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ABSTRACT 

A local field potential (LFP) is a particular class of electrophysiological signals, which is 

related to the sum of all dendritic synaptic activity within a volume of tissue. This type of 

signal is recorded using a low impedance extracellular microelectrode, placed sufficiently far 

from individual local neurons to prevent any particular cell from dominating the 

electrophysiological signal and reflects the sum of action potentials and slower ionic events. 

The microelectrode measures the electrical potential difference (in volts) between the tissue 

and a reference electrode placed relatively near the recording electrode. 

To extract the LFP form the signal acquired, is used a low-pass filter that removes the spike 

components allowing only the signal of interest, i.e., field potentials. The LFP represents the 

accumulative activity of the observed area, whereas, the spike data represents the activity of 

a particular cell under a given situation. The LFP is composed of the more sustained currents 

in the tissue, typical of somato-dendritic currents and the major slow current is the 

postsynaptic potential (PSP).  

LFPs are very important to understand the brain activity and network so they are widely 

studied. Usually, due to the big variability in the individual recordings, it is common to study 

the average signal obtained from the individual recordings. In this way the average signal 

obtained is very clean but during this averaging operation many useful information present 

in the individual recordings are lost. Thus, for a deeper understanding of the neuronal 

network activity it is necessary to analyze directly the individual LFPs (referred as single 

sweep). 

This work proposes a new method for the single sweep analysis and classification. The 

method is composed by four principal steps: pre-processing, processing, waveform 

recognition and clustering.  

During the pre-processing the principal points that characterize the single sweep are 

detected. These points are than used during the processing step to create a single sweep 

template. To reduce the oscillation inside the template, it is smoothed using well defined 

smoothing techniques. The next step is the recognition of the defined template in each 

single sweep (known as template matching). This is done through two techniques: the 

matched filter method and the contour method.  
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After the single sweeps recognition, the classification of the detected sweeps is performed. 

Three different clustering techniques are implemented: the K-means, the SOM (self 

organizing maps) and the hierarchical agglomerative. Through this method the single sweeps 

are classified into different binds according to their shape.  

Analyzing the various techniques used, we found that the contour method has 

demonstrated to be the best one in the single sweeps recognition, while the clustering 

methods proposed generates almost the same results so it is difficult to specify the best one. 

To understand the neuronal network activity at a greater level, study of the single sweep 

LFPs are crucial. Due to the fact that the different shapes in the LFPs represent different 

network activity, a fine classification method is needed to classify the single sweeps based 

on their signal shapes. The method proposed in this work performs this classification with a 

good precision. Though it is difficult to apply many computational operations on a huge 

dataset as in the case of single sweeps, we tried to use a moderate set of operation that 

obtained satisfactory results.  
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CHAPTER 1: INTRODUCTION 
 

1.1 Introduction to rat whisking system 

 
Understanding the brain in terms of its structure, connections, functions and the genetic 

bases of these properties – remains the central riddle science, especially in neurophysiology. 

Since the 18th century scientists are trying to decode the mysteries of the brain. To 

understand the brain and its information processing capability, lots of research has already 

been done and are still going on. For rodents the whiskers are an important tactile sense 

organ as the hands are for humans and other primates.  

 

 
 

Figure 1.  Wistar rat whiskers. 

 
The sensory innervations of each whisker follicle are quite high, reflecting the importance of 

the information it transmits. In rats, each of the larger follicles receives terminations from 

approximately 200 trigeminal ganglion cells and the smaller follicles closer to 50. Each 

muzzle contains about 36 large whiskers, which can be whisked back and forth by muscles in 

and around the whisker pad, and numerous smaller vibrissae, which do not move and are 

located around the lip and front of the snout. In total, the muzzle on each side of the face 

contains approximately 165-210 whiskers depending on the species and strain of animal [1]. 

The Figure 1 shows a Wister rat. 

The barrel cortex is a remarkable structure part of the somatosensory cortex. It receives and 

processes tactile information derived from the whiskers on the contralateral face of the 

animal. The barrel cortex is organized in column, each composed of about 10 compartments: 

L1, L2-Septum-realted, L2-Barrel-related, L3-Septum related, L3-Barrel-related, L4-Septum, 
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L4-Barrel, L5A, L5B, and L6 [1]. In cross-section, the cortex is a six-layered structure where 

the main input layer is layer IV. The barrels that give the barrel cortex its name are located in 

layer IV.  

Inputs from the thalamus carrying information from a given whisker terminate in discrete 

areas of layer IV forming anatomically distinguishable areas (barrels) which are separated 

from each other by septa. And it is found that the “cortical correlates of the mystacial 

vibrissae” and that “one barrel represents one vibrissa”, [3], (see Figure 2). 

 

 
Figure 2.  Whiskers disposition on rat’s face 

Due to its distinctive cytoarchitectonics and functional significance, the barrel cortex has 

played an important role in neuroscience. The majority of what is known about 

corticothalamic processing comes from studying the barrel cortex. Researchers have 

intensively studied the barrel cortex not only at understanding the barrel cortex itself but 

also at understanding issues in related fields using the barrel cortex as a model system. The 

barrel cortex has served as a test-bed system for several new methodologies, partly because 

of its unique and instantly identifiable form, and partly because the species that have 

barrels, the rodents, are the most commonly used as laboratory mammal. 

Neurons within the layer IV barrel cortex directly code for whisker displacement. That is to 

say, that the neuron within a given barrel will fire when the whisker that barrel represents is 

moved. These neurons also show directional sensitivity: certain neurons will only fire when 

the whisker is moved in a specific direction [4], [5]. Neurons in the barrel cortex exhibit the 

property of synaptic plasticity that allows them to alter the vibrissae to which they respond 

depending on the rodent's history of tactile experience, [6].  
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The posteriormedial barrel subfield (PSMBF) is a highly consistent region of the barrel field. 

Barrels of the PSMBF are the largest and most elliptical in shape and have a striking 

topographical organization that is identical to that of the major facial whiskers (also called 

mystacial vibrissae); these whiskers are organized into 5 rows of 4-7 large whiskers that run 

close to parallel with the bridge of the nose. A consideration of this morphology led Woolsey 

and Van der Loos to propose that the barrels of the PSMBF were the cortical correlates of 

the mystacial vibrissae; this is sometimes called the one-barrel-one-vibrissa hypothesis. Thus 

each barrel in the PSMBF is thought to correspond with a single mystacial vibrissa on the 

contralateral side of the animal.  

Sensory information flows from whisker follicles to somatosensory cortex through at least 

three parallel pathways: lemniscal, extralemniscal and paralemniscal. The trigeminal nerve 

carries afferent fibres from the follicles into the brainstem where they synapse with neurons 

in four different nuclei: principal, interpolar, oral, and caudal. The most important pathway 

for our purposes is the lemniscal pathway correlated to whiskers deflection. In this pathway, 

axons from the principal nucleus cross over and project to “barreloids” in the dorsomedial 

section of the thalamic ventroposterior medial nucleus (VPMdm). Neurons in VPMdm 

project mainly to barrels in layer IV of primary somatosensory cortex (S1).  

The lemniscal input arrives from the ventral posterior medial (VPM) nucleus of thalamus and 

it has small receptive fields, short response latencies and transmits sensory information 

about whisker deflection. On the other hand lemniscal input is characterized of large 

receptive fields and long response latency, and it represents sensory and motor signal as 

they arise from the collective movements of whiskers during active exploration. Along each 

column there are some layers, such as L2, L3 and L5B, where there is interaction between 

the lemniscal and paralemniscal pathway. In other layers, such as L4, the two are processed 

separately. In the extralemniscal pathway, neurons of the interpolar nucleus project to the 

ventrolateral section of the VPM (VPMvl). Neurons in VPMvl project to septa between the 

barrels and to secondary somatosensory cortex (S2).  The paralemniscal pathway runs via 

the interpolar nucleus and the posterior nucleus (POm) of the thalamus to S2 and to diffuse 

targets in barrel cortex, especially in layer V [7], [8]. 

A particular sight should be given to layer V: initially this layer was thought to be the 

paralemniscal cortical relay station, but recently it has been demonstrated that lemniscal 

and paralemniscal pathways converge on L5. The reason of this characteristic is due to the 

dendritic architecture of L5A neurons: L5A basal dendrites are not aligned with and do not 
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respect the barrel borders, moreover L5 apical dendrites bend such that they preferentially 

pass through the borders of L4 barrels [1]. These different pathways are thought to transmit 

different modalities of sensory information from the whisker [7], [8] and can be seen in 

Figure 3. 

The well known anatomy of the sensory pathways allows precise electrode placement and 

the recording of evoked potential (EP) from the vibrissa system. The stimulation of a single 

vibrissa activates cells in more than one barrel-columns, and, at the same way, neurons from 

one column respond to more than one whisker with different latency and magnitude. 

Focusing on the EP, maximal peak-to-peak amplitude can be obtained after stimulation of 

the corresponding whisker, while EPs evoked by stimulation of whiskers surrounding the 

principal one have smaller amplitudes [2]. 

 

 
 

Figure 3.  Barrel cortex pathways. Sensory information flows in parallel pathways from whiskers to 

cortex. (http://en.wikipedia.org/wiki/File:Barrel_cortex_pathways.jpg) 

A classical and widely used method for in vivo data recording is based on the use of 

micropipette electrodes inserted into the brain of anesthetized rats. The micropipettes are 
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used to record potential generated by a population of neurons that is evoked as a response 

to the applied stimulus. This evoked potential is mainly composed of several action 

potentials generated by flow of different ionic currents (mainly Na+ and K+) controlled by the 

ion channels present in the neuronal membrane. This extracellular potential is recorded 

using the micropipette. The use of micropipettes allows to record at different depths and to 

study signals characterized by different amplitudes.  
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CHAPTER 2: BACKGROUD STUDIES 

2.1 SMOOTHING 

In statistics and image processing, to smooth a data set is to create an approximating 

function that attempts to capture important patterns in the data, while leaving out noise or 

other fine-scale structures/rapid phenomena. 

2.1.1 DATA MODEL 

A possible solution to find the best curve to smooth a data set is to define a parametrical 

data model and to solve the related parametric estimation problem [9]. The predicted 

model output can be represented as follow: 

            

Where p = [p1,p2, …, pM]T is the parameters vector and t is the temporal variable. 

The output measured at time sampling tk is: 

                      

Where N is the number of data. 

The N measures are affected by a measure error that usually is addictive, so the zk measures 

are describable as:  

                      

Where vk  is the measure error that corrupts the k-th measure zk. 

2.1.2 MEASURE ERROR 

Obviously vk is unknown and it is treated as a random variable. In the most of cases the 

sequence { vk }k =1…N is considered as a random process (usually Gaussian) with zero average 

(there isn’t a systematic error) and independent samples. The variance of the process can be 

constant (case 1) or not (case 2). 
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Often it is convenient to value the measure error entity in relation to data through the 

variance coefficient CV. This coefficient is given by the ratio between the standard deviation 

of the measure error (σk) and the measure itself (yk). 

     
  

  
 

In many cases it’s possible to define a model for the variance, σk
2. The general model has the 

following expression: 

  
              

Some particular cases are: 

        
                          

   

  
 

             
                                     

                       
                            

 

  
 

2.1.3 PARAMETERS ESTIMATION 

The parameters estimation problem consists in the determination of an esteem (p^) of the 

parameters vector, knowing the measures (z) and the output predicted by the model,  g(t, 

p). The measured output, in the generic model, is set to be equal to the sum of the model 

output and the measure error. The model can be expressed in the following vector form. 

