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Introduction

The increasing use of Internet in daily life, such as for work, socialising, health care

and other essential services, has led to an ever larger release of data by users.

For this reason and after large companies or healthcare institutions have been victims

of data breaches and compromises, the issue of protecting the individual has become

crucial.

This is why it is necessary to introduce a privacy system that can protect the individual

in the situation where his data is in the hands of a person who wants to know more

about him without his consent.

In this thesis we deal with a type of protection that caught on in the early 2000s and

that can be a good solution for providing security: the differential privacy.

We wanted to present and explore this topic first of all because of the importance of

the topic nowadays and to explore the mechanisms and limitations that characterise

it. The aim of the thesis is in fact to develop differential privacy from a theoretical

point of view using definitions and theorems of a mathematical statistical nature.

Subsequently, through practical applications, the differentiated privacy of some mech-

anisms was demonstrated, using the Rstudio software.

In the first chapter of this thesis, the problem of privacy on the Internet is introduced,

accompanied by related real-life examples of violations in recent years in various fields.

Based on this primary need, the European Union introduced a regulation, the GDPR,

to guarantee the confidentiality of an individual’s information as a right of every per-

son.

In order to help with these problems, the common solution is differential privacy.

This process is introduced by three desirdata and then some examples of application
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INTRODUCTION

by organisations in recent years are presented.

The output returned by a differentiated privacy process prevents from identifying

whether or not an individual participated in the study. It ensures that the addition or

removal of an individual in a dataset does not change the differential privacy guarantee

given.

The main characteristic of the output obtained with a differentiated privacy process

is the addition of noise to the initial data, resulting an approximation of the original

output. The privacy loss parameter, ϵ, smaller it is, more the data are protected but

less accurate, and vice versa.

The aim is to find the right compromise between data security and adherence to reality

in order to use them.

The fundamental role of ϵ and the form it can take is dealt with in the second chap-

ter, starting with the formal definition of differential privacy and continuing with the

mechanisms behind it.

Examples of this are, randomised responses and the Laplace mechanism, which plays

a fundamental role and which we will also find in later chapters.

The last mechanism assumes that the error follows a Laplace distribution, which can

be applied to various case studies.

It will be seen how an individual’s information can be viewed under a Bayesian ap-

proach, taking what is available to an individual as an a priori distribution.

Often, however, differential privacy applies more error than it needs to in reality, which

is why assumptions are relaxed and the definition of privacy is weakened.

In fact, two examples that follow this line, are mentioned: (ϵ, δ)-differential privacy

and (ϵ, α)-Rényi differential privacy.

We will focus in particular on the second type of privacy due to its characteristics and

properties.

Some examples are: resistance to additional information, group privacy and the im-

portant property of the composition that guarantee the privacy to users who have

participated in several studies.

Again, privacy is applied to the examples seen above with the addition of the Gaussian
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INTRODUCTION

mechanism, assuming that the error follows a Normal distribution.

The final part of the thesis was dedicated to collecting the concepts discussed above

and applying them to datasets by proving their differential privacy using special algo-

rithms: Laplace, Gaussian and Bernstein mechanisms.

We used the ’diffpriv’ package for the analysis, reporting results and graphs.
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Chapter 1

Introduction to the Differential Privacy

1.1 The two sides of information

The recent evolution of technologies and the consequent increase of digital users, have

generated an exponential increase of information during the last years.

The circulation of data is caused by simple actions that anyone does every day like:

searching on the Web, allowing to privacy requests, watching streaming movies, using

of maps, interacting on social networks and many other behaviors of daily life.

The collection of this data fills databases that, using specific algorithms, are used for

multiple purposes: an example is the knowledge of consumer preferences and user’s

habits.

The explosion of data quantity, the increase of the complexity and the speed of trans-

mission have led to the incurring of high costs related to the necessity to store more

data. This led to the development of new methods of collecting them, defining a new

category of data, the Big Data.

The Big Data have generated progress in many areas: thinking, for example, of the

geolocation of people, the support in the medical field or, again, the prediction of ex-

traordinary events.
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CHAPTER 1. Differential Privacy

1.1.1 The role of privacy

The constant increasing of digital data has generated numerous advantages, but by the

other hand has strongly contributed to the diffusion of sensitive data.

This phenomenon, which involved all the World, has compromised users’ rights, caus-

ing cases of privacy violation .

The unstoppable development of this phenomenon has favored the diffusion of infor-

mation about the identity of people, such as their name, place and date of birth, and

also their personal information, like marital status, occupation, religion and ethnicity.

1.1.2 The legislation of EU: GDPR

The increasing risk of violation of people identity and their information, has caused the

introduction of a general regulation for data protection, in 24 May 2016: the General

Data Protection Regulation or GDPR1.

This regulation has been applied in the European Union only two years later, for the

security of its citizens.

The main point of this regulation is that the protection of personal data becomes a

right for the safety of the population.

Other important points that are introduced for the first time in the European Union,

through the GDPR. These issues are: the limitation of the amount of data used for the

study involved, the time of data use must not be higher than necessary, the purpose

of the data used and their security.

What emerges is that the information available are used for what is really necessary,

guaranteeing users about their safety and protecting them from "external" attacks.

If on one side you want to guarantee the people’s privacy, on the other the informa-

tion are useful to produce statistical analysis results, or as mentioned above, even for

companies or for other business purposes.
1Official Journal of the European Union, 27 April 2016: "The protection of individuals with regard

to the processing of personal data is a fundamental right. Article 8, paragraph 1, of the Charter
of Fundamental Rights of the European Union ("Charter") and Article 16 (1) of the Treaty on the
Functioning of the European Union ("TFEU") establish that everyone has the right to the protection
of personal data concerning them. "
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In order to collect information about people’s answer, there must still be the consent

of user, often not conscious of the use that "external" individuals can make of it.

What often happens is that if these responses are combined with global domain data

collections, a single individual’s identity and sensitive data can be violated in any case.

This aspect will be explored in the following paragraphs and the term "participant" will

be used to indicate the person of interest who releases personal data, while "adversary"

for the one who uses the data without a specific purpose.

1.2 Examples of privacy weaknesses

We present below some examples where users’ privacy, without difficulty, can be com-

promised in different areas, starting from a simple online movie review to data regarding

an users’ health.

1.2.1 Netflix’s challenge

The first example that is taken in this analysis is the case of Netflix which is presented

in the article [4].

In 2006, the American company that offers a streaming service for TV programmes

and films online, after publishing a ranking of the platform’s most streamed movies by

users, challenged experts and lovers of recommendation system development.

Arvind Narayanan and Vitaly Shmatikov, two researchers from the University of Texas

took up the challenge. They proved that with this data it is possible to trace individual

subjects despite the fact that Netflix, in order to protect users, replaced names through

randomization of numbers and anonymization of personal data collected.

An "adversary," could trace the subscriber through additional information such as: last

movies watched, genre preferences and dates they watched TV series or movies.

The technique used to remove anonymity of the study’s participants was the introduc-

tion of time markers attached to the initially available data, relating to the viewing

history of movies and then be able to find the original dataset.
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The additional information, used to trace back to the originals data, was sourced from

Internet Movies Database (IMDb), a public domain online databank where statistics

and information on movies, TV series, video games, and many others can be found.

From this database, users who gave reviews by making their names explicit, were ran-

domly chosen to be later compared with the data made public by Netflix.

Specifically, they deleted the 100 most viewed movies and they analyzed the other in

order to make more easier to find the attitude taken by the individual subjects and

their identity.

At this point, with only 8 movie reviews with the attached dates on which it was re-

viewed we can identify users. The 99% of the users can be uniquely identified, with a

margin of error of 14 days, while 68% of the dataset can be identified with only two

movie reviews and dates (with a margin of error of 3 days), as observed in Figure 1.1.

It was seen that easy-to-find items such as a public, small database were used for this

analysis leading to a high risk of replication of the process in many other cases.

The solution for this analysis would seem to modify the temporal markers or randomize

the data by removing some of it from the set. The two researchers have shown how

these aspects are useful only to complicate the identification of subjects and not to

protect them totally.

In fact, their algorithm, again, is shown to be workable and robust.

If only the available database released, as in this case, by Netflix were used the in-

formations that could be derived about an individual is almost nil, but if auxiliary

indications are available, these can create problems for security on a user’s data.

A suitable technique for solving this problem is an innovative solution called, differen-

tial privacy. This privacy tells us that even in the presence of correlation between a

user in the dataset and a given external database, the "adversary" is not able to know

any additional information beyond what it already has.
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CHAPTER 1. Differential Privacy

 

Figure 1.1: Frequency histogram of the probability of identifying the participation in the
study, given the exact film scores and approximate dates taken from [10].

1.2.2 The difficult protection of health data

1.2.3 Nils Homer and genomics

The development of technologies, innovations, and continued studies have shown a

crucial role in the advancement of the health care field, which is presented in the arti-

cle [11].

Contributing to this growth is the role of data and information that has been collected
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CHAPTER 1. Differential Privacy

over time and continues to be stored for use in new studies or treatments.

The focus here is on a branch of biology that studies the genome of organisms: ge-

nomics.

The U.S. National Library of Medicine’s, "Database of Genotypes and Phenotypes"

(dbGaP) is one of the data collections that has become increasingly relevant within

this discipline over the years.

The National Human Genome Research Institute, in fact, compared the studies done

on the genome and the results obtained carried out in three different years: 2005, 2010

and 2013. For each year counting less than 50 studies in 2005, to 900 in 2010 and

finally 2000 studies in 2003, expanding more and more the data collections available.

The constant increase in information, has also elevated concerns and the possibility of

breaching an individual’s sensitive data, speaking in this case of his or her health.

The bio-informatician, Nils Homer, published a paper in 2008 where he exposes this

problem, emphasizing the fact that with the genome data of an unknown subject, it

was shown that it could be traced back to the identification of people’s identity.

Seeing the danger, the Institute of Health (NIH) and other health institutes instanta-

neously removed genome information from the public domain. They later introduced

greater care in the granting of data collected in the database through stricter and more

controlled regulations, which are still in effect today.

The question has been raised on how to be able to prevent attacks from "adversaries" on

genomic data, considering the low numerosity in data collections, the high correlation

between data, and the high amount of different databases concerning the health field.

Simple privacy based on anonymity is not enough, as researchers Narayanan and

Shmatikov have shown. For example, in the case of Netflix, because the cross-referencing

of different datasets is sufficient to trace the individual, although much data has been

masked for public data protection.

One solution, again, is through differential privacy, which provides the "participant" in

the study with greater protection.

Like the previous case, due to the underlying logic of this protection, an "adversary"

will not be able to obtain additional information about the "participant" than what he
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or she already possessed previously.

Complete privacy cannot be achieved, but a compromise is sought between good cov-

erage of this and use of the data for the purpose of study or statistical analysis.

As an alternative to differential privacy, in this case, one element that can be intro-

duced in favor of data protection is a privacy optimization parameter based on the

utility and nature of the data.

1.2.4 Evolution of privacy in Australia

We now study the case of a geographical area that has demonstrated poor protection

of its residents’ personal information during the years: Australia. The South Australia

Health, has made public a chart concerning hospital data realtivized respiratory and

intestinal infections between 2005 and 2018, whose subjects "participants" in the study

are children.

What was published, was linked to the original data by adding the subjects’ first name,

last name and date of birth to the chart.

The non-immediate detection and intervention of the data violation on the network,

gave 300 people the opportunity to view this information, compromising the privacy

of the subjects present, particularly of underage "participants".

It is intended to present a case in which the Australian population again encountered

the personal data breach, with the difference that in the next example, the data was

shared after applying measures to ensure privacy.

Australia’s Department of Health, published in 2016 information regarding the medical

billing records of a sample of the Australian population, in this case 2,985,511 people.

The information was found from the website "data.gov.au" and concern the state of

health of a portion of the Australian population.

The datasets were downloaded more than a thousand times, unaware of the little pro-

tection afforded to users participating in the analysis.

Only a couple of years later it was discovered, thanks to the University of Melbourne,

that the initial data could be traced simply by finding a weakness in the algorithm
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used to protect the underlying data, confirming the fact that the tools available were

not sufficient.

The original data were never published but were only used as evidence of weakness in

the underlying database protection system.

A solution related to differential privacy is used, again like the previous examples.

Figure 1.2: Identification of an individual through a database and additional informa-
tion taken from [12]

1.3 A common solution: differential privacy

In statistical analysis, the aim is to learn the information generated from a sample in

order to learn about the structure of a population.

The study of the statistical database, however, must ensure the non-extraction of in-

formation about the individual in the sample, guaranteeing his privacy.

These two aspects do not always go together, and when information is used by an

"adversary," an invidual’s data could be breached.

The aim is to find a compromise between extracting possible information with the

purpose of analysis and protecting the sensitive data of individuals.

