
Università degli Studi di Padova

Dipartimento di Matematica “Tullio Levi-Civita”

Corso di Laurea Magistrale in Matematica

New Active-Set Frank-Wolfe Variants for

Saddle Point Problems

Relatore: Candidato:
Professor Francesco Rinaldi Francesco Bortolon

Numero di matricola:
1132466

15 Dicembre 2017 - A. A. 2016/2017

Contents

Summary 2

1 Saddle Point Problems 3
1.1 Motivations . 3
1.2 Problem Analysis . 5

1.2.1 Fritz-John Conditions 5
1.2.2 Constraint Qualifications 6
1.2.3 KKT Conditions . 8
1.2.4 KKT Conditions for Saddle Point Problems 9

1.3 Problem Methodologies . 11
1.3.1 Frank-Wolfe algorithm 11
1.3.2 Away-step Frank-Wolfe algorithm 15
1.3.3 Pairwise Frank-Wolfe algorithm 18
1.3.4 Other approaches . 20
1.3.5 Bilinear Saddle Point Problems on Domanins Given

by Linear Minimization Oracles 21

2 Results 23
2.1 Active set strategy . 23
2.2 Results . 27
2.3 Algorithm . 37
2.4 Convergence . 39

3 Numerical Experiments 43
3.1 Toy Problem and Python codes 43
3.2 Numerical Results . 52

4 Conclusions 67

Appendices 69

A Proofs of Convergence Theorems 71

Summary

Let us give a brief summary of the contents of this thesis.

First of all, in Chapter 1, we define the saddle point problem

min
x∈X

max
y∈Y

L (x, y) (1)

where L is a convex-concave function on the convex sets X and Y and
we underline how these problems are very widespread in many fields of
application (such as game theory, robust optimization, . . .)

Then, we give a brief description of the KKT necessary conditions for a
minimization problem and we extend them to our saddle point framework,
resulting in particular in the following condition

Theorem 0.1. Let X ⊆ Rn and Y ⊆ Rm be bounded closed, convex sets and
L : X × Y → R be a convex-concave continuously differentiable function.
Thus, a point (x∗, y∗) such that(

∇xL (x∗,y∗)
−∇yL (x∗,y∗)

)
= 0 (2)

is a saddle point for problem (1).

After that, we describe the Frank-Wolfe algorithm and its variants (away-
step FW and pairwise FW) for the generic problem of minimizing a convex
function over a convex set and we analyze the extensions of these algorithms
to the saddle point problems given by G. Gidel, T. Jebara and S. Lacoste-
Juliene, in their quite recent paper [7].

In Chapter 2, we describe the main ideas of the new active-set strategy
proposed by A. Cristofari, M. De Santis, S. Lucidi and F. Rinaldi in their
very recent paper [4]. Briefly, they address to the problem

min
x∈∆1

f(x) (3)

where f is a convex function and ∆1 denotes the unit simplex. In particular,
they are interested in the case when the solution of this problem is very
sparse. Thus, the aim of the active-set strategy is to estimate as soon as

1

2 CONTENTS

possible the zero components (called active components) of the solution,
in order to put them to zero and so reduce the feasible set dimension and
consequently the CPU-time of a FW algorithm on that set.

Then, we focus on problem (1), where X = ∆1
x and Y = ∆1

y and where
we assume that the saddle point is very sparse. Combining the active-
set strategy to the saddle point extension of Frank-Wolfe methodology, we
describe a new personal algorithm to solve this problem and we prove its
convergence under some strong assumptions.

Finally, in Chapter 3, we implement our algorithm in Python language
and we test it on the Toy Problem

L (x, y) =
µ

2
‖x− x∗‖22 + (x− x∗)>M(y − y∗)− µ

2
‖y − y∗‖22 (4)

in which (x∗, y∗) is the explicit saddle point that we consider very sparse.
We show that, as we expected, the proposed active-set strategy allows us
to significantly improve the convergence performance of the Frank-Wolfe
methodology to the saddle point.

Chapter 1

Saddle Point Problems

In this first chapter, we write an introduction about Saddle Point problems.
First, we give some reasons for this study with examples of applications in
different applied fields. Then, we give some fundamental definitions about
saddle point problems and we analyze some methodologies to solve them. In
particular, we describe in detail the methods deriving from extensions and
variants of the Frank-Wolfe algorithm. Finally, we show briefly some other
possible approaches.

1.1 Motivations

Saddle point problems arise in a wide variety of applications in many dif-
ferent fields and we may find many different approaches to their solution in
literature.

To highlight the vastness and variety of fields where these problems arise,
we show some examples.

Game Theory

Let us define a two-player non-cooperative game as a triple (X ,Y,L), where
X ,Y are the spaces of strategies for the two players respectively and L is a
real-valued pay-off function of x ∈ X and y ∈ Y. We recall that a strategy
is a Nash equilibrium if no player can do better by unilaterally changing his
or her strategy.

The optimal strategy in the Nash equilibrium sense, is given by the
solution of the following saddle point problem

min
x∈X

max
y∈Y

L (x, y) = max
y∈Y

min
x∈X

L (x, y) (1.1)

3

4 CHAPTER 1. SADDLE POINT PROBLEMS

Robust Optimization

The saddle point problems arise also in worst-case scenario framework.
These problems involve looking for a configuration that minimize an ob-
jective function under the hypothesis that the worst-case scenario occurs.

For example, consider the following engineering design problem. We have
to produce electronic parts within certain tolerances and we are interested
in minimizing the error in manufacture. More precisely, suppose that when
we specify a state x ∈ X , the process actually gives a state x + y for some
y ∈ Y. Now, assume that the function L : X × Y → R measures the re-
sulting distortion in the final product. Then, from the worst-case distorsion
minimization, we derive the following problem

min
x∈X

max
y∈Y

L (x, y) (1.2)

Chebyshev approximation

Given a function f : X ⊆ Rm → R and a function space Pn of functions
p : Rm → R, we define the Chebyshev approximation p̄ of f in the space Pn
as the solution of the following minimax problem

min
p∈Pn

max
x∈X

(f(x)− p(x))2 (1.3)

Standard Convex Programming

The standard convex programming problem can also be characterized in
terms of saddle point problem.

For example, consider the problem

min f(x) (1.4)

s.t. g(x) ≤ 0

where f, g are convex functions. We can define the Lagrangian function L
of the above convex problem as

L (x, λ) := f(x) + λg(x) (1.5)

Then, L is a convex-concave function on the feasible set X × Y, where

X = {x : g(x) ≤ 0} (1.6)

Y = {λ ≥ 0} (1.7)

Under some further hypothesis, by Karush-Kuhn-Tucker theory (that we
will develop later in our work), we have that solving (1.4) is equivalent to
find (x∗, λ∗), which is the saddle point of the problem

min
x∈X

max
λ∈Y

L (x, λ) (1.8)

1.2. PROBLEM ANALYSIS 5

1.2 Problem Analysis

First, let us give some formal definitions.

Definition 1.1 (Saddle Point Problem). Let L be a smooth (with L−Lipschitz
continuous gradient) convex-concave function, that is

• L (·, y) is convex for all y ∈ Y

• L (x, ·) is concave for all x ∈ X

Furthermore, let X × Y be a convex compact set.
Then, we define the saddle point problem as

min
x∈X

max
y∈Y

L (x, y) (1.9)

Moreover, any point (x∗, y∗) ∈ X × Y that solves (1.9) is said to be a
saddle point. Equivalently, (x∗, y∗) ∈ X × Y is a saddle point if and only if

L (x∗, y) ≤ L (x∗, y∗) ≤ L (x, y∗) (1.10)

for all x ∈ X and y ∈ Y.

The smoothness of the objective function L and its convex-concave be-
haviour on the compact feasible set X × Y guarantee that there exists at
least one saddle point solution for problem (1.9).

To find such a solution, we introduce some optimal conditions for con-
strained problems.

Let us consider the non-linear problem

min f(x) (1.11)

s.t. h(x) = 0

g(x) ≤ 0

1.2.1 Fritz-John Conditions

Fritz-John conditions (FJ) represent one of the first optimal conditions for
non-linear programming and were derived by Lagrangian multipliers theory.

Definition 1.2 (Lagrangian Function). We define the Lagrangian function
relative to the non-linear problem above as

L(x, λ0, λ, µ) = λ0f(x) +
m∑
i=1

λigi(x) +

p∑
i=1

µihi(x)

where we have considered λ = (λ1, . . . , λm) and µ = (µ1, . . . , µp). The
variables λ0, λ and µ are called generalized Lagrangian multipliers.

6 CHAPTER 1. SADDLE POINT PROBLEMS

Now, we are able to give the Fritz-John conditions.

Theorem 1.1 (Fritz-John Necessary Conditions). Let x∗ be the local min-
imum of the non-linear constrained problem (1.11) and suppose that the
functions f , g and h are continuously differentiable in some neighborhood of
the point x∗. Then, there exist multipliers λ0

∗ ∈ R, λ∗ ∈ Rm and µ∗ ∈ Rp
such that

(a) the following conditions hold

λ0
∗∇f(x∗) +

m∑
i=1

λ∗i∇gi(x∗) +

p∑
i=1

µ∗i∇hi(x∗) = 0

λ∗i gi(x
∗) = 0 i = 1, . . . ,m

(λ0
∗, λ∗) ≥ 0 (λ0

∗, λ∗, µ∗) 6= 0

g(x∗) ≤ 0 h(x∗) = 0

(b) in each neighborhood of x∗ there exists a point x such that

λ∗i gi(x) > 0 for all i such that λ∗i > 0

µ∗ihi(x) > 0 for all i such that µ∗i 6= 0

Remark 1.2. If we put ∇g = (∇g1 . . .∇gm) and ∇h = (∇h1 . . .∇hp) Fritz-
John Conditions can be formulated in the following matrix notation

λ0
∗∇f(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0

(λ∗)>g(x∗) = 0

(λ0
∗, λ∗) ≥ 0 (λ0

∗, λ∗, µ∗) 6= 0

g(x∗) ≤ 0 h(x∗) = 0

Remark 1.3. Moreover, if ∇xL(x, λ0, λ, µ) denotes the gradient of the La-
grangian function with respect to the variable x, Fritz-John Conditions can
be rewritten in the equivalent form

∇xL(x∗, λ0
∗, λ∗, µ∗) = 0

(λ∗)>g(x∗) = 0

(λ0
∗, λ∗) ≥ 0 (λ0

∗, λ∗, µ∗) 6= 0

g(x∗) ≤ 0 h(x∗) = 0

1.2.2 Constraint Qualifications

When we consider the Fritz-John first condition, the gradient of the objective
function is weighted with the coefficient λ0 ≥ 0.

1.2. PROBLEM ANALYSIS 7

Clearly, if λ0 = 0, the objective function has no role in the optimal-
ity conditions and this make them meaningless. For this reason, we are
interested in identifying when λ0 > 0.

The assumptions that we take over constraints to ensure λ0 > 0 are
called constraint qualification conditions.

To describe them, we need some definitions that extend the properties
of convexity in a local context.

Definition 1.3. Let x̄ ∈ Rm and let g be a function which is continuously
differentiable in a neighborhood B(x̄, ρ) of x̄. We say that

(i) g is convex in x̄ if g(x) ≥ g(x̄) +∇g(x̄)>(x− x̄) for all x ∈ B(x̄, ρ);

(ii) g is strictly convex if
g(x) > g(x̄) +∇g(x̄)>(x− x̄) for all x ∈ B(x̄, ρ), x 6= x̄

(iii) g is concave in x̄ if g(x) ≤ g(x̄) +∇g(x̄)>(x− x̄) for all x ∈ B(x̄, ρ);

(iv) g is strictly concave if
g(x) < g(x̄) +∇g(x̄)>(x− x̄) for all x ∈ B(x̄, ρ), x 6= x̄

In the following, we assume that x∗ is a point that satisfy the Fritz-John
conditions and we denote with I(x∗) the set of inequalities indexes that are
active in x∗, that is

I(x∗) = {i : gi(x
∗) = 0}

Now, we give four different conditions that ensure λ0 > 0.

(a) Linear independence constraint qualification

The gradients of the active inequality constraints and the gradients of the
equality constraints are linearly independent at x∗, that is the set

{∇hi(x∗), i = 1, . . . , p ∇gi(x∗), i ∈ I(x∗)}

is linear independent.

(b) Linearity and Concavity constraint qualification

The equality constraints are linear and the inequality active constraints are
concave at x∗.

(c) Mangasarian-Fromovitz Condition

The gradients of the equality constraints are linearly independent at x∗ and
there exists a vector d ∈ Rn such that ∇gi(x∗)>d < 0 for all active inequality
constraints and ∇hj(x∗)>d = 0 for all equality constraints.

8 CHAPTER 1. SADDLE POINT PROBLEMS

(d) Slater Condition

Suppose that we have only convex inequalities constraints. Then, there
exists a point x such that gi(x) < 0.

1.2.3 KKT Conditions

Provided that one of the above conditions hold, we get λ0 > 0. The Karush-
Kuhn-Tucker necessary conditions for optimality are derived from Fritz-John
ones simply dividing the first equation by λ0.

Theorem 1.4 (KKT Necessary Conditions). Let x∗ be the local minimum
of the non-linear constrained problem (1.11) and suppose that the functions
f , g and h are continuously differentiable in some neighborhood of the point
x∗.

Moreover, suppose that at least one of the four conditions (a), (b), (c),
(d) above is satisfied in x∗.

Then, there exist multipliers λ∗ ∈ Rm and µ∗ ∈ Rp such that

∇f(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0

g(x∗) ≤ 0 h(x∗) = 0

(λ∗)>g(x∗) = 0

λ∗ ≥ 0

Remark 1.5. Let L(x, λ, µ) = f(x) + λ>g(x) + µ>h(x) be the Lagrangian
function for the problem (1.11). Then, we get

∇xL(x, λ, µ) = ∇f(x) +∇g(x)λ+∇h(x)µ

Then, KKT conditions can be reformulated in this way:

∇xL(x∗, λ∗, µ∗) = 0

g(x∗) ≤ 0 h(x∗) = 0

(λ∗)>g(x∗) = 0

λ∗ ≥ 0

KKT conditions for optimality are only necessary, but under some fur-
ther hypothesis, they become also sufficient.

Theorem 1.6 (KKT Sufficient Conditions). Suppose that f and gi, i =
1, . . . ,m, are convex functions and that the equality constraints are linear,
that is h(x) = Ax − b. Moreover, suppose that f, g, h are continuously dif-
ferentiable in an open set that contains the feasible set.

1.2. PROBLEM ANALYSIS 9

Suppose that there exist multipliers λ∗ and µ∗ such that the following
conditions hold

∇xL(x∗, λ∗, µ∗) = 0

g(x∗) ≤ 0 h(x∗) = 0

(λ∗)>g(x∗) = 0

λ∗ ≥ 0

Thus, x∗ is a global constrained minimum.
Furthermore, if f is strictly convex, then x∗ is the unique solution of the

problem (1.11).

We refer to [8] for a more detailed study of KKT conditions and, in
particular, for the proofs of the above results.

1.2.4 KKT Conditions for Saddle Point Problems

Now, we extend the KKT conditions in the saddle point problems context.
For this analysis, we follow in particular the ideas in [15].

First, we need a couple of classical results (see [15] for the first one and
[16] for the second one).

