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Abstract

The axion provides a well-motivated extension of the Standard Model
(SM) addressing the strong CP problem and yielding a dark matter
candidate, with implications across particle physics, cosmology and as-
trophysics. It has been recently pointed out that non-universal axion
models (in which the axion couples differently to different SM fermion
generations) allow to suppress the axion coupling to nucleons and elec-
trons, and relax in turn astrophysical axion bounds. A remarkable
consequence of non-universal axion models are flavour-violating axion
couplings, which can be tested in low-energy flavour experiments. The
aim of the thesis is to study the interplay between different sources
of flavour violation, involving both the axion field and the heavy radial
modes, which are unavoidably present in UV complete non-universal ax-
ion models. The study of the latter sources of flavour violation, within a
specific UV complete non-universal axion model, represents the original
contribution of the present thesis.
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Introduction

Most particle physics experiments are nowadays explained by the Stan-
dard Model (SM), the theoretical framework describing all known funda-
mental interactions (with the exception of gravity). However, there are
several reasons (based both on theoretical arguments and experimental
facts, such as the presence of the DM matter in the Universe or the
small value of the QCD angle) why the SM of particle physics should
extend. One of the most popular extensions of the SM is provided by
the axion framework, which originally arose as a solution to the strong
CP problem, namely to explain the absence of CP violation in strong in-
teractions. Following the seminal work of R. Peccei and H. Quinn [1; 2],
which proposed a spontaneously broken and anomalous U(1)PQ (here-
after denotes as Peccei Quinn (PQ) symmetry) global symmetry as the
solution of the strong CP problem, S. Weinberg [3] and F. Wilczek [4]
subsequently realized the existence of an associated (pseudo) Goldstone
boson that was named “axion” like the name of a laundry soap, since
it “washes out” CP violation from strong interactions. After a while it
was also realized that axions do contribute to the energy density of the
Universe and they might comprise the totality (or a fraction) of the cold
Dark Matter (DM) [5; 6; 7].

Experimental axion searches are often interpreted in the context of a
couple of benchmark axion models, which are the so-called KSVZ [8; 9]
and DFSZ [10; 11] axion models. However, benchmark axion models
are sometimes too restrictive and, given the active experimental axion
program, it is important to consider more general axion models in order
to widen the prospects for an axion discovery.

For instance, both KSVZ and DFSZ models are based on the not
so strongly motivated assumption of universality of PQ charges, namely
that all SM fermion generations of a given flavour (up- and down-type
quarks and charged leptons) have the same PQ charge. On the other
hand, relaxing the assumption of universality of PQ charges is inter-
esting in several respects, including: i) the possibility of relaxing the
Supernova bound on the axion mass [12], ii) a possible connection with
the SM flavour puzzle [13] and iii) the experimental opportunity of dis-
covering the axion via flavoured axion searches. In fact, one of the most
striking consequences of non-universal axion models is that, after going
to the mass basis, flavour-violating axion couplings to SM fermions are
generated.

The goal of this thesis is to study flavour-violating signatures of non-
universal axion models. In particular, we will investigate the interplay
between different sources of flavour violation, arising both from flavour-
violating axion couplings and the ultraviolet (UV) degrees of freedom
present in UV complete non-universal axion models. The latter sources

3



of flavour violation have been less studied in the literature (for a work
going in this direction see e.g. [14]) and they constitutes the original
contribution of the present thesis, which is structured as follows.

In the first chapter, we provide the reader with an organic introduc-
tion to axion theory. We discuss the strong CP problem, as the theoret-
ical framework from which the axion arises, and explain the structure of
the QCD vacuum. We next introduce the PQ mechanism as a solution
to the strong CP problem and the axion as a low-energy remnant. Axion
properties, such as mass and couplings, are derived within an Effective
Field Theory (EFT) framework. We finally discuss axion UV comple-
tions and, in particular, the so-called KSVZ and DFSZ benchmark axion
models.

The second chapter encompasses a more phenomenological discus-
sion about axion physics. The chapter is divided in three main sections
concerning astrophysical bounds, cosmological implication and experi-
mental searches. Although this is in principle a vast area of research, the
emphasis is given here to astrophysical aspects, which are more closely
connected to the non-universal axion models considered in this thesis.

In the third chapter, we introduce the general structure of non-
universal axion models. After presenting some general motivations, we
focus on the main theoretical consequences of these new models dis-
cussing, in particular, flavour violating sources both from infrared (IR)
and UV dynamics.

In the forth chapter we analyse in greater detail a specific non-
universal axion model. After specifying the full Lagrangian, we discuss
the Yukawa and scalar sectors, carry out explicitly the diagonalization of
fermion masses and compute the scalar spectrum. This is a preliminary
step that is needed in order to integrate out the heavy scalar degrees of
freedom of the UV completion and obtain in turn the flavour-violating 4-
fermion operators, which constitutes the UV sources of flavour violation.
Finally, we provide a comparison between different sources of flavour vi-
olation, highlighting possible correlations which depend however on a
set of working assumptions.

We conclude in the fifth chapter, where we summarize the main
results of the thesis and discuss a possible outlook for a future work.
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Chapter 1

Axion theory

In this first chapter, we introduce the axion concept from a theoretical
point of view. After briefly discussing why it is necessary to go beyond
the SM, we will give a theoretical motivation for the introduction of the
axion particle based on the so-called strong CP problem. In the second
part, we will show how the axion solves the strong CP problem and
discuss standard axion models.

1.1 The axion as a pathway beyond the Stan-
dard Model

Up to now, the SM seems to be the most accurate theory which can
be used to describe particle physics. It comprises some fundamental
building blocks: fermions, gauge bosons, and the Higgs boson. The first
ones include three generators of quarks and leptons. The gauge bosons
are W± and Z, photons, and gluons, which respectively mediate weak,
electromagnetic, and strong interactions. The Higgs boson is a scalar
field responsible for giving mass to all SM particles. The SM, at the
level of accuracy of today experiments, has been tested down to scales
of the order of 10−16cm. However, the SM seems not to be the ulti-
mate theory of particle physics. Indeed, cosmological experiments and
observations suggest the presence of a large quantity of DM in the Uni-
verse and highlights a matter-antimatter asymmetry. In addition, SM
is not able to describe inflation too. All of these evidences, as well as
the origin of neutrino masses, remain unexplained in the SM. Moreover,
the SM suffers also from other, more theoretical, issues called natural-
ness problems. They are related to the fact that some parameters are
extremely small. These include, for instance the Higgs mass parameter
mH ∼ 10−17mPL or, as we will discuss in the next section, the QCD
theta angle which is θ ≲ 10−10 [15]. Finally, using SM we cannot explain
the specific structure of Yukawa matrices. Hence, it should be quite clear
that it is necessary to go beyond the SM in order to solve some of these
issues.

A good way to extend the SM would be to find a new theory that
solves at the same time several of the above mentioned problems. This is
one of the reasons why the axion, a spin-zero pseudo-scalar particle pre-
dicted by PQ mechanism [1; 2], is considered to be a compelling candi-
date. Indeed, the non-trivial vacuum structure of Quantum Chromody-
namics (QCD) leaves us with an open question, the so-called Strong CP
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CHAPTER 1. AXION THEORY

problem: why there is no CP violation in strong interaction, namely why
is CP a good symmetry? Peccei and Quinn tried to solve the problem
introducing a new U(1)PQ symmetry, anomalous at the quantum level
which spontaneously breaks at high energy. Subsequently, Weinberg and
Wilczek [3; 4] identified the pseudo Nambu-Goldstone boson, produced
by the spontaneous symmetry breaking (SSB) of this new global sym-
metry, as the axion (in the following, the axion field will be indicated as
a(x)). As we will discuss later, the axion acquires a mass and it couples
with other particles, such as electrons, photons, pions and kaons. Both
the mass and the interactions, are inversely proportional to fa, the en-
ergy scale at which the U(1)PQ symmetry breaks down. Although in
the original models fa was of the order of Electroweak (EW) scale, it
was later on realized that fa needs to be much larger than the EW scale
[11; 16]. This fact has crucial consequences: since the axion mass is
small (ma ≪ eV) and it is weakly coupled with other particles, it could
play the role of DM particle. In this way the solution of a theoretical
problem related to the QCD vacuum structure, could also be the right
way to solve a critical cosmological issue.

Furthermore, the axion hypothesis has many other implications both
in cosmology and astrophysics. Indeed, as mentioned above, since the
axion is light and its couplings are particularly small, it constitutes a
so-called weakly interacting slim particle (WISP) [17]. This implies im-
portant constraints regarding astrophysics and, especially, stellar cool-
ing. In addition, even though, we will show in the next sections that the
axion is lighter than at least two of the three types of neutrinos, with a
mass that is ma ≪ eV, it could be the major constituent of the DM of
the Universe.

Up to the present day, experiments aimed at detecting the existence
of these particles did not give any positive result, but it must be stressed
that only a small part of the relevant parameter space has been explored
so far. It is likely that in the coming years a large portion of the axion
parameter space will be explored, also using new detection techniques.

1.2 The Strong CP Problem

To the arbours of the development of the theory of QCD, the U(1)A
problem was considered one of the greatest difficulties to overcome: al-
though it seemed to be a good symmetry on a theoretical level, this was
not reflected at all in the real world [18]. In fact, as a consequence of
the spontaneous U(1)A symmetry breaking, a pseudo Goldstone boson
with a mass smaller than

√
3mπ would be predicted [19]. Nevertheless,

the heaviness of the meson η′ did not seem to confirm this prediction.
The solution to this problem came with the formalisation of the concept
of instantons [20]. On the other hand, this new field dragged with it
a new term of CP violation. Let us discuss this point in more detail.
From the CPT theorem we know that the only transformation which
maintains the action unaffected is a combination of all three symme-
tries: C, P and T. From theoretical considerations we can establish that
only electromagnetism remains unchanged under an individual C, P and
T transformation, and in turns under a CP one. While, in the case of
strong interactions we expect a detectable CP violation, since CP is not
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1.2. THE STRONG CP PROBLEM

a symmetry of the theory. However, experimental results on the neutron
Electric Dipole Moment (nEDM) show with good accuracy the absence
of a CP violation (see e.g. section 1.2.3). This fact, known as strong
CP problem, will be discussed in the following sections. First, we will
discuss the non-trivial vacuum structure of QCD and how the strong CP
problem emerges, then we will introduce the PQ solution and present
some axion models.

1.2.1 Instantons and the QCD vacuum structure

In order to study properties of the QCD vacuum structure, let us intro-
duce the QCD Lagrangian:

LQCD =
∑
q

q̄(i /D −mqe
iθqγ5)q − 1

4
Ga

µνG
aµν + θ

gs
32π2

Ga
µνG̃

aµν , (1.1)

where the apex a is a colour index and G represents the field strength
tensor of QCD. In particular we will use the following notation

GG̃ = Ga
µνG̃

aµν , G̃aµν =
1

2
ϵµνρσGa

ρσ , (1.2)

with ϵ0123 = −1 and

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + igsf

abcAb
µA

a
ν . (1.3)

We focus our attention on the last term of eq. 1.1. We will call
it the theta term or GG̃ term: it is allowed by gauge invariance and
renormalisability (it is a 4-dimensions operator as the second term in
the Lagrangian). However, this term carries crucial properties. Firstly,
it violates both P and T symmetry, consequently because of the CPT
theorem, it also violates CP. To prove this in a simple way, one could
demonstrate it using Electrodynamics and then generalise it including
the non-Abelian term. Secondly, through a mathematical manipulation
of the theta term, it is possible to demonstrate that it is described by a
total derivative: 1

GG̃ = ∂µ[ϵ
µνρσ(AνG

a
ρσ − gs

3
fabcAa

νA
b
ρA

c
σ)] . (1.4)

We will call the term in square brackets Chern-Simons current and in-
dicate it with Kµ.

As a consequence, since the GG̃ term is a total derivative, one does
not expect effects in the perturbative theory. However, it can bear some
physical consequences due to the presence of QCD instantons. The QCD
instantons are classical solutions of the Euclidean Equation of Motion
(EOM) with a finite action SE . These solutions which correspond to
classical configurations are topological and can be found studying the
Euclidean action. Considering, at this stage, only gluons, it is propor-
tional to: ∫

d4xGG̃ =

∫
d4x∂µK

µ =

∫
S3

dσµK
µ, (1.5)

1Again, to demonstrate it one can pass through the simpler electrodynamics case
and then generalise it showing that the extra pieces are zero because of the Jacoby
Identity.
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CHAPTER 1. AXION THEORY

where the last passage corresponds to a surface integral with 3-Sphere at
infinity. In order for this configuration to have a non-zero contribution,
we have to impose the action is finite, namely

Ga
µν

∣∣∣∣
S3

|x|→∞−−−−→ 0 . (1.6)

Besides the trivial solution Aa
µ|S3 = 0, since we are in a gauge theory, it

is possible to perform a gauge transformation giving:

A
′a
µ

∣∣∣∣
S3

= (U−1AµU +
i

gs
U∂µU)

∣∣∣∣
S3

, (1.7)

which gives (if we consider Aµ = 0)

A
′a
µ

∣∣∣∣
S3

=
i

gs
U∂µU

∣∣∣∣
S3

. (1.8)

This gauge transformation is called pure gauge. What we want to com-
pute is a solution from the vacuum, mapping this SU(2) gauge trans-
formations in the S3 Euclidean space [21]. To discuss the existence of
integral solutions of eq. 1.5, it is necessary to introduce a topologi-
cal quantity described by the winding number ∈ Z. Taking a point,
the winding number represents the number of times a curvilinear tra-
jectory revolves around it counterclockwise. However, it is possible to
demonstrate that this parameter has a physical description, i.e. it is
strictly connected to the vacuum state. It is important to notice that it
is not possible to pass from a configuration described by a given wind-
ing number into another configuration with a different winding number
maintaining the action finite. To learn the connection between maths
and physics, let us discuss the following equation about the action S:

S =
1

4

∫
d4xGa

µνG
aµν =

=
1

4

∫
d4x[±Ga

µνG̃
aµν +

1

2
(Ga

µν ∓ G̃a
µν)

2] .

(1.9)

The last term of the latter equation is always equal, or larger, than zero
since it is the intgral of a positive quantity. This yields the Bogomol’nyi
inequality [22]. Instead, the first term in the last equality, which is what
we called Chern-Simons current Kµ in eq. 1.4, requires to be studied.
In particular, we can work in the temporal gauge, where Aa

0 = 0, so
that the only non vanishing component of the Chern-Simons current
is the temporal one, while Ki = 0 [23]. In this way, passing into the
Minkowsky spacetime:

g2s
32π2

∫
d4xGa

µνG̃
aµν =

g2s
32π2

∫
d4x∂0K

0 =

g2s
32π2

∫
d3xK0

∣∣∣∣t=+∞

t=−∞
=

g2s
32π2

(m− n) ≡ ν .

(1.10)

Therefore, since ν is a topological invariant and the last term in eq. 1.9
is a non negative quantity as just discussed, the action will be minimal
if we have a self or anti-self dual field, that is:
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1.2. THE STRONG CP PROBLEM

Ga
µν = ±G̃a

µν . (1.11)

Coming back to the physical interpretation of the winding number,
considering 1.10, the instantonic solution described by the passage from
m to n, can be considered as a tunnelling effect from the vacuum state
|m⟩ to |n⟩ through a gauge rotation [24]. The transition probability be-
tween a vacuum state and the other one is described by the exponential
of the instanton action e−Sν where, from [25],

Sν =
8π2

g2s
ν . (1.12)

Clearly, the higher the number, the larger the suppression and, there-
fore, the lower the probability of tunnelling. This is the reason why
configurations characterised by a winding number larger than one are
typically negligible. The explicit configuration with a ν = 1 was found

by Belavin et al. in [26] and yields S1 =
8π2

g2s
. In conclusion, the action

can be rewritten with an extra factor as

S → S + iθ
g2s

32π2

∫
d4xGa

µνG̃
aµν . (1.13)

The last expression explicitly shows that the non-trivial structure of the
Yang-Mills vacuum demands a gauge field transformation with a non-
trivial winding number. This fact requires the inclusion of the GG̃ term
in the Lagrangian, which, in turn, has the necessary features to solve the
U(1)A problem. Indeed, the complex nature of QCD explains why the
U(1)A is no more a symmetry of QCD [21; 20] and gives an explanation
to the heaviness of η′ meson.

1.2.2 θ dependence of QCD vacuum energy

We discuss how the energy depends on θ and to achieve this point let
us consider the partition function.

In the Euclidean2 the partition function is given by the path integral
of the exponential of the action3 :

Z =

∫
DAe−

1
4

∫
d4xGG+iθ

g2s
32π2

∫
d4xGG̃ . (1.14)

We can approximate this path integral along one of the instanton so-
lutions discussed before, making a saddle point approximation. There-
fore, the first functional derivative contribution goes to zero because of
the fact that it is a solution of EOM, and just the correction from the
quadratic term in the path integral remains. Using the results com-
puted in eq. 1.12 and considering the case of unit winding number, the
partition function can be approximated as

Z ≈ e
− 8π2

g2s
±iθ
, (1.15)

2In order to pass from the Minkowski coordinates to the Euclidean ones, it is
necessary to perform the analytic continuation t = −itE . Due to the presence of the
ϵµνρσ tensor, the GG̃ term gains an i factor.

3Notice that in eq. 1.14 A stands for the gluons fields.
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CHAPTER 1. AXION THEORY

where the plus or minus sign stands for the instanton and anti-instanton
contributions. Summing over them we get:

Z ∝ 2 cos θe
− 8π2

g2s . (1.16)

The above result is computed in the semi-classical approximation, con-
sidering ℏ → 0 and expanding the action in this limit. To take into
account also the quantum corrections, it is possible to modify the cou-
pling constant gs turning it into a running constant gs(µ = 1/ρ) where
ρ describes the centre of the instanton field configuration, i.e. the size of
the instanton. In the light of the fact that we are computing a path inte-
gral, we should sum over all possible ρ: at the classical level, considering
energy around 1/ΛQCD ∼ 150MeV, this contribution diverges since the
coupling constant becomes larger and larger. However, some instanton
configurations will dominate the contribution to the path integral. To
see this, let us define the expression for the coupling constant running
with the energy as

g2s(µ) =
8π2

β0 log(
µ

ΛQCD
)
, (1.17)

where β0 = 11− 2nf/3 is always positive with nf = 1, 2, ..., 6 represent-
ing the active flavours. When the energy is high an exponential sup-
pression takes place. On the contrary, if we consider a low energy (large
distance) regime, both gs and ρ become lager, and the exponential is
not suppressed. These configurations are the so called large instantons.
Formally this becomes:

e
− 8π2

g2s (1/ρ) = (ρΛQCD)
β0 . (1.18)

In conclusion, it is crucial to notice that, since the semi-classical approx-
imation breaks down at energy around 1/ΛQCD, other approaches based
e.g. on Chiral Perturbation Theory (χPT ) are necessary4. Moreover, it
can be shown that at large V4 Euclidean volume the partition function
of QCD, Z(θ), is related to the QCD vacuum energy density E(θ) as
Z ≈ e−E(θ)V4 . In the following, we will exploit this relation in order
to derive some general properties of the theta dependence of the QCD
vacuum energy density.

Including quarks

Up to now, the discussion was made by neglecting quarks. Hence, we
need to generalise the theory including the quark sector. Rewriting the
mass terms in eq. 1.1 and including the Hermitian conjugate ones, we
obtain:

LQCDmasses =
∑
q

(q̄i /Dq −mq q̄Le
iθqqR −mq q̄Re

−iθqqL) . (1.19)

4QCD can be treated in perturbation theory at high energies, since the asymptotic
freedom ensures the small coupling values. This is no longer a good approach at low
energies where the Landau pole does not allow us to use perturbation theory. Hence,
one needs alternative low-energy descriptions, such as chiral perturbation theory [27].
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1.2. THE STRONG CP PROBLEM

Let us perform a global chiral transformation on a single quark field
q → eiγ5αq, which, in left-right components, reads:{

qL → e−iαqL

qR → eiαqR
. (1.20)

The mass term is not invariant under this transformation: precisely the
operator mq̄q transforms as mq̄q → m2iαq̄q. In this way, the θq term is
rotated of an angle 2α and so it transforms as

θq → θq + 2α . (1.21)

At the same time the axial current J5
µ = ψ̄γµγ5ψ is anomalous, indeed

we obtain an extra term which is also reflected by the non-invariance of
the path integral measure [28]:

DqDq̄ → DqDq̄e−i
g2s

16π2 α
∫
d4xGG̃ . (1.22)

Note that, the extra term in the transformation has the same structure
of the θ term in 1.1. Because of this, the θ gets a shift as well with the
opposite sign:

θ → θ − 2α . (1.23)

Therefore, putting together the two results, we can define a new object
θ̄ as the only invariant quantity:

θ̄ = θq + θ . (1.24)

Being an invariant term, this is the only physical quantity. All the
constraints which we will find, will be referred to this new parameter,
namely it is not possible to measure separately the topological θ and the
phase of the quark mass5.

The relation in eq. 1.24 can be rewritten in the electroweak (EW)
theory context. Let us consider the quark multiplet q = (u, d, ...) and
an axial transformation in the flavour space q → eiγ5αQaq, where Qa is
a nf × nf diagonal matrix. The Lagrangian term involving the quark
masses is described by a diagonal matrix Mq which originates from the
Yukawa matrix, which, in turn, transforms separately on the right and
left handed terms. The implementation of the rotation above in the
Lagrangian provides a shift in the mass phase Mq →Mqe

2iαQa , i.e.:

arg detMq → arg detMqe
2iαQa = arg detMq + 2αTrQa . (1.25)

In the same way, but with the opposite sign, the theta term transforms
as:

θ → θ − 2αTrQa . (1.26)

Finally, if we consider the mass matrix as proportional to the product
of the up and down Yukawa matrices, the physical value will become:

θ̄ = θ + arg detYuYd . (1.27)

Let us now consider a rotation through which we reabsorb θq term so
that θ̄ = θ. It is possible to define three different properties about the θ
dependence of the vacuum energy, as discussed in the following.

5Notice that, conventionally, θq term is not present in the Lagrangian. This is due
to a possible rotation through which θq phase is reabsorbed in θ term that, in turns,
is not present in QCD Lagrangian.
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CHAPTER 1. AXION THEORY

Figure 1.1: The figure represents how energy changes with respect to
N = θν. From the diagram, the three properties described below are
clear: the global minimum of the energy is located in zero, the function
has a periodicity of 2π and, finally, it exhibits an even behaviour. It
is crucial to point out that we do not know anything about the trend
of the function between the minimums and the maximum, which is for
this reason sketch with a dashed line.

1. θ = 0 corresponds to a global minimum.
The proof of this statement is proved by [29]. Briefly, exploiting
the Cauchy-Schwarz inequality:

Z(θ) =

∫
Dϕe−Sθ=0+iθ

g2s
32π2

∫
d4xGG̃

≤
∫ ∣∣∣∣Dϕe−Sθ=0+iθ

g2s
32π2

∫
d4xGG̃

∣∣∣∣
=

∫
Dϕe−Sθ=0 = Z(0)

(1.28)

Note that in the first passage we use the fact that the path inte-
gral measure is always positive defined, since we are working in a
vector-like gauge theory like QCD [30], that is the theory which
we are dealing with. Moreover, the absolute value removes the
imaginary part of the exponential. Hence, recalling the relation
Z(θ) ≈ e−E(θ)V4 , one finds E(θ = 0) ≤ E(θ).

2. E(θ) = E(θ + 2π).
This is simply due to the fact that ν is an integer number and
θ is a global phase. As a consequence, the GG̃ integral in the
exponential corresponds to θν which has a 2π periodicity.

3. E(θ) = E(−θ).
The demonstration of this property is provided by performing a
CP transformation ϕ → ϕ′. The measure of the path integral is
symmetric under it, i.e. Dϕ remains invariant, but the theta term
in the exponential changes sign. Hence the partition function, and
then also the energy, is even.

Without having to make specific calculations, the three properties
above define the positivity (including the value of the minimum), the
periodicity and the even behaviour of the vacuum energy function, as
suggested by the instanton approximation. As we can see in Fig. 1.1, the
function could be approximated by a cosine-like function. Nevertheless,
it is important to notice that we do not know at this point the exact
functional dependence. We will find in the next sections, using χPT ,
what is the correct dependence from θ of the QCD energy density.
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1.2. THE STRONG CP PROBLEM

Figure 1.2: Neutron EDM Feynman diagram. It can be seen the pres-
ence of the loop and the photon emission which gives the suppression
factor in the definition of the neutron dipole. Figure from [31].

1.2.3 The neutron Electric Dipole Moment

The physical quantity θ̄ can be tested via the measurement of the nEDM.
Let us consider the non relativistic Hamiltonian:

H = −dnE⃗ · Ŝ (1.29)

The action of a time-transformation changes the sign of the last expres-
sion. Therefore, because of the validity of the CPT theorem, if dn ̸= 0,
than CP should be violated. This is not what happen in experiments:
no CP-violation in the strong sector has ever been seen. Hence, it is
possible to put a constraint in the value of dn, obtaining [15]:

dn < 1.8 · 10−26e cm (90% CL) . (1.30)

Starting from the relativistic QCD theory, the nEDM is generated as
the non-relativistic limit of the following Lagrangian term:

L = −dn
i

2
n̄σµνγ5nF

µν . (1.31)

Since the Lagrangian operator has dimension equal to 5, then dn should
go as the inverse of a mass. Hence, given that the only possible mass
term is the neutron one,mn, one could expect that dn ∝ 1

mn
. If that were

the case, it would be a problem: dn would become too large because of
the size of the neutron mass. However, it is crucial to take into account
two points. Firstly, as one can see in Fig. 1.2, the process is described
by a loop, then a suppression factor is expected. Secondly, we gain
a possible imaginary phase6 from the quark mass7, so one can write:
mqe

iθ̄ ∼ mq(1 + iθ̄) if θ̄ is sufficiently small (hypothesis which we will
confirm in a while). On the whole of that, the dn gains two suppression
factors and it will become8:

dn ∼ 1

mn

e2

16π2
mq

mn
θ̄ ∼ 10−4 θ̄ eGeV−1 . (1.32)

6The final results should be proportional to the imaginary part since the dipole
operator in eq. 1.31 is purely imaginary.

7We are working on the opposite situation with respect to before: here the base
considered reabsorbs, with a rotation, the GG̃ term, leaving only the quark mass
term. In this way θ̄ = θq.

8In eq. 1.32, the last mn in the denominator allows us to get back the correct
mass dimensions
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CHAPTER 1. AXION THEORY

This is obviously a naive approximation which could give an idea
of which factors are involved. Most accurate computations based on
barion χPT , lattice QCD9 or QCD sum-rules, give us a more restrictive
constraint [32; 33; 34]:

dn = 2.4 · 10−16θ̄e cm ∼ 1.2 · 10−2θ̄eGeV−1, (1.33)

thus the bound on θ̄ is:

|θ̄| ≲ 10−10 . (1.34)

The strong CP problem is to figure out why this value is so small. As we
defined in eq. 1.23, θ̄ has two contributes. This means that either there is
a cancellation between them, but there is no physical connection between
the θ and θq, or both of them are zero. This is not the end of the story,
indeed it can be demonstrated that θ̄ is radiatively stable. It is necessary
to consider 7-loop effects to obtain the first divergent contribution [35].
In the light of this, it is readily apparent that the solution to the strong
CP problem must come from deeper considerations.

1.2.4 Non-axionic solutions

During the years many proposals have been introduced to solve the CP
problem without using the axion: we will outline three of them.

• The first way to avoid the CP problem could be to consider mass-
less quarks (at least up quark mass). One can easily check from
eq. 1.27 the theory would gain a new U(1) axial symmetry, if the
quarks had null mass. In this way, it would be possible to ro-
tate away the θ-term via an axial field redefinition of the massless
quark. Even though for some time this was believed to be a pos-
sible solution, recent studies from lattice QCD [36] excluded the
possibility of massless up quark, giving a non-zero mass value that
is mM̄S

u (2GeV) = 2.32(10)MeV. Moreover, even the introduction
of a new massless quark would not explain the problem as there
would be unwanted repercussions on the hadron’s spectrum.

• Another choice is to consider that P or CP are softly broken. In
particular, one could consider that P (or CP) is a symmetry in the
UV theory, giving θ̄ = 0; models like these were proposed also in
Grand-Unified Theory context in [37]. However both P and CP
are violated in weak theory: chiral structure needs a P symmetry
violation to be explained, whereas CP violation is needed to gen-
erate the CKM phase. In this regime the θ̄ is non vanishing and
calculable. The main problem is to define a reasonable value of θ̄
to describe weak interaction and, at the same time, to respect the
experimental bound of |θ̄| ∼ 10−10 in the quark sector.

• The last option discussed is to consider the solution of the CP
problem using the IR dynamics of QCD. From this point of view
the presence of the parameter θ could come from an incorrect
consideration of the topology of space time, which should therefore

9In the Lattice theory the spacetime continuum is replaced with a set of discrete
points and the path integral in the Euclidean space becomes just an ordinary integral
described by a huge number of variables.
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1.3. THE PECCEI-QUINN MECHANISM

be changed [38; 39]. However, this type of solutions often fails in
the explanation of the U(1)A problem, leaving the heavy mass of
η′ beyond comprehension.

While some of the solutions proposed so far are experimentally ex-
cluded, others (like the softly P or CP broken solution) are difficult to
be tested experimentally since the dynamics is hidden in the UV at very
high-energy. In the next section, we will present instead what is arguably
the most appealing solution: the Peccei-Quinn mechanism. It is able to
provide an explanation of the strong CP problem and, simultaneously,
it delivers a new detectable particle in the IR, the axion.

1.3 The Peccei-Quinn Mechanism

In 1977 Peccei and Quinn [1; 2] proposed a solution of the strong CP
problem which assumes the presence of a new spin zero field a(x), called
axion field. Using a bottom-up approach in the EFT context it is pos-
sible to write the following effective Lagrangian:

La =
1

2
(∂µa)

2 + L(∂µa, ψSM ) +
g2s

32π2
a

fa
GG̃ . (1.35)

The axion field posses a pseudo-shift symmetry that is a(x) → a(x) +
αfa, where fa indicates a mass scale known as axion decay constant.
The shift of the action under this pseudo-symmetry is:

δS =
g2s

32π2
αGG̃ . (1.36)

Hence, the parameter α is able to wash θ̄ out, if we choose it to be α =
−θ̄. However, a crucial point is in order here. The vacuum expectation
value (VEV) of the axion field must be set to zero, otherwise the strong
CP problem will be reintroduced. This statement is guaranteed by the
Vafa-Witten theorem [29], which follows from eq. 1.28. Indeed, the
same properties of θ apply as well to the background axion field, that
is ⟨a⟩ = 0 is a global minimum of the axion potential. Also in this case
this is a consequence of the fact that QCD is a vector-like theory, and, in
turn, this guarantees that in the path integral measure is positive definite
[30]. The very same results can be found computing the minimum of
the axion potential V (a) within the chiral Lagrangian techniques, as we
will do in the next section.

Before discussing the proprieties of the axion effective Lagrangian,
some remarks are in order. The new gauge term in eq. 1.35 is no
more described by a total derivative, hence one should expect effects in
perturbation theory. Moreover the Lagrangian is non-renormalisable, in
particular the axion-gluon operator has dimension 5. This means that
fa describes the cut off energy at which the EFT breaks down and, for
this reason, a UV completion is necessary. The first axion model was
build by Peccei and Quinn [1; 2] in which they included a U(1)PQ global
chiral symmetry, extending the global symmetries of the SM. This new
symmetry is spontaneously broken and anomalous under QCD. Later on
Weiberg and Wilczek [4; 3], built on the original model and identified
the pseudo-Goldstone boson produced by the spontaneous symmetry
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CHAPTER 1. AXION THEORY

breaking as the axion particle. Before coming to the discussion of explicit
axion models, we will consider in the following some general properties
of axion effective Lagrangians.

1.3.1 The effective axion Lagrangian

The main goal of this section is to derive the axion potential using an
EFT within χPT (see e.g. [40]), since we are working at low energies,
below the scale of QCD confinement ΛQCD ∼ 200MeV. The choice
to work with χPT will be justified at the end of this section with the
computation of the axion mass, which turns out to be parametrically
smaller than ΛQCD. The following discussion is model-independent and,
for simplicity, we will take into account a 2-flavour QCD with:

q =

u
d

 , Mq =

mu 0

0 md

 , (1.37)

since the up and down quarks are the lightest ones with masses mu ≃
2.32MeV and md ≃ 4.71MeV [36]. In these terms the axion effective
Lagrangian reads

Leff
a =

1

2
(∂µa)

2−q̄LMqqR+
∂µa

2fa
q̄c0qγ

µγ5q+
1

4
g0aγaF F̃+

a

fa

g2s
32π2

GG̃+h.c. ,

(1.38)
where c0q and g0aγ describes respectively the coupling diagonal matrix

between axion and quark axial current and the coupling between FF̃
and the axion field. The meaning and the physical derivation of these
couplings will be discussed in section 1.4.

There is a preferred basis in which to perform the computation,
indeed it is convenient to rotate away the aG̃G through a field-dependent
axial transformation of quarks field, i.e.

q → e
iγ5

a
2fa

Qaq . (1.39)

Applying the rotation to 1.35 two new terms are added from the non-
invariance of the path-integral measure:

δLeff
a = − a

fa

g2s
32π2

Tr(Qa)GG̃−Nc
α

4πfa
Tr(QaQ

2)FF̃ . (1.40)

In particular, requiring Tr(Qa) = 1 it is possible to cancel out the
gluon-axion coupling. To achieve this configuration we choose Qa =
1/2 diag(1, 1). The above transformation gives the following replace-
ments:

g0aγ → gaγ = g0aγ − (2Nc)
α

2πfa
Tr(QaQ

2),

c0q → cq = c0q −Qa,

Mq →Ma = e
i a
2fa

QaMqe
i a
2fa

Qa ,

(1.41)

where α = e2/4π and Nc is the number colours equal to 3. The La-
grangian in 1.38 becomes:

Leff
a =

1

2
(∂µa)

2 − q̄LMaqR +
∂µa

2fa
q̄cqγ

µγ5q +
1

4
gaγaF F̃ + h.c. . (1.42)

16



1.3. THE PECCEI-QUINN MECHANISM

Now, it is possible to compute the chiral axion Lagrangian describing
an EFT below the QCD confinement, ΛQCD. To achieve this, it is
sufficient to rewrite the Lagrangian using the new definition of mass
given by the last term in eq. 1.41. We collect the pion fields in the Σ
matrix which reads:

Σ = exp

(
i
πaσa

fπ

)
= 1 cos

π

fπ
+ i

σaπa

π
sin

π

fπ
, (1.43)

where π =
√
π0π0 + 2π+π−, fπ = 92.21MeV represents the pion decay

constant, σa stands for the Pauli matrices and the pion matrix is

πaσa =

 π0
√
2π+

√
2π− −π0

 . (1.44)

With these definitions the chiral Lagrangian reads:

LχPT
a =

f2π
4

[
Tr[(DµΣ)†DµΣ] + Tr(χ†Σ+ χΣ†)

]
+
∂µa

fa

1

2
Tr[cqσ

a]Ja
µ ,

(1.45)
where χ = 2B0Ma, B0 is linked to quark condensate state, and Ja

µ is the
chiral axial current define, at lower order (LO), as:

Ja
µ =

i

4
f2π Tr[σ

a{Σ, DµΣ}] . (1.46)

The axion potential and mass

The non derivative part of equation 1.45 represents the potential of the
axion field:

V (a, π0) = −1

2
f2πB0Tr[ΣM

†
a + h.c.], (1.47)

whereMa is defined in the last term of 1.41. Notice that we are not con-
sidering π± contributions since they cannot mix with the neutral axion
field due to U(1)EM gauge invariance. Taking as before the conventional
choice of Qa = 1/2 diag(1, 1) we can rewrite the potential as:

V (a, π0) = −f2πB0ReTr[ΣM
†
a ]

= −f2πB0ReTr

[
e
i π
fπ

mu 0

0 md

 e
i a
2fa

1
]
.

(1.48)

We further decompose the exponential pion matrix into a real and imag-
inary component, using the relation:

e
i π
fπ

∣∣∣∣
π±→0

= 1 cos
π0

fπ
+ iσ3 sin

π0

fπ
. (1.49)

In particular, since we are interesting in the real part of the trace, the
only surviving terms are those are quadratic in the sine or cosine. By
performing the computation we get:

V (a, π0) = −f2πB0(mu+md)

[
cos

π0

fπ
cos

a

2fa
+
mu −md

mu +md
sin

π0

fπ
sin

a

2fa

]
.

(1.50)
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Figure 1.3: The figure compare the two ways of computing the axion
potential discussed in the text: the instanton potential is indicated
with the a dashed line, instead the chiral axion potential is sketch
with a solided line. It is clear that at the minimum the behaviours of
the different potentials coincide, whereas, around the maximum, the
difference is large.

At this point it is easy to verify that the axion potential field is described
by10 [41; 42]:

V (a, π0) = −m2
πf

2
π

√
1− 4mu −md

(mu +md)2
sin2

a

2fa
cos

(
π0

fπ
− ϕ(a)

)
, (1.51)

with

tanϕ(a) =
mu −md

mu +md
tan

a

2fa
. (1.52)

Since the ultimate goal is the mass computation associated with the
axion field, it is now convenient to discuss the minimum of the newly
calculated potential. The presence of trigonometric functions together
with the minus sign in front of the square root, implies that the global
minimum lies where the cosine and the sine reach the maximum and
the minimum respectively. Hence, the absolute minimum is located in
⟨π0⟩ = ϕ(⟨a⟩ fπ) and ⟨a⟩ = 0. Remembering the definition of ϕ(a) in eq.
1.52 we can establish that the absolute minimum is located in:{

⟨a⟩ = 0

⟨π0⟩ = 0
, (1.53)

which implies that the strong CP problem has been solved. Note that
the instanton potential defined in section 1.2.2 differs from the χPT
potential just computed, as it can be seen in Fig. 1.3. Indeed, although
around a = 0 the two potentials have the same behaviour, around the
maximum, so for a ∼ fa, they differ from each other by a factor of order
1. This deviation is due to the fact that at confinement regime, χPT is
a reliable theory, instead the instanton semi-classical approach does not
work anymore because of the presence of quantum fluctuation deriving
from gauge configurations which are non negligible, but they have been
neglected in the semi-classical approach.

At this point, the axion mass can be computed expanding the po-
tential in a/fa ≪ 1 and neglecting terms of O(a4) which will be related

10To achive this last expression it is convenient to use the trigonometric formula:
cosx cos y + α sinx sin y√

cos2 x+ α2 sin2 y
= cos[y − arctan(α tanx)].
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1.3. THE PECCEI-QUINN MECHANISM

to self interactions. The axion mass is:

m2
a =

m2
πf

2
π

f2a

mumd

(mu +md)
, (1.54)

which becomes, using the known values:

m2
a ∼ 5.7meV

(
109GeV

fa

)
. (1.55)

The value of the axion mass fully justifies, a posteriori, the choice of the
chiral theory: if fa ≫ 1GeV, then we are sure that ma ≪ ΛχPT . As-
trophysical and laboratory constraints assure us that fa is large enough,
specifically fa ≳ 109GeV.

To summarise, the axion is very light (sub-eV regime) and it is very
weakly coupled: indeed, since fa is large, then axion couplings ga ∝
1/fa are suppressed. Another remarkable outcome is that the Compton
wavelength of the axion, which is proportional to 1/ma, turns out to be
macroscopic.

1.3.2 Axion couplings

We will here discuss the most important couplings which involve the
axion particle since they will be important both from a phenomenological
and theoretical point of view.

Axion-photon coupling

The axion particle couples to photon via a loop diagram as represented
in 1.4. This coupling is particularly interesting from a phenomenological,
especially astrophysical, point of view as it sets strong constraints on the
axion parameter space. The expression of this coupling constant can be
computed through simple steps. The quark field transformation in 1.39
as well as generating the GG̃ term, is anomalous even under QED being
the quarks electromagnetic charged particles. The anomalous FF̃ term
is defined as:

δS = −2Nc
e2

32π2
1

fa
Tr(QaQ

2
em)

e2

32π2

∫
d4xFF̃ , (1.56)

and we define the gaγ in the following way:

gaγ = g0aγ − 3
e2

4π2
1

fa
Tr(QaQ

2
em) . (1.57)

This expression is equivalent to the first one in eq. 1.41 and g0aγ
11 repre-

sents a model-dependent contribution. This time, the most convenient
choice is to define the matrix Qa so that the mass mixing between pions
and axions is zero. This allows us to avoid calculating extra contribu-
tions to the axion-photon couplings involving mixed axion-pion propa-
gators. Bearing in mind these considerations, the relevant matrices in
flavour space are given by:

Qem =

2/3 0

0 −1/3

 , Qa =

 md

mu +md
0

0
mu

mu +md

 . (1.58)

11We will derive the exact expression of g0aγ in section 1.4.
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Figure 1.4: The Feynman loop diagram showing the axion-photon
coupling. The value of the gaγ depends on the specific features of
fermions which running in the anomalous triangle.

Computing the expression of the coupling in the chiral Lagrangian the-
ory the final result reads:

gaγ = g0aγ −
α

2πfa

[
2

3

4md +mu

mu +md

]
. (1.59)

Axion-electron coupling

The interaction between axion and electron is described by the La-
grangian term

Cae
∂µa

2fa
ēγµγ5e . (1.60)

The coupling is described by Cae = c0e + δce where c0e is the tree level
contribution while δce is a radiative one. The latter is due to the presence
of a photon loop and it is defined by:

δce =
3α2

4π2

[
E

N
log

(
fa
µIR

)
− 2

3

4md +mu

md +mu
log

(
ΛχPT

µIR

)]
, (1.61)

in particular the first term is related to the running axion-electron cou-
pling from fa to µIR and the second one is due to the pion coupling. We
indicated with ΛχPT the cut-off scale of the chiral symmetry (around
∼ 1Gev) and with µIR the energy scale of the physical process (around
∼ me).

Axion-nucleon coupling

In order to describe the axion-nucleon coupling, let us take an EFT with
energy ≪ ΛQCD, where the nucleons are non-relativistic. The deriva-
tion of the coupling expression comes out from the matching between the
quark current term in the axion effective Lagrangian 1.42 and the follow-
ing non-relativistic axion-nucleon Lagrangian. We will call N = (p, n)T

the nucleon iso-spin doublet, vµ the 4-velocity and Sµ the spin operator
with 2p̄Sµp = p̄γµγ5p. Neglecting NLO terms, considering iso-spin as
an active flavour symmetry and using the axion as an external current
the Lagrangian reads [40]:
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LN = N̄vu∂µN + 2gA
cu − cd

2

∂µa

2fa
N̄Sµσ3N+

+ 2gug0
cu + cd

2

∂µa

2fa
N̄SµN + . . .

= N̄vu∂µN + 2gA
cu − cd

2

∂µa

2fa
(p̄Sµp− n̄Sµn)+

+ 2gud0
cu + cd

2

∂µa

2fa
(p̄Sµp+ n̄Sµn) + . . . ,

(1.62)

where, considering the first step, the second term represents the iso-
triplet and the last one the iso-singlet. Now we can perform the matching
and taking for instance an external proton state, ⟨p|Leff

a |p⟩ = ⟨p|LN |p⟩
we obtain:

∂µa

2fa
cu ⟨p| ūγµγ5u |p⟩+

∂µa

2fa
cd ⟨p| d̄γµγ5d |p⟩ =

=
∂µa

2fa
gA
cu − cd

2
2 ⟨p| p̄Sµp |p⟩+ ∂µa

2fa
gud0

cu + cd
2

2 ⟨p| p̄Sµp |p⟩ .
(1.63)

The first two terms in the left-hand-side could be respectively rewrit-
ten in terms of the spin operator as Sµ∆u and Sµ∆d, instead those in the
right-hand-side are simply proportional to Sµ. In this way the matching
gives:

gA = ∆u−∆d

gud0 = ∆u+∆d .
(1.64)

and substituting these expressions in eq. 1.62 we get:

LN ⊃ ∂µa

2fa

[
(cu∆u+ cd∆d)(p̄γ

µγ5p)+(cd∆u+ cu∆d)(n̄γ
µγ5n)] . (1.65)

The coupling matrix CaN = diag(Cap, Can) is computed recalling
that cq = c0q −Qa with Qa defined as in eq. 1.58. Rewriting the axion-
nucleon coupling as

∂µa

2fa
N̄CaNγ

µγ5N , (1.66)

the CaN components read:

Cap = −
(

md

mu +md
∆u+

mu

mu +md
∆d

)
+ c0u∆u+ c0d∆d , (1.67)

Can = −
(

mu

mu +md
∆u+

md

mu +md
∆d

)
+ c0d∆u+ c0u∆d , (1.68)

where the low-energy QCD parameters are computed via lattice QCD

techniques: ∆u = 0.897(27), ∆d = −0.376(27) and
mu(2GeV)

md(2GeV)

∣∣∣∣
MS

=

0.48(3) [42].
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1.4 From axion EFTs to axion models

In this section, we will introduce three different axion models, which
provide the standard benchmarks for axion experimental searches. Be-
fore discussing that, however, it could be useful to understand what is
the origin of the effective couplings g0aγ and c0q defined in eq. 1.38, since
we will see that they are model-dependent quantities. The current asso-
ciated to the spontaneously broken U(1)PQ symmetry is anomalous and
hence its divergence is equal to:

∂µJPQ
µ =

g2sN

16π2
GG̃+

e2E

16π2
FF̃ , (1.69)

where N and E represent QCD and EM anomaly coefficients. The
spontaneous breaking of the PQ symmetry is characterised by the or-
der parameter, va, and from the Goldstone theorem it follows that
⟨0|JPQ

µ |a⟩ = ivapµ. Therefore, focusing on the two terms related to
the anomalies and to the axion interaction with the PQ current, the
axion Lagrangian reads:

La =
a

va

g2sN

16π2
GG̃+

a

va

e2E

16π2
FF̃ +

∂µa

va
JPQ
µ . (1.70)

Comparing this with the expression 1.38, one finds:

fa ≡ va
2N

(1.71)

and

g0aγ ≡ α

2πfa

E

N
. (1.72)

The last term in eq. 1.70 can be rewritten using right and left component
of a chiral fermion f , as −JPQ

µ |f = f̄LχfLγ
µfL + f̄RχfRγ

µfR, where
χf represents the PQ charge. Finally, neglecting the vector current
components which vanish upon integration by parts and the application
of the equation of motion, the last term becomes:

∂µa

va
JPQ
µ =

∂µa

2fa
f̄ c0fγ

µγ5f, (1.73)

with

c0f ≡ χL − χR

2N
. (1.74)

1.4.1 WW model

The first model proposed to realise the PQ mechanism was further de-
veloped by Weinberg and Wilczek [3; 4] and it is known as WW model.
Two extra doublets are introduced to implement the U(1)PQ, whereas
the SM quarks, charged under the PQ symmetry, are responsible for
the QCD current anomaly. The main assumption of this model is to
consider the decay constant fa of the order of the electroweak scale
(fa ∼ 250GeV), which yields a lifetime of the order of τa ∼ 0.7s. This
model was quickly ruled out by experimental evidence involving the me-
son decays K+ → π+a [43] or Quarkonia decays J/ψ → γa [44].

From the WW model failure, a new class of so-called “invisible”
axion models arised. In these models the PQ scale is decoupled from
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1.4. FROM AXION EFTS TO AXION MODELS

the electroweak scale, thus the axion couplings can be enough suppressed
to survive the experimental constraints. In the following we describe two
different types of “invisible” axion models, which differ according to the
type of fermions which generate the QCD anomaly of the PQ current.

1.4.2 KSVZ model

In the Kim-Shifman-Vainsthein-Zakharov (KSVZ) model [8; 9] the SM
content is extended with a new vector-like fermion Q ∼ (3, 1, 0) and a
SM-singlet complex scalar Φ ∼ (1, 1, 0). On the other hand, unlike the
WW model, the SM quarks and leptons are not charged under U(1)PQ.
The Lagrangian reads

LKSV Z = |∂µΦ|2 + Q̄i /DQ− (yQQ̄LQRΦ+ h.c.)− V (Φ) (1.75)

and it is clearly symmetric under the U(1)PQ transformations defined
as

Φ → eiαΦ, QL → eiα/2QL, QR → e−iα/2QR . (1.76)

The mexican-hat potential is defined as

V (Φ) = λ

(
|Φ|2 − v2a

2

)
(1.77)

and it breaks the U(1)PQ symmetry with order parameter va. In par-
ticular, from the explicit expression of Φ in polar coordinate

Φ =
1√
2
(va + ρ)eia/va , (1.78)

one can easily notice that the axion field corresponds to the Goldstone
mode, so it is massless at tree level. On the other hand, the radial
mode ρ acquires a mass that is m2

ρ = 2λv2a. After the SSB, because
of the presence of the Yukawa interaction in 1.76, also the new fermion
acquires a mass of mQ = yQva/

√
2. Considering that va ≫ vEW , then

it is possible to integrate out the heavy radial model and obtain:

LKSV Z = −mQQ̄LQRe
ia/va + h.c. . (1.79)

In order to decoupled also the heavy fermion field from the axion, we
perform an axion-dependent axial rotation

Q→ e
−iγ5

a

2vaQ . (1.80)

Once this is done, also the heavy new fermion field can be integrated out.
Nevertheless, the above rotation is anomalous under QCD and therefore
the Lagrangian gets a new term:

δLKSV Z =
g2s

32π2
a

va
GG̃. (1.81)

Comparing this with eq. 1.70, it implies 2N = 1 and hence fa = va.
This aG̃G operator is the basic ingredient required by the PQ mechanism
and it represents also the only axion coupling with the SM fields. As a
consequence in the KSV Z model both c0f and g0aγ are zero.
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CHAPTER 1. AXION THEORY

It is also possible to make an alternative choice for the heavy fermion
Q and consider a general representation Q ∼ (C, I, Y ) under the SM
gauge group: SU(3)C ×SU(2)L×U(1)Y . In this case an anomalous EM
terms arises as well, implying a non-zero g0aγ

12.

1.4.3 DFSZ model

The Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model [10; 11] presents
another possible UV completion where the anomaly, as in the WW
model, is due to SM quarks. However, in this case, the SM fields are
extended with two Higgs doublets Hi ∼ (1, 2,−1/2), with i = 1, 2, and a
complex scalar field σ which allows the decoupling between PQ and EW
scale. We are particularly interested in this model since in the following
chapters we will use it as a theoretical basis for our calculations. The
most general potential of this model containing all the gauge invariant
terms, reads:

V (H1, H2, σ) = Ṽmoduli(|H1|, |H2|, |σ|, |H1H2|)+λH1H
†
2σ

2+h.c . (1.82)

The global symmetries of the scalar kinetic terms include three U(1)
rephasings, one for each field introduced. These are broken by the last
term in the potential down to two linearly independent U(1), which can
be chosen to be the SM hypercharge and the PQ symmetry:

U(1)H1 × U(1)H2 × U(1)σ → U(1)Y × U(1)PQ . (1.83)

Neglecting both radial and charged modes (which have no projection
on the neutral axion Goldstone mode), we can parametrize the scalar
fields as

Hi =
vi√
2
eiai/vi

1

0

+ . . . , σ =
vσ√
2
eiaσ/vσ + . . . , (1.84)

with the VEV hierarchy vσ ≫ v1,2. Contrary to what happened in the
KSVZ model, here the definition of the axion is non-trivial. The presence
of different fields contribute, with their VEV, to the final expression of
PQ order parameter va. In order to obtain the linear combination which
define the axion, let us compute the PQ current:

JPQ
µ = −i

(
σ†

↔
∂µσ +

∑
i=1,2

χiH
†
i

↔
∂µHi + . . .

)
, (1.85)

where χi represents the PQ charge of the Higgs doublets and dots stand
for the fermionic terms which do not contribute to the axion expression.
Therefore, focusing on the ai and aσ terms we obtain:

JPQ
µ |a =

∑
i=1,2,σ

χivi∂µai . (1.86)

On the whole, the physical axion field is defined as [46]:

a =
1

va

∑
i=1,2,σ

χiviai , (1.87)

12A comprehensive analysis on the phenomenologically preferred values of g0aγ can
be found in [45].
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in such a way that the definition satisfies the Goldstone theorem and
the axion current is JPQ

µ |a = va∂µa. The explicit expression of the
PQ order parameter va is obtained requiring the invariance under a PQ
transformation13 and it reads as:

v2a =
∑

i=1,2,σ

χ2
i v

2
i . (1.88)

The combination of the PQ charges can be found by taking into
account two points. First of all the last term in eq. 1.82 must preserve
the PQ symmetry, so that under a PQ transformation we get −χ1 +
χ2 − 2χσ = 0, where χ1 ≡ χH1 and χ2 ≡ χH2 . Secondly, we want
the orthogonality between the axion and Z boson field: in this way we
are sure that there is no mixing and this guarantees the possibility to
integrate the Z boson away in the effective Lagrangian. This is translated
in the requirement that the C coefficient in the expression C∂µaZ

µ is
equal to zero, which in terms of PQ charge gives χ1v

2
1 + χ2v

2
2 = 0.

Consequently the PQ charges, up to an overall normalization that we
fix by choosing χσ = 1, reads:

χσ = 1, χ1 = −2 sin2 β, χ2 = 2 cos2 β, (1.89)

where cosβ =
v1
v

and sinβ =
v2
v
, with v2 = v21 + v22 and v ∼ 246GeV.

In this notations one has tanβ =
v2
v1

. By means of eq. 1.88 we then

obtain:
v2a = v2σ + v2(sin 2β)2 . (1.90)

Notice that vσ can be arbitrary large because it does not break any SM
gauge symmetry, hence if v ≪ vσ, then va ∼ vσ.

At this point, we focus on the Yukawa Lagrangian which is where
the axion couplings with the SM fields come from. In the current basis
the Yukawa Lagrangian is:

LY = −Yuq̄LuRH1 + Ydq̄LdRH̃2 + YE l̄LeRH̃2 + h.c. . (1.91)

One can pass in the mass basis putting the expression in the vacuum and
replacing the exponential, through eq. 1.87, a1/v1 → χ1a/va, a2/v2 →
χ2a/va. The Yukawa Lagrangian becomes:

LY = −muūLuRe
iχ1

a
va −mdd̄LdRe

−iχ2
a
va −mE ēLeRe

−iχ2
a
va + h.c. .

(1.92)
The interaction of quarks and charged lepton with the axion is now

explicit. We next perform an axial rotation (as in eq. 1.80 for the KSVZ
model) in order to remove the axion field from the Yukawa Lagrangian:

u→ e−iγ5χ1
a

2va u,

d→ eiγ5χ2
a

2va d,

e→ eiγ5χ2
a

2va e,

(1.93)

which, in turn, are anomalous under QCD and EM. The anomaly yields
the following shift on the axion effective Lagrangian:

13A general PQ transformation ai → ai + αχivi = χivi(ai + αχivi) transforms the
axion field as a → a+ αva, so imposing the invariance we obtain the eq. 1.88.
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δLY =
αs

8π

a

fa
GG̃+

α

8π

(
E

N

)
a

fa
FF̃ , (1.94)

where fa is defined as in eq. 1.71, while N and E are found to be:

N = ng

(
χqL +

1

2
χuR +

1

2
χdR

)
=

= ng

(
1

2
χ1 −

1

2
χ2

)
= −3,

(1.95)

E = ng

(
3

(
2

3

)2

χ1 − 3

(
− 1

3

)2

χ2 − (−1)2χ2

)
= −8, (1.96)

with ng = 3 the number of SM fermion generation. The above fermionic
transformations affect also the kinetic terms which generate the deriva-
tive couplings between the axion and the SM fields:

δ(ūi/∂u) = χ1
∂µa

2va
ūγµγ5u =

(
1

3
sin2 β

)
∂µa

2fa
ūγµγ5u, (1.97)

δ(d̄i/∂d) = χ2
∂µa

2va
d̄γµγ5d =

(
− 1

3
cos2 β

)
∂µa

2fa
d̄γµγ5d, (1.98)

δ(ēi/∂e) = χ2
∂µa

2va
ēγµγ5e =

(
− 1

3
cos2 β

)
∂µa

2fa
ēγµγ5e, (1.99)

from which we can read the effective axion-fermion couplings. In the
notation of eq. 1.74 these are given by:

c0u,c,t =
1

3
sin2 β, c0d,s,b = −1

3
cos2 β, c0e,µ,τ = −1

3
cos2 β, (1.100)

The value of tanβ is constrained by perturbative unitarity limits on
the Yukawa couplings of the extended Higgs sector yDFSZ

t,b <
√

16π/3

(see e.g. [47]). Therefore, taking into account the SM relations ySMt =√
2mt/v = yDFSZ

t cosβ and ySMb =
√
2mt/v = yDFSZ

t sinβ and using
mt=173.1 GeV, mb=4.18 GeV and v=246 GeV, one obtains the pertur-
bativity range:

tanβ ∈ [0.0024, 4.0] . (1.101)
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Chapter 2

Axion phenomenology

The possible presence of the light axion field opens the door to a wide
range of phenomenological and experimental implications. In the pre-
vious chapter we discussed how the axion arises as a possible solution
to the strong CP problem, and derived its mass range and some general
properties such as the couplings to SM particles. The axion parameter
space can be constrained via astrophysical and cosmological considera-
tions, that are important in order to narrow down the most interesting
regions for experimental searches. In this chapter we will offer a brief
overview of stellar evolution and consider the most relevant astrophysical
bounds related to axion physics. Subsequently, we will discuss cosmolog-
ical implications as well as some experimental setups relevant for axion
searches.

2.1 Astrophysical implications

Astrophysics and especially stars are excellent tools to derive axion
bounds. The crucial properties of stars, such as the high temperature
and density, make these possible sources of axion particles and allow
us to probe the axion couplings to SM particles. In particular, if there
was a significant production of axions this would give physical effects on
the thermal evolution of the star. For this reason it is useful to briefly
present the life of a star and discussed some thermal characteristics.

The stellar evolution is usually described in terms of the Hertzsprung-
Russel (HR) diagram or Colour Magnitude Diagram (CMD) to discuss
the various stages in which a star could be. Fig. 2.1 (a) is an example
of a HR diagram. In the x-axis the colour index (B-V) is used as an
effective temperature measure, instead the y-axis represents a measure
of the luminosity through the absolute visual magnitude. Note that the
upper diagram in Fig. 2.1 represents the CMD of a globular cluster.
This is a convenient choice since all the stars in a globular cluster have
approximately the same age. In this way, we are able to discuss how the
initial features affect the evolution of the star, in particular it can be
seen that the larger is the mass of the star, the faster is its evolution,
as to sustain the gravitation collapse a greater nuclear energy must be
released. We now discussed why the HR diagram represents a powerful
tools to test the theory of stellar evolution.

The life of a star is strongly dependent on its initial mass, hence
we can divide stars into two main groups: stars with an initial mass
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(a) HR diagram of a globular system.

(b) Theoretical HR diagram shows different stellar evolution.

Figure 2.1: Figure (a) [48]: HR diagram of the Globular Star Cluster
M5. The acronyms stand for: MS - Main Sequence, TO - Turn Off,
SGB - Sub Giant Branch, HB - Horizontal Branch, RGB - Red Giant
Branch, AGB - Asymptotic Giant Branch. Figure (b) [49]: HR dia-
gram shows how a different initial star mass has a crucial implication
on its evolution. In both figures the hottest star (bluest) are on the left
and the temperature decreases towards the right of the diagram.
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M ≲ 8M⊙ and stars with a mass above 8M⊙. The main difference is
that the lightest stars will become White Dwarfs (WDs), instead the
heaviest ones will incur in a supernova core collapse, causing a type II
supernova explosion and forming a compact object. In both of the cases,
the life of a star begins in the Main Sequence (MS) where it spends
most of the time during the burning of the hydrogen. This nuclear
reaction gradually forms a helium nucleus and, in stars with a mass
close to the solar one, the reaction moves in a thick shell and the star
moves in the Sub Giant Branch (SGB). Meanwhile, the He-nucleus starts
to shrink to achieve the temperature needed for the helium burning,
while the hydrogen shell gradually becomes thinner. Because of the
mirror principle, as the nucleus contracts, then the envelopes expand
and the star passes into the phase of a Red Giant (RG). Considering
stars of M ≲ 2M⊙, the helium core is degenerate and the ignition of
the nuclear reaction causes the so called Helium flash, moving the stars
on the Horizontal Branch (HB). On the other hand, stars heavier than
the latter regime starts to burn He in thermal equilibrium when they
reach sufficiently high temperature and density. Solar-like stars have
not enough mass to ignite other elements and they will end as WDs.
Proportionally to their initial mass, the star continues to burn until
they reach (for stars with M ≳ 8M⊙) the production of iron. At this
point the burning process is no longer exothermic and the star begins a
rapid gravitational collapse. Depending on whether or not this collapse
is supported by the pressure of degeneration, neutron stars or black holes
will form. Some patterns of evolution of different stars are shown in Fig.
2.1 (b).

In light of all this, one can interpret the HR diagram as a sort of
evolutionary map: each star, depending on the phase it is going through,
will be placed at a specific point of it. Even though Fig. 2.1 (b) is only
a theoretical construction, several numerical simulations have confirmed
the validity of the HR diagram, confirming that the region with the
highest source density in the CMD corresponds to the longest stage
of evolution. The compatibility of the theoretical CMD diagram with
observations implies strong bounds on new particles which can affect
the thermal evolution of a star. The most relevant axions bounds from
stellar cooling, depending on the specific axion coupling, are discussed
in the following subsections.

2.1.1 Axion production channels in stars

Before discussing astrophysical bounds on axion couplings, we provide
here a qualitative description of the main axion production channels in
stars.

Primarkoff process

The process describes the creation of an axion particle by a thermal
photon. In particular, as it can be seen in the upper-left diagram in
Fig. 2.2, the thermal photon interacts with the electrostatic field due to
the presence of electrons or ions in the stellar plasma according to the
reaction:

γ + Ze −→ a+ Ze . (2.1)
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Figure 2.2: Feynman diagrams of different axion production channels.
From left to right, from top to bottom: Primarkoff process, Compton
process, electron Bremsstrahlung process, nucleon Bremsstrahlung pro-
cess. In all cases the axion coupling is indicated explicitly.

The transition rate from a photon of a given energy to an axion of the
same energy is given by [50]:

Γγ→a ≃
g2aγT

32π2
k2s , (2.2)

where gaγ is defined in eqs. 1.56, 1.57, T is the temperature at which
the process takes place and k2s is the so-called Debye-Huckel screening

wave number defined by k2s =
4πα

T

(
ne +

∑
nuclei Z

2
j nj

)
, with ne the

electron density, nj the density of the j−th ion and the Zj the charge
number of that ion[50]. Moreover, it is possible to define the energy loss
rate per unit volume

Q ≃
g2aγT

7

4π
(2.3)

and the energy loss rate per unit mass, given by [51]1

ϵp ≃ 2.8 · 10−31

(
gaγ

GeV−1

)2T 7

ρ
erg g−1 s−1 , (2.4)

where T is defined in K while ρ, which described the density at which the
process takes place, is defined in g cm−3. From the last equation, it is
clear that the Primarkoff process is strongly dependent on temperature
because it controls the number of thermal photons. On the other hand,
the Primakoff process turns out to be suppressed in super dense star
cores, such as in WDs and RGB.

Compton process

The Compton process is sketched in the upper-right diagram in Fig.2.2
and it is described by:

γ + e −→ a+ e . (2.5)

1All the numerical values for the energy loss rate in this section will be taken from
this reference, where the authors offer a summary of axion production channels.
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In short, as in the Primarkoff process, the scattering of a thermal photon
due to an electron creates an axion. However, as it can be seen in
the Feynman diagram, this time the coupling corresponds to an axion-
electron coupling since the virtual process mediator is an electron. As
we have done in the previous case, we can compute the emission rate
per unit mass due to the Compton process, it reads

ϵc ≃ 2.7 · 10−22g2ae
1

µe

(
neffe

ne

)
T 6 erg g−1 s−1 , (2.6)

where µe = (
∑
XjZj/AJ)

−1 with Xj the relative mass density of the
j−th ion while Zj and Aj the charge and mass number respectively,

ne is the number density of electrons and neffe is the effective number
density of electrons.

Even in this case, the process is strongly dependent on temperature
and, even though it is not explicitly defined, it is inversely proportional
to the density. In fact, the value of neffe is suppressed at high density
since the degeneracy effect reduces the number of the electron targets
and this, in turn, reduces the Compton rate. Then, also in this case the
Compton process is not efficient in high-density star regions.

Electron Bremsstrahlung process

The Electron Bremsstrahlung, contrary to the above discussed processes,
becomes the main channel for the axion-electron coupling in a high den-
sity regime. This process is described in the lower-left diagram in Fig.
2.2 and is given the following reaction

e+ Ze→ e+ Ze+ a . (2.7)

In particular, in a matter state where the density is high enough to
create degenerate matter, the energy loss rate per unit mass is:

ϵB(el) ≃ 8.6 · 10−7g2aeT
4 erg g−1 s−1 . (2.8)

The conditions which allow for the presence of a degenerate state are
in general reached in a star with ρ ∼ 106g cm−3 and T ∼ 107 − 108K.
Both, the Electron Bremsstrahlung and Compton are processes which
involve the production of an axion from an electron coupling. These
two processes, combined with the so-called Atomic recombination and
de-excitation, are generically called ABC processes.

Nucleon Bremsstrahlung process

The last diagram in Fig. 2.2 is the so-called nucleon Bremsstrahlung
process. In axion models with a sizeable axion-nucleon coupling2 this can
be a relevant production channel. Through a nucleon-nucleon collision
we can create an axion particle following the reaction

N +N ′ → N +N ′ + a . (2.9)

2As we will see in section 3.1.2, it is possible to construct QCD axion models in
which the axion-nucleon coupling is suppressed, thus relaxing some strong astrophys-
ical bounds.
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This process is suppressed in systems with a temperature T ≲ 10 MeV.
Hence, it becomes the dominant process in the SN and NS where it is
possible to reach such high temperatures. Indeed, as long as the tem-
perature is too low the process is suppressed by the pion mass in the
propagator (see Fig. 2.2) and only when the temperature becomes com-
parable with the moment exchanged by the nucleon the process becomes
relevant. The energy loss rate per unit mass is different if the star is
degenerate and if it is not, thus the two expressions are respectively:

ϵDB(nucl) ∼ 4.7 · 1039g2aNρ−2/3
14 T 6

30 erg g
−1 s−1 , (2.10)

ϵND
B(nucl) ∼ 2.0 · 1038g2aNρ14T 7/2

30 erg g−1 s−1 , (2.11)

where T30 ≡
T

(30MeV)
and ρ14 ≡

ρ

1014g cm−3
.

2.1.2 Solar Axions

Historically the Sun has often provided a natural laboratory for the
study of new light particles interactions. The low density of our star
allowed the study of both the Primarkoff effect and therefore interaction
between photons and axions, as well as the Compton process based on
the axion-electron coupling. The Sun is also one of the main sources of
axions which are searched on Earth via the so-called helioscopes.

To understand how the axion could interact with matter in the Sun,
we derive the mean free path (MFP) λa of a hypothetical axion in the
core of the star. Considering the interaction with photons and thus the
Primarkoff effect, the MFP goes as the inverse of the transition rate,
namely

λa =
1

Γγ→a
∼
(

gaγ

10−10GeV−1

)2

6 ·1024cm =

(
gaγ

10−10GeV−1

)2

8 ·1013R⊙ ,

(2.12)
where we have considered T ∼ 1.3KeV and ks ∼ 9KeV. As discussed in
[50] and [52], even in the extreme case where the axion is trapped in the
core and the axion-photon coupling is large, namely gaγ ≥ 10−3GeV−1,
the MFP should be smaller than the photon one in order to avoid dra-
matic consequences in the solar structure. Indeed, in the extreme case,
axions could carry most of the bulk of energy otherwise carried by pho-
tons. Thus, unless axion-photon couplings are large, a case excluded by
other bound as we will discuss in a moment, the axion can easily escape
from the Sun.

Due to the low density of the Sun, the Compton process is an im-
portant axion production channel too. In the left panel of Fig. 2.3,
it is possible to see that the axion flux due to the electron coupling is
similar to that from the photon coupling. This is an an important point
for axion experimental searches based on helioscopes, which are sensi-
tive both to the axion couplings to photons and electrons. On the other
hand, what matters for stellar cooling is the absolute luminosity, namely
the energy radiated. From the right plot, it is clear that the Primarkoff
process is more energetic. The solar axion flux and luminosity can be
respectively approximated as [50]:

Φa ∼ g2103.8 · 1011cm−2s−1 , (2.13)
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Figure 2.3: The Figure shows the solar axion spectrum as the func-
tion of axion energy. In particular, the left diagram shows the axion
flux from Primarkoff and ABC process, while the right one shows the
energy spectrum for the very same processes. Note that for solar axions
the Compton process is the principal production channel involving the
axion-electron coupling, namely in ABC processes. Figure from [40]

La ∼ g2101.9 · 10−3L⊙ , (2.14)

where, as before, g10 ≡ gaγ

(10−10GeV−1)
. Given the Sun luminosity, it is

hence possible to inferred the following constraints:

• the solar age provides a solid bound on the axion-photon coupling.
Indeed, an extra energy loss due to axions would increase the rate
of energy loss and shorthen the age of the Sun. Imposing La ≲ L⊙,
one finds gaγ ≲ 3 · 10−9GeV−1 [53].

• From helioseismology and sound velocity one derives a bound on
axion-photon coupling that is gaγ ≲ 10−9 [50]. Indeed, the axion
energy loss modifies the sound speed profile implying the constraint
La ≲ 0.20L⊙. A stronger bound was presented in [54], yielding
gaγ ≲ 4.1 · 10−10GeV−1.

• Due to the axion energy loss, the Sun should compensate for this
loss with an increase in nuclear burning and then an increase in
temperature. This would also affect the neutrino flux, by increas-
ing it. Hence, from the measurement of the neutrino flux one infers
La ≲ 0.04L⊙, that implies gaγ ≲ 5 · 10−10GeV−1 [50].

2.1.3 Astrophysical axion bounds and hints

White Dwarfs

As already discussed, WDs represent the last stage of a low mass star.
They are characterised by a high density in the core and, because of
this, the electron Bremsstrahlung is the main axion production chan-
nel. The typical values which characterise a WD are ρ ∼ 106g cm−3

and T ∼ 106K. Moreover, since in this stage the star has run out the
nuclear fuel and is characterised by a degenerate core, from that mo-
ment on the temperature will decrease. There are two ways to probe
the WD cooling, which respectively are associated to two different vari-
ables: the WD luminosity function (WDLF) and the oscillation period.

33



CHAPTER 2. AXION PHENOMENOLOGY

The former represents the WD distribution in terms of WDLF: during
the cooling phase, the luminosity decreases following the WDLF shape.
The numerical analysis gives a constraint of gae ≲ 2.8 · 10−13 [40; 55]3.
However, observational results also give a hint of anomalous cooling,
which can be fit via the coupling gae ≃ 1.4 · 10−13. The other method
regards the period variation. In WDs the period oscillation changes
during the century and this is reflected in the cooling rate temperature,
namely Ṗ /P ∝ Ṫ /T . If the observation of period changing does not
follow the expected shape, then this could be due to the presence of a
new energy loss channel. Although the period changes extremely slowly
(Ṗ /P ∼ 10−18), several data give a bound on the axion-electron coupling
that is gae ≤ 4.1·−13, as well as a specific hint of gae = 2.9+0.6

−0.9 · 10−13

[51].

Tip of Red Giant Branch and Helium burning stars

When a solar-like star runs out the Hydrogen in the core, it shrinks in
order to reach the right condition for the Helium burning. As explained
above, when the density ρ ∼ 106gr/cm3 and the temperature acquires
values around T ∼ 108K then the Helium ignition occurs in a degenerate
core. In this phase, even though the surface temperature decrease, the
temperature of the core and luminosity increase until the star reaches
the Helium flash, yielding a tip in the HR diagram called the tip of the
Red Giant Branch. In the presence of extra energy loss channel due
to the axion, the star would need more time to reach the temperature
needed to burn Helium: this would imply a delay of the Helium flash,
which graphically corresponds to a peak shift in the HR diagram. In
this way, we can infer a bound on the coupling with the electrons, since
in these dense environments the main axion production channel is the
electron Bremsstrahlung. The constraints following this idea is gae ≲
1.5 · 10−13(2σ) [51].

Besides an increase of luminosity, the presence of an axion would also
increase the core mass, since the core accreates a larger mass to start
the ignition of Helium. A higher mass would imply a shorter period in
the HB. This in turn means a lower number of stars in the HB phase of
the HR diagram. To better understand this point we can introduce the
R-ratio which is observationally defined as the ratio between the number
of the stars in the HB over the number of the stars in the RGB, namely:

R ≡ NHB

NRGB
. (2.15)

The axion couplings will affect in some sense this ratio: if we have gae ̸= 0
the number of the stars in the horizontal branch decreases, since they
evolve faster, meanwhile gaγ ̸= 0 also pulls stars out from the HB due to
the Primarkoff process. This observable is an interesting quantity since
it is able to correlate two different couplings. Also in this case we can
derive some bounds which can be put together in Fig. 2.4, [51]. There,
the best fit point suggests a non zero value for both photon and electron
couplings, corresponding respectively to gaγ = 0.18 · 10−10GeV−1 and

3The axion-electron counpling is defined as gae = Cae
me

fa
where Cae is defined in

eqs. 1.60, 1.61
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Figure 2.4: Constraints (and hints) from stellar evolution on the
axion couplings to electrons and photons. Coloured regions correspond
to 1, 2, 3σ contours, from darker to lighter red. Dashed lines indicate
the value of the Cae/Caγ ratio. Figure from [51].

gae = 1.2 · 10−13. Moreover, we can already speculate something about
the required axion model. Indeed, the dashed lines indicate the ratio
between the Wilson adimensional coefficients of electron and photon
couplings. From the diagram is clear that a value around 10−2 is needed
and this rules out he KSVZ model which predicts a Cae/Caγ ratio of the
order of 10−4, since the axion coupling to electrons in only generated
radiatively (see eq. 1.61). On the other hand, the DFSZ can easily
match the preferred value.

Supernovae and Neutron Stars

Star with a mass M ≳ 8M⊙ undergo the core collapse with a typical
temperature of T ∼ 30MeV and density around ρ ∼ 3 · 1014g cm−3. As
discussed above, the nucleon Bremsstrahlung becomes not suppressed
when the temperature is above the ∼ 10MeV, then SN observations
could give a bound on the axion-nucleon coupling. When the core col-
lapse occurs the environment is so dense that matter cannot escape, but
for neutrinos which carry away around 99% of the total energy. The en-
ergy loss due to neutrinos should be hence compared to an extra energy
loss channel due to axions. In 1987 about 20 neutrinos were detected on
earth by large underground detectors as Super-Kamiokande, following
the SN1987A explosion. Although the data were not so accurate, the
observation matched reasonably well with theoretical expectations. If
we had an extra cooling channel due to axions, basically we should have
expected a reduced number of neutrino events since part of the energy
was carried by axions.

A criterium for the axion energy loss of the SN1987A was provided by
Raffelt in Ref. [50], based on the results of numerical simulations. That
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reads ϵa ≲ 1 · 1019 erg g−1 s−1, for typical temperatures and densities
as defined above. Given the expression of the energy loss rates due to
nucleon Bremsstrahlung (see eqs. 2.10-2.11), it is possible to translate
the Raffelt’s criterium into a bound on the axion-nucleon coupling, gaN .
Most recent analysis of the SN1987A bound find the following constraint
on a specific combination of neutron and proton couplings [56]

g2aN = g2an + 0.61g2ap + 0.53gangap ≲ 8.26 · 10−19 . (2.16)

Approximating gaN ∼ mN/fa, the bound gaN ≲ 9.1 · 10−10 implies in
turn fa ≳ 109GeV.

Also NSs could give a constraint on the axion-neutron coupling. In
particular, from observations of the NS in Cassiopeia A, Ref. [57] de-
rived the limit gan ≲ 4 ·10−10. An even stronger bound, gan ≲ 2.8 ·10−10

was presented in [58]. However, these limits are subject to several un-
certainties and there is no common consensus at the moment on their
reliability.

Finally, black holes (BHs) could give insights into the axion-gravity
coupling Gravitational bound states are created by axions around a BH
if the axion Compton wavelength is of the order of the BH radius. The
superradiance [59] phenomenon describes the increasing of occupation
number and this provides a way to extract angular momentum or energy
from the BH. From the rate at which the angular momentum is carried
out from the BH one can infer the presence and the mass of a possible
axion particle. In this case, one is able to give a constraint directly on the
axion mass and hence on the axion decay constant. The allow windows
for the fa parameter are [60] fa ≲ 6 · 1017GeV and fa ≳ 1019GeV.

2.2 Cosmological implications

Axion cosmology provides valuable informations on the axion parameter
space that are complementary to astrophysical constraints. Since the
topic of this thesis is not directly centered on cosomological aspects,
we will limit ourselves to a brief description of the main cosmological
aspects of axion physics. As already mentioned, axions could be a good
DM candidate. From a cosmological point of view, the axion population
can be dived into two different classes: thermal axion production which
results in dark radiation or hot dark matter (HDM), and non-thermal
axion production relevant for cold dark matter (CDM). Both topics are
briefly introduced in this section.

2.2.1 Thermal axion

The energy density in relativistic particles at the epoch of matter-radiation
equality is described in terms of an effective number of neutrino species
NSM

eff and it reads:

ρrad =

[
1 +

7

8

(
Tν
Tγ

)4

NSM
eff

]
ργ . (2.17)

Note that Tγ ≡ T represents the temperature of the cosmic bath and,
at temperatures below the electron mass, neutrinos are the only rela-
tivistic species beyond photons. To exploit this formula it is necessary
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to understand the meaning of the
Tν
Tγ

ratio. In general a particle is in

thermal equilibrium if the interaction rate with the other particles in
the thermal bath (Γ) is larger than the rate of expansion of the Uni-
verse (H). When Γ ≲ H, the particle decouples from the thermal bath.
Exploiting this argument, it is possible to find that neutrinos decouple
when T ≲ 1 MeV which is of the same order as the photon temperature.
However, electron-positron annihilation, which happens at T ≲ me, pro-
duces more photons which increase the temperature of the thermal bath
(photon heating). Using the entropy conservation one finds that

Tν
Tγ

=

(
4

11

)1/3

. (2.18)

The NSM
eff coefficients defined in eq. 2.17 is found to be NSM

eff = 3.046,
in the case of the SM with three active neutrinos. The deviation from
3 is due to the fact that the neutrinos decoupling is not instantaneous
and the subsequent electron-positron annihilation produces a residual
radiation, as just discussed.

What happens if we insert another relativistic species in eq. 2.17?
Let us consider an axion population, then the energy density becomes:

ρrad =

[
1 +

7

8

(
Tν
Tγ

)4

NSM
eff +

1

2

(
Ta
Tγ

)4]
ργ . (2.19)

We now define a new Neff which includes both the SM content and an
axion population. The deviation from the SM value is described by:

∆Neff ≡ Neff −NSM
eff =

4

7

(
Ta
Tν

)4

. (2.20)

This is how the inclusion of another relativistic light particle, namely
the axion in our case, changes the value of the NSM

eff . In particular, from
experimental constraints Neff it is possible to set a limit on the axion
mass, since the variation of Neff is proportional to Ta and this is related
fa, which sets the strength of axion interactions with the SM thermal
bath. A recent cosmological analysis in Ref. [61] finds the following
bound (which applies to the KSVZ model):

fa ≳ 2.0 · 107GeV ,

ma ≲ 0.28 eV .
(2.21)

Although weaker than typical astrophysical bounds, this provides rele-
vant complementary informations on the axion parameter space.

2.2.2 Non-thermal axion

CDM axions are produced via a non-thermal mechanism known as mis-
alignment. To describe this mechanism we need first to discuss the axion
potential and mass at finite temperature. Eq. 1.51 represent the chi-
ral axion potential at zero temperature, however in a high-temperature
regime when T ≃ TC ≃ 160MeV, QCD deconfines and at even higher
temperatures QCD becomes perturbative. This implies that χPT is
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no longer a good description and another technique is necessary to de-
scribe the axion potential. Using the dilute instanton gas approximation
(DIGA) the finite temperature axion potential can be written as:

V (a, T )

∣∣∣∣
T≫TC

= χ(T )

[
1− cos

(
a

fa

)]
, (2.22)

where χ(T ) = f2am
2
a(T ) and the mass is:

ma(T ) = βma(
TC
T

) , (2.23)

with γ ≃ 4, β ≃ 10−2 and ma is defined in eq.1.54. Next, we define the
axion angle θ(x) = a(x)/fa and we compute the EOM in a Friedmann-
Robertson-Walker metric which reads:

θ̈ + 3H(t)θ̇ − ∇2θ

R2
+ma(t) sin θ = 0 . (2.24)

In the following, we concentrate on the zero modes of the field and
we neglect the gradient term (this is justified only in the so-called pre-
inflationary PQ breaking scenario). Moreover, we work in the harmonic
approximation, sin θ ∼ θ and assuming a standard cosmological scenario
with radiation domination we have H = 1/2t. In addition, notice that
the initial θ angle can be different depending on the interplay between
the scale of inflation and that of PQ breaking. In fact, if the PQ is bro-
ken during the inflation and never restored after that (pre-inflationary
PQ scenario) the initial value of θ is homogeneous and arbitrary. On
the other hand, if PQ is broken after the inflation or restored (post-
inflationary PQ breaking scenario), then the initial value of θ should be
averaged over different patches of the Universe.

Coming back to eq. 2.24, we can distinguish two regimes. In the very
early Universe, when the temperature is large and ma → 0, we have a
decaying solution which after some time corresponds to a constant value
of θ. On the other hand, when ma(t1) ∼ 3H(t1) the axion field starts to
oscillate, describing a harmonic oscillator. The differential equation can
be solved analytically in the WKB approximation and it can be shown
that the energy density associated to the oscillating axion field

ρa = f2a

(
1

2
θ̇2 +

1

2
m2

a(t)θ
2

)
, (2.25)

is such that
ρaR

3

ma
= const, whereR is the scale factor. The actual energy

density today, starting from the onset of oscillations at t1 is found to be:

ρa(t0) ∼
3

4

maf
2
a

t1
θ20

(
R1

R0

)3

. (2.26)

Note that the axion energy density scales as R−3, thus it yields a non-
relativistic particle population which, in turn, describes the behaviour
of CDM. This is the reason why the misalignment mechanism provides a
CDM axion population. The axion relic density can be finally computed
using entropy conservation and the temperature dependence of the axion
mass, which yields:

Ωah
2 ∼ 0.12

(
30µeV

ma

)7/6

θ20 . (2.27)
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Hence, the lighter is the axion the larger is the contribution to the energy
density. Axion DM provides an important source of axions for experi-
mental searches based on haloscopes. Finally, we mention for complete-
ness that there are other non-thermal axion DM production mechanisms
based on the decay of topological defects following the PQ phase transi-
tion (axion strings) and the formation of the QCD axion potential (axion
domain walls), which are relevant in the post-inflationary PQ breaking
scenario.

2.3 Experimental axion searches

Axion experiments can be classified according to how the axion is pro-
duced. There are three conceptually different ways in which an axion
flux can be sourced: in the laboratory, from the Sun or via axion DM.
Let us discuss the general idea on which they are based on.

• Light Shining through Wall (LSW). This is one of the most
important axion laboratory experiments and it exploits the ax-
ion coupling to the photon. The idea is to shoot light, produced
for example by a laser beam, against a magnetic field transverse
to the beam itself. The experiment is based on the possibility
that some of these photons interacting with the magnetic field are
transformed into axions. At this point, an optical barrier stops
photons, allowing the passage of weakly interacting axions. An-
other magnetic field reconverts back the axion into a photon, mak-
ing it detectable. The energy range scanned with LSW is around
ma ≲ 0.1meV and the principal experiments are ALPS I [62] to-
gether with ALPS II[63] and OSQAR [64]. The latter sets the most
stringent bound using LSW which is gaγ < 3.5× 10−8GeV−1.

• Helioscopes. In these experiment, we search for axions produced
by the Sun leading to a solar axion flux. We try to detect them
on the Earth with telescopes which follow the Sun: the solar axion
flux coming from our Sun is converted through a magnetic field into
X-rays photons which are now detectable. The main experiment
with this approach is CERN Solar Axion Experiment (CAST) [65],
or the planned Internationa AXion Observatory (IAXO) [66].

• Haloscopes. Experiments exploiting the possibility that axions
comprise the CDM are known as haloscopes. The basic idea is to
use some resonant cavity permeated with a strong magnetic field
to convert the axion DM into an electromagnetic detectable signal.
The best-scanned range in cavity experiments is above the µeV.
Current bounds have been set by different experiments, including
the Axion Dark Matter eXperiment (ADMX) [67] which works at
frequencies around ma ∼ 3µeV.

2.3.1 Axion experiments from the axion couplings per-
spective

We now briefly present axion searches from the point of view of axion
couplings. The plots below are taken from [68] where it is possible to
find updated axion constraints and experimental sensitivities.
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Axion-photon coupling

The addition of a new piece in the QED Lagrangian, as expressed in eq.
1.69, namely the aF F̃ term, leads extra contributions in the Maxwell’s
equations. In practice, we can think about the axion as a shift in the
electron density and electron current. Thus, the charge density defined
in the usual Maxwell’s equations is modified by the presence of an ex-
tra contribution proportional to the gradient of the axion field and an
external magnetic field. Similarly, we have an induced axion current
proportional via the magnetic field to the axion time derivative and via
the electric field to the axion field gradient. In light of this, the idea
is to search the axion field as a deviation from the Maxwell’s equations
and so a modified electrodynamics.

Moreover, the prediction of gaγ can be expressed in terms of the
adimensional coupling Caγ which in turn contains a model-dependent
term, namely E/N . For instance, this coefficient was computed in the
previous chapter in the case of the KSVZ or DFSZ axion model.

Fig. 2.5 (a) represents the axion-photon coupling as a function of
the axion mass. The yellow band indicates the theoretical prediction of
DFSZ and generalized KSVZ models which depend on the value of E/N .
The coloured regions represent the already experimentally tested values
including both astrophysical and laboratory constraints. The strongest
astrophysical bound is due to the HB constraint which predicts gaγ ≲
10−10 GeV−1. Notice that the HB bound dilutes away when the axion
mass is around 100KeV which corresponds to the temperature of stars
in the HB. Similarly, the weaker bound from solar axion dilutes away
when we reach the temperature of the Sun. At lower masses, the most
important laboratory experiment is due to the helioscopes experiment
CAST which still constrains gaγ to be of the same order discussed above.
The vertical lines are related to haloscope experiments, such as ADMX,
which assume that the axion constitutes the DM. Basically, they look for
a resonant signal scanning the frequency of the electromagnetic cavity
which should lead to an enhancement when the frequency of the cavity
matched the axion mass. This is the reason why we have vertical spikes
in the plot and the reason why it is important to narrow down as much
as possible the range in which to look for the axion.

In the next decades several new experiments will search for axions
and in Fig. 2.5 (b) some possible future sensitivities of these exper-
iments are projected. The shaded regions represent these new experi-
ments which will cover a large portion of the interesting parameter space,
exploring in particular the values predicted by the KSVZ and DFSZ
models. Even though this is an experimental plot we have to consider
some theoretical assumptions. In fact, haloscopes experiments, again
represented with a vertical region in the plot, may reveal new particles
or narrow the parameter space, but at the same time, they are based on
the non-trivial assumption that the axion comprises the totality of the
DM.

Axion-electron coupling

More recently, there have been new proposals to search for axions based
on other couplings other than photons. One possibility is based on the
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Figure 2.5: Axion-photon coupling parameter space: current bounds
(a) and future sensitivities (b). The yellow band represents the pre-
dicted value of DFSZ and generalized KSVZ models [69; 70]. The
coloured regions denote already tested values, while the shadowed one
represent future sensitivities. Figure from [68].
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axion-electron coupling, described by eq. 1.60. The Cae coefficient de-
pