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Introduction

The main purpose of the thesis is to better understand the interaction between large-conductance
Ca2+-dependent K+ (BKCa) channels and voltage-gated Ca2+ (CaV) channels. It has been
observed, in neurons and vascular myocytes, that these channels colocalize and form ion chan-
nel complexes BKCa−CaV . This con�guration exposes the BKCa channel to a direct in�ux of
Ca2+ everytime the bonded CaV channel opens. Stochastic simulations of the complex activity
o�er signi�cant insight into the local control of BKCa channels by �uctuating nanodomains of
Ca2+, but on the other hand such Monte Carlo simulations are computationally expensive.
The starting point of the study is a model for the BKCa−CaV presented in [1], whose aim is to
analyze the complex using Markov chain theory. The crucial step of this work is the derivation,
from the description of a single BKCa − CaV complex, of a concise model of whole-cell BKCa

currents. This model o�er a simple formulation of these whole-cell currents that respects local
interactions in the complex and also suggests how local-global coupling of ion channels are able
to in�uence cell behavior.
As reported in [2] and [3], molecular research has shown that the activity of ion channels is not
only determined by the pore forming α-subunits, but it is deeply in�uenced by the molecular
environment. There is evidence that many membrane proteins associate with partner proteins
or even colocalize and form complexes. These complexes exhibit di�erent behaviors depending
on the properties of the molecules involved. Association of proteins may modulate channel
function, a�ect downstream signaling pathways, or shape spatio-temporal concentration gradi-
ents of ions or di�usible messengers.
KCa channels are responsible for a variety of cellular processes and most of their functions
are brought about by interaction of the channels' pore-forming subunits with distinct partner
proteins. These channels are activated by an increase in Ca2+ internal concentration and their
action feeds back onto [Ca2+]i. The opening of KCa channels causes a repolarization of the
membrane potential which initiates the deactivation of the CaV channels, thus limiting Ca2+

in�ux.
The crucial role of BKCa channels in membrane hyperpolarization in response to an increased
level of [Ca2+]i is critically dependent on their integration into complexes with other proteins.
The stable association with partner proteins is used to optimally adapt the channels to their
distinct and cell type-speci�c physiological functions. We consider in particular BKCa channels,
that exhibit large conductance unitary and are gated by the cooperative action of membrane
depolarization and [Ca2+]i. Under cellular conditions, both stimuli contribute in a concerted
way to BK channels activity, and in the physiological voltage range considerable activation is
observed for [Ca2+]i ≥ 10 µM . The Ca2+ ions are supplied by the opening of CaV channels
and the level of concentration required to activate the BK is thought to be available only in the
immediate proximity of the sources: this implies close colocalization of BKCa and CaV chan-
nels, which can be considered as a direct channel-channel interaction. Experimental results on
molecular masses suggest 1 : 4 stoichiometry and pore-to-pore distance ∼ 10 nm. Among the
advantages of this kind of interaction is that consistent activation of BKCa is guaranteed in the
physiological voltage range and even in the presence of highly active Ca2+ bu�ering system.
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Thanks the formation of the complex, BKCa activation is managed locally, as the required
concentration of Ca2+ ions is guaranteed in the vicinity of the BKCa and there is virtually no
dependence on the global cellular Ca2+ environment.
As we said, the model devised in [1] is centered on the activity of the BKCa − CaV complex,
meaning the two channels are considered while they interact at a �xed distance that is the
distance typical of the bond. The contribution provided by our work is the analysis of the dy-
namics that may bring to the complex formation: in other words, in an attempt to construct a
more realistic model, we introduce the CaV channel Brownian motion in the cell membrane and
we study how this aspect in�uence the activity of the BKCa. More speci�cally we investigate
what is the probability of complex formation given the properties of channel di�usion in the
membrane, and we characterize the interaction of the BKCa channel with the CaV channels
when they are not bonded in the complex.
The �rst chapter o�er an overview of [1], in order to introduce the dynamics of the channels and
the kind of analysis that we are going to extend with the inclusion of the CaV Brownian motion
in the next chapters. In fact in chapter 2 we start performing a Monte Carlo simulation of the
CaV di�usion around the BKCa and we focus on the probability of complex formation and on
its contribution to the BKCa channel open probability. Then in chapter 3 we use the results of
the previous Monte Carlo simulation to model the CaV channel di�usion on a grid, for which
it is possible to de�ne a Markov chain. Considering this Markov chain, �rst we realize a new
Monte Carlo simulation, and after that we derive a system of ordinary di�erential equations
for the time evolution of the probabilities of the Markov chain.
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Chapter 1

Modeling of BKCa-CaV activity

1.1 Model for the BKCa channel

We describe the BK channel as having two states, closed (X) and open (Y ). The activation
probability of the channel is governed by the di�erential equation:

dpY
dt

= −k−pY + k+(1− pY ). (1.1)

The rate constants k+ and k− depend on both the membrane voltage and the Ca2+ concentra-
tion, denoted as Ca in the equations below, as we can see from their expressions:

k− = w−(V )f (Ca)

k+ = w+(V )f+(ca).
(1.2)

For the voltage-dependent rate constants the following standard form is assumed:

w−(V ) = w−0 exp(−wyxV )

w+(V ) = w+
0 exp(−wxyV )

(1.3)

because at �xed Ca2+ levels the channel activation is well described by Boltzmann functions.
On the other hand, there is evidence that at �xed voltage the calcium dependance is given by
the relations:

f−(Ca) = 1− Canyx

K
nyx
yx + Canyx

=
1

1 +
(
Ca
Kyx

)nyx

f+(Ca) =
Canxy

K
nxy
xy + Canxy

=
1

1 +
(
Kyx

Ca

)nxy

(1.4)

where Kyx and Kxy are the calcium a�nities when the channel closes and opens, respectively,
and nyx and nxy are the corresponding Hill coe�cients.
Using the relationships above it is possible to write formulas for the equilibrium open fraction
of BK channels, pY∞ and the related time constant τpY :

pY∞ =
k+

k− + k+

τpY =
1

k− + k+
.

(1.5)
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w−0 3.32 ms−1

w+
0 1.11 ms−1

wyx 0.022 mV −1

wxy −0.036 mV −1

Kyx 0.1 µM
Kxy 16.6 µM
nyx 0.46
nxy 2.33

Table 1.1: Parameters used in the BKCa channel model

Through global optimization it was possible to estimate the model parameters providing the
best �t to the experimental data from [4]. These parameters are shown in table 1.1 and they
will be used in the model that we are going to implement in the next chapters.

We have said that k− and k+ depend on the Ca2+ concentration, and now we want to better
de�ne this dependance. More speci�cally, in fact, these rates are determined by the Ca2+
concentration that is perceived by the related sensor of the BK channel. When the CaV channel
are closed, only the background concentrations of Ca2+ ions, which is set equal to 0.2 µM , is
present. Putting this value into the expression for k+ we obtain that the rate is virtually
zero, therefore it is not possible to observe BK activation induced only by the background
concentration.
On the other hand, when a CaV is open, the potassium channel will react to the increased
concentration of Ca2+ ions on the basis of the distance at which the CaV is located. The precise
value of the Ca2+ concentration perceived by the BK in this case is given by the formula:

Cao =
iCa

8πrDCaF
exp

 −r√
DCa

k+B [Btotal]

 . (1.6)

where iCa = gCa(V −VCa) is the single channel current. The parameters in table 1.2 are taken
from [4].
This model considers the BKCa-CaV complex, meaning the BK activation is studied in the
case when the CaV is bonded to the BK. Under this conditions the distance between the two
channels is 13 nm and this distance is used to calculate Cao in order to obtain the value of the
activation rate when the CaV is open.

r 13 nm
DCa 250 µm2s−1

F 9.6485 Cmol−1

kB 500 µM−1s−1

Btotal 30 µM
VCa 60 mV
gCa 2.8 pS

Table 1.2: Parameters used to calculate the Ca2+ concentration as function of the distance from the
source
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1.2 Model for the CaV channel

