


Sommario

Le malattie da Repeat expansions (RE) sono una classe di patologie causati
da espansioni nucleotidiche composte da almeno tre basi all’interno del DNA.
Le RE causano disturbi genetici come la malattia di Huntington e vari tipi di
Atassie. L’identificazione e l’analisi di RE avviene di norma tramite tecniche
di laboratorio molecolare (i.e. PCR) anche se negli ultimi anni, l’avvento di
nuove tecnologie di sequenziamento genico (NGS) ha permesso di analizzare
le regioni codificanti di DNA ed anche l’intero genoma, alla ricerca di regioni
polimorfiche, comprese le RE, in modo più efficiente e rapido. La patogeni-
cità di un’espansione viene determinata confrontando il numero di ripetizioni
identificate in una regione genomica con degli intervalli di normalità, speci-
fici per la patologia in analisi. Per analizzare la grande mole di dati NGS
prodotti, sono stati sviluppati diversi metodi bioinformatici con performance
diverse.

L’obiettivo di questa tesi è studiare lo stato dell’arte dei software dispo-
nibili per l’identificazione di RE e successivamente sviluppare una pipeline
computazionale che combini i risultati di ciascun programma, e determini
la patogenicità delle RE in campioni reali, tenendo conto degli intervalli di
riferimento. A tale scopo sono stati selezionati tre software di identificazione
per RE. Metodologicamente, l’output dei tre tool è stato processato al fine
di trovare regioni con RE in comune, che a loro volta sono state confrontate
con specifici intervalli di riferimento per determinarne la patogenicità. La
performance di tale metodo è stata testata su dati di esoma e di genoma
sequenziati da campioni di pazienti con patologia da espansione nota.

Come risultato la pipeline ha rilevato le RE patologiche caratteristiche di
ciascuna malattia, con una maggiore sensibilità nell’identificazione delle RE
utilizzando l’esoma piuttosto che il genoma dello stesso campione.

L’applicazione di questo metodo all’analisi di esomi NGS da pazienti con
malattie da RE, può essere di supporto in una migliore caratterizzazione di
queste tipologie di malattie genetiche.



Summary

Repeat expansion (RE) diseases result from nucleotide expansions of at least
three bases within the DNA. REs cause genetic disorders such as Hunting-
ton’s disease and various types of Ataxias. Identification and analysis of
RE are usually performed by molecular laboratory techniques (e.g. PCR) al-
though in recent years, the advent of next generation sequencing technologies
allowed the sequencing of DNA coding regions of DNA and also the entire
genome, making the polymorphic regions identification, including REs, more
efficient and quick. The expansion pathogenicity is determined by compar-
ing the number of repetitions identified in a genomic region with ranges of
normality, specific for the pathology. To analyse the large amount of data
produced by NGS techniques, several bioinformatic methods, with different
levels of performance were developed.

The aim of this thesis was to study the state of art of available softwares
for REs identification and, next, to develop a computational pipeline that
combines the results of each program and finds out the pathogenicity of REs
in real samples, taking into account the reference ranges. For this purpose,
three tools were selected. Methodologically, the nucleotide sequences were
first analysed by these three tools and then their outputs were processed in
order to find regions with common RE, and compared with specific reference
ranges to determine their pathogenicity.

The performance of this method was evaluated both on exome and genome
samples from patients with known expansion pathology. As result, the
pipeline correctly detected pathological REs specific of each disease, and,
of note an increased sensitivity was observed using exome data for REs iden-
tification compared to genome sequences from the same sample. The appli-
cation of this method to analyse NGS exomes from patients with RE diseases
may be helpful in a better characterization of this kind of genetic disorders.
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Chapter 1

Introduction

A Repeat Expansion is a type of mutation in which a set of tandemly repeated
sequences replicates inaccurately to increase the number of repeats. This
mutation is responsible for causing any type of disorder labeled as dynamic
mutations [1].

More than 40 diseases, most of which primarily affect the nervous system,
are caused by expansions of repeat sequences throughout the human genome
[3]. The disease pathogenesis varies depending on the repeat sequence, size
and location within the genome. The number of repeats appears to predict
the progression, severity, and age of onset diseases related to Repeat Expan-
sion [3]. The most frequent target diseases are Huntington’s disease (HD),
different types of Ataxia Spinocerebellar (SCA) and Fragile X syndrome (FX-
TAS).

Huntington’s disease [4] is a rare, inherited disease that causes the pro-
gressive breakdown (degeneration) of nerve cells in the brain. It usually
causes movement, cognitive and psychiatric disorders with a wide spectrum
of signs and symptoms. Which symptoms appear first varies greatly from
person to person.

Instead, Spinocerebellar ataxia (SCA) [5] is a progressive, degenerative
and genetic disease with multiple types. In general, SCAs are characterized
by slowly progressive incoordination of gait and is often associated with poor
coordination of hands, speech or eye movements. Also, it frequently results
in atrophy of the cerebellum, loss of fine coordination of muscle movements
leading to unsteady and clumsy motion, and other symptoms.

Finally, Fragile X syndrome (FXS) [6] is an inherited genetic disease that
causes intellectual and developmental disabilities.

Repeat expansion is caused by slippage during DNA replication and from
the formation of loop out. Short repeat expansions can occur during DNA
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replication and DNA repair processes like: homologous recombination, non-
homologous end joining, mismatch repair or base excision repair. Each of
these processes involves a DNA synthesis step in which strand slippage might
occur leading with Repeat Expansion [3].

Overall, to check whether an individual is subject to a pathology due to
REs, the genome sequence is first analysed to identify repeated nucleotide
patterns. The identified REs are analysed according to the source region
and the number of repeats. The number of repetitions should be compared
with reference values to identify the unstable region of the genome [2]. These
values derive from the literature although with some discrepancies between
various publications. The specific ranges for the identification of diseases
related to instability are divided into premutation and pathological [2].

Expanded repeats are unstable (dynamic) mutations that often change
size in successive generations [3]. So, their number of repeats can grow from
one generation to the next due to DNA replication slippage and unequal
recombination in multiplying cells. Indeed, the premutation range of values is
useful since it indicates the probability to have individuals with a RE disease
in the next familiy generation. Their presence in the regulatory regions,
which may alter the gene expression, is found to be associated with the
respective disease phenotype. Looking at the repeat distribution, REs are
found to be present in both coding and noncoding regions of the genome [7].

Therefore, in Repeat Expansion analysis, there is a certain threshold
of repeats that can occur before a sequence becomes unstable. Once this
threshold is reached the repeats will start to rapidly expand, causing longer
expansions in future generations. There is still not enough research found
to understand the molecular nature that causes thresholds, but researchers
are continuing to study that the possibility could lie with the formation of
the secondary structure when these repeats occur [2]. These observations
have led to the hypothesis that the threshold is determined by the number
of repeats that must occur to stabilize the formation of these unwanted sec-
ondary structures, due to the fact that when these structures form there is
an increased number of mutations that will form in the sequence resulting in
more triplet expansion [1].

Currently, several approaches were proposed to identify and analyze Re-
peat Expansions although their integration has never been proposed. The
best solutions, found in Bioinformatics literature, are briefly reported below.
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Laboratory testing

Usually detection of repeat expansions is performed with polymerase chain
reaction-based assays or with Southern blots for large expansions. Also, with
this method, a subsequent analysis is required since the results for certain
regions are compared with the normal ranges in order to identify pathological
REs among those detected.

Genetic laboratories conduct a large number of tests for Repeat Expan-
sion disorders, but the detection rate is low, and job times are of the order
of weeks or months. No comprehensive panel or testing method exists that
simultaneously tests for all known repeat expansions using the current gold-
standard detection methods of PCR and Southern blot.

Software approaches

The bioinformatic tools proposed to detect de novo or known repeats are:

• Alignment-free detection tools like SuperSTR (details in Section 3.1.3).

• Genome-wide detection of short tandem repeat expansions by long-read
sequencing with RepeatHMM tool. RepeatHMM is an algorithm to
estimate repeat counts from long-read after taking high base calling
error rate into consideration. It has two main routines. RepeatHMM-
scan that scans whole-genome long-read sequencing data to determine
repeat counts of tens of thousands of REs. Then, we use a divide-and-
conquer strategy to group REs into smaller sets, and run RepeatHMM
on each set. RepeatHMM-DB that collects repeat counts for all REs
in a reference genome and builds a database of normal repeat range for
all available REs. Overall, RepeatHMM runs a scan module and then
compares those repeat counts with the corresponding repeat ranges in
RepeatHMM-DB [8].

• Alignment-like tools as ExpansionHunter [9], exSTRa [13], and TRED-
PARSE [16] (details in Sections 3.1.1, 3.1.4 and 3.1.2).

Some of these methods were analysed and evaluated later, in this thesis.

The rest of this thesis is organized as follows. In Chapter 2 we describe the
motivation and the objectives of this project. Then, in Chapter 3 we report
some details about the tools tested and about the dataset. In Chapter 4
the pipeline is described. In Chapter 5 we show the experimental results
obtained by different types of tests. Finally, We conclude the discussion in
the last chapter.
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Chapter 2

Objectives

Repeat expansions are common genetic variations that are normally asso-
ciated with neurogenetic disorders. It is a dynamic and unstable type of
mutation, and the number of repeats can vary from generation to genera-
tion.

The disorders caused by Repeat Expansion are clinically and genetically
heterogeneous, and vary depending on the repeat sequence, size and location
of the responsible gene.

PCR-based repeat length analysis is the most convenient method for diag-
nosing diseases associated with repeat expansion. However, the established
laboratory techniques for diagnosing repeat expansions (PCR and South-
ern blot) are cumbersome, low-yield and unsuitable for parallel analysis of
multiple gene regions. In fact, laboratory analysis for the identification of ex-
pansions is done specifically on the candidate gene only after the appearance
of the disease phenotype. In the case of preventive analysis, on the other
hand, a higher cost in terms of time and resources is required because the
PCR has to be repeated on a larger group of genes related to RE diseases.

Diseases due to RE are mainly characterised by severe neurodegenerative
disorders and an onset of the phenotype in adulthood. Clinical tests for
the diagnosis of these particular diseases are often done too late for the
application of efficient prophylaxis.

An important feature of triplet expansion diseases is the phenomenon of
genetic anticipation: over generations, the disease tends to manifest itself
earlier and with a more severe clinical picture. This is because the severity
of the disease is linked to the number of repeats, which is unstable and tends
to increase with each successive DNA replication. The higher the number of
triplet repeats, the greater the likelihood of further expansion.

In view of these characteristics, there is a need for a reliable, wide-ranging
method for analysing this type of mutation, taking several regions of the
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genome into account at the same time, with the goal to detect the presence of
a possible disease quickly before its manifestation. Identifying these diseases
before they occur is also important for:

• Early clinical intervention.

• Tests on parents before having children in order to check the possibility
of being carriers and, thus, calculate the probability of their children
being affected by specific RE diseases because the mutation increases
its expansion.

In conclusion, the use of Bioinformatics systems could be an excellent
method for the rapid identification and analysis of Repeat Expansions using
a comprehensive view.

The main objective of this thesis is, therefore, to study the state of the art
of available software for the identification of RE and subsequently develop
a computational pipeline that can be used for the analysis of samples in
order to identify their possible pathogenicity to diseases caused by Repeat
Expansions.



Chapter 3

Tools and dataset

In this Chapter we report the tools and methods used in this project. In par-
ticular, Section 3.1 describes the tools analysed and the reasons for their use
or not. In Section 3.2 we show the characteristics of the dataset used to test
the tools and the pipeline developed. Finally, in Section 3.3, the pathologies
of interest are briefly described with their mutational characteristics.

3.1 Tools analysis

For the identification of triplet expansion, according to some papers it is
necessary to use different tools and methods to have a more complete analysis
and to provide redundancy [20]. First of all, I analyse some existing softwares
using a subset of the dataset (see Section 3.2). The purpose of these tests is
the selection of the tools with the best performance also in relation to their
theoretical approach used in the identification of REs. I report all the tools
and the related reasons for their selection or not.

3.1.1 ExpansionHunter

ExpansionHunter [9, 10] is a tool for short read and it is able to detect novel
repeat expansions at the locus of interest, but require, that the putative Re-
peat Expansions be explicitly specified in the input. This tool works well,
even if the expanded repeat is larger than the read length. ExpansionHunter
works on a predefined variant catalog containing genomic locations and the
structure of a series of targeted loci. For each locus, the program extracts
relevant reads from a binary alignment/map file and realigns them. The
realigned reads are then used to genotype each variant at the locus. Geno-
typing is performed by analyzing the alignment paths associated with the
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presence or absence of each constituent allele.

Method

Its method consists of the following step.

• Whole Genome Sequencing for all of the samples analyzed.

• Identifying IRRs: to test if a read fully consists of the repeat motif we
compared it to the perfect repeat sequence that was the closest match
under the shifter and reverse complement operations. We defined the
weighted purity score metric. We defined IRRs as reads that achieve
weighted purity of 0.9 or above.

• Identifying off-target regions: IRR pairs may align to other genomic
locations, especially if the RE is short in the reference genome at the
target location. Identifying off target regions enables us to reduce the
search for IRRs to a few regions instead of the whole genome. The
mapping positions of all identified IRRs were merged if they were closer
than 500 bp.

• Repeat size estimation from IRRs: We assume that the probability of
observing a read starting at a given base follows the Bernoulli distri-
bution. The starting positions of the reads occurring in a given region
define a Bernoulli process and the number of reads starting in the re-
gion follows a Binomial distribution. The confidence interval for the
repeat size is estimated by the parametric bootstrap method. The same
procedure is used to obtain point estimates and confidence intervals for
repeat sizes from flanking reads. If there is no evidence of long repeats
with the same repeat unit elsewhere in the genome, both anchored in-
repeat reads and in-repeat read pairs can be utilized to estimate the
full length of the repeat. If multiple long repeats with the same repeat
unit exist, then the size of the repeat is estimated only from anchored
in repeat reads and so is capped by the fragment length. For shorter
alleles, the sizes of repeats were determined using spanning reads. For
repeats that are close to the read length, the repeat may be too long
to produce spanning reads but too short to produce IRRs. It computes
the maximum-likelihood genotype consisting of candidate repeat alleles
determined by spanning, flanking, and in-repeat reads.

• Repeat size determination from spanning reads: The reads spanning
the repeat are identified from all the reads that are aligned within
1kb of the target repeat region. Each of these reads is tested for the
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presence of the repeat motif. To be considered spanning, a read must
achieve a WP score of 0.9 across the repeat sequence and its flanks. If
the flanking sequence is similar to the repeat motif then more flanking
sequence is required to identify the end of the repeat and the beginning
of the flanking sequence.

• Repeat genotyping: Genotype probabilities for repeats of size up to
the read length are calculated using a similar model as the one used
for SNPs. We use read-length sized repeats as a stand-in for repeats
longer than the read length. If only one allele is expanded we estimate
the full size of the repeat as described above.

Input files

The input files required by Expansion Hunter are:

• FASTA file with a reference genome.

• BAM file containing aligned reads from a PCR sample. The reads file
must be sorted and indexed if using the seeking mode for the analysis.

• A variant catalog file that is a JSON array whose entries specify ref-
erence coordinates and structure of each locus that the program will
analyze.

Output files

They contain information about sample parameters and analysis results sum-
marized by locus. There are two types of output file format and for the
repeats variation they report:

• VCF: chromosome, start and end position of repeats region, repeats
count for each allele, information about reference locus, repeats format
and motif.

• JSON: Unique variant identifier, repeat unit in the reference orienta-
tion, genotype given by the size of each repeat allele, confidence interval
for each repeat allele, summary of identified spanning reads given as
an array with entries (n, m) where n is the number of repeat units
spanned by the flanking read and m is the number of such reads (the
same for in-repeat reads and spanning reads), reference coordinates of
the repeat region (chrom:start-end).
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Execution

Below, in listing 3.1, there is the command to run this software on Linux OS.
The execution requires a series of input parameters in addition to the files
indicated above.

/ Expans ionHunte r − −r e ad s <a l i g n e d r e ad s BAM/CRAM f i l e /URL> \
− − r e f e r e n c e < r e f e r e n c e genome FASTA f i l e > \
− −v a r i a n t−c a t a l o g <JSON f i l e s p e c i f y i n g v a r i a n t s to genotype> \
− −output−p r e f i x <P r e f i x f o r the output f i l e s > \
− −s ex <arg> − −min−l o cu s−cove r age < i n t> \
− −r eg i on−e x t en s i on−l e n g t h < i n t> − −a n a l y s i s −mode <arg> \
− −t h r e ad s < i n t>

Listing 3.1: ExpansionHunter run - bash linux

After many tests with different parameters setting, I decided to choose
this tool because with low time cost, good results were obtained compared to
the samples chosen for the preliminary tests. Furthermore ExpansionHunter
estimates the repeat size by using a parametric model but does not attempt
to call repeat expansions in a probabilistic framework. ExpansionHunter was
used for determining whether alleles were larger than the currently known
smallest disease-causing repeat-expansion alleles. ExpansionHunter is par-
ticularly valuable for identifying disease-causing expansions because these
programs leverage evidence beyond the reads that span an Repeat Expan-
sion, enabling the genotyping of larger repeat expansions.

In Section 5.1, the choice of parameters is explained in detail.

3.1.2 STRetch

STRetch [15] uses a new reference genome with additional decoy chromo-
somes containing artificially long versions of all repeat motif combinations.
By mapping to this modified genome, STRetch identifies reads that origi-
nated from large Repeat Expansions, containing mostly sequence, that now
preferentially map to the STR decoys.

Method

Its method can be divided into the following steps:

• Reads are mapped to the reference genome with STR decoy chromo-
somes using BWA and SAMTOOLS. It generates a set of all possible
STR repeat units in the range of 1–6 bp to produce a custom STR-
aware reference genome and STR decoy reference genome is created.
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• Counts the number of reads mapping to each STR decoy chromosome
using bedtools. These are sorted to place together read-pairs using
SAMTOOLS collate and then are extracted in fastq format using bed-
tools bamtofastq.

• Reads mapping to the STR decoy chromosomes are allocated to an
STR locus using paired information. To determine from which STR
locus the reads originated, the mates of the reads mapping to a given
STR decoy chromosome are collected. The counts for each STR locus
are normalized against the median coverage for that sample.

• Detecting outliers. To detect individuals with unusually large STRs,
STRetch calculates an outlier score for each individual at each locus.
The outlier score is a z-score or p-value. A locus is called significant if
the adjusted p-value is less than 0,05.

• Median coverage over the whole genome or exome target region is calcu-
lated using goleft covmed, which is later used to normalize the counts.

• Predicts the size of the expansion using the number of reads allocated
to the locus. It performs simulations of a single locus at a range of allele
sizes. It fits a linear regression between the number of reads mapping
to the STR decoy and the size of the allele from the simulated data.

Input files

Input files required are:

• Reference genome with STR decoy chromosomes and other metafiles
like BWA indices of reference, genome file of reference, STR decoy bed
file and STR positions in genome annotated bed file.

• BAM file containing aligned reads from a PCR sample.

• One of the three pipelines, depending on what type of sequencing you
are doing (exome or genome) and what format your data is in (fastq
or bed).

Output files

Each file have the same information like chromosome, start and end reference,
repeat string, reference length (number of repeat units in the reference),
locus coverage (number of STR reads assigned to that locus), outlier (z score
testing for outliers), p value (it is this locus significantly expanded relative to



12 CHAPTER 3. TOOLS AND DATASET

other samples), bp Insertion (estimated size of allele in bp inserted relative
to the reference) and repeat units (estimated total size of allele in repeat
units).

• sample.STRs.tsv: It contains STRetch results for all STR loci with any
assigned reads in that sample. If there are no reads assigned to a locus,
that locus will not be reported.

• STRs.tsv: It contains STRetch results for all STR loci in any sample.
If reads are only assigned for a given locus in one sample, the other
samples will show 0 reads.

Execution

Below, in listing 3.2, there is the command to run this software on Linux OS.
It’s the example for exome sequencing and bed file.

STRetch/ t o o l s / b i n / bp ipe run \
STRetch/ p i p e l i n e s / STRetch exome bam pipe l i ne . g roovy sample1 . bam

Listing 3.2: STRetch run - bash linux

After many tests with different input parameters, I decide to choose
this tool because of its different approach regarding ExpansionHunter even
though it detects Repeat Expansions, but does genotype them reliably. Its
results are reliable and I need a different method to detect REs so I can
compare different kinds of results.

In Section 5.1, the choice of parameters is explained in detail.

3.1.3 SuperSTR

SuperSTR [11, 12] is an ultrafast method that does not require alignment,
capable of efficiently processing DNA and RNA sequencing data. SuperSTR
uses a fast, compression-based estimator of the information complexity of
individual reads to select and process only those reads likely to harbor ex-
pansions. It computes the counts of repeats using a ratio computed from the
ratio of the size of the read in bytes after compression to its uncompressed
size. We evaluated the ratio in classifying simulated repeat-containing reads
against pseudorandom sequences drawn from four background nucleotide dis-
tributions. A classifier using the ratio to identify repeat-containing reads.
Reads that pass the ratio classification step are processed using the maximal
approximate periodicity algorithm as implemented in mreps37 to identify
repetitive substrings within each read.
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Method

SuperSTR’s motif screening uses a one-sided Mann-Whitney U test to eval-
uate whether the distribution of information scores is the same in the test
group and the Diversity cohort, or whether the test group distribution is
greater.

• Read Processing: Each read is compressed using zlib. C is computed
as the ratio of the size in bytes of the output data to the size in bytes
of the input data, Thresholds on C are supplied by the user from ei-
ther the pre-provided threshold tables or user-run simulation. Reads
passing this threshold are then analyzed using the Kolpakov-Kucherov
algorithm. Each read identified as containing repetitive elements has
their start and end location, motif, length and purity recorded.

• Post processing and outlier detection: summarize the output of the read
processing methods into a list of the number of repetitive elements of
each length with a specified motif for each sample. This number is
normalized by library size, and per-sample and per-motif files are gen-
erated. Summarisation produces a repeat count vector and information
score for each motif.

• Motif-screening and outlier analysis: using a one-sided Mann-Whitney
U test as implemented in the scipy library. The null hypothesis is ”ran-
domly selected samples of interest would have larger information scores
than samples from the background”. We computed the p-value using
permutation testing of each motif-sample pair. Motifs were reported as
significant if p value was less than 0.05. Values that exceed the upper
95% confidence interval of the estimate of this percentile are reported
as outliers.

The work pipeline is divided in the following steps: process reads with
superSTR, build a manifest file, summarize the superSTR run, perform motif
screening, perform sample-level outlier detection, visualize motif screening
and outputs. Each step has a specific script to perfom it.

After many tests with different samples, I decided to not consider this
tool because the method used is too different. In fact the software output
are some graphs showing a statistical trend.

3.1.4 exSTRa

ExSTRa [13, 14] extracts Repeat Expansions information that stems from
a particular individual and which has been identified as mapping to one of
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the 21 STR loci, for each read. It uses a statistical test that captures the
differences between an individual who is to be tested within a cohort of af-
fected individuals and controls. The empirical p values of the test statistics
were determined via a simulation method. All p-values overall RE loci for all
individuals within each cohort were assessed for approximate uniform distri-
bution with histograms and quantile-quantile (Q-Q) plots. Raw data were
visualized via empirical cumulative distribution functions (ECDFs), which
display as a step function the distribution, from smallest to largest, of the
amount of RE motif found in each read. For this analysis exSTRa uses R
packages.

After many tests with different input parameters, I decided to not consider
this tool because it has some problems at the execution time.

3.1.5 Tredparse

Tredparse [16, 17] is designed to identify each allele length at predefined RE
loci by using Illumina WGS sequence data that are sampled at sufficient
depth.

Method

Tredparse method is divided in the following steps:

• Haploidy inference for a given locus: It models the autosomal REs as
diploid loci, allowing two alleles to be inferred per locus.

• Realignment of reads near the RE region: It realigns the reads that
were mapped around the RE region extracted from the BAM file. It
obtains an accurate count of the occurrences of the repeat motifs. It
uses dynamic programming with the Smith-Waterman (SW) algorithm
to count the number of repeats and single-instruction-multiple-data
(SIMD) Smith-Waterman library for fast alignment. The SW align-
ment yields a series of alignments with different scores, which we then
compare to determine the repeat size that corresponds to the high-
est score. These reads are sorted into a set of observations that are
integrated in a probabilistic model for RE size inference.

• Probabilistic model for calling RE: It predicts size on the basis of evi-
dence from spanning reads, partial reads, repeat-only reads, and span-
ning pairs. The spanning reads are the reads that show both left and
right flanking sequences. With probability p, the read is a product of
stutter noise, which is dependent on the repeat unit length K and also
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the GC content of the locus. Also, the algorithm uses the Poisson dis-
tribution model for spanning reads. Partial reads do not align all the
way across the repeat region and contain only one flanking sequence.
The partial reads have a probability mass function of discrete uniform
distribution between a single repeat unit and the true repeat length.
The partial reads only show a lower bound for the number of repeat
units of the underlying allele. Repeat only reads consist almost en-
tirely of repeat units. Repeat-only reads are possible only when repeat
length is the same or longer than a read length. It uses the paired-end
distance for extending the prediction of allele size beyond the length
of a typical sequencing read because the paired-end distance is often
longer than the read length.

• Tredparse combines data using maximum-likelihood estimates and the
model through a grid search.

• Confidence of RE Calls given the Inheritance Model: It computes the
probability that a sample is pathological, given dominant and recessive
inheritance models under the assumption of complete penetration and
a point cutoff. This phase exploits likelihood function and marginal
distribution.

In general, the main features of Tredparse are automatic determination
of the correct ploidy level to account for X-linked and autosomal loci; re-
alignment of reads, leading to a more precise counting of repeat elements; use
of a full probabilistic model that incorporates four types of evidence whereas
most competing software programs only consider spanning reads, and so calls
are limited by read length and computation of likelihood of disease under the
proper inheritance model (dominant or recessive).

Input files

Tredparse requires both the BAM file and the BAM index file to be present
for fast access to each sample.

Output files

In general the output is the maximum likelihood size estimates, distributions
over the number of repeats, and the associated probability of having each of
the 30 RE diseases. Each file (VCF or JSON format) reports information
about the location of the repeat regions (chromosome, start/end position,
etc.) and information about the repeat expansion event (motif, count for
each allele, types, etc.).
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Execution

Below, in listing 3.3, there is the command to run this software on Linux OS.

t r e d . py t e s t s / samples . c s v −−workd i r work

Listing 3.3: Tredparse run - bash linux

In the end, I decid to choose this tool because among all existing RE
callers, Tradparse is the most similar to ExpansionHunter and I use this tool
to check ExpansionHunter results. Moreover, Tredparse models the paired-
end distance which helps to improve accuracy, as shown in its reference paper
[16], and also it has an added benefit of being able to compute the joint
likelihood of the calls.

In Section 5.1, the choice of parameters is explained in detail.

3.2 Datasets

First of all, I tried to find some useful datasets in order to test each tool and
then the whole pipeline. I tried to obtain some datasets mentioned in the
papers in which they analyzed the various tools, from the EGA archive. This
is in order to have a large pool of samples to test the number of true/false
positives/negatives and also to already have results relating to those datasets
to be compared. These datasets are related to exome sequences of individuals
positive or negative for diseases caused by Repeat Expansions.

[EGAD00001003512 [18]]: It includes BAM files from 58 samples. These
BAM files include all read pairs where at least one of the reads aligned
within 1kb of the HTT repeat expansion. These samples were sequenced
using 2x150bp reads on an Illumina HiSeqX.

[EGAD00001003562 [19]]: It includes BAM files from 120 samples. These
samples were sequenced using 2x150bp reads on an Illumina HiSeqX.

But these datasets are not open access.

In general, I need a dataset with N positive samples to target diseases
and M negative samples. The samples may be genome and exome sequences
in order to perform different types of tests. Moreover, the sequences may
have good coverage and short reads.

Here, I schematically report the sequencing details of the real samples
collected to create a dataset that can be used in the set-up and testing phases
of the pipeline and individual tools. These samples refer to individuals.



3.2. DATASETS 17

SAMPLE COVERAGE READS LEN GEN/EXO

Trio mother 120x 150bp Exome

Trio father 120x 150bp Exome

Trio proban 120x 150bp Exome

Trio mother 40x 150bp Genome

Trio father 40x 150bp Genome

Trio proband 40x 150bp Genome

HD 120x 150bp Exome

SCA1 120x 150bp Exome

SCA3 120x 150bp Exome

SCA7 120x 150bp Exome

SCA1 40x 150bp Genome

SCA3 40x 150bp Genome

SCA7 40x 150bp Genome

Table 3.1: Dataset features

The DNA sample was randomly fragmented by Covaris technology and
the size of the library fragments was mainly distributed between 150bp and
250bp. The end repair of DNA fragments was performed and an ”A” base
was added at the 3’- end of each strand. Adapters were then ligated to
both ends of the end repaired/dA tailed DNA fragments for amplification
and sequencing. Size-selected DNA fragments were amplified by ligation-
mediated PCR (LM- PCR ), purified, and hybridized to the exome array
for enrichment. The rolling circle amplification (RCA) was performed to
loaded on BGISEQ sequencing platforms, and we performed high-throughput
sequencing for each captured library to ensure that each sample met the
desired average sequencing coverage.

I collect some real samples to build a useful and heterogeneous dataset.
The dataset is composed of negative samples, w.t.r. Repeats Expansion

diseases, and positive ones. The six negative samples, that they have not
pathological RE, are a trio (father, mother and proband) both genome and
exome sequences.

The other seven samples are positive with respect to the Huntington’s
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disease, Ataxia Spinocerebellar types 1, 3 and 7. The SCAs samples (genomes
and exomes) are used only for the validation phase of the whole pipeline
because they were sequenced at a later time.

3.3 Target deseases

Theoretical research was required about diseases caused by Repeat Expan-
sions. Following, I report the information about neurodegenerative diseases
of interest, related regions/genes involved and range of pathological expan-
sions [2].

On the following table, there are all diseases that the pipeline searches
within genome or exome sequences. For each of them are reported:

• Motif: the pattern repeated in the specific region, which could lead to
disease.

• Gene: the gene that corresponds to the reference locus in which to
search the expansion of each pathology.

• Locus: the position in which to search the expansion (chromosome and
relative position in it). Due to some difference in the reference region
among the various papers, during the analysis I use an error range of
± 100bp with respect to the indicated coordinates.

• Normal range: it’s the range of the number of repeats for which the
individual is negative for the relative disease.

• Premunition range: it’s the interval of values that indicates the number
of repetitions that are not pathological, but with high probability in
the next generation it could become so.

• Pathological range: it’s the range of values of the number of repeats
for which the subject is positive for the relative disease.

• Type: it specifics if the disease is exonic or intronic, recessive or dom-
inant. This indicates that if the disease is intronic it is necessary to
consider the complete genome. Furthermore, it is necessary to analyze
the presence of triplets in both alleles as if the disease is recessive to
determine whether the individual is sick or not, both must be patho-
logical.
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DISEASE MOTIF GENE LOCUS NORMAL PREMUNITION PATHOLOGICAL TYPE

SCA1 CAG ATXN1 6p22.3 6 - 36 37 - 43 44 - 83 D - E

SCA2 CAG ATXN2 12q24.12 15 - 31 34 - 220 D - E

SCA3 CAG ATXN3 14q24.3-q31 12 - 40 41 - 53 54 - 86 D - E

SCA6 CAG CACNA1A 19p13.2 4 - 18 21 - 33 D - E

SCA7 CAG ATXN7 3p14.1 4 - 19 20 - 32 33 - 300 D - E

SCA8 CTA ATXN8OS 13q21 15 - 50 51 - 70 71 D - E

SCA10 ATTCT ATXN10 22q13.31 10 - 29 29 - 800 ¿800 D - I

SCA12 CAG PPP2R2B 5q32 7 - 31 32 - 54 55 - 78 D - E

SCA17 CAG TBP 6q27 25 - 42 46 - 63 D - E

SCA36 CGCCTG NOP56 20p13 5 - 13 13 D - I

SCA Friedreich GAA FXN 9q21.11 8 - 33 34 - 89 90 R - I

FXTAS CGG FMR1 Xq27.3 1 - 54 55 - 200 200 D - E

HD CAG HTT 4p16.3 27 - 34 34 D - E

SBMA CAG AR Xq12 9 - 36 38 - 68 D - E

DRPLA CAG ATN1 12p13.31 3 - 35 36 - 47 48 - 93 D - E

OPMD GCG PABPN1 14q11.2 6 - 10 12 - 17 D - E

HDL2 CAG JPH3 16q24.2 6 - 28 29 - 40 41 - 58 D - E

BPES GCN FOXL2 3q23 14 - 18 19 - 24 D - E

HPE5 GCN ZIC2 13q32 15 16 - 24 25 D - E

MRGH GCN SOX3 Xq26.3 15 16 -25 26 D - E

CCHS GCN PHOX2B 4p13 20 25 - 29 D - E
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Chapter 4

Implementation

After software selection for the identification of the Repeat Expansion dis-
eases to focus on, the design and implementation of the computational pipeline
were done.

This method uses three different tools and the subsequent merge of the
results. So, this pipeline is tested both on genome and exome sequences. In
the following section, I describe the general workflow and the implementation
details of the whole computational pipeline.

First of all, appropriate input files and parameters setting had to be
created for the functioning of the Repeat Expansions identification tools.
These files are about the repeats’ database for each tool in order to find a
specific list of diseases related to RE (e.g. STRs decoy for STRetch and
variants catalog for ExpansionHunter). Next, a method was designed to
utilize and merge the results from these pre-existing programmes.

To achieve the goal of this project, the developed computational pipeline
is divided into the following main steps.

• Take in input the BAM file of the sample that will need to be analyzed
and the types of the sequence (genome or exome). Then the program
sorts and indexes this file using Samtools.

• Run independently ExpansionHunter, STRetch and Tredparse over the
sample file. At the end, three different output files are produced with
the REs identified from each tool.

• The useful information from each tool’s output is extracted and saved in
three specific data structures at the running time. Then, a comparison
is performed in order to select the common RE. Firstly, the program
selects all the RE from the three tools that are in the same regions
(w.t.r. chromosomes and start/end of specific region). These regions
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are those identified as being of interest, ie in which to look for REs
causing disease. The script uses the ExpansionHunter output as a
reference for the regions, as it reports all specific regions (even if the
RE number is 0) and therefore is a copy of the reference file used later.
This is for simplicity of implementation of the comparison process.
Then, the program performs another check w.t.r. common motif in the
selected REs.

At the end of this phase, there is a new data structure in which the
regions where RE have been detected in all tools are saved. In this
structure are reported the number of REs for each allele of Expan-
sionHunter and Tredparse, the p-value on STRetch on this region, the
related diseases/genes and the repeated pattern. It should be noted
that the reported p-value indicates the accuracy of the reported values
for that particular region, therefore it is used only as an evaluation
index. For the total value of the number of repetitions the outputs of
Tredparse and Expansion Hunter are used. Furthermore, in the super-
imposition of the regions an error range of + -100 is used as even in
literature the values do not always coincide.

• The program computes the final values of REs for each allele as the
average between ExpansionHunter and Tredparse. Considering that
some of the diseases caused by repeat expansion are recessive, it is
necessary to analyze the two alleles separately.

First of all, the type of pathology (recessive or dominant) is checked for
each RE reported from the previous filtering phase. Subsequently, for
each REs the number of repetitions obtained is compared with the ref-
erence intervals (different for pathology). If the number of repetitions
of both (recessive case) or at least one allele (dominant) falls within
the alarm range then the sample is positive for that particular disease.
Also, it is verified if one of the two alleles is instead in the premuta-
tion area. In the end, only the REs that are within one of these two
reference intervals are saved.

• The final result is saved in two different output files for pathological
and premutation cases.

The differences between exome and genome analysis are only at the level
of the single tools and in considering or not the intronic regions in the final
comparison.

The following figure 4.1 shows an example of output for each tool used.
Even though the tools use different approaches to counting repeats, they all
output similar information.
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In the case of ExpansionHunter, all the REs found in the input database
are analyzed and reported, if an expansion is not present and therefore the
number of repetitions is equal to that of the reference genome (reported in
the REF parameter of the INFO field) is indicated with . in the ALT field.
Therefore, in this file the fields of interest are: ALT which reports the value
of the repeat expansion of each allele, INFO.RU with the repeated motif and
INFO.REPID which reports the corresponding gene.

Instead, in the case of Tredparse, only the detected expansions are re-
ported. The fields of interest are: ID in which the associated pathology is re-
ported, ALT in which all the expansion is present, INFO.MOTIF which iden-
tifies the pattern of repeated bases and INFO.REF in which the value of the
REs can be found for each allele in the format REF=val allele1, val allele2.

In the latter case, the information reported by STRetch is slightly differ-
ent. In detail, in addition to the common ones, it reports the pattern adduced
information(repeatUnit), the number of repeated units in the reference (re-
fLen), the number of STR readings assigned to that locus (locusCoverage),
z score testing for outliers (outliers), adjusted p-value that measures if this
locus is expanded significantly compared to other samples (p adj ), the esti-
mated allele size in bp inserted compared to the reference (bpInsertions) and
the estimated total allele size in repeated units (repeatUnits). Due to the
different information reported, the result produced by this tool is used only
as a comparative index of the goodness of the result obtained in a certain
area (p value).

From the intermediate outputs, the final result is reported in two files like
the one below.

The number of repetitions for each RE extracted are compared with two
different intervals, different for each specific disease. The first is an alarm
interval that identifies the values for which REs become pathological (in this
case it is necessary to analyze recessive and dominant cases separately). The
second concerns the values for which REs are not pathological, but could
become so in future generations of the individual. In this case, the two
alleles are healed independently.

Therefore, the final outputs of the pipeline are two files (for each sample)
different for the two analyzed ranges. As shown in the figure 4.2, in each
one is reported the pathology, the number of repetitions for each allele and
the associated pvalue. In both cases, in the last field, the allele (or alleles)
that have a pathological or premutation value for that specific gene is also
highlighted.
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all, the main function of this class, which is called in the main function, gives
us a simple user interface for entering the necessary parameters and paths.
So, after an input check, the execute tools and execute comparison functions
are called. Respectively, they are the main functions for the running tools
and results comparison tasks.

Tools

This class takes care of the first task of the pipeline. In detail, once an
instance is initialized, the workflow is the following.

• Run the sort.sh bash script using the subprocess.call Python library
function. This script performs the Samtools sorting of the sample BAM
file. This task (together the indexing) is useful for the optimization of
the tools’ execution. The sample path is gaven in input to the script
by $ reference.

• Run the index.sh bash script as the step above.

• Run ExpansionHunter tool with a specific bash script run EX.sh. The
sample name, project path and sample sequence type are provided as
bash input directly from the script calling by Python as before. The
bash script needs some input files for the tool’s execution, they are in
the tools folder.

• Run Tredparse tool by a specific bash script run TP.sh. The sample
name, project path and sample sequence type are provided as bash
input directly from the script calling by Python. The bash script needs
a file with the list of the sample. It is written by Python in this function.

• Run STRetch tool by a specific bash script run STR EX.sh. It exploits
the exome pipeline for both exome and genome sequences. In the exome
case, the bash script uses a BED file with the exonic regions specified.
The sample name, project path and sample sequence type are provided
as bash input directly from the script calling by Python (as before).

Compare

This class takes care of the last task in the pipeline. In detail, once an
instance is initialized, the workflow is the following.

• Import the output files from the tools execution by the functions im-
port files EH (.vcf), import files tred csv (.csv and then .vcf), import files str
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Then, the bash scripts folder contains all the bash scripts needed for the
tools execution or utility tasks. In particular, there is one script for each tool
with the command for the execution and some command to rename or move
the outputs in the correct folder. Also, there are other two scripts for sorting
and indexing the bam file. Then, the tools folder holds the three tools’ folder
in a compressed version.

The last are the input folder, that contains all the input files from the
tools that we intend to analyze, and the output where the output files from
the whole pipeline are saved. The program gives in output two .csv files that
contain the list of all the possible pathological REs and all the premutation
REs, respectively.

In addition to the main folders, the Makefile and requirements.txt files
are made available. Both of them can be useful to install automatically the
minimum requirements and packages necessary for proper pipeline execution.
The alternative is to install the Python libraries and used tools separately.
The dependences and requirements are:

• Python with version greater or equal to 2.7.

• Python libraries: os, subprocess, csv, sys, json, re, vcf, pandas, gzip, ast
and pyrecord.

• Expansion Hunter program: the compressed package is in the tools
folder. It may be installed by cmake command. This type of installa-
tion required a gcc version greater or equal to 5.1.

• STRetch program: also in this case, the compressed package is in the
tools folder. It required a Java version greater or equal to 1.8 and the
program can be installed by ./install.sh command.

• Tredparse is just in a executable version. The only thing is the unzip
of the Tredparse folder.

• Samtools for the sorting and indexing tasks.

For example, an instance of the pipeline execution is shown in the figure
4.7. You can see in the first three lines the insert of the required inputs and
then the various steps of the execution.
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Chapter 5

Experimental results

In this chapter we show all the tests done. In particular, in Section 5.1 we
report the parameters tunning and the relative trials. Then, we describe the
results obtained in the tests with the real samples, both exome and genome
sequences.

5.1 Parameters

An important part of the design phase is the tuning of the parameters for
the three tools. For this task we used the part of the dataset composed of
the negative samples for which there is no pathological expansion and the
positive Huntington sample for which the number of repeated triplets in a
specific region is known from the medical record (pathological on allele2 with
47 repeats).

The following tests were done to set up some parameters of the pipeline.
Each selected tool was run with different parameters setting in order to choose
the best one.

Initially, we started from Tredparse as it does not require the tuning of
any parameters. The only option to be set in the input is the version of the
reference genome with the parameter –ref hg19 in this case. The samples
selected from the test dataset were analyzed with Tredparse in order to obtain
the output files with the counts of the triplets in the regions indicated in the
database used (coinciding with those in the literature used as a reference by
this pipeline).

Therefore, the Tredparse output was used as a reference point for the
three negative samples and for the Huntington positive one, for which the
values found for the repeat expansions correspond to those are reported in the
medical record (Tredparse: allele1=17, allele2=45; pathological on allele2).
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I analyze all the samples both exome and genome as it is necessary to find
ad hoc parameters for both types of sequences (see Section 5.2).

Now, considering the other two tools, I report the tested parameters and
the input files created specifically for their correct functioning in relation to
the objectives of this pipeline. In addition to this, in this phase a reference file
was also created with the intervals of pathological repeats and premutation,
regions associated with the individual diseases and the relative triplets. This
file is used at the point in the pipeline where the results obtained by the
three tools are compared.

Expansion Hunter

The parameters of Expansion Hunter can be divided into two groups. The
first one are the required parameters that are shown below.

− −r e ad s <a l i g n e d r e ad s BAM/CRAM f i l e /URL>
− − r e f e r e n c e < r e f e r e n c e genome FASTA f i l e >
− −v a r i a n t−c a t a l o g <JSON f i l e s p e c i f y i n g v a r i a n t s to genotype>
− −output−p r e f i x <P r e f i x f o r the output f i l e s >

These parameters refer to the management of input and output files. The
reads option takes the BAM or CRAM file of the sample which will be ana-
lyzed. In this case, I work only with a local BAM file (no by URL). Reference
takes the reference genome in FASTA format with hg19 version. variant-
catalog is used to define the path of the custom input file with the list of
the only repeats that the program checks in the specified regions trying to
identify them and counting the number of repetitions. It is a JSON file in
which the repeats, that are related to the diseases of interest, are defined
by: start/end position of the target region, the motif of repeats, name of the
disease and name of the relative gene. An example of this file is shown in
the figure 5.1.

The second group include the optional parameters:

− −s ex <m or f>
− −min−l o cu s−cove r age < i n t>
− −r eg i on−e x t en s i on−l e n g t h <bp>
− −a n a l y s i s −mode <s e e k i n g or s t r eaming>
− −t h r e ad s <number o f th r eads>

The first option sex defines if the sample refers to a male or female individual.
The default is female. This parameter is only important for diseases affecting
the X and Y chromosomes. In this project some diseases affecting repeat
expansions on areas of these chromosomes (e.g. fragile X) are considered, so
it is necessary to set it according to the sample being analyzed.
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way. So, the sorting and indexing of the BAM file are required.
The last threads option defines the numbers of threads to can be used

to accelerate the analysis of large variant catalogs. But, but considering
that the repetition database is not very large, the default value (equal to
1) is sufficient. The analysis is however fast both on the exome and on the
genome.

At the end, the final setting may be the following:

− −r e ad s s amp l e s o r t e d . bam
− − r e f e r e n c e genome . f a
− −v a r i a n t−c a t a l o g v a r i a n t s . j s o n
− −output−p r e f i x r e p e a t s s amp l e
− −r eg i on−e x t en s i on−l e n g t h 500
− −a n a l y s i s −mode s e e k i n g

So, after the execution of Expansion Hunter over all the selected samples,
I can conclude that with these chosen parameters, the results close to the
Tredparse one.

The parameters were tested mainly on exomic sequences as the most re-
liable real sample (Huntington) is exomic. As far as the analysis of genomic
sequences is concerned, the chosen parameters still produce results in agree-
ment with the reference ones obtained with Tredparse. The only trick is to
insert regions and intronic repeats in the JSON file that Expansion Hunter
uses as a reference database for searching for repeat expansions.

STRetch

In general, the command to run STRetch has the following format. After
the tests reported in Section 5.2, I use the WGS pipeline for the analysis of
the BAM input file. In the case of exome sequences, it takes in input also
the list of the exom regions.

t o o l s / b i n / bp ipe run p i p e l i n e s / STRetch wg bam pipe l i ne . g roovy
−p bwa p a r a l l e l i sm=<i n t> −p EXOME TARGET=” t a r g e t r e g i o n . bed”
sample . bam

This tools required the following parameters:

−p bwa p a r a l l e l i sm = < i n t>
−p EXOME TARGET = ” t a r g e t r e g i o n . bed”
i n p u t r e g i o n s = ” STR l i s t . bed”

The bwa parallelism option allows us to run multiple instances of BWA
in parallel to speed up the read extraction and mapping time. This option
only affects the time complexity of the process, but not the goodness of the
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sequencing costs, data storage costs and computation time or costs. Most
of the diseases of interest caused by Repeat Expansions are exomic. But
it is necessary to take into account that some are intronic so sometimes it
is necessary to analyze the entire genome to have a more complete clinical
picture.

Expansion Hunter and Tredparse are WGS tools. Instead, STRetch uses
different pipelines to be able to analyze both exome and genome, but with
very different computational costs regarding the WES pipeline. Theoreti-
cally, it is interesting to be able to use the same pipeline on exomic sequences
as precisely as for the genome.

With these tests we want to understand if it is reasonable to apply these
tools and therefore also the complete pipeline to exomic sequences.

The part of the dataset composed of the three samples negative for RE
diseases was considered, as they are both exomes and genomes for each sam-
ple. For these tests, positive samples are not necessary in which it is sufficient
to compare the different outputs only to understand the common regions de-
tected and the deviation in the number of repetitions detected.

Firstly, I run each tool independently on the three exomes and on the
three genomes from the same sample. The parameters used in the various
executions are those tested and reported in the next section. Subsequently,
considering each tool individually, I compare the results for each sample. I
extract the common regions and repeat counts between exome and genome.
Always bearing in mind that some values will not be present in the exome
sample outputs as they concern intronic regions.

Before reporting and discussing the analysis made on the results, we can
make some considerations regarding the execution of the tools on the different
samples. Looking at the computation times, it can be seen that exome
analyzes are faster (about half the time) for all three tools. This is much
more evident in STRetch because it is computationally more expensive as it
checks for the presence of any type of repeated patterns. Due to the smaller
size of the sample files, also with regard to the sample preparation phase
(sorting and indexing of BAM files), the exome is more convenient.

However, it is necessary to check that the results are in any case compat-
ible and precise as in the case of genomic analyzes.

Now, I report for each tool the analysis performed on one sample and
some observations. For each tool, the files with the common repeats from the
comparison of genome/exome results are shown w.t.r. each sample. Also in
the tables, there are the number of the repeats identified in genome sequences,
exome sequences and the common repeats.
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Expansion Hunter

The values reported in table 5.1, are computed by subtracting from the total
number of possible repetitions to be found (equal to 23, see file reference),
the number of repetitions not found or with a count equal to 0. Instead, the
number of common detected repeats was calculated by counting the repeats
present in both the genome and exome with the same region and motif. This
process was done thanks to a Python script that compares the two output
files. The generated files are shown above.

Looking at the file showing in figure 5.4, the common values it can be
seen that Expansion Hunter detects many common repetitions both in the
genome and in the exome (see table) and the values are almost the same.
Therefore, it can be said that this tool works well both genome and exomes,
unless there are some uncertainty and intronic regions not detected.

SAMPLE GENOME EXOME COMMON

Son 20 14 13

Mother 19 17 15

Father 20 15 14

Table 5.1: Values of the repeat expansions identified by Expansion Hunter.
They are respectively in genomes, exomes and then the number of the com-
mon repeats between them.

Tredparse

SAMPLE GENOME EXOME COMMON

Mother 20 21 20

Father 21 20 17

Proband 19 18 18

Table 5.2: Values of the repeat expansions identified by Tredparse. They
are respectively in genomes, exomes and then the number of the common
repeats between them.
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The numbers reported in table 5.1, of Repeat Expansions in genome se-
quences, in exome sequences and the numbers of common detected repeats
are computed as in the case of Expansion Hunter.

The generated files are shown below.
Looking at the file showing in figure 5.5, the common values and the num-

ber of the REs in the genome/exome samples, it can be seen that the number
of repeated expansions it detects are nearly identical between genome and
exome. Comparing these results with those obtained with Expansion Hunter
it can be seen that the ability of Tredparse to identify REs in exomic se-
quences is greater. Thanks also to the use of a larger database that considers
all the possible triplets within the regions defined previously for the diseases
of interest.

STRetch

STRetch already works with both exome and genome. In this case, the
analysis is a bit different because this tool works with two different pipelines,
one for exome sequences (WES) and one for genome sequences (WGS). We
can note that at the code and input level, there are no substantial differences
between the two types of pipeline. Therefore, it was decided to investigate
the effective effectiveness in the use of a single pipeline in the face of a high
number of common REs detected in the genome and exome of the same
sample. Also, in order to optimize the time complexity of the analysis.

SAMPLE SCRIPT GEN SCRIPT EXO GENOME EXOME COMMON

Proband WES WES 221 18 2

Proband WGS WES 84 18 17

Proband WES WGS 221 81 15

Proband WGS WGS 84 81 75

Table 5.3: For each test, it reports the pipeline used for genome and ex-
ome analysis, the number of repeats for genome and exome samples and the
number of the common repeats between them (region and motif).

First of all, some preliminary remarks. Looking at the individual output
files for each pipeline, it can be seen that the other number of repetitions
detected by the WES pipeline in the genome is an error. In fact, many
of these repetitions are composed of only one base. So it can already be
concluded that using the WES pipeline on genomic sequences is a mistake.
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Furthermore, it should be noted that tests have been done on all chromosomes
and not only in the defined regions of interest in this project. This is to have
a more complete comparison. Also, we should remember that STretch checks
for any type of repetition in the sequence to be analyzed.

Given the results obtained in the third case, that is what is indicated in
the documentation as a standard procedure, it can be noted that the REs
identified in the genome are numerically much greater than those identified
in the exome. However, the percentage of exomic REs also present in the
genome is almost 95%. Now, let’s compare the other interesting case with
this one, the last one, where the WGS pipeline was used for both types of
sequences.

In this case, the percentage of common repetitions is almost equal to that
of the previous case (93%). So even at the computational level, it is possible
to use the WGS pipeline also on exoma. In addition to having a high number
of repetitions in common, looking at the extracted files by superimposing the
outputs of the genome and exome, it can be seen that the detected values
are very similar if not the same.

The only differences concern for the intronic regions, obviously not con-
sidered in the exomic analyzes. The genome can be analyzed for greater
completeness and for the detection of repeat expansions in intronic regions.
Regarding STRetch, it was decided to use the genomic pipeline for both
genome and exome processing. However, this guarantees a good result with
reasonable computation times. In figure 5.5 are reported the relative files.

At the end, it can be concluded that the analysis can also be done on
genomic data, but with some implementation and theoretical shrewdness.

5.2.2 Whole pipeline tests

When the pipeline was implemented entirely, its correctness and performance
are tested on real positive samples both exome and genome.

The samples used to verify the whole pipeline are reported below. The
detected REs are pathological for a specific disease if they are in the cor-
responding region and the number of repeats falls within the range of not
normality. The samples below, being positive, possess specific REs also re-
ported on the list.

The samples are:

• Exome sequence positive to Huntigton’s disease. Pathological RE in
the HTT gene (chromosome 4) with number of repeats greater than 35.
This diseases is dominant and exonic.
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• Exome and genome sequences positive to Spinocerebellar Ataxia of type
1 (SCA1). Both samples have pathological RE in the ATX1 gene (chro-
mosome 6) with number of repeats between 44 and 83. This diseases
is dominant and exonic.

• Exome and genome sequences positive to Spinocerebellar Ataxia of
type 3 (SCA3). These sequences have pathological RE in the ATX3
gene (chromosome 14) with number of repeats between 54 and 86. This
diseases is dominant and exonic.

• Exome and genome sequences positive to Spinocerebellar Ataxia of type
7 (SCA7). Both samples have pathological RE in the ATX7 gene (chro-
mosome 3) with number of repeats greater than 33. This pathology is
dominant and exonic.

The positivity of these samples is verified.
To test the accuracy of the developed method, it was run on each sample

and then compared the output with known pathology (and premutation)
results.

After the analysis of these samples using the implemented method, two
separate files are reported in the output for each of them. The first file reports
the list of REs detected as pathological after all the various comparisons made
by the pipeline, while the second file reports the list of REs recognized as
being in the premutation zone. This last file is important as a medical result
for future generations of the individual whose sample is being examined.

Both output files report the same information about the REs in their list:

• Pathology: name of the pathology associated with the Repeat Expan-
sion.

• Motif: repeated nucleotide sequence.

• Repeats, allele 1: number of the motif repetitions into the specific
region in the first allele. This value is the mean of the number of
repeats computed by Expansion Hunter and Tredparse, on the first
allele.

• Repeats, allele 2: number of the nucleotide sequence repeats into the
specific region in the second allele. The value is computed in the same
way as above but w.t.r. the second allele.

• P value: This value is reported in output by STRetch program. Because
of a different RE identification approach, this tool doesn’t consider the
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two alleles separately, and the results reported are statistics. Therefore,
this value was considered separately from the repeat counts and it’s
used as a measure of the goodness of the results about the reported RE
with respect to the region in which it is found.

• Pathological/Premunition allele: For each RE identified, the method
checks whether the associated disease is recessive or dominant. Then
it checks whether at least one (dominant) or both (recessive) repeat
values fall within the pathological or premutation ranges.

The results obtained on the exome and genome sequences of the above
samples are shown below in tabular form. For each sample, the information,
that are contained in the respective output files after their analysis by the
developed method, is reported in the tables. The results are then accompa-
nied with some remarks due to the pipeline reported different results between
exome and genome sequences.

Exome

SAMPLE DISEASE MOTIF ALLELE 1 ALLELE 2 PAT ALLELE

HD HD CAG 17 44 Allele 2

SCA1 SCA1 CAG 25.5 49 Allele 2

SCA3 SCA3 CAG 19 51.5 Allele 2

SCA7 SCA7 CAG 7 46.5 Allele 2

Table 5.4: Patological REs identified by the pipeline in the exome samples.

Looking at the results obtained, it can be seen that the pipeline correctly
detected pathological REs in the correct regions and with the expected values,
as shown in the table. In fact, the pathologies associated with these REs
(second column) are the same as those known for each sample (first column).

It should be noted that since all these diseases are dominant, each sam-
ple is positive even if there is only one allele per sample that falls into the
pathological range (last column). In detail, all samples are pathological with
respect to the second allele of the gene whose mutation leads to the specific
disease. In addition, the counts of each reported repetition are validated by
the corresponding p value calculated in that region by the STRetch program.
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Finally, concerning the REs that fall in the premutation zone, none was
detected and the respective output files are empty. Therefore, no value was
reported in the table.

Genome

For the genome sequences, the values reported for each allele are those cal-
culated from the pipeline even if they are not pathological. These REs refer
to the known diseases for each sample.

In these cases, the output files of the whole pipeline are both empty, so
no REs were detected either pathological or in the premutation zone. In fact,
for all the genome samples the pipeline didn’t detect any REs diseases.

SAMPLE MOTIF ALLELE 1 ALLELE 2

SCA1 CAG 32.5 40

SCA3 CAG 19 49.5

SCA7 CAG 7 31.5

Table 5.5: Values of some specific REs identified by the pipeline in the genome
samples.

This fact is due to the values found by the two tools on the possible
pathological allele being quite different and the average is below the ranges
of pathology and even premutation.

In fact, looking at the individual output files of the tools, before the
comparison made by the pipeline, the following observation can be made. It
is possible that the different tools used have different sensitivity, especially in
the face of lower genome sample coverage. Indeed, Expansion Hunter results
alone are quite correct and would detect pathological REs but Tredparse
results are much lower.

The reason why, even though the tools and pipeline were designed to
analyze both exome and genome sequences, maybe lies in the different degree
of coverage.

It can be seen that with other samples in the dataset the results obtained
on the two sample types are quite good, but in the case of positive sequences,
correct REs are identified but on average with lower values in the genome
than in the exome. Samples sequenced as genomes have significantly less
coverage than the same samples sequenced as exomas. This means fewer
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reads mapping each position of the genomic sequence and less accuracy in
the final aligned sequence. Thus, it can be assumed that the identification
and evaluation of the number of repetitions of a given genomic sequence in
a specific region are more difficult in genomic sequences.

In conclusion, even if the pipeline is developed in order to identify in the
best way also in genomic sequences, in this case it has not led to satisfactory
results.
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Chapter 6

Conclusions

This project followed the findings reported in the publication [21] in which a
collection of bioinformatics tools were used for the identification and analysis
of Repeat Expansions present in the samples under investigation. The results
of this study highlight the importance of using multiple tools to provide
redundancy in the data analysis pipeline.

To conclude, we would like to focus on some important aspects that
emerged during the development of this pipeline, identifying positive and
critical aspects.

First of all, regarding the design and development of the method:

During realization, no particular problems were encountered at the de-
sign and development level. Many tests were carried out to test the tools and
search for those most useful for the purpose of the pipeline. In addition, par-
ticular care was taken in the study and subsequent setting of the parameters
so that the method could be used with both genome and exome sequences,
as the programmes used were not set up.

One of the difficulties encountered relates to the use and integration of the
results of the STRetch tool with the rest of the pipeline. In fact, there were
many problems in the testing phase of STRetch at the executive level and
in setting up the different pipelines used in the programme. Moreover, the
output obtained is structurally different from those obtained by the other
tools. The RE identified are approximately the same, but the counts are
reported in statistical terms. The results were nevertheless taken into account
because it provides a different view in the analysis of RE. After several tests,
it was decided to mainly use the other two tools for the evaluation of Repeat
Expansions.

It is important to highlight the need for a pre-processing phase of the
BAM file with the genome or exome sequence of the sample. In this phase,
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the sorting and indexing of the file containing the aligned sequence are to
be carried out. Moreover, after the performance verification step of the
developed pipeline, it was noticed that it is necessary to have samples with
high coverage in order to detect and evaluate the length of expansions more
accurately.

Then, compared to the results obtained in tests with real samples:

• The samples used are related to individuals.

• Let us consider the part of the dataset with which parameters were set
for both exome and genome sequences. It can be seen that there were
no false positives compared to the negative samples used.

• Tests carried out on exome sequences positive for RE diseases have
produced excellent outcomes reporting 100% of the expected results.

• Tests on genome sequences did not detect the expected pathologies of
the samples analysed. However, it can be highlighted, by looking at the
reported data, that the RE counts detected are very close to the patho-
logical ranges. Future tests are possible, considering different coverage
and improvements in the pipeline. It is worth noting that genome se-
quences with 40x coverage are already very high and expensive in terms
of time and cost of analysis.

• From a performance point of view, it can be seen that, with sequences
matching the requirements (coverage and sequencing type), the analy-
sis is fast and on a large gene pool. In fact, as desired, the identification
of REs using the developed method can be performed in approximately
10/12 hours (starting from raw BAM files) and considers many candi-
date genes in parallel.

In conclusion, the developed method is able to accurately identify Repeat
Expansions, giving them pathological significance.

The degree of reliability on exomic sequences is very high, but future
improvements and possible tests could be made on its use with genomic
sequences. Indeed, by refining this part too, it is possible to analyse sam-
ples against intronic diseases in an efficient way. Possible trials on genomic
samples involve different levels of coverage and types of sequencing. The pa-
rameters used are set to the optimum. Furthermore, it is possible to examine
the possibility of other methods for merging the results obtained from the in-
dividual tools, since Expansion Hunter has a higher accuracy than Tredparse
and STRetch.
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up with me even at times when I was most anxious.

A big thank to my friends who have made this path lighter with their joy
and the sharing of anxieties and fears. Thanks for the comparisons, but also
for the breaks in company and the jokes.

Thanks go to Professor Vandin, who with his professionalism advised and
supported me during my thesis project. I would like to thank the company
R&I Genetics that gave me the opportunity to do my internship and de-
velop my thesis project in a positive and challenging environment. Finally,
I thank all the friends and relatives who have helped, encouraged and made
me smiling.


	Introduction
	Objectives
	Tools and dataset
	Tools analysis
	ExpansionHunter
	STRetch
	SuperSTR
	exSTRa
	Tredparse

	Datasets
	Target deseases

	Implementation
	Experimental results
	Parameters
	Results on real samples
	Genome and exome tests
	Whole pipeline tests


	Conclusions
	Acknowledgements

