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Introduction

During the past decades, the study of cancer has stimulated investigations
in several scientific areas. Mathematicians, physicists and bioinformaticians
tackled the problem with different approaches including modeling and simu-
lations.
The purpose is to understand the dynamics inside the development of this
disease and try to design good therapies to the patient affected.
Thus, large amounts of clinical data and quantitative models are required to
reveal the key mechanism in cancer dynamics, therefore it is very difficult to
give a proper approximation for each different situation.
In this landscape, the ecology of cancer has proved to have a crucial rule.
In fact it has emerged that a mathematical model for cancer must take into
account the evolutionary and ecological processes characterizing cancer dy-
namics.
Within the framework of cancer ecology, cancer can be considered as a res-
ult of interactions between cancerous cells and normal cells within a tissue,
which becomes the microenviroment where this dynamics takes place.
In this thesis, we focus on the multiple myeloma bone disease, a malignant
cell neoplasma within the bone tissue. Using tools of evolutionary game
theory, we provide a model of the evolutionary dynamics in a healthy bone
tissue and also in an insane tissue due to the development of the tumor.
The present thesis is organized as follows:
in the first chapter, we are going to provide a biological definition of cancer
and how tools of cancer ecology are useful to describe cancer dynamics;
in the second chapter we describe a healthy bone tissue and how it is cap-
tured in terms of evolutionary game theory;
in the third chapter we describe the dynamics of a bone affected by multiple
myeloma disease, paying more attention in how it dynamics evolves accord-
ing to its fixed points;
in the last chapter we conclude by saying how this study can be applied to
the therapies in order to get an improvement on patients.
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Chapter 1

Cancer ecology

1.1 Mutation and cancer

Cancer is a genetic disease of multicellular organism, consequence of the ac-
cumulation of somatic mutations. It is characterized by an interruption of
individual cells cooperation and a consequent growth of abnormal cells.
In fact, a single genetically altered cell going under uncontrolled replication
and mutation, leads to the start of the progression of the cancer and to the
following spread of invasive cells through a series of clonal expansions.[1].
It can be benign if it is localized in situ or malignant if it is invasive and
causes metastasis.
Moreover, not all the possible somatic mutations that can occur are involved
in the cancer expansion, in fact only the ones conferring a growth advantage
enable these altered cells to more efficiently spread in the tissue.
In addition to that, also many different external factors, not strictly related
to the above mentioned mutations, can cause a damage on the healthy cells
genome.
All of these elements explain the diversity of mutation observed in tumor.
For this reason cancer can be considered as the result of a process of Dar-
winian evolution among cell populations embedded in their environment.
As a Darwinian process, its development is marked by two features: firstly,
the continuous acquisition of heritable genetic variations in individual cells
by random mutations and secondly, the natural selection acting on the res-
ultant phenotypic diversity. Therefore the tumorigenesis can be considered
similar to the evolution of species.
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8 CHAPTER 1. CANCER ECOLOGY

1.2 Cancer ecology

The insurgence of cancer disrupts the cellular environment, introducing many
uncontrolled interactions within healthy tissues. It is possible, as we said,
to consider this process as an evolution of species where different types of
cells are different species interacting with each other in an ecologic environ-
ment. Cancerous cells constitute an additional species, which entangles in
the network and favors some species, damages others or does both at the
same time.
The coexistence of several cell types suggests that the dynamics may be
driven by mutualistic, exploitative, harmful or other type of ecological inter-
actions. 1

From this ecological perspective, cancer is a dynamical disease that continu-
ously evolves and diversifies as an adaptive Darwinian system.
Moreover, the study of the interaction between malignant cells and their en-
vironment, based on the exchange of information in form of cytokines 2, gives
more information about the dynamics of the tumor growth and its response
to the therapy.
This interplay creates a complex signaling process that imposes costs and
benefits to the participant cells. It can be conveniently recast in the form of
a game pay-off matrix. Therefore the ensuing dynamics is well described in
terms of evolutionary game theory [4].

1.3 Evolutionary game theory applied to can-

cer

In this section we are going to provide some tools of the evolutionary game
theory (EGT) that can be used as an ecological approach of cancer.
The appearance of mutated cells may be described in terms of a new species
that attempts to invade a resident species of normal cells. In this landscape,
we can provide a description equivalent to that of the traditional equations
of ecology.
The central equation of EGT is called Replicator Equation (RE), which makes

1A mutualistic ecological interaction is one where different species work together and
all have benefits from this cooperation.
An exploitative ecological interaction, that is also called as enemy-victim interaction, is
one where one organism is the consumer of the other.

2Cytokines are substances secreted by cells of the immune system.
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use of the concept of fitness 3 [5] .
It is usually used to describe the temporal evolution of many groups of cells, in
particular the ecosystems with constant resources, since one of its properties
is that the sum of the different populations, treated by this equation, stays
constant over time.
We will show how it can be derived from an exponential model.

1.3.1 Replicator equation from exponential model

We now consider the classic exponential growth equation:

Ṅi [t] = Nifi i = 1, .., n (1.1)

Where Ni is a real function that represents the population of strategy i,
strategies in our approximation stand for the different types of population
interacting in the ecosystem, and fi(Ni, .., Nn) is the fitness of that strategy.
Now we consider the relative frequencies defined as xi ≡

Ni

P
where P is the

total population and we get:

P [t] =
∑

i

Ni [t] (1.2)

We derive it and use the above mentioned model of exponential growth :

Ṗ =
∑

i

Ṅi =
∑

i

Nifi (1.3)

Multiplying and dividing for P:

Ṗ = P
∑

i

Ni

P
fi = P

∑

i

xiFi = P ⟨F ⟩

where ⟨F ⟩ =
∑

i xifi is the average fitness of whole population.
We take the derivative of xi and we have:

ẋi =
Ṅi

P
−

NiṖ

P 2
=

Nifi
P

−
Ni

P

Ṗ

P
= xi (fi − ⟨F ⟩)

where
Ṗ

P
= ⟨F ⟩

3In biology, fitness is defined as the quantitative representation of individual repro-
ductive success.
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Now we add on all the species and use the definition of ⟨F ⟩ and we get:

∑

i

ẋi =
∑

i

xifi − ⟨F ⟩
∑

i

xi =
∑

i

xifi −
∑

j

xjfj
∑

i

xi (1.4)

Considering that:
∑

i

xi =

∑
i fi
P

=
P

P
≡ 1

The Equation 1.4 becomes: ∑

i

ẋi ≡ 0

Now we cast away the environmental effects that can modify the fitness of
the strategies and analyze the competition between the several strategies in
the total population.
We can assume that:

fi (N1, ..., Nn) = Fi

(
N1

P
, ..,

Nn

P

)
= Fi (x1, .., xn)

With this assumption, the equation

ẋi = xi (fi − ⟨F ⟩)

becomes the replicator equation:

ẋi = xi (Fi − ⟨F ⟩) (1.5)

where now ⟨F ⟩ =
∑

i xiFi is expressed in terms of the relative frequencies xi.
In this way we obtain the general form of the replicator equation.

1.3.2 The replicator equation in dynamics

As we have already explained, tumour progression and dynamics can be
described in terms of evolutionary game theory, assuming that:

❼ the strategies are the types of populations interacting,

❼ the payoffs, defined as the reproductive rate of the species, can be
considered equivalent to the fitness of each population,

❼ the replicator equation predicts the evolutionary outcome of population
behavior.
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We define an evolutionary stable strategy as the behavior that when it is
adopted by all the members of a population, it is impossible for another
population to invade it. It is proved to be stable from the dynamics point of
view.
Formally we define it in the following way:

Definition 1.1. If W (I,Q) is the fitness of an individual of type I in a
population of composition Q. A population consisting of I-types will be evol-
utionary stable if whenever a small amount of deviant J-types is introduced,
the old type I fares better that the newcomers J. So for all J ̸= I,

W (J, ϵJ + (1− ϵ) I) < W (I, ϵJ + (1− ϵ) I)

for all sufficiently small ϵ > 0.

Now we define the simplex

SN =

{
p = (p1, .., pN ) ∈ R

N :

N∑

i=1

pi = 1, pi ≥ 0, i = 1, .., N

}

where every point is a strategy and corresponds to the type of population.
We define the state of the population as the frequencies xi of each type and
the new matrix A where each entry aij = pi · Upj is the payoff obtained by
a pi strategist against pj opponents.
We get that the fitness for each population is:

fi(x) =
∑

j

aijxj = (Ax)i

Now we’ll consider the payoff matrix A as the fitness matrix of our types of
population.

Definition 1.2. We define a point y ∈ SN a Nash equilibrium if x·Ay ≤
y·Ay for all x ∈ S.

So in our framework it means that a population, whose payoff-matrix
is described by A, adopting a Nash equilibrium strategy reaches the higher
possible pay-off, that is the higher advantage/disadvantage coming from the
interaction with different type of populations.