The CaV dynamics is described by the following equations:

dc

dt
= βo− αc

do

dt
= αc+ γb− (β + δ)o

b = 1− c− o = 1− h

(1.7)

where c indicates the closed state, o indicates the open state and b indicates the inactivated (or
blocked) state of the channel. Then h represents the fraction of calcium channels that are not
inactivated. Correspondently, α is the opening rate, β is the closing rate, δ is the inactivation
rate and γ is the reactivation rate. The dynamics between the open and the closed state is
determined by the voltage of the membrane and the expressions for α and β are:

α(V ) = α0 exp(−α1V )

β(V ) = ρ (β0 exp(−β1V ) + α0 exp(−α1V )) .
(1.8)

The inactivated state is not the same as the closed state, in the sense that it corresponds to
a di�erent con�guration of the ion channel. The process of inactivation is driven by the Ca2+
concentration, thus the expression for the rates is given by:

δ = 0.0025 µM−1 · [CaCaV ]

γ = 0.0020 ms−1
(1.9)

where CaCaV is the concentration at the internal mouth of the channel and can be calculated
through equation 1.1 setting r = 7 nm, that is the distance of the sensor for Ca2+-dependent
inactivation from the channel pore. Both the rates in equation 1.2 are taken from Cox.
It has been shown by Sherman that the dynamics of channel activation is considerably faster
than inactivation (and subsequent re-activation), therefore the two processes can be approxi-
mately separated in time. As a consequence, it is possible to devise a model for the so-called
activation variable of the calcium channel

dmCaV

dt
=
mCaV∞ −mCaV

τCaV
(1.10)

where

mCaV∞ =
α

α + β

τCaV =
1

α + β

(1.11)

and to write an equation for the fraction of inactivated CaV channels:

db

dt
= mCaV∞δ − (mCaV∞δ + γ)b. (1.12)

Also in the case of the calcium channel global optimization was used to identify the best set
of parameters for the activation model. These parameters are reported in table 1.3 below, and
they will be used throughout this work everytime we will treat CaV activation.
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α0 1.324 ms−1

α1 −0.0487 mV −1

β0 0.165 ms−1

β1 0.1735 mV −1

ρ 0.384

Table 1.3: Parameters used in the CaV channel model

1.3 Markov chain model of the BKCa-CaV complex

Combining the three-state model for the CaV and the two-state model for the BK described in
the previous sections, the authors in [1] de�ne a six-state Markov chain model for the complex,
that is illustrated in �gure 1.1. For this Markov chain it is immediate to write two matrices of

Figure 1.1:

transition probabilities, one for the dynamics of the calcium channel and one for the activity
of the BK, that is determined at every instant on the basis of the CaV state. Using these
matrices, Monte Carlo simulations are performed in order to study the stochastic gating of the
BKCa-CaV complex. The results of the simulations are shown below in �gure 1.3.
Since the model has a manageable number of states, and besides rate k+c ≈ 0, it is possible
to compute explicit formulas for the average time to �rst opening of the potassium channel,
meaning the �rst time the Markov chain visit one of the states CY , OY or BY starting from
CX, and for the distribution function P (TCX < t), that represents the probability of BK
opening before a given time t. The authors found:

E(TCX,Y ) =
1

α
+

1

k+o
+

1

k+o

(
β

α
+
δ

γ

)
P (TCX,Y < t) = 1−

∑
ψ∈{C,O,B}

(exp(tQ))CX,ψX
(1.13)
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using phase-type distribution results for Markov chains. Q is the subtransitions rate matrix of
the Markov chain corresponding to states {CX,OX,BX}.
The biphasic behaviour shown in �gure 1.2, taken from [1], is the result of the combination of
the two processes with di�erent time scales, activation and inactivation of the CaV channel.

Figure 1.2: Comparison between the empirical fraction of BK channels which show the �rst opening
before t (red) and the theoretical expression in equation 1.13 (black). Figures are taken
from [1].

1.4 Deterministic model of cellular BKCa activity

The aim of this model is to �nd the evolution over time of the BK open probability pY , so
that it is possible to evaluate the whole-cell current IBK = gBKpY (V − VK), where gBK is the
maximal whole-cell BK conductance and VK is the K+ reversal potential.
The time evolution of the probability distribution of the six-state Markov chain can be described
by a system of �ve ordinary di�erential equations, because the probabilities sum to 1. The BK
open probability can be calculated as pY (t) = pCY (t) + pOY (t) + pBY (t).
In order to obtain an expression for the BK current of Hodgkin-Huxley form, the system
of 5 ODEs is reduced through detailed time-scale analysis. In fact, since inactivation and
re-activation of the CaV are slower processes than activation and de-activation, if a fast time-
scale is considered it is possible to assume that the average fraction of non-inactivated calcium
channel, h = 1−pBX −pBY , is constant. This assumption corresponds to separating the model
in two sub-models with four and two states, respectively the green box and the blue box in
�gure 1.1. So now it is necessary to manipulate the reduced system of ODEs which describes
the four-state sub-model with non-inactivated CaVs. Analysing the dependance on voltage of
the transitions rates, one sees that the dynamics of the CY state is the fastest, so its probability
can be considered in a quasi-steady state. At this point one is left with a single di�erential
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equation for the BK activation variable mBK :

dmBK

dt
=
mBK∞ −mBK

τBK

mBK∞ =
mCaV k

+
o (α + β + k−c )

(k+o + k−o )(k−c + α) + βk−c

τBK =
α + β + k−c

(k+o + k−o )(k−c + α) + βk−c
.

(1.14)

Since BK channels close rapidly in complexes with inactivated CaVs, it is possible to write
pY ≈ mBKh, so that the BK current is approximated by the standard Hodgkin-Huxley ([5])
espression

IBK = gBKmBKh(V − VK). (1.15)

Figure 1.3 shows the comparison between the method illustrated so far. In the �rst plot we
can see the CaV open probabilities in response to a voltage step from −80 to 0 mV , while
the second plot represents the BK open probability in response to the same voltage step. We
notice in particular that the simply�ed Hodgkin-Huxley-type model approximates very well the
results given by the Monte Carlo simulation and the complete ODE system.
The point of reaching this kind of expression for the BK current is that it can be inserted in
whole-cell models of di�erent types of excitable cells.
The plots in �gure 1.4 are the steady-state for the BK activation variable and its time constant
(the light-blue lines represent the case with one CaV).

Figure 1.3: CaV and BK open probabilities, comparison between di�erent methods. Figures are taken
from [1]. In particular in box C we can see: the 70-state Markov chain model presented in
[4] (grey), the six-state Markov chain model (black), the ODE model corresponding to the
six-state model (blue), the simpli�ed Hodgkin-Huxley-type model expressed by the equation
above for IBK (dashed red).
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Figure 1.4: Steady-state BK activation function (upper) and time constant (lower) for BK channels
in complexes with 1 (cyan), 2 (green) or 3 (red). The grey dashed curve shows the CaV
steady-state activation function. Figure taken from [1].
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Chapter 2

Analysis of CaV Brownian motion and
complex formation

2.1 Introducing CaV di�usion

Our aim is to understand how local interaction between BK channels and the surrounding
CaV channels in�uences the BK activity. The �rst part of this work provides a Monte Carlo
simulation of calcium channels Brownian motion in the cell membrane. We want to study a
portion of the membrane where only one BK is present and the area of this portion will be set
out starting from the BK channels numerical density, that can be di�erent depending on the
type of cell examinated.
As benchmark we consider neurons: the source for the channel densities is [6], which gives
nBK ' 18 µm−2. Thus the mean distance between two adiacent BKs will then be rmean '
1/
√

18 µm = 0.2357 µm, and the di�usion will be simulated in a circular area of radius
rmax = rmean/2 = 0.11785 µm. The mean number of CaVs that are contained in this area
is calculated using the CaVs numerical density nCaV ' 100 µm−2 ([6]), and we �nd that on
average there are nCaV πr

2
max = 4.3 calcium channels within a distance rmax from every BK.