The simplest solution that comes to mind is the complete anonymization of data, elim-

inating sensitive data, certainly guaranteeing the integrity of the individual but having

no usefulness from a statistical point of view. The other is to have all information

16
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available, with the advantage of conducting more precise statistical analysis but with

the high danger of compromising the data released by a user.

To meet both of the above needs, two distinct categories were developed:

1: Randomization: involves the addition of an error term ("noise") while maintaining

the qualities of the data from a statistical point of view;

2: Generalization: involves the formation of clusters based on similar features or at-

tributes among the data.

The main topic of this analysis and solution of many problems, differential privacy,

falls into the first group mentioned above.

1.3.1 The difference between privacy and differential privacy

In 1977, the mathematician Tore Dalenius, made a desideratum regarding statistical

databases where he riches that: even with the presence of a collection of data, no addi-

tional information about the participant should be found than if it were not available.

Confirmation that this request cannot be satisfied comes in 2008 from Cynthia Dwork,

a computer scientist at Harvard University.

The researcher assures us that if a change in the database occurs, the result changes for

both those who participate in the study and those who do not, compromising privacy.

The crucial elements that can be harmful to the privacy of individuals are the data at

the disposition of an "adversary."

She proves in her article [1] this assertion to us through a trivial example. What is

taken into consideration is the height of a person, specifically a hypothetical subject

named Terry Ross.

The database available initially contains the average heights of women of various na-

tionalities and the "adversary" has as auxiliary information, that Terry Ross is two

inches taller than the average Lithuanian woman.

If you have this data at your disposal, it is easy to come to know the height of your

chosen subject, demonstrating how the same reasoning can be applied in many high
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areas.

Dwork, highlights how it was not specified whether the individual is in the database or

not, confirming the risk for even a subject not participating in the study. Differential

privacy for this helps us by ensuring that participation in a study does not increase

the likelihood of compromise.

This type of analysis aims not to learn anything more about the user than they know,

but to get useful information about the entire population through the use of the data.

Here we find the fundamental difference with privacy, which instead aims to ensure

the non-use and protection of data released by the user, having shown in the previous

examples that this is not possible in the presence of additional information.

Differential privacy can also guarantee high levels of user privacy, but always having

the possibility to extract information from the database for further study purposes.

Thus, it is assured that with differential privacy, participation or non-participation in

the study does not change the possibility of data release, as no action or non-action of

the subject could avoid it.

1.3.2 The theory behind differential privacy

To formalise what is discussed above, the mathematical interpretation and the accom-

panying definition of differential privacy is expressed below taken from [2].

Before proceeding, a few essentials elements are presented in order to learn their mean-

ing.

To ensure that "adversaries" do not violate the sensitive data of a study’s "participants,"

or at least the probability is very low, we make explicit in three key points what has

been learned so far.

Assume Xn
1 ∈ X n the input data sample and Z the result that is obtained from the

chosen privacy mechanism.

i. Given otput Z, an "adversary" should not be able to recognize whether an individual

is participating in a study, even if it knows everything (except one person);
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ii. An individual’s participation in multiple studies should not put his or her data at

risk, but a good degree of privacy protection must be ensured; further analysis of a set

of information is processed through a Markov chain Xn
1 −→ Z −→ Y reassuring the

user on the security of his/her personal data;

iii. The privacy mechanism used Xn
1 −→ Z, must be resistant to auxiliary information

that may be known by an "adversary." If the information of a "participant" is present in

Xn
1 and the "adversary" is aware of other data, what it learns from the dataset should

not give it any additional information.

Especially, someone can express the third point in Bayesian terms, assuming that

the information that the "adversary" has available can be expressed as an a priori π

distribution.

The knowledge of two different samples for only one individual, {x1, ..., xn} and {x′
1..., x

′
n},

by means of a private mechanism, does not lead to additional relevant knowledge a pos-

teriori (Xn
1 −→ Z).

The differential privacy is not an algorithm; it is a definition that assumes the use of

a fundamental tool for protecting user information.

The model adds error, it also call it "noise" to the data to ensure the security of per-

sonal information, but while preserving the accuracy of the data set that is to be used.

The role of ϵ is decisive since it represents a metric of loss of privacy, i.e. the maximum

distance that is measured between the output of sample xn
1 and that of yn

1 , also called

the ’privacy parameter’.

If the value of ϵ is small, the two sample outputs will be very similar to each other,

ensuring a high level of protection for users.
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1.3.3 Application of differential privacy

The mechanism behind the differential privacy and the innovation introduced to for-

tify the protection of the population, was immediately successful and applied in several

cases.

An example to mention is the company Apple, which in 2016, after the introduction of

the new iOS 10 operating system, the company declared an application to all following

operating systems, of differential privacy.

Following Apple are Google and Facebook as written in [14]. Thanks to this method,

they They don’t just guarantee a high level of protection for their users, but also the

amount of data that can be used to identify specific trends or changes in user behaviour

to improve their market.

In 2019, through the collaboration of Microsoft and the Institute for Quantitative So-

cial Science at Harvard, a public data platform was developed ensuring differential

privacy.

It was seen earlier how a user’s data and information is collected in databases, which

if not protected by a privacy mechanism can be easily hacked.

Microsoft explains how it is possible through the differential privacy mechanism to

provide security for users.

In a privacy mechanism users send a query, i.e., a request, for data and the tools at

the base respond by entering an error or "noise" .

This is done in order not to make the available data identifiable, returning an approx-

imation of them as can be seen in Figure 1.3.
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Figure 1.3: Operation of Differential Privacy explained by Microsoft taken from [13]
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Chapter 2

Differential privacy tools

The problem expressed by Cynthia Dwork concerning additional information can be

formalized with the mathematical definition of differential privacy.

Definition 2.0.1 (Neighbors dataset). Two different datasets X and Y are neighbors if

they differ on at most one row, where each row corresponds to an individual.

In this case the order of the rows is important.

Example 2.0.1. We have 3 different datasets X ,Y ,J and we want to know if they are

neighbours.

Table 2.1: Example of three different datasets

X Y J

{1,1} {0,0} {1,1}

{0,0} {0,0} {1,1}

{1,1} {1,1} {0,0}

Looking the table, X and Y are neighbors, because they differ for only one row and X

and J are not neighbors, because J contains the rows in a different order.
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Theorem 2.0.2 (Markov kernel). Consider a probability space ( Ω,B(Ω), ω ), with Ω a

sample space, B(Ω) a σ -algebra of Borel and w a probability measure.

A Markovian kernel is defined as, Q : Ω×B(Ω) −→ [0, 1], such that it is a measurable

function in the first argument:

Q(,A) : ω −→ Ω, ∀A ∈ B(Ω),

and a probability measure in the second,

Q(q, ) : B(Ω) −→ [0, 1],∀q ∈ Ω.

By construction the kernel defines a Q : Ω −→ B(Ω) map, where B(Ω) is the space of

probability measurements on Ω.

Definition 2.0.3 (Differencial privacy). [2] Let Q be a Markov kernel from X n to an

output Z. Q is ϵ-differentially private if for all sets S ⊂ Z and all sample xn
1 ∈ X n

and x
′n
1 ∈ X n differing in at most a single entry:

Q(Z ∈ S|xn
1 )

Q(Z ∈ S|x′n
1 ) ≤ eϵ (2.1)

The above definition shows how data of a subject in a database, does not have a relevant

effect on the result, so the absence of a user would not lead to large changes on the

output.

Absence of a user would not lead to major changes in the output, with at most an error

equal to eϵ.

The model of Definition 2.0.4 is also called centralized model.

This name is given by the fact that the data samples are all controlled by a reference

figure who manages the data, such as companies, institutions, hospitals or researchers.

Definition 2.0.4 (Local differencial privacy). [2] A Markov kernel Q from X to one

output Z is ϵ-locally differencially private if for all measurable S ⊂ Z and all x and

x
′ ∈ X ,
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Q(Z ∈ S|x)
Q(Z ∈ S|x′) ≤ eϵ (2.2)

This model, called local model, differ from the Model (2.1) because this is stronger from

a privacy point of view.

The two neighboring sample considered {x1, x2, ..., xn} and {x′
1, x

′
2, ..., x

′
n} differ by one

observation, so the model in (2.2) consider the densities:

dQ(Zn
1 |xi)

dQ(Zn
1 |x

′
i)

=
n∏︂

i=1

dQ(Zi|xi)
dQ(Zi|x

′
i)
≤ eϵ

where the difference are from the single entry where xi ̸= x
′
i.

The data providers, in this case, do not trust data collectors and make it protected

before making it available to them.

The next Sections will present some of the mechanisms underlying differential privacy

in the local or centralized models, where all these use the addition of an error to ensure

privacy.

2.1 Randomized response

In the previous Chapter 1.3.2 we have introduced three assumptions from [2] in order

to hypothesize the two models seen, which use an error to protect the data.

The oldest and also the most simple model based on this noise, is the randomized

response, which was proposed by Warner in 1965. This model is a differential privacy

technique that aims to reassure the user by introducing noise in relation to the original

data.

[2]Assume that we want to know how many participants of a study have a have a certain

characteristic, in this case if they have ever smoked. The portion of the population

with this characteristic have a probability p, instead the others 1-p.

Obviously not all the population will answer the truth, so every single person have to

flip a coin A. To achieve these results we refer to what John Duchi wrote in [6], the
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probability P(x = 1) = eϵ

1+eϵ correspond to the group 1, people that smoke or have tried

to smoke, instead P(x = 0) = 1
1+eϵ the group 0, people who have never tried to smoke.

As support we will use a coin A where heads corresponds to group 1 and tails to group

0. With the aim of protecting the privacy of the participants, we ask to them to answer

"Yes" if the coin corresponds to the group to which it belongs and "No" otherwise.

So we can write in this case that:

Q(Y es|x = 0)
Q(Y es|x = 1) = e−ϵ

and in the other case:
Q(No|x = 0)
Q(No|x = 1) = eϵ

In general we can prove that this channel of randomize response guarantees ϵ- local

privacy, in fact Q(Z=z|x)
Q(Z=z|x′ ) ∈ [e−ϵ, eϵ] for all x, z.

So when there is differencial privacy we can’t learn about a particular person in a set

of data.

Example 2.1.1. [18] Let us consider a single respondent in an analysis that collects

answers about a sensitive topic. The respondent is instructed to flip a coin and if it is

a head, he must answer the truth while if it is tails, then flip a second coin and respond

“Yes” if heads and “No” if tails.

The analysis show that Pr[Response ="Yes"|Truth = "Yes"] = 3
4 , because when the

truth response is "Yes" there are two way to answer "Yes", the first one is when the

first coin comes up tails with a probability 1
2 , the second one is when the first coin and

the second come up heads, with a probability of 1
2 ∗

1
2 = 1

4 .

In the case of Pr[Response ="Yes"|Truth = "No"] = 1
4 , because there is only the case

of the first coin comes up heads and second comes up tails. We can apply the similar

reasoning to the case of a “No” answer and we obtain:

Pr[Response = ”Y es”|Truth = ”Y es”]
Pr[Response = ”Y es”|Truth = ”No”] =

3
4
1
4

= 3
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Pr[Response = ”No”|Truth = ”No”]
Pr[Response = ”No”|Truth = ”Y es”] =

3
4
1
4

= 3

The randomized response described in this case is (ln 3, 0)-differentially private.

2.2 Generalised randomize response

We can extend the model based on random responses more generally.

Theorem 2.2.1 (Uniform Distribution). A continuous random variable Z that is an Uni-

form Distribution in a interval [a,b], represented by Z ∼ Uniform(a,b), have probability

distribution function:

fZ(z) =

⎧⎪⎪⎨⎪⎪⎩
1

b−a
, a < z < b

0, z < a or z > b

This mechanism is based on the output Z conditioned on x, a particular attribute

chosen in a set of values {1, ..., k}.

Z|x =

⎧⎪⎪⎨⎪⎪⎩
x, with p = eϵ

k−1+eϵ

U(k
x
), with p = k−1

k−1+eϵ

where U is an Uniform distribution. The estimation of the true probability of the

output Z, we can write pi = P (X = i) for a singular person, and the calculation is

with the combination of the two probability reported above.

We obtain:

P (Z = i) = pi
eϵ

k − 1 + eϵ
+ (1− pi)

1
k − 1 + eϵ

= pi
eϵ − 1

eϵ + k − 1 + 1
eϵ + k − 1 (2.3)

By definition ∑︁k
j=1 P (Z = j) = 1 because is a is a probability measure, and then to

check the correctness of the result: ∑︁k
j=1 P (Z = j) = ∑︁k

j=1 pi

(︂
eϵ−1

eϵ+k−1

)︂
+ k

eϵ+k−1 =(︂
eϵ−1

eϵ+k−1

)︂∑︁k
j=1 pi + k

eϵ+k−1 = 1.

