P P E N D I X

119





A
M AT L A B C O D E S

a.1 k(x) function

1 function Kx = K(x)

%#codegen

E = 69e9; % [Pa]

W_CBPM = 0.05; % [m]

6 T_CBPM = 0.001; % [m]

l_CBPM = 0.05; % [m]

EI_CBPM = E * (1/12) * W_CBPM * T_CBPM^3;

K_CBPM = (48*EI_CBPM)/l_CBPM^3; % [N/m]

d = 12 / (T_CBPM / l_CBPM)^2;

11

W_XYZ = 0.001; % [m]

T_XYZ = 0.001; % [m]

l_XYZ = 0.05; % [m]

I_XYZ = (1/12)*( W_XYZ * T_XYZ^3);

16 K_XYZ = 24*12*((E*I_XYZ) / l_XYZ^3); % [N/m]

D = l_CBPM^5 / d + ((x^2*l_CBPM^3)/700);

Kx =(K_CBPM + K_XYZ)*x + (2.88 * EI_CBPM * x^3) / D; �
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a.2 one axis position reference [8]

clear all

close all

clc

5 sample = 1e-3; % sample time

s_des = 1; % [mm] amplitude

t_des = 0.1; % [s] rise time desired

t_start = 5; %[s] delay time

10 %% Design

t_interval = 0:sample:t_des;

syms t;

15 f = 1/(2*t_des);

c = (2*s_des)/(1-cos(f*2*pi*t_des));

s = c * (( 1 - cos( f*2*pi*t ) ) / 2 );

S = c * (( 1 - cos( f*2*pi*t_interval ) ) / 2 );

20

figure

fplot( matlabFunction(s), [0 t_des] );

% add start delay

25 START = zeros(round(t_start/sample), 1);

TIME = 0:sample:(t_start+t_des);

X.time = TIME;

30 X.signals.values = [START; S’];

figure

plot(X.time,X.signals.values);

ylim([-.1 1.1])

35 xlim([4.98 5.11]) �
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a.3 non-linear stiffness function [8]

function Kx = K_function(ex,x_FDBK)

%#codegen

E = 69e9; % [Pa]

5

W_CBPM = 0.05; % [m]

T_CBPM = 0.001; % [m]

l_CBPM = 0.05; % [m]

Kt_CBPM = 4 * ((E * W_CBPM * T_CBPM^3) / l_CBPM^3); % [N/m]

10 EI_CBPM = E * (1/12) * W_CBPM * T_CBPM^3;

d = 12 / (T_CBPM / l_CBPM)^2;

W_XYZ = 0.001; % [m]

T_XYZ = 0.001; % [m]

15 l_XYZ = 0.05; % [m]

Kt_XYZ = 24* ((E * W_XYZ * T_XYZ^3) / l_XYZ^3); % [N/m]

x_FDBK2 = x_FDBK*x_FDBK;

D = l_CBPM^5 / d + ((x_FDBK2*l_CBPM^3)/700);

20

if ((x_FDBK+ex) < 0)

error = -1e4;

else

25 error = -0.5e4;

end

k = Kt_CBPM + EI_CBPM*((8.64*x_FDBK2 / D) - ((5.76 * l_CBPM^3

* x_FDBK2*x_FDBK2)...

/ (700 * D^2))) + Kt_XYZ + error;

30

Kx = k*ex; �
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a.4 non-linear force function [8]

function F = delta(x)

%#codegen

E = 69e9; % [Pa]

4

W_CBPM = 0.05; % [m]

T_CBPM = 0.001; % [m]

l_CBPM = 0.05; % [m]

Kt_CBPM = 4 * ((E * W_CBPM * T_CBPM^3) / l_CBPM^3); % [N/m]

9 EI_CBPM = E * (1/12) * W_CBPM * T_CBPM^3;

d = 12 / (T_CBPM / l_CBPM)^2;

W_XYZ = 0.001; % [m]

T_XYZ = 0.001; % [m]

14 l_XYZ = 0.05; % [m]

Kt_XYZ = 24* ((E * W_XYZ * T_XYZ^3) / l_XYZ^3); % [N/m]

D = l_CBPM^5 / d + ((x^2*l_CBPM^3)/700);

19 if (x < 0)

errorL = -1e4;

errorN = 1.8;

else

errorL = -0.5e4;

24 errorN = 2;

end

% Theoretical Values

% errorL = 0;

29 % errorN = 2.88;