Lemma 1.7. Let X ⊆ Rn and Y ⊆ Rm be bounded closed sets and
L : X × Y → R be a continuous function. Then, L has a saddle point on
X × Y if and only if

min
x∈X

max
y∈Y

L (x, y) = max
y∈Y

min
x∈X

L (x, y)

Theorem 1.8. Let X ⊆ Rn and Y ⊆ Rm be bounded closed sets and
L : X × Y → R be a convex-concave continuous function. Then

min
x∈X

max
y∈Y

L (x, y) = max
y∈Y

min
x∈X

L (x, y)

Under the assumption of convex-concavity we have that L has a min-
imum in the first variable x ∈ X and a maximum in the second variable
y ∈ Y, where X and Y are convex sets. This simple remark leads us to the
following sufficient condition for a saddle point solution.

Theorem 1.9. Let X ⊆ Rn and Y ⊆ Rm be bounded closed, convex sets and
L : X × Y → R be a convex-concave continuously differentiable function.
Thus, a point (x∗, y∗) such that(

∇xL (x∗,y∗)
−∇yL (x∗,y∗)

)
= 0 (1.12)

10 CHAPTER 1. SADDLE POINT PROBLEMS

is a saddle point for problem

min
x∈X

max
y∈Y

L (x, y)

To prove the theorem above, we need to recall some classical results (see
for example [1]).

Theorem 1.10. If X is a convex set and f : X → R is a convex function,
then a local minimum over X is also a global minimum of f over X .

Proposition 1.11. Let X be a convex set and f : X → R be a convex
function. If x∗ ∈ X is such that ∇f(x∗) = 0, x∗ is a local minimum for f in
X .

Proof. Now, let us prove Theorem 1.9. Let condition (1.12) holds.
First, from Lemma (1.7) and (1.8) we get that there exists a saddle point

and we can exchange the order of minimization and maximization at will.
Now, consider the problem

min
x∈X

L (x, y∗) (1.13)

The condition ∇xL (x∗, y∗) = 0 and the convexity of L (·, y∗) guarantee
that (x∗, y∗) is the solution of problem (1.13). In particular, it follows that

L (x∗, y∗) ≤ L (x, y∗) for all x ∈ X (1.14)

On the other hand, consider the following problem

max
y∈Y

L (x∗, y) = −min
y∈Y
−L (x∗, y) (1.15)

The condition −∇yL (x∗, y∗) = 0 and the convexity of −L (x∗, ·) guarantee
that (x∗, y∗) is the solution of problem (1.15). In particular, we get

L (x∗, y) ≤ L (x∗, y∗) for all y ∈ Y (1.16)

If we put (1.14) and (1.16) together, we get

L (x∗, y) ≤ L (x∗, y∗) ≤ L (x, y∗) for all x ∈ X , y ∈ Y (1.17)

that is (x∗, y∗) is a saddle point.

Now, consider the generic constrained min-max problem

min
x

max
y

L (x, y)

s.t. g1(x) = 0

h1(x) ≤ 0

g2(y) = 0

h2(y) ≤ 0

1.3. PROBLEM METHODOLOGIES 11

We can associate to this problem the following Lagrangian function

L(x, y, λ1, µ1, λ2, µ2) = L (x, y) + λ>1 g1(x) + µ>1 h1(x)− λ>2 g2(y)− µ>2 h2(y)

The KKT necessary conditions for optimality for this problem are the fol-
lowing:

∇xL(x∗, y∗, µ∗1, λ
∗
1, µ
∗
2, λ
∗
2) = 0 (1.18)

∇yL(x∗, y∗, µ∗1, λ
∗
1, µ
∗
2, λ
∗
2) = 0 (1.19)

h1(x∗) ≤ 0 h2(y) ≤ 0

(µ∗1)>h1(x∗) = 0 (µ∗2)>h2(y∗) = 0

µ∗1 ≥ 0 µ∗2 ≥ 0

g1(x∗) = 0 g2(y∗) = 0

where (1.18) is given by

∇xL (x∗, y∗) +∇g1(x∗)>λ∗1 +∇h1(x∗)>µ∗1 = 0

and (1.19) is given by

∇yL (x∗, y∗)−∇g2(y∗)>λ∗2 −∇h2(y∗)>µ∗2 = 0

In the next chapter, we describe how to solve this system in the case

X = ∆1
x and Y = ∆1

y (1.20)

where ∆1 denotes the unit simplex.

1.3 Problem Methodologies

In this section, we describe some methodologies for the study of saddle point
problems. In particular, we describe in detail the Frank Wolfe method and
its variants (away step and pairwise). In order not to weigh the reading,
we preferred to include most of the definitions and the results that prove
the convergence of the algorithms in the Appendix A. Finally, we briefly
describe some other possible approaches.

1.3.1 Frank-Wolfe algorithm

The Frank-Wolfe (FW) algorithm, also called conditional gradient method,
is a first-order method for smooth constrained optimization over a compact
set.

Consider the generic problem

min
x∈X

f(x) (1.21)

12 CHAPTER 1. SADDLE POINT PROBLEMS

where X is a convex compact set and f : X → R is a convex differentiable
function.

Now, we give a result that will be useful to understand the behaviour of
Frank-Wolfe algorithm.

Proposition 1.12. A point x∗ ∈ X is a local minimum for problem (1.21)
if and only if

∇f(x)>(x− x∗) ≥ 0 (1.22)

for all x ∈ X .

This proposition makes a fundamental relation between local minimum
and absence of descent directions.

The FW algorithm, given a feasible point xk, looks for a descent direction
computing

min
x∈X
∇f(xk)>(x− xk) (1.23)

which always has a solution x̃k since we minimize a continuous function over
the compact set X .

Clearly, ∇f(xk)>(x̃k − xk) can not be positive, since we have

∇f(xk)>(x− xk) ≤ ∇f(xk)>(xk − xk) = 0 (1.24)

for all x ∈ X .

Thus, we may have two possible cases

• if we have

∇f(xk)>(x̃k − xk) = 0 (1.25)

then

0 = ∇f(xk)>(x̃k − xk) ≤ ∇f(xk)>(x− xk) (1.26)

for all x ∈ X . Hence, by Proposition (1.12), xk is a local minimum.

• if we have

∇f(xk)>(x̃k − xk) < 0 (1.27)

then we can choose (see Figure 1.1) the descent direction

dkFW = x̃k − xk (1.28)

and we can find a new feasible point

xk+1 = xk + γkdkFW (1.29)

such that

f(xk+1) < f(xk) (1.30)

1.3. PROBLEM METHODOLOGIES 13

sk x∗

x0

xk
xk+1

Figure 1.1: FW direction
Hence, each FW iteration consists of two parts: a first one in which we solve
the simpler problem of linearizing the objective function near the current
approximation of the solution and finding a descent direction; a second phase
in which we find a new approximation of the solution of the original problem
along the descent direction.
Clearly, FW methodology is useful when solving the linearized problem
(1.23) is much easier then solving the original problem (1.21).

Algorithm 1 Frank-Wolfe algorithm

1: Let x0 ∈ X
2: for k = 0, . . . , T do
3: Compute rk = ∇f(xk)
4: Compute sk := arg mins∈X < s, rk >
5: Compute gkFW :=< xk − sk, rk >
6: if gkFW ≤ ε then return xk

7: end if
8: Let γk = 2

2+k or do line-search

9: Update xk+1 := (1− γk)xk + γksk

10: end for

Finally, we recall the main result about the convergence of Algorithm 1.

Proposition 1.13. Consider the problem (1.21) where f ∈ C1(Rn) and

14 CHAPTER 1. SADDLE POINT PROBLEMS

X ∈ Rn is a compact and convex subset. Assume that {xk}k is a sequence
generated by Algorithm 1 with a line search that satisfies

(i) xk+1 ∈ X

(ii) f(xk+1) < f(xk)

(iii) limk→∞∇f(xk)>dk = 0

Hence, we get one of the two following cases

• there exists an index T such that xT is a stationary point (and so a
minimum);

• the sequence {xk}k is infinity and each of its limit points is stationary.

In [7], Frank-Wolfe algorithm is extended to deal with saddle point problem
(1.9).
If we assume that the two sets X and Y are convex, we can extend the Al-
gorithm 1 by simultaneously taking a FW update on both convex functions
L (·, yk) and −L (xk, ·).

Algorithm 2 Saddle Point Frank-Wolfe algorithm

1: Let z0 = (x0, y0) ∈ X × Y
2: for k = 0, . . . , T do

3: Compute rk =
(
∇xL (xk,yk)

−∇yL (xk,yk)

)
4: Compute sk := arg minz∈X×Y < z, rk >
5: Compute gk :=< zk − sk, rk >
6: if gk ≤ ε then return zk

7: end if
8: Let γk = 2

2+k

9: Update zk+1 := (1− γk)zk + γsk

10: end for

In [7], it is proved that Algorithm 2 converges to the saddle point solution
of problem (1.9) under the following assumptions:

• X and Y are convex sets

• L is strongly convex-concave

• ∇L is L-Lipschitz continuous

• L has a finite curvature constant CL

• L has a positive interior strong convex-concavity constant µint
L

• the saddle point (x∗, y∗) lies in the relative interior of the feasible set.

We refer to the Appendix for the details on the convergence of Algorithm 2.

1.3. PROBLEM METHODOLOGIES 15

1.3.2 Away-step Frank-Wolfe algorithm

It is well known that Frank-Wolfe algorithm may take a long time to converge
when the solution lies on the boundary of the feasible set. The reason for
this behaviour is due to the zig-zagging phenomenon that occurs when the
algorithm is approaching the solution.
The away-step Frank-Wolfe algorithm was born to avoid this situation.
First of all, let us give some definitions.

Definition 1.4. Let X = conv(A) be the convex hull of a finite set A .
Then, a feasible point x ∈ X can be represented as

x =
∑
v∈S

αvv (1.31)

where S is the set of all the vertices in A such that αv > 0.

Definition 1.5. Given a feasible point xk ∈ X = conv(A), we shall com-
pute the atom vk ∈ Sk that maximizes the potential descent, given by

gkA :=< −∇f(xk), xk − vk > (1.32)

Hence, we can compute vk as

vk ∈ arg max
v∈Sk

< ∇f(xk), v > (1.33)

Then, we define the away direction as

dkA := xk − vk (1.34)

Intuitively, the away direction allows to move away from a bad atom that
keeps the gradient far from zero.
The away-step Frank-Wolfe variant chooses at each iteration if it is more use-
ful to select the FW standerd direction or the away direction. In particular,
we compute gkA and

gkFW =< −∇f(xk), dFW > (1.35)

and then we follow this scheme:

• if gkFW > gkA, choose the FW direction

• else, choose the away direction (see Figure 1.2).

16 CHAPTER 1. SADDLE POINT PROBLEMS

sk

vk

x∗

x0

xk

xk+1

Figure 1.2: AFW direction

Algorithm 3 Away-step Frank-Wolfe algorithm

1: Let x0 ∈ A , S0 := x0

2: for k = 0, . . . , T do
3: Let sk = arg mins∈A < ∇f(xk), s > and dFW := sk − xk
4: Let vk ∈ arg maxv∈Sk < ∇f(xk), v > and dA := xk − vk . (the away

direction)

5: if gkFW :=
〈
−∇f(xk), dFW

〉
≤ ε then return zk

6: end if
7: if

〈
−∇f(xk), dkFW

〉
≥
〈
−∇f(xk), dkA

〉
then dk := dkFW . (choose

the FW direction)
8: else: dk := dkA . (choose the away-step direction)
9: end if

10: Choose γk

11: Update xk+1 := xk + γkdk

12: Update Sk+1 := {v ∈ A s.t. αk+1
v > 0}

13: end for

In [13], it has been proved that Algorithm 3 is still convergent, when the
objective function is strongly convex.

1.3. PROBLEM METHODOLOGIES 17

Remark 1.14. The choice of γk at step 10 of Algorithm 3 has to guarantee
the feasibility of the new point xk+1. For this reason, we need to choose
γk ∈ (o, γmax], where γmax is the greatest value that keeps xk + γmaxd

k ∈ X .
In particular, we have

• γmax = 1 if dk = dkFW

• γmax =
α
vk

1−α
vk

if dk = dkA

In [7], the away-step Frank-Wolfe variant is also extended to deal with saddle
point problem (1.9) when the feasible set is given by

X × Y := conv(A)× conv(B), (1.36)

where A and B are two finite sets.

Algorithm 4 Saddle Point away-step Frank-Wolfe algorithm

1: Let z0 = (x0, y0) ∈ A ×B, S0
x := x0 and S0

y := y0

2: for k = 0, . . . , T do

3: Compute rk =
(
∇xL (xk,yk)

−∇yL (xk,yk)

)
4: Let sk := arg mins∈A×B < rk, s > and dFW := sk − zk
5: Let vk ∈ arg maxv=(vx,vy)∈Skx×Sky < rk, v > and dA := zk − vk . (the

away direction)

6: if gkFW :=
〈
− rk, dFW

〉
≤ ε then return zk

7: end if
8: if

〈
− rk, dkFW

〉
≥
〈
− rk, dkA

〉
then dk := dkFW . (choose the FW

direction)
9: else: dk := dkA . (choose the away-step direction)

10: end if
11: Put γk = max{γmax,

2
2+k}

12: Update zk+1 := zk + γkdk

13: Update Sk+1
x := {vx ∈ A s.t. αk+1

vx > 0} and
14: Sk+1

y := {vy ∈ B s.t. αk+1
vy > 0}

15: end for

Remark 1.15. Also in this context, we have to choose γmax in such a way
that zk+1 stays feasible. In order to keep this property, we need to choose

• γmax = 1 if dk := dkFW

• γmax = min{ αvx
1−αvx

,
αvy

1−αvy
} if dk := dkA

As for the standard case, this different approach reduces the zig-zagging
phenomenon.
Moreover, it has been proved ([7]) that Algorithm 4 converges to the saddle
point solution of problem (1.9), provided that

18 CHAPTER 1. SADDLE POINT PROBLEMS

• X × Y := conv(A)× conv(B), that is X and Y are polytopes

• L is strongly convex-concave

• ∇L is L-Lipschitz continuous

• L has a finite curvature constant CL

• L has a positive geometric strong convex-concavity constant µAL

where the quantity µAL has a quite complicated definition, but gives in this
polytopes context the same informations that the interior strong convex-
concavity constant described in Appendix A gives for the case in which the
saddle point is in the relative interior of the feasible set.
We refer to [7] for formal definitions and proofs.

1.3.3 Pairwise Frank-Wolfe algorithm

The last variant of Frank-Wolfe algorithm that we analyze is the so called
pairwise Frank-Wolfe variant.
As in the away-step FW variant, also in this case we consider the problem
of minimizing a convex function over a polytope.
The main idea behind this different approach is to only move weight mass
between two atoms at each step. In particular, we move mass from the bad
away atom to the good Frank-Wolfe atom.
More precisely, let xk be the feasible point that we have found in the last
iteration. Then, in the same way we do in Algorithm 3, we compute the
Frank-Wolfe atom

sk ∈ arg min
s∈A

< ∇f(xk), s > (1.37)

and the away atom

vk ∈ arg max
v∈Sk

< ∇f(xk), v > (1.38)

Hence, we define the Pairwise direction (see Figure 1.3) as

dkPFW := sk − vk (1.39)

e then we take
xk+1 = xk + γkdkPFW (1.40)

In practise, this algorithm seems to perform quite well, often outperforming
away-step FW, especially in the important case of sparse solutions.
Indeed, while Algorithm 3 moves the mass onto all other active atoms (atoms
v such that αv > 0 in representation (1.31)) and might require more correc-
tions later, the PFW step only moves the mass onto one direction (the FW
one).

