
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea in Fisica

Tesi di Laurea

Heavy ion fusion reactions far below barrier and their

astrophysical implications

Relatore Laureando

Prof. Giovanna Montagnoli Leonardo Palombini

Correlatore

Prof. Alberto Stefanini

Anno Accademico 2021/2022



Abstract

Fusion reactions between heavy nuclei have been a hot topic in nuclear physics since the first experi-
ments took place in the 80s: amidst the plethora of subjects involved, the study of low energy collision
dynamics is one of the most prolific and interesting fields of study, especially because of its tight con-
nection with stellar thermonuclear processes. In this context, the experimental work presented in this
thesis aims to extend the current knowledge about fusion between medium-light nuclei at energies far
below the Coulomb barrier, particularly looking for the hindrance phenomenon. The investigation of
medium-light systems helps understanding the behaviour of the lighter ones, especially the processes
of carbon and oxygen burning in the late stages of star evolution. This thesis work consists of the
experimental study of such medium-light systems, involving 12C and heavier nuclei like 24-26Mg and
28Si, more specifically the fusion reaction 12C+26 Mg. The measured cross sections are discussed and
compared to the predictions of current theoretical models.

Structure of the work: at first, an overview of the theoretical models adopted is provided; then,
a description of experimental setup and computational instruments used; data analysis, results and
conclusions will end the work.
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1 Theoretical background

1.1 Introduction

Heavy ion fusion is the reaction that gets two colliding nuclei, heavier than alpha particles, to bind
together and create a composite nucleus. While getting close to each other, ions are influenced by
two opposite forces: Coulomb repulsion, due to the positive charge of their protons, and nuclear force,
that tends to attract nucleons together. As it’s known, the latter is a short range interaction: that
means that the two nuclei need to have enough kinetic energy to “climb” the electrostatic potential
and get close enough, in order for fusion to occur. So, from a classical mechanics point of view, all
ions with less energy than the Coulomb potential barrier shall simply bounce back. However, in the
realm of quantum mechanics, there’s a certain probability that these nuclei will penetrate the Coulomb
barrier, due to the tunneling phenomenon. If it wasn’t true, most of the thermonuclear reactions in
stars wouldn’t take place, since they work in the classically forbidden energy region.

1.2 Models for general heavy-ion fusion

The purpose of this section is to illustrate the standard models used to analyze the process of heavy-
ion fusion, focusing on the sub-barrier energy regimen. During the last 60 years, theoretical and
computational methods evolved together with experimental evidences: for this reason, models are
described in a progression of increasing completeness and accuracy.
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1.2.1 Simple ion-ion potential model

The first approach to get a description of this phenomenon is to assume both projectile and target
nuclei to be structureless and spherical-symmetric. In this approximation, a simple central potential,
accounting for nuclear and Coulomb interactions, can be employed [1][2]:

V (r) = VN (r) + Vc(r) (1)

where Vc(r) =
ZPZT e2

4πϵ0r
is the standard Coulomb potential (valid in regions of non-overlapping nuclei)

and VN is usually a phenomenological potential. For example, the Wood-Saxon potential is widely
used [1][3]:

VN (r) = − V0
1 + exp[(r −R0)/a]

(2)

where V0 is well’s depth, R0 can be regarded as the well’s radius (in this case, it’s the sum of the
radii of the colliding nuclei) and a is the “diffuseness”. Another way to obtain VN is the so-called
double-folding procedure [1]:

VN (r) =

∫︂
dr1dr2vn(r1 − r2 − r)ρP (r1)ρT (r2) (3)

where vn(r1 − r2 − r) is the nucleon-nucleon interaction.

Sometimes, a purely phenomenological imaginary part is added to standard V (r) [1][2][3], in order
to account for the absorbed incident flux due to fusion reaction. This VOM = V (r) − iW (r) is often
regarded as the optical potential [4]: its use isn’t mandatory, but it’s a consequence of the choice of
the boundary conditions (see later).

The global Hamiltonian for this system, in the CM frame of reference, is:

H = − ℏ2

2µ
∇2 + V (r) + (−iW (r)) (4)

which, in the more natural spherical coordinates (r, θ, ϕ), is written, in the reduced form (i.e. fixing
the angular momentum value) [1]:

H = − ℏ2

2µ
r−2 ∂

∂r
(r2

∂

∂r
) +

ℏ2 l(l + 1)

2µr2
+ V (r) + (−iW (r)) = Tr + Veff (r) + (−iW (r)) (5)

where l is the quantum orbital number, and Veff is the effective potential accounting for the centrifugal
term. It’s easy to see that this term, for higher values of l, decreases the depth of potential’s “pocket”
until the potential itself becomes purely repulsive:

(a) Total internuclear potential V (r). (b) Effective potential Veff (r), with different values of l.

Figure 1
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the value lcrit where this happens will be useful later, because it imposes an upper limit to the
configurations that allow the fusion reaction.

We get to solve the usual Schrödinger equation (H − E)ψl = 0. A standard choice for the boundary
conditions is [1][3]: {︄

ψl(r) ∼ rl+1 r → 0

ψl(r) ∼ H
(−)
l (kr)− SlH

(+)
l (kr) r → ∞

(6)

where H
(−)
l and H

(+)
l are respectively the incoming and outgoing Coulomb wavefunction, Sl is the

nuclear scattering matrix and k =
√︂

2µE
ℏ2 is the usual wavenumber for E (energy in the CM).

From this calculations, we’d like to extract the cross section for the fusion reaction, whose general
formula is [1][5][6]:

σfus,l =
π

k2
(2l + 1)Tl(E) (7)

for the lth partial wave, where Tl is the associated transmission coefficient.

In this case, fusion cross section (zero-spin nuclei) is calculated from (7), using Tl = 1− |S2
l |, as:

σfus =
π

k2

lcrit∑︂
l=0

(2l + 1)(1− |Sl|2) (8)

Another possibility is to apply the IWBC (Incoming Wave Boundary Conditions) [1]. This choice
allows to avoid using the imaginary potential, under the further assumption of “strong absorption”
(the incoming flux doesn’t bounce back) [3]. The new condition is:

ψl(r) =

√︄
k

kl(r)
Tl exp

[︃
−i

∫︂ r

rabs

kl(r
′)dr′

]︃
r < rabs (9)

where kl(r) =
√︂

2µ
ℏ2 (E − Veff (r)) is the local wave number, rabs is the inter-nuclear distance where

absorption starts, and T̃ l is the transmission coefficient. Here, the formula for cross section is computed
as before.

