

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Chimica e dei Materiali

Relazione per la prova finale «Polimeri termoplastici da scarti industriali (PP-ABS): Stampaggio e Caratterizzazione»

Tutor universitario:

Laureando:

Prof. Alessandra Lorenzetti

Mattia Duso

Padova, 13/11/2024

La PrimaPlastics S.r.l. è un'azienda italiana, con sede a Isola Vicentina:

- Fondata nel 2012 dall' Ing. Filippo dall'Amico.
- Specializzata nel recupero di rifiuti plastici di origine industriale.
- Propone risposta alternativa allo smaltimento finale di scarti industriali.

OBIETTIVI DEL LAVORO

Stampare e caratterizzare provini di lotti provenienti da scarti industriali, formati da polimeri termoplastici (PP e ABS):

• In forma di granulo:

• In forma di macinato:

Nel caso del macinato è necessaria una fase di omogenizzazione.

L'attività di laboratorio si suddivide in:

• Asciugatura campioni in stufa (da 30 a 90 min) a 100°C.

PP - PS	± 30 MINUTI
ABS - ABS/PC - PC/ABS - PMMA	± 90 MINUTI
PC - PU	± 120 MINUTI
PA 6 – PA 6.6	± 180 MINUTI

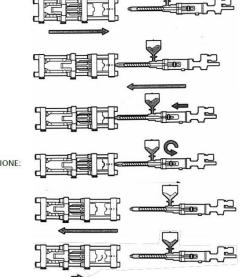
• Stampa provini tramite pressa ad iniezione.

Analisi provini.

Università

Stampa ad iniezione

- La stampa ha inizio selezionando la temperatura e accendendo il sistema idraulico.
- pulizia preliminare (PP neutro) con stampo aperto e vite arretrata.
- Carico tramoggia con almeno 0.5 kg di materiale (in modo da ottenere 4-5 provini).
- Pulizia finale.
- Se fosse necessario stampare provini da polimeri diversi: stampa in temperatura crescente e pulizia intermedia.


FASI DEL CICLO	
CHIUSURA DELLO STAMPO:	

AVANTI LA SLITTA DELL'INIEZIONE:

INIEZIONE

APERTURA DELLO STAMPO:

ESTRAZIONE DEI PEZZI STAMPATI

150°	PELD
170° - 190°	PA 12
190°	PP – PS (PST)
190° - 200°	PU
220°	PEHD
225° - 230°	ABS – ASA
230° - 240°	PA 6 - PMMA
240°	ABS/PC
260°	PC/ABS – PA 6.6
280° - 290°	PC

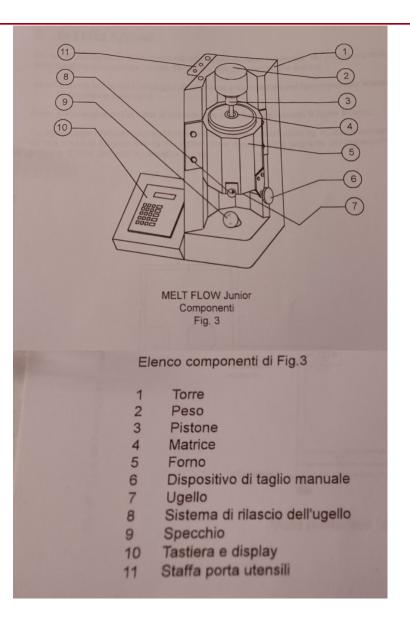

ANALISI

Il provino stampato necessita di essere suddiviso nelle varie parti utilizzate nell'analisi:

- **Piastrine**: tenute come confronto rapido
- Asta: usata per determinare il grado IZOD
- «Carota»: usata per determinare l'MFI

Le parti rimanenti verranno usate nell'analisi del residuo fisso.

DI INGEGNERIA INDUSTRIALE


MFI

Il Melt Flow Index indica la fluidità del materiale

- Viene determinato misurando la massa di polimero fuso sceso in un determinato tempo, attraverso un ugello (ISO 1133).
- Ogni polimero viene sottoposto ad un determinato peso:

ABS – ASA	220°	10 KG
ABS/PC	260°	5 KG
PC	300°	1.2 KG
PC/ABS	260°	5 KG
PE	190°	2.16 KG
PMMA	230°	10 KG - 3.8 KG (iso ?)
POM	190°	2.16 KG
PP	230°	2.16 KG
PS	200°	5 KG

- Vengono caricati circa 5-6 grammi di «Carote» nella camera calda dello strumento.
- Il risultato viene espresso in g/10min.