We choose to consider a circular area around the BK, instead of the slightly larger square
area obtained immediately from the inverse of the BK channels density, because our problem
presents radial symmetry, since the parameter of interest is the distance between the BK and
the CaVs. This con�guration happens to be more practical to perform the simulation and, in
particular, it will enable us to de�ne a series of shells around the BK, that will be used to
implement the grid of our discrete model. At the end of this section, in the discussion of the
results of the simulation, it will be clear that using a circular area does not a�ect the consis-
tency of the model: in fact, the calcium channels that we are neglecting are located in what we
will call the dead zone, meaning that the BK is not able to perceive the presence of the CaVs
in those regions because they are too distant.
Assuming that this portion of the membrane is homogeneous, we expect that the kind of mo-
bility the CaVs exhibit is simple Brownian translational di�usion in the plane of the membrane
and we describe it as a random walk. An estimate of the distance travelled by the di�using
particle during a certain time interval is given by the square root of its mean squared displace-
ment over that interval. Speci�cally, in the case of a two-dimensional random walk, the theory
of Brownian motion provides us with the relation

MSD(nτ) = 4Dnτ (2.1)
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where D is the di�usion coe�cient, τ is the time step of the random walk, meaning the inverse
of the frequency at which the particle position is sampled, n is the number of time steps that
are considered and thus nτ is the time interval over which the particle is observed. Eq. 2.1
highlights the fact that for a pure Brownian motion the di�usion coe�cient is independent of
the sampling frequency or the total time interval.
However, calcium channels happen to encounter and transiently bind to the BK while di�using
in the membrane, so their motion is not strictly free. The mode of mobility which describes
more properly our system is therefore transient anchorage ([7]), that is a combination of free
Brownian motion and strongly con�ned di�usion around the anchorage points. The center of
our analysis is indeed the formation of the BKCa-CaV complex, and we need to model it in such
a way that makes it possible to include it in the CaV channel trajectories. We know from [4]
that when the BK and the CaV are bonded they are located 13 nm apart. We then represent
the anchorage as an area of radius rmin = 13 nm around the BK where the calcium channels,
once they enter it, perform a Brownian motion characterised by a di�erent, namely smaller,
di�usion coe�cient, which indicates the fact that their mobility is reduced by the bond.
The values for the two di�usion coe�cients that will be used in the model are taken from [8]:

Dfree = 0.035 µm2/s

Dcomplex = 0.007 µm2/s
(2.2)

To sum up, the channel trajectories that we simulate are given by the combination of two free
Brownian motion with di�erent di�usion coe�cients, so we are not treating a pure Brownian
di�usion and it is not possible to apply equation 2.1 straightforwardly. It is necessary to �nd out
what the relationship between MSD and time is in this case and, even more important, how a
variation of the time step a�ects the CaV trajectories. In particular, we need to understand in
what way the choice of the sampling frequency in�uences the probability of complex formation
and how it may re�ect on the BK dynamics. It is clear that de�ning the right τ is crucial to
ensure the consistency of the model.

2.2 Monte Carlo simulation of CaV Brownian motion and

choice of the time step

In this section we discuss the features of the Brownian motion simulation and present an
overview of the results.
Figure 2.1 shows the area considered to simulate calcium channels di�usion. The initial posi-
tions of the channels will be distributed uniformly in the shell limited by rmax and rmin, thus
at time zero there will be no complex. Since we suppose that the system is homogeneous, the
number of CaVs that can be �nd at distance ≤ rmax is constant and, as we saw above, it can
be deduced from the channels numerical density. This means that, for every CaV which goes
beyond the maximum distance, there will be another one which enters the area. To implement
this aspect, re�ecting boundary conditions are used, so that the trajectories appear continu-
ous: every time a channel exits the region delimited by the outer circle the next displacement
will be set as the opposite of the previous one, basically bringing the channel back at its last
position inside the area. In the simulation of the channel dynamics between its states that
will be carried out afterwards, we will set τdynamics = 0.01 ms ([1]). Adopting the same time
step for the simulation of Brownian motion would certainly be correct, but it would also en-
tail signi�cant computational cost. Since the channel di�usion and the transitions between its
states are independent processes, it is possible to use di�erent time steps. Starting from the
assumption that the smaller the τ , the better the random walk can approximate Brownian
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Figure 2.1: Scheme of the area de�ned around a single BK to simulate the calcium channels di�usion.

motion, we are looking for an upper limit for the sampling time, a value which allows us to get
a manageable Monte Carlo simulation without introducing any bias on the BK dynamics. We
proceed analysing the details of CaVs di�usion in order to identify an interval of acceptable
time steps.
We sample the channel trajectories for 100 ms and we �nd that, as it was expected, the re-
lationship between MSD and time is not linear, due to the contribution of the two di�erent
di�usion coe�cients.
In order to understand the dependance of the trajectory on the time step, we compare the mean
value of MSD in time for di�erent τ . As it is can be seen in �gure 2.2, the lines practically
overlap for short times, and then begin to separate as time increases, because the trajectories
sampled at lower frequency present larger values of MSD. Considering that the channel dynam-
ics will be simulated for 50 ms ([1]), on the basis of �gure 2.2 we can say that good values for
τ are contained in the interval [0.01, 0.1] ms, for these sampling frequencies give approximately
the same description of the channel motion. For a more quantitative analysis, we check that
the BK dynamics is left unchanged when the di�usion time step is taken within this range. As
�rst indicator we consider the probability to �nd that at least one CaV channel is bonded to
the BK, which is shown in �gure 2.3 as function of the sampling time. The variation of the
probability over the interval [0.01, 0.1] ms is negligible, since it concerns the second decimal
place, but it becomes more consistent when τ is brought to 0.5 ms.
The fact that the probability to observe the BKCa-CaV complex remains practically constant
over the considered range of time steps can be deduced also from �gure 2.4: in fact, the plots
show that, as τ increases, the single-channel residence time in the complex becomes longer, but
the number of times the CaV bonds with the BK decreases correspondingly.
To get the validation that [0.01, 0.1] ms is a good range for the sampling time, we try and see
how di�erent values of τ a�ect the BK open probability, which is the quantity at the heart of
this work. It is interesting to note in 2.5 that the BK open probability in time is practically
the same for the smaller values of τ in the range, but as the time step increases beyond 0.1 ms
it becomes smaller. An explanation of this decline can be that, as it is reported in [1], the
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time constant for the BK opening at 0 mV is just about 0.5 ms, so sampling the Brownian
di�usion at this same frequency results in a variation of the opening probability. Besides, we
see in �gures 2.6 and 2.7 that for τ = 0.5 ms the contribution to the BK open probability given
by the CaV channels which are in the complex is reduced. This appears to be the consequence
of the decline in the probability to �nd the complex that is highlighted in �gure 2.3.
Since the main purpose of this work, as already reminded, is to better estimate the BK opening
probability and to understand the role of the complex formation in the BK activity, it is crucial
to set a time step that leads to a correct evaluation of these features of the system. Hence it
is possible to conclude that, in the context of the problem we are studying, setting a time step
of 0.1 ms allows us to speed up the Monte Carlo simulation and also ensures the consistency
of the model.
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Figure 2.2: Comparison between the mean squared displacement of trajectories simulated with di�erent
sampling frequencies.