Since the actual analytical solution of this equations may be quite laborious (sometimes impossible), a
number of approximations and computational approaches has been developed. One of the most used
was proposed by Hill and Wheeler (mid-50s) [7]: the Coulomb barrier is approximated by an inverted
harmonic potential (inverted parabola) of the form [6][7]

Veff (r) ≈
1

2
V ′′(r = RB,l)(r −RB,l) (10)

Defining ωB,l =

√︃
−V ′′

eff (r=RB,l)

µ , calculations for tunneling probabilities yield this formula for the

transmission coefficent [2][6]:

Tl =

[︃
1 + exp

[︃
2π

ℏωB,l
(Veff (r = RB,l)− E)

]︃]︃−1

(11)

which can be substituted in (7), and finally, replacing the sum of l with an integration (assumption
of large number of possible l ≤ lcrit) [2]:

σfus(E) =
ℏωB

2E
R2

Bln

[︃
1 + exp

(︃
2π

ℏωB
(E − VB)

)︃]︃
(12)

considering that, for l ≤ lcrit, RB and ωB are substantially independent from l. This is sometimes
called Wong formula.
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Comparing this result with the one obtained by numerical solution of the exact model, for a given
system, an excellent consistency is verified.

(a) Parabolic approximation of Veff barrier. (b) Cross section prediction comparison using exact poten-
tial vs Wong formula, for the reaction 58Ni+ 58Ni. Courtesy
of ref. [2].

Figure 2

1.2.2 Potential model: comparison with experimental data

This model is good at predicting σfus for energies above VB, but largely underpredicts it in many
systems when exploring the sub-barrier energy region [1][2][3]. Other potential parametrizations (ex.
Akyuz-Winther pot., ...) brought similar results.

(a) Excitation functions for 14N+12C and 16O+154Sm, taken
from ref. [1]: the first follows potential model’s predictions,
the latter shows a large positive difference.

(b) Comparison of reactions between 40Ar and
112,122Sn, 144,148,154Sm. ECM is normalized to barrier
height. Taken from ref. [8].

Figure 3

This phenomenon was called enhancement. It appears with different magnitudes (spanning up to sev-
eral orders of mag.) or sometimes not at all, presenting clear differences also between “neighbouring”
systems: this suggests a substantial dependence on nuclear structure, low-level excitations, transfer
channels and internal degrees of freedom in general [2][8]. That brought to the development of the
Coupled Channels model.

1.2.3 Coupled Channels model

This model was developed to account for internal degrees of freedom (DoF), and does so defining a set
of generalized coordinates (r, ξ), where ξ represents internal DoF. The new Hamiltonian is [1][2][8]:

HCC = Tr + Veff (r) +H0(ξ) + VC(r, ξ) = Hr +H0(ξ) + VC(r, ξ) (13)
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where H0(ξ) is the hamiltonian relative to the nuclear structure and VC(r, ξ) is the potential that
couples nuclei’s relative motion to the reaction channels.
Here a simplified version of the involved calculations, proposed by [2] and [8], will be shown: in
real applications, the model is numerically implemented in a computer program called CCfull [9].
Nevertheless, this treatment effectively highlights the influence of coupling in fusion dynamics.

The Schrödinger equation is, as always:

(HCC − E)Ψ(r, ξ) = 0 (14)

The total wavefunction can be decomposed as:

Ψ(r, ξ) =
∑︂
k

ψk(r)ϕk(ξ) (15)

where ϕk(ξ) are the eigenfuctions of H0(ξ), satisfying H0(ξ)ϕk(ξ) = ϵkϕk(ξ). In the next passages,
Dirac bra-ket notation will be used for readability. (14) can be rewritten using (15) and projected
onto ϕk in the following way:

⟨ϕk| (HCC − E)
∑︂
k′

|ψk′⟩ |ϕk′⟩ = 0 →
∑︂
k′

|ψk′⟩ ⟨ϕk|HCC − E |ϕk′⟩ = 0 (16)

Expanding HCC and computing the individual terms:∑︂
k′

(δkk′(Hr + ϵk′ − E) + ⟨ϕk|VC |ϕk′⟩) |ψk′⟩ = (Hr − E) |ψk⟩+
∑︂
k′

Mkk′ |ψk′⟩ = 0 (17)

where Mkk′ = δkk′ϵk′ + ⟨ϕk|VC |ϕk′⟩. Considering the case of a factorizable VC [8]:

⟨ϕk|VC |ϕk′⟩ = F (r) ⟨ϕk|G(ξ) |ϕk′⟩ ≈ F0Gkk′ (18)

approximating the form factor F(r) to a constant. (18) can be substituted in the expression for M ,
which can now be diagonalized:

(U M U †)kk′ = λk′δkk′ (19)

where U is the diagonalizing unitary transformation and λk′ are the eigenvalues of M . By accordingly
transforming the wavefunctions, i.e. defining |Yk⟩ =

∑︁
k′ Ukk′ψk′ , the uncoupled equation is found [8]:

(Hr + λk − E)Yk(r) = 0 (20)

This is solved in the same way as (5) from the potential model, with an adequate choice of boundary
conditions and Coulomb barrier.

Finally, the expressions for transmission coefficient and for fusion cross section are:

TCC,l(E) =
∑︂
k

|Uki|2Tl(E, Veff (RB,l) + λk) → σfus =
π

k2

∑︂
l

(2l + 1)TCC,l(E) (21)

where |Uki|2 = | ⟨ϕk|ϕi⟩ |2 is the overlap between entrance (i) channel’s state and k-th channel’s one.
The term Tl(E, Veff (RB,l)+λk) is evaluated like (11). Now, however, the barrier is “split” in a number
of barriers, one for each channel, of different heights Veff + λk, thus making up a barrier distribution:
each channel will then have its own σfus,k, and the total cross section will be a weighted average of
these contributions [8]. For a lot of systems, this causes a lowering of the total barrier “perceived” by
the nuclei, and enhances the cross section.
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1.2.4 CC model: comparison with experimental data

This model was able to describe the behavior of numerous systems at energies below the Coulomb
barrier, and helped researchers extract new information about nuclei’s internal structures.

(a) Coupled Channels predictions nicely describe the
excitation function of 16O + 154Sm. Taken from ref.
[3].