It’s difficult to obtain the true probability then estimate. Suppose a sample of the
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output Z of size n, d̂n ∈ Rk
+ and so the estimation of the true probability p is:

p̂n := eϵ + k − 1
eϵ − 1

(︃
d̂n −

1
eϵ + k − 11

)︃

This result follows from the substitution of P (Z = i) = d̂n, pi = p̂n and reversal of the

Equation (2.3), with pT 1 = 1.

Theorem 2.2.2 (Euclidean Norm). Assume a vector u = (u1, u2, ..., un) in a Euclidean

n-space Rn. The Euclidean Norm of u is defined by:

||u|| =
⎛⎝ n∑︂

j=1
u2

j

⎞⎠ 1
2

This probability satisfies the properties of non-distortion, that is E[p̂n] = p and sub-

stituting the quantities in,

E[||p̂n − p||22] =
(︄

eϵ + k − 1
eϵ − 1

)︄2

E[||d̂n − E[d̂n]||22]

thanks to E[d̂n] =
(︂
E[p̂n] + 1

eϵ−11
)︂

eϵ−1
eϵ+k−1 =

(︂
p + 1

eϵ−11
)︂

eϵ−1
eϵ+k−1 and applying the prop-

erties of the expected value.

Theorem 2.2.3 (Bernoulli distribution). A Bernoulli distribution is a discrete distri-

bution, with only two outcomes, z = 1 with probability p for "success" and z = 0 with

probability 1− p for "failure". The probability density function is defined as:

PZ(z) =

⎧⎪⎪⎨⎪⎪⎩
p, for z = 1

1− p, for z = 0

Where E[Z] = p and V (Z) = p(1− p).

Explaining the expected value formula and applying the variance formula of a Bernoulli

distribution obtain the result:

E[||p̂n − p||22] = 1
n

(︄
eϵ + k − 1

eϵ − 1

)︄2 k∑︂
j=1

P (Z = j)(1− P (Z = j)) (2.4)
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We know that ∑︁k
j=1 P (Z = j) = 1, and so thanks to this result obtain that:

E[||p̂n − p||22] ≤
1
n

(︄
eϵ + k − 1

eϵ − 1

)︄2

.

To simplify the analysis, are considered the two cases where ϵ ≤ 1 and ϵ ⩾ log k. In the

first c the mean l2 square error has scale as k2

nϵ2 and the second one at worst 1
n

which is

the "non-private" mean square error. The generalized randomized response mechanism

is ϵ - locally private, thanks to Definition 2.0.4.

2.3 The Laplace mechanism

The Laplace mechanism is used for the centralized model based on the addition of a

Laplace noise for the exponetial tails, instead for the local differencial privacy is used

the randomized response. For this method are used two tools: the Hamming metric,

for the addiction of the noise and the Lipschitz costant, that is called also sensitivity.

Theorem 2.3.1 (Lipschitz constant). [2] The Lipschitz costant, based on some distance

function, taking values in R+ and an order p>0, for two neighbourig databases x and

x
′:

Lipp,dist(f) := sup

{︄
||f(x)− f(x′)||p

dist(x, x′) |dist(x, x
′) > 0

}︄

which is also called sensitivity.

Theorem 2.3.2 (Hamming metric). Assume two vectors u = (u1, u2, ..., un) and v =

(v1, v2, ..., vn), the Hamming distance dham:

dham(u, v) =
n∑︂

i=1
1 {ui ̸= vi}

that represents the number of differences between the two vectors v and u.

Theorem 2.3.3 (Laplace distribution). The double exponential or Laplace distribution

is a continuous distribution of two identical exponential distributions.
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The probability density function (PDF) is:

P (x) = 1
2b

e−|x−µ|/b

with µ ∈ R is the location parameter and b ∈ R+ is the scale parameter.

D(x) = 1
2
[︂
1 + sign(x− µ)(1− e−|x−µ|/b)

]︂

that is the integral of PDF and they have the same parameters. If W ∼ Laplace(b),

and W ∈ R, then E[W ] = 0 because of symmetry, while E[W2] = 1
b

∫︁∞
0 w2e− w

b =

2b2 applying the definition of second moment. Applying the Hamming metric to the

definition of Lipschitz costant for a function f : X n −→ Rd with p = 1 we obtain:

Lip1,dham
(f) = sup {||f(xn

1 )− f(yn
1 )||1|dham(xn

1 , yn
1 ) ≤ 1} ≤ L (2.5)

where L is the Lipschitz constant.

Figure 2.1: Density and distribution function of a Laplace distribution with different
values of location parameter µ and scale parameter b.
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Definition 2.3.4 (Laplace mechanism). [2] Let f : X n −→ Rk. The Laplace mechanism

is defined as:

Z := f(Xn
1 ) + W

with a function f(Xn
1 ) and the addiction of W that is Wj ∼ Laplace(L

ϵ
) i.i.d. .

It must be demonstrated that also the Laplace mechanism Z is ϵ-differentially private

taken from [7].

Theorem 2.3.5 (Triangle Inequality). Let x and y two different vectors. The triangle

inequality is given by:

|x| − |y| ≤ |x + y| ≤ |x|+ |y|

Proof. Let consider two different dataset that differ for only one observation x and

x
′ ∈ X n (neighbors database).

To prove differencial privacy it must be obtained that, the ratio of the density proba-

bility px′ (z) and px(z) of the density functions of Z(x) and Z(x′) for a generic z ∈ Rk,

is px(z)
p

x
′ (z) ≤ eϵ.

px(z)
px′ (z) =

∏︁k
i=1 exp(− ϵ

L
|f(x)i − zi|)∏︁k

i=1 exp(− ϵ
L
|f(x′)i − zi|)

=
k∏︂

i=1
exp

(︂
−ϵ|f(x)i − zi|)− ϵ||f(x′)i − zi|)

L

)︂

≤
k∏︂

i=1
exp

(︂
−ϵ(|f(x′)i − f(x)i|)

L

)︂

= exp
(︂ϵ
∑︁k

i=1(|f(x)i − f(x′)i|)
L

)︂
= exp

(︂ϵ(||f(x)− f(x′)||1)
L

)︂
≤ exp(ϵ)

thanks to the support of the triangle inequality for the third step.
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2.4 Laplace mechanism’s application

[2] [7]The Laplace mechanism is used in different scenarios, in particular we will see

below the use in estimation of means, histograms and counting queries.

2.4.1 Univariate mean estimation

The first application of Laplace mechanism is on univariate mean estimation, in par-

ticularis considered the Definition 2.3.4. for k = 1.

It is estimated E[X], given a set of variables X, having values in a range [-c , c], with

c a finite value (c <∞).

It can be replaced the theoretical with the corresponding empirical estimator, f(Xn
1 ) =

Xn̄ = 1
n

∑︁n
i=1 Xi.

The Lipschitz costant in this case is 2c
n

, is tested in this in two different sample which

only differ from one object, x and x
′ ∈ [−c, c]n:

|f(x)− f(x′)| = 1
n
|xi − x

′

i| ≤
2c

n

that respect the Hamming metric because xi ∈ [−c, c].

So the Laplace noise addiction mechanism is:

Z = 1
n

n∑︂
i=1

Xi + W, Wi ∼ Laplace
(︃2c

nϵ

)︃

The Laplace distribution is Wi ∼ Laplace( 2c
nϵ

) with the variance:

V (W ) = E[(Z − E[X])2] = E[(Xn̄ − E[X])2] + E[(Z −Xn̄)2] (2.6)

with E[(Xn̄ − E[X])2] = 1
n
V ar(X) and E[(Z − Xn̄)2] = 2( 2c

n
)2

ϵ2 = 8c2

n2ϵ2 for the general

result:

E[||Z − f(xn
1 )||22] = 2dL2

ϵ2
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The Equation (2.5) is written as:

E[(Z − E[X])2] = 1
n

V ar(X) + 8c2

n2ϵ2 ≤
c2

n
+ 8c2

n2ϵ2

In this case the penalty is define as ϵ >> n− 1
2 and with these values it can be defined

that this mechanism is ϵ−differentially private.

2.4.2 Counting Queries

Single Query

Another simple and similar application to the one just seen, is the counting queries.

This problem is solved like the one just seen and responds to the request of how many

subjects have a certain C characteristic.

In this case, every single person have a dichotomous variable Yi ∈ {0, 1}, where 0

indicate that the person does not have the characteristic we are looking for and the

opposite for 1.

Using the Definition 2.3.4. f(Xn) = ∑︁n
i=1 Yi and W ∼ Laplace

(︂
1
ϵ

)︂
, assuming Lipschitz

costant equal to 1.

So the Laplace noise addiction mechanism is:

Z =
∑︂

Yi + W, Wi ∼ Laplace
(︃1

ϵ

)︃

Many Queries

In this second case one wants to answer to more queries.

Using Definition 2.3.4., f(X) = (f1, f2, ..., fk), where each function answers a different

question by counting the answers and assuming each individual counting query fi has

a sensitivity equal to 1.

Assuming two different dataset X and X
′ and we want to measure the L1− sensitivity
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with the Equation (2.5), that is:

L1 =
k∑︂

i=1
|fi(x)− fj(y)| ≤

k∑︂
i

1 = k

because some values cancel each other out.

So now, considering an overall sensitivity of k and so the Laplace random variables can

be written like Wi ∼ Laplace(k
ϵ
).

So the Laplace noise addiction mechanism is:

Z =
∑︂

(f1(Xi), ..., fk(Xi)) + W, Wi ∼ Laplace

(︄
k

ϵ

)︄

The difference between the single and many queries is the size of the error.

The first one has an order of error equal to O(1
ϵ
), so doesn’t depend on the size of the

database, instead in the second one each counting query has an error of O(k
ϵ
).

A criticality of the second approach, the counting of many queries, is that it uses a

non-adaptive setting, must be introduced k counting queries at the beginning of the

study and this is not optimal for analysis.

2.4.3 Histograms

The last estimation is another type of query, the histogram query.

In this case the queries are independent of each other, for example one wants to know

how many people have an age X. This type of question is translated into function

f = (f1, ..., fk) where every function is the sum of subjects that have the age i.

In this case the sensitivity is equal to 2 because if they are considered two neighbour-

ing datasets X and X
′ , where xj is replace by x

′
j, the counts change by 1 for both

coordinates, j and j
′ .

The Laplace mechanism has f(Xi) = ∑︁n
j=1 I{Xj = i} for i = 1, ..., k and Wj ∼

Laplace
(︂

2
ϵ

)︂
i.i.d. variables and so:

Z = f(X) + W, Wj ∼ Laplace
(︃2

ϵ

)︃
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Looking for the error, like before, have order O
(︂

1
ϵ

)︂
, so it doesn’t depend on "bins" k.

An interesting thing is to measure the error for all counting variables, in particular for

understand the accuracy of the Laplace mechanism one can start from the following

result.

Observation 2.4.1. Assume an random variable Y ∼ Laplace (β) :

Pr[|Y | ⩾ tβ] = exp(−t)

Proof. If one integrate the Laplace PDF we get:

FX :

⎧⎪⎪⎨⎪⎪⎩
1
2 exp

(︂
y−µ

b

)︂
if y < µ

1− 1
2 exp

(︂
−y−µ

b

)︂
if y ≥ µ

with µ = 0 and x = tb one have that:

Pr[|Y | ⩾ tβ] = 1− Pr(−tb ≤ Y ≤ tb) =

= 1− (1− 1
2 exp(−t)− 1

2 exp(−t)) =

= 2
2 exp(−t) = exp(−t)

then the Observation 2.4.1 has been demonstrated.

If one wants to knowthe accuracy of Laplace mechanism we consider a l∞ error.

From the Observation 2.4.1. and looking that Yi ∼ Laplace(L
ϵ
) have that:

Pr

[︄
||Y ||∞ ⩾ ln

(︄(︄
t

β

)︄(︃
L

ϵ

)︃)︄]︄
= Pr

[︄
max
i∈[n]
|Yi| ⩾ ln

(︄(︄
t

β

)︄(︃
L

ϵ

)︃)︄]︄

≤ n ∗ Pr

[︄
|Yi| ⩾ ln

(︄(︄
t

β

)︄(︃
L

ϵ

)︃)︄]︄

= n ∗
(︄

β

n

)︄

= β

So the probability that any bin has error greater or equal to 2 ln( n
β

)
ϵ

is at most β.
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2.5 Bayesian approach to information

2.5.1 Additional information and conditioning to output

The main point of the differential privacy, is to protect people from external attacks

now and especially in the future.

If one consider the three point at the beginning of this paper (Section 1.3.2), in par-

ticular the second one Xn −→ Z −→ Y . That means that if there is an output Z, in a

sample Xn, that is differentially private, then the underlying functions Y also satisfies

this property. Considering two neighboring datasets, X and X
′ , can be translated as

the desire to satisfy privacy with a system of hypotheses which differ in a single entry

in the alternative hypothesis: H0 : Xn
1 = xn

1 and H1 : Xn
1 = (xi−1

1 , x
′
i, xn

i+1).