1.3. PROBLEM METHODOLOGIES 19

sk

vk

x∗

x0

xk−1

xk

Figure 1.3: PFW direction

Algorithm 5 Pairwise Frank-Wolfe algorithm

1: Let x0 ∈ A and S0
x := x0

2: for k = 0, . . . , T do
3: Let sk := arg minA < ∇f(xk), s > and dFW := sk − xk
4: Let vk ∈ arg maxv∈Sk < ∇f(xk), v >

5: if gkFW :=
〈
−∇f(xk), dFW

〉
≤ ε then return xk

6: end if
7: Let dk := dkPFW := sk − vk
8: Choose γk

9: Update xk+1 := xk + γkdk

10: Update Sk+1 := {v ∈ A s.t. αk+1
v > 0}

11: end for

Remark 1.16. In step 8 of Algorithm 5, we have to choose γk ∈ (0, γmax]
where

γmax = αv (1.41)

is the largest value that keeps xk + γmaxd
k
PFW still feasible.

20 CHAPTER 1. SADDLE POINT PROBLEMS

Also in this case, in [7] is given an extension of this algorithm to solve the
saddle point-problem (1.9).

Algorithm 6 Saddle Point pairwise Frank-Wolfe algorithm

1: Let z0 = (x0, y0) ∈ A ×B, S0
x := x0 and S0

y := y0

2: for k = 0, . . . , T do

3: Compute rk =
(
∇xL (xk,yk)

−∇yL (xk,yk)

)
4: Let sk := arg mins∈A×B < rk, s > and dFW := sk − zk
5: Let vk ∈ arg maxv=(vx,vy)∈Skx×Sky < rk, v >

6: if gkFW :=
〈
− rk, dFW

〉
≤ ε then return zk

7: end if
8: Let dk := dkPFW := sk − vk
9: Choose γk

10: Update zk+1 := zk + γkdk

11: Update Sk+1
x := {vx ∈ A s.t. αk+1

vx > 0} and Sk+1
y := {vy ∈

B s.t. αk+1
vy > 0}

12: end for

Now, γk has to be chosen in the interval (0, γmax], where

γmax := min{αvx , αvy} (1.42)

1.3.4 Other approaches

For completeness, we also describe some other approaches that are used to
study the saddle point problem (1.9).

Extragradient Method

First, this problem can be considered as a special case of the more general
variational inequality problem (VIP), that is the problem of finding

z∗ ∈ Z such that < r(z∗), z − z∗ > ≥ 0 for all z ∈ Z (1.43)

where r is a Lipschitz mapping from Rp to itself and Z ⊆ Rp.
Clearly, if we take Z = X ×Y and r(z) =< ∇xL (z),−∇yL (z) >, then VIP
reduces to the equivalent optimality conditions for the saddle point problem
(1.9).

Definition 1.6. Let PZ(·) denote the orthogonal projection from Rp into
Z, that is

PZ(w) := arg min{‖z − w‖ such that z ∈ Z}, w ∈ Rp (1.44)

1.3. PROBLEM METHODOLOGIES 21

Then, the extragradient algorithm generates the following iteration:

z̃k = PZ(zk − αr(zk)) (1.45)

zk+1 = PZ(zk − αr(z̃k)) (1.46)

where α > 0 is a fixed constant. Briefly, taking the projection two times
makes this algorithm more efficient and it can be proved that such scheme
is convergent if r is monotone and Lipschitz continuous on Z, provided the
number α is sufficiently small.
However, this algorithm can be interesting only if the computation of the
projection into Z is rather simple.
We refer to [17] for more details.

Hammond’s Generalized Frank-Wolfe Method

J.H. Hammond, in her PhD Thesis ([9]), describes a generalized Frank-Wolfe
method to solve the following variational inequality problem directly.
Consider the problem of finding x∗ ∈ X satisfying

(x− x∗)>f(x∗) for all x ∈ X (1.47)

where f : X ⊆ Rn → Rn is continuously differentiable and strictly monotone
and X is a bounded polyhedron.
Then, Hammond proves that if f is a gradient mapping, that is
f(x) = ∇F (x)> for some strictly convex functional F , the following scheme
converges to the solution of problem (1.47).

Algorithm 7 Hammond’s Generalized Frank-Wolfe algorithm

1: Let x0 ∈ X
2: for k = 0, . . . , T do
3: Compute vk := arg minx∈X x

>f(xk)
4: if x>f(xk) = v>f(xk) then return xk

5: end if
6: Find ωk ∈ [0, 1] s.t.
7: [(1− ω)xk + ωvk]− [(1− ωk)xk + ωkvk]>f [(1− ωk)xk + ωkvk] ≥ 0
8: for every ω ∈ [0, 1]
9: Update xk+1 := (1− ωk)xk + ωkvk

10: end for

1.3.5 Bilinear Saddle Point Problems on Domanins Given by
Linear Minimization Oracles

In [3] and [11], a further approach is proposed. They study convex-concave
saddle point problems on a convex domain X represented by Linear Mini-
mization Oracle(LMO), that is a function that allows to minimize over X any

22 CHAPTER 1. SADDLE POINT PROBLEMS

linear function. The property of LMO-representability of a convex domain
is a weaker assumption than proximal friendliness, that is the possibility
of minimize over such domain any linear perturbation of a strongly convex
function, that fits very well with first order algorithms, such as FW one.
Their method consists in using Fenchel representation of the objective func-
tion, in order to pass from the original problem to its special dual. Indeed,
in many important cases, such a dual problem has a proximal friendly do-
main. Thus, we can solve the dual problem and then build from its solution
an approximate solution for the original problem.
In particular, they deal with the convex-concave saddle point problem

min
w∈W

max
z∈Z

ψ(w, z) (1.48)

where ψ : W × Z → R,

ψ(w, z) =< w, p > + < z, q > + < z, Sw > (1.49)

is a bilinear function over the two convex compact sets W and Z.

Chapter 2

Results

In this chapter, we describe the theoretical results of our work.
In the first section, we describe the active set strategy proposed in [4], that
is the approach of estimating the zero components of the solution of the
problem

min
x∈∆1

f(x) (2.1)

where f : Rn → R is a continuously differentiable convex function with
Lipschitz continuous gradient over the unit simplex ∆1 ⊆ Rn.
Then, we focus on the saddle point problem context.
In the second section, we combine the theoretical results related to saddle
point problems with the ones of active set strategy. In particular, we define
a specific active-set strategy for the saddle point problems over two simplices
and we prove that under some assumptions this strategy allows us to get
closer to the saddle point.
In the third section, we describe our algorithm.
Finally, in the fourth section, we give the proof that our algorithm converges
to the saddle point of our problem.

2.1 Active set strategy

In many applications, the solution of our problem is usually very sparse
(with a great number of zero components). If we are able to predict in few
steps which of the components will be zero at the solution, we can reduce the
dimension of the problem and get significant savings in terms of CPU-TIME.
Moreover, we focus our study on problems that have unit simplices as fea-
sible sets because they can model many real-world situations deriving from
different fields. For example, every optimization problem over a polytope
can be traced back to this context. More precisely, consider the problem

min
x∈P

f(x) (2.2)

23

24 CHAPTER 2. RESULTS

where P is a polytope. Clearly, each point x ∈ P can be written as a
convex combination of its vertices v1, . . . , vm. Let V = [v1, . . . vm] be the
matrix that has the vertices of P in its columns. Hence, problem (2.2) can
be reformulated in the equivalent form

min
e>y=1,y≥0

f(V y) (2.3)

where each variable yi represents the weight of the i-th vertex in the convex
combination.
After this introductory comment, we describe the results presented in [4]
and then we extend the methodology to the saddle point problems context.
We consider the minimization of a smooth function over the unit simplex:

min f(x) (2.4)

s.t. e>x = 1

x ≥ 0

where e = (1, . . . , 1)>, f : Rm → R is continuously differentiable and its
gradient ∇f(x) is Lipschitz continuous over the simplex.
By the KKT-conditions described above, we get this result:

Theorem 2.1. A feasible point x∗ of problem (2.4) is a stationary point if
and only if it satisfies the following first order necessary optimality condi-
tions:

∇f(x∗)− λ∗e− µ∗ = 0

(µ∗)>x∗ = 0

µ∗ ≥ 0

where λ∗ ∈ R and µ∗ ∈ Rn are the KKT multipliers.

We shall now define the active set and its approximations.

Definition 2.1. Let x∗ ∈ Rn be a stationary point of problem (2.4). We
define the active set as the subset of zero components of this stationary
point, that is

Ā(x∗) = {i ∈ {1, . . . , n} : x∗i = 0} (2.5)

Moreover, we define the nonactive set as the complementary of the active
set, that is

N̄(x∗) = {1, . . . , n} \ Ā(x∗) = {i ∈ {1, . . . , n} : x∗i > 0} (2.6)

By simple computations, we obtain these equations for the KKT multipliers

λ∗ = ∇f(x∗)>x∗ (2.7)

2.1. ACTIVE SET STRATEGY 25

µ∗ = ∇f(x∗)− λ∗e (2.8)

which suggest to take the following as multiplier functions

λ(x) = ∇f(x)>x (2.9)

µi(x) = ∇if(x)− λ(x) i = 1, . . . , n (2.10)

From this functions, we define the estimates of the active and non-active
sets.

Definition 2.2. Let x ∈ Rn be a feasible point of problem (2.4). We define
the active-set estimate A(x) and the nonactive-set estimate N(x) as

A(x) := {i : xi ≤ εµi(x)} = {i : xi ≤ ε∇f(x)>(ei − x)} (2.11)

N(x) := {i : xi > εµi(x)} = {i : xi > ε∇f(x)>(ei − x)} (2.12)

where ε > 0.

The nomenclature derives from the following result.

Theorem 2.2. If (x∗, λ∗, µ∗) satisfies KKT conditions for problem (2.4),
then there exists a neighborhood B(x∗, ρ) such that, for each x in this neigh-
borhood, we have

{i : x∗i = 0, µi(x
∗) > 0} ⊆ A(x) ⊆ Ā(x∗) (2.13)

Furthermore, if strict complementary holds, then

{i : x∗i = 0, µi(x
∗) > 0} = A(x) = Ā(x∗) (2.14)

for each x ∈ B(x∗, ρ).

Proposition 2.3. Let J(x) be the set

J(x) =

{
j : j ∈ arg min

i=1,...,n
{∇if(x)}

}
(2.15)

Let x ∈ Rn be a feasible point of problem (2.4). Then

N(x) ∩ J(x) 6= ∅ (2.16)

In the following, we need to take an assumption on the constant ε.

Assumption 2.4. Assume that parameter ε appearing in the estimates
(2.11) - (2.12) satisfies the following condition

0 < ε <
1

2Ln
(2.17)

where L is the Lipschitz constant of ∇f(x) over the unit simplex.

26 CHAPTER 2. RESULTS

Given a feasible point, the active set strategy consists in putting to zero the
components in the active set, in order to reduce the value of the objective
function. To do this operation, we need to keep the feasibility, so we have
to move the positive weight from the active components to some other com-
ponent. The following proposition suggests how to choose an appropriate
index.

Proposition 2.5. Let Assumption (2.4) hold. Given a feasible point x of
problem (2.4), let j ∈ N(x) ∩ J(x) and I = {1, . . . , n} \ {j}. Let Â(x) be a
set of indices such that

Â(x) ⊂ A(x) (2.18)

Let x̃ be the feasible point defined as follows:

x̃Â(x) = 0 (2.19)

x̃I\Â(x) = xI\Â(x) (2.20)

x̃j = xj +
∑

h∈Â(x)

xh (2.21)

Then,
f(x̃)− f(x) ≤ −L‖x̃− x‖ (2.22)

Now, we are ready to describe the Active-Set algorithm for problem (2.4)

Algorithm 8 Active-Set algorithm for minimization over the simplex

1: Let x(0) be a feasible point
2: for k = 0, 1, . . . do
3: if xk is a stationary point then return
4: end if
5: Compute Ak := A(xk) and Nk := N(xk)
6: Compute Jk := J(xk), choose j ∈ Nk∩Jk and define Ñk = Nk \{j}
7: Set x̃k

Ak
= 0, x̃k

Ñk = xk
Ñk and x̃kj = xkj +

∑
h∈Ak x

k
h

8: Set dk
Ak

= 0

9: Compute a feasible direction dk
Nk in x̃k and a maximum stepsize

αkmax
10: if ∇f(x̃k)>dk < 0 then Compute a stepsize αk ∈ (0, αkmax] by means

of a line search
11: else Set αk = 0
12: end if
13: Set xk+1 = x̃k + αkdk

14: end for

In particular, as described above, we can clearly divide each iteration of the
algorithm in two phases:

2.2. RESULTS 27

• in steps 5-8, the active-set strategy reduces the feasible region and the
objective function

• in steps 9-13, we find a descent direction in the reduced space and we
update the current feasible point

2.2 Results

Now, we can move on to the saddle point context.
First of all, we specify the KKT Conditions described in Chapter 1 in the
case in which the feasible set is given by

X = ∆1
x ⊆ Rn (2.23)

Y = ∆1
y ⊆ Rm (2.24)

where ∆1 denote the unit simplex. To this end, we have to choose the
following constraints

g1(x) = −e>x+ 1 (2.25)

h1(x) = −x (2.26)

g2(y) = −e>y + 1 (2.27)

h2(y) = −y (2.28)

and we get that the KKT conditions can be formulated as

∇xL (x∗, y∗)− λ∗1e− µ∗1 = 0 (2.29)

∇yL (x∗, y∗) + λ∗2e+ µ∗2 = 0 (2.30)

−x∗ ≤ 0 − y∗ ≤ 0

(µ∗1)>(−x∗) = 0 (µ∗2)>(−y∗) = 0 (2.31)

µ∗1 ≥ 0 µ∗2 ≥ 0

−e>x∗ + 1 = 0 − e>y∗ + 1 = 0 (2.32)

From (2.29) and (2.30) we get

µ∗1 = ∇xL (x∗, y∗)− λ∗1e (2.33)

µ∗2 = −∇yL (x∗, y∗)− λ∗2e (2.34)

If we multiply the first equation by x∗ and the second equation by y∗, using
(2.31), we obtain

0 = (µ∗1)>x∗ = ∇xL (x∗, y∗)>x∗ − λ∗1e>x∗ (2.35)

0 = (µ∗2)>y∗ = −∇yL (x∗, y∗)>y∗ − λ∗2e>y∗ (2.36)

28 CHAPTER 2. RESULTS

Then, using (2.32) yields

λ∗1 = ∇xL (x∗, y∗)>x∗ (2.37)

λ∗2 = −∇yL (x∗, y∗)>y∗ (2.38)

Hence, we introduce the following continuous multiplier functions

λ1(x, y) =∇xL (x, y)>x (2.39)

λ2(x, y) =−∇yL (x, y)>y (2.40)

µ1,i(x, y) =∇x,iL (x, y)− λ1(x, y) i = 1, . . . , n (2.41)

µ2,j(x, y) =−∇y,jL (x, y)− λ2(x, y) j = 1. . . . ,m (2.42)

Definition 2.3 (Active-Set and Non-Active-Set). We define the active-sets
as the subsets of indices that refer to non-zero components of the saddle
point solution (x∗, y∗), that are

Ā1((x∗, y∗)) := {i : x∗i = 0} (2.43)

Ā2((x∗, y∗)) := {j : y∗j = 0} (2.44)

Moreover, we define the non-active-sets as the complementary sets of the
active-sets, that are

N̄1((x∗, y∗)) := {1, . . . , n} \ Ā1((x∗, y∗)) (2.45)

N̄2((x∗, y∗)) := {1, . . . ,m} \ Ā2((x∗, y∗)) (2.46)

Definition 2.4 (Active-Set and Non-Active-Set Estimates). Let (x, y) be a
feasible point. We define the active-sets estimates at (x, y) as

A1((x, y)) := {i : xi ≤ εµ1,i(x, y)} (2.47)

A2((x, y)) := {j : yj ≤ εµ2,j(x, y)} (2.48)

and the non-active-sets estimates as their complementary sets

N1((x, y)) := {1, . . . , n} \A1((x, y)) (2.49)

N2((x, y)) := {1, . . . ,m} \A2((x, y)) (2.50)

where ε > 0.