(b) CC predictions using different couplings, for
40Ca + 96Zr. Taken from ref. [8].

Figure 4

The turning point came in 2002: Jiang et al.[11] found an unexpectedly fast decrease of σfus while
studying the reaction 60Ni+89Y at extreme sub-barrier energy.

Figure 5: In this plot, taken from ref. [11], the excitation function
mostly follows CC predictions. However, the two lowest-energy data
points start showing a visible downward deviation, with the last one
being at least one order of magnitude smaller than expected (its symbol
represents an upper limit). Note that the involved values of cross section
reach the sub-µb region.

This phenomenon was called fusion hindrance and, together with the improvement of low-energy
measurements, was found to affect a variety of systems. The presence/absence and magnitude of
hindrance, its causes and its consequences are still a current topic in nuclear physics debate. Some
hypotheses have been developed to explain this particular behaviour.

1.2.5 Model hypotheses for fusion hindrance

One possible explanation is summed up in the so-called sudden model: when the two nuclei get in
contact, the reaction is assumed to take place so suddenly (with respect to the variation of internal
coordinates ξ) that the density in the overlapping region is doubled [3][5]. This leads to the formation
of a further repulsive term in Veff (r) for r → 0, due to the “incompressibility” of nuclear matter:
microscopically, this behaviour is suggested to be a direct consequence of Pauli repulsion between
nucleons [3]. The final effect is to decrease the depth of potential’s pocket, so lowering the upper limit
lcrit for the partial waves that contribute to fusion (see (5)) and, in fact, hindering the reaction [5].
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Another hypothesis is offered by the adiabatic model. In contrast to the previous model, nuclei are
assumed to smoothly merge into a one-body system: this causes the CC potential to adiabatically
(i.e. minimizing energy at every step) and smoothly reshape in a mono-nucleus potential. Since this
potential already accounts for internal excitations and optimizes intra-nuclei configurations [5], these
channels don’t take part to coupling effects anymore, effectively damping them and hindering fusion
[3]. De facto, hindrance is viewed simply as gradual inhibition of coupling.

(a) Visual representation of the two theorized models
for fusion hindrance, made by T. Ichikawa, Phys. Rev.
C 92, 064604 (2015). Picture taken from ref. [3].

(b) Clear example of excitation function where both
enhancement and hindrance are visible, taken from ref.
[3].

Figure 6

At present, both models equally describe experimental data down to the limits of instrumental capa-
bilities. To be able to distinguish between them, it will be necessary to investigate even lower energy
regions, or to measure other observables instead of σfus (e.g. the distribution of angular momenta
involved in the fusion process).

Fusion hindrance will be the main topic of this experimental work.

1.3 Clues of hindrance in experimental data

As seen before, fusion hindrance leaves a sign of its presence in the excitation function (frequent syn-
onym for the plot σfus(E) vs E), by making it drop quicker than CC prediction. However, depending
on the magnitude of the phenomenon, this behaviour can be sometimes difficult to spot or, in general,
researchers may need more information than the bare cross section, in order to make better analyses.
The most used derived quantities are [8]:

• logarithmic derivative L(E)

L(E) =
d[ln(Eσ(E))]

dE
=

1

Eσ(E)

d[Eσ(E)]

dE
(22)

• astrophysical S factor S(E)

S(E) = Eσ(E) exp[2πη] , η =
ZPZT e

2

ℏv
(23)

where v is the beam velocity, and η is called Sommerfeld parameter.

Despite being mostly used to determine reaction rates in stars, the latter exhibits a particular be-
haviour when measured far below the barrier: experiments have shown that, in a number of systems,
S(E) develops a visible maximum at about the same energy where hindrance starts to become signif-
icant. For this reason, researchers often regard this point, EH , as a threshold for hindrance.
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1.3.1 S factor maximum at hindrance threshold

The deep physical meaning of the presence of a maximum of S(E) closely related to hindrance phe-
nomena is still a matter of debate. However, a simple algebraic argument is enough to give an a
posteriori explanation.

Differentiating S(E) (23) and using v = (2E/m)
1
2 , the stationary-point condition is obtained:

dS(E)

dE
=

(︃
d[Eσ(E)]

dE
− πσ(E)

)︃
exp[2πη] = S(E)

(︂
L(E)− πη

E

)︂
!
= 0 (24)

The first term, L(E), accounts for the variation of cross section with E, and the second, πη
E , originates

from Coulomb interaction and simply goes as ∝ 1
E . Around and above barrier, the latter usually

dominates and the slope is negative. At lower energies they come closer to each other and, if hindrance
occurs, the higher steepness of the excitation function makes L(E) rise quicker: if this reaches the
value LCS = πη

E , a maximum of S(E) shows up [12].

(a) Data plot of L(E) and S(E) for 28Si+64Ni: the S factor
maximum is clearly visible and occurs when L reaches
LCS , as expected. Note that the factor η is normalized by
a constant η0. Taken from ref. [13].

(b) Excitation function, L(E) and S(E) for 64Ni + 64Ni.
One can see that hindrance starts becoming significant at
approximately the same energy at which S factor maxi-
mum occurs. Taken from ref. [8].

Figure 7

A further clarification is necessary. In systems with negative fusion Q value, σfus(E) (and consequently
S(E)) must drop to 0 at E = −Q, so the presence of an S factor maximum for these reactions is
necessary [3][8]. Obviously, that isn’t the case for lighter, positive Q value systems: this makes trickier
to predict whether hindrance occurs, its energy threshold and its magnitude.

1.4 The case of medium-light systems

Lighter systems exhibit a wider variety of behaviours, as anticipated above, compared to the heavy
ones. One important aspect, for example, is the angle at which L(E) crosses the curve representing
LCS (condition (24)): experiments have shown that this angle gets smaller going towards light systems,
thus “broadening” the S(E) maximum [14], sometimes up to the point that it becomes asymptotic-like.

In addition to this, their experimental analysis presents more difficulties: resonance structures, quasi-
molecular excitations and low level densities [14] are just some of the aspects that cause the measured
L(E) and S(E) of those reactions, for ex. 12C + 12C, 12C + 14N or 16O+ 16O, to be irregular and to
have considerable uncertainties.

8



Other, more practical, obstacles include the necessity to scan larger scattering angles (for heavy ions,
detection is performed near 0◦ because of the narrower ER angular distribution) and to extend the
studied energy range down to hardly-accessible regions.

(a) Various phenomenology of S(E) and L(E) in different
medium-light systems. Taken from ref. [14].

(b) Irregular behaviour of S(E) for 12C + 12C, mea-
sured in different researches. Taken from ref. [14].

Figure 8

A feasible solution is to study slightly heavier (“medium-light”) nuclei, in order to get rid of the
majority of these issues while, at the same time, collecting useful information about astrophysically
interesting ones. That’s what the research at LNL has been all about in the last years: reactions like
12C+30Si and 12C+24Mg were performed [15][16], seeking fusion hindrance with the aim of improving
the current systematics. In this way, it will be hopefully possible to indirectly predict the properties
of light systems.

Figure 9: Systematics of S-maximum energy

vs ζ = Z1Z2µ
1
2 for several systems. EH of the

reactions of astrophysical interest, like 12C+12C
and 16O+16O, can be obtained by extrapolation,
using the phenomenological fitting function in
magenta, where LS = 2.19 + 511/ζ. Taken from
[3].

The analysis of the reaction 12C+ 26Mg, object of this thesis, is the continuation of this long work.

1.4.1 Motivation for the choice of 12C+ 26Mg

This system was chosen by virtue of 26Mg intermediate properties, between 30Si and 24Mg, already
studied.

In the previous research, the reaction involving the latter showed the largest σfus at hindrance thresh-
old EH ever measured, among the reactions where an S factor maximum exists [16][17]. In contrast,
the measure involving the first one obtained a corresponding cross section about 10 times smaller
[15][17], in spite of the proximity of the two systems. A possible explanation involves the different
structure of each of them: 24Mg has an alpha-like structure and is deformed (prolate), while 30Si has
none of these features [17]. The nucleus of 26Mg, instead, is prolate but not alpha-like, thus making
the measurement of its fusion excitation function an optimal test for deducing the reason why such a
high cross section is observed at hindrance threshold in the case of 24Mg.
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2 The experiment

2.1 Description

Fusion reaction has been obtained by accelerating 26Mg ions through the XTU Tandem electrostatic
accelerator, and making them collide with 12C target in a reaction chamber.

If nuclei bind together, they form a compound nucleus (38Ar), which usually de-excites through emis-
sion of particles (alphas, neutrons...) and gamma rays. Different less-excited nuclei are produced (see
Table 1): these are called evaporation residues or ER. These are, in fact, the only possible de-excitation
channels for 38Ar, since it is still a quite light nucleus: fission of the compound nucleus has a negligible
probability. Thus, by measuring the cross section for ER formation, σfus is directly obtained.

The importance of an accurate measurement of ER is the reason behind the choice of the inverse
kinematics collision: by accelerating the heavier nucleus, more kinetic energy of CM is available and
the evaporated particles will be faster after evaporation, which makes them easier to detect.

Since most of ER are emitted at very forward angles, i.e. θER ∼ 0◦, it’s necessary to separate them
from the transmitted beam, and only at this point they can be effectively detected. This is the job
of the “Pisolo” deflector+telescope system: the first stage separates ER from beam, and the second
measures energy and time of flight of the particles.

2.2 The set-up

2.2.1 Reaction chamber

The chamber where fusion takes place is a cylindrical steel structure, at the end of the beam line coming
from the Tandem. Here, the target system is an adjustable vertical ladder, where five targets and a
quartz are mounted: the latter emits light when hit by the beam, and is used for beam focusing. For
this experiment, the target was 50µg/cm2 thick, 99.9% enriched 12C foil (no backing necessary). Right
behind it, four Si detectors were installed at θ = 16◦ with respect to the beam direction in a radial
position, each one having a surface of 50mm2 (the solid angle is ∆Ωmon = (0.166± 1%)msr overall):
they are used to measure Rutherford scattering cross section σR, which serves as normalization for
σfus (more details in Data Analysis, Sect. 3).

The beam energy range used in the experiment goes from Elab = 25.5MeV up to 50MeV .

To reach the target optimally, the beam is calibrated both in direction and focus, by modulation of
magnetic fields from, respectively, dipoles and quadrupoles installed along the beam line.

2.3 Pisolo setup

As anticipated before, a problem arises when detecting fusion evaporation residues: the residual
beam and ER have overlapping directions. An hypothetical direct measurement would be impossible,
because the large quantity of beam events detected would cover the ER in the detection. The problem
is solved with an electrostatic deflector, which bends the trajectory of ER and beam differently,
separating them and making the ER detection possible.

After this “filter”, particles enter the actual detector telescope: it consists of two Micro Channel Plate
(MCP) detectors, providing fast time signals, a ionization chamber, which measures particle’s energy
loss, and a silicon detector at the very end, which collects the remaining energy of the ER and acts as
a trigger (start) for the acquisition of all signals.

The whole setup is able to rotate around the reaction chamber to obtain the ER angular distribution.

2.3.1 Electrostatic deflector

The deflector is designed to separate the beam nuclei from the ER, using their different electric
rigidity. This method was preferred to deflection in a magnetic field, by evaluating the difference
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between electric and magnetic rigidity of beam and ER:

Eρ =
mv2

eq
Bρ =

mv

eq
(25)

where m is the particle’s mass, v its velocity, q its charge number, e is the elementary charge, E and
B are the field magnitudes, and ρ is the turn radius (it is not a formal definition for E).

Here’s an example: at ECM ≈ 10MeV , typical quantities are vP = 1.59 cm/ns and ⟨q⟩P ≈ 9.1 for
26Mg projectile (beam), vC = 1.08 cm/ns and ⟨q⟩C ≈ 10.5 for a typical ER 37Ar. Both parameters
account for in-target energy loss and ionization. From (25):

ρP (B) ≈ 0.47/B m ρC(B) ≈ 0.39/B m ρP (E) ≈ 7.5106/E m ρC(E) ≈ 4.3106/E m (26)

So, the ratios between the turning radii of beam and ER are ∼ 1.2 for B deflection and ∼ 1.8 for E
deflection: in spite of the low energy (and thus velocity), the advantage of using an electric field is
already evident. The quadratic vs linear dependences on v will enlarge the difference even more at
higher E. Similar results can be obtained with the other ER species.

Calculations of projectile and ER parameters are made using the software reaction, described in
Section 2.5.2.

In Pisolo setup, separation is achieved using two pairs of parallel metal plates at high voltage. Between
them, a uniform E is created: by finely tuning its intensity, the optimal deflection and transmission
are obtained. In the best conditions, ER enter the telescope through a collimator, while the beam is
stopped against a tantalum plate on the side.