To test the hypothesis system we have to introduce a ϵ - conditional hypothesis testing

for privacy of people:

Q(Φ(Z) = 1|H0, Z ∈ A) + Q(Φ(Z) = 0|H1, Z ∈ A) ⩾ 1− ϵ (2.7)

where Xn is the input, Z is the output, Q(A|H0) > 0 and Q(A|H1) > 0.

This result says that the probability of failing a test is high, regardless of which hy-

pothesis is true. To avoid this, we need to do one more hypothesis.

Observation 2.5.1. Assume Q a channel that is ϵ− differential private.

Then Q is also ϵ̄ = 1− e−2ϵ ≤ 2ϵ - conditional hypothesis testing private.

Proof.

Q(B|H0, Z ∈ A) + Q(Bc|H1, Z ∈ A) =Q(A, B|H0)
Q(A|H0)

+ Q(A, Bc|H1)
Q(A|H1)

⩾e−2ϵ

(︄
Q(A, B|H1)

Q(A|H1)
+ Q(A, Bc|H1)

Q(A|H1)

)︄

⩾e−2ϵ

(︄
Q(A, B|H1) + Q(A, Bc|H1)

Q(A|H1)

)︄

⩾e−2ϵ

(︄
Q(A|H1)
Q(A|H1)

)︄
= e−2ϵ
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where B= {z|Φ(z) = 1} is the region of acceptance of H1, Φ is the test and Q(A, B|H1)+

Q(A, Bc|H1) = Q(A|H1).

In this way, it was shown that even if you condition the channel on the output of the

data set, you cannot recognise the initial data sample used.

2.5.2 Another method: Bayesian perspectives

[2]It can be considered and treated external information with another approach, using

additional information more cautiously: the Bayesian method.

The fundamental tools for using this approach are a set of a priori distributions π ∈ X n

and the posterior distribution π(.|Z) where Z is the output of a channel Q.

Theorem 2.5.1 (Conditional probability). Let A and B events with P (B) > 0, then the

conditional probability of A given B is the number:

P (A|B) = P (A ∩B)
P (B)

Using the definition, it is easy to prove the following results, which will be useful for

further analysis:

• P (A ∩B) = P(A|B)P(B);

• P(A) = P(A ∩B)+P(A ∩Bc) = P(A|B)P(B) + P(A|Bc)P(Bc);

• P(B|A) = P (A|B)
P (A) P (B), (Bayes’ Rule).

Theorem 2.5.2 (Bayes Theorem). Let the events B1, ..., Bn and A from a partition of

a sample space S.

Given the event A we can write the total probability P (A) = ∑︁
i=1 P (A|Bi)P (Bi).

Using the Bayes’ rule we have that:

P (Bi|A) = P (A|Bi)P (Bi)
P (A)

with P (A) > 0.
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Theorem 2.5.3 (Bayesian posterior distribution). The Bayesian posterior distribution

is defined via Bayes Theorem (Theorem 2.5.2), which states that given the likelihood

function l(x|θ) of the sample x and a priori distribution on the parameter of interest,

π(θ) then:

π(θ|x) = l(x|θ)π(θ)∫︁
l(x|θ)π(θ)dθ

,

which can be written as

π(θ|x)αl(x|θ)π(θ)

because
∫︁

l(x|θ)π(θ)dθ is a constant that is not important to the result.

It is of interest to test a particular value x of a sample S.

With some assumptions you can show that what the adversary knows a posteriori is

not so different from the initial result.

One of this assumptions is that, what an opponent knows about a subject in a dataset

is independent of what he knows about the other components.

This can be mathematically translated as:

π(xn
1 ) = π(xi−1

1 ,xn
i+1)πi(xi), (2.8)

With this result you can write the following statement:

Definition 2.5.4. Let Q be an ϵ - differentially private channel and let π be a prior

distribution with the characteristic presented in the Equation (2.8).

The posterior density for Xi given z is:

e−ϵπi(x) ≤ π(x|Z = z) ≤ eϵπi(x) (2.9)

The Definition 2.5.4. says that even if an adversary has information and knowledge

of a subject (prior distribution πi(x)), the result conditional on the output does not

change much (posterior distribution πi(x|Z = z)).

Proof. To prove the Proposition we use the ϵ− differential privacy inequality and we
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assume that w ⨁︁
i x =

(︂
xi−1

1 , x, xn
i+1

)︂
so:

πi(x|Z = z) =
∫︁

w∈X n−1 q(z|w⨁︁i x)π(w⨁︁i x)dµ(w)∫︁
w∈X n−1

∫︁
x′ ∈X q(z|w⨁︁i x′)π(w⨁︁i x′)dµ(w, x′)

≤ eϵ

∫︁
w∈X n−1 q(z|w⨁︁i x)π(w⨁︁i x)dµ(w)∫︁

w∈X n−1
∫︁

x′ ∈X q(z|w⨁︁i x)π(w⨁︁i x′)dµ(w)dµ(x′)

= eϵ

∫︁
w∈X n−1 q(z|w⨁︁i x)π(xi−1

1 ,xn
i+1(w))dµ(w)πi(x)∫︁

w∈X n−1 π(xi−1
1 ,xn

i+1(w))dµ(w)
∫︁

x′ ∈X πi(x′)dµ(x′)

= eϵπi(x),

where µ is the base measure on X n−1 x X for the upper bound.

To prove the lower bound, proceed in the same way.

Youcan prove that there are other types of prior and posterior for which ϵ - differential

privacy holds.

If the adversary’s prior follow a distribution that is invariant to permutation, the only

thing to do is to change the Equation (2.9) to adapt it to the request made.

You can rewrite Definition 2.5.4. by taking up the result of Theorem 2.5.1 (Bayes’

Rule).

The result shows us the difference after observation of the output between the a priori

and a posteriori distribution.

You have the following result:

Definition 2.5.5. A channel Q from X n −→ Z is ϵ− differentially private if and only if

any prior distribution π on X n and any observation z ∈ Z, the posterior odds satisfy:

π(x|z)
π(x′ |z) ≤ eϵ (2.10)

for all x and x
′ ∈ X n with dham(x, x

′) ≤ 1.

Proof. You know that π(x|z) = q(z|x)π(x)
q(z) , where q is the density of Z ∈ Z.

Then:
π(x|z)
π(x′|z) = q(z|x)π(x)

q(z|x′)π(x′) ≤ eϵ π(x)
π(x′)
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for all z, x, x
′ if and only if Q is ϵ - differentially private.

It was seen earlier that, even in the Bayesian context, the a priori and a posteriori

distribution do not change significantly for any Z output, for two datasets which differ

by only one element, maintaining coherence with the definition of differential privacy.
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A weaker version of differential privacy

3.1 More real privacy definitions

In the previous Chapter, we saw how the definition of differential privacy is based on

the definition of a noise with minimal dimensions.

Often the dimension of error does not reflect reality, which is why there is a need to

make the definition of differential privacy more flexible.

What we work on is precisely the error, which is often larger than the one actually used,

decreasing the amount of noise while trying to maintain a good degree of protection

and accuracy.

In particular, we will see below two other types of privacy, reported in John Duchi’s

paper in [2]. These two privacy are based on the weakening of the error term leading

to satisfactory data protection results which are: the (ϵ, δ)- differential privacy and

(ϵ, α)-Rényi differential privacy.

3.1.1 (ϵ, δ)- differential privacy

The first type concerns very uncommon happenings, whose probability of occurrence

is very low, i.e. in cases of catastrophic violations of privacy.

Definition 3.1.1 ((ϵ, δ)- differential privacy). [2] A channel from X n to Z, the output,

is (ϵ, δ)-differentially private if for all sets S ⊂ Z and all neighbouring samples xn
1 ∈ X n
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and yn
1 ∈ X n:

Q(Z ∈ S|xn
1 ) ≤ eϵQ(Z ∈ S|yn

1 ) + δ (3.1)

with ϵ, δ ⩾ 0.

In this privacy model, a new term is added δ, where the new interpretation of the

Equation (3.1), is that the model is ϵ-privacy differentiated except for the additive

term δ.

If δ = 0 then the definition of ϵ-differential privacy and (ϵ, δ)- dirrential privacy coincide,

but this event will not be considered in this paper.

[2]This model has the characteristic of decaying super-polynomially to zero and δ is

that it satisfies the relation δ = δn where δn << n−l for any l ∈ N .

Even if this method has advantages, its use is not indicated as it is not appropriate for

commonly used cases.

The term additive includes two cases where privacy is not given, considering the case

of its neighbouring datasets, where in both cases ϵ-differential privacy is guaranteed

with a probability of 1− δ, and the difference is in the probability of the term δ.

The difference between the two failure modes can be significant.

In the first case, there is always some residual possibility of denial; in the second, the

opponent occasionally learns the truth with certainty.

The probability of being wrong depends on the user’s degree of acceptance of false

positives, and depending on this, a good degree of protection is guaranteed or not.

A single privacy statement (ϵ, δ)-DP cannot distinguish between the two alternatives.

The (ϵ, δ)-differential privacy was initially thought of as a model to ensure privacy in

the Gaussian mechanism.

Definition 3.1.2 (Gaussian mechanism). [6] The Gaussian mechanism G on the query

function f : X → Rd with sensitivity L applied over a database D ∈ X outputs:

G(f(D)) = f(D) + ϵ, ϵ ∼ N(0, σ2Id) (3.2)

where σ denotes the standard deviation of the normal distribution N and is calibrated
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to the sensitivity L, Id denotes the identity matrix with d diagonal elements.

Theorem 3.1.3 (Gaussian mechanism (ϵ, δ)-differential privacy). [22] A Gaussian error

of a mechanism with σ = L
√︂

2 log(1.25
δ

) and ϵ, δ ∈ (0, 1) is (ϵ, δ)-differentiated privacy.

Gaussian mechanism cannot respect the (ϵ, δ)- differential privacy, because using this

language there is always a possibility of privacy violation.

[2]A different definition of privacy closest to the analysis to do is based on Rényi

divergences between distributions, monotonically transformed f divergences, where

their structure will be simplified in these analyses.

3.1.2 A look at the f -divergences

To be able to define a natural relaxation of differential privacy, the Rény differential

privacy, we must introduce the concept of divergence between two distributions.

To do so we will refer to the definitions given by John Duchi contents in [2].

There are different types of divergence measures and this type of privacy is based on

f-divergences or Ali-Silvey divergence.

Let P and Q two probability distributions on a set X , and we have a convex function

with the distinction that f(1) = 0 such that f : R+ −→ R.

We consider X a discrete set, then the f - divergence between P and Q is:

Df (P ||Q) :=
∑︂

x

k(x)f
(︄

p(x)
q(x)

)︄
.

If we generalise the result and consider for each set X and a quantizer q : X −→

{1, ..., m} defined as Bi =q−1({i}) = {x ∈ X| q(x) = i} be the portion the quantizer

induces, we can define the quantized divergence:

Df (P ||Q|q) =
m∑︂

i=1
Q(Bi)f

(︄
P (Bi)
Q(Bi)

)︄
,

and in general the definition can be written as:

Df (P ||Q) := sup{Df (P ||Q|q) such that q quantizes X}.
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If we instead consider two continuous distributions P and Q with respect to the base

measure, as in our case of interest, we obtain:

Df (P ||Q) :=
∫︂

X
q(x)f

(︄
p(x)
q(x)

)︄
dµ(x). (3.3)

This divergence measure is fundamental to defining Rényi’s differential privacy measure

and subsequent analysis.

Definition 3.1.4 (Rényi-α-divergence). [2] Let P and Q be distributions on a space X

with dentisies p and q compared to a measure µ and α ∈ [1,∞].

The Rényi-α-divergence between P and Q is:

Dα(P ||Q) := 1
α− 1 log

∫︂ (︄
p(x)
q(x)

)︄α

q(x)dµ(x). (3.4)

The result (3.3) can be formulated as the expression (3.4) due to the following rela-

tionship:

Df (P ||Q) = exp((α− 1))Dα(P ||Q)),

with f(t) = tα − 1.

3.2 Rényi-differential privacy

We describe below a generalisation of the definition of differential privacy based on

Rény divergence defined in the Equation (3.4).

3.2.1 Tools for defining the measure of privacy

Before proceeding with the formal definition of Rényi-differential privacy, we must use

additional supporting elements.