Definition 2.5. We need to define also these four subsets:

I0 := {i ∈ {1, . . . , n} : x∗i = 0} (2.51)

J0 := {j ∈ {1, . . . ,m} : y∗j = 0} (2.52)

I+ := {i ∈ I0 : µ∗1,i > 0} (2.53)

J+ := {j ∈ J0 : µ∗2,j > 0} (2.54)

2.2. RESULTS 29

Definition 2.6. We say that strict complementary holds at (x∗, y∗) if we
have the following equalities

I0 = I+ (2.55)

J0 = J+ (2.56)

that is

x∗i = 0 if and only if µ∗1,i > 0 (2.57)

y∗j = 0 if and only if µ∗2,j > 0 (2.58)

Then, we can state and prove the following theorem.

Theorem 2.6. If (x∗, y∗, λ∗1, λ
∗
2, µ
∗
1, µ
∗
2) satisfies the KKT conditions for the

problem

min
x∈X

max
y∈Y

L (x, y) (2.59)

then there exists a neighborhood B((x∗, y∗), ρ) such that for all (x, y) ∈
B((x∗, y∗), ρ) we have

I+ ⊆ A1((x, y)) ⊆ I0 (2.60)

J+ ⊆ A2((x, y)) ⊆ J0 (2.61)

Moreover, if strict complementary holds at (x∗, y∗) we have that

I+ = A1((x, y)) = I0 (2.62)

J+ = A2((x, y)) = J0 (2.63)

for all (x, y) ∈ B((x∗, y∗), ρ)

Proof. • First, let us prove (2.60).

Let i ∈ I+, then x∗i = 0 and µ∗1,i > 0. Now, since µ∗1 = µ1(x∗, y∗), we
have x∗i ≤ εµ1,i(x

∗, y∗) and by the continuity of the multiplier functions
we get that i ∈ A1((x, y)) for (x, y) ∈ B((x∗, y∗), ρ) for some ρ > 0.
Then, we get the left inclusion.

To prove the right inclusion, let us show that if i /∈ I0 then i /∈
A1((x, y)) for any ρ > 0. Now, if i /∈ I0, then x∗i 6= 0. Since x∗ is
feasible, we must have µ∗1,i = µ1,i(x

∗, y∗) = 0. Then, x∗i > µ1,i(x
∗, y∗)

and so i /∈ A1(x∗, y∗).

• Now, let us prove (2.61).

Let j ∈ J+, then y∗j = 0 and µ∗2,j > 0. Now, since µ∗2 = µ2(x∗, y∗),
we have y∗j ≤ εµ2,j(x

∗, y∗) and by the continuity of the multiplier
functions we get that j ∈ A2((x, y)) for (x, y) ∈ B((x∗, y∗), ρ) for some
ρ > 0. Then, we get the left inclusion.

30 CHAPTER 2. RESULTS

To prove the right inclusion, let us show that if j /∈ J0 then j /∈
A2((x, y)) for any ρ > 0. Now, if j /∈ J0, then y∗j 6= 0. Since y∗ is
feasible, we must have µ∗2,j = µ2,j(x

∗, y∗) = 0. Then, y∗j > µ2,j(x
∗, y∗)

and so j /∈ A2(x∗, y∗).

• If strict complementary holds, we can prove (2.60) as above. Then,
(2.62) follows by definition of strict complementary property, that is
I0 = I+.

• Finally, if strict complementary holds, (2.61) can still be proved as
above and (2.63) still follows from definition of strict complementary
property, that is J0 = J+.

Before analyzing the algorithm that exploits the active-set estimate, we give
some definitions and a proposition that will be useful later.

Definition 2.7. Given a feasible point (x, y) we define the following two
subsets

H1((x, y)) :=

{
i ∈ {1, . . . , n} : i ∈ arg min{∇x,iL (x, y)}

}
(2.64)

H2((x, y)) :=

{
j ∈ {1, . . . ,m} : j ∈ arg max{∇y,jL (x, y)}

}
(2.65)

Proposition 2.7. Let (x, y) be a feasible point for the problem

min
x∈X

max
y∈Y

L (x, y) (2.66)

Then,
N1((x, y)) ∩H1((x, y)) 6= ∅ (2.67)

and
N2((x, y)) ∩H2((x, y)) 6= ∅ (2.68)

Proof. • First, let us prove (2.67). We consider two possible cases:

(i) If |H1((x, y))| = n, for every i ∈H1((x, y)) we get

∇xL (x, y)>x = ∇x,iL (x, y)e>x = ∇x,iL (x, y) (2.69)

Since x is feasible (e>x = 1, x ≥ 0), there exists ī such that
xı̄ > 0. Then,

µ1,̄ı(x, y) = ∇x,̄ıL (x, y)− λ1(x, y) (2.70)

= ∇x,̄ıL (x, y)−∇xL (x, y)>x (2.71)

= ∇x,̄ıL (x, y)−∇x,̄ıL (x, y) (2.72)

= 0 < xı̄ (2.73)

Hence, from xı̄ > 0 and µ1,̄ı(x, y) = 0, we get xı̄ > εµ1,̄ı(x, y),
which yields to ī ∈ N1((x, y)) ∩H1((x, y)).

2.2. RESULTS 31

(ii) If |H1((x, y))| < n we may have two further cases:

(ii-a) Assume that for each couple h ∈ ({1, . . . , n} such that

∇x,hL (x, y) > ∇x,iL (x, y) for i ∈H1((x, y)) (2.74)

we have xh = 0. In this case, we have∑
i∈H1((x,y))

xi = 1 (2.75)

and (2.69) still hold. Then, as above, we can choose ī ∈
H1((x, y)) such that µ1,̄ı(x, y) = 0, xı̄ > 0 and we get ī ∈
N1((x, y)) ∩H1((x, y)).

(ii-b) Suppose now that there exists h ∈ {1, . . . , n} such that

∇x,hL (x, y) > ∇x,iL (x, y) and xh > 0 (2.76)

where i ∈ H1((x, y)). Then, we can choose and index ī ∈
H1((x, y)) such that xı̄ ≥ 0 and we get

µ1,̄ı(x, y) = ∇x,̄ıL (x, y)− λ1(x, y) (2.77)

= ∇x,̄ıL (x, y)−∇xL (x, y)>x (2.78)

< ∇x,̄ıL (x, y)−∇x,̄ıL (x, y)e>x (2.79)

= ∇x,̄ıL (x, y)−∇x,̄ıL (x, y) = 0 (2.80)

so xī > εµ1,̄ı(x, y) In this way, we have ī ∈ N1((x, y)) ∩
H1((x, y)).

• In a similar way, we prove (2.68).

(i) If |H2((x, y))| = m, for every j ∈H2((x, y)) we get

∇yL (x, y)>y = ∇y,jL (x, y)e>y = ∇y,jL (x, y) (2.81)

Since y is feasible (e>y = 1, y ≥ 0), there exists j̄ such that
y̄ > 0. Then,

µ2,̄(x, y) = −∇y,̄L (x, y)− λ2(x, y) (2.82)

= −∇y,̄ıL (x, y) +∇yL (x, y)>y (2.83)

= −∇y,̄L (x, y) +∇y,̄L (x, y) (2.84)

= 0 < y̄ (2.85)

Hence, from y̄ > 0 and µ2,̄(x, y) = 0, we get y̄ > εµ2,̄(x, y),
which yields to j̄ ∈ N2((x, y)) ∩H2((x, y)).

(ii) If |H2((x, y))| < m we may have two further cases:

32 CHAPTER 2. RESULTS

(ii-a) Assume that for each couple k ∈ ({1, . . . ,m} such that

∇y,kL (x, y) < ∇y,jL (x, y) for j ∈H2((x, y)) (2.86)

we have yk = 0. In this case, we have∑
j∈H2((x,y))

yj = 1 (2.87)

and (2.81) still hold. Then, as above, we can choose j̄ ∈
H2((x, y)) such that µ2,̄(x, y) = 0, y̄ > 0 and we get j̄ ∈
N2((x, y)) ∩H2((x, y)).

(ii-b) Suppose now that there exists k ∈ {1, . . . ,m} such that

∇y,kL (x, y) < ∇y,jL (x, y) and yk > 0 (2.88)

where j ∈ H2((x, y)). Then, we can choose and index j̄ ∈
H2((x, y)) such that y̄ ≥ 0 and we get

µ2,̄(x, y) = −∇y,̄L (x, y)− λ2(x, y) (2.89)

= −∇y,̄L (x, y) +∇yL (x, y)>y (2.90)

< −∇y,̄L (x, y) +∇y,̄L (x, y)e>y (2.91)

= −∇y,̄L (x, y) +∇y,̄L (x, y) = 0 (2.92)

so y̄ > εµ2,̄(x, y) In this way, we have j̄ ∈ N2((x, y)) ∩
H2((x, y)).

Assumption 2.8. In the following we need to add a hypothesis on ε in
order to prove the following proposition. We assume

ε < min

{
1

2L(n+ 1)
,

1

2L(m+ 1)

}
(2.93)

Proposition 2.9. Let Assumption (2.8) hold. Given a feasible point (x, y),
let i ∈ N1((x, y))∩H1((x, y)), j ∈ N2((x, y))∩H2((x, y)), I := {1, . . . , n} \
{i} and J := {1, . . . ,m} \ {j}. Let Â1((x, y)) ⊆ A1((x, y)) and Â2((x, y)) ⊆
A2((x, y)) be two subsets of indices. Let (x̃, ỹ) be the following feasible
point:

x̃Â1
= 0 (2.94)

ỹÂ2
= 0 (2.95)

x̃I\Â1
= xI\Â1

(2.96)

2.2. RESULTS 33

ỹJ\Â2
= yJ\Â2

(2.97)

x̃i = xi +
∑
h∈Â1

xh (2.98)

ỹj = yj +
∑
k∈Â2

yk (2.99)

where we write Â1 := Â1((x, y)) and Â2 := Â2((x, y)) for simplicity.
Then,

L (x̃, y)−L (x, y) ≤ −L‖x̃− x‖2 and L (x, ỹ)−L (x, y) ≥ L‖ỹ − y‖2
(2.100)

Proof. • By the mean value theorem, we have

L (x̃, y) = L (x, y) +∇xL (ω, y)>(x̃− x) (2.101)

= L (x, y) +∇xL (x, y)>(x̃− x) + [∇xL (ω, y)−∇xL (x, y)]>(x̃− x)
(2.102)

where ω = x+ ξ1(x̃− x), ξ1 ∈ (0, 1), which is equivalent to

L (x̃, y)−L (x, y) = ∇xL (x, y)>(x̃−x)+[∇xL (ω, y)−∇xL (x, y)]>(x̃−x)
(2.103)

Then,

L (x̃, y)−L (x, y) ≤ ∇xL (x, y)>(x̃− x) + L‖x̃− x‖2 (2.104)

Now, if we add and remove L‖x̃− x‖2, we get

L (x̃, y)−L (x, y) ≤ ∇xL (x, y)>(x̃− x)− L‖x̃− x‖2 + 2L‖x̃− x‖2
(2.105)

and we just need to show that

∇xL (x, y)>(x̃− x) + 2L‖x̃− x‖2 ≤ 0 (2.106)

By definition of x̃ we have

∇xL (x, y)>(x̃− x) = −∇x,Â1
L (x, y)>xÂ1

+∇x,̄ıL (x, y)>
(∑
h∈Â1

xh

)
(2.107)

= x>
Â1

(
∇x,̄ıL (x, y)eÂ1

−∇x,Â1
L (x, y)

)
(2.108)

34 CHAPTER 2. RESULTS

Moreover,

‖x̃− x‖2 =
∑
h∈Â1

x2
h +

(∑
h∈Â1

xh

)2

(2.109)

≤
∑
h∈Â1

x2
h + |Â1|

∑
h∈Â1

x2
h (2.110)

=
(
1 + |Â1|

)
x>
Â1
xÂ1

(2.111)

Furthermore, by definition of ī, it yields

∇x,̄ıL (x, y) ≤ ∇x,hL (x, y) for all h ∈ {1, . . . , n} (2.112)

that leads to
n∑
h=1

∇x,hL (x, y)xh ≥
n∑
h=1

∇x,̄ıL (x, y)xh = (2.113)

= ∇x,̄ıL (x, y)

n∑
h=1

xh = ∇x,̄ıL (x, y) (2.114)

since
∑n

h=1 xh = 1. Now, recalling the active-set estimate, we have

that for any h ∈ Â1

xh ≤ εµ1,h(x, y) (2.115)

= ε

(
∇x,hL (x, y)−

n∑
h=1

∇x,hL (x, y)xh

)
(2.116)

≤ ε
(
∇x,hL (x, y)−∇x,̄ıL (x, y)

)
(2.117)

Combining this last inequality with (2.111), we get

‖x̃−x‖2 ≤ ε
(
1 + |Â1|

)
x>
Â1

(
∇x,Â1

L (x, y)−∇x,̄ıL (x, y)eÂ1

)
(2.118)

Hence, if we put everything together we reach

∇xL (x, y)>(x̃− x) + 2L‖x̃− x‖2 ≤

≤ x>
Â1

(
∇x,̄ıL (x, y)eÂ1

−∇x,Â1
L (x, y)

)
+

+ 2Lε
(
1 + |Â1|

)
x>
Â1

(
∇x,Â1

L (x, y)−∇x,̄ıL (x, y)eÂ1

)
=

= (2Lε(1 + |Â1|)− 1)x>
Â1

(
∇x,Â1

L (x, y)−∇x,̄ıL (x, y)eÂ1

)
≤

≤ (2Lε(n+ 1)− 1)x>
Â1

(
∇x,Â1

L (x, y)−∇x,̄ıL (x, y)eÂ1

)

2.2. RESULTS 35

since |Â1| ≤ n. Now, by (2.112), the last term of the product is non-
negative. Therefore, taking in account the Assumption (2.8), we get
2Lε(n+ 1)− 1 < 0. Thus

∇xL (x, y)>(x̃− x) + 2L‖x̃− x‖2 ≤ 0 (2.119)