Figure 10: Deflector schematics: Y0 = 4.7 cm, θ0 = 4.7◦, L = 25 cm, l1 = 30 cm, l2 = 80 cm, d = 7 cm, the white dot
represents the entrance collimator. The figure doesn’t maintain proportions for spacing reasons.

Calculations for optimal E intensity are performed numerically, using the software Maiale.cpp (more
in Sect. 2.5.4).

However, not all beam nuclei are stopped: despite the rejection rate of ∼ 107-8, they constitute part of
the noise in the detectors. That’s why ToF+E measurements are necessary for a further discrimination.
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2.3.2 Detector telescope

Figure 11: Pisolo schematics from above.

• MCP 1 and 2 These detectors have 4 main elements: a 20µg/cm2 thin carbon foil, an elec-
trostatic mirror, a pair of micro-channel plates and a delay line anode. When a charged particle
crosses the foil, several electrons are emitted. Those electrons are accelerated by a first electric
field, and then a second one deflects them by 90◦. Then they enter the actual MCP, where
they’re multiplied by a factor of about 106. Finally, multiplied electrons are detected by the
delay-line grid, a time signal is generated and sent to the electronics. This kind of detector
is able to measure also the x-y position of the incident particles, but in this experiment this
information is not necessary.

(a) (b)

Figure 12: MCP detector and electrostatic mirror schematics and real object.

• Ionization chamber The IC is a transverse-field detector and a Frisch grid is placed in front of
the anode. The filling gas is methane at low pressure (10mbar), which is ionized when crossed
by a charged particle, as it loses some kinetic energy. The signal produced by the electrons is
collected by the anode, and it is proportional to ion energy loss.

• Silicon detector It’s the last stage of the detection telescope, and its surface determines the
total scanned solid angle (600mm2, ∆Ω = (0.0357±1%)msr). It collects the particle at the end
of the IC, and generates an electric signal due to the induced ionization in its depletion region
(in reverse polarization). This signal is proportional to the residual energy of the particle. A
trigger signal is also produced, allowing the acquisition of all signals.

The measured quantities are:

• ToF 1 time of flight between MCP1 and Si final detector.
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• ToF 2 time of flight between MCP1 and MCP2.

• ToF 3 time of flight between MCP2 and Si final detector (only two of the three ToFs are
independent).

• Total kinetic energy sum of the energies left by the particle in the IC and Si detector.

Figure 13: The whole setup.

2.4 Vacuum system

The setup described before operates in high vacuum conditions. To achieve this, both reaction chamber
and telescope (and obviously the beam pipe coming from the Tandem) are equipped with a set of
turbo-molecular and cryo-pumps, fundamental to reach P ≈ 10−6mb necessary for the experiment.
Turbo-molecular pumps implement a turbine that can rotate at a tangential velocity close to the mean
thermal velocity of the pumped gas: through impact with turbine blades, gas molecules are sent out of
the vacuum region, and then ejected in the outer atmosphere by a secondary mechanical pump. Cryo-
pumps, instead, use helium from a refrigerator device to cool down a portion of vacuum chamber’s
wall (“cold head”). Here, gas molecules condense and remain located on the surface, thus no longer
being part of the internal atmosphere. The latter pumps are used to further lower the pressure.

2.5 Preliminary calculations

Numerical simulations have been performed for evaluation of expected cross section and ER angular
distribution, electrostatic deflector calibration and beam energy loss in the target.

2.5.1 Prediction of fusion cross section: CCfull

CCfull is a free access FORTRAN77 program, developed by K. Hagino, N. Rowley and A.T. Kruppa,
which performs Coupled Channels model calculations with all order couplings for heavy ion fusion
reactions. The version used here includes the possibility of different target and projectile excitations.
The input includes the necessary information about nuclear structure, excitation modes and ion-ion
potential, and the program calculates fusion cross section σfus in the chosen energy range.

[From http://www2.yukawa.kyoto-u.ac.jp/~kouichi.hagino/ccfull.html]

No-coupling excitation function

As first step, simple ion-ion potential calculations (no couplings) are performed, in order to obtain a
preliminary excitation function. Being a prior-to-experiment simulation, it only aims to give an idea
of the expected measurements. The parameters used are:

• Wood-Saxon potential: V0 = 40.5MeV, r0 = 1.10 fm, a0 = 0.6 fm, taken from a previous
similar experiment (24Mg+ 12C) [16].
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• Stepping: E ∈ [8; 20]MeV, dE = 0.25MeV.

(a) (b)

Figure 14: Results of CCfull simulation: in the right panel, one can see how L(E) (red line) gets closer to the S factor
maximum condition LCS (dashed line), and then remains parallel to it. As expected, then, S(E) keeps increasing (green
line, left panel). L(E) is obtained from the excitation function using a finite-differences method.

2.5.2 The reaction code

The interaction of beam and ER with the target material determines the energy and the charge
state of the outgoing particles. These quantities are obtained with the FORTRAN77 code reaction,
that implements simple kinematics energy and loss calculations, starting from beam energy, material,
density and angle of target and detection angle. Between the various output parameters, the ones
used for this experiment are energy loss, straggling, average exit energy and velocity and exit charge
state distribution, for both beam and ER.

Expected parameters for outgoing particles

For Elab = 32MeV (ECM = 10.1MeV ), using as target 50µg/cm2 12C foil perpendicular to beam
direction, the results, considering the production of 37Ar ER, are:

• beam: ∆Eloss = 0.76MeV , ⟨E⟩ = (31.24± 0.05)MeV , ⟨v⟩ = (1.5232± 0.0013) cm/ns, ToF1 in
Pisolo telescope ToF = 227.8ns, ⟨Q⟩ = 8.97.

• ER: ∆Eloss = 1.27MeV , ⟨E⟩ = (20.4± 1.3)MeV , ⟨v⟩ = (1.032± 0.033) cm/ns, ToF1 in Pisolo
telescope ToF = 336.1ns, ⟨Q⟩ = 10.21.

Charge distributions:

Figure 15: Charge distributions for beam and ER (37Ar).