Ilya Mirnov, in his paper "Rényi Differential Privacy" (2017), demonstrates how the

Rényi-α-divergence satisfies important properties to consider [9]:
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1. Non negativity;

2. Monotonicity;

3. Probability preservation;

4. Weak triangle inequality.

Observation 3.2.1 (Non negativity). [9] For two distributions P, Q and α ⩾ 1:

Dα(P ||Q) ⩾ 0. (3.5)

Observation 3.2.2 (Monotonicity). [9] For two distributions P, Q and 1 ≤ α < β:

Dα(P ||Q) ≤ Dβ(P ||Q). (3.6)

Observation 3.2.3 (Probability preservation). [9] B is an event in R, α > 1 and two

distributions P, Q in R defined on the same support:

P (B) ≤ (exp[Dα(P ||Q)]Q(B))(α−1)/α. (3.7)

Observation 3.2.4 (Weak triangle inequality). [9] Let three distribution P, Q, R in R

with p, q > 1 which satisfy 1
p

+ 1
q

= 1 it is affirmed that

Dα(P ||Q) ≤ α− 1/p

α− 1 Dpα(P ||R) + Dq(α−1/p)(R||Q). (3.8)

with α > 1.

Thanks to these tools, we can now proceed to the formal definition of differential

privacy by Rényi.

Definition 3.2.1 (Rényi-differential privacy). [2] A channel Q : Xn −→ Z is (ϵ, α)-

Rényi private if for all neighboring sample xn
1 , yn

1 ∈ Xn,

Dα(Q(|xn
1 )||Q(|yn

1 )) ≤ ϵ, (3.9)
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with ϵ ⩾ 0 and α ∈ [1,∞].

Remark 1. We can also define α for negative orders, but we will not consider this case.

In reference to (ϵ, δ)-differential privacy, Rényi differential privacy is a stronger type of

privacy and each ϵ-differentiated privacy process is also (ϵ, α)-Rényi private.

In addition comparing pure differential and Rényi privacy many properties are in com-

mon.

3.2.2 The advantages of Rényi differential privacy

The privacy introduced satisfies several criteria necessary for it to be defined as a good

data protection instrument.

In the following we will discuss about bad outcomes guarantee, robustness to auxiliary

information, post processing and group privacy in the end, based on what Mirnov said

in his writing [9].

Bad outcomes

In the first case, bad outcomes guarantee, there are some cases where the output of

the mechanism is described as bad, this is why some people do not want to enter data

into the database.

Differential privacy ensures that the probability of observing an erroneous result does

not change whether a user’s information is present in the dataset or not, the computer

scientist says is valid also for the privacy of Rényi thanks to the Equation (3.7):

e−ϵQ(Z ∈ S|yn
1 )α/(α−1) ≤ Q(Z ∈ S|xn

1 ) ≤ (eϵQ(Z ∈ S|yn
1 ))(α−1)/α

Post-processing

The researcher also says that an important benefit of this privacy is the fact that, if

a function is Rényi differential privacy, the function’s transformation also remains so.

This ensures the security of the output even after the process is complete, being robust

to manipulation.
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Table 3.1: Comparison of differential and Rényi privacy properties taken from [9]
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Resistance to additional information

As pointed out in the previous Chapters, the introduction of differential privacy emerged

in order to guarantee users security over their data even if an "adversary" has prior

knowledge.

Mirnov assumes that he is in the conditions of Definition 2.5.5. of Chapter 2, π(x|z)
π(x′ |z) =

q(z|x)π(x)
q(z|x′ )π(x′ ) ≤ eϵ π(x)

π(x′ ) .

This result satisfies the fact that a mechanism under differential privacy does not

change the input result except at the maximum of eϵ.

He states that if we talk about Rényi differential privacy, the protection provided by

the mechanism is based on the variation of the posterior distribution.

Theorem 3.2.2 (Jensen’s inequality). Let f a concave function and X a random vari-

able,

E[f(X)] ≤ f(E(X)).

We assume that R(xn
1 , yn

1 ) is the Bayesian factor defined in Theorem 2.5.2 and P=

f(xn
1 ) and Q= f(yn

1 ), with an order α restricts the (α - 1)-th moment:

EP

[︄{︄
Rpost(xn

1 , yn
1 )

Rprior(xn
1 , yn

1 )

}︄]︄
= exp[(α− 1)Dαf(xn

1 )||f(yn
1 ))].

Applying the logarithm on both sides and Jensen’s disjointedness:

EP

[︄
log

{︄
Rpost(xn

1 , yn
1 )

Rprior(xn
1 , yn

1 )

}︄]︄
≤ Dα(f(xn

1 )||f(yn
1 )).

and consequently logRpost(xn
1 , yn

1 )− logRprior(xn
1 , yn

1 ) ≤ ϵ.

Preservation under conditions of adaptive sequencing

Another property that the scholar shows us is that, if two different function f and g

are respectively ϵ1- differentially private and ϵ2- differentially private, then their sum

is also ϵ1 + ϵ2- differentially private.

This result is also satisfied when choosing the function g based on the output of f , as
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is shown in the following summary and will be important later to demonstrate other

relevant results.

Theorem 3.2.3. [9]Let f : X −→ R1 be (α, ϵ1)- Rényi differential privacy, than the

mechanism defined as (K,Y), where X −→ f(X) and Y −→ g(K, X) satisfies (α, ϵ1 +

ϵ2)- Rényi differential privacy.

Privacy group

So far, we have only considered pairs of neighbouring datasets, which are different for

only one data item.

The IT specialist tells us how differential privacy can be defined in a weaker form but

also considering datasets that are less close to each other.

In order to demonstrate this result, he takes up the concept of c-stable transformations.

Definition 3.2.4 (c-stable trasformation). [17]A trasformation g(D) is c-stable if two

neighbouring datasets D and D
′ satisfy:

|g(D)
⨁︂

g(D′)| ≤ c× |D
⨁︂

D
′|.

Theorem 3.2.5. [9]If f : X −→ R is (α, ϵ)- Rényi differential privacy, g : X
′ −→ X

is 2c-stable and α ⩾ 2c+1, the the composition of f o g is (α
2 , 3cϵ)-Rényi differential

privacy.
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3.2.3 Application of Rényi differential privacy

After looking at some characteristics of this type of privacy, examples are given con-

cerning Gaussian mechanism, randomized response and Laplace distributions.

To do so we will refer to examples given by John Duchi [2] and Ilya Mironov in [9].

Gaussian mechanism

The first example is based on the divergence between two Gaussian distributions, in

the second the result (2.5) is repeated considering l2-norm.

Observation 3.2.5. [2] Let two Gaussian distribution defined with respectively mean

µ0, µ1 and variance in common Σ:

Dα(N(µ0, Σ)||N(µ1, Σ)) = α

2 (µ0 − µ1)T Σ−1(µ0 − µ1). (3.10)

To find this result, it was used the forumla in Equation (3.4) and other supporting

tools.

Proof. [2]Let p and q as the two densities of the normal distributions defined above

and consider the integral
∫︁ (︂p(x)

q(x)

)︂α
q(x)dx that is a part of the result (3.4).

∫︂ (︄
p(x)
q(x)

)︄α

q(x)dx = Eµ1

[︄
exp(α

2 (X − µ1)T Σ−1(X − µ1))
exp(α

2 (X − µ0)T Σ−1(X − µ0))

]︄

and thanks to the property of powers can be rewritten as

∫︂ (︄
p(x)
q(x)

)︄α

q(x)dx = Eµ1

[︃
exp

(︃
−α

2 (X − µ0)T Σ−1(X − µ0) + α

2 (X − µ1)T Σ−1(X − µ1)
)︃]︃

= Eµ1

[︃
exp

(︃
−α

2 (µ0 − µ1)T Σ−1(µ0 − µ1) + α(µ0 − µ1)T Σ−1(X − µ1)
)︃]︃

= exp
(︄
−α

2 (µ0 − µ1)T Σ−1(µ0 − µ1) + α2

2 (µ0 − µ1)T Σ−1(µ0 − µ1)
)︄

= exp
(︄(︄
−α

2 + α2

2

)︄
(µ0 − µ1)T Σ−1(µ0 − µ1)

)︄

where second step was obtained by the relation (X − µ0)2 − (X − µ1)2 = (µ0 − µ1)2 +
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2(µ1 − µ0)(X − µ1), the third (µ0 − µ1)T Σ(X − µ1) ∼ N(0, (µ1 − µ0)T Σ−1(µ1 − µ0))

with X(µ1, Σ) and the last step is to collect the common term (µ0−µ1)T Σ−1(µ0−µ1).

To find the result (3.10), apply the logarithm on both sides and divide by α− 1.

Example 3.2.1. In this example we are in the same condition of the result (2.5) except

that Hamming’s metric dham uses l2-norm:

Z = f(Xn
1 ) + W, W ∼ N(0, σ2I)

with Z the process defined with Gaussian errors, σ2 positive and:

Lip2,dham
(f) = sup {||f(xn

1 )− f(yn
1 )||2|dham(xn

1 , yn
1 ) ≤ 1} ≤ L

The measure of divergence between two normal distributions, J∼ N(f(x), σ2) and K∼

N(f(x′), σ2) is calculated as:

Dα(J ||K) = α

2σ2 ||f(x)− f(x′)||22 ≤
α

2σ2 L2

Thus the mechanism Z satisfies the (ϵ, α)-Rényi differential privacy if and only if σ2 =
L2α
2ϵ

.

Randomized response

Now, as in the case of pure differential privacy, the random response model is considered

(Section 2.1):

Z|x =

⎧⎪⎪⎨⎪⎪⎩
z, with p

1− z, with 1− p

Using definitions Definition 3.1.4. and Definition 3.2.1, Mirnov arrives at the following

result, (α, ϵ)-Rényi differential privacy, for α > 1, with:

ϵ = 1
α− 1 log(pα(1− p)1−α + p1−α(1− p)α).
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Laplace mechanism

The last example concerns the Laplace mechanism as it was done in the Section 2.3.

The mechanism is resumed as f : X n −→ Rk. The Laplace mechanism is defined as:

Z := f(Xn
1 ) + W

with a function f(Xn
1 ) and the addiction of W that is Wj ∼ Laplace(0, b) i.i.d., where

b is the scale operator and 0 the position operator. To prove that the mechanism is

Rényi privacy differential, the definition of divergence between two Laplace distribu-

tions is used (3.4) Dα(P ||Q). P ∼ Laplace(0, b) and Q ∼ Laplace(1, b) are two Laplace

distributions with densities equal to the result of the Theorem 2.3.3.

The integral of the Rényi divergence can be written as: 1
α−1 log

∫︁
R

(︂
p(x)
q(x)

)︂α
q(x)dµ(x)

where:

(︄
p(x)
q(x)

)︄α

q(x) =
(︃ 1

2b
e− |x|

b

)︃α (︃ 1
2b

e− |x−1|
b

)︃1−α

(3.11)

=
(︃ 1

2b

)︃α+1−α (︃
e

−|x|α
b

+ −|x−1|(α−1)
b

)︃
(3.12)

The integral is now divided into three parts according to the value of x:

∫︂
R

(︄
p(x)
q(x)

)︄α

q(x)dµ(x) =
∫︂ 0

−∞

(︃ 1
2b

)︃(︃
e

xα
b

+ (x−1)(α−1)
b

)︃
dµ(x)

+
∫︂ 1

0

(︃ 1
2b

)︃(︃
e

−xα
b

+ (x−1)(α−1)
b

)︃
dµ(x) +

∫︂ 0

−∞

(︃ 1
2b

)︃(︃
e

−xα
b

− (x−1)(α−1)
b

)︃
dµ(x)

=1
2e

(α−1)
b + 1

2(2α− 1)(e
(α−1)

b − e
−α

b ) + 1
2e

−α
b

With this result it can now be written that:

Dα(P ||Q) = 1
α− 1 log

(︃
α

2α− 1e
α−1

b + α− 1
2α− 1e

−α
b

)︃
(3.13)

and so the Laplace mechanism satisfies the ( 1
α−1 log( α

2α−1e
α−1

b + α−1
2α−1e

−α
b ), α)- Rènyi

differential privacy.
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Figure 3.1: Comparison of mechanism with different parameters of (ϵ, α)- Rényi differ-
ential privacy using different parameter values such as [9]

.
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From the above graph, it can be seen that the value of the error committed by the

differentiated privacy mechanisms is always very small.

In particular, the Gaussian and Laplace mechanisms appear to have an error ϵ that is

always less than 1, when the parameters vary.

The Table 3.2. compares and summarises the parameter values in the pure differential

privacy and Rényi model.

Table 3.2: Comparison of parameters in differential and Rényi privacy taken from [9].

Differential Privacy Rényi Differential Privacy for α Mechanism

|log p
1−p | α > 1: 1

α−1 log(pα(1− p)1−α + (1− p)αp1−α) Randomized Response

1
λ α > 1: 1

α−1 log
{︂

α
2α−1 exp(α−1

λ ) + α−1
2α−1 exp(−α

λ )
}︂

Laplace Mechanism

∞ α
2σ2 Gaussian Mechanism

3.3 Relationship between different privacy measures

We have discussed and analysed the structure of three types of privacy which are:

pure ϵ-differential privacy, (ϵ, δ)-differential privacy and lastly (α, ϵ)-Rényi differential

privacy.

What we want to do now is to understand how and whether these measures are inter-

connected.

To proceed with the analysis we refer to the paper of John Duchi in [2].

3.3.1 ϵ-differential privacy and (ϵ, α)-Rényi differential

Proposition 3.3.1. [2] For α ⩾ 1, ϵ ⩾ 0 and e−ϵ ≤ P (B)
Q(B) ≤ eϵ, with P, Q two distribu-

tions and B a generics set:

Dα(P ||Q) ≤ min
{︄

3αϵ2

2 , ϵ

}︄
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Theorem 3.3.2. A system Q is (min{3αϵ2

2 , ϵ}, α)-Rényi privacy differentiated if Q is

assumed to be ϵ-privacy differentiated, with α ⩾ 1 and ϵ ⩾ 0.

This theorem (thanks to Proposition 3.3.1.), confirms the fact that pure differential

privacy is stronger than Rényi privacy, but from one the other can be obtained.

3.3.2 (ϵ, α)-Rényi differential privacy and (ϵ, δ)-differential privacy

Proposition 3.3.3. [2] For some collection B, with P and Q are Dα ≤ ϵ,so:

P (B) ≤ exp
(︃

α− 1
α

ϵ
)︃

Q(B)α−1
α

for δ > 0:

P (B) ≤ min
{︃

exp
(︃

ϵ + 1
α− 1 log 1

δ

)︃
Q(B), δ

}︃
≤ exp

(︃
ϵ + 1

α− 1 log 1
δ

)︃
Q(B) + δ

Theorem 3.3.4. A system Q is
(︂
ϵ + 1

α−1 log
(︂

1
δ

)︂
, δ
)︂
-privacy differentiated if Q is as-

sumed to be (ϵ, α)-Rényi privacy differentiated, with δ > 0 and ϵ ⩾ 0.

This theorem (thanks to Proposition 3.3.3.), confirms the fact that Rényi differential

privacy is stronger than (ϵ, δ)-differential privacy, but from one the other can be ob-

tained.

What transpired in conclusion is the fact that each measure of privacy can be expressed

as the others by varying the parameter values.

Starting with the strongest, as expected, namely pure ϵ- differential privacy up to the

(ϵ, δ)- differential privacy.

3.4 Privacy and involvement in several studies

This section discusses the problem of how to manage privacy when a user participates

in several studies also in the long term, one of the main problems of differential privacy

introduced at the beginning of this paper.
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It will be seen how Rényi differential privacy and the others privacy, as already men-

tioned in Section 3.2.2., have a fundamental property: composition.

3.4.1 The significance of composition

The composition, as mentioned above, is fundamental to solving the problem of a user’s

participation in multiple studies, but not only.

C. Dwork, G.N. Rothblum, S. Vadhan, in [16], explain the main applications of this

property.

1. Composition is used on the same dataset with equal privacy mechanisms, ensuring

a satisfactory level of privacy for users.;

2. Composition can also be used when there are different privacy models.

If a user releases multiple data in different studies in which he or she participates

protected by different types of privacy, this method provides good protection for

his or her participants.

3. Composition is lastly used to move from simple privacy mechanisms to more

complex ones.

In order to be able to explicate composition in the privacy mechanisms seen, it is

necessary to introduce a couple of theorems.

Theorem 3.4.1 (Composition of ϵ- differential privacy mechanisms). [16]Assume a

channel Q is ϵ- privacy differentiated, then the sum of k processes is kϵ- privacy dif-

ferentiated under adaptive composition.

Theorem 3.4.2 (Composition of (ϵ, δ)- differential privacy mechanisms). [16]Assume

a channel Q is (ϵ, δ)- privacy differentiated, then the sum of k processes is (kϵ, kδ)-

privacy differentiated under adaptive composition.

Thanks to these theorems, one can investigate behaviour in different types of privacy.
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3.4.2 Composition for Rényi privacy

[2]The Rényi differential privacy ensures strong data protection, thus leading to a

composition of different processes that are protected by privacy of different intensities.

This can be proved by Theorem 3.2.3. concerning the property "preservation under

conditions of adaptive sequencing".

[15]You have a sequence of output {Z1(I1, X), ..., Zk(IK , X)} where Zk is (ϵ, α) - Rényi

differential privacy ,X is a a set of data, Ik regarding the k-th mechanism with a

different input, depending on the previous outputs and inputs {(Z(Ij, X), Ij) : j < k}.

Theorem 3.4.3. [15]Let (ϵ, α) - Rényi differential privacy, ϵi < ∞ and α ⩾ 1 with

i = 1, .., k then (M1, ..., Mk) is (∑︁K
k=1 ϵk, α)- Rényi differential privacy.

The theorems defined above can be formalised by using a privacy algorithm that guar-

antees that private channel composition remains as it is.

Algorithm 1 Privacy algorithm and composition taken from [2]
Require: Family of channels Q b ∈ {0, 1}.

1: for k = 1, 2, ... do
2: Adversary choose space X , n ∈ N and two neighbouring datasets X, X

′ ∈ Xn.
3: Adversary chooses private channel Qk ∈ Q.
4: Adversary observes one sample Zk ∼ Qk(|x(b)).
5: end for

The algorithm reported by John Duchi, [2] basically works with an "adversary" that

chooses an arbitrary space and two neighbouring datasets, meaning they differ by one

entry.

Once the two datasets are chosen, they are privatised and the "adversary" can repeat

the process iteratively.

At the end of the algorithm, one looks at the sequence of mechanisms chosen by the

adversary and wonders if it is privatised.

This result is ensured thanks to the Theorem 3.4.1, 3.4.2, 3.4.3.
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3.4.3 Composition for (ϵ, δ)- differential privacy

We have just seen how Rényi’s measure of privacy enjoys the property of composition.

As seen in Section 3.3. with the results expressed by John Duchi, namely the connec-

tion of the three privacy measures seen, different privacy mechanisms can be derived

through additional composition between processes.

We now speak in terms of a more advanced composition, starting with a pure differen-

tiated privacy mechanism, which thanks to the composition can be expressed in terms

of (ϵ, δ)-differential privacy.

Theorem 3.4.4. [2]Let Q a channel ϵ- differentiated privacy, and then a composition

of k channels is kϵ- differentially private. The additional composition of the channel

sequence is: ⎛⎝3k

2 ϵ2 +
√︄

6k log 1
δ

, δ

⎞⎠
differentially private, for δ > 0 which is the additive term.

Proof. [2] Thanks to Theorem 3.4.1. it can be stated what is written in the first part

of the theorem.

To continue the demonstration, we refer to the Theorem 3.3.1. and 3.3.2. which

respectively link pure differential privacy to Rényi privacy and Rényi privacy to (ϵ, δ)-

differential privacy.

The first pass to the privacy of Rényi has an error of (3α
2 ϵ2) while the second step

ϵ + 1
α−1 log 1

δ

.

In conclusion, the composition of k channels lead to a process (3k
2 ϵ2 + 3kγ

2 ϵ2 + 1
γ

log 1
δ
, δ)-

differentially private where γ = 1 + α > 0 and δ > 0 and optimises relative to γ.
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Model application and validation

In this chapter we discuss some examples seen in the course of this paper and some

new from a practical point of view.

For the implementation and viewing of the results, was used the Rstudio software for

the entire analysis.

In recent years, differential privacy has been widely applied to protect data before it is

disseminated, adding noise to information. Many researchers remain sceptical about

the use of this method, as they are afraid that the error entered will compromise the

quality of the data and consequently the analyses do not reflect reality.

This type of analysis, however, guarantees the secrecy of user data while maintaining

a good degree of accuracy with a low margin of error.

A relevant example is found in the U.S. with the census, whose data are essential to

be able to predict the behavior of the population, number of inhabitants, age groups,

resources to allocate and other relevant information.

On the other hand, however, the censuses allow many sensitive data concerning the

individual and his/her private life, thus having to protect them.

Differential privacy helps in this, where in fact in the census of U.S. in 2020, compared

to 2010, it was chosen to introduce it in order to protect the safety of the participants

but not compromising fundamental analyses any more.
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4.1 Three mechanisms compared

Differential privacy is applied to three basic mechanisms considering different artifi-

cially created datasets for analysis.

The privatisation process follows what has been said before: given an unprotected pro-

cess in a given dataset, one wants to guarantee security to a user.

This can be done by adding noise, with a specific distribution, to prevent the identifi-

cation of a subject in the dataset.

The first model considered is the Laplace mechanism which is defined as in Definition

2.3.4. and assumes that the error follows a Laplace distribution.

The resulting process Z is privacy differentiated defined as Z := f(D) + W with a

function f and W that is Wj ∼ Laplace
(︂

L
ϵ

)︂
with identical and independent distribu-

tions with scale equal to the ratio of sensitivity L and ϵ.

The second mechanism analysed is the Gaussian mechanism as defined in Definition

3.1.2. of Chapter 3, which works in the same way as the Laplace mechanism with the

difference that the added noise follows a Gaussian distribution.

The mechanism is defined as Z := f(D) + W , W ∼ N(0, σ2Id) with f a function, and

σ denotes the standard deviation of the normal distribution with mean equal to zero.

The last mechanism is not been discussed until now and is called Bernstein mechanism,

in summary this mechanism is based on approximation via the Bernstein polynomials

and the addition of noise with a Laplace distribution.

This process is explained and developed in the following sections thanks to [21].

For the analysis, the mean of a sample was taken as the function for the process to be

differentiated, but this can be replaced by many others.

4.1.1 Preliminary analysis

To perform the analysis, we use the package "diffpriv" introduced by Benjamin I. P.

Rubinstein and Francesco Alda in [19] implemented in Rstudio.

This package makes statistical methods, through different functions, from non-private
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to privacy-differentiated and introduces a tool for estimating the sensitivity of processes

according to the type of function defined.

The first thing to choose is the dataset, which, as we reported earlier, is constructed

manually and varies in numerosity and composition depending on the model to be

used.

The Laplace and Gaussian mechanisms guarantee a differentiated privacy process for

two datasets D and D
′ , which are neighbouring, meaning that they differ by only one

input.

In this analysis, pure ϵ-differential privacy is used for the Laplace and Bernstein mech-

anism, while for the Gaussian mechanism we use (ϵ, δ)-differential privacy.

The parameters of these two types of pravacy are contained in the diffpriv package in

the respective classes DPParamsEps (ϵ) and DPParamsDel(ϵ, δ).

Consequently, the function of the library releaseResponse takes as input the function

to be privatised f , the parameters defined above ϵ, δ and the data set D.

The responses are protected by differential privacy depending on the distribution cho-

sen for the noise in DPMech, taken from diffpriv.

The individual functions are then discussed in more detail according to the chosen

error distribution.

We now go into the specifics of the mechanisms and talk about how the analysis will

take place in each of them and which functions and libraries will be used.

4.2 Laplace mechanism and ϵ-differential privacy

4.2.1 Tools

For the Laplace mechanism, three manually constructed datasets of different sizes are

used and compared.

The first D, being a matrix of size 1000x1000, the second D1 100x100 and the third

D2 10x10, randomly generated by a Uniform distribution with values between 0 and 1.

We have chosen as the function to privatise f the mean of a sample, such as in the
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example in Section 2.4.1.

For this analysis, reference is made to the definition of pure ϵ-differential privacy in

Chapter 2 (Definition 2.0.3).

4.2.2 Algorithm

The purpose of this and subsequent algorithms, is to privatise the responses of func-

tions not covered by a privacy system of a given dataset.

The idea behind this algorithm follows the line introduced in the theory.

Taken two different datasets that differ by only one entry D and D
′ ∈ X n, a mechanism

Z : X n −→ R guarantees differential privacy between two datasets.

This result means that the addition or removal of an individual to a dataset is not

privacy-relevant, while maintaining the same level of protection.

In mathematical terms, the mechanism must satisfy the relationship in Definition 2.0.3,

leading a non-privatised f : X n −→ B function to be differential privacy by the addi-

tion of a noise W from a Laplace distribution .

This distribution has as location parameter zero and as scale the ratio between the

sensitivity L and the value of ϵ.

The sensitivity of the process is calculated by L1 norm considering the two neighbour-

ing datasets D and D
′ and the non-privacy differentiated function f , L = ∑︁k

i=1 |fi(x)−

fj(y)|.

To obtain the Z process Z := f(D)+W covered by the ϵ-privacy differential, the func-

tion releaseResponse was used. This function takes as input the privacy parameters,

in this case ϵ contained in the class DPParamsEps, dataset D and a target function

f . The formal translation of what we have said can be written as D = [0, 1]n and each

neighbouring dataset D
′ = [0, 1]n, f(D) = X̄n = 1

n

∑︁n
i=1 Xi, L = sup{||f(D)−f(D′)||1}

= sup{ 1
n
|∑︁n

i=1 Di −
∑︁n

i=1 D
′
i|} = 1

n
from the relation: 1

n
|D −D

′ | ≤ 1
n
.