• By the mean value theorem, we have

L (x, ỹ) = L (x, y) +∇yL (x, ν)>(ỹ − y) =

= L (x, y)+∇yL (x, y)>(ỹ−y)+[∇yL (x, ν)−∇yL (x, y)]>(ỹ−y)

where ν = y + ξ2(ỹ − y), ξ2 ∈ (0, 1), which is equivalent to

−L (x, ỹ)+L (x, y) = −∇yL (x, y)>(ỹ−y)+[∇yL (x, ν)−∇yL (x, y)]>(y−ỹ)
(2.120)

Then,

L (x, y)−L (x, ỹ) ≤ −∇yL (x, y)>(ỹ − y) + L‖ỹ − y‖2 (2.121)

Now, if we add and remove L‖ỹ − y‖2, we get

L (x, y)−L (x, ỹ) ≤ −∇yL (x, y)>(ỹ − y)− L‖ỹ − y‖2 + 2L‖ỹ − y‖2
(2.122)

and we just need to show that

−∇yL (x, y)>(ỹ − y) + 2L‖ỹ − y‖2 ≤ 0 (2.123)

By definition of ỹ we have

−∇yL (x, y)>(ỹ − y) = ∇y,Â2
L (x, y)>yÂ2

−∇y,̄L (x, y)>
(∑
k∈Â2

yk

)
(2.124)

= y>
Â2

(
∇y,Â2

L (x, y)−∇y,̄L (x, y)eÂ2

)
(2.125)

Moreover,

‖ỹ − y‖2 =
∑
k∈Â2

y2
k +

(∑
k∈Â2

yk

)2

(2.126)

≤
∑
k∈Â2

y2
k + |Â2|

∑
k∈Â2

y2
k (2.127)

=
(
1 + |Â2|

)
y>
Â2
yÂ2

(2.128)

36 CHAPTER 2. RESULTS

Furthermore, by definition of j̄, we can write

∇y,̄L (x, y) ≥ ∇y,kL (x, y) for all k ∈ {1, . . . ,m} (2.129)

that leads to

m∑
k=1

∇y,kL (x, y)yk ≤
m∑
k=1

∇y,̄L (x, y)yk = (2.130)

= ∇y,̄L (x, y)

m∑
k=1

yk = ∇y,̄L (x, y) (2.131)

since
∑m

k=1 yk = 1. Now, recalling the active-set estimate, for any

k ∈ Â2 we have

yk ≤ εµ2,k(x, y) (2.132)

= ε

(
−∇y,kL (x, y) +

m∑
k=1

∇y,kL (x, y)yk

)
(2.133)

≤ ε
(
−∇y,kL (x, y) +∇y,̄L (x, y)

)
(2.134)

Combining this last inequality with (2.128), we get

‖ỹ− y‖2 ≤ ε
(
1 + |Â2|

)
y>
Â2

(
∇y,̄L (x, y)eÂ2

−∇y,Â2
L (x, y)

)
(2.135)

Hence, if we put everything together we reach

−∇yL (x, y)>(ỹ − y) + 2L‖ỹ − y‖2 ≤

≤ y>
Â2

(
∇y,Â2

L (x, y)−∇y,̄L (x, y)eÂ2

)
+

+ 2Lε
(
1 + |Â2|

)
y>
Â2

(
∇y,̄L (x, y)eÂ2

−∇y,Â2
L (x, y)

)
=

= (2Lε(1 + |Â2|)− 1)y>
Â2

(
∇y,̄L (x, y)eÂ2

−∇y,Â2
L (x, y)

)
≤

≤ (2Lε(m+ 1)− 1)y>
Â2

(
∇y,̄L (x, y)eÂ2

−∇y,Â2
L (x, y)

)
since |Â2| ≤ m. Now, by (2.129), the last term of the product is non-
negative. Therefore, taking in account the Assumption (2.8), we have
in particular that 2Lε(m+ 1)− 1 < 0. Thus

−∇yL (x, y)>(ỹ − y) + 2L‖ỹ − y‖2 ≤ 0 (2.136)

2.3. ALGORITHM 37

2.3 Algorithm

In this section we combine the active-set approach described above with the
Frank-Wolfe methodology proposed in [7]. In particular, each step of the
following algorithm is composed by two different steps.

1. In the first phase, we estimate the non-active variables, that is, given
(xk, yk), we compute the set of indices A1((xk, yk)), A2((xk, yk)),
N1((xk, yk)) and N2((xk, yk)). Then, we generate the new iterate
(x̃k, ỹk) following the instructions given in Proposition (2.9);

2. in the second one, we find the new feasible direction over the non-
active-sets N1(x̃k, ỹk) and N2(x̃k, ỹk), using the Frank-Wolfe method.

Algorithm 9 Active-Set algorithm framework for saddle point problems
over the Cartesian product of two simplices (AS-SP-SIMPLICES)

1: Let (x(0), y(0)) be a feasible point
2: for k = 0, 1, . . . do
3: if (xk, yk) is a stationary point then return
4: end if
5: Compute Ak1 := A1((xk, yk)), Ak2 := A2((xk, yk)), Nk

1 := N1((xk, yk))
and Nk

2 := N2((xk, yk))
6: Compute H k

1 := H1((xk, yk)) and H k
2 := H2((xk, yk)),

choose i ∈ Nk
1 ∩H k

1 , j ∈ Nk
2 ∩H k

2 and
define Ñk

1 = Nk
1 \ {i}, Ñk

2 = Nk
2 \ {j}

7: Set x̃k
Ak

= 0 = ỹk
Ak

,

x̃k
Ñk

1 \{i}
= xk

Ñk
1 \{i}

,

ỹk
Ñk

2 \{j}
= yk

Ñk
2 \{j}

,

x̃ki = xki +
∑

h∈Ak1
xkh and

ỹkj = ykl +
∑

l∈Ak2
ykl

8: Set dk
Ak

= 0

9: Compute a feasible direction dk
Nk in (x̃k, ỹk) and a maximum stepsize

αkmax

10: if

(
∇xL (x̃k,ỹk)

−∇yL (x̃k,ỹk)

)>
dk < 0 then

11: Compute a stepsize αk = 2
2+(k+1)

12: else Set αk = 0
13: end if
14: Set (xk+1, yk+1) = (x̃k, ỹk) + αkdk

15: end for

where we recall that the Frank-Wolfe direction for the saddle point problem

38 CHAPTER 2. RESULTS

is given by:

dFW
Ak1

:= 0 (2.137)

dFW
Ak2

:= 0 (2.138)

dFW
Nk

1
:= eı̄ − x̃kNk

1
(2.139)

dFW
Nk

2
:= e̄ − ỹkNk

2
(2.140)

where

ī ∈ arg min
i∈Nk

1

{∇x,iL (x̃k, ỹk)} (2.141)

j̄ ∈ arg max
j∈Nk

2

{∇y,jL (x̃k, ỹk)} (2.142)

In many applications, it can be very difficult to find the Lipschitz constant
of our objective function gradient. As a consequence, it may not be easy to
choose an appropriate value for the constant ε in the active set strategy.
To overcome this possible problem, we can follow an iterative scheme to
estimate, at each iteration of the Algorithm 9, an appropriate ε that satisfies
conditions in Proposition (2.9).
In particular, we need to introduce, for each step of the Algorithm 9 the
further phase described in Algorithm 10.

Algorithm 10 Choice of ε

1: Let (xk, yk) be the point computed at iteration k by Algorithm (9)
2: Let εx = 1 and εy = 1.
3: Let Lx = 1

4εx(n+1) and Ly = 1
4εy(m+1)

4: repeat
5: εx = εx ∗ 0.1
6: Compute x̃k

7: Update Lx = Lx ∗ 10
8: until L (x̃k, yk)−L (xk, yk) ≤ −Lx‖x̃k − xk‖2
9: repeat

10: εx = εx ∗ 0.1
11: Compute ỹk

12: Update Ly = Ly ∗ 10
13: until L (xk, ỹk)−L (xk, yk) ≥ Ly‖ỹk − yk‖2

Clearly, the two cycles in Algorithm 10 end in a finite number of iterations.
Indeed, whatever is the Lipschitz constant L, reducing ε of an order of

magnitude at each iteration, we get ε < min

{
1

2L(n+1) ,
1

2L(m+1)

}
after a finite

number of iterations. Hence we are under the hypothesis of Proposition (2.9)
and the conditions to stop the cycles are satisfied.

2.4. CONVERGENCE 39

On the other hand, this phase of the algorithm can be very expensive, so,
having an estimate of the Lipschitz constant, can be very useful.

2.4 Convergence

In this section, we want to prove the convergence of Algorithm 9 under some
strong assumptions.
All the details and the formal definitions can be found in the Appendix A
or in [7], but we give here the interpretation of some constants to make the
following results understandable:

• the curvature constant CL is related to the Lipschitz constant of ∇L
and ensures that the deviation of L from its linearization is bounded

• the interior strong convex-concavity constant µint
L is related to the

strong convex-concavity of L

• the bilinearity coefficient ML relates ∇L computed at the saddle
point and at the other feasible points

• the suboptimality sequence w̃k := L (x̃k, y∗)−L (x∗, ỹk) measures the
distance to the saddle point and its convergence to 0 will show the
convergence of Algorithm 9 to the saddle point itself.

First of all, we have the following result.

Proposition 2.10. Let Assumption 2.8 hold. Let {(xk, yk)}k, {(x̃k, ỹk)}k
and {dk}k be the sequences produced by the Algorithm 9. If that algorithm
does not terminate in a finite number of iterations, then

lim
k→∞

‖(x̃k, ỹk)− (xk, yk)‖ = 0 (2.143)

Proof. Using the thesis of Proposition (2.9), we get

L (xk+1, y) ≤ L (x̃, y) ≤ L (xk, y)− L‖x̃k − xk‖2 for all y ∈ Y (2.144)

From the compactness of X , the sequence {xk}k is convergent to some point
x̄ ∈ X . Moreover, from the continuity of L , we get

lim
k→∞

(L (xk+1, y)−L (xk, y)) = 0 (2.145)

Putting together (2.144) and (2.145), we finally reach

lim
k→∞

‖x̃k − xk‖2 = 0 (2.146)

40 CHAPTER 2. RESULTS

On the other hand, we have

L (x, yk+1) ≥ L (x, ỹk) ≥ L (x, yk) + L‖ỹk − yk‖2 for all x ∈ X (2.147)

From the compactness of Y, the sequence {yk}k is convergent to some point
ȳ ∈ Y. Then, by the continuity of L , it yields

lim
k→∞

(L (x, yk+1)−L (x, yk)) = 0 (2.148)

Putting together (2.147) and (2.148) we get

lim
k→∞

‖ỹk − yk‖2 = 0 (2.149)

Finally, we have

‖(x̃k, ỹk)− (xk, yk)‖2 ≤ ‖x̃k − xk‖2 + ‖ỹk − yk‖2 (2.150)

which leads to the thesis.

In the following, we assume that

• L is strongly convex-concave

• ∇L is L-Lipschitz continuous

• strict complementary holds at (x∗, y∗)

• L has a finite curvature constant CL

• L has a positive interior strong convex-concavity constant µint
L

• Assumption 2.8 holds

Now, we restrict to the simpler case in which we compute the descent direc-
tion dk over the whole feasible set X ×Y instead of the non-active estimates
N1((xk, yk)) and N2((xk, yk)). Since the search of the descent direction is
linked to the minimization of a linear function, this simplification does not
involve a considerable increase in CPU-time.
The proof of convergence in the case where the descent direction is restricted
to non-active estimates goes beyond the scope of this thesis, but the experi-
mental results and some of our preliminary attempts allow us to assume the
correctness of this approach.
Then, we can state the following theorem.

Theorem 2.11. Let L be a strongly convex-concave function with a finite
curvature constant CL , a positive interior strong convex-concavity constant
µintL and a L- Lipschitz continuous gradient. Assume that strict complemen-
tary holds at the unique saddle point (x∗, y∗). Let us also define the rate
multiplier ν = 1− ML√

µintL

.

2.4. CONVERGENCE 41

If ν > 0, the suboptimality w̃k := L (x̃k, y∗)−L (x∗, ỹk) of the iterates of the

algorithm with step size γk = min

(
γmax,

2
2+k

)
has the following decreasing

upper bound

w̃k ≤ C

2 + k
(2.151)

for k sufficiently large, where C = 2 max{w0, 2CL
2ν−1}

In [7] it is proved that the suboptimality wk = L (xk, y∗) −L (x∗, yk) has
the following asymptotic behaviour:

wk = O
(

1

k

)
(2.152)

Moreover, we have the following result.

Proposition 2.12. Consider the two suboptimalities error sequences

wk := L (xk, y∗)−L (x∗, yk) (2.153)

w̃k := L (x̃k, y∗)−L (x∗, ỹk) (2.154)

where {(xk, yk)}k and {(x̃k, ỹk)}k are the sequences generated by Algorithm
9.
Then,

w̃k ≤ wk for all k (2.155)

Proof. By Proposition (2.9) we get

L (x̃k, y∗)−L (xk, y∗) ≤ −L‖x̃k − xk‖2 (2.156)

L (x∗, ỹk)−L (x∗, yk) ≥ L‖ỹk − yk‖2 (2.157)

In particular, it yields

L (x̃k, y∗) ≤ L (xk, y∗) (2.158)

L (x∗, ỹk) ≥ L (x∗, yk) (2.159)

Combining the above inequalities, we have

L (x̃k, y∗)−L (x∗, ỹk) ≤ L (xk, y∗)−L (x∗, yk) (2.160)

that is
w̃k ≤ wk (2.161)

Then, the proof of Theorem 2.11 immediately follows from (2.152) and from
the Proposition 2.12.

42 CHAPTER 2. RESULTS

Chapter 3

Numerical Experiments

In this chapter, we describe the experiment we use to test our algorithm.

3.1 Toy Problem and Python codes

We consider the Toy Problem described in [7] .
Let L : Rn1 × Rn2 → R such that

L (x, y) =
µ

2
‖x− x∗‖22 + (x− x∗)>M(y − y∗)− µ

2
‖y − y∗‖22 (3.1)

where µ > 0 is a scalar and M ∈Mn1×n2(R) is a matrix.
This function is µ−strongly convex-concave and (x∗, y∗) is a saddle point
for the problem

min
x∈X

max
y∈Y

L (x, y) (3.2)

where X = ∆x ⊆ Rn1 and Y = ∆y ⊆ Rn2 are unit simplices.
Since our algorithm should work better with problems where the saddle
point is sparse, we introduce two more variables m1 and m2 such that x∗

has m1 non-zero components and y∗ has m2 non-zero components.
Then, we want to generate x∗ and y∗ randomly over the two simplices.
According to [5], we use the following results.