2.3 E�ects of CaV di�usion on complex formation and BK

open probability

Now we proceed discussing the meaning of the plots obtained for the BK open probability in
time.
First we consider the case where only one CaV is present. Figure 2.8 shows that, as it was
predictable, introducing the calcium channel di�usion lowers the probability of BK activation,
compared to the case where the calcium channel is �xed at the bond distance ([1]), because
the BK channel can perceive only partially or even not at all the increased Ca2+ concentration
when the open Cav channel is located farther than 13 nm.
However, what is worth noticing in �gure 2.8 is the fact that the BKCa-CaV complex accounts
for only half of the BK open probability, meaning the CaVs which are not bonded to the potas-
sium channel contribute to its activation to the same extent as the ones that form the complex.
This result was not to be assumed and it requires further investigation on the conditions which
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Figure 2.3: Probability to observe the BKCa-CaV complex as function of the sampling time, when only
one calcium channel is present.
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Figure 2.4: Single-channel residence time in the BKCa-CaV complex as function of the sampling time.
The red circles indicate the corresponding number of times the calcium channel bonds with
the BK, divided by 104.
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Figure 2.5: BK open probability calculated using di�erent sampling time for the CaV di�usion.
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Figure 2.6: BKCa-CaV complex contribution to BK opening probability, calculated from the simulation
of one calcium channel di�usion with di�erent sampling time. The case with τ = 0.5 ms,
represented by the violet line, appears to be lower in comparison with smaller time steps
and this tendency may a�ect the results on the role of the complex in the BK activation.
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Figure 2.7: Probability of BK opening without complex formation, calculated from the simulation of
one calcium channel di�usion with di�erent sampling time.

activate the BK.
To get an idea of how the distance between the CaV and the BK in�uences the dynamics of
the latter, we divide the area in �gure 2.1 in three shells: the �rst one represents the complex
and its limit is set at rmin = 13 nm; the second one is between 13 nm and 3rmin = 39 nm
and it is the area that will be considered in the discrete model; the third shell is the remaining
area between 39 nm and the boundary. The purpose is to estimate in what measure the open
calcium channels that are located in each shell are responsible for the BK opening.
The most accurate information on the distribution of the active calcium channel is given by the
cumulative probability in �gure 2.9. We observe that the function rises steeply, reaching 50%
around rmin, as was already made clear by �gure 2.8. The rest of the probability is distributed
between 13 nm and 80 nm, so it seems reasonable to set at this distance a sort of border, and
neglect the cases in which the CaV lies beyond it, since it is unlikely that the channel opening
manages to activate the BK. We also notice that in about nine out of ten cases the BK opens
when the calcium channel is located in the second shell, at distance ≤ 39 nm, meaning that,
when only one CaV channel is considered, the discrete model will provide a good approximation
of the dynamics.
On the other hand, if a second CaV channel is introduced, we need to analyse in detail all the
possible con�gurations that can lead to the BK opening. In fact, when many CaVs are present,
a plot of the cumulative probability of the open channels locations as the one in �gure 2.9 would
be deceiving, because every open CaV would be counted as a single event bringing to the BK
activation, while everytime the BK opens it actually is the result of the combined action of all
the CaVs which are active at that moment. Thus in table 2.1 we report the probabilities for
every case, from which we can extract some interesting information. We immediately notice
that the chances of observing a BKCa-CaV complex with both the calcium channels are very
small: in comparison, the probability to have only one CaV bonded to the BK is one order
of magnitude higher. Besides, these values indicate that about 70% of the time only one CaV
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Figure 2.8: BK open probability in time. Y indicates the total probability, YC is the complex con-
tribution, YnC represents activation without the complex. The simulation was performed
considering only one calcium channel and setting τ = 0.1 ms as time step for the di�usion.
It is interesting to note that the presence of the complex is not strictly necessary to observe
the BK opening.

is open, and this fact explains why the major contribution to the BK activation comes from
the con�gurations in which one CaV is closed and the other one is bonded to the BK or is at
distance ≤ 39 nm.
The study of the single calcium channel suggests that the activity of the CaVs which are at

distance > 80 nm is not perceived by the BK, thus we want to quantify the actual contribution
of the channels in the third shell also in the case where two channels are present. Therefore
we exclude the open CaVs in the third shell from the calculation of the BK activation and
deactivation rates, and we re-evaluate the probability for each combination of CaV states and
distances to see how they are changed. The contributions that are actually being neglected are
the elements in position (5, 1), (1, 5) and (5, 5) in table 2.1, that account for about 4% of the
total BK open probability. Looking at table 2.2, we note that the probabilities of the other
cases where one CaV is in the third shell, elements 2− 4 in row 5 and in column 5, appear to

CaV state/location CaV 1 is closed r1 ≤ 13 13 < r1 ≤ 39 39 < r1 ≤ 80 r1 > 80
CaV 2 is closed 0.0000 0.1522 0.1137 0.0654 0.0191

r2 ≤ 13 0.1459 0.0123 0.0203 0.0296 0.0175
13 < r2 ≤ 39 0.1121 0.0205 0.0259 0.0301 0.0152
39 < r2 ≤ 80 0.0624 0.0312 0.0309 0.0217 0.0075
r2 > 80 0.0216 0.0204 0.0162 0.0071 0.0011

Table 2.1: Probability of every possible con�guration that leads to the BK opening.
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Figure 2.9: Cumulative probability to �nd the CaV channel responsible for the BK opening within a
certain distance from the BK. The initial steep slope represents the formation of the bond
between the BK and the CaV.

be summed up to the probabilities in cells 2 − 4 in row 1 and in column 1, meaning that the
presence of the open CaV at distance > 80 nm is not necessary to obtain the BK activation.
We therefore identify a sort of dead zone between adiacent BKs, a region of the cell membrane
where the action of the CaVs is basically neutralized by the distance, as the peak in the Ca2+

concentration that is produced when the calcium channels are open can not reach any of the
surrounding BKs, and also when added to the Ca2+ �ow provided by other open CaVs its e�ect
is negligible.
The study of the shells population suggests that we could consider only a few distances, that
represent the average behaviour of the channels, and construct a discrete model on a grid for
which we would be able to write a Markov chain similar to the one presented in ([1]). In order
to get a manageable set of equation we decide to consider only the �rst and the second shell,
setting the border of the grid at distance 3rmin = 39 nm. If we perform the sum of the elements
in row 4 and column 4 in table 2.2, we �nd that the choice not to include the third shell implies
that we are practically neglecting 30% of the cases in which the BK is open.

In order to better understand how the CaV dynamics a�ects the BK open probability, we report
in �gure 2.11 the activation and deactivation rates for the BK in the case when the CaV is
open. We notice that the opening rate k+o (r) decreases rapidly as the CaV moves away from
the BK.
As already highlighted, these rates depend on the Ca2+ concentration that is detected by
the BK channel. When more than one CaV channel is present, and open, the linear bu�er
approximation ([9]) is used to combine the Ca2+ levels.
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Figure 2.10: Bk open probability calculated without taking into account the contribution of the CaV
channels which are located at distance > 80 nm. Here two calcium channels are simulated.

CaV state/location CaV 1 is closed r1 ≤ 13 13 < r1 ≤ 39 39 < r1 ≤ 80
CaV 2 is closed 0.0000 0.1730 0.1373 0.0727

r2 ≤ 13 0.1750 0.0114 0.0198 0.0352
13 < r2 ≤ 39 0.1363 0.0209 0.0277 0.0327
39 < r2 ≤ 80 0.0686 0.0346 0.0318 0.0233

Table 2.2: Probability of every possible con�guration that leads to the BK opening, without taking into
account the calcium channels which are beyond 80 nm. Comparing these results to the ones
in table 2.1 it is possible to get an idea of how the e�ects of the two calcium channels combine
to make the BK channel activates.
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Figure 2.11: BK opening and closing rates in presence of open CaV channels, evaluated as functions
of the distance at which the source of Ca2+ ions is located.
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Chapter 3

Stochastic model of BK and CaV
interaction with �xed distances

In chapter 1 we descibed the Markov chain model of the BKCa-Cav complex, devised to analyse
the impact of the CaV dynamics on the BK activation when the two channels are bonded.
In order to get a more realistic picture of ion channels interaction in the cell membrane we
introduced in chapter 2 the CaV Brownian di�usion, and showed the characteristics of complex
formation and its contribution to the BK open probability. The problem is that the mere Monte
Carlo simulation does not provide us with much theoretical insight. Therefore our aim is to
extend the model presented in Montefusco including the CaV di�usion around the BK, and in
doing so we will obtain a new Markov chain and a new system of ODEs that constitute a more
detailed description of ion channels activity.
Of course we can implement such a model only adding a few discrete states to the basic Markov
chain, so we will realize the CaV di�usion as a two dimensional random walk on a series of
points located at three di�erent distances from the BK. In particular, we take a grid as the one
in �gure 3.1 and the distances considered are:

r1 = 13 nm

r2 = r1
√

5 ' 29 nm

r3 = 3r1 = 39 nm

(3.1)