We now provide the so- called Folk Theorem which allows us to predict the
evolution of stable ecological system by studying Nash Equilibrium behavior
of the populations.
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Theorem 1.1. Let y be a point of SN then:

❼ if y ∈ SN is a Nash equilibrium of the game described by the payoff
matrix A, then y is a rest point of the replicator equation.

❼ if y is the ω−limit of an orbit x (t) ∈ intSN , then y is a Nash equilib-
rium.

❼ if y is a Lyapunov stable, then it is a Nash equilibrium.

❼ if y ∈ SN is an evolutionarily stable state for the game with payoff
matrix A, that means that y ·Ax > x·Ax for all x ̸= y in a neighborhood
of y, then it is an asymptotically stable rest point of the RE.

[4] In conclusion, we can study the stability properties of the replicator
equation by applying the Lyapunov method, then thanks to the previous
theorem we can deduce information about the adopted evolutionary strategy
and the consequent dynamics.
In the following chapters we will be interested in understanding how the
dynamics of the populations involved in our model evolves according to the
behavior of its fixed point.

1.3.3 A particular case of the Replicator Equation

Let’s now apply the RE found above to describe the evolution of two popu-
lations, one of normal cells named A and the other with mutant cells named
B. In an unrealistic scenario, let us suppose that they have a constant rate
of replication, respectively α > 0 and β > 0 and an initial size NA(0) and
NB(0).
Assuming infinite resources and that the overall population size increases
exponentially, the equations of the time evolution of these populations are :

dNA(t)

dt
= αNA(t) and

dNB(t)

dt
= βNB(t) (1.6)

Solving them we get:

NA(t) = NA(0)e
αt and NB(t) = NB(0)e

βt (1.7)

To understand the evolution of these two populations we have to focus on
the ratio α

β
:

if α
β
> 1, the normal cells population will outnumber the mutant population,

if α
β

< 1 the mutant cells population will increase over the normal cells
population .



1.3. EVOLUTIONARY GAME THEORY APPLIED TO CANCER 13

Let’s consider now that the total population stays constant at a fixed value,
in order to survive in the environment. This new hypothesis modifies the
previous equations 1.6 in the following way:

dNA(t)

dt
= NA(t)(α− ω) and

dNB(t)

dt
= NB(t)(β − ω) (1.8)

where ω is the average reproductive rate of the population.
Imposing the conservation of the total size of the population we get:

NTω = αNA(t) + βNB(t) (1.9)

Now the focus is on the comparison of α and β with ω: the population in
which cells replicate at a higher than average rate will outcompete the other.
[5]
From Equation (1.9) instead of two equations we can choose one of the popu-
lation, for example the normal cells population, and obtain just one equation:

dNA(t)

dt
= NA(t)(NT −NA(t))(α− β) (1.10)

We now suppose that population size is large enough to convert absolute cell
numbers NA into cell frequencies x, we may write:

dx(t)

dt
= x(t)(1− x(t))(α− β) (1.11)

This equation is a particular case of the RE.
It describes the evolutionary dynamics of a sub-population of cells which rep-
licate at the same constant rate α in the presence of another sub-population
of cells, all of which replicate at the constant rate β, with the condition that
all the total population size is constant. [5]
In this model, we can state that cells which replicate faster will be more suc-
cessful than the other cells, so they will also have a higher fitness than the
other. Even though it is proved that fitness of different cell types does not
depend only on their reproductive rate, if we consider the appropriate fitness
of each species and the average fitness of the population, we can assume rate
of cell replication as a convenient equivalent concept of the fitness and use
this definition on the central equations of EGT.
In equation (1.11) we have supposed that the fitness of cells of each sub-
population remains constant in time (since we have imposed a constant rate
of replication for each population) and that it is not influenced by the total
number of cells of given species.



14 CHAPTER 1. CANCER ECOLOGY

If size matters, we have to consider fitness as a frequency-dependent func-
tion. So, defining φA(x)- the frequency of the normal cells- and φB(x) -the
frequency of the mutant cells-, and replacing respectively α and β with them
in (1.11), we may write the following general form of the RE:

ẋ = x(1− x)(φA(x)− φB(x)) (1.12)

Considering a well-mixed approximation where all the cells interact with each
other with the same likelihood, we can show the result of these interactions on
the so-called pay-off matrix, a matrix used in the evolutionary game theory
where pij represents what a cell of type i can get from the interaction with
a cell of type j, the rows are the specific group of cells and the columns are
the type of cells they are interacting with.

A B
A
B

[
pAA pAB

pBA pBB

]

Interaction, here, stands for exchange of information and competition for
space and nutrients.
Using the previous pay-off matrix, we may write:

φA(x) = xpAA + (1− x)pAB

φB(x) = xpBA + (1− x)pBB

These two equations specify the form of frequency dependence deriving from
the cells competition in a population of constant size by means of EGT.
We can get Equation (1.11), with no frequency-dependence behaviour, choos-
ing pAB = pAA = α and pBA = pBB = β.
In this framework, it does not matter with which cell type a focal cell inter-
acts, the result is always the same [5] .

In the following chapters we are going to see the application of the evol-
utionary game theory to the case of the multiple myeloma bone disease.



Chapter 2

Application of EGT to the

normal bone remodeling

As we already said, cancer causes a change in the natural equilibrium existing
between the healthy cells of a tissue.
In the following sections we are going to introduce the physiology of the
healthy bone tissue and then a model of the normal bone remodeling .

2.1 Healthy Bone Tissue

Bone tissue is a mineralized connective tissue that exerts important functions
in the body, such as locomotion, support and protection of tissues, calcium
and phosphate storage.
The cells that can be found in this tissue are osteoblasts, osteoclasts, osteo-
cytes. We will focus on osteoblasts and osteoclasts.
Osteoblasts are located along the bone surface. They produce the organic
matrix and regulate the deposit of the inorganic one. They are mainly known
for their bone formation function.
Osteoclasts are responsible for the bone matrix degradation, in fact they re-
absorb the aged, damaged or immature matrix [3] .

Bone is a dynamic organ that is continuously reabsorbed by osteoclasts
and rebuilt by osteoblasts.
The complex process of bone remodeling can be described in a cycle made
up of three phases:

❼ initiation of bone resorption by osteoclasts

❼ transition from resorption to new bone formation

15
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❼ the bone formation by osteoblasts

It is regulated by the RANK/RANKL signaling pathway 1 that leads to the
start of bone resorption process, followed by the action of the osteoprotegerin
(OPG) 2 which ends this process and differentiates the cells.
In conclusion, normal bone remodeling is the result of balance crosstalk
among osteoclasts, osteoblasts and signaling molecules [6] .
An imbalance of bone resorption and formation results in several bone dis-
ease.

2.2 Model of the normal bone remodeling

The dynamic balance between osteoclast-mediated (OC) bone resorption and
bone formation due to osteoblast (OB) activity can be captured trivially in
the framework of EGT.
It requires an explicit frequency dependence to have a proper approximation
of this dynamic.
In the healthy condition, we assume that we have two cell species (OB and
OC cells) living in a stable balance between them. In terms of EGT, it can
be obtained by a coexistence game, which can be realized by a pay-off matrix
satisfying pBA > pAA and pAB > pBB:

OC OB
OC
OB

[
0 a
e 0

]

where a and e are both positive reals.
The coexistence condition means that the interaction between OB and OC
cells (OC-OB is represented by a and OB-OC by e) are stronger than self-
interactions.
Given the pay-off matrix above, we may write:

φOC(x) = (1− x)a

φOB(x) = xe

where x stands for the fraction of OC cells and (1-x) stands for the fraction
of OB cells.

1RANKL is the acronym of receptor activator of nuclear factor kappa-β ligand, it is a
protein involved in the tissue growth and it has immune functions.
RANK, acronym of receptor activator of nuclear factor kB is the receptor for RANKL

2Osteoprotegerin is one the most important regulator factor and it is a type of cytokines.
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Now we consider the RE of this system:

ẋ = x(1− x)(a(1− x)− ex) (2.1)

From this equation we can study the dynamics of the system OC-OB.
Defining f = x(1 − x)(a(1 − x) − ex) and imposing f = 0, we find the fixed
points of the system:

x = 0

x = 1

x =
a

a+ e

We know apply the one dimensional version of the following theorem:

Theorem 2.1 (First Lyapunov theorem). Suppose that z∗ is an equilibrium
of the equation ż = X(z) with z ∈ R

n.Then

1. if ∂X(z)
∂z

(z∗) has all the eigenvalues with negative real part, then z∗ is
asymptotically stable;

2. if ∂X(z)
∂z

(z∗) has at least one eigenvalue with positive real part, then z∗

is unstable

So we derive f and obtain:

∂f

∂x
= ex(−2 + 3x) + a(1− 4x+ 3x2) (2.2)

Since it is a one dimensional function, to apply the previous theorem we can
evaluating f in the fixed points and get:

f(0) = a > 0

f(1) = e > 0

f

(
a

a+ e

)
= −

ae

a+ e
< 0

According to the theorem, we can conclude that x = 0 and x = 1 are un-
stable points, while x = a

a+e
is stable.

In terms of population dynamics, this result means that populations made
by one type of cells-i.e. x = 0 and x = 1- are unstable, while populations,
where both OB and OC cells are present, are stable.
We can show it graphically, given the plot of ẋ. It is called gradient of selec-
tion, the horizontal axis shows the direction of selection associated with the
sign of ẋ in the domain of the cells fraction which is 0 < x < 1.
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We choose as parameters α = 0.5 and β = 0.5, which will let us to prove
that the stable point corresponds exactly to the perfect subdivision between
the two groups of cells and therefore to their coexistence.

Figure 2.1: Gradient of selection for the coexistence dynamics among OCs
and OBs cells.

The red arrows in the above figure underline the behavior of the dynam-
ics: any perturbation deviating population from unstable points -i.e. x = 0
and x = 1- leads it to move away from those fixed points, otherwise a devi-
ation from a stable point induces a dynamics which restores the equilibrium
to that point.



Chapter 3

Multiple myeloma disease

We are going to describe how multiple myeloma disease affects a bone tissue
and then provide a model of its dynamics.

3.1 MM cells

Multiple myeloma disease (MM) is a tumor characterized by the proliferation
of MM cells in the bone marrow.
It is characterized by osteolytic bone lesions, hyper-calcaemia, anaemia, kid-
ney failure, acquired immune anomalies.
MM cells, which are malignant mutant cells, induce alterations in the bone
micro-environment and establish new interactions with the existing cells that
favor their survival.
Histological studies of bone biopsies from MM patients have shown that a
consequence of the presence of MM cells is an increased activity of osteoclasts.
This has led to the hypothesis that local cytokines, produced or induced by
MM cells, are responsible both for the osteoclasts formation and for the in-
creased bone resorption activity. On the other side, osteoblasts activity is
lowered, so MM cells decrease bone formation.
We provide a picture that shows the normal healthy bone equilibrium and
how it changes in a pathological condition.

19



20 CHAPTER 3. MULTIPLE MYELOMA DISEASE

Figure 3.1: Picture taken from [2] .
In A it is shown an outline of the normal process of bone remodelling. In fact
the interaction between OC and OB cells and also how their activity affects
the bone itself are illustrated.
In B it is shown the process that occurs in the presence of MM cells and
are also represented all the varieties of cytokynes and the regulatory factors
involved, such as RANK,RANKL.
In C we have a framework of the interactions between all cells in the pres-
ence of the multiple myeloma bone disease. In here, these interactions are
represented by two parameters β and δ, which will be used in the model in
the following section.

3.2 MM cells model

The healthy bone model changes in the presence of MM cells. These cells
disrupt the dynamic equilibrium between OB and OC in favour of OC.
Now we assume that no mutations occur during tumor dynamics, except the
initial one, and that cell population dynamics is deterministic.
The replicator equations force the tumor dynamics, characterized by three
types of cells, within the simplex

S =
{
(x1, x2, x3) ∈ R

3 :
∑3

i=1 xi = 1, xi ≥ 0, i = 1, 2, 3
}
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We can see that it is invariant for the RE, in fact:

d

dt

(
3∑

i=1

xi

)
=

3∑

i=1

dxi

dt
=

3∑

i=1

xi (Ax)i −
3∑

i=1

xi

︸ ︷︷ ︸
1

3∑

j=1

xj (Ax)j = 0

It means that, considering A as a payoff matrix, the property of the con-
stancy of the total population in the replicator equation is satisfied.
The simplex is a two-dimensional space, its edges represent population com-
posed by one type of cells, the interior corresponds to population where all
cell types coexist.
At every point of this, we have that the sum of the relative frequencies of
OB,OC and MM populations is equal to 1.
Let’s denote each relative frequency in the following way: x1(t) the OC cells
one, x2(t) the OB cells , x3(t) the MM cells and, according to what we said
above, we have that

∑3
i=1 xi = 1.