F = (Kt_CBPM + Kt_XYZ + errorL) * x + (errorN * EI_CBPM * x^3) /

D; �
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a.5 sinusoidal reference signal

clear all

close all

clc

4

tdelay1 = 5; % delay [s]

t_des = 100; % run a sinusoidal for t_des seconds

sample = 1e-3; % sample time

t_interval = 0:sample:t_des-tdelay1;

9 f = 1; % hz

T = 1/f; % period [s]

START = zeros(round(tdelay1/sample), 1);

tdelay2 = 5 - T/4 ; % delay [s] %T/4 to have pi/2 phase

difference

14 t_interval2 = 0:sample:t_des-tdelay2;

START2 = zeros(round(tdelay2/sample), 1);

TIME = 0:sample:t_des;

19 sinWave1.time = TIME;

S1 = 1*sin(2*pi*f*t_interval);

sinWave1.signals.values = [START; S1’];

sinWave2.time = TIME;

24 S2 = 1*sin(2*pi*f*t_interval2);

sinWave2.signals.values = [START2; S2’];

plot(sinWave1.signals.values,sinWave2.signals.values); % plot the

XY plane signal

axis equal;

29 figure

plot(sinWave1.time, sinWave1.signals.values);

hold

plot(sinWave2.time, sinWave2.signals.values,’r’); �
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a.6 triangular reference signal

clear all

close all

3 clc

tdelay1 = 5; % delay [s]

t_des = 100;

sample = 1e-3; % sample time

8 t_interval = 0:sample:t_des-tdelay1;

f = 1; % hz

T = 1/f; % period [s]

START = zeros(round(tdelay1/sample), 1);

13 tdelay2 = 5 - T/4 ; % delay [s] %T/4 to have pi/2 phase

difference

t_interval2 = 0:sample:t_des-tdelay2;

START2 = zeros(round(tdelay2/sample), 1);

TIME = 0:sample:t_des;

18

TriangularWave1.time = TIME;

S1 = 1*sawtooth(2*pi*f*t_interval, 0.5);

TriangularWave1.signals.values = [START; S1’];

23 TriangularWave2.time = TIME;

S2 = 1*sawtooth(2*pi*f*t_interval2, 0.5);

TriangularWave2.signals.values = [START2; S2’];

plot(TriangularWave1.signals.values,TriangularWave2.signals.

values); % plot the XY plane signal

28 axis([-1.5 1.5 -1.5 1.5]);

axis equal;

figure

plot(TriangularWave1.time, TriangularWave1.signals.values);

hold

33 plot(TriangularWave2.time, TriangularWave2.signals.values,’r’); �



A.7 trapezoidal reference signal 127

a.7 trapezoidal reference signal

clear all

2 close all

clc

%% Trapezoidal wave

f = 1; %Hz

7 T = 1/f; %period

trise = T/4;

tcostant2 = T/4;

tcostant4 = T/4;

tfall = T/4;

12 amplitude = 2; % 1 positive and 1 negative

amplitude2 = 0;

offset = amplitude/2;

Ts = 1e-3; %sample time

T = trise +tcostant2 + tfall +tcostant4;

17

t = 0:Ts:T;

t1 = 0:Ts:trise;

s1 = (amplitude/trise)*t1 - offset;

22

t2 = 0:Ts:(tcostant2 -Ts);

s2 = repmat(amplitude, size(t2))- offset;

t3 = 0:Ts:(tfall - Ts);

27 s3 = amplitude - (amplitude/tfall)*t3 -offset;

t4 = 0:Ts:(tcostant4 -Ts);

s4 = repmat(amplitude2, size(t4))-offset;

32 S = [s1 s2 s3 s4];

plot(t,S);

t1first = 0:Ts:(trise/2);

s1first = (amplitude/trise)*t1first;

37 Sfirst = [s1first s2 s3 s4];

Scenter = S;

n = 100; % number of periods

42 nt = 0: Ts: (n*T + (n-1)*Ts);

periodicTrapezoidal = repmat(Scenter, 1, n);

plot(nt, periodicTrapezoidal);

trapezoidalWave = [Sfirst periodicTrapezoidal];

47 %% TwoAxis Reference with start dalay

tdelay1 = 5; %[s] delay time axis x

tdelay2 = 5 - T/4 ; % delay [s] %T/4 to have pi/2 phase

difference
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tdifference = T/4; %time difference

endDifference = zeros(round(tdifference/Ts),1);

52

START1 = zeros(round(tdelay1/Ts), 1);

START2 = zeros(round(tdelay2/Ts), 1);

Time1 = 0: Ts: ((n + 1)*T - T/8 + (n)*Ts + tdelay1); %n-time

periodic, +1 is the first (that have T/8 duration less)