              

Where z = [z1, …, zN]T, y = [y1, …, yN]T, G(p) = [g(t1,p), …, g(tN,p)]T, v . 

The technique used to calculate the parameters estimation is based on the minimization of 

the prediction error, e(p). If true value of p is unknown, a generic value of p the vector 

             is used to represent the difference between the data vector and the 

model prediction for that particular value of p. It’s logical to think that if e(p) is “small” the 

value of p chosen is “good”. The goodness of the prediction error vector is evaluated by his 

norm. The Euclidean norm of a generic vector x = [x1, …, xN]T is given by: 
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While the weighted Euclidean norm is given by: 

    
        

  
 

  

 

   

 

Where Φ is a square matrix defined positive whose dimensions are NxN. 

A basic parameters esteem technique is the least squares estimation, (LS) [9]. Between the 

all possible values that can be assign to the parameters vector p, this technique chooses the 

one that minimize the Euclidean norm of the prediction error vector. The estimation of the 

parameters vector (p^) is obtained through the following formula: 

                                               

In this case the cost function, J(p), that is minimized by the least square technique, is equal 

to the Euclidean norm of e(p). 

Another useful technique to reach the best parameters esteem is the weighted least square 

estimation, (WLS), [9]. If we consider a matrix W defined positive, it is possible to express 

the weighted distance between the data and the model through the following quantity: 

           
                        

For example, if W = diag(w1,…,wN), the data-model distance, weighted through the matrix W, 

becomes: 

           
    

  
    

  

 

   

 

It is easy to notice that, if the weights are different, the same prediction error, ek, weights 

differently in the determination of the distance between data and model. The matrix W can 

be arbitrary but, if the covariance matrix of the noise, Σv, is known, it’s possible to 

demonstrate that the best choice is to consider W = Σv. 

So the estimation of the parameters vector calculated through the WLS technique is given 

by: 
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In this case the cost function is equal to the weighted Euclidean norm of e(p). 

It is importance to notice that the LS and WLS methods produce different estimations only if 

the measure error variance is not constant. If the model used is a linear parametric model, 

the measures vector can be expressed as       . In this case, G is a NxM matrix and is 

no more function of the parameters vector. M is the parameters number of the model. 

It is possible to demonstrate that in case of linear parametric model, the WLS expression, 

used to calculate the parameters esteem, becomes analytically determinable. 

           
          

    

On the contrary, if the model is not linear, the WLS problem has not a closed form solution. 

In this case some specific iterative methods are required to find the best solution. These 

techniques can be grouped in two main classes: the gradient methods and direct research 

methods. 

One of the most representative components of the first class is the Gauss-Newton method. 

The iterative algorithm on which this method is based is presented below. 

An initial value is assigned to the parameters vector (p^ (k
 
), k=0 ). 

Taylor’s formula, stopped at the first order, is used to linearize the model around p^ (k
 
). 

                     
           

   
 

           

   

  
     

   
 

 

     
   

  

Using the precedent formula the problem becomes 

 
         

    
 

             
  

 
 
 
 
 
  
        

   
 
       

          

   
 
       

   

         

   
 
       

          

   
 
        

 
 
 
 
 

 
     

   
 

 

     
   

   

  

 
  

  

Or in more compact view is given by: 
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Calculus of the esteem of Δp^ through the linear WRS formula. 

          
          

    

Calculus of the new parameters vector through the following formula: 

                

Steps 2-3-4-5 are repeated until the cost function stop falling and/or when: 

 
     

    
              

2.1.4 RESIDUAL AND WEIGHTED RESIDUAL 

Ones the estimation of the parameters vector has been detected, the residual vector is 

defined as the prediction error. 

           

The measure error is: 

         

Where p is the real unknown value of the parameters vector, so the residual vector can be 

reasonable seen as an estimation of the measure error. 

                

If the model is good it’s logic to think that the residuals are compatible with the statistic 

properties of the measure error. Hypothesizing the measure error as a random Gaussian 

process, with uncorrelated samples and variance matrix known and given by    

       
      

  . Considering     
  

  
   , if we define the weighted residuals as 

     
  

  
 , it is logical to expect that the weighted residuals are uncorrelated and with an 

amplitude between -1 and +1. 

2.1.5 ESTIMATION ERROR 

If the estimation of p depends on the measures and the measures are affected by a measure 

error, the estimated parameters vector is affected by an estimation error, so how much the 
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value of p^ is reliable? The estimation error is defined as         with p^ an aleatory 

variable, p~ is aleatory too. 

The change of the estimation error vector is measured by its covariance matrix that has a 

form                  . This matrix gives quantitative information regarding the range that 

the estimation error can have, so it gives a measure of the precision whereby p is estimated. 

The standard deviation and the confidence interval of the parameters esteem are defined as 

                  with              . Usually it’s preferable to express the estimation 

precision in relative terms using the variation coefficient. 

           
       

   
 

In case of linear model, we note that: 

                 
          

           
          

    

              
               

On the contrary, in case of non linear model: 

                     
       

2.1.6 RELATIVE WEIGHTS 

At present measure error covariance matrix has been considered known. It is always 

possible to define Σv = σ2B, so how the parameters estimation problem can be solved if the 

matrix B is known while σ2 is unknown? Considering that: 

          
  

             
           

 

  
                     

the solution defined with the “relative weights”,                          is equal 

to the solution that can be found with the “absolute weights”                
     

     . Therefore the use of the “relative weights” instead of the “absolute weights” doesn’t 

affect the estimation of the parameters vector.  

But without σ2 it is not possible to calculate the precision of the parameters estimation that 

required the knowledge of the matrix Σv . So a possible solution is given by the calculus of σ2 

after the parameters vector estimation. 
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2.1.7 CHOICE OF THE BEST MODEL 

Increasing the model order, the residuals improve while the precision of the parameters 

vector estimation worse. To find a good compromise it is possible to use the Akaike criterion 

or the Schwartz criterion. 

            

              

For different model orders the best choice is given by the model corresponding to the lowest 

value of AIC or SC calculated. 

2.2 PATTERN RECOGNITION 

Pattern recognition aims to classify data (patterns) based either on a priori knowledge or on 

statistical information extracted from the patterns. The patterns to be classified are usually 

groups of measurements or observations, defining points in an appropriate 

multidimensional space.  

A waveform recognizer can be schematized through a series of three operations, [10], [11]:  

1. Pre-processing: it is essentially a pass-band filtering operation that aims to attenuate 

the unwanted components and to valorize the useful signal. 

2. Processing: it is a set of transformations that depends on the recognition method 

used.  

3. Decision: most of the methods used in the elaboration phase generate as output a 

signal that presents maximum points in correspondence to the waveform 

occurrence instants. The decision block has to find the maximum point instants 

through a comparison with a threshold value. 

2.2.1 PRE-PROCESSING 

The aim of pre-processing is to make the recognition process easier and to increase the 

signal-to-noise ratio. Considering that the recogniser aims to find the occurrence instants of 

the waveform and not to evaluate its shape, pre-processing and the next processing step can 
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introduce modifications on the measured signal. The most immediate pre-processing 

method is filtering.  Supposing to have a-priori information about the waveform, it is 

possible to evaluate its bandwidth and so to apply a band-pass filter. All the energy outside 

that band is considered noise and therefore filtered. For example, usually there are 

interferences at 50Hz due to electric lines that can be eliminated through a notch filter, [11]. 

2.2.2 PROCESSING 

Some methods are specific for a determined waveform and they use specific information 

about the signal to calculate the occurrence instants. These methods are called heuristic 

methods. Instead other kinds of methods are more general, they suppose to have a-priori 

information about the waveform (template) they want to recognize. Depending on the 

problem the template changes but the method remains the same. Two kinds of methods 

part of the class previously presented are the contour method and the matched filter, [11]. 

Both these methods start with the template (TMP) definition. The template is a waveform 

which resumes the main characteristic of the considered waveforms. The a-priori knowledge 

about the waveform is used to define the template. Usually TMP is calculated from a training 

set, a group of N waves that are similar to those that have to be recognized. Eventually these 

signals could present additive noise. A training set is defined as follow: 

                                        

Where N is the number of waves considered and Di is the duration of the i-th wave. 

The template generation required some steps: 

1. Alignment of the time instants: the waves are translated in order to align each of 

them respect to a specific point relative to a structural characteristic well defined. 

For example in the ECG signal all the training set waves are translated in order to 

align the vertex R. 

2. Duration Adaptation: all the waves considered must have the same length. The 

easier way to reach this aim is to select the longest signal as reference and to extend 

all the others aligned signals through a zero-padding operation. Another way is to 

compress or expand the time axis of each wave with a suitable transform.  After this 

step the new signals are defined as follow: 
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3. Average operation: the template is obtained through an average operation of the 

aligned and extended waves. 

        
 

 
       

 

   

 

It is possible to obtain the variance of each TMP samples through the following 

formula: 

         
 

 
                 

 
 

 

   

 

2.2.2.1 CONTOUR METHOD 

The contour method uses the template and its variance to generate an upper and a lower 

bound, [11]. If the samples of the measured signal, including in an interval whose length is 

equal to the template length, are all comprise between the two bounds then it is recognized 

the presence of a waveform in the interval. The occurrence instant corresponds to the time 

position of the first sample included in the interval. 

The upper and lower bounds are defined below. 

                          
   

    

                           
   

    

Where a and b are constants. The way to fix these values will be discussed later. 

For each instant n, D values of the measured signal are considered: 

                       

These samples contain the waveform only if: 
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A visual application of this method is reported below. 

 

 

Figure 4.  In the first figure is reported the template and its bounds superimposed at the noisy 

measured signal. It’s impossible to recognize directly the presences of the waveforms inside the 

measured signal. In the second figure is presented the real measured signal not corrupted by 

the noise.  

2.2.2.2 MATCHED FILTER 

In telecommunications, a matched filter (originally known as a North filter, [12]) is obtained 

by correlating a known signal, or template, with an unknown signal to detect the presence of 

the template in the unknown signal. This is equivalent to convolving the unknown signal 

with a conjugated time-reversed version of the template (cross-correlation).  

The matched filter is the optimal linear filter for maximizing the signal to noise ratio (SNR) in 

the presence of additive stochastic noise. Matched filters are commonly used in radar, in 

which a known signal is sent out, and the reflected signal is examined for common elements 

of the out-going signal. The intuition behind the matched filter relies on correlating the 

received signal (a vector) with a filter (another vector) that is parallel with the signal, 

maximizing the inner product.  

Inside the generated output signal there are peaks. Each of them can correspond to a 

waveform occurrence instance but only through an appropriate threshold operation it is 

possible to select the true peaks that determine the presence of a waveform inside the 

measured signal. The matched filter consists in a moving average filter (MA) of order M with 

coefficients bj (j=1,…,M). The output signal is generated through the following formula. 
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Where M is the filter order, bj is the j-th filter coefficient and x(n) is the input signal. 

The value of M is equal to the D-1 where D is the length of the template.  In this way the 

output signal, y(n), can contain information about the whole waveform when it is present in 

the sequence x(n), …, x(n-D+1). The coefficients of the filter are calculated in order to 

maximize the difference between the filter output values when in input there is the 

waveform (case 1) compared to the situation where the input signal doesn’t present in any 

waveform sample (case 2). 

Case 1: 

                 

                     
 

                   

 

Case 2: 

         

             
 

             

 

It is possible to demonstrate that the filter coefficients that satisfy the condition presented 

above are equal to the samples of the waveforms average, [11]. As esteem of the waveforms 

average is used the template. 