The replicator equations, which rule the dynamics for three types of cells,become:

ẋi(t) = xi(t)(F (x1, x2, x3)− ⟨F ⟩) (i = 1, 2, 3) (3.1)

where the average fitness of the population is

⟨F ⟩ =
3∑

i=1

3∑

k=1

xiAijxk (3.2)

The following pay-off matrix, Aij, shows the interactions between these three
cells:

OC OB MM
OC
OB
MM




0 a b
e 0 -d
c 0 0




where all the parameters a,b,c,d are non-negative.
If they have a plus sign they stand for an advantage that a cell receives
when it is put in contact with one of a different type, otherwise a minus sign
represents a disadvantage.
This matrix will generate a system whose fixed points will be used to study
the evolutionary dynamics that we are interested in.
Now we prove that we can simplify the form of this matrix and, thanks to
the properties of the RE and the EGT, we don’t change the nature of the
fixed points and the ensuing dynamics of the system.
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Proposition 3.1. : The new replicator equation:

ẏi =

(
yi

n∑

k=1

Bikyk − yi

n∑

j=1

n∑

k=1

yjBjkyk

)

obtained from
ẋi(t) = xi(t)(F (x1, x2, x3)− ⟨F ⟩)

with the following projective transformation of the relative frequencies:

yi =
φixi∑3

k=1 φkxk

(3.3)

is equivalent to the prevoius one (that means that stability/instability char-
acter should be guaranteed from fixed point not from position).
Moreover the matrix A will be replaced by B matrix with

Bij =
Aij

φj

Proof. : Suppose that xi with i = 1, .., n satisfy the replicator equation with
matrix A and we could calculate the equation for yi:

d

dt
yi =

ẋiφi

n∑

j=1

xjφj

︸ ︷︷ ︸
c

−
xiφi(

n∑

j=1

xjφj

)2

︸ ︷︷ ︸
c2

(
n∑

j=1

ẋjφj

)

Using the RE:

ẋi [t] = xi [t]

(
n∑

k=1

Aikxk −

n∑

h=1

n∑

k=1

xhAhkxk

)

the previous equation becomes:

d

dt
yi = yi

n∑

k=1

Aikxk−yi

n∑

h=1

n∑

k=1

xhAhkxk−
yi

c




n∑

j=1

xjϕj

n∑

k=1

Aikxk −
n∑

j=1

xjϕj

n∑

h=1

n∑

k=1

xhAhkxk




d

dt
yi = yi

n∑

k=1

Aikxk−yi

n∑

h=1

n∑

k=1

xhAhkxk−yi




n∑

j=1

yj

n∑

k=1

Ajkxk −

n∑

j=1

yj

︸ ︷︷ ︸
1

n∑

h=1

n∑

k=1

xhAhkxk
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Since it is
∑n

j=1 yj = 1, we can delate the second and last term and get:

ẏi = yi

n∑

k=1

Aikxk − yi

n∑

j=1

n∑

k=1

yjAjkxk

Multiplying and dividing within the summaries for φk and c:

ẏi = yi

n∑

k=1

Aik

φk

xkφk

c
c− yi

n∑

j=1

n∑

k=1

yj
Ajk

φk

xkφk

c
c

and now defining Bjk =
Ajk

ϕk
and yk =

xkϕk

c
, we finally obtain:

ẏi =

(
yi

n∑

k=1

Bikyk − yi

n∑

j=1

n∑

k=1

yjBjkyk

)
c

This is the replicator equation with less than a c-factor that can be erased
by rescaling the time t̃ = t

c
and this concludes our proof.

Coming back to our model, we consider φi positive constants given by
(φ1, φ2, φ3) = (e, a, be

c
) and we have that:

Bij =

OC OB MM
OC
OB
MM




0 1 β
1 0 −δ
β 0 0




That leads to define two new parameters in this way:

β =
c

e

and

δ =
dc

be
Using the B matrix in the replicator equation, we obtain:





ẋ(t) = x (y + βz − 2xy − 2βxz + δzy)

ẏ(t) = y (x− δz − 2xy − 2βxz + δzy)

ż(t) = z (βx− 2xy − 2βxz + δzy)

(3.4)

where x represents the concentration of type OC cells, y the one of the OB
cells and z the one of MM cells.



24 CHAPTER 3. MULTIPLE MYELOMA DISEASE

3.2.1 The fixed points

Studying the fixed points of the dynamic system is crucial to understand how
the solution evolves.
We impose the stationary condition to the system 3.4 , that means putting
all the equations equal to zero, and obtain:

(x, y, z) = (0, 0, 1)

(x, y, z) = (1, 0, 0)

(x, y, z) = (0, 1, 0)

(x, y, z) = (1/2, 1/2, 0)

(x, y, z) = (1/2, 0, 1/2)

(x, y, z) =

(
δ

1− 2β + δβ + β2 + δ
,

β(−1 + β + δ)

1− 2β + δβ + β2 + δ
,

−β + 1

1− 2β + δβ + β2 + δ

)

(3.5)

The existence conditions of these fixed points are x+ y + z = 1 and that
they are all positive. We have to check that the last point satisfies these
properties.
It can be easily proved that the sum of each component of 3.5 is equal to 1,
then we have that:

δ

1− 2β + δβ + β2 + δ
≥ 0 ⇒

(
1− 2β + δβ + β2 + δ

)
≥ 0

and we know that both the parameters δ and β are defined positive, assuming
the denominators positive for y and z we get:

−β + 1

1− 2β + δβ + β2 + δ
≥ 0 ⇒ 1− β ≥ 0 ⇒ β ≤ 1

and

β(−1 + β + δ)

1− 2β + δβ + β2 + δ
≥ 0 ⇒ β(−1 + β + δ) ≥ 0 ⇒ β + δ ≥ 1

So the components of 3.5 are actually relative frequencies, according to our
model hypothesis.

The analysis of the stability allows us to find out the evolutionary win-
ning strategies. In fact, applying the previous mentioned Lyapunov method
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to this case, we can study the nature of these fixed points and how it changes
according to the parameters β and δ.
These parameters and their relative balance in the pay-off matrix give us
information about the expanding MM population and consequently about
how the tumor grows.

We now show some results where different values for β and δ are used.
In the first graph there will be a 2D-graphic, which is the projection of the
equilateral triangle when z = 0. The horizontal axis represents OC cells
frequency, while the vertical one is the OB type frequency. MM cells are
represented by the origin of the axis, thanks to the relation z = 1− x− y.
There will be shown how the dynamics of the system develops according to
the nature of its fixed points.
The second graph represents the time evolution of the three cellular frequen-
cies once set an initial point.

3.2.2 Case β = 1/2 and δ = 1/3

We consider the previous system 3.4 choosing as parameters β = 1/2 and
δ = 1/3. It stands for the situation in which β < 1 and β + δ < 1, the
population of MM cells can go extinct and OB and OC may again re-establish
the stable dynamic equilibrium. Therefore the tumuor will be extinguished.
( See (b))

Figure 3.2: (a):Evolutionary dynamics of OB-OC-MM cells system in the
case of β = 1/2 and δ = 1/3.
(b) Time evolution with starting point (x, y, z) = (0.2, 0.6, 0.2).

In this case, as shown in (a), edges of the simplex are unstable points,
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while the origin of the axis (standing for the population made by only MM
cells) and the fixed point

(
1
2
, 0, 1

2

)
are saddle points. The only stable point

is
(
1
2
, 1
2
, 0
)
which represents the coexistence of OB and OC cells.

3.2.3 Case β = 1/2 and δ = 1

Choosing β = 1/2 and δ = 1, we represent the situation in which β < 1 and
δ + β > 1. The co-evolutionary process can still lead to the normal homeo-
stasis but it isn’t the only possible ’end-game’. In this case the prediction
of the growth of cancer is more complex. Therapies that change β can be
useful to overall disease eradication.
For this reason we are going to show two graphs of the time evolution of the
cells changing the starting points of the system.

Figure 3.3: Time evolution of the three population cells with initial condition:
(a) (x, y, z) = (0.2, 0.6, 0.2)
(b) (x, y, z) = (0.3, 0.3, 0.4)

In fact, in the graph on the left it is shown an example where the OC-OB
equilibrium is re-established and the MM cells lead to zero. While in the case
on the right,where we have changed the starting point with a higher presence
of MM cells, we have a different deadline: there is a typical scenario of the
tumour development, where OC cells and MM cells are increased while OB
cells are decreased.
The study of the evolutionary dynamics that we obtain with these para-
meters arises the presence of two stable points

(
1
2
, 1
2
, 0
)
and

(
1
2
, 0, 1

2

)
. They

represent respectively the normal bone balance between OB and OC cells
and the interaction only between OC and MM cell, underling the two pos-
sible ’end-games’ of the system. Edges are still unstable points, but a saddle
point,

(
4
7
, 1
7
, 2
7

)
, appears inside the simplex, which according to the evolu-

tionary dynamics properties cannot be stable.



3.2. MM CELLS MODEL 27

Figure 3.4: Evolutionary dynamics of OB-OC-MM cells system in the case
of β = 1/2 and δ = 1.

3.2.4 Case β = 2 and δ = 0

Choosing β = 2 and δ = 0, we have an example of the most common exist-
ing scenarios where β > 1. In this case, the only stable equilibrium is the
coexistence of MM and OC cells. In particular, a part of bone is completely
devoid of OB, thus there is an increasing risk of fracture. The case with
δ = 0 stands for the neutral interaction between MM and OB cells. So the
evolutionary selection is in favour of the mutant cells. The evolution of the
three cells in Figure 3.5(b) highlights the balance between OC and MM cells
and the absence of OB cells.

Figure 3.5: (a): Evolutionary dynamics of OB-OC-MM cells system in the
case of β = 2 and δ = 0.
(b): Time evolution of the cells with starting point (x, y, z) = (0.2, 0.6, 0.2)
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In Figure 3.5(a) edges are unstable and
(
1
2
, 1
2
, 0
)
is a saddle point, in fact

the normal homeostasis isn’t possible in this scenario. The only stable point
is
(
1
2
, 0, 1

2

)
which represents the coexistence of MM and OC cells.

We have proved that under the model assumptions, β and δ are sufficient
to characterize multiple myeloma bone disease and its progression in time.
It is important to say that the development of the disease and its physiology
is also affected by some particular features of myeloma cells that can vary
from patient to patient. Moreover, also the entries of the pay-off matrix Aij,
i.e. {a,b,c,d,e}, and consequently β and δ, are specific for each patient.
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Conclusions

4.1 Therapies and parameters

From the previous examples, it is possible to understand how therapies should
change parameters to have an improvement on the patients affected by mul-
tiple myeloma bone disease.
We remind that the parameter β represents the interactions between OC and
MM cells, while δ stands for MM and OB interactions.
A higher β means more bone destruction and a faster development of the
tumour burden. So suppressing or reducing this parameter, the number of
bone lesions and the speed of the disease progression should decrease.
A therapy that decreases δ should reduce the myeloma burden, slow the pro-
gression of the disease and improve bone mass [7] .
On the contrary, increasing δ for a fixed β - that is, increasing the disadvant-
age of OB cells in the presence of MM cells- leads to a bone loss without an
increase in the MM population [5] .
Similarly, the model would suggest that any therapy designed to suppress
OC growth should indirectly improve outcomes in patient with myeloma.
The most used therapies are drug treatment and/or transplantation.
In cases in which the presence of a large number of MM cells leads to the
growth of the tumour, an autologous bone marrow transplantation (BMT)
is chosen as a way to ameliorate the patient’s condition.
Moreover, if the condition of the patient can be represented by a system
where β > 1 and there is no drug treatment, BMT is not curative.
Let us prove it considering a system, like 3.4, where β = 3.0 and δ = 1.
The evolutionary dynamics of OC-OB-MM cells presents an unstable point
on
(
1
2
, 1
2
, 0
)
, the representation of the coexistence of OB and OC cells. Ac-

cording to our previous study, the MM cells will out-compete the other cells,

29
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while the ratio OB/OC will lead to zero since the decrease of the presence of
OB cells. We will see it graphically in the 4.1 (a)
In this case, BTM should not change the relative proportion of OB and OC
cells and should decrease the MM cells. However it is proved that this im-
proved condition is just temporary, since relapse is inevitable.
On the other hand, drug treatment changing β to values lower than 1, leads
to the appearance of saddle points. This situation can have different ’end-
games’ and all depends on the time when the drug is provided to the patient.
In those cases where the disease is diagnosed too late, drug treatment and
BMT are still not curative.
A more hopeful scenario is the cases in which the patient is treated at the
beginning of the MM disease.
Let us consider the same previous system with β = 3.0 and δ = 1. We now
show two different graphs of the time evolution of MM cells and the ratio
between OB/OC cells.
In the first graph, we have a frame of what happens if no drug treatment and
no BMT is given to the patient, according to what we previously stated .
Now we suppose that at time t = 5 seconds, treatment and BMT are admin-
istered to the patient and our parameter β becomes lower than 1.
The disease progression is different now: BMT changes the initial condition
of the system, the drug treatment transforms our parameters to β = 1/2 and
δ = 1, so the evolutionary dynamics shows a possible decrease of MM cells
and an advantage in the relation between OB and OC cells.

Figure 4.1: (a)Time evolution of MM cells and the relation between OB/OC
with no drug treatment provided to a patient.
(b) Time evolution of MM cells after their reduction caused by BMT and
drug treatment

To sum up, it is possible to state that therapies, given properly and at the
right time, are able to change the dynamics of the system, enabling normal
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cells to outcompete the malignant one, managing to have a total remission
as a result.

In conclusion, cancer ecology combined with the evolutionary game theory
manages to give a proper model where it is possible to understand and to
study the dynamics of cancer. It provides a new way to deal with cancer
eradication based on the evolutionary forces of the different cell dynamics to
eradicate cancerous cells. Then, we have also proved that therapies should
aim at changing the inner interactions between all the cells involved to gain
the possibility to have actual benefits for the patient.
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