Time2 = 0: Ts: ((n + 1)*T - T/8 + (n)*Ts + tdelay1); %n-time

periodic, +1 is the first (that have T/8 duration less)

57

TrapezoidalWave1.time = Time1;

TrapezoidalWave1.signals.values = [START1; trapezoidalWave’];

TrapezoidalWave2.time = Time2;

62 TrapezoidalWave2.signals.values = [START2; trapezoidalWave’;

endDifference];

plot(TrapezoidalWave1.signals.values, TrapezoidalWave2.signals.

values); % plot the XY signal

axis ([-1.5 1.5 -1.5 1.5]);

axis equal;

67 figure

plot(TrapezoidalWave1.time, TrapezoidalWave1.signals.values);

hold

plot(TrapezoidalWave2.time, TrapezoidalWave2.signals.values,’r’); �
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a.8 kinematic cross-coupling function

function [xPosFF, xVelFF ,xAccFF, yPosFF, yVelFF, yAccFF] =

kinematic_crossCoupling(xPos, xVel ,xAcc, yPos, yVel, yAcc)

%#codegen

input = [xPos; xVel; xAcc; yPos; yVel; yAcc]; % vertical vector

of input variables

5 if (yPos > 0)

A = 0.00402;

else

A = -0.00141;

end

10 if (xPos > 0)

B = 0.00325;

else

B = -0.00188;

end

15

matrix = [ 1 0 0 A 0 0; 0 1 0 0 A 0; 0 0 1 0 0 A; B 0 0 1 0 0; 0

B 0 0 1 0; 0 0 B 0 0 1];

output = matrix * input; % vertical vector of output variables

xPosFF = output(1);

20 xVelFF = output(2);

xAccFF = output(3);

yPosFF = output(4);

yVelFF = output(5);

yAccFF = output(6); �
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a.9 kinetostatic cross-coupling function

1 function Fcc = KinetostaticCC(x, Yposition)

%#codegen

if(Yposition >0)

slope = 0.0014721; %[N/um]

intercept = -0.041112; %[N]

6 else

slope = -0.0019246; %[N/um]

intercept = -0.039929; %[N]

end

Fcc = (slope*x + intercept)*Yposition; �



A.10 rpc script 131

a.10 rpc script

Kf= 35.14;

Kdx = 1.804;

Kdy = 1.6153;

mtot = 1.824;

5 c = 22.353;

Kt = 129460;

Ts = 0.001; %sample time

N = round(1/(f*Ts)); %number of sample per period

10 if f == 1

Krx = 0.5; %gain of x-axis RPC

Kry = 0.1; %gain of y-axis RPC

elseif f == 5

Krx = 0.3; %gain of x-axis RPC

15 Kry = 0.05; %gain of y-axis RPC

elseif f == 10

Krx = 0.1; %gain of x-axis RPC

Kry = 0.08; %gain of y-axis RPC

elseif f == 20

20 Krx = 0.05; %gain of x-axis RPC

Kry = 0.05; %gain of y-axis RPC

elseif f == 50

Krx = 0.05; %gain of x-axis RPC

Kry = 0.05; %gain of y-axis RPC

25 else

Krx = 0;

Kry = 0;

% if f is not one of the choosen ones, don’t use the RPC (

need to be tuned for that frequency to prevent divergent

signals)

%if the reference signal has another frequency, tuned the RPC

for it and add it with another elseif

30 end

s = tf(’s’);

Px = (Kf*Kdx)/(mtot*s^2 + c*s + Kt); %open loop process linear

transfer function X axis continuous time domain

Py = (Kf*Kdx)/(mtot*s^2 + c*s + Kt); %open loop process linear

transfer function Y axis continuous time domain

35

Wxc = (Kf*Kdx)/(mtot*s^2 + c*s + Kt + Kf*Kdx); %close loop

process linear transfer function X axis continuous time

domain

Wyc = (Kf*Kdy)/(mtot*s^2 + c*s + Kt + Kf*Kdy); %close loop

process linear transfer function Y axis continuous time

domain

z = tf(’z’, Ts);

40

Wxd = c2d(Wxc, Ts, ’zoh’); %close loop discrete transfer function
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[nx,dx] = tfdata(Wxd,’verbose’);

nx=nx(2:3);

zeroX = zero(Wxd);

45 polesX = pole(Wxd);

Wyd = c2d(Wyc, Ts, ’zoh’); %close loop discrete transfer function

[ny,dy] = tfdata(Wyd,’verbose’);

ny=ny(2:3);

50 zeroY = zero(Wyd);

polesY = pole(Wyd); �
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