         
           

 
         

 

The filter obtained in this way is known as “matched filter” due to its coefficients are aligned 

with the waveform samples. The coefficients of the filter, the template and the input signal 

can be represented by the following vectors. 
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The output represented by the following expression. 

                 

The last equation establishes that the matched filter output corresponds to the cross-

correlation between the observation vector, xn, and the TMP vector that stores the template 

samples. 

To recognize the waveform occurrence instants the maximum point of the output signal 

have to be detected through a threshold operation. The waveform recognition process 

through the matched filter can be resumed by the following steps: 

 Through a training-set, the template is generated and stored. 

 For each new signal sample, x(n), an observation window, xn, long M samples, is 

built. 

 To obtaining the n-th sample of the output signal, y(n), the cross-correlation 

between TMP and xn, is calculated. 

 y(n) is compared to a threshold: if y(n) is bigger than the threshold value, a 

waveform is recognized inside the vector xn. 

2.2.3 DECISION 

In both the methods presented it is necessary a decision block. In the contour method it is 

necessary to fix the best parameters value (a, b) while in the matched filter to find the most 

correct threshold value. To solve these problem it is necessary a simulated problem. A series 

of waveforms, whose positions are well known, with additive noise is used to create a 

simulated problem. Through this signal it is possible to valuate, changing the parameters or 

the threshold value (depending on the method used), the number of different types of 

event-response that can occur.  

A sample can contain signal and noise or only noise, so the possible events are: (s+r), r.  

The possible responses can be: yes (Y), a waveform is recognized, or not (No) there is only 

noise. So there are four different kinds of event-response, a sample can be classified as:  

1. True positive, TP, (s+r)/Y.  
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2. False positive, FP, r/Y. 

3. True negative, TN, r/N. 

4. False negative, FN, (s+r)/N . 

Knowing the waveforms occurrence instants of the build signal, it is possible to create a 

contingency table. 

 Y N 

s+r TP FN 

r FP TN 

Table I.  Contingency table for decision of threshold in the event response. 

Through the values stored in the table, interesting parameters can be calculated. 

Sensibility: it is the probability to say yes when there is the waveform. If the threshold 

decreases this parameter grows,             
  

       
 . 

Specificity: it is the probability to say no when there isn’t the waveform. If the threshold 

decreases this parameter decreases,              
  

       
 . 

Correct assignment probability is given by     
       

    
 ; with Ntot is the total number of 

samples. 

Usually, the best threshold or parameters values are the ones with maximum last 

parameter. 

2.3 CLUSTERING 

2.3.1 INTRODUCTION TO CLUSTERING 

The clustering or cluster analysis (term introduced by Robert Tryion in 1939), is a set of 

techniques of multivariate analysis of data which aim is to select and group elements that 

are homogeneous inside a data set.  
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2.3.2 CLUSTERING METHODS 

Clustering algorithms may be classified as listed below, [15]: 

1. Exclusive Clustering 

2. Overlapping Clustering 

3. Hierarchical Clustering 

4. Probabilistic Clustering  

In the first case data are grouped in an exclusive way, so that if a certain datum belongs to a 

definite cluster then it could not be included in another cluster. On the contrary the second 

type, the overlapping clustering, uses fuzzy sets to cluster data, so that each point may 

belong to two or more clusters with different degrees of membership. In this case, data will 

be associated to an appropriate membership value. Hierarchical clustering algorithm find 

successive clusters using previously established clusters. These algorithms can be either 

agglomerative ("bottom-up") or divisive ("top-down"). The first type starts considering each 

element as a cluster, then, at each step, the algorithm merges the two nearest clusters. The 

algorithm stops when a certain number of clusters are reached or when the minimum 

distance between the clusters exceed a particular value. The second one starts considering 

all the elements part of only one cluster, then the algorithm proceeds, step by step, dividing 

the initial cluster in an increasing number of dimensionally smaller clusters. The criterion 

that governs the divisions aims to obtain homogeneous data sets. The algorithm proceeds 

until is achieved the target number of clusters. Finally, the last kind of clustering uses a 

completely probabilistic approach. 

2.3.3 DISTANCE MEASURES 

An important step in any clustering is to select a distance measure, which will determine 

how the similarity of two elements is calculated. This will influence the shape of the clusters, 

as some elements may be close to one another according to one distance and farther away 

according to another.  

For example, in a 2-dimensional space, the distance between the point (x = 1, y = 0) and the 

origin (x = 0, y = 0) is always 1 according to the usual norms, but the distance between the 

point (x = 1, y = 1) and the origin can be 2, √2 or 1 if you take respectively the 1-norm, 2-

norm or infinity-norm distance. 

http://en.wikipedia.org/wiki/Distance
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Common distance functions are the following. 

2.3.3.1 EUCLIDIAN DISTANCE 

The Euclidian distance or 2-norm distance is the "ordinary" distance between two points 

that one would measure with a ruler, and is given by the Pythagorean formula, [13]. By using 

this formula as distance, Euclidean space (or even any inner product space) becomes a 

metric space. The associated norm is called the Euclidian norm. The Euclidean distance 

between points p and q is the length of the line segment        . 

In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean 

n-space, then the distance from p to q is given by: 

                 
         

                        
 

 

   

 

The Euclidean norm measures the distance of a point to the origin of Euclidean space: 

        
    

      
        

Where the last equation involves the dot product. This is the length of p, when regarded as a 

Euclidian vector from the origin. The distance itself is given by 

                                         

2.3.3.2 MANHATTAN DISTANCE 

The taxicab distance, between two vectors p and q in an n-dimensional real vector space 

with fixed Cartesian coordinate system, is the sum of the lengths of the projections of the 

line segment between the points onto the coordinate axes, [14]. More formally, 

                         

 

   

 

Where p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are vectors. 

For example, in the plane, the taxicab distance between (p1, p2) and (q1, q2) is | p1 - q1|+| p2 – 

q2|. 
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In the following figure are shown the differences between Manhattan and Euclidean 

distance. The red, blue, and yellow lines have the same length (12) in both Euclidean and 

taxicab geometry. In Euclidean geometry, the green line has length 6×√2 ≈ 8.48, and is the 

unique shortest path. In taxicab geometry, the green line's length is still 12, making it no 

shorter than any other path shown. 

 

Figure 5.  Taxicab geometry versus Euclidean distance. 

2.3.3.3 MINKOWSKI DISTANCE 

The Minkowski distance is a metric on Euclidean space which can be considered as a 

generalization of both the Euclidean distance and the Manhattan distance. The distance of 

order p between two points p = (p1, p2,..., pn) and q = (q1, q2,..., qn) is given by: 

                 
 

 

   

 

   

 

Minkowski distance is typically used with p being 1 or 2. The latter is the Euclidean distance, 

while the former is sometimes known as the Manhattan distance. In the limiting case of p 

reaching infinity we obtain the Chebyshev distance: 

   
   

         
 

 

   

 

   

     
     

          

In the following figure is shown how the unit circle shape changes with various values of p. 

 

Figure 6.  Unit circle shapes corresponding to different values of p. 



Page 24 of 68 
 

In general if the components of the data instance vectors are all in the same physical units 

then it is possible that the simple Euclidean distance metric is sufficient to successfully group 

similar data instances. However, even in this case the Euclidean distance can sometimes be 

misleading. It is often the case that the components of the data feature vectors are not 

immediately comparable. It can be that the components are not continuous variables, like 

length, but nominal categories, such as the days of the week. In these cases, domain 

knowledge must be used to formulate an appropriate measure [15]. 

2.3.4 CORRELATION MEASURE 

Another way to determine if two elements can be part of the same cluster consists in the 

evaluation of their correlation instead of their distance. A type of correlation often used in 

cluster analysis is the Pearson’s correlation, [16]. In statistics, the Pearson product-moment 

correlation coefficient (sometimes referred to as the PMCC, and typically denoted by r) is a 

measure of the correlation (linear dependence) between two variables X and Y, giving a 

value between +1 and −1 inclusive. It is widely used in the sciences as a measure of the 

strength of linear dependence between two variables. It was developed by Karl Pearson 

from a similar but slightly different idea introduced by Francis Galton in the 1880s. The 

correlation coefficient is sometimes called "Pearson's r". Pearson's correlation coefficient 

between two variables is defined as the covariance of the two variables divided by the 

product of their standard deviations: 

     
        

    
  

                 

    
 

The above formula defines the population correlation coefficient, commonly represented by 

the Greek letter ρ. Substituting estimates of the covariances and variances based on a 

sample gives the sample correlation coefficient, commonly denoted r: 

      
                 

   

            
              

   

 

An equivalent expression gives the correlation coefficient as the mean of the products of the 

standard scores. Based on a sample of paired data (Xi, Yi), the sample Pearson correlation 

coefficient is: 
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where  
      

  
 ,    and    are the standard score, the sample, and the sample standard 

deviation. 

The absolute value of both the sample and population Pearson correlation coefficients are 

less than or equal to 1. Correlations equal to 1 or -1 correspond to data points lying exactly 

on a line (in the case of the sample correlation), or to a bivariate distribution entirely 

supported on a line (in the case of the population correlation). The Pearson correlation 

coefficient is symmetric: corr(X,Y) = corr(Y,X).  

A key mathematical property of the Pearson correlation coefficient is that it is invariant to 

changes in location and scale. That is, we may transform X to a + bX and transform Y to 

c + dY, where a, b, c, and d are constants, without changing the correlation coefficient (this 

fact holds for both the population and sample Pearson correlation coefficients).  

The Pearson correlation can be expressed in terms of uncentered moments. Since μX = E(X),                          

σX
2 = E[(X − E(X))2] = E(X2) − E2(X) and likewise for Y, and since 

                                    

we may also write 

     
               

             
 
             

 
 

Alternative formulae for the sample Pearson correlation coefficient are also available: 

      
     

 
         

         
 

             

     
       

      
       

 

  

The above formula conveniently suggests a single-pass algorithm for calculating sample 

correlations, but, depending on the numbers involved, it can sometimes be numerically 

unstable. Another expression used to define the uncentered correlation is the following: 
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The correlation coefficient ranges from −1 to 1. A value of 1 implies that a linear equation 

describes the relationship between X and Y perfectly, with all data points lying on a line for 

which Y increases as X increases. A value of −1 implies that all data points lie on a line for 

which Y decreases as X increases. A value of 0 implies that there is no linear correlation 

between the variables. 

More generally, note that (Xi − X)(Yi − Y) is positive if and only if Xi and Yi lie on the same side 

of their respective means. Thus the correlation coefficient is positive if Xi and Yi tend to be 

simultaneously greater than, or simultaneously less than, their respective means. The 

correlation coefficient is negative if Xi and Yi tend to lie on opposite sides of their respective 

means. 

2.3.5 CLUSTERING ALGORITHMS USED 

In this chapter we propose three of the most used clustering algorithms. The program 

implemented for single sweep analysis used each of them.  

The algorithms are:  

 K-means, 

 Hierarchical clustering, 

 Self organizing maps (SOM). 

2.3.5.1 K-MEANS 

K-means (MacQueen, 1967, [17]) is one of the simplest unsupervised learning algorithms 

that solve the well known clustering problem. The procedure follows a simple and easy way 

to classify a given data set through a certain number of clusters (assume k clusters) fixed a 

priori.  

The main idea is to define k centroids, one for each cluster. These centroids should be placed 

in a cunning way because of different location causes different result. So, the better choice is 

to place them as much as possible far away from each other. The next step is to take each 

point belonging to a given data set and associate it to the nearest centroid. When no point is 
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pending, the first step is completed and an early groupage is done. At this point we need to 

re-calculate k new centroids as barycenters of the clusters resulting from the previous step. 