The mechanism Z := f(D) + W with W that is Wj ∼ Laplace
(︂

L
ϵ

)︂
i.i.d. is ϵ-

differentiated privacy.
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Algorithm 2 Laplace mechanism
Require: Dataset D ∈ [0, 1]n , privacy parameters ϵ, function f
Ensure: A numeric private response of the mechanism Z

1: Calculate l1 norm for sensitivity L = |f(D)− f(D′)|.
2: Generating errors W from a Laplace distribution, W ∼ Laplace

(︂
L
ϵ

)︂
.

3: Private response, Z = f(D) + W .

4.2.3 Results of Laplace mechanism

In this analysis we consider different values of ϵ for the three different datasets consid-

ered, to understand how the behaviour of the privacy mechanism varies depending on

the value of the chosen error.

In particular, we study the process with different values of ϵ = 1, ϵ = 2 and ϵ = 5 for

different datasets.

We will also look at the difference between privatised and non-privatised answers with

different chosen values and dataset sizes.

The choice of these three values was made in order to see how the behaviour of the

process changes in terms of accuracy.

What can be observed from the below tables, particularly the last one Table 4.4, is

that the difference between the non-privatised and privatised function is almost non-

existent even with the introduction of an error term following a Laplace distribution.

The numerosity of the dataset is decisive for the order of magnitude of the error, as

expected, in fact for a numerosity of n = 1000000 you get up to an order of magnitude

of 10−8 for ϵ = 5 while with n=100 you have 10−3 for ϵ = 1.

As much data as the mechanism has, better it can estimate the process, getting as

close as possible to the true value.

Therefore, the size of the dataset you have is crucial to ensure the accuracy of the data

as well as its protection.

As far as the value of ϵ is considered, it can be seen from the data in the tables that if

the value of ϵ is high, the results are more accurate but the level of privacy is lower.

On the other hand, if ϵ is small, the level of privacy is high but the results are less

accurate, and this can be seen especially for the largest dataset n = 1000000.

63



CHAPTER 4. Differential Privacy

The decision to choose the value of ϵ is up to the individual, evaluating the trade-off

between accuracy and data protection.

Table 4.1: Comparison of privatised and non-privatised mechanisms with different
numerosity and ϵ = 1.

ϵ = 1 Private response Non - private response f(D)

n = 1000000 4.995×10−1 4.995×10−1

n = 10000 5.013×10−1 5.014×10−1

n = 100 5.221×10−1 5.234×10−1

Table 4.2: Comparison of privatised and non-privatised mechanisms with different
numerosity and ϵ = 2.

ϵ = 2 Private response Non - private response f(D)

n = 1000000 4.995×10−1 4.995×10−1

n = 10000 5.106×10−1 5.015×10−1

n = 100 5.254×10−1 5.237×10−1
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Table 4.3: Comparison of privatised and non-privatised mechanisms with different
numerosity and ϵ = 5.

ϵ = 5 Private response Non - private response f(D)

n = 1000000 4.995×10−1 4.995×10−1

n = 10000 5.014×10−1 5.015×10−1

n = 100 5.243×10−1 5.234×10−1

Table 4.4: Difference in absolute terms between privatised and non-privatised mecha-
nisms when varying numerosity and ϵ.

|private - f(D)| ϵ = 1 ϵ = 2 ϵ = 5

n = 1000000 1.224×10−6 2.491×10−7 8.226×10−8

n = 10000 8.775×10−5 7.532×10−6 2.236×10−5

n = 100 1.305×10−3 1.992×10−3 9.017×10−4

65



CHAPTER 4. Differential Privacy

4.3 Gaussian mechanism and (ϵ, δ)-differential privacy

4.3.1 Tools

The example we are now going to present refers to a differentiated privacy mechanism

characterised by the introduction of an error with a Gaussian distribution.

Three manually constructed datasets of different sizes are used and compared.

The first D being a matrix of size 100x50, the second D1 10x50 and the third D2 10x10,

randomly generated by a Uniform distribution with values between −0.5 and 0.5.

In terms of privacy we consider a weaker type of privacy, already introduced in Chapter

3, namely the (ϵ, δ)-differential privacy, where the general definition can be found in

Theorem 3.1.1. This type of privacy provides ϵ-privacy protection for the mechanism

except for a probability of δ, in this case equal to 10−4.

4.3.2 Algorithm

As in the algorithm used to privatise a function via the Laplace mechanism, here too

an algorithm is constructed based on what has been introduced theoretically.

Taken two different datasets that differ by only one entry D and D
′ ∈ X n, a mechanism

Z : X n −→ R guarantees (ϵ, δ)-differential privacy between two datasets. This result

means that the addition or removal of an individual to a dataset is not privacy-relevant,

while maintaining the same level of protection.

In mathematical terms, the mechanism must satisfy the relationship in Definition

3.1.1., leading an non-privatised f : X n −→ B function to be (ϵ, δ)-differential privacy.

The differentiated privacy mechanism is obtained by adding the target function to a

noise W from a Gaussian distribution.

This distribution has as a mean equal to zero and a standard deviation equal to σ =
L

√︂
2 log( 1.25

δ )
ϵ

, which due to this ensures (ϵ, δ)- differential privacy to our initial function.

The sensitivity of the process, in this case, is calculated by L2 sensitivity considering

the two neighbouring datasets D and D
′ and the non-privacy differentiated function
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f , L = (∑︁k
i=1(fi(x)− fj(y))2)1/2.

To obtain the Z process Z := f(D) + W covered by the (ϵ, δ)-privacy differential,

the function releaseResponse was used. This function takes as input the privacy

parameters, in this case ϵ and δ contained in the class DPParamsDel, the target

function f and dataset D.

The formal translation of what we have said can be written as D = [−0.5, 0.5]n and

each neighbouring dataset D
′ = [−0.5, 0.5]n, f(D) = X̄n = 1

n

∑︁n
i=1 Xi, L2 = ||f(D) −

f(D′)||2 =
√

d
n

.

The mechanism Z := f(D) + W with W that is Wj ∼ Normal (0, σ2) i.i.d. is (ϵ, δ)-

differentiated privacy, with d the number of differences between the two samples and

a fixed δ = 10−4.

Algorithm 3 Gaussian mechanism
Require: Dataset D ∈ [−0.5, 0.5]n , privacy parameters (δ, ϵ), target function f
Ensure: A numeric private response of the mechanism Z

1: Calculate l2 sensitivity L = ||f(D)− f(D′)||2.

2: Generating errors W from a Gaussian distribution σ =
L

√︂
2 log( 1.25

δ )
ϵ

, W ∼
N (0, σ2).

3: Private response Z = f(D) + W .

4.3.3 Results of Gaussian mechanism

Table 4.5: Comparison of privatised and non-privatised mechanisms with different
numerosity and ϵ = 1, global sensivity L = 1

n
and δ = 10−4.

ϵ = 1, δ = 10−4 Private response Non - private response f(D)

n = 5000 1.738×10−3 1.213×10−4

n = 500 4.047×10−3 2.059×10−2

n = 100 -3.190×10−2 -1.763×10−2
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Table 4.6: Comparison of privatised and non-privatised mechanisms with different
numerosity and ϵ = 3, global sensivity L = 1

n
and δ = 10−4.

ϵ = 3, δ = 10−4 Private response Non - private response f(D)

n = 5000 -6.912×10−5 1.213×10−4

n = 500 2.451×10−2 2.059×10−2

n = 100 -1.992×10−2 -1.763×10−2

Table 4.7: Difference in absolute terms between privatised and non-privatised mecha-
nisms when varying numerosity and ϵ = 1 and 3, global sensivity 1

n
and δ = 10−4.

|private - f(D)| ϵ = 1 ϵ = 3

n = 5000 1.617×10−3 3.073×10−4

n = 500 1.654×10−2 3.917×10−3

n = 100 1.427×10−2 2.292×10−3
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Figure 4.1: Comparison of the difference between the differentiated privacy mechanism
and the non-privatised function, with a value of ϵ = 1, ϵ = 3 and δ = 10−4 with different
dataset sizes when varying d.
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In this analysis we consider different values of ϵ and fixed δ = 10−4 for three different

datasets considered, to understand how the behaviour of the privacy mechanism varies

depending on the value of the error.

In particular, we study the process with different values of ϵ = 1 and ϵ = 3 for all the

analysis.

We will also look at the difference between privatised and non-privatised answers with

different dimension of d for sensitivity and dataset sizes.

The choice of these values was made in order to see how the behaviour of the process

changes in terms of accuracy. As in the case of Laplace’s distribution, even with the

introduction of an error following a Normal distribution, the difference between the true

non-privatised and privatised result is minimal despite having relaxed the definition of

privacy.

Also in this case the size of the dataset is decisive for the order of magnitude of the

error, as expected, in fact for a numerosity of n = 5000 you get up to an order of

magnitude equal to 10−4 for ϵ = 3 while with n=100 you have 10−2 for ϵ = 1.

In contrast to the previous example, with the introduction of δ, the difference between

the results is greater, but confirming the fact that the size of the dataset is decisive in

ensuring greater protection.

As far as the value of ϵ is considered, it can be seen from the data in the tables that if

the value of ϵ is high, the results are more accurate but the level of privacy is lower.

On the other hand, if ϵ is small, the level of privacy is high but the results are less

accurate, and this can be seen especially for the largest dataset n = 5000.

One can also observe in the graphs in Figure 4.1. how the difference between the

privatised and non-privatised process varies as d changes, the value of d is the numerator

of the overall sensitivity of the Gaussian mechanism L2 =
√

d
n

.

It is observed that as d increases, the error between the privatised and non-privatised

process increases because the two datasets are more distant and obviously for larger ϵ

the order of magnitude is smaller. The decision to choose the value of ϵ is up to the

individual, evaluating the trade-off between accuracy and data protection, and also for

the value of δ in this case equal to 10−4.

70



CHAPTER 4. Differential Privacy

4.4 The Bernstein mechanism and ϵ-differential privacy

Different from the previous mechanisms, this process has not yet been seen in this

paper.

This mechanism, called Bernstein Mechanism was introduced by F.Aldà and B.I.P.

Rubinstein in their paper [21] and is based on the approximation by Bernstein basis

polynomials.

Definition 4.4.1 (Bernstein basis polynomials). [23]The Bernstein basis polynomials

of degree n are defined for i ∈ {0, n} by:

Bi,n(t) =
(︄

n

i

)︄
ti(1− t)n−i (4.1)

with
(︂

n
i

)︂
= n!

i!(n−i)! and Bi,n(t) = 0, if i < 0 or i > n.

Figure 4.2: Example of Bernstein polynomials with degree n = 2
.

Proposition 4.4.2. [21] For t ∈ [0, 1], for any integer n and 0 ≤ n we have that Bi,n ⩾ 0

and ∑︁n
i=0 Bi,n(t) = 1.

Definition 4.4.3 (Bernstein polynomials). [21]Let f : [0, 1] −→ R and an integer n,
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Bernstein polynomials of degree n are defined for i ∈ {0, n} by:

Pn(f;t) =
n∑︂

i=0
f
(︃

i

n

)︃
Bi,n(t) (4.2)

It is now illustrated how Aldà and Rubistein ensured differential privacy for the Bern-

stein mechanism, but to proceeded to the main theorem, two further supporting tools

must be introduced.

Definition 4.4.4 (Smooth function). [21]Let h, l > 0 integer, T > 0 and a function f :

[0, 1]l −→ R. The function f is (h, T )-smooth if Ch([0, 1]l) and its partial derivatives

up to the order h are all bounded by T .

Definition 4.4.5 (Hölder continuous function). [21] Let 0 ≤ γ ≤ 1 and L > 0. We

have for every x, x
′ ∈ [0, 1]l, |f(x) − f(x′)| ≤ L||x − y||γ∞ and so f is (γ, L)-Hölder

continuous.

With these tools, one can now define two differential privacy theorems for the Bernstein

mechanism in [21].

Theorem 4.4.6 (ϵ-differential privacy in Bernstein mechanism). Let L and T > 0

costants, 0 ≤ γ ≤ 1, l, h ∈ {0, 1, ..., n} and F : X n ×Y −→ R the target function. For

ϵ > 0 the Bernstein mechanism Z is ϵ-differentiated privacy.

Theorem 4.4.7 ((ϵ, δ)-differential privacy in Bernstein mechanism). Let L and T > 0

costants, 0 ≤ γ ≤ 1, l, h ∈ {0, 1, ..., n} and F : X n × Y −→ R the target function.