2.5.3 Prediction of ER angular distribution: PACE4

PACE4 is a free access C++ program, available as part of the LISE++ nuclear spectrometry package.
This code performs fusion evaporation simulations through Monte Carlo methods, giving as output
a detailed analysis of reaction products: compound nucleus energy, cross sections for every reaction
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channel, angular distribution of the different by-product particles and gamma emission are some of
the evaluated quantities. Here it’s mainly used to obtain total ER angular distribution, needed for
σfus normalization (see Data Analysis, Sect. 3).

The input is given through a graphic interface and includes: basic features of target and projectile
nuclei (Z,A, spin), beam initial energy and beam energy loss in the target, potential parameters for
each particle species p, n, α and for the incoming channel (these can be automatically taken from
systematics) and other minor fine-tuning quantities.

[From https://lise.nscl.msu.edu/lise.html]

ER angular distribution at Elab = 43.5MeV (ECM = 13.6MeV)

Before measuring in the low energy region, an angular scan at above-barrier ECM is performed: it’s
useful to check if the angular distribution presents anomalies and to get the normalization needed to
obtain total σfus from the differential ∂σ

∂Ω .

Figure 16: Predicted angular distribution at Elab =
43.5MeV .

Yields at Elab = 32MeV (ECM = 10.1MeV)

For this calculation, projectile and target are considered at spin S = 0 and ∆Eloss(beam) = 0.76MeV
from 2.5.2 is used. Other parameters are automatically set from systematics.

Z N A % σ (mb)

18 19 37 Ar 30.3% 2.77

17 20 37 Cl 20.8% 1.90

18 18 36 Ar 0.2% 0.0183

17 19 36 Cl 10.7% 0.977

16 18 34 S 10.6% 0.968

16 17 33 S 24.9% 2.27

15 18 33 P 2.5% 0.228

Table 1: Yields of residual nuclei at Elab = 32MeV .

2.5.4 Electrostatic deflector calibration: Maiale.cpp

Since all Pisolo setup relies on the idea of electric rigidity discrimination, numerical simulation of ER
trajectory is implemented through Maiale.cpp: it’s a C++ program (translated from FORTRAN77)
developed at LNL for the electrostatic deflector set-up. It takes as input all the geometry parameters
of the deflector, ER energy and charge state, and it returns the necessary electric field to correctly
bend the particle towards the collimator. It’s also possible, by providing the field as input, to obtain
the trajectory plot or a set of trajectories for different energies or charge states.

15

https://lise.nscl.msu.edu/lise.html


Deflector trajectories

Using the parameters calculated in 2.5.2 (Elab = 32MeV ), particles’ trajectories inside the deflector
can be simulated. At first, the two electrical fields are tuned for an “average” ER particle: using
⟨Q⟩ER = 10.21 and ⟨E⟩ER = 20.42MeV , optimum values are E1 = 7.07 kV/cm and E2 = 6.02 kV/cm.
Then, it’s possible to compute how particles (both ER and beam) of different charge and energy behave
if those fields are applied.

In the left panel, charge values are fixed to their mean values (⟨Q⟩ER = 10.21 and ⟨Q⟩beam = 8.97)
and energies are stepped in the ranges EER ∈ [19.1; 21.7]MeV and Ebeam ∈ [31.2; 31.3]MeV (the
uncertainty ranges of their mean values).

Vice versa for the right panel: fixed energies EER = 20.42MeV and Ebeam = 31.24MeV , stepped
charge QER ∈ [7; 13]MeV and Qbeam ∈ [7; 11]MeV

(a) Stepped energy. (b) Stepped charge.

Figure 17

During deflector calibration, predicted electric field values have been used as starting point: optimal
values have been chosen by maximization of particles count rate during the experiment. At Elab =
32MeV , a ∆V = 34.24 kV has been applied to both couples of plates, with inter-plate distances of
d1 = 64mm and d2 = 68mm: that means E1 = 5.35 kV/cm and E2 = 5.04 kV/cm. The necessity of
lower values is justified by the fact that the electric field extends also outside the plate region, whereas
the simulation only considers an ideal situation of confined fields.

3 Data analysis and results

Data have been collected through more than a hundred runs, with beam energies from 50MeV down
to 25.5MeV and angle of detection of 2◦, 3◦ and 4◦ (depending on the level of background). About
80 of them were selected for analysis. As anticipated, for each run collected data are:

• Event counts of the four Si monitors at 16◦.

• Three ToFs from MCP detectors.

• IC energy loss (∆E).

• ER energy collected by final Si detector (ESi).

Usually, the last three are organized in two-dimensional histograms, sometimes called matrices, the
most useful being the ToF vsESi.

The analysis is made using CERN ROOT 6.24 software.
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3.1 Cross section formula

The formula used to obtain differential cross section from data is:

dσfus
dΩ

(E) =
NER

Nmon
· ∆Ωmon

∆Ωg
fus

· dσR
dΩ

(E) · 1

Td · TMCP · TIC
(27)

where NER and Nmon are the number of detected ER and Rutherford events, ∆Ωmon = (0.166 ±
1%)msr is the total solid angle of the four monitors, ∆Ωg

fus = (0.0357± 1%)msr is the geometrical
solid angle of the final Si detector, dσR/dΩ(E) is the Rutherford differential cross section at θlab = 16◦,
Td = (0.82±1%) TMCP = (0.726±0.5%) TIC = (0.80±1%) are the estimated transmission coefficients
of the electrostatic deflector, MCP grids and mesh holding the IC window, respectively.

The Rutherford cross section in the laboratory frame can be obtained using the formula:

dσR
dΩ

(E) =

(︃
ZPZT e

2

16πϵ0Elab

)︃2
[︄

1

sin4(θlab/2)
− 2

(︃
MP

MT

)︃2

+

(︃
MP

MT

)︃4
]︄
mb/sr (28)

Total fusion cross section is then obtained as

σfus(E) =

∫︂
dσfus
dΩ

(E) dΩ (29)

This is done by measuring the angular distribution of ER at a given energy (here Elab = 43.5 , 36.5MeV ),
and integrating it in the solid angle. Assuming that the shape of the angular distribution is weakly
dependent on energy, we can obtain the total cross section at a given energy Ẽ by rescaling σfus(Elab =
43.5 /36.5MeV ) by the value of measured dσfus/dΩ(Ẽ):

σfus(Ẽ) = σfus(Elab = 43.5MeV ) ·
dσfus/dΩ (Ẽ, θlab)

dσfus/dΩ (Elab = 43.5MeV, θlab)
(30)

3.2 Examples of analysis

3.2.1 High energy run: Elab = 43.5MeV

The first information to be extracted is the number of collected Rutherford scattering events. This is
done by integrating the corresponding histogram in an energy range containing the main peak, given
by beam scattering on 12C, and the smaller sub-peaks, given by beam scattering on other heavier
elements, like target impurities or aluminium structure. This procedure is the same for all runs, and
an example is given in fig. 18a.