The unit length of the grid, meaning the distance between any two adiacent points, is
h = r1

√
2 ' 18.4 nm. In the previous chapter we have already estimated the limits of the

approximation that we make neglecting the distances beyond r3.
Assuming the number of CaVs that move around the BK is constant, being the membrane
homogeneous, we impose periodic boundary conditions on the grid: if we label each one of the
points as the element of a 4x4 matrix, we have that, for example, going up from position (1, 3)
brings the channel in position (3, 3), or going left from position (2, 1) brings the CaV in position
(2, 3). Similarly, moving up from point (1, 1) at distance r3 the channel ends up in point (3, 1)
at distance r2, while moving left it will reach point (1, 3) again at distance r2, and so on for all
the other border locations.
Therefore we de�ne a new three dimensional, 18-state, continuous-time Markov chain with
three layers, one for each distance, and every layer is nothing but the basic 6-state Markov
chain designed in ([1]), with the di�erence that now the BK opening and closing rates on ev-
ery layer depend on the speci�c distance of the open CaV via the Ca2+ concentration that is
perceived by the BK.
As we can see in �gure 3.2, every state of this Markov chain is identi�ed by three elements: the
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Figure 3.1: Scheme of the grid where the CaV random walk will be simulated. The red points represent
r1 = 13 nm, the green points represent r2 = 29 nm, the blue points represent r3 = 39 nm.
The unit length of the grid is h = 18.4 nm.

CaV state, the BK state and the distance between the two channels.
The three layers are connected by the transition rates which control the CaV random walk
on the grid. Since this is a continuous-time Markov chain, every movement of the calcium
channel is described by a random variable Exp{λ}. We know that λ is the inverse of the ex-
pectation value of the exponential random variable which describes the single CaV movement.
The random walk on the grid is the approximation of the free Brownian motion with di�usion
coe�cient Dfree = 0.035 µm2/s that the ion channel perform when it is not bonded to the BK.
In this model, in fact, we can describe only a free di�usion with a single di�usion coe�cient and
we have to represent the formation of the BKCa-Cav complex multiplying the rate of breaking
the bond between the two channels, that is j12, by a factor that can take values in the interval
[0, 1]. In this way, decreasing the value of the rate j12, we express the fact that the CaV is less
likely to leave its position at distance r1 because it is bonded to the potassium channel.
Everytime the CaV moves it covers the distance h between two adiacent point on the grid. This
movement correspond to a two-dimensional di�usion with mean squared displacement equal to
h2. Using the equation of Brownian motion, MSD(t) = 4Dt, we obtain that the time such a
di�usion takes is t = h2/4Dfree, hence we de�ne λ as the inverse of this time:

λ =
4Dfree

h2
= 0.41 ms−1. (3.2)

Looking at �gure 3.1 we note that from each point at distance r1 it is possible to reach a point
at distance r2 in two ways, thus the random variable that express the channel going from r1 to
r2 will be

min{Exp{λ}, Exp{λ}} = Exp{2λ}

and the correspondent transition rate will be j12 = 2λ. Following the same kind of reasoning,
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we �nd all the rates for the random walk:

r1 → r2 : j12 = 2λ = 0.82 ms−1

r1 → r3 : j13 = 0

r2 → r1 : j21 = 2λ = 0.82 ms−1

r2 → r3 : j23 = λ = 0.41 ms−1

r3 → r1 : j31 = 0

r3 → r2 : j32 = 4λ = 1.64 ms−1.

(3.3)

Since the CaV transitions between its states (closed, open and blocked) are independent of
the channel di�usion on the membrane, the rates which control its dynamics must be left
unchanged by the introduction of the random walk. To verify that the model is consistent with
this assumption we write the total transition matrix for the calcium channel and we calculate
the mean absorbing times in each one of its state. Imposing every one of these mean absorbing
times to be equal to the inverse of the correspondent original rate, we �nd out that the transition
rates for the dynamics remain the same.
Below the transition matrix for the calcium channel is reported (equation 3). The labels for
both rows and columns are {C1, C2, C3, O1, O2, O3, B1, B2, B3}. The numbers 1, 2 and 3 refer
to the distances r1, r2 and r3.

QCaV =



q11 2λ 0 α 0 0 0 0 0
2λ q22 λ 0 α 0 0 0 0
0 4λ q33 0 0 α 0 0 0
β 0 0 q44 2λ 0 δ 0 0
0 β 0 2λ q55 λ 0 δ 0
0 0 β 0 4λ q66 0 0 δ
0 0 0 γ 0 0 q77 2λ 0
0 0 0 0 γ 0 2λ q88 λ
0 0 0 0 0 γ 0 4λ q99


(3.4)

The elements on the diagonal are given by qii = −
∑

j 6=i qij, so that the sum of the elements in
every row is zero.
As regards the transition rates for the potassium channel, following the original model we
set k+c ' 0, because the background Ca2+ concentration is not su�cient to activate the BK.
So, looking at the scheme in �gure 3.2, we can say that all the transitions CXi → CY i
and BXi → BY i, for i = 1, 2, 3, are virtually impossible. Also the rate k−c depends on the
background concentration of Ca2+, so it does not change when introducing the three distances
and it characterizes all the transitions CY i→ CXi and BY i→ BXi for i = 1, 2, 3.
The rates that are indeed a�ected by the calcium channel movement on the grid are k+o and
k−o , as they are calculated using the following espression for the Ca2+ concentration at the BK
channel when the CaV is open:

Cao =
gCa(V − VCa

8πrDCaF
exp

 −r√
DCa

k+B [Btotal]

 . (3.5)

This expression, that was already presented in chapter 1, shows a dependance on r, that is the
distance between the open CaV and the BK. Therefore we will have k+o (ri) for the transition
OXi → OY i and k−o (ri) for the transition OY i → OXi, for i = 1, 2, 3. This means that the

27



transition matrix for the BK, that we can write in a general form as

QBK =

(
−k+ k+

k− −k−
)

(3.6)

with labels {X, Y } for both rows and columns, needs to be evaluated at every step in time,
because the rates are calculated on the basis of the state and the position of the CaV channels
at each instant.
At this point we have completely illustrated the model and we can proceed describing the Monte
Carlo simulation of the channels activity.

Figure 3.2: Markov chain for the model with CaV random walk on the grid.

28



3.1 Monte Carlo simulation

We consider only one calcium channel and, following ([1]), we set ∆t = 0.01 ms as the time
step. The initial conditions are set so that at time 0 both channels are closed and the CaV is
located at distance r − 3.
In equations 3 and 3 we reported the matrices of the transition rates for the CaV and the BK
channel. In order to perform the Monte Carlo simulation we need to construct the correspondent
transition probabilities matrices:

PCaV =

=



P11 2λ∆t 0 α∆t 0 0 0 0 0
2λ∆t P22 λ∆t 0 α∆t 0 0 0 0

0 4λ∆t P33 0 0 α∆t 0 0 0
β∆t 0 0 P44 2λ∆t 0 δ∆t 0 0

0 β∆t 0 2λ∆t P55 λ∆t 0 δ∆t 0
0 0 β∆t 0 4λ∆t P66 0 0 δ∆t
0 0 0 γ∆t 0 0 P77 2λ∆t 0
0 0 0 0 γ∆t 0 2λ∆t P88 λ∆t
0 0 0 0 0 γ∆t 0 4λ∆t P99


(3.7)

with labels {C1, C2, C3, O1, O2, O3, B1, B2, B3} for both rows and columns. The expression
of the elements on the diagonal is Pii = 1−

∑
j 6=i Pij∆t.