DI INGEGNERIA INDUSTRIALE

Grado IZOD

Rappresenta la resistenza ad impatto di un campione

- L'asta ricavata dal provino necessita di un'incisione (ISO 180) e lo strumento di una fase di calibrazione.
- Il pendolo esercita un'energia massima di 2,75 J ad una velocita di 3,46 m/s.
- Porta-provini e mazza per prova IZOD:

Il risultato è espresso come [kJ/m^2].

Polymer	Impact energy (kJ/m ²)
Polystyrene	1.3-2.1
High-impact PS (polystyrene + polybutadiene)	3–42
ABS poly(acrylonitryl-co-butadiene-co-styrene)	5-53
Rigid PVC	2–16
PMMA	2.1-2.6
Nylon	5.3-16
PMO	10-16
Low density PE	> 84
High density PE	2.6-105
PP	2.6-11
Polycarbonate (bisphenol A)	63–95
Epoxy resin	1–26

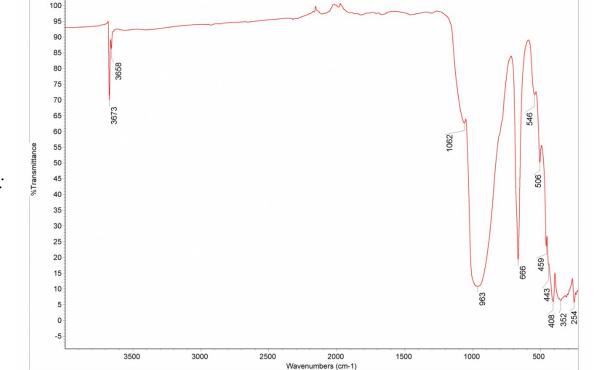
www.dii.unipd.it

Analisi residuo fisso

Per identificare l'additivo si elimina la matrice polimerica del campione ponendo in muffola a 600°C un crogiolo, contenente circa 2 grammi di campione, per almeno 1 ora.

• Analisi quantitativa

Sfrutta la differenza di peso in seguito alla combustione della matrice polimerica



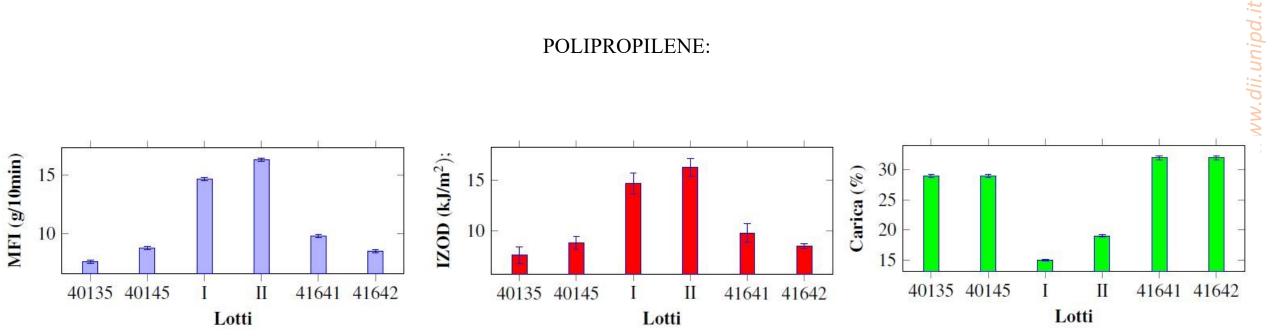
Analisi qualitativa (identificazione additivi)

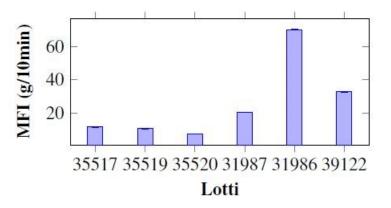
Effettuata tramite spettroscopia ATR FT-IR, con lente a singola riflessione, delle polveri rimaste dopo l'eliminazione della matrice.

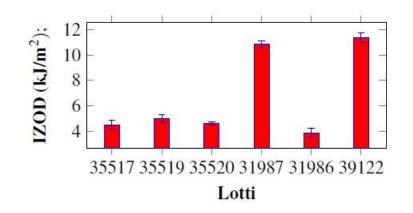
Es. spettro in trasmissione del talco:

ELABORAZIONE DATI

POLIPROPILENE:




Tabella 3.1: Risultati analisi PP


Lotto	MFI [g/10min]	σ [g/10min]	IZOD [kJ/m^2]	σ [kJ/m ²]	Carica	ε[%]
40135	7,60	0,14	5,15	0,56	29%, Talco	1
40145	8,80	0,14	3,53	0,24	29%, Talco	1
I	14,70	0,14	4,54	0,33	15%, Talco	1
П	16,30	0,14	4,00	0,22	19%, Talco	1
41641	9,80	0,14	5,40	0,49	32%, Talco	1
41642	8,50	0,14	5,10	0,17	32%, Talco	1

ABS:

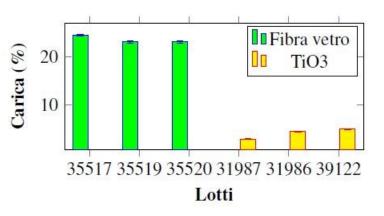
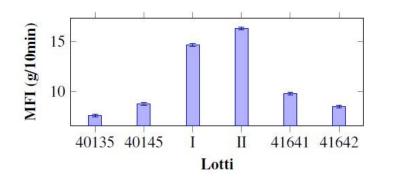
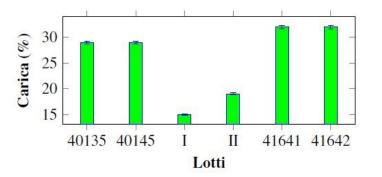


Tabella 3.2: Risultati analisi ABS


Lotto	MFI [g/10min]	σ [g/10min]	IZOD [kJ/m^2]	σ [kJ/m ²]	Carica	ε [%]
35517	11,90	0,14	4,50	0,35	24%, Fibra vetro	1
35519	11,00	0,14	4,98	0,31	23%, Fibra vetro	1
35520	7,70	0,14	4,60	0,12	23%, Fibra Vetro	1
31987	20,70	0,14	10,9	0,26	3%, TiO2	1
31986	70,00	0,14	3,840	0,42	4,5%, TiO2	1
39122	32,90	0,14	11,40	0,38	5%, TiO2	1



I risultati dell'analisi sono stati influenzati da:

• Quantità di additivo: Per il PP andamento inversamente proporzionale tra contenuto di talco e MFI.

• Formato dei campioni: Maggior dispersione media nei lotti di ABS contenenti TiO2, costituiti da campioni triturati usati direttamente per la stampa dei provini.

σ [kJ/m^2]	Carica
0,35	24%, Fibra vetro
0,31	23%, Fibra vetro
0,12	23%, Fibra Vetro
0,26	3%, TiO2
0,42	4,5%, TiO2
0,38	5%, TiO2

Dall'origine dei lotti: Maggior dispersione dei valori IZOD nei lotti 40135 e 41641 di PP, riconducibile all'origine mista dei lotti e/o non sufficiente processo di omogenizzazione.

Lotto	MFI [g/10min]	σ [g/10min]	IZOD [kJ/m^2]	σ [kJ/m ²]	Carica	ε[%]
40135	7,60	0,14	5,15	0,56	29%, Talco	1
41641	9,80	0,14	5,40	0,49	32%, Talco	1

Dall'invecchiamento del campione: l'alto MFI e il basso grado IZOD del lotto 31986 portano a pensare ad un degrado tale del campione da impattarne negativamente le proprietà.

Lotto	MFI [g/10min]	σ [g/10min]	IZOD [kJ/m^2]	σ [kJ/m^2]	Carica	ε [%]
31986	70,00	0,14	3,840	0,42	4,5%, TiO2	1

Grazie per l'attenzione!