Then the number of ER events is calculated. In the ToF vsESi matrices, events form a horizontal
parabolic shape, that follows the relationship E = 1

2mv
2 ∝ (ToF−1)2 : particles of different mass

will group in separate parabolas, as one can see in fig. 18b. The bigger, denser one is made up by
beam-like particles that are not completely rejected, while the smaller group underneath represents
heavier nuclear species, which are recognised as fusion ER. Those events are selected through a “cut”,
and the the 2D histogram is integrated inside this area (red polygon in figure).
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(a) Rutherford scattering energy spectrum: note the log-
arithmic y axis.

(b) ToF1 vsESi matrix. Fusion residues are selected
with the red polygon. One can see a smaller parabola
just above the main ER group: it is made up by a slightly
lighter ER specie, that still constitutes a valid signal.

Figure 18

For this run, Nmon = (76610±280(0.4%)) and NER = (7406±86(1%)), where statistical uncertainties
come from the Poisson-like nature of the event detection.

The obtained total cross section is σfus(Elab = 43.5MeV ) = (267± 15)mb.

3.2.2 Low energy run: Elab = 29.0MeV

When measuring at low energy, the ER mass parabola starts to fade and the signal-to-noise ratio
decreases. As one can see in fig. 19a, the “signal area” is barely distinguishable from the surrounding
background events, and the selection is less accurate. To improve the false-signal rejection, events
undergo another selection using the matrix ToF2 vsESi. Here only events from the previous cut are
accepted: the separation between ER and beam is now much clearer, as shown in fig. 19b, and a
second selection is performed.

(a) ToF1 vsESi matrix. The cut here is quite inclusive,
and a simple integration would lead to an overestimation
of ER counts.

(b) ToF2 vsESi matrix. By performing a conditional
plot (only the events selected in the previous matrix), an
accurate selection is possible.

Figure 19

For this run, Nmon = (2.2606± 0.0015(0.07%)) · 106 and NER = (64± 8(13%)).

The obtained total cross section is σfus(Elab = 29.0MeV ) = (0.207± 0.028)mb.
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3.3 Angular distribution

The angular distribution of ER was measured at Elab = 43.5MeV at angles θlab ∈ [−6◦, 9◦], and
at Elab = 36.5MeV at angles θlab ∈ [−8◦, 8◦]. Data were fitted with an empirical function (sum of
two gaussians) as in fig. 20a. Total cross section was computed as integral of the fit function from
43.5MeV distribution, due to the more accurate fit. The comparison with PACE4 simulation is also
excellent. The distribution at 36.5MeV is instead affected by higher background, but it is useful to
check the hypothesis of weak energy dependence of the distribution shape (which is reproduced quite
well, see fig. 20b).

(a) Angular distribution at Elab = 43.5MeV . Fit has
χ2/NDF = 106/10, which is high but justifiable con-
sidering that the distribution is not meant to be exactly
gaussian.

(b) Comparison between angular distributions at
43.5MeV and 36.5MeV . The second one is rescaled by
a constant for graphical reasons. Note the logarithmic y
axis.

Figure 20

3.4 Results

After data processing, 23 clean points have been adopted for the excitation function. They are
compared to the CCFULL predictions, both with and without coupling effects. In both of them, Wood-
Saxon parameters are chosen in order to fit the higher energy points: V0 = −43.5MeV , r0 = 1.10 fm
and a = 0.60 fm are used. The “no coupling” calculation is the result of one dimensional tunneling
through the potential; the “coupling” one includes the effects of rotational coupling of levels 2+

(E = 1.809MeV β = 0.482) and 3− (E = 6.876MeV β = 0.214) of 26Mg (12C is considered inert),
where β is the quadrupole deformation parameter of the nucleus in the corresponding state.

Figure 21: Excitation function for 12C+26Mg.
The two predictions are similar at higher ener-
gies, then separate at about ECM = 12MeV . As
expected, a slope change happens at about bar-
rier energy (11.3MeV ) because of the tunneling
becoming predominant. The calculations nicely
reproduce the data until the last two points,
when the cross section seems to drop.
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As one can see in the previous figure, the “coupling” calculation fits the data very well, especially
at near-barrier energies. The presence of fusion enhancement is quite significant, with a cross sec-
tion 3-4 times greater than the no-coupling prediction. At energies below 8.5MeV , the excitation
function starts decreasing faster than expected, with the last point (8.25MeV ) being incompatible
with the prediction. At sub-barrier energies, S(E) and L(E) are computed in order to better un-
derstand this behaviour. As shown in fig. 22, in the same energy region of the cross section drop
the logarithmic derivative L(E) deviates from the prediction and crosses the LCS curve, although
the large uncertainty does not allow to make a safe claim. As expected, then, the astrophysical
S factor seems to show a maximum at about the energy where the LCS value is overcome. Just
as before, the error bars are quite wide to exclude the possibility of the absence of a maximum.

Figure 22: Excitation function, logarithmic derivative and
S factor at deep sub-barrier energies. Empirical fit of σfus

and L give respectively χ2/NDF = 3.6/10 and 4.0/10.

An empirical fit is performed, using an a posteri-
ori hindrance model function from [16]. At low
energy, the logarithmic derivative of some light
systems follows the empirical formula:

L(E) = A0 +B0E
−3/2 (31)

where A0 and B0 are fit parameters. From this,
corresponding cross section is calculated:

σfus(E) = σHEH
E exp

[︃
A0(E − EH)− 2B0√

EH

(︃√︂
EH
E − 1

)︃]︃
(32)

where EH ad σH are energy and cross section at
S factor maximum. L(E) was fitted using (31), in
order to find A0 and B0, obtaining A0 = (−2.0±
0.8)MeV −1 and B0 = (140± 30)MeV 1/2. Then
the parameters are used in (32) to fit the last
points of the excitation function. That gives an
approximate value of EH = (7.6± 0.2)MeV .