Every element of the matrix represents the probability

P [S ′, t+ ∆t|S, t] (3.8)

of a transition from state S to state S ′ over the time interval ∆t, being S and S ′ any two
states of the CaV.
In chapter 2 we carried out the simulation of the CaV di�usion and the dynamics between its
state independently, as two separate processes, then the results were combined so that at every
instant there were a position and a state associated to the channel. On the other hand, in the
Markov chain we are treating now the CaV is already described by a pair of the form (SD),
where S indicates the state and D stand for the distance respect to the BK and the transitions
are realized between these composed states. This means that, at every step in time, the new
condition of the CaV is the result of the competition between the exponential random variables
that represent all the possible transitions from the current composed state. In other words,
over one ∆t the calcium channel can change its state (C, O, B) or its distance from the BK,
or it can stay the same.
Similarly, for the BK channel we write:

PBK =

(
1− k+∆t k+∆t
k−∆t 1− k−∆t

)
(3.9)

with labels {X, Y } for both rows and columns. While the elements of the probability matrix
for the CaV are constant, the BK probability matrix needs to be updated at each time step,
because the rates have to be re-evaluated on the basis of the CaV state and location at that
moment.
The procedure used to perform the simulation is the following. Given the current state of the
CaV, we take the matrix elements in the row corresponding to that state and use them to
divide the interval [0, 1] in a series of subintervals. For example, if the CaV is in C3, we can
de�ne the subintervals [0, 1− (α+ 4λ)∆t[, [1− (α+ 4λ)∆t, 1−α∆t[ and [1−α∆t, 1]. Then we
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generate a random number ξ from a uniform distribution on the interval [0, 1]: the transition
will be determined by the subinterval in which ξ falls. In the case of C3, if ξ is in the �rst
subinterval the CaV remains in the same state, if 1 − (α + 4λ)∆t ≤ ξ ≤ 1 − α∆t then the
channel moves on the grid and the updated state is C2, otherwise, if ξ ≥ 1− α∆t, a transition
to the open state O3 occurs. The CaV state that is reached in this way is immediately used
to calculate the proper transition rates for the BK. Next, another random number η uniformly
distributed on [0, 1] is chosen and the operation just described has to be repeated, but it is a
bit simpler because for the BK we always have only two subintervals: if η ≤ PBK(i, i) the BK
state is left unchanged, otherwise a transition to the other state is observed.
The results of the simulation will be shown below, in comparison with the one that will be
obtained in the next section.

3.2 ODE model

Following Montefusco, we aim to de�ne also in this case a deterministic model of the BK activity
at cellular level, in order to obtain a whole-cell BK current. This current, as already explained
in chapter 1, is given by the expression:

IBK = gBKpY (V − VK) (3.10)

where gBK is the maximal whole-cell BK conductance and VK is the K+ reversal potential.
Thus we need to understand how the BK open probability pY behaves over time, and to do
that we have to study the time evolution of the probability distribution of our 18-state Markov
chain. The equations for every state of the system are reported below (eq. 3.2). To simplify
the notation from now on we indicate the probability of a state with the name of the state, for
example CX1 stands for PCX1.
Since the probabilities must sum to 1, taking a system of 17 of the di�erential equations in
3.2 is su�cient to know the evolution in time of the probabilities for every state of the system.
So �rst we solve this ODE system, that certainly represents a reduction respect to the Monte
Carlo simulations. However it is also clear that the introduction of the CaV di�usion on the
grid increases the complexity of the problem in comparison to the system of 5 ODEs treated in
([1]). Therefore we try to simplify this system, in order to see if it is possible to get to a smaller
set of equations. In particular, we would like to obtain the time evolution for the activation
variable mBK , that express the fraction of open BK channels in presence of non-inactivated
CaVs. Below the details of the calculations are illustrated.
We know that, as it can be seen in �gure 3.3, inactivation and reactivation of CaV channels are
slower processes than opening and closing and these two time scales can be separated. So we
consider two submodels, one for non-inactivated CaVs, with 12 states, and one for the CaVs
that are blocked, with 6 states. So we proceed working on the reduced system of 12 equations
for non-inactivated CaVs reported below in equation 3.2.
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dCX1

dt
= j21CX2 + βOX1 + k−c CY 1− (j12 + α)CX1

dCX2

dt
= j12CX1 + j32CX3 + βOX2 + k−c CY 2− (j21 + j23 + α)CX2

dCX3

dt
= j23CX2 + βOX3 + k−c CY 3− (j32 + α)CX3

dOX1

dt
= j21OX2 + αCX1 + γBX1 + k−o (r1)OY 1− (j12 + β + δ + k+o (r1))OX1

dOX2

dt
= j12OX1 + j32OX3 + αCX2 + γBX2 + k−o (r2)OY 2− (j21 + j23 + β + δ + k+o (r2))OX2

dOX3

dt
= j23OX2 + αCX3 + γBX3 + k−o (r3)OY 3− (j32 + β + δ + k+o (r3))OX3

dBX1

dt
= j21BX2 + δOX1 + k−c BY 1− (j12 + γ)BX1

dBX2

dt
= j12BX1 + j32BX3 + δOX2 + k−c BY 2− (j21 + j23 + γ)BX2

dBX3

dt
= j23BX2 + δOX3 + k−c BY 3− (j32 + γ)BX3

dCY 1

dt
= j21CY 2 + βOY 1− (j12 + α + k−c )CY 1

dCY 2

dt
= j12CY 1 + j32CY 3 + βOY 2− (j21 + j23 + α + k−c )CY 2

dCY 3

dt
= j23CY 2 + βOY 3− (j32 + α + k−c )CY 3

dOY 1

dt
= j21OY 2 + αCY 1 + γBY 1 + k+o (r1)OX1− (j12 + β + δ + k−o (r1))OY 1

dOY 2

dt
= j12OY 1 + j32OY 3 + αCY 2 + γBY 2 + k+o (r2)OX2− (j21 + j23 + β + δ + k−o (r2))OY 2

dOY 3

dt
= j23OY 2 + αCY 3 + γBY 3 + k+o (r3)OX3− (j32 + β + δ + k−o (r3))OY 3

dBY 1

dt
= j21BY 2 + δOY 1− (j12 + γ + k−c )BY 1

dBY 2

dt
= j12BY 1 + j32BY 3 + δOY 2− (j21 + j23 + γ + k−c )BY 2

dBY 3

dt
= j23BY 2 + δOY 3− (j32 + γ + k−c )BY 3

(3.11)
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Figure 3.3: Rates that regulate the dynamics of the CaV channel, as function of the membrane volt-
age. At 0 mV , the voltage we use for the calculations, the processes of inactivation and
reactivation are slower in comparison to the channel opening and closing.

-50 0 50

V (mV)

0

0.5

1

1.5

2

2.5

3

ra
te

s
 (

m
s

-1
)

Transition rates for the system with non inactivated CaV

k
c

-

k
o

+
1

k
o

+
2

k
o

+
3

k
o

-
1

k
o

-
2

k
o

-
3

Figure 3.4: Overview of all the rates at play in presence of non inactivated CaV channels, as function
of the membrane voltage.
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dCX1

dt
= j21CX2 + βOX1 + k−c CY 1− (j12 + α)CX1

dCX2

dt
= j12CX1 + j32CX3 + βOX2 + k−c CY 2− (j21 + j23 + α)CX2

dCX3

dt
= j23CX2 + βOX3 + k−c CY 3− (j32 + α)CX3

dOX1

dt
= j21OX2 + αCX1 + k−o (r1)OY 1− (j12 + β + k+o (r1))OX1

dOX2

dt
= j12OX1 + j32OX3 + αCX2 + k−o (r2)OY 2− (j21 + j23 + β + k+o (r2))OX2

dOX3

dt
= j23OX2 + αCX3 + k−o (r3)OY 3− (j32 + β + k+o (r3))OX3

dCY 1

dt
= j21CY 2 + βOY 1− (j12 + α + k−c )CY 1

dCY 2

dt
= j12CY 1 + j32CY 3 + βOY 2− (j21 + j23 + α + k−c )CY 2

dCY 3

dt
= j23CY 2 + βOY 3− (j32 + α + k−c )CY 3

dOY 1

dt
= j21OY 2 + αCY 1 + k+o (r1)OX1− (j12 + β + k−o (r1))OY 1

dOY 2

dt
= j12OY 1 + j32OY 3 + αCY 2 + k+o (r2)OX2− (j21 + j23 + β + k−o (r2))OY 2

dOY 3

dt
= j23OY 2 + αCY 3 + k+o (r3)OX3− (j32 + β + k−o (r3))OY 3

(3.12)

The activation variable for the BK is then mBK = CY + OY , while the one for the CaV is
mCaV = OX + OY . In the case we are discussing, OY represents the sum of the probabilities
that the BK is open, given that the open CaV channel is located at distance r1, r2 or r3. The
same is valid for CY and OX. If we de�ne new activation variables that correspond to each
one of the distances on the grid, we can write mBKi = CY i + OY i and mCaV i = OXi + OY i
for i = 1, 2, 3, so that

mBK = mBK1 · P1 +mBK2 · P2 +mBK3 · P3

mCaV = mCaV 1 · P1 +mCaV 2 · P2 +mCaV 3 · P3.
(3.13)

where the weights Pi are the probabilities of the CaV channel being at distance r1, r2 or r3,
and, as we will see below, can be calculated using a set of di�erential equations that are inde-
pendent of the rest of the dynamics. Now we substitute everywhere OXi = mCaV i−OY i and
then OY i = mBKi − CY i and we are left with a system of 12 ODEs for the quantities: CXi,
CY i, mCaV i and mBKi for i = 1, 2, 3.
In �gure 3.4 it is possible to notice that at V = 0 mV , the voltage we consider for the calcu-
lations, the fastes transitions are the ones described by α, β and k−c , meaning the opening and
closing dynamics of the CaV and the deactivation of the BK when the CaV is closed and there
is only the background concentration of Ca2+ ions. This fact leads us to assume quasi-steady
states for the probabilities CY i, thus we set

dCY i

dt
' 0 ∀i

It will be veri�ed later that the time scale of the CY i is actually fast compared to the time
scale of the mBKi, thus we can consider the CY i constant during the evolution of the mBKi.
From the conditions of quasi-steady state for the CY i we derive these three expressions:
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CY 1 =
j21CY 2 + βmBK1

j12 + α + β + k−c

CY 2 =
j12CY 1 + j32CY 3 + βmBK2

j21 + j23 + α + β + k−c

CY 3 =
j23CY 2 + βmBK3

j32 + α + β + k−c
.

(3.14)

To simplify the notation we will call:

A = α + β + k−c
A1 = j12 + A

A2 = j21 + j23 + A

A3 = j32 + A.

(3.15)

From these quantities we get the time constants for the CY i: in fact τCY 1 = 1/A1, τCY 2 = 1/A2
and τCY 3 = 1/A3.
We proceed manipulating these equations in order to obtain expressions for the CY i that are
function only of the transitions rates and of the mBKi. Of course such expressions will not be
easy to interpret theoretically, mainly because the dependance on the transition rates is quite
complicated and it is not straigthforward to recognize the di�erent contributes. The �nal result
is:

CY 1 =
β

B
[mBK1(A2A3− j23j32) +mBK2j21A3 +mBK3j32j21]

CY 2 =
β

B
[mBK1j12A3 +mBK2A1A3 +mBK3j32A1]

CY 3 =
β

B
[mBK1j12j23 +mBK2j23A1 +mBK3(A1A2− j12j21)]

(3.16)

where B = A1A2A3− j21j12A3− j23j32A1.
Next we insert the expressions found for the CY i in the di�erential equations fo the mBKi and
computing the calculations we obtain:

dmBK1

dt
=
mBK1∞ −mBK1

τm1

(3.17)

dmBK2

dt
=
mBK2∞ −mBK2

τm2

(3.18)

dmBK3

dt
=
mBK3∞ −mBK3

τm3

. (3.19)

The mBKi∞ are the steady states and they are given by:

mBK1∞ =(k+o 1 ·mCaV 1 +mBK2j21

[
1 +

β

B
A3(k−o 1 + k+o 1− k−c )

]
+

+mBK3j21j32
β

B
(k−o 1 + k+o 1− k−c ) · τm1

(3.20)
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mBK2∞ =(k+o 2 ·mCaV 2 +mBK1j12

[
1 +

β

B
A3(k−o 2 + k+o 2− k−c )

]
+

+mBK3j32

[
1 +

β

B
A1(k−o 2 + k+o 2− k−c )

]
) · τm2

(3.21)

mBK3∞ =(k+o 3 ·mCaV 3 +mBK2j23

[
1 +

β

B
A1(k−o 3 + k+o 3− k−c )

]
+

+mBK1j12j23
β

B
(k−o 3 + k+o 3− k−c )) · τm3.

(3.22)

The τmi are the time constants and they depend on the transition rates of the system:

τm1 =(j12 + β + k+o 1 + k−o 1 +
β

B
j12j21A3−

− b

B
(A2A3− j23j32)(j12 + α + β + k+o 1 + k−o 1))−1

(3.23)

τm2 =(j21 + j23 + β + k+o 2 + k−o 2 +
β

B
j12j21A3 +

β

B
j23j32A1−

− β

B
A1A3(j21 + j23 + α + β + k+o 2 + k−o 2))−1

(3.24)

τm3 =(j32 + β + k+o 3 + k−o 3 +
β

B
j23j32A1−

− β

B
(A1A2− j21j12)(j32 + α + β + k+o 3 + k−o 3))−1.

(3.25)

So, to summurize what we did up to this point, starting from a system with 12 ODEs and using
appropriate time scale analysis and mathematical manipulation, we were able to eliminate the
three ODEs for the probabilities CY i and we found explicit expressions for the three ODEs
that describe the evolution of the BK activation variables, the mBKi. We note that, because
of the CaV random walk on the grid, equations 3.2-3.2 are not independent from each other.
Besides, these equations are de�ned only in terms of the activation variables of both the BK
and the CaV.
Through a similar kind of calculations we are able to write analogue di�erential equations
for the CaV activation variables mCaV i. But before doing that it is useful to consider the
other set of three ODEs that we have, the one that guides the evolution of the probabilities
CXi. In the original model in Montefusco the equation for CX was not necessary thanks to
the conservation of the total probability, but this method can not be applied now. A possible
solution is to introduce new variables Pi, that represent the probabilities of the non-inactivated
CaV being at distance ri. The form of these variables is then Pi = CXi+CY i+mCaV i and for
them we can de�ne a system that is independent from the equations for the other probabilities
at play, and for this reason it can be immediately solved. In fact we have:

dP1

dt
= j21P2− j12P1

dP2

dt
= (j12 − j32)P1− (j21 + j23 + j32)P2 + j32

P3 = 1− P1− P2.

(3.26)

So it appear convenient to insert the expressions Pi−CY i−mCaV i in place of the CXi that
occurr in the equations for the CaV activation variables. The advantage of eliminating the
probabilities CXi from the ODE system is that we can now substitute the ODEs for the CXi
with the two equations for the Pi. This way we are left with a system of 8 ODEs: three for the
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mBKi, three for the mCaV i and two for the Pi, which can be solved separately from the other
six.
Through some mathematical manipulation we �nally arrive at the equations for the CaV acti-
vation variables:

dmCaV 1

dt
= j21mCaV 2 + αP1−mCaV 1(α + β + j12)

dmCaV 2

dt
= j12mCaV 1 + j32mCaV 3 + αP2−mCaV 2(α + β + j21 + j23)

dmCaV 3

dt
= j23mCaV 2 + αP3−mCaV 3(α + β + j32)

(3.27)

Also in this case we can write the time constants and the steady states:

τmCaV 1 = (α + β + j12)
−1

τmCaV 2 = (α + β + j21 + j23)
−1

τmCaV 3 = (α + β + j32)
−1

mCaV 1∞ = (j21mCaV 2 + αP1) · τmCaV 1

mCaV 2∞ = (j12mCaV 1 + j32mCaV 3 + αP2) · τmCaV 2

mCaV 3∞ = (j23mCaV 2 + αP3) · τmCaV 3

(3.28)
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Figure 3.5: Relationship between the time constants of the CY i and the mBKi. The value of these
ratios at V = 0 mV is essentially the same found for the correspondent quantity in [1],
hence also in our case it is possible to consider steady states for the CY i as the mBKi
evolve on a slower time scale.