Proposition 3.1. Let U1, . . . , Un be a sequence of i.i.d. random variables
such that Ui ∼ U(0, 1) for all i, with order statistics U(1), . . . , U(n). Define
U(0) = 0 and U(n+1) = 1. Moreover, let Si := U(i)−U(i−1) for i = 1, . . . , n+1
and let (Y1, . . . , Yn+1) be the sequence of i.i.d. random variables such that
Yi ∼ Exp(1). Then,

(S1, . . . , Sn+1) ∼
(

Y1∑n+1
i=1 Yi

, . . . ,
Yn+1∑n+1
i=1 Yi

)
(3.3)

43

44 CHAPTER 3. NUMERICAL EXPERIMENTS

Proposition 3.2. Let (S1, . . . , Sn+1) be the same sequence defined in
Proposition (3.1). Then, (S1, . . . , Sn+1) is uniformly distributed over the
simplex

∆n+1 :=

{
(x1, . . . , xn+1) s.t. xi ≥ 0,

n+1∑
i=1

xi = 1

}
(3.4)

Hence, we begin generating σ1, . . . , σm1 from an exponential distribution
with parameter 1. Then, we normalize the sequence, obtaining

(s1, . . . , sm1) =

(
σ1∑m1
i=1 σi

, . . . ,
σm1∑m1
i=1 σi

)
(3.5)

and we randomly insert such components in a zero vector in Rn1 . In such
a way we generate x∗. In the same way, replacing n1 with n2 and m1 with
m2, we generate y∗.
Moreover, as proposed in [7], we create the matrix M generating
n1 × n2 i.i.d. random samples from a uniform distribution over the interval
[−0.1, 0.1] (that is U(−0.1, 0.1)).
Thus, we have written a Python function that takes as input n1, n2,m1 and
m2 and returns x∗, y∗ and M .

Listing 3.1: Toy Problem

def Toy Problem (n1 , n2 ,m1,m2) :
’ ’ ’

: param n1 : dimension o f X
: param n2 : dimension o f Y
: param m1: non−zero components o f x s t a r
: param m2: non−zero components o f y s t a r

: re turn x s t a r : x component o f the sadd l e po in t
y s t a r : y component o f the sadd l e po in t
M: random n1∗n2 matrix

’ ’ ’

x s t a r s imp l ex = np . random . exponent i a l (1 , s i z e = m1)
x s t a r s imp l ex = x s t a r s imp l ex / np .sum(x s t a r s imp l e x)

y s t a r s imp l ex = np . random . exponent i a l (1 , s i z e=m2)
y s t a r s imp l ex = y s t a r s imp l ex / np .sum(y s t a r s imp l e x)

x s t a r = np . z e ro s (n1)
indexe s 1 = np . random . cho i c e (n1 ,m1, r ep l a c e = False)
x s t a r [i ndexe s 1] = x s t a r s imp l ex

y s t a r = np . z e ro s (n2)
indexe s 2 = np . random . cho i c e (n2 , m2, r ep l a c e=False)
y s t a r [i ndexe s 2] = y s t a r s imp l e x

3.1. TOY PROBLEM AND PYTHON CODES 45

x s t a r = np . matrix (x s t a r) .T
y s t a r = np . matrix (y s t a r) .T

M = np . random . uniform (0 ,1 , n1∗n2)
M = np . matrix (np . reshape (M, (n1 , n2)))

return (x s ta r , y s ta r , M)

To use our algorithm, we need to compute the gradients of the objective
function:

∇xL (x, y) = µ(x−x∗)+M(y−y∗) and ∇yL (x, y) = −µ(y−y∗)+M>(x−x∗)
(3.6)

Moreover, we have(
∇xL (x̃k,ỹk)

−∇yL (x̃k,ỹk)

)>(x
y

)
=

=
(
µ(x̃k − x∗) +M(ỹk − y∗)

)>
x+

(
µ(ỹk − y∗)−M>(x̃k − x∗)

)>
y =

= x>
(
µ(x̃k − x∗) +M(ỹk − y∗)

)
+
(
(ỹk − y∗)>µ− (x̃k − x∗)>M

)
y =

= a(x) + b(y)

Thus, at each step of the algorithm, to compute the feasible FW direction,
we have to find

arg min
(x,y)∈X×Y

(
∇xL (x̃k,ỹk)

−∇yL (x̃k,ỹk)

)>(x
y

)
= arg min

x∈X
a(x) + arg min

y∈Y
b(y) (3.7)

Since a(x) and b(y) are linear functions over two convex sets, we can easily
solve the two minimization problems above. The solution is (x̄, ȳ) such that

x̄i =

{
1 if i ∈ arg mini µ(x̃ki − x∗i) + (M(ỹk − y∗))i
0 otherwise

(3.8)

ȳj =

{
1 if j ∈ arg minj (ỹkj − y∗j)>µ− ((x̃k − x∗)>M)j

0 otherwise
(3.9)

In particular, if such minima are achieved for more than one index, we choose
the lower index.
Furthermore, we need to show that the gradient of the objective function
is Lipschitz continuous. In particular, as described in the previous chap-
ter, having an upper bound of the Lipschitz constant guarantees significant
saving in terms of CPU-TIME. Indeed, in this case, we can avoid to use
Algorithm 10, that is, concretely, two for cycles less at each iteration of the
algorithm.
This reason justifies the effort to estimate a constant L > 0 such that

‖∇f(x′′, y′′)−∇f(x′, y′)‖∗ ≤ L‖(x′′, y′′)− (x′, y′)‖ (3.10)

46 CHAPTER 3. NUMERICAL EXPERIMENTS

for all x′′, x′ ∈ X , y′′, y′ ∈ Y, where

‖(x, y)‖∗ := max
{
‖x‖X ∗ , ‖y‖Y∗

}
(3.11)

and

‖x‖X ∗ := sup
s∈Rn
‖s‖≤1

x>s , ‖y‖Y∗ := sup
r∈Rm
‖r‖≤1

y>r (3.12)

are the dual norms. Finally, we define

‖(x, y)‖ := ‖x‖+ ‖y‖ (3.13)

Such a constant L, is a an estimate of the full Lipschitz constant of ∇L
and can be used to bound also the partial Lipschitz constants LXX , LXY ,
LY X , LY Y that are defined in Appendix A.
Now, we have

‖∇xL (x′′, y′′)−∇xL (x′, y′)‖X ∗ = sup
s∈Rn
‖s‖≤1

(∇xf(x′′, y′′)−∇xf(x′, y′))>s

(3.14)

= sup
s∈Rn
‖s‖≤1

{
(µ(x′′ − x∗)− µ(x′ − x∗) +My′′ −My′)>s

}
(3.15)

= sup
s∈Rn
‖s‖≤1

{
(µ(x′′ − x′) +M(y′′ − y′))>s

}
(3.16)

≤ sup
s∈Rn
‖s‖≤1

{
‖µ(x′′ − x′) +M(y′′ − y′)‖‖s‖

}
(3.17)

≤ µ‖x′′ − x′‖+ ‖M‖‖y′′ − y′‖ (3.18)

≤ µ‖x′′ − x′‖+ 0.1 ∗
√
n2‖y′′ − y′‖ (3.19)

≤ max{µ, 0.1 ∗
√
n2}(‖x′′ − x′‖+ ‖y′′ − y′‖) (3.20)

= max{µ, 0.1 ∗
√
n2}‖(x′′, y′′)− (x′, y′)‖ (3.21)

since ‖s‖ ≤ 1 and

‖M‖ := max
x,‖x‖=1

‖Mx‖ = ‖(0.1 · · · 0.1)>‖ = 0.1 ∗
√
n2 (3.22)

where ‖ · ‖ denotes here the Euclidean norm in Rn2 .

3.1. TOY PROBLEM AND PYTHON CODES 47

In the same way, we can write

‖∇yL (x′′, y′′)−∇yL (x′, y′)‖Y∗ = sup
r∈Rm
‖r‖≤1

(∇yf(x′′, y′′)−∇yf(x′, y′))>r

(3.23)

= sup
r∈Rm
‖r‖≤1

{
(−µ(y′′ − y∗) + µ(y′ − y∗) +M>x′′ −M>x′)>r

}
(3.24)

= sup
r∈Rm
‖r‖≤1

{
(−µ(y′′ − y′) +M>(x′′ − x′))>r

}
(3.25)

≤ sup
r∈Rm
‖r‖≤1

{
(µ‖y′′ − y′‖+ ‖M>‖‖x′′ − x′‖)‖r‖

}
(3.26)

≤ µ‖y′′ − y′‖+ 0.1 ∗
√
n1‖x′′ − x′‖ (3.27)

≤ max{µ, 0.1 ∗
√
n1}(‖x′′ − x′‖+ ‖y′′ − y′‖) (3.28)

= max{µ, 0.1 ∗
√
n1}‖(x′′, y′′)− (x′, y′)‖ (3.29)

since ‖r‖ ≤ 1 and

‖M>‖ := max
y,‖y‖=1

‖M>y‖ = ‖(0.1 · · · 0.1)>‖ = 0.1 ∗
√
n1 (3.30)

where ‖ · ‖ denotes here the Euclidean norm in Rn1 .
Thus, we have shown that∇L is Lipschitz-continuous with constant at least

L = max{µ, 0.1 ∗
√
n1, 0.1 ∗

√
n2} (3.31)

Hence, we can choose

ε =
1

4Lmax{n+ 1,m+ 1}
(3.32)

In this way, we can skip Algorithm 10 and save time in our computations.
For the active-set estimates, we define a Python function that takes in input
the current point (xk, yk), the input values generated by Function (3.1) and
the constants µ and ε. In output we get (x̃k, ỹk), that is the new point where
we have put to zero the components in the active-set estimates.

Listing 3.2: Active-Set Estimates

def a c t i v e s e t e s t ima t e (x , y , x s ta r , y s ta r ,M,mu, eps) :
’ ’ ’

: param x : x component o f the current approximation
: param y : y component o f the curren t approximation
: param x s t a r : x component o f the sadd l e po in t
: param y s t a r : y component o f the sadd l e po in t

48 CHAPTER 3. NUMERICAL EXPERIMENTS

: param M: matrix o f the toy problem
: param mu: s t rong convex−concav i t y cons tant
: param eps : ac t i v e−s e t cons tant

: re turn xx : new x component accord ing to ac t i v e−s e t s t r a t e g y
yy : new y component accord ing to ac t i v e−s e t s t r a t e g y

’ ’ ’

xx = x . copy ()
yy = y . copy ()
mu 1 = (mu ∗ (x−x s t a r) + M ∗ (y−y s t a r))
mu 1n = mu 1 − x .T∗(mu 1)
mu 2 = (mu ∗ (y − y s t a r) − M.T ∗ (x − x s t a r))
mu 2n = mu 2 − y .T ∗ (mu 2)
k1 = xx − eps ∗ mu 1n
k2 = yy − eps ∗ mu 2n

x count = np .sum(xx [k1 < 0])
y count = np .sum(yy [k2 < 0])

xx [k1 < 0] = 0
yy [k2 < 0] = 0

i i = np . nonzero (mu 1)
i b a r = np . argmin (i i)

j j = np . nonzero (mu 2)
j b a r = np . argmin (j j)

xx [i i [0] [i b a r]] += x count
yy [j j [0] [j b a r]] += y count

return xx , yy

To check the behaviour of our algorithm, we choose the centre of mass
of the two simplices as starting point of the algorithm, because we know
that Frank-Wolfe methodology suffers from the zig-zagging problem in this
context. The following Python code generates such a starting point.

Listing 3.3: Starting Point

def Sta r t i ng Po in t (n1 , n2) :
’ ’ ’

: param n1 : dimension o f X
: param n2 : dimension o f Y
: re turn : x 0 = (1/n1 , . . . , 1/n1)

y 0 = (1/n2 , . . . , 1/n2)
’ ’ ’

x 0 = np . matrix (np . ones (n1) / n1) .T
y 0 = np . matrix (np . ones (n2) / n2) .T

return x 0 , y 0

3.1. TOY PROBLEM AND PYTHON CODES 49

In our computations, we need to find at each iteration the Frank-Wolfe
direction. The following function takes in input the current iteration and the
usual other values to give in output the FW-direction described in Section
2.3. In particular, we take in input not the current iteration (x̃k, ỹk), but
only its components in the current non-active estimates. In this way, we can
put dAk1

= 0 = dAk2
.

Listing 3.4: Frank-Wolfe directon

def FW direction (x , y , x s ta r , y s ta r ,M,mu) :
’ ’ ’

: param x : x component o f the current approximation
: param y : y component o f the curren t approximation
: param x s t a r : x component o f the sadd l e po in t
: param y s t a r : y component o f the sadd l e po in t
: param M: matrix o f the toy problem
: param mu: s t rong convex−concav i t y cons tant

: re turn d x : x component o f the FW d i r e c t i o n
d y : y component o f the FW d i r e c t i o n

’ ’ ’

x new = np . matrix (np . z e r o s (len (x))) .T
y new = np . matrix (np . z e r o s (len (y))) .T

mu 1 = (mu ∗ (x − x s t a r) + M ∗ (y − y s t a r))
mu 1n = mu 1 − x .T ∗ (mu 1)
mu 2 = (mu ∗ (y − y s t a r) − M.T ∗ (x − x s t a r))
mu 2n = mu 2 − y .T ∗ (mu 2)

i = np . argmin (mu 1n)
j = np . argmin (mu 2n)

x new [i] = 1
y new [j] = 1

d x = x new − x
d y = y new − y

return d x , d y

Finally, we can give the AS-SIMPLICES-FW function, that implements the
algorithm described in Chapter 2.

Listing 3.5: AS-SIMPLICES Function

def AS SIMPLICES FW (x 0 , y 0 , x s ta r , y s ta r ,mu,M, eps , t o l l , max it ,
M y star , MT x star) :

’ ’ ’

: param x 0 : x component o f the s t a r t i n g po in t
: param y 0 : y component o f the s t a r t i n g po in t

50 CHAPTER 3. NUMERICAL EXPERIMENTS

: param x s t a r : x component o f the sadd l e po in t
: param y s t a r : y component o f the sadd l e po in t
: param mu: s t rong convex−concav i t y cons tant
: param M: matrix o f the toy problem
: param eps : ac t i v e−s e t cons tant
: param t o l l : t o l e r anc e f o r o p t ima l i t y
: param max i t : maximum number o f i t e r a t i o n s
: param M y star : product M∗ y s t a r
: param MT x star : product MˆT ∗ x s t a r

: re turn x k : x oomponent o f the l a s t approximation
y k : y component o f the l a s t appoximation
k s t o p : number o f the l a s t i t e r a t i o n
gaps : l i s t o f the va l u e s o f the gap func t i on

’ ’ ’

x k , y k = x 0 , y 0
gaps = []

for k in range (0 , max it) :
i nonze ro = np . nonzero (x k) [0]
j nonze ro = np . nonzero (y k) [0]

x t i l d e k = np . matrix (np . z e r o s (len (x 0))) .T
y t i l d e k = np . matrix (np . z e r o s (len (y 0))) .T

x t i l d e k [i nonze ro] , y t i l d e k [j nonze ro] =
= a c t i v e s e t e s t ima t e (x k [i nonze ro] , y k [j nonze ro] ,

x s t a r [i nonze ro] , y s t a r [j nonze ro] ,
(M[[i nonze ro]]) [: , j nonze ro] , mu, eps)

d x = np . matrix (np . z e r o s (len (x 0))) .T
d y = np . matrix (np . z e r o s (len (y 0))) .T

d x [i nonze ro] , d y [j nonze ro] =
= FW direction (x t i l d e k [i nonze ro] , y t i l d e k [j nonze ro] ,

x s t a r [i nonze ro] , y s t a r [j nonze ro] ,
(M[[i nonze ro]]) [: , j nonze ro] , mu)

gap x = − (d x) .T ∗ (mu ∗ x t i l d e k − mu ∗ x s t a r +
+ (M ∗ y t i l d e k) − M y star)

gap y = −(d y) .T ∗ (mu∗ y t i l d e k− mu∗ y s t a r −
+ (M.T ∗ x t i l d e k)+ MT x star)

gap = gap x + gap y
gaps . append (gap . item (0))

i f gap < t o l l :
k s top = k
return x t i l d e k , y t i l d e k , k stop , gaps

else :
x k = x t i l d e k + 2/(2+(k+1))∗ d x

3.1. TOY PROBLEM AND PYTHON CODES 51

y k = y t i l d e k + 2/(2+(k+1))∗ d y

k stop = max it

return x k , y k , k stop , gaps

To reduce the dimension of our problem, at each iteration of the for cycle,
we compute the non-zero components of the current point. Then, we call
Function 3.2 only for such values. After that, we compute the FW direction
with Function 3.4.
We save the gaps and the total number of iterations because they will be
useful to show the results of our tests.
Finally, we also give the script of the SIMPLICES-FW implementation, that
we will use to have a comparison of the results of our algorithm.