For ϵ > 0 the Bernstein mechanism Z, with the perturbation scale equal to λδ =
2LF

√
2(n+1)ll log( 1

δ
)

ϵ
is (ϵ, δ)-differentiated privacy.

4.4.1 Tools

The following is one of the examples given in the document [21] by applying it in

practice and following the track in the document. Before proceeding, some supporting

definitions are outlined.
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Theorem 4.4.8 (Priestly-Chao regression). [25] Let yi = m(xi) + ei a non parametric

regression model with yi = response variable, m(xi) = unknown smooth function and

ei = error ∼ N(0, σ2) for i = 1, .., N then:

m̂(xi) = δ

h

N∑︂
i=1

K
(︃

x− xi

h

)︃
Yi, (4.3)

with δ = (b−a)
n

, x ∈ (a, b), h the kernel smoothness and K the kernel.

Three models are used for this analysis, namely: a Priestly-Chao regression with a

Gaussian kernel (Equation 4.3.), its approximation by the non-privatised Bernstein

polynomials (Equation 4.2) and a privatised regression using Bernstein’s method.

Three manually constructed datasets of different sizes are used and compared, D ∈

X n. The first D being a matrix of size 100x2, the second D1 500x2 and the third

D2 5000x2, randomly generated by a Uniform distribution for covariates x and and

dependent variables through the equation y = f(x) + e with f(x) = sin(x ∗ 10) ∗x and

e ∼ N(0, 0.04).

In terms of privacy we consider the pure ϵ-differential privacy as in the case of Laplace

mechanism.

4.4.2 Algorithm

Berstein’s mechanism, like the two previous ones, guarantees differential privacy cov-

erage of a generic function F : X n × Y −→ R.

The mechanism uses the Bernstein polynomial, defined in Equation 4.2., iterated for

the target function F , with a coverage K.

The differentiated privacy mechanism Z is obtained with addition of an error following

Laplace distribution, with λ perturbation scale.

This is possible thanks to the function DPMechBernstein for the K iterated target

function F and releaseResponse restoring the privatised model Z.

In contrast to the previous examples, in this case the value of the sensitivity LF is not

known and we need to use the function sensitivitySampler implemented and explained
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in the document [24] and whose and this procedure is reported in the Algorithm 4.

Algorithm 4 Sensitivity Sampler
Require: f target function, distribution P , size of the dataset N , level of confidence

γ, sample size m.
Ensure: Global sensitivity L = Gk.

1: for i = 1 to m do
2: Sample D ∼ P n+1

3: Set Gi = ||f(D1...n)− f(D1...n−1,n+1 )||B
4: end for
5: Sort G1, ..., Gm as G(1) ≤ ... ≤ G(m)

In this specific example m = 500 that is, 500 random pairs are taken from the dataset

from sample P and confidence γ = 0.2.

The idea of this algorithm is that independent and identically distributed observations

G1, ...Gn are generated from the data sample P and thanks to these observations, it is

possible to calculate the sensitivity of the differentiated privacy process.

If the cumulative distribution function (CDF) of the observations is not known, then

the Uniform approximation is resorted to using the empirical CDF on the available

sample.

The operation of Bernstein’s general mechanism is presented in detail in Algorithm 5.

The idea under this process is that the privatised process Z is obtain, through the

sum of the function F adding the noise which follows a Laplace distribution with a λ

parameter, over a coverage F identifying the possible datasets.

The parameter λ = LF (n+1)l

ϵ
called perturbation scale, depends on the sensitivity LF ,

the sample size n and the value of ϵ.

Algorithm 5 The Bernstein mechanism
Require: Dataset D ∈ X n, sensitivity L, target function F , parameters n, h, ϵ.
Ensure: Differentiated privacy function {Z(p)|p ∈ P}.

1: Lattice cover of Y P ← ({0, 1
n
, ..., 1})l

2: Perturbation scale λ← L(n+1)l

ϵ

3: for p = (p1, ..., pl) ∈ P do
4: Z = F (D) + W , where W ∼ Laplace(λ) i.i.d.
5: end for
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4.4.3 Results of the Bernstein mechanism

In this analysis we consider different values of ϵ for three different size of datasets and

three different model.

In particular, we study the process with different values of ϵ = 1 and ϵ = 3 for all the

analysis. The choice of these values was made in order to see how the behaviour of the

process changes in terms of accuracy.

In contrast to the models differentiated by Laplace and Gaussian distribution, the

Bernstein mechanism has values of the differentiated process somewhat more distant

from those of the target function, as can be seen in the Tables 4.8 and 4.9.

The mean square error MSE = 1
n

∑︁n
i=1(yi − yî)2 was calculated with yi equal to tar-

get function and Bernstein polynomial approssimation and with yî equal to Bernstein

function privatized.

The difference, of course, is more pronounced when the value of ϵ is smaller and when

the size of the dataset is lower.

This is evident in the case of the Figure 4.3 where the scale of the variable Y shrinks

considerably from N = 100 to N = 5000 and the estimated functions are closer and

closer to each other as the numerosity of the dataset increases. From the results of the

tables, a small difference can also be seen when varying the value of ϵ showing that the

difference between the two results is greater when ϵ is smaller.

Another aspect that is apparent from the figure is that when the size of the dataset is

large, the privatised Bernstein function is practically coincident with the non-privatised

Bernstein approximation.
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Table 4.8: MSE, with y the target function and the Bernstein approximation and ŷ
the function privatised through the Bernstein mechanism with ϵ = 1.

MSE ϵ = 1 Target function Bernstein approximation

n = 5000 2.359×10−2 6.806×10−4

n = 500 1.165×10−1 8.258×10−2

n = 100 2.605 2.392

Table 4.9: MSE, with y the target function and the Bernstein approximation and ŷ
the function privatised through the Bernstein mechanism with ϵ = 3.

MSE ϵ = 3 Target function Bernstein approximation

n = 5000 2.360×10−4 4.075×10−5

n = 500 2.445×10−2 3.601×10−3

n = 100 1.409 1.337
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Figure 4.3: Comparison between three model of the non-privatised target function, the
non-privatised Bernstein approximation and the privatised Bernstein mechanism with
ϵ = 1 and ϵ = 3, with three different size of datasets N = 100, 500, 5000.

4.5 Conclusion of the analysis and observations

To conclude and summarise the analysis so far, it is evident that the choice of the

parameter ϵ and the parameter δ in the case of the differential privacy (ϵ, δ) is decisive

for the desired result, as their values can lead to very different scenarios.

In addition, the other important aspect is the amount of data available in the database,

which, due to its size, can lead to greater adherence to reality and precision in the

analysis.

Comparing the three models, it can be seen that there is not a great difference in the

results of the three processes, all having satisfactory results, with a greater divergence

in Bernstein’s mechanism.

All three models are good processes for ensuring a good level of data protection while

maintaining accuracy.
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The first two mechanisms, Laplace’s and Gaussian, are simpler to deal with and fewer

parameters are involved. Bernstein’s mechanism is more complex in terms of the

algorithm and the number of parameters involved, but is less restrictive in terms of the

functions that can be used.

Further analyses could be done, such as determining the optimal value of the parameter

ϵ and δ on the basis of the available data, evaluating different target functions by the

privatisation mechanism or lastly introducing more complex models.

In addition, a mechanism could be implemented to provide a model with (ϵ, α)-Rényi

differentiated privacy protection, or through the relationships seen in the Section 3.3.,

one could derive the different types of privacy connected to each other.
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Conclusions

Aim of this thesis is to demonstrate, apply and understand whether differential pri-

vacy could be a good solution for the protection of a community of people who release

personal information while still being able to consider the data available as accurate.

In order to arrive at an answer, we first wanted to conduct a theoretical investigation

of the topic and then applied the mechanisms and types of privacy we considered most

relevant within the thesis.

Pure differential privacy and local privacy provide a very good level of data protection

but lose some of their accuracy, thus leading to their use being less useful as they are

unreliable.

The (ϵ, δ)-differential privacy or better (ϵ, α)-Rényi differential privacy has demon-

strated a good adherence to reality and versatility thanks to the introduction of a new

way of defining privacy based on Rènyi divergence and to the properties it enjoys.

The latter type of privacy in fact demonstrated a good level of protection while main-

taining data accuracy.

It has been proven how differential privacy, which protects large volumes of data from

big companies, is constructed simply by using elementary basic statistical distributions

such as the Laplace, the Normal, the Uniform or the Exponential.

What in fact emerges from the data is that, especially with pure differential privacy,

the difference in the quantity of the dataset and the level of ϵ, indicating greater or

lesser data protection, makes a large difference in the accuracy of the data, leading this

type of mechanism to be less attractive to companies and researchers.

This is one of the reasons why organisations often do not have or do not want to im-

plement this type of privacy, as it requires a substantial financial commitment in terms
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of resources or personnel that is not always accessible to all.

Another limitation is the fact that often not all companies are ready to sacrifice data

accuracy for the protection of data, reporting to use differential privacy with perhaps

so much ϵ level as to have no relevance in terms of security.

One aspect to be worked on in the future is the possibility of keeping the level of pri-

vacy from decreasing as the number of compositions, the presence of a user in several

databases.

This can be solved by combining other types of data protection such as cryptography,

which has developed in recent years, or understanding the origin of data with differen-

tial privacy.

The combination of different data processing techniques will lead to a lowering of the ϵ

parameter by making it possible to use the data and making this type of process more

attractive to more sceptical companies.

If this type of privacy becomes more and more popular, users around the world will

have a greater sense of security and will be more inclined to release their data, includ-

ing the most sensitive aspects, thus leading new statistical research to benefit from this

valuable advantage.
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An example of the Rstudio code used to carry out the analysis in Chapter 4 is presented

below, in particular, only ϵ = 3 and n = 100 are treated.

The other parameter values and dataset size are replaced in the same procedure.

library(diffpriv)

#1) Laplace mechanism

#a) Dataset1

n<-100

n1<-10

n2<-10

D <- matrix(runif(n, min = 0, max = 1),nrow=n1,ncol=n2) #database [0,1]^n

f <- function(X) mean(X) # target function --> mean

mechanism <- DPMechLaplace(target = f, sensitivity = 1/n, dims = 1)

pparams <- DPParamsEps(epsilon = 3) ## desired privacy budget

r <- releaseResponse(mechanism, privacyParams = pparams, X = D)

cat("Private response :", r$response,

"Non-private response f(D): ", f(D2))

error<- abs(f(D)-r$response)

#2) Gaussian mechanism

#a) Dataset1

N<-100

N1<-10

N2<-10
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G1 <- matrix(runif(N, min = -0.5, max = 0.5),nrow=N1,ncol=N2) #database [-1/2,1/2]^n

f1<- function(X) mean(X)

mechanism1 <- DPMechGaussian(target = f1, sensitivity = 1/N, dims = 1)

ppara <- DPParamsDel(epsilon = 1, delta = 10^(-4)) ## desired privacy budget

r1 <- releaseResponse(mechanism1, privacyParams = ppara, X = G1)

d1<-r1$response

cat("Private response :", r1$response,

"Non-private response f(D): ", f1(G1))

#3) Bernstein Mechanism

#Dataset 1) N=100, epsilon 3,5

pck_regression <- function(D, bandwidth = 0.1) {

K <- function(x) exp(-x^2/2)

ids <- sort(D[,1], decreasing = FALSE, index.return = TRUE)$ix

D <- D[ids, ]

n <- nrow(D)

ws <- (D[2:n,1] - D[1:(n-1),1]) * D[2:n,2]

predictor <- function(x){

sum(ws * sapply((x - D[2:n,1]) / bandwidth, K)) / bandwidth

}

return(predictor)

}

N <- 100

D <- runif(N)

D <- cbind(D, sin(D*10)*D + rnorm(N, mean=0, sd=0.2))

model <- pck_regression(D)

K <- 25

bmodel <- bernstein(model, dims=1, k=K)

m <- DPMechBernstein(target=pck_regression, latticeK=K, dims=1)

P <- function(n) { # a sampler of random, "plausible", datasets
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Dx <- runif(n)

Dy <- rep(0, n)

if (runif(1) < 0.95) Dy <- Dy + Dx

if (runif(1) < 0.5) Dy <- Dy * sin(Dx)

if (runif(1) < 0.5) Dy <- Dy * cos(Dx)

cbind(Dx, Dy + rnorm(n, mean=0, sd=0.2))

}

m <- sensitivitySampler(m, oracle=P, n=N, gamma=0.20, m=500)

R <- releaseResponse(m, privacyParams=DPParamsEps(epsilon=3), X=D)

R1<- releaseResponse(m, privacyParams=DPParamsEps(epsilon=1), X=D)

pmodel <- R$response

pmodel1<- R1$response

xs <- seq(from=0, to=1, length=50)

yhats <- sapply(xs, model)

yhats.b <- predict(bmodel, xs)

yhats.p <- R$response(xs)

y1hats.p<- R1$response(xs)
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