After we have these k new centroids, a new binding has to be done between the same data 

set points and the nearest new centroid. A loop has been generated. As a result of this loop 

we may notice that the k centroids change their location step by step until no more changes 

are done. In other words centroids do not move any more. 

Finally, this algorithm aims at minimizing an objective function. For this type of clustering 

algorithm we propose three different type of objective function that the program user can 

choose giving a specific data input, [18], [19]. 

The first objective function aims to minimize the mean of the summation of the Euclidean 

distances between the centroid of each cluster and the elements that are part of that 

cluster. 

   
 

 
      

   
    

 

       

 

   

 

Where N is the total number of elements, K is the number of cluster chosen by the program 

user, cr is the r-th cluster center and xi
(r) is the i-th element part of the r-th cluster. 

The second objective function aims to minimize the summation of the variances of all K 

cluster. 

      
 

 

   

 

      
 

  
    

      

 

  
   

            
 

      

    
 

Where J is the summation of the variance in the K clusters, mr is the mean of the cluster cr 

while sr
2 is the variance of the cluster cr. 

The last objective function proposed aims to minimize the ratio between the variance inside 

cluster and among clusters. 
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Where mr is the mean of the cluster cr, sr
2 is the variance of the cluster cr and mtot is the 

mean of the clusters centroids.  

2.3.5.2 SOM 

A self-organizing map (SOM) or self-organizing feature map (SOFM) is a type of artificial 

neural networks that is trained using unsupervised learning to produce a low-dimensional 

(typically two-dimensional), discretized representation of the input space of the training 

samples, called a map.  

Like most artificial neural networks, SOMs operate in two modes: training and mapping.  

Training builds the map using input examples. Mapping automatically classifies a new input 

vector. A self-organizing map consists of components called nodes or neurons. Associated 

with each node is a weight vector of the same dimension as the input data vectors and a 

position in the map space. The usual arrangement of nodes is a regular spacing in a 

hexagonal or rectangular grid. The self-organizing map describes a mapping from a higher 

dimensional input space to a lower dimensional map space. The procedure for placing a 

vector from data space onto the map is to find the node with the closest weight vector to 

the vector taken from data space and to assign the map coordinates of this node to our 

vector. 

It has been shown that while self-organizing maps with a large number of nodes rearrange 

data in a way that is fundamentally topological in character, small self-organizing maps 

behave in a way that is similar to K-means. SOMs work somewhat like K-means clustering 

but are a little richer. With K-Means, you choose the number of clusters to fit the data into. 

For a SOM you choose the shape and size of a network of clusters to fit the data into.  

The training utilizes competitive learning. When a training example is fed to the network, its 

Euclidean distance to all weight vectors is computed. The neuron with weight vector most 

similar to the input is called the best matching unit (BMU). The weights of the BMU and 

neurons close to it in the SOM lattice are adjusted towards the input vector. The magnitude 

of the change decreases with time and with distance from the BMU. The update formula for 

a neuron with weight vector Wv(t) is the following: 
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Where α(t) is a monotonically decreasing learning coefficient, D(t) is the input vector and 

θ(v,t) is the neighborhood function. This function depends on the lattice distance between 

the BMU and neuron v.  

In the simplest form it is one for all neurons close enough to BMU and zero for others, but a 

gaussian function is a common choice, too. Regardless of the functional form, the 

neighborhood function shrinks with time [21]. At the beginning when the neighborhood is 

broad, the self-organizing takes place on the global scale. When the neighborhood has 

shrunk to just a couple of neurons the weights are converging to local estimates. 

This process is repeated for each input vector for a (usually large) number of cycles. The 

network winds up associating output nodes with groups or patterns in the input data set. 

During mapping, there will be one single winning neuron: the neuron whose weight vector 

lies closest to the input vector. This can be simply determined by calculating the Euclidean 

distance between input vector and weight vector. 

 

Figure 7.  Examples of one and two dimensional rectangular layouts, [19] 

 

Figure 8.  Examples of one step neighborhood of the neuron 3, [19] 

2.3.5.3 HIERARCHICAL CLUSTERING 

Algorithms for hierarchical clustering are generally either agglomerative, in which one starts 

at the leaves and successively merges clusters together; or divisive, in which one starts at 

the root and recursively splits the clusters. Any valid metric may be used as a measure of 

similarity between pairs of observations. The choice of which clusters to merge or split is 
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determined by a linkage criterion, which is a function of the pairwise distances between 

observations, [19], [22]. 

In single-linkage clustering (also called the connectedness or minimum method) we consider 

the distance between one cluster and another cluster to be equal to the shortest distance 

from any member of one cluster to any member of the other cluster. If the data consist of 

similarities, we consider the similarity between one cluster and another cluster to be equal 

to the greatest similarity from any member of one cluster to any member of the other 

cluster. 

In complete-linkage clustering (also called the diameter or maximum method) we consider 

the distance between one cluster and another cluster to be equal to the greatest distance 

from any member of one cluster to any member of the other cluster. 

In average-linkage clustering, we consider the distance between one cluster and another 

cluster to be equal to the average distance from any member of one cluster to any member 

of the other cluster. 

So if Cnew is the new cluster just created and X is a generic element, the three methods 

presented above to update the distances matrix are defined as follow: 

Nearest Neighbor or Single Linkage (SL): 

                               

Farthest Neighbor or Complete Linkage (CL): 

                               

Average Linkage (AL) or Unweighted Pair Group Method Average (UPGMA): 

                                

2.3.6 NUMBER OF CLUSTERS IN A DATA SET 

The number of cluster in a data set is a quantity often labeled K, is fundamental to the 

problem of data clustering, and is a distinct issue from the process of actually solving the 

clustering problem. In most cases, K must be chosen somehow and specified as an input 

parameter to clustering algorithms, with the exception of methods such as correlation 
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clustering, which are able to determine the optimal number of clusters during the course of 

the algorithm.  

The correct choice of K is often ambiguous, with interpretations depending on the shape and 

scale of the distribution of points in a data set and the desired clustering resolution of the 

user. In addition, increasing K without penalty will always reduce the amount of error in the 

resulting clustering, to the extreme case of zero error if each data point is considered its own 

cluster (i.e., when K equals the number of data points, N). Intuitively then, the optimal 

choice of K will strike a balance between maximum compression of the data using a single 

cluster, and maximum accuracy by assigning each data point to its own cluster.  

If an appropriate value of K is not apparent from a-prior knowledge of the properties of the 

data set, it must be chosen somehow. There are several categories of methods for making 

this decision. One simple rule of thumb sets the number to: 

   
 

 
 
   

 

Where N is the number of objects (data points), [23]. 

Another method looks at the percentage of variance explained as a function of the number 

of clusters. You should choose a number of clusters so that adding another cluster doesn’t 

give much better modeling of the data. More precisely, if you graph the percentage of 

variance explained by the clusters against the number of clusters, the first clusters will add 

much information (explain a lot of variance), but at some point the marginal gain will drop, 

giving an angle in the graph. The clusters numbers are chosen at this point, hence the 

“elbow criterion”. This “elbow” cannot always be unambiguously identified [24].  

Percentage of variance explained is the ratio of the between-group variance to the total 

variance. A slight variation of this method plots the curvature of the within group variance 

[25]. 
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Figure 9.  Explained variance, the “elbow” is indicated by the red circle. The number of clusters chosen   

should be four. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 SIGNAL ACQUISITION 

3.1.1 SIGNAL ACQUISITION SETUP 

The signals analyzed in this work are obtained from the somatosensory cortex (S1) of the rat 

using micropipettes. The rats used are P30-P40 male Wistar rats (Charles River International 

Inc.). The electrophysiological experiment is realized using borosilicate pipette (0.6-1 MΩ 

resistance), filled with a standard Krebs’s solution (in mM: NaCl 120, KCl 1.99, NaHCO3 25.56, 

KH2PO4 136.09, CaCl2 2, MgSO4 1.2, glucose 11). 

The Figure 10 shows the recording setup. The micropipette is fixed to a micromanipulator at 

45° tilted to the vertical axis of the manipulator, thus being inserted perpendicularly to S1 

cortex surface. The micromanipulator is used to reach the brain area of interest as it allows 

precise movements along the three axes. A chlorinated silver electrode, placed within the 

pipette, is used as recording electrode. Two additional chlorinated electrodes are placed in 

the bath solution and are both used as reference electrodes due to the differential recording 

mode of the amplifier. The electrodes are connected to a pre-amplifier (SEC-EXT) which in 

turn is connected to the amplifier (SEC-10L, npi electronic GmbH) used for recording. 

 

Figure 10.  Signal acquisition setup. 
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The mechanical stimulation is made by a custom-made speaker which allows whisker 

movements through a small capillary where the selected whisker is inserted. The stimulus is 

obtained by applying a square pulse, with 2 V amplitude and 50 ms duration, generated by 

the AGILENT waveform generator (Agilent 33250A 80 MHz, Agilent Technologies).  

Signals are acquired by computer using the open source software “WinWCP” (Version: 4.1.0) 

developed by the SIPBS, University of Strathclyde, UK (http://spider.science.strath.ac.uk/ 

sipbs/software_ses.htm). 

3.1.2 THE EXPERIMENT 

To record signals from the brain, neurosurgery is done to open the skull of the rat and to 

expose the brain area of interest. Rats are anesthetized with a mixture of two different 

anesthetics: Xylazine (1.4 g/100 g weight) for inducing muscle relaxation, and Tiletamine 

that works as a painkiller (2 mg/100 g weight).  The anesthesia level is monitored throughout 

the experiment by testing eye and hind-limb reflexes, respiration and checking the absence 

of whiskers spontaneous movements. Whenever necessary, additional doses of Tiletamine 

(0.5 mg/100 g weight) and Xylazine (0.5 mg/100 g weight) are provided. 

During both the surgery and recording section, animals are positioned on a common 

stereotaxic apparatus under a stereomicroscope. The head of the rat is fixed by means of 

two ear-bars and a teeth-bar. While the rats are anesthetized, other parameters are 

constantly monitored: the heart beat is controlled by ECG recorded using a Bio-amplifier 

(DAM, WPI instr.) with two measuring electrodes placed on the forelimbs and the ground 

electrode on a hindlimb. The body temperature is checked with a temperature controller 

(ATC 1000, WPI instr.) that uses a combination of a heating pad and an anal probe to 

establish a feedback loop to keep the rat warm depending on the actual body temperature 

measured by the probe. The neurosurgery is performed to expose the target area of the 

brain for recording. The head’s skin is cut starting from the imaginary line that connects the 

eyes until the imaginary line that connects the ears. To remove the connective tissue 

between the skin and the skull, a bone scraper is used.  

The next step before reaching the brain is the skull opening in correspondence of the right 

S1 somatosensory cortex and the removal of the meninges. The stereomicroscope is used to 

recognize precisely the S1 area by means of a set of coordinates in the ocular lens. These 

coordinates are referred to the bregma (anatomical point of the skull at which the coronal 

suture is intersected perpendicularly by the sagittal suture).  
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During the surgery and recording session, the brain is bathed by the standard Kreb’s 

solution, constantly oxygenated and warmed at 37 °C. 

Each whisker, trimmed at about 10 mm from the mystacial pad, is individually inserted into 

the speaker tube, and the corresponding response is checked at 750 μm depth (layer IV) in 

order to find the most responsive whisker for the selected recording point in the cortex. The 

“principal whisker” is then chosen for the recording and evoked LFPs are recorded from all 

cortical layers with 90 μm pitch. 