Listing 3.6: SIMPLICES-FW Function

def SIMPLICES FW(x 0 , y 0 , x s ta r , y s ta r ,mu,M, eps ,
t o l l , max it , M y star , MT x star) :

’ ’ ’
Same Parameters And Output Values t ha t AS−SIMPLICES−FW Function
’ ’ ’

x k , y k = x 0 , y 0
gaps = []

for k in range (0 , max it) :

d x , d y = FW direction (x k , y k , x s ta r , y s ta r , M, mu)

gap = − d x .T ∗ (mu∗ x k − mu∗ x s t a r + M∗ y k − M y star) −
+ d y .T ∗ (mu∗y k − mu∗ y s t a r − M.T ∗x k + MT x star)

gaps . append (gap . item (0))

i f gap < t o l l :
k s top = k
return x k , y k , k stop , gaps

else :
x k = x k + 2 / (2 + (k + 1)) ∗ d x
y k = y k + 2 / (2 + (k + 1)) ∗ d y

k stop = max it

return x k , y k , k stop , gaps

52 CHAPTER 3. NUMERICAL EXPERIMENTS

3.2 Numerical Results

In this section, we describe the numerical results of our tests.
First of all, let us give the data of our simulations.
We have considered the Toy Problem described above with these data:

• n = n1 = n2 ∈ {5000, 10000}

• m = m1 = m2 ∈ {0.01 ∗ n, 0.05 ∗ n}, that means the active-set repre-
sents the 99 % or 95 % of all the components of the saddle point and
so the solution is very sparse.

• µ ∈ {0.1, 1}, that leads to different convergence times

• toll = 0.001

• a maximum number of iterations of 100000

We run FW algorithm for saddle point problems and our active set modifi-
cation 20 times for each setting.
We report the results in the following table, where for each setting we give
the means of CPU-TIME and number of iterations and also their standard
deviations.

CPU-TIME ITERATIONS

n m µ Active-Set FW Active-Set FW

50 0.1 170± 1.4 2774± 175 608± 40 53014± 3422
5000 (99%) 1 164± 2.5 267± 9 364± 62 5094± 173

250 0.1 235± 9 5228± 9 1505± 225 100000
(95%) 1 205± 4 835± 17.5 693± 85 15990± 344

100 0.1 830± 18 20914± 75 1051± 163 100000
10000 (99%) 1 766± 12 1762± 58 510± 53 8424± 292

500 0.1 1127± 33 20910± 107 1942± 278 100000
(95%) 1 1006± 10 6109± 133 965± 79 29148± 666

As we can see in the table above, the active-set strategy leads to much better
statistics, both on CPU-TIME and number of iterations. In particular, in
some cases, the active-set algorithm reaches the tolerance in a few hundreds
iterations, while FW can not do it in 100000 iterations and more then 5
hours of CPU-TIME (see also Figure 3.13 or Figure 3.15).
Moreover, we can see that active-set results are characterized by a lower
standard deviation and so, they seem more stable (see for example Figure
3.5 or Figure 3.8).
To better visualize the results, we also give the box-plots for the CPU-
time experiments (Figures 3.1 - 3.8) and the classical Cartesian plots for

3.2. NUMERICAL RESULTS 53

the decreasing of the gap function with respect to the number of iterations
(Figures 3.9 - 3.16).
In the box-plots, we have also underlined the mean (in green) and the median
(in orange) of our samples.
In the Cartesian plots instead, we can see that the two algorithms behave in
the same way for the very first iterations, but then the active-set gap drops
drastically faster. To underline this difference, we use a logarithmic scale
for the ordinates axis.

54 CHAPTER 3. NUMERICAL EXPERIMENTS

(a) Box-Plots

(b) Detailed Box-Plots

Figure 3.1: CPU-TIME Box-Plots n = 5000, m = 50, µ = 0.1

3.2. NUMERICAL RESULTS 55

(a) Box-Plots

(b) Detailed Box-Plots

Figure 3.2: CPU-TIME Box-Plots n = 5000, m = 50, µ = 1

56 CHAPTER 3. NUMERICAL EXPERIMENTS

(a) Box-Plots

(b) Detailed Box-Plots

Figure 3.3: CPU-TIME Box-Plots n = 5000, m = 250, µ = 0.1

3.2. NUMERICAL RESULTS 57

(a) Box-Plots

(b) Detailed Box-Plots

Figure 3.4: CPU-TIME Box-Plots n = 5000, m = 250, µ = 1

58 CHAPTER 3. NUMERICAL EXPERIMENTS

(a) Box-Plots

(b) Detailed Box-Plots

Figure 3.5: CPU-TIME Box-Plots n = 10000, m = 100, µ = 0.1

3.2. NUMERICAL RESULTS 59

(a) Box-Plots

(b) Detailed Box-Plots

Figure 3.6: CPU-TIME Box-Plots n = 10000, m = 100, µ = 1

60 CHAPTER 3. NUMERICAL EXPERIMENTS

(a) Box-Plots

(b) Detailed Box-Plots

Figure 3.7: CPU-TIME Box-Plots n = 10000, m = 500, µ = 0.1

3.2. NUMERICAL RESULTS 61

(a) Box-Plots

(b) Detailed Box-Plots

Figure 3.8: CPU-TIME Box-Plots n = 10000, m = 500, µ = 1

62 CHAPTER 3. NUMERICAL EXPERIMENTS

Figure 3.9: Iterations Plot n = 5000,m = 50, µ = 0.1

Figure 3.10: Iterations Plot n = 5000,m = 50, µ = 1

3.2. NUMERICAL RESULTS 63

Figure 3.11: Iterations Plot n = 5000,m = 250, µ = 0.1

Figure 3.12: Iterations Plot n = 5000,m = 250, µ = 1

64 CHAPTER 3. NUMERICAL EXPERIMENTS

Figure 3.13: Iterations Plot n = 10000,m = 100, µ = 0.1

Figure 3.14: Iterations Plot n = 10000,m = 100, µ = 1

3.2. NUMERICAL RESULTS 65

Figure 3.15: Iterations Plot n = 10000,m = 500, µ = 0.1

Figure 3.16: Iterations Plot n = 10000,m = 500, µ = 1

66 CHAPTER 3. NUMERICAL EXPERIMENTS

Chapter 4

Conclusions

In this last chapter, we review the main points of this thesis.
First, we have underlined the importance and the frequency with which
saddle point problems occur in applications. In particular, we have shown
examples of application fields in which these problems arise, such as game
theory and robust optimization.
Then, we have formally described the problem we have studied, that is the
search for a saddle point of a convex-concave differentiable function with
Lipschitz gradient, defined on the Cartesian product of two convex and
compact sets.
After that, we have presented the KKT conditions for this problem and we
have proved that a sufficient condition for a point to be a saddle point is
that the gradient of our function vanishes there.
Whereupon we have studied the Frank-Wolfe algorithm for the minimization
of a convex function over a convex set and we have also described its variants
(away-step FW and pairwise FW) to deal with the case where the feasible
set is a polytope. The purpose of this study was to better explain how these
methodologies could then be adapted to the case of saddle point problems
as presented by G. Gidel, T. Jebara and S. Lacoste-Juliene in their quite
recent paper [7].
Then, we went on to study the particular case in which the feasible set is
given by the Cartesian product of two unit simplices. In this context, we
have supposed that the saddle point solution of our problem is very sparse.
Hence, we extended the new active-set strategy proposed by A. Cristofari,
M. De Santis, S. Lucidi and F. Rinaldi in their very recent paper [4] to our
problem. In short, we were interested in finding as soon as possible the zero
components (called active components) of the saddle point, in order to solve
the problem in a smaller feasible set and save CPU-TIME. For this reason,
we defined some estimates of the active sets and we have proved that in a
neighborhood of the saddle point, these estimates identify exactly the active
components.

67

68 CHAPTER 4. CONCLUSIONS

After that, we have proposed a new personal algorithm that combines the
active-set strategy to the saddle point extension of Frank-Wolfe methodology
and we have given the proof that, under some appropriate assumptions, it
converges to the saddle point.
Finally, we have implemented our algorithm in Python language and we
have tested it on a simple bilinear Toy Problem, built so as to satisfy our
assumptions and in such a way to make known the saddle point we wish to
find. We have shown that this new algorithm allowed us to find the saddle
point saving a lot of CPU-TIME.

Appendices

69

Appendix A

Proofs of Convergence
Theorems

In this Appendix we present the principal details of the paper [7] and the
scheme that leads to the convergence proof of Algorithm 2 and, as a conse-
quence, of our Algorithm 9.

A.1 Definitions

First of all, we give all the definitions of the affine invariant constants of a
convex function and their extension to the the convex-concave framework. In
particular, we underline how they can be updated in our active set context.

A.1.1 Convex Functions

In this first section, we recall some basic concepts of convex sets and func-
tions (see also [1], [2] or [14]).

Definition A.1 (Convex Set). Let X ⊆ Rn be a subset. We say that X is
a convex set if

λx+ (1− λ)y ∈ X for all x, y ∈ X , for all λ ∈ [0, 1]

Definition A.2 (Convex Function, Concave Function). Let X ∈ Rn be a
convex set and let f : X → R a function. f is said to be a convex function
if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ X and λ ∈ [0, 1] f is said to be concave if −f is convex.
Moreover, f is said to be strictly convex if for all x, y ∈ X and λ ∈ [0, 1]

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

and strictly concave if −f is strictly convex.

71

72 APPENDIX A. PROOFS OF CONVERGENCE THEOREMS

We recall that when the objective function has some regularity, convexity
can be characterized in the following way.

Proposition A.1. Let X ⊆ Rn, X 6= ∅ a convex set and let f : Rn → R be
differentiable over an open set that contains X . Then

• f is convex over X (that is f |X : X → R is convex) if and only if

f(z) ≥ f(x) +∇f(x)>(z − x) for all x, z ∈ X

• f is strictly convex over X if and only if

f(z) > f(x) +∇f(x)>(z − x) for all x, z ∈ X , x 6= z

Definition A.3 (Strongly Convex Function). Let X ∈ Rn be a convex set
and let f : X → R a convex function. We say that f is a µ-strongly convex
function if

x 7→ f(x)− µ

2
‖x‖2 (A.1)

is convex.

Definition A.4 (Convex-Concave Function). Let X and Y be two convex
sets. We say that a function

L : X × Y → R (A.2)

is convex-concave if

x 7→ L (x, y) is convex for all y ∈ Y (A.3)

and
y 7→ L (x, y) is concave for all x ∈ X (A.4)

Definition A.5 (Strongly Convex-Concave Function). Let X and Y be two
convex sets and let L : X × Y → R be a convex-concave function. We say
that L is uniformly (µx, µy)-strongly convex-concave if

(x, y) 7→ L (x, y)− µx
2
‖x‖2 +

µy
2
‖y‖2 (A.5)

is convex-concave.

A.1.2 Relative Interior

In [7] it is proved that Algorithm 2 converges to the saddle point (x∗, y∗) of
the problem

min
x∈X

max
y∈Y

L (x, y) (A.6)

under the assumption that (x∗, y∗) belongs to the relative interior of X ×Y.
Then, let us give the following formal definitions (see also [1] or [2]).

A.1. DEFINITIONS 73

Definition A.6. Let X be a subset of Rn. The affine hull of X , denoted
aff(X), is the intersection of all affine sets containing X , where an affine set
is defined as a translation of a vector subspace. Equivalently,

aff(X) :=

{ k∑
i=1

αixi s.t. k > 0, xi ∈ X , αi ∈ R,
k∑
i=1

αi = 1

}
(A.7)

Definition A.7. Let X be a non-empty convex set. We say that x ∈ X is
a relative interior point of X if there exists an open ball B(x, ρ) centered at
x such that

B(x, ρ) ∩ aff(X) ⊂ X (A.8)

The set of all the relative interior points of X is called the relative interior
of X .

Remark A.2. If we consider the feasible set X = ∆1 ⊆ Rn, the relative
interior of X can be described as

ri(∆1) :=

{
x = (x1, . . . , xn) s.t.

n∑
i=1

xi = 1, xi > 0

}
(A.9)

Hence, when we study our problem in the restricted space of the non-active
components of the saddle point, we have that (x∗, y∗) lies in the relative
interior of that space.

A.1.3 The Lipschitz Constants

One of the main assumptions in our work is that the objective function is
differentiable with L-Lipschitz gradient. Let us give the formal definitions.

Definition A.8. We say that a function f : Rn → R has a Lipschitz con-
tinuous gradient with Lipschitz constant L if

‖∇f(x)−∇f(x′)‖∗ ≤ ‖x− x′‖ (A.10)

for all x, x′ ∈ X , where

‖y‖∗ := sup
x∈Rn,‖x‖≤1

y>x (A.11)

is the dual norm of ‖ · ‖.

Now, consider a convex-concave function L : X × Y → R. In this case,
we consider the dual pairing of norms (‖ · ‖X , ‖ · ‖X ∗) on X and similarly
(‖ · ‖Y , ‖ · ‖Y∗) on Y. We also define the norm on the product space X × Y
as the `1-norm on the components, that is

‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y . (A.12)

We thus have the dual norm of X × Y is the `∞-norm of the dual norms,
that is

‖(x, y)‖(X×Y)∗ = max(‖x‖X ∗ , ‖y‖Y∗) (A.13)

74 APPENDIX A. PROOFS OF CONVERGENCE THEOREMS

Definition A.9. Let L : X × Y → R be a continuously differentiable
function. We say that L has a L-Lipschitz continuous gradient if

‖∇L (x, y)−∇L (x′, y′)‖(X×Y)∗ ≤ L‖(x, y)− (x′, y′)‖X×Y (A.14)

Moreover, L is called full Lipschitz constant.

Definition A.10. The partial Lipschitz constants LXX , LY Y , LXY and LY X
of the gradient of the function L are the constants such that for all x, x′ ∈ X
and y, y′ ∈ Y,

‖∇xL (x, y)−∇xL (x′, y)‖X ∗ ≤ LXX‖x− x′‖X (A.15)

‖∇xL (x, y)−∇xL (x, y′)‖X ∗ ≤ LXY ‖y − y′‖Y (A.16)

‖∇yL (x, y)−∇yL (x′, y)‖Y∗ ≤ LY X‖x− x′‖X (A.17)

‖∇yL (x, y)−∇yL (x, y′)‖Y∗ ≤ LY Y ‖y − y′‖Y (A.18)

Remark A.3. Clearly, the partial Lipschitz constants can always be taken
to be smaller than the full Lipschitz constant for the gradient of L , that is

L ≥ max{LXX , LXY , LY X , LY Y } (A.19)

A.1.4 Curvature constant

The convergence analysis of Frank-Wolfe type algorithms is usually based
on a measure of non-linearity of the objective function over the feasible set.

Definition A.11. Let f : X → R be a convex function. We define the
curvature Cf of f as

Cf := sup
x,s,v∈X
γ>0 s.t.

xγ :=x+γd∈X
with d:=s−v

2

γ2
(f(xγ)− f(x)− γ < d,∇f(x) >) (A.20)

For linear functions f , it holds that Cf = 0.
The boundness of such constant guarantees that the deviation of f at xγ
from the linearization of f given by ∇f(x) is also bounded.
We extend the definition above to the case of a convex-concave function.
First of all, let us define the sets F and G of the marginal convex functions.

F := {x′ 7→ L (x′, y)}y∈Y and G := {y′ 7→ −L (x, y′)}x∈X (A.21)

Then,

Definition A.12. Let L : X × Y → R be a convex-concave function. We
define the curvature pair (CLx , CLy) of L as

(CLx , CLy) :=

(
sup
f∈F

Cf , sup
g∈G

Cg

)
(A.22)

A.1. DEFINITIONS 75

and the curvature of L as

CL =
CLx + CLy

2
(A.23)

In particular, in our framework, we reduce our study only over the subset
of the non-active components of the saddle point of problem

min
x∈X

max
y∈Y

L (x, y) (A.24)

Hence, we consider a quite different curvature constant. Indeed, if we define
the two sets

X̄ := {xi such that x ∈ X and i ∈ N̄1(x∗, y∗)} ⊆ R|N̄1(x∗,y∗)| (A.25)

Ȳ := {yj such that y ∈ Y and j ∈ N̄2(x∗, y∗)} ⊆ R|N̄2(x∗,y∗)| (A.26)

we study the curvature constant of the function

L̄ : X̄ × Ȳ → R (A.27)

(x̄, ȳ) 7→ L (x, y)

where

xi =

{
x̄i if i ∈ N̄1(x∗, y∗)

0 if i ∈ Ā1(x∗, y∗)
(A.28)

and

yj =

{
ȳj if j ∈ N̄2(x∗, y∗)

0 if j ∈ Ā2(x∗, y∗)
(A.29)

Clearly, when we compute the suprema in the definition of CL̄ , we are
considering fewer cases than in the definition of CL . For this reason, it
yields CL̄ ≤ CL .
For a complete description of this constant we refer to [10].

A.1.5 Interior strong convexity constant

Similarly, we define an affine invariant measure of strong convexity for the
points in the relative interior of a convex set X .

Definition A.13. Let xc be a point in the relative interior of X . The
interior strong convexity constant for f with respect to the reference point
xc is defined as

µxcf := inf
x∈X\{xc}
s=s̄(x,xc,X)
γ∈(0,1]

z=x+γ(s−x)

2

γ2
(f(z)− f(x)− < z − x,∇f(x) >) (A.30)

where s is the point where the ray from x to the reference point xc pinches
the boundary of the set X , i.e. s̄(x, xc,X) := ray(x, xc) ∩ ∂X , where ∂X is
the boundary of the convex set X .

76 APPENDIX A. PROOFS OF CONVERGENCE THEOREMS

This new constant gives us some informations about the feasible set X and
the convex function f . In particular, while the curvature constant provides
an upper bound for the deviation of f from its linearization, the interior
strong convexity constant gives a lower bound. Indeed, by definition, we get

f(z)− f(x)− < ∇f(x), z − x > ≥ γ2

2
µxcf (A.31)

Also this constant can be extended to the convex-concave context.

Definition A.14. The SP-FW interior strong convex-concavity constants
with respect to the reference point (xc, yc) are defined as:

(µxcL , µ
yc
L) :=

(
inf
f∈F

µxcf , inf
g∈G

µycg

)
(A.32)

Moreover, we define the smallest quantity of both

µint
L = min{µxcL , µ

yc
L } (A.33)

As described for the curvature constant, in the active-set framework, we
refer to the strong interior constant of the function L̄ defined in (A.27). In
this case, since we consider the infima in a smaller set, we have µint

L ≤ µint
L̄

We refer to [12] for a detailed description of this constant.

A.1.6 The bilinearity coefficient

In the convergence proof, it is necessary to relate the gradient at the point
(xk, yk) with the one at the point (xk, y∗) and the one at the point (x∗, yk).
For this reason, we define the following quantities.

Definition A.15. Let L be a strongly convex-concave function, and let
(x∗, y∗) be its unique saddle point. Let L ∗ := L (x∗, y∗). We define the
bilinearity coefficients (MXY ,MY X) as

MXY := sup
y∈Y

x,s,v∈X
d=s−v

〈
d,
∇xL (x, y∗)−∇xL (x, y)√

L ∗ −L (x∗, y)

〉
(A.34)

and

MY X := sup
x∈X

y,s,v∈Y
d=s−v

〈
d,
∇yL (x, y)−∇yL (x∗, y)√

L (x, y∗)−L ∗

〉
(A.35)

We also define the global bilinearity coefficient as

ML := max{MXY ,MY X} (A.36)

A.1. DEFINITIONS 77

A.1.7 Suboptimality Functions

To establish convergence, we need to define some quantities of interest. In
classical convex optimization, when we deal with the problem

min
x∈X

f(x), (A.37)

we usually define the suboptimality error as

f(xk)−min
x∈X

f(x) (A.38)

and proving that this quantity goes to 0 is enough to establish convergence.
However, when we study the saddle point problem

min
x∈X

max
y∈Y

L (x, y) (A.39)

the quantity L (xk, yk)−L (x∗, y∗) is no longer non-negative and it can be
zero for an infinite number of points without them being saddle points.
For this reason, we need to introduce a new suboptimality error sequence.

Definition A.16. We define the primal suboptimality as

hk := L (xk, ŷk)−L (x̂k, yk) (A.40)

where x̂k ∈ arg minx∈X L (x.yk) and ŷk ∈ arg maxy∈Y L (xk, y)

Then, to get a convergence rate, we have to upper bound this primal subop-
timality, but working with the moving quantities x̂k and ŷk is too hard. To
overcome this problem, we define one more suboptimality error sequence.

Definition A.17. We define the second primal suboptimality as

wk := L (xk, y∗)−L (x∗, yk) (A.41)

Remark A.4. From the above definitions,

L (xk, ŷk) ≥ L (xk, y∗) and L (x∗, yk) ≤ L (x̂k, yk) (A.42)

Then, we get wk ≤ hk.

Clearly, we need to establish that there is some relation between these quan-
tities.
To show this, we need to introduce two more constants.

Definition A.18. We define

PX := sup
x∈X

< ∇xL (x, ŷ(x)), x− x∗ >√
L (x, y∗)−L (x∗, y∗)

(A.43)

78 APPENDIX A. PROOFS OF CONVERGENCE THEOREMS

and

PY := sup
y∈Y

< ∇yL (x̂(y), y), y − y∗ >√
L (x∗, y∗)−L (x∗, y)

(A.44)

where

ŷ(x) := arg max
y∈Y

L (x, y) and x̂(y) := arg min
x∈X

L (x, y) (A.45)

Moreover, we define
PL := max{PX , PY} (A.46)

Finally, we recall that Algorithm 2 stops as soon as the following gap function
reaches a certain tolerance.

Definition A.19. Let

rk :=

(
∇xL (xk,yk)

−∇yL (xk,yk)

)
(A.47)

Then, we define the gap function as

gk :=< dkx,−rkx > + < dky ,−rky >= gkx + gky (A.48)

Hence, we need to show that there is also a strong relation between this gap
function and the primal suboptimalities.

A.2 Important bounds

In this section, we list some bounds that allow us to estimate the geometric
quantities described above. All the proofs of this results can be found in [7].
First, we have that each convex-concave function defined on the product of
two compact sets has a finite curvature constant if its gradient is Lipschitz
continuous.

Proposition A.5. Let L : X × Y → R be a differentiable convex-concave
function. If X and Y are compact and ∇L is Lipschitz continuous, then
the curvature of L is bounded by

CL ≤
LXXD

2
X + LY YD

2
Y

2
(A.49)

where DX and DY are the respective diameter of X and Y, that is

DX := sup
x,x′∈X

‖x− x′‖ and DY := sup
y,y′∈Y

‖y − y′‖ (A.50)

Now, we give some results that relate a strong convex-concave objective
function to the saddle point problem analysis.

A.2. IMPORTANT BOUNDS 79

Proposition A.6. Let L be a uniformly (µX , µY)-strongly convex-concave
function and (x∗, y∗) be the saddle point of L . Then we have for all x ∈ X
and y ∈ Y √

L (x, y∗)−L ∗ ≥ ‖x− x∗‖
√
µX
2

(A.51)

and √
L ∗ −L (x∗, y) ≥ ‖y∗ − y‖

√
µY
2

(A.52)

Proposition A.7. Let L be a convex-concave function. If the reference
point (xc, yc) belongs to the relative interior of X ×Y and if the function L
is strongly convex-concave with a strong convex-concavity constant µ > 0,
then µint

L is lower bounded away from zero. More precisely,

µxcL ≥ µX δ
2
x and µycL ≥ µYδ

2
y (A.53)

where

δx := min
sx∈∂X

‖sx − xc‖ (A.54)

and

δy := min
sy∈∂Y

‖sy − yc‖ (A.55)

Proposition A.8. If X and Y are compact, ∇L is Lipschitz continuous
and L is uniformly strongly convex-concave with constant (µX , µY), then

MXY ≤
2

µY
LXYDX (A.56)

and

MY X ≤
2

µX
LY XDY (A.57)

where LXY and LY X are the partial Lipschitz constants.

Proposition A.9. For any (µX , µY)-uniformly convex-concave function L ,

PX ≤
√

2

µX
sup

z∈X×Y
‖∇xL (z)‖X ∗ (A.58)

and

PY ≤

√
2

µY
sup

z∈X×Y
‖∇yL (z)‖Y∗ (A.59)

Finally, we give the fundamental relation between the primal suboptimali-
ties.

80 APPENDIX A. PROOFS OF CONVERGENCE THEOREMS

Proposition A.10. For any (µX , µY)-uniformly convex-concave function
L ,

hk ≤ PL

√
2wk (A.60)

and

PL ≤
√

2 sup
z∈X×Y

{
‖∇xL (z)‖X ∗√

µX
,
‖∇yL (z)‖Y∗√

µY

}
(A.61)

This result and Remark A.4 guarantee that the convergence of one of the
primal suboptimaly implies also the convergence of the other one.

A.3 Convergence Proof

In this last section we list the results that lead to the convergence of the
algorithms.
The first lemmas guarantees that when the gap function stays under a certain
tolerance, even the suboptimalities are bounded.

Lemma A.11. For all k ∈ N, x ∈ X , y ∈ Y

gk ≥ hk ≥ wk (A.62)

Moreover,

Lemma A.12. If L is a strongly convex-concave function, then for any
(xk, yk) ∈ X × Y

wk ≤ (gk)2

2µint
L

(A.63)

where µint
L = min{µx∗L , µy

∗

L }

On the other hand, also the gap function is bounded by a function of the
second primal suboptimality.

Theorem A.13. If L is strictly convex-concave and has a finite curvature
constant, then for any zk ∈ X × Y

gk ≤ 2

νFW
max

{√
CLwk, w

k

}
(A.64)

Then, the convergence proof follows from the results above and the following
lemma.

Lemma A.14. Let L be a strongly convex-concave function with a finite
curvature constant CL and a positive interior strong convex-concavity con-
stant µint

L . Let us also define the rate multiplier ν = 1− ML√
µintL

. If ν > 0, the

A.3. CONVERGENCE PROOF 81

suboptimality wk of the algorithm with step size γk = min

(
γmax,

ν
2CL

gk
)

decreases geometrically as

wk+1 ≤ (1− ρL)wk (A.65)

where

ρL :=
ν2

2

µL

CL
(A.66)

Finally, we can state the convergence theorem.

Theorem A.15. Let L be a strongly convex-concave function with a fi-
nite curvature constant CL and a positive interior strong convex-concavity
constant µintL . Let us also define the rate multiplier ν = 1 − ML√

µintL

. If

ν > 0, the suboptimality wk of the iterates of the algorithm with step size

γk = min

(
γmax,

2
2+k

)
has the following decreasing upper bound

wk ≤ C

2 + k
(A.67)

where C = 2 max{w0, 2CL
2ν−1} Moreover, we can also upper bound the mini-

mum FW-gap observed for T ≥ 1,

min
k≤T

gk ≤ 5C

ν(T + 1)
(A.68)

82 APPENDIX A. PROOFS OF CONVERGENCE THEOREMS

Bibliography

[1] D.P. BERTSEKAS, Convex Optimization Algorithms, Athena Scien-
tific, 2015

[2] D.P. BERTSEKAS, Convex Optimization Theory, Athena Scientific,
2009

[3] B. COX, A. JUDITSKY AND A. NEMIROVSKI, Decomposition tech-
niques for bilinear saddle point problems and variational inequalities
with affine monotone operators on domains given by linear minimiza-
tion oracles, J. Optim. Theory Appl., 172 (2017)

[4] A. CRISTOFARI, M. DE SANTIS, S. LUCIDI AND F. RINALDI, New
Active-Set Frank-Wolfe variants for minimization over the simplex and
the `1-ball, arXiv:1703.07761, 2017

[5] L. DEVROYE, Non-Uniform Random Variate Generation, Springer,
1986

[6] F. FACCHINEI and S. LUCIDI, Quadratically and superlinearly con-
vergent algorithms for the solution of inequality constrained minimiza-
tion problems, J. Optim. Theory Appl., 85 (1995)

[7] G. GIDEL, T. JEBARA AND S. LACOSTE-JULIEN, Frank-Wolfe Al-
gorithms for Saddle Point Problems, 2016

[8] L. GRIPPO AND M. SCIANDRONE, Metodi di ottimizzazione non
vincolata, Springer, 2011

[9] J. H. HAMMOND, Solving asymmetric variational inequality problems
and systems of equations with generalized nonlinear programming al-
gorithms, PhD thesis, Massachusetts Institute of Technology, 1984

[10] M. JAGGI, Revisiting Frank-Wolfe: Projection-Free Sparse Convex
Optimization, in ICML, 2013

[11] A. JUDITSKY AND A. NEMIROVSKI, Solving variational inequali-
ties with monotone operators on domains given by linear minimization
oracles, Mathematical Programming, 2016

83

84 BIBLIOGRAPHY

[12] S. LACOSTE-JULIEN AND M. JAGGI, An affine invariant lin-
ear convergence analysis for Frank-Wolfe algorithms, arXiv preprint
arXiv:1312.7864, 2013

[13] S. LACOSTE-JULIEN AND M. JAGGI, On the Global Linear Con-
vergence of Frank-Wolfe Optimization Variants, in NIPS, 2015

[14] R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press,
1997

[15] B. RUSTEM AND M. HOWE, Algorithms for Worst-Case Design and
Applications to Risk Management, Princeton University Press, 2002

[16] P. VIANNEY AND G. VIGERAL, A minmax theorem for concave-
convex mappings with no regularity assumptions, Journal of Convex
Analysis, Heldermann, 2015

[17] N. XIU AND J. ZHANG, Some recent advances in projection-type
methods for variational inequalities, Journal of Computational and Ap-
plied Mathematics, 2003