What these graphics suggest is that the system
is likely to be close to the hindrance threshold,
but has not reached it yet. The empirical fit
shows the possibility of the presence of an S fac-
tor maximum at about 7.6MeV . This fit is made
upon the assumption that this reaction behaves
like other medium-light systems studied in the
past: this hypothesis is reasonable, considering
that the empirical model reproduces the excita-
tion function quite well; however, the large uncer-
tainties in the last points (especially of S(E) and
L(E)) make it difficult to say whether the lowest-
energies trend is correctly reproduced. To obtain
a strong proof, measurements down to 7-7.5MeV
have to be performed, possibly with narrower en-
ergy steps (so that the uncertainties on L(E) are
smaller). At present, the only reasonable claim is
that there’s a weak evidence of hindrance, with
an indication of EH ≈ 7.6MeV for the hindrance
threshold (and an upper limit of 8.4MeV , corre-

sponding to the lowest point at less than 1σ from CC calculation). A comparison with the present sys-
tematics (fig. 9, Section 1.4) seems to confirm this idea, since it provides an expected EH = 7.8MeV .
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4 Summary and conclusions

In this thesis, the fusion reaction 12C + 26Mg has been studied, describing the experimental work
with the Pisolo setup and analizing the obtained data. The experiment consisted in detecting the
fusion evaporation residues at forward emission angles, in order to obtain the total cross section of
the reaction. In the analysis, the excitation function σfus(E), its logarithmic derivative L(E) and
the astrophysical S factor S(E) were compared to the Coupled Channels predictions, in which the
coupling of 2+ and 3− levels of 26Mg were considered, looking for clues of the hindrance phenomenon.

What emerges from data analysis is a weak evidence of fusion hindrance at energies below ECM =
8.4MeV . A strong claim is not possible, due to the absence of a clearly defined S factor maximum.
Anyway, a fit with an empirical hindrance model suggests the presence of the hindrance threshold
nearby, predicting the existence of an S(E) maximum at about 7.6MeV , approx. 0.6MeV lower
than the last measured point. Further data down to ∼ 7MeV could verify whether the empirical
model successfully describes the lowest-energies trend of this reaction and could make a stronger
claim about the presence of hindrance. So, from these results it is only possible to give an indication
of EH = (7.6±0.2)MeV (from the empirical fit - the uncertainty is not representative of the confidence
level since there are no data points in that region) for the hindrance threshold energy, and to put an
upper limit at Emax

H = 8.4MeV , corresponding to the point where the S factor starts deviating by
more than 1σ from the CC model. These conclusions agree quite well with the current systematics,
that predicts an S(E) maximum at ECM = 7.8MeV .

Comparing the present results with the closest system already measured, 12C + 24Mg [16], some
qualitative clues can be obtained about the influence of the different nuclear structures on fusion
dynamics (as anticipated in Sect. 1.4.1). For 12C + 24Mg, hindrance threshold was measured at
around EH = 0.85Vb, where Vb is the barrier height, while here the indication is EH = 0.67V ′

b , with
an estimated cross section at threshold almost 103 times smaller than the one of 24Mg. These results
may seem unexpected, especially considering the fact that the first 2+ state of 24Mg is at lower energy
(E = 1.368MeV ) and has a greater coupling strength than the 2+ of 26Mg: at first sight, this should
lead to a longer persistence of enhancement, and consequently a lower EH , in 24Mg. Since both nuclei
have a similar static deformation (prolate), the most realistic reason of this difference is rather the
alpha-like nature of 24Mg. At present, however, a fusion dynamics model that includes the effects of
alpha clustering does not exist, so it is not possible to verify the hypothesis above in this work.

Finally, the indication for EH can be added to the existing S factor maximum systematics to make
a comparison. As said above, there’s a good agreement with the empirical extrapolation, and having
another data point (although approximated) close to the 12C+12C and 16O+16O systems may reinforce
the confidence on the empirical predictions about those astrophysically interesting reactions.

Figure 23: The same systematics of Sect. 1.4,
where the present result has been added.

21



5 Appendix

ECM (MeV) σfus (mb) ECM (MeV) σfus (mb)

8.25 0.0101± 0.0045 10.79 19.3± 1.2

8.41 0.0258± 0.0099 11.11 34.0± 2.0

8.57 0.056± 0.013 11.42 45.6± 2.8

9.04 0.220± 0.021 11.74 74.0± 4.2

9.20 0.369± 0.043 12.06 105.1± 6.0

9.36 0.593± 0.058 12.37 135.0± 5.7

9.52 0.987± 0.091 12.69 153.4± 8.9

9.68 1.31± 0.13 13.01 182± 10

9.84 2.22± 0.18 13.33 214± 12

10.00 3.29± 0.17 13.64 267.3± 7.7

10.15 4.80± 0.35 15.70 535± 22

10.31 7.21± 0.48

Table 2: Data points of the excitation function.

θlab (deg) θlab (rad) dσfus/dΩ (au) θlab (deg) θlab (rad) dσfus/dΩ (au)

-6 -0.1047 0.01281± 0.00037 4 0.0698 0.03232± 0.00088

-4 -0.0698 0.03370± 0.00093 5 0.0873 0.02146± 0.00065

-2 -0.0349 0.0508± 0.0014 6 0.1047 0.01246± 0.00037

1 0.0175 0.0587± 0.0016 7 0.1222 0.00651± 0.00024

2 0.0349 0.0511± 0.0012 8 0.1396 0.00471± 0.00017

3 0.0524 0.0436± 0.0012 9 0.1571 0.00413± 0.00018

Table 3: Data points of the ER angular distribution at 43.5MeV . They are obtained as NER/Nmon ·E−2
lab. To obtain the

measurements in mb/sr one should multiply them by the remaining factors of cross section formula (27). Uncertainties
already account for the errors in the transmission parameters.

θlab (deg) θlab (rad) dσfus/dΩ (au) θlab (deg) θlab (rad) dσfus/dΩ (au)

-8 -0.1396 7.07± 0.55 ·10−7 4 0.0698 6.66± 0.24 ·10−6

-6 -0.1047 3.15± 0.13 ·10−6 5 0.0873 4.65± 0.16 ·10−6

-4 -0.0698 6.49± 0.27 ·10−6 6 0.1047 2.57± 0.11 ·10−6

2 0.0349 8.72± 0.29 ·10−6 7 0.1222 1.08± 0.066 ·10−6

3 0.0524 7.82± 0.27 ·10−6 8 0.1396 6.96± 0.49 ·10−6

Table 4: Data points of the ER angular distribution at 36.5MeV .
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