In each experiment section, from the total S1 depth, neuronal signal are recorded with a 20 

kHz sample rate. For each depth, 100 sweeps of 500 ms duration are recorded, with 500 ms 

delay between each sweep and with a 150 ms delay before the stimulus. Figure 11 shows 

the rat during a signal acquisition experiment. 

 

Figure 11.  Signal recording from the S1 cortex using a micropipette with reference electrodes in the 

bath. 

3.2 SINGLE SWEEP ANALYSIS 

3.2.1 FLOWCHART OF THE METHOD 

(The words written in bold characters are variable names used inside the program.) 

3.2.1.1 CALLERFUNCTION 

The following flowchart shows the control flow of the CallerFunction() function. 
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3.2.1.2 FUNC_ANALYSIS_SINGLE_SWEEP 

The following flowchart shows the control flow of the Funz_Analysis_Single_Sweep() 

function. 

 
 

Start 

Calculate sampling time (Ts) and 
accept the Stimulus_onset 

Calculate Stimulus_onset position through the function closer_point() and save it in posS 

Calculate the average signal (z) 

Set filter parameters: cutoff_freq = 1000 Hz and order = 5 

For each single sweep 

Call the function PB_butter_worth_filter() 

Save the filtered single sweep in Filtered_Matrix 

 

 

 

 

 

 

 

 

next 

A 

callerFuntion() 

Load the single sweeps from Signal Files (Signal_Matrix) 

Call the funciton  func_Analysis_Single_Sweep() 
 

Save and display the results 

Stop 
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A  

For each signal in Filtered _Matrix 

Shift the Filtered _Matrix signal in order to bring to zero 

the value corresponding to the Stimulus_onset position 

Save the new shifted signal in TF_Matrix 

next signal 

Create the vector Signl_BIG through the 

function func_gen_sgn_big_filt_posS_0() 

For each TF_Matrix signal 

Save in a temporary vector the part of TF_Matrix signal between the 

first sample and the one corresponding to the (posS-1) position 

 
Calculate the temporary vector variance and save it in variance vector 

Calculate the position of the first minimum peak after the stimulus onset 
Save such position in minimum_pos_matrix vector 

 

next 

A 

Calculate the TF_Matrix variance vector and save it in variance2 

Calculate the position of the first maximum peak placed after the first 

minimum peak. Save such position in first_max_points vector 

Calculate the response end position and save it in ending_points vector 

Calculate the response onset position and save it in starting_points vector 
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A 

For each TF_Matrix signal 

Save in sgn_tmp the part of the signal between the response onset and the 
response end. Insert the sgn_tmp in TMP_matrix starting from a specific 

position. This position is determined in order to obtain, at the cycle end, the 
alignments of all first minimum peaks positions 

Using the values saved in starting_points and ending_points vectors, 
calculate the template duration. Save the result in duration_TMP 

Initialize the matrix TMP_matrix (number of sweeps × 
duration_TMP) to zero 

next 

Calculate the TF_Matrix average signal and save the result in avg_TMP 

Downsample the vectors avg_TMP and varianze2 by ten and save the results 
respectively in z_sc and varianze_sc 

For f := 4 : 2 : 30 

Calculate the positions of the minimum and maximum points of z_sc.  
A point is considered maximum/minimum if it’s preceded and followed by f number of 

points whose values are all smaller/bigger than the considered point value 

Use the positions and the corresponding min/max points values previously 
found to initialize the M and A parameters vectors of the following formula 

      
  

     

 

   

 
 

 
 
 
    

  
 
 

    
  

     

 

 

Set B [1 .. M] = 200 

A 
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A 

Fit nonlinear least square with the function lsqnonlin() 

Save in M, A and B vectors the new parameters values calculated by the function 

Using the previous formula and the new parameters vectors, create the smoothed signal 
and save it in y_pred_long 

next 

Calculate the average signal of all y_pred_long signals  and save the 
result in y_pred_avg_long. 

Set the variable method_to_use equal to 1 or 2 according to the chosen 
waveform recognition method. 

Is 
method_to_use = 1 Y 

 

N 

 Use Mached Filter method. Use Contourn method. 

Save the result in single_sweep_recognized vector. 

Display the results in 

figure 1 and 2. 

Set the clustering_type variable equal to 1, 2 or 3 according 
to the chosen clustering method. 

A 

Save in the matrix TF_Matrix_sgn_selected the TF_Matrix rows 
corresponding to the single sweeps recognized. 
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3.2.2 ALGORITHM OF THE METHOD 

3.2.2.1 FUNCTION: func_gen_sgn_big_filt_posS_0 () 

Input: TF_Matrix. 

Output: Segnale_BIG_filtrato_posS_0. 

Method: 

- Save TF_Matrix dimentions in the variables nr and nc. 

- Initialize Segnale_BIG_filtrato_posS_0 vector, whose length is given by the product of nr and nc. 

- Set pos_iniziale = 1. 

- For  i = 1 : nr 

- Set pos_finale = pos_iniziale + nc – 1. 

- In Segnale_BIG_filtrato_posS_0, starting from pos_iniziale until pos_finale, save the i-th row 

of TF_Matrix. 

- Set pos_iniziale = pos_finale + 1. 

- End. 

- Return Segnale_BIG_filtrato_posS_0. 

 

 

 

Is clustering_type equal 
to 1/2/3 

A 

Save the results in res1, res2, res3 and res4 vectors. 

Display the results. 

Stop 

Call the function 
func_clustering_kmeans() 

Call the function 
func_clustering_som() 

Call the function 
func_clustering_agglomerative() 

1 

 
2 

 

3 
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3.2.2.2 HOW TO CALCULATE THE VECTOR minimum_pos_matrix  

Input: TF_Matrix. 

Output: minimum_pos_matrix. 

Method: 

- Find the sample position closer to the time instant = 0.2 ms through the closer_point() function; save 

the result in pos_02. 

- Initialize the minimum_pos_matrix vector. 

- For  a = 1 : number of sweeps 

- Save in sgn_tmp the samples corresponding to the positions between posS and pos_02. 

- Find, in sgn_tmp, the minimum point position. Add (posS-1) to such value and save the result 

in a-th position of minimum_pos_matrix vector. 

- End. 

3.2.2.3 FUNCTION: closer_point () 

Input: a vector, value. 

Output: closer_pos. 

Method: 

- Set N equal to the vector length. 

- Initialize the diff vector. 

- For a = 1 : N 

- Save in the a-th position of diff the absolute value of the difference between the a-th sample 

of vector and the value variable. 

- End. 

- Find the position of the minimum sample stored in the diff vector and save it in the closer_point 

variable. 

- Return closer_point. 

3.2.2.4 HOW TO CALCULATE THE VECTORS first_max_points, ending_points  

Input: TF_Matrix, minimum_pos_matrix. 

Output: first_max_points, ending_points. 

Method: 

- Initialize the first_max_points and the ending_points vectors. 

- For  c = 1 : number of sweeps 

- Initialize the vet_pos_ok matrix. 

- Save in sgn_tmp the samples corresponding to the positions between the c-th 

minimum_pos_matrix value and the final sample. 

- Set p = 1. 

- For  a = 701 : ( length(sgn_tmp)  -  700) 

- If the a-th sample value of sgn_tmp vector is preceded and followed by 

700 points whose values are smaller than such value, save:  
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- the a position value, in the 1
st 

column of the p-th row of 

vet_pos_ok matrix,   

- the value 2 in the 2
nd 

column,  

- the a-th value of sgn_tmp, in the 3
rd

 column. 

- p = p+1. 

- else, if  the a-th sample of sgn_tmp vector is preceded and followed by 

700 points  whose values are bigger than such sample, save:  

- the a position value, in the 1
st 

column of the p-th row of 

vet_pos_ok matrix,   

- the value 1 in the 2
nd 

column,  

- the a-th value of sgn_tmp, in the 3
rd

 column. 

- p = p+1. 

- End. 

- End. 

- Call elimina_punti_specifici() function and save the results in vett_pos_ok_max and 

in vet_pos_ok_min vectors. 

- Save in the c-th first_max_points position the first value stored in vet_pos_ok_max. 

- Create the matrix vett_MinMax_ord.  

Save in the 1
st 

column the positions of the ascending ordered maximum and 

minimum points. 

Save in the 2
nd 

column the value 1 or 2, which defines if such point corresponds, 

respectively, to a minimum or a maximum. 

- Save in the m variable the number of rows of vet_MinMax_ord. Set m = 5, If the 

number of rows is bigger than 4. 

- Save the m value in the c-th position of num_MinMax_point vector. 

- Call func_ricerca_fine_risposta() function and save the results in 

pos_best_next_to_zero. 

- Save in the c-th position of ending_points vector: 

pos_best_next_to_zero + minimum_pos_matrix(c) - 1. 

- End 

- Add to the first_max_points vector the minimum_pos_matrix vector to obtain the correct maximum 

positions. 

3.2.2.5 FUNCTION elimina_punti_specifici() 

Input: vett_pos_ok. 

Output: pos_ok_max, pos_ok_min. 

Method: 

- In order to obtain a sequence of maximum and minimum points, remove, if necessary, the unwanted 

rows of vett_pos_ok. The sequence must start with a maximum point. 

- If there is a sequence of minimum points, remove all the rows except the row corresponding 

to the smallest minimum point. 
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- If there is a sequence of maximum points, remove all the rows except the row corresponding 

to the biggest maximum point. 

- Return in output: the maximum points positions selected, stored in pos_ok_max ,  and the minimum 

points positions selected, stored in pos_ok_min. 

3.2.2.6 FUNCTION func_ricerca_fine_risposta() 

Input: sgn_tmp, vett_MinMax_ord, m. 

Output: pos_best_next_to_zero. 

Method:  

- Save in pos_iniziale the value corresponding to the m-th row, 1
st

 column of vett_MinMax_ord matrix. 

- Extract the part of sgn_tmp vector between (pos_iniziale + 1) and the last sample. Save the result in 

segnale_tagliato. 

- If segnale_tagliato first element is a negative value: 

- if sgn_tagliato crosses the zero line (doesn’t remain negative). 

- Find the position of the first element equal or bigger than zero.  

- Add to pos_iniziale the position found and save the result in the variable 

pos_best_next_to_zero. 

- Else 

- Find the position of the element whose value is closer to zero.  

- Add to pos_iniziale the position found and save the result in the variable 

pos_best_next_to_zero. 

- Else 

- If sgn_tagliato crosses the zero line (doesn’t remain positive). 

- Find the position of the first element equal or smaller than zero.  

- Add to pos_iniziale the position found and save the result in the variable 

pos_best_next_to_zero. 

- Else 

- Find the position of the element whose value is closer to zero.  

- Add to pos_iniziale the position found and save the result in the variable 

pos_best_next_to_zero. 

- End 

- End 

- Return pos_best_next_to_zero. 

3.2.2.7 HOW CALCULATE THE VECTOR starting_points  

Input: TF_Matrix, minimum_pos_matrix. 

Output: starting_points. 

Method: 

- Initialize the starting_points vector. 

- For  a = 1 : number of sweeps 
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- Save in sgn_tmp the samples corresponding to the positions between posS and the a-th value 

saved in minimum_pos_matrix. 

- Find the position of sgn_tmp maximum value and save it in pos_max_tmp. 

- Set pos_min_tmp equal to one. 

- If pos_max_tmp is not equal to one 

- Save in sgn_tmp2 the sgn_tmp samples corresponding to the positions between 1 

and pos_max_tmp. 

- Find the position of sgn_tmp2 minimum value and save it in pos_min_tmp. 

- End. 

- Save in the a-th position of starting_points: pos_min_tmp + posS - 1. 

- End.  

3.2.2.8 CALCULATING THE single_sweep_recognized VECTOR WITH matched filter  

Input: y_pred_avg_long, Segnale_BIG. 

Output: single_sweep_recognized. 

Method: 

- Save the transpose of the vector y_pred_avg_long and of the vector Segnale_BIG respectively in 

TMP_fit and sgn_tmp. 

- Flip the columns of TMP_fit in the left/right direction (function fliplr()). 

- Set N_TMP equal to the TMP_fit length. 

- For  a = N_TMP : length(sgn_tmp) 

- Save in x_tmp the sgn_tmp samples corresponding to the positions between 

(a - N_TMP + 1) and a. 

- Flip the rows of x_tmp in the up/down direction (function flipud()). 

- Multiply the vectors TMP_fit and x_tmp. Save the result in the a-th position of y_matched. 

- End. 

- Set N_BIG equal to y_matched length.  

- Set f = 100 and k = 1. 

- For  a = ( f + 1 ) : ( N_BIG – f ) 

- If the a-th sample value of y_matched is preceded and followed by f points whose values are 

smaller than such value. 

- Save in the k-th column of vett_pos_massimi the value of a. 

- Set k = k+1. 

- End. 

- End. 

- Save in the vector pos_sf the sequence from nc until nr*nc with step equal to nc, where nc and nr are, 

respectively, the single sweep length and the total number of sweeps analyzed. 

- Initialize the vector point_closer_to_end. 

- Set k = 1. 

- For  a = 1 : length(pos_sf) 

- Save in pos_end_tmp the a-th value of pos_sf. 
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- Find the vett_pos_massimi value closer to pos_end_tmp and save it in the k-th position of 

point_closer_to_end. 

- Set k = k+1. 

- End. 

- Set best_threshold = 0, k = 1, Prob_correct_assignment_old = 0, VP_num_best = 0. 

- For  b = -500 : 1500 

- Set VP_num = 0, FP_num = 0, FN_num = 0, VN_num = 0, threshold = b-th value. 

- For  a = 1 : vett_pos_massimi length 

- Save in pos_max_tmp the a-th value of vett_pos_massimi. 

- Save in val_corrisp the y_matched value corresponding to the position equal to 

pos_max_tmp. 

- If val_corrisp >= threshold  

- If pos_max_tmp is one of the values stored in point_closer_to_end. 

- Set VP_num = VP_num + 1. 

- Else 

- Set FP_num = FP_num + 1. 

- End. 

- Else 

- If pos_max_tmp is one of the values stored in point_closer_to_end. 

- Set FN_num = FN_num + 1.  

- Else 

- Set VN_num = VN_num + 1. 

- End. 

- End. 

- End. 

- Set Prob_correct_assignment  = (VP_num + VN_num) / (vett_pos_massimi length). 

- Set k = k + 1. 

- If Prob_correct_assignment > correct_assignment_old 

- Set VP_num_best = VP_num, best_threshold = threshold, 

Prob_correct_assignment_old = Prob_correct_assignment. 

- End. 

- End. 

- Set k = 1. 

- Initialize the vector pos_ist_rec. 

- For a = 1 : (point_closer_to_end length) 

- Save in val_corrisp the y_matched value stored in the position corresponding to the a-th 

value of point_closer_to_end. 

- If val_corrisp >= best_threshold 

- Save in the k-th position of pos_ist_rec the a-th value of point_closer_to_end. 

- Set k = k + 1. 

- End. 

- End. 



Page 46 of 68 
 

- Divide the pos_ist_rec vector for nc, round the results and save it in the vector 

single_sweep_recognized. 

- Return single_sweep_recognized. 

3.2.2.9 CALCULATING THE single_sweep_recognized VECTOR WITH THE contour  

Input: y_pred_avg_long, Segnale_BIG. 

Output: single_sweep_recognized. 

Method: 

- Save the transpose of the vector y_pred_avg_long in the vector TMP_fit. 

- Set N_TMP equal to the TMP_fit length. 

- Save in the vector pos_sf the transponse of the sequence from nc until nr*nc with step equal to nc. The 

variables nc and nr are, respectively, the single sweep length and the total number of sweeps analyzed. 

- Initialize the vector VTMP. 

- For i = 1 : (TMP_fit length) 

- Set summation = 0. 

- For j = 1 : nr 

- Save in sgn_tmp the j-th row of TMP_matrix. 

- Set summation = summation + ( sgn_tmp(i) – TMP_fit(i) )^2. 

- End. 

- Save in the i-th position of VTMP the division result between summation and nr. 

- End. 

- Initialize the vectors Sup_lim and Inf_lim. 

- Calculate the square root of the VTMP average value and save it in the variable SD. 

- Set a = SD and b = 2*SD. 

- For i = 1 : (TMP_fit length) 

- Save in the i-th position of Sup_lim: TMP_fit(i) + (a * sqrt(VTMP(i)) + b). 

- Save in the i-th position of Inf_lim: TMP_fit(i) - (a * sqrt(VTMP(i)) + b). 

(sqrt means square root). 

- End. 

- Initialize the vector istant_time_ok. 

- Set k = 1. 

- For i = N_TMP : (Segnale_BIG length) 

- Save in the vector x_tmp the Segnale_BIG values stored between the positions  

(i – N_TMP + 1) and i. 

- If (x_tmp >= Inf_lim) & & (x_tmp <= Sup_lim) 

- Save in the k-th position of istant_time_ok the value of i. 

- Set k = k + 1. 

- End. 

- Initialize the vector single_sweep_recognized. 

- Set VP_num = 0, FP_num = 0, FN_num = 0, VN_num = 0 and x = 1. 

- For i = 1 : (Segnale_BIG length) 

- Set pos = i. 
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- If pos is equal to one of the values stored in istant_time_ok and is equal to one of the values 

stored in pos_sf. 

- Set VP_num = VP_num + 1. 

- Save in the x-th position of single_sweep_recognized the value of i. 

- Set x = x + 1. 

- Else, if pos is equal to one of the values stored in istant_time_ok 

- Set FP_num = FP_num + 1. 

- Else, if pos is equal to one of the values stored in pos_sf 

- Set FN_num = FN_num + 1. 

- Else 

- Set VN_num = VN_num + 1. 

- End. 

- Set Prob_correct_assignment  = (VP_num + VN_num) / (Segnale_BIG length). 

- Set single_sweep_recognized = single_sweep_recognized / nc. 

- Return single_sweep_recognized. 

3.2.2.10 FUNCTION func_clustering_kmeans() 

Input: TF_Matrix_sgn_selected. 

Output: mat_coordinate_clu_best, mat_appartenenze_best, mat_coordinate_clu_old_best, 

num_clu_sel . 

Method: 

- Set mat_coordinate_sgn = TF_Matrix_sgn_selected. 

- Save in the nr variable the rows number of mat_coordinate_sgn. 

- Ask to the user the clusters number. Save the answer in the variable K. 

- Set the variable num_clu_sel  = K. 

- Ask to the user the iterations number to use. Save the answer in the max_iter variable. 

- Ask to the user the optimization criteria to use. Save the answer in the criteria variable. 

- Ask to the user the metric type to use. Save the answer in the measure variable. 

- Set variance_old = 10^9, and ratio_old = 10^9. 

- Initialize the mat_coordinate_clu_best, mat_appartenenze_best, mat_coordinate_clu_old_best 

matrices.  

- For h = 1 : max_iter 

- Call the func_initial_position_gen() function. Saves the results in the mat_coordinate_clu 

matrix. 

- Set mat_coordinate_clu_old  = mat_coordinate_clu. 

- Initialize the mat_appartenenze matrix. 

- Save in mat_appartenenze: 

- in the 1
st 

column, the sequence that starts from 1 until nr with step = 1; 

- in the2
nd 

column, the sequence of natural numbers randomly generated from a 

uniform distribution between 1 and K. 

- Set mat_appartenenze_old = mat_apprtenenze. 

- Set condizione = 1 and iterazioni = 1000. 
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- While condizione = 1 

- For i = 1 : iterazioni 

- Call the func_Aggiorna_appartenenze() function. Save the results in the 

mat_appartenenze and mat_coordinate_clu matrices. 

- If mat_appartenenze_old = mat_appartenenze. 

- Set condizione = 0 and breaks the for cycle. 

- Else 

- Set mat_appartenenze_old = mat_appartenenze. 

- End. 

- End. 

- Set condizione = 0. 

- End. 

- If criteria = 1 

- Call func_variance_calc() function. Save the result in variance variable. 

- If variance < variance_old 

- Set: 

mat_coordinate_clu_best = mat_coordinate_clu,         

 mat_coordinate_clu_old_best = mat_coordinate_clu_old,  

 mat_appartenenze_best = mat_appartenenze, 

                variance_old = variance; 

- End. 

- Else, if criteria = 2 

- Call func_variance_calc_new() function. Save the result in variance variable. 

- If variance < variance_old 

- Set: 

mat_coordinate_clu_best = mat_coordinate_clu,         

 mat_coordinate_clu_old_best = mat_coordinate_clu_old,  

 mat_appartenenze_best = mat_appartenenze, 

                variance_old = variance; 

- End. 

- Else, if criteria = 3 

- Call func_variance_entro() function. Save the result in variance_entro variable. 

- Call func_variance_tra() function. Save the result in variance_tra variable. 

- Save in the ratio variable the division results between variance_entro and 

variance_tra. 

- If ratio < ratio_old 

- Set: 

mat_coordinate_clu_best = mat_coordinate_clu,         

 mat_coordinate_clu_old_best = mat_coordinate_clu_old,  

 mat_appartenenze_best = mat_appartenenze, 

                ratio_old = ratio; 

- End. 
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- End. 

- End. 

- Return the mat_coordinate_clu_best, mat_coordinate_clu_old_best, mat_appartenenze_best matrices 

and the num_clu_sel variable. 

3.2.2.11 FUNCTION func_clustering_som() 

Input: TF_Matrix_sgn_selected. 

Output: mat_coordinate_clu_new, mat_coordinate_clu_old, mat_assegnamenti_finali, 

num_clu_sel. 

Method: 

- Set mat_coordinate_sgn = TF_Matrix_sgn_selected. 

- Save in the nr variable the rows number of mat_coordinate_sgn. 

- Ask to the user the clusters number. Save the answer in the variable K. 

- Set the variable num_clu_sel = K. 

- Ask to the user the iterations number to use. Save the answer in the max_iter variable. 

- Ask to the user the eta parameter value to use. Save the answer in the eta_max variable. 

- Ask to the user the metric type to use. Save the answer in the measure variable. 

- Save in vet_indici vector the sequence that starts from 1 until nr with step = 1. 

- Call the func_initial_position_gen() function and save the result in mat_coordinate_clu matrix. 

- Set mat_coordinate_clu_old = mat_coordinate_clu. 

- For i = 1 : max_iter 

- Set eta  = eta_max * (1 – (i / max_iter )). 

- Call the func_sgn_selection() function and save the result in sgn_selected_tmp variable. 

- Save in sgn_tmp the mat_coordinate_sgn row corresponding to sgn_selected_tmp value. 

- Call the func_closer_clu() function and save the result in the winner variable. 

- Call the func_aggiornamento_new() function and save the result in the mat_coordinate_clu 

matrix. 

- End. 

- Call the func_assegnamento_sgn() function and save the result in the mat_assegnamenti_finali matrix. 

- Set mat_coordinate_clu_new = mat_coordinate_clu. 

- Return the mat_coordinate_clu_new, mat_coordinate_clu_old, mat_assegnamenti_finali matrices and 

the num_clu_sel variable. 

3.2.2.12 FUNCTION func_clustering_agglomerative() 

Input: TF_Matrix_sgn_selected. 

Output: cluster_mat, cluster_vet_stop, vect_distance, K, mat_dendrogram. 

Method: 

- Ask to the user the metric type to use. Save the answer in the measure variable. 

- Call the func_calcolo_mat_dist_new() function and save the result in the mat_distance matrix. 

- Save in nr and nc, respectively, the rows and columns numbers of mat_distance. 

- Initialize the mat_dendrogram matrix. 
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- Ask to the user the mat_distance upgrade rule to use. Save the answer in the rule variable. 

- Ask to the user the clusters number. Save the answer in the variable K. 

- If K is not equal to zero 

- Set stop_iter = nr – K + 1. 

- Else 

- Set stop_iter = nr. 

- End. 

- Set k = 1. 

- Initialize the cluster_mat cell matrix and cluster_vet cell array. 

- For i = 1 : nr 

- Save in the i-th position of cluster_vet the string containing the i value. 

- For j = 1 : nc 

- If j = 1 

- Save in the cluster_mat  i-th row, j-th column the string containing the k 

value. 

- Set k = k + 1. 

- Else 

- Save in the cluster_mat  i-th row, j-th column the string containing an 

empty space. 

- End. 

- End. 

- End. 

- Initialize the vect_distance vector and the cluster_vet_stop cell array. 

- Save in vet_dendro_sup vector the sequence starting from 1 until nr with step = 1. 

- For i = 2 : nr 

- Call the func_aggiornamento_mat_dist() function and save the results in: mat_distance_new 

matrix, cluster_vet_new cell array, dist_sel variable, vet_dendrogram and vet_dendro_sup 

vectors. 

- Save dist_sel variable in the i-th position of vect_distance vector. 

- Set mat_distance = mat_distance_new. 

- For j = 1 : (cluster_vet_new length) 

- Save in the cluster_mat  i-th row, j-th column the j-th string stored in 

cluster_vet_new. 

- End. 

- If i = stop_iter 

- Set cluster_vet_stop = cluster_vet_new. 

- End. 

- Set cluster_vet = cluster_vet_new. 

- Save vet_dendrogram vector in the mat_dendrogram (i-1)-th row. 

- Set vet_dendro_sup = vet_dendro_sup_new. 

- End. 
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- If K = 0 

- Initialize the cluster_vet_stop cell array and the vect_diff vector. 

- Set k = 1. 

- For i = 2 : (vect_distance length)  

- Save in vect_diff k-th position the difference result between the vect_distance(i) 

value and the vect_distance(i-1) value. 

- Set k = k + 1. 

- End. 

- Set brantch_longer variable equal to the maximum value position of vect_diff. 

- Set stop_iter  =  brantch_longer + 1. 

- Set k = 1. 

- For i = 1 : (nr – stop_iter + 1) 

- Save in cluster_vet_stop i-th position the string stored in the i-th row, p-th column 

of cluster_mat. Where p corresponds to the stop_iter value. 

- Set k = k + 1. 

- End. 

- End. 

- Set K = cluster_vet_stop length. 

- Return the cluster_mat cell matrix, the cluster_vet_stop cell array, the vect_distance vector, the K 

value, the mat_dendrogram matrix. 

3.2.3 DESCRIPTION OF THE METHOD 

The func_Analysis_Single_Sweep() function is composed by four main steps which are 

described in the subsequent subsections. 

- Pre-processing. 

- Smoothing. 

- Waveform recognition. 

- Clustering. 

3.2.3.1 PRE-PROCESSING 

- The single sweep is initially filtered with a low-pass digital Butterworth filter to 

eliminate the high frequency noise. The filter coefficients are calculated by the 

butter() function. These coefficients are used as parameters of an ARMA model 

through which the filtfilt() function calculate the filtered signal. The optimal filter 

order is found as 5 and the cutoff frequency as 1000 Hz. 
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- The filtered single sweep is translated in order to start from a zero value the 

evaluation of the signal after the stimulus onset. Another reasonable way is to set to 

zero the average of the signal part before the stimulus onset, but it was seen that 

this way doesn’t lead at the same good final results. 

- Using the funz_gen_sgn_big_filt_posS_0 () function is generated a single signal, 

saved in the Segnale_BIG vector, which contains the sequence of the filtered and 

translated sweeps. 

- At this point four main points are searched in the filtered and translated single 

sweep.  

- The points are: the response onset, the first minimum valley, the first maximum 

peak and the response end points.  

- It was seen that the signal, after the stimulus onset instant, behaves in two main 

ways. In the first case, the signal presents a little valley followed by a little peak 

before starting the downhill toward the first minimum valley point. In this case the 

response onset instant is set equal to the little valley point instant. 

- In the second case, the signal starts suddenly, more or less, the downhill and doesn’t 

present any little peak. In this case the program fixes the response onset equal to 

the stimulus onset instant even if a better choice is given by the recognition of the 

point of maximum gradient variation. Due to the aim of this point research, 

however, the program choice is acceptable. 

- It was seen that the first minimum valley point is present inside the time interval 

[0.15, 0.2 ms]. This fact has been proved by a single sweeps visual examination and 

by a-priori knowledge.   

- So, through a simple research inside this time interval, it is easy to find the minimum 

valley point. 

- For the detection of the last two principal points many different methods have been 

used, based on the gradient or on the signal first derivate, but it was seen that the 

best one is the following.  
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- At first the method identifies the min/max point present in the signal part between 

the minimum valley point sample and the last sample. 

- A point is considered maximum/minimum if it’s preceded and followed by a number 

x of points whose values are all smaller/bigger than the considered point value. The 

value of x is fixed by the program equal to 700 that corresponds to a time interval of 

0.035 ms.  

- The first maximum peak is defined as the first maximum point of the series.  

- Depending on the min/max series length is selected a min/max point. After the point 

position selected starts the research of the response end point position that 

corresponds to the first point position closer to the zero value. 

- To recognize the presence of a particular waveform inside a noisy signal in both the 

methods used it’s necessary to create a template signal. To generate the template 

are used the response onset and the response end point position. The signal part 

between these two points is extracted, and saved in the template matrix. All the first 

minimum valley points of the cut signals are aligned. Then, a zero-padding operation 

is used to obtain aligned signals of the same length. At the end an average operation 

on the template matrix generates the template. 

3.2.3.2 SMOOTHING. 

- It was seen that if the calculated template is used directly in the waveform 

recognition methods, the results obtained are unsatisfactory probably due to small 

oscillations presents inside the template. So it was decided at first to downsample 

the template and then to smooth it.  

- To smooth the template a sum of gaussian equation is used to initially approximate 

the signal.  

- The initial values of the parameters equations are sets equal to the min/max points 

found inside the template with the method presented above. Using the lsqnonlin() 

function are calculated the best parameters values of the smooth signal.  

- The lsqnonlin() function requires to define the noise standard deviation (SD). We 

tried to use a SD or CV (coefficient variance) constant value but the best solution is 
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given by the SD vector of the aligned signal matrix. Using it, the weighted residuals 

obtained are quite good due to they are uncorrelated and within the range of -1 and 

+1. 

- The min/max points recognition method requires to fix the x value. The x value 

determines the min/max points number and so the parameters number. Through a 

cycle it was found, using the Akaike criterion, the best x value, but it was decided to 

average all smoothed template, calculated for all x different values, to reduce the 

template variability. 

- Using the new parameters values the smooth signal, as long as the single sweep 

signal, is calculated. This new template is now ready to be used in the waveform 

recognition methods. 

3.2.3.3 WAVEFORM RECOGNITION METHODS 

- The two methods implemented by the program are the matched filter method and 

the contour method. At the beginning the program asks to the user to select the 

method to use.  

- Both the methods use the smooth template and the signal stored in the Segnale_BIG 

vector. 

- The matched filter method generates in output a signal that should presents in 

correspondence of the maximum peak instants the waveform occurrence instance.  

- In practice are found more peaks than the sweeps number. Moreover there is a little 

latency between the peaks instances and the waveform occurrence instances. So, 

after the peaks recognition, for each maximum peak instant, it is recognized the 

waveform occurrence instant closer to it.  

- Then is calculated the best threshold that maximize the correct assignment 

probability value witch depends on the TP and FP values. A peak point is considered 

a TP (true positive) or a FP (false positive) if its value is bigger than the threshold, in 

the other case it can be a TN (true negative) or a FN (false negative). The peak is 

considered a TP if it is the only one closer to a waveform occurrence instant, if not 

it’s considered a FP. A peak, at the same way, is considered a TN or a FN.  
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- At the end, using the best threshold found, are saved the positions of all waveform 

occurrence instant corresponding to the TP maximum points. The TP points number 

corresponds to the number of sweeps recognized. 

- The contour method at first calculates, using the smooth template (TMP) and the 

template matrix, VTMP vector in which are saved the TMP samples variances. 

- Then the upper and lower bounds vectors are calculated, they depend on the TMP 

and VTMP vectors and also on the a and b values. These two values determinate the 

shape and the width of the contour. 

- For each signal sample of Segnale_BIG, starting from the D-th position, where D is 

set equal to the TMP length, if it is preceded by D points, whose values are located 

between the two bounds, so its position is considered a waveform occurrence 

instant and saved in the instant_time_ok vector. It was seen that the points number 

selected in this way is bigger than the single sweep number so an ulterior selection 

step is necessary.  

- Knowing the real waveform occurrence instants it is possible to consider a 

Segnale_BIG sample as a TP if its position is present in the instant_time_ok vector 

and if it is a waveform occurrence instants. If it is true only the first condition the 

sample is considered a FP. If it is true only the second condition, the sample is 

considered a FN, while if both the conditions are false the sample is considered a TN. 

- Using the TP sample it is easy to select the single sweeps recognized. 

- The a and b values influence the contour shape and so the final results. A possible 

solution to set these parameters is to find those values witch maximize the correct 

assignment probability value. It was seen this way is very time consuming, so it was 

decided to set the a value equal to the root square of the VTMP average value, while 

the b value is set four time bigger than the a value. 

- At the end both the methods return in output the single_sweep_recongized vector 

in which are stored numbers, between 1 and 100, corresponding to the single sweep 

selected. 
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3.2.3.4 CLUSTERING 

- Three different clustering techniques are implemented in this method. These 

techniques are the k-means, the SOM (self organizing maps) and the hierarchical 

agglomerative. 

- All these techniques require in input the Parameters_matrix matrix in which are 

stored the coordinates that define the selected single sweeps positions in the M-

dimensional space. 

- Two ways have been tried to define the coordinates to use.  

- The first one uses as coordinates the four main point values (response onset, first 

minimum valley, first maximum peak and end of response points) and their 

corresponding time instants (M = 8).  

- The second way selects a fixed number of points (M = x) starting from the smallest 

first maximum peak instants and uses them as coordinates. It was tried to set x 

equal to 200 or 400. 

- Initially, all these techniques ask to the user to fix the parameters values (metric 

type, output number of clusters etc.). In this way it is possible to find the best setup 

to obtain the best results. 

- The k-means method starts calculating the initial coordinates of the centroids. Then 

each signal is associated to the nearest centroid. All associations are saved in a 

matrix. Then, for a fixed number of iterations: the centroids coordinates are 

recalculated based on the old associations matrix and a new associations matrix is 

calculated.  

- In case of equality between the old association matrix and the new one the program 

automatically stops before reaching the last iteration. 

- The final result is influenced by the initial centroids coordinates. So, to find the best 

final solution, are tried many different initial centroids coordinates, and it is selected 

the one which minimize a selectable cost function.  

- This technique returns in output the initial and final centroids coordinates, the 

associations matrix and the clusters number. 
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- The SOM method, as the previous one, starts defining the initial coordinates of the 

centroids (neurons). Then for a fixed number of iterations: a point is randomly 

selected, it is found his the closest neuron (called winner), the coordinates of the 

winner and of its neighbors are updated. It was decided to use a linear layout and 

one step neighborhood. 

- At the cycle end each point is associated to the closest neuron. 

- This technique returns the initial and final neurons coordinates, the associations 

matrix and the clusters number. 

- The hierarchical agglomerative clustering method starts generating the distances 

matrix in which are saved the distances between each couple of points. The way to 

calculate the distance is defined by the metric parameter.  

- It is initialized the cluster_mat cells matrix formed by strings of empty space, only 

the first column contains strings in which are saved the numbers that identify all 

points (from one until nr, where nr = number of points). 

- Then for i starting from 2 until (nr -1):  it is find the couple of points closer to each 

other, they are merged, it is saved the distance between them, it is generated a new 

distances matrix using one of the three selectable rules and it is updated the 

cluster_mat cell matrix. 

- The hierarchical agglomerative method returns in output the final cluster_mat cell 

matrix, the cluster_mat column corresponding to the number of clusters selected, 

the series of distances calculated until the final clusters number is reached, the 

clusters number and a matrix in which are save the values necessary to create a 

dendrogram. 

- In this technique it is given at the user the possibility to not choose the clusters 

number which is fixed by default as the clusters number corresponding to the 

biggest distance, between two points, ever found during the cycle. 

- At the end the program uses the output of the clustering techniques chosen to 

divide the selected single sweeps in groups. The signals of each group are plotted 

superimposed in the same figure. If it is chosen the hierarchical agglomerative 

technique it is plotted the dendrogram too. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 RESULTS AND DISCUSSION 

In this chapter are reported the results obtained applying the method previously explained. 

In figure 12 are reported superimposed all the single sweeps recorded form S1 at the depth 

of 850 μm and the average single sweep. It is possible to notice the high variability of the 

single sweeps. 

 

Figure 12.  Single sweep versus Average signal. 

In figure 13 is reported as example the single sweep number 100. As we can see there is an 

high frequency spike activity superimposed to the LFP. It appears necessary to apply a low-

pass filter to remove it.  

 

Figure 13.  Single sweep number 100. 
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During the method pre-processing step each single sweep is filtered and translated as to 

bring to zero the value corresponding to the stimulus onset instant. In figure 14 is reported 

as example the filterd and translated average signal. 

 

Figure 14.  Filtered and translated Average signal. 

Another operation made during the pre-processing step is the recognition of the single 

sweep shape principal points (response onset, first minimum valley, first maximum peak, 

end of the response points). 

 In figure 15 is reported as example the filtered and translated single sweep number 100 in 

which are recognized the four main principal points. 

 

Figure 15.  Filtered and translated Single sweep number 100 and principal point recognized. In the top 

right corner is reported a zoom of the response first part for a better representation of the 

response onset point recognized. 
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During the processing step is extract, in each single sweep, the signal part between the 

response onset and the end of the response instants. Using the cut single sweeps the 

template is calculated, see figure 16.  

 

Figure 16.  Template. 

To reduce the template small oscillations the signal is smoothed. The technique used 

requires to specify the noise standard deviation (SD). It has been tried to use a constant SD, 

a variable SD and a constant variance coefficient (CV). For the first case it has been 

calculated the SD of the part of the filtered and translated average signal between the first 

sample and the stimulus onset sample. For the second case it has been calculated the SD of 

the matrix in which are stored the filtered and translated single sweeps while for the third 

case the CV value has been fixed equal to 0.1. It is possible to notice, by the WRSS values 

calculated using a fix number of parameters, that the SD variable choice is the best one due 

to it generates the smallest WRSS value. 

 WRSS 

Constant SD 13.0791 

Variable SD 0.1102 

Constant CV 2.5713*104 

Table II.  Smoothing weighted residuals 

Using the Akaike criterion it is possible to determine the best parameters number to smooth 

the signal but to reduce the smoothed template variability it has been decided to average 

the smoothed templates obtained using different parameters numbers. 
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In figure 17 is reported the smoothed template obtained using variable SD and parameters 

number equals to 75. As we can see the function used to smooth works perfectly. 

 

Figure 17.  Downsampled template versus Smoothed template. 

In figure 18 is reported the average smoothed template superimposed to the original 

template. As we can see the average smoothed template doesn’t fit perfectly the original 

template but this was planned.  

 

Figure 18.  Template versus Average smoothed template 

The method proceeds with the waveform recognition step. The average smoothed template 

is used both by the matched filter and the contour method. In the first method it is 

calculated the best threshold that maximize the correct assignment probability value (Pc) 

based on the number of true positive and false positive points found. In the contour method 

it has been decided to fix the two parameters values (a and b) that determine the upper and 

lower bounds due to the high computational time required to find the best a and b values 

that maximize the Pc value. It has been decided to fix the a value equal to the template SD, 
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while the b equal to three times the a value. Both the methods generates a vector in which 

are stored the identifiers numbers of the single sweeps recognized. This vector is used in the 

final method step, clustering. In the figures 19, 20, 21 and 22 are reported the matched filter 

and the contour method outputs. 

 

Figure 19.  Matched filter output 1. In the top figure is represented the signal obtained by the union of 

the measured single sweeps, the red circles corresponds to the end of each single sweep. The 

second figure represents the matched filter output signal; the red circle also here corresponds 

to the end of each single sweep. 

 

Figure 20.  Matched filter output 2. In the figure is reported the matched filter output. The green circles 

represent the signal peaks, the green circle with a red star are the peaks closer to the end of a 

single sweep, while the red line corresponds to the best threshold calculated. 
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Figure 21.  Contour method output 1. In the figure is reported signal obtained by the union of the 

measured single sweeps, the black circles represents the end of each single sweep while the red 

stars corresponds to the waveform occurrence instants. 

 

Figure 22.  Contour method output 2. In the figure are reported: in blue superimposed the cut single 

sweeps, in red the average smoothed template and in green the upper and lower bounds. 

In this example, due to the higher number of single sweeps recognized by the contour 

method, it has been decided to use contour method result for the clustering. The 

Parameters_Matrix, necessary for the clustering, has been calculated using the second way 

previously presented in section 3.2.3.4 in which the x value has been set to 200. There are 
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different methods to set the number of clusters as explained in section 2.3.6 but it has been 

decided in this example to fix the number of clusters equal to ten.  

The method lets the user to choose one of the three implemented clustering techniques: K-

means, SOM, hierarchical agglomerative. Due to the fact that reporting results from each of 

the clustering techniques would require much space, we decided to report only the results 

generated by the k-means technique. Each clustering techniques required to the user to take 

some choices depending on the clustering technique. In this example it has been decided to 

set:  output clusters number = 10, iterations number = 1000, cost function = minimization of 

the different clusters variances sum, metric = centered correlation. 

In figure 23 the obtained results are reported. 

 

Figure 23.  K-means clustering results. In blue are reported the selected single sweeps and grouped in 

ten different clusters. In red represents the average signal of each cluster. 

 



Page 65 of 68 
 

To prove the method efficiency, using the same clustering techniques and setting, the 

method has been applied to signals recorded from other seventeen different depths. The 

results obtained are shown in the following table. 
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 Clust
er no. 

Depths *μm+ 
50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 1450 1550 1650 1750 

M
at

ch
ed

 F
ilt

e
r 

1 9 9 0 14 0 0 0 0 9 0 0 0 2 0 0 0 0 0 

2 7 2 5 4 3 4 1 4 15 1 1 14 1 6 4 1 5 1 

3 7 3 6 12 2 3 4 5 3 1 1 14 1 3 7 0 2 0 

4 11 3 8 6 10 2 1 4 3 1 1 4 1 1 2 0 3 0 

5 6 6 3 4 2 3 2 4 3 1 1 7 1 3 3 0 5 0 

6 7 6 4 8 3 2 6 5 7 1 1 3 1 2 1 0 2 0 

7 7 6 3 10 5 1 3 2 3 2 1 2 3 1 1 0 3 0 

8 7 2 7 5 9 7 1 2 4 3 1 7 1 5 1 0 2 0 

9 3 5 5 18 3 7 2 2 4 5 2 7 1 0 1 0 0 0 

10 5 5 4 4 3 9 3 0 9 0 0 6 0 0 3 0 0 0 

Total 69 47 45 85 40 38 23 28 60 15 9 64 12 21 23 1 22 1 

C
o

n
to

u
r 

M
et

h
o

d
 

1 1 2 0 2 25 2 8 6 27 12 12 6 3 22 2 8 13 12 

2 0 6 11 5 2 5 15 11 12 7 14 6 2 21 12 5 11 20 

3 0 2 4 5 7 5 7 14 11 12 5 10 14 16 10 15 11 3 

4 0 2 9 7 4 8 15 10 6 8 5 11 4 15 6 6 6 5 

5 0 1 9 13 6 4 10 7 4 17 10 3 12 20 5 26 3 13 

6 0 4 5 8 18 15 8 8 10 5 3 6 13 25 4 11 9 16 

7 0 1 2 3 7 14 8 10 8 7 16 15 11 3 13 7 13 2 

8 0 2 4 3 2 9 9 2 8 9 15 15 17 2 12 6 8 12 

9 0 2 6 11 1 15 3 18 2 14 12 18 14 11 12 8 10 5 

10 0 0 2 2 2 19 17 14 10 7 8 10 9 4 24 7 16 12 

Total 1 22 52 49 74 96 100 100 98 98 100 100 99 99 100 99 100 100 

 
Table III.  Clustering methods results.
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4.2 CONCLUSIONS 

As seen the low-pass filter used is able to remove all the spike activity, so the filter order and 

the cutoff frequency have been chosen correctly. Even if it has not been reported, the choice 

to translate the stimulus-onset of the signal to zero has been found to be better in 

comparison to the choice to translate the signal to set the average signal's part before the 

stimulus onset  to zero. Infact, in this way  more single sweeps are recognized by both the 

two waveform recognition techniques. Also the choice to smooth the template has been 

demonstrated better results than to directly use the original template in the waveform 

recognition. 

As Table II shows, the contour method is the best one, this result corresponds to the value of 

the a and b parameters. Especially the b value influences the results more directly in the 

sense that, if the value chosen is too high all the sweeps will be recognized. The choice of a 

and b values has been taken empirically to recognize reasonably high number of sweeps. 

However, the clustering method works very well also with 100 sweeps.  

The generatation of the Prameters_Matrix is done in a way that clusters the single sweeps in 

a way that reflects their shape. Not all the clustering combinations have been tested so it is 

not possible to say which one is the best but as we can see from the final results the choices 

taken are good. 

Overall we can conclude saying that the developed method performs well for the type of 

acquired signals. It has an high efficiency and an acceptable computational time. Since this is 

the first method which tries to solve the single sweeps classification problem, there is no 

possibility to compare our results with those obtained through other researches. In the 

future we hope to extend this method for the signals acquired using high resolution brain-

chip interface as described in [26], hoping that our effort would be a guidance for a future 

leap in understanding the neural network activity in the barrel cortex.  
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