To conclude this description of the deterministic model, we report in �gure 3.5 the plot that
con�rms the fact that the mBKi and the CY i evolve on di�erent time scales, namely the
dynamics of the CY i is faster than the dynamics of the BK activation variables, as we can see
from the relationship between the correspondent time constant. This fact enables us to take
the CY i as constants when studying the evolution of the mBKi.
Now we can proceed solving the system. The results will be presented in the next section in
comparison with the ones obtained from the Monte Carlo simulation.
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3.3 Discussion of the results

The �rst aspect we want to analyze is the CaV di�usion on the grid. Given the transitions rates
in equation 3, we follow the time evolution of the probability of the CaV being at a certain
distance from the BK. Two methods are used: the ODE system for the Pi, reported in equation
3.2, and the Monte Carlo simulation of the Markov chain that represents the channel activity,
based on the matrix of the transition probabilities 3.1.
As we have already said, in this model the formation of the BKCa-CaV complex is described
through the multiplication of the rate j12 by a factor that weakens it, because the probability
of leaving the points at distance r1 is decreased by the presence of the bond between the two
channels. We call this factor bond and it can take values in the interval [0, 1]. Figure 3.6 shows
the evolution of the probabilities Pi in the case of bond = 1, that means considering the CaV
movement without the transient anchorage due to the bond formation, in other words in the
absence of the BK. Starting from a point at distance r3, in a few milliseconds the calcium
channel reaches a stable situation in which the probability of being at each one of the three
distances remains constant. So, when the CaV is driven only by the rules that are the product
of the grid con�guration, after an initial transient it spends 10% of its time in location at
distance r3, while in the rest of the time it can be found indi�erently at distance r1 or r2. Both
the methods used bring to the same result.
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Figure 3.6: Time evolution for the probabilities of the CaV channel being at distance r1, r2 or r3. The
variable bond is set equal to 1, meaning this is the evolution of the CaV movement on the
grid without considering the transient anchorage to the BK.

Now the problem is to set the proper value for the variable bond, so that the random walk on
the grid can actually approximate the CaV di�usion in presence of the BK. To do that we refer
to the Monte Carlo simulation of the CaV Brownian motion that was presented in chapter 2.
We perform the simulation setting r3 = 39 nm as outer border and we obtain �gure 3.7. This
plot shows that under these conditions the complex contribution to the BK open probability is
about 60% of the total. So we choose the value for bond in such a way to be able to reproduce
these proportions with the grid model. We �nd that setting bond = 0.5 produces �gure 3.8 and
we will use this value in the rest of the work.

37



0 5 10 15 20 25 30 35 40

time (ms)

0

0.05

0.1

0.15

0.2

0.25

p
ro

b
a

b
ili

ty

Contributions to the BK open probability

Y

YC

YnC

Figure 3.7: BK open probability obtained using the Monte Carlo simulation presented in chapter 2, this
time taking r = 39 nm as outer border for the BK area, so that we are reproducing the
same spatial conditions of the grid. Since the area over which the CaV channel can move
is now smaller, the probability that it bonds with the BK is higher and as a consequence the
contribution of the complex becomes more important.
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Figure 3.8: Time evolution for the probabilities of the CaV channel being at distance r1, r2 or r3, having
set bond = 0.5 to represent the strength of the bond between the CaV channel and the BK
channel.
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Figure 3.9: BK open probability as function of time. Comparison between the methods presented: Monte
Carlo simulation of the 18-state Markov chain, complete ODE system for the Markov chain
and simpli�ed ODE system obtained through the time scale analysis. We notice that, as
it is in [1], the simpli�ed ODE system constitutes a good approximation of the complete
system.

The result we are most interested in is the evolution of the BK open probability over time,
that is shown in �gure 3.9. The plot reports the comparison between the three methods that
were tested. It is worth noticing that the evolution obtained from the simpli�ed system of 8
equations (eq. 3.2-3.2, 3.2 and 3.2) approximate well the functions given by the Monte Carlo
simulation of the Markov chain and by the complete system of 18 ODEs for the state proba-
bilities, as it happens in the case with �xed distance between the channels ([1]). This means
that the complications brought by the introduction of the CaV di�usion do not prevent us from
�nding a more manageable set of di�erential equations that is equally capable of describing the
dynamics of the system.
Another interesting observation can be made comparing �gure 3.9 to 3.7. We note that the
18-state Markov chain, de�ned for the interaction between the channels on the grid, actually
reproduces the same BK open probability obtained from the Monte Carlo simulation presented
in chapter 2, but it requires an extremely smaller computational cost.
In �gure 3.10 we see the same kind of comparison between methods for the CaV open prob-
ability in time. This plot is virtually identical to the analogue one presented in [1], because
the CaV activity is non a�ected by its di�usion on the cell membrane. This fact is evident
also from �gure 3.11, where it is possible to notice how the CaV activation variable obtained
through the simply�ed ODE system reproduces the same dependance on the voltage as the
CaV activation variable found in ([1]) for the model at �xed distance.
Figure 3.12 shows how the mBKi∞ combine to give the steady state for the global activation
variable of the potassium channel. This steady state, in blue in the plot, exhibits the same
dependance on the voltage as the mBK∞ in ([1]), except for the fact that it is a bit lower, as a
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consequence of the introduction of the CaV movement.
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Figure 3.10: CaV open probability as function of time. Comparison between methods: Monte Carlo
simulation of the 9-state Markov chain for the CaV channel, complete ODE system for
the Markov chain and simpli�ed ODE system obtained through the time scale analysis.
The plot reproduces the correspondent results in [1], validating the assumption that the
CaV di�usion and its dynamics between states are independent processes.
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Figure 3.11: Steady-state activation function for the CaV channel. Comparison between the results
found in [1] for the model with �xed distance between the CaV and the BK (blue) and our
results (green), obtained from the grid model with the three distances. The plot shows that
our equations reproduce the CaV dynamics correctly.
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Chapter 4

Conclusions

In chapter 2 we presented a Monte Carlo simulation of the interaction between the CaV channel
and the BK channel that included the CaV di�usion around the BK. This simulation enabled
us to obtain an estimate of the probability of complex formation, that appears to be quite
small. However, the most interesting, and non-obvious, result of this section is o�ered by the
study of the complex contribution to the BK open probability in time. We found that the BK
channel is actually activated by a CaV to which is bonded only about 50% of the times. This
result was not immediately predictable since the BK activation rate in presence of an open CaV
exhibits a steep decreased as soon as the CaV channel moves away from the distance typical
of the bond. But besides this, we know that, when the channels form the complex, the CaV
movement is limited by the bond with the BK, which holds the CaV close for a certain amount
of time. This residence time is ≈ 2 ms, that is two order or magnitude bigger than the time
step over which we simulate the channel dynamics between its states, meaning the bonded CaV
should have many opportunities to open and activate the BK in this conditions.
The Markov chain model devised in chapter 3 constitutes an extension of the one implemented
in ([1]). Thanks to the results obtained in chapter 2, we are able to de�ne the limits of
this model and to estimate the quality of the approximation we make considering a grid with
only three distances from the BK. The Monte Carlo simulation of the stochastic gating of
the channels shows good accordance with the complete system of ODEs, which describes the
state probabilities evolution over time. In particular it is evident that the introduction of the
CaV di�usion brings much complications in the ODE system, keeping us from obtaining simple
expressions for the activation variables that could o�er a more signi�cant insight on the role of
the di�erent processes. However, we were able to provide a reduced system of ODEs.
Even if the model shows aspects of consistency, we can not say if it brings an actual improvement
respect to the model for the complex, implemented with the CaV at �xed distance from the
BK, because we could not �nd appropriate experimental data to test the results. The next
natural step, if one would want to continue this work, would be certainly to devise an approach
to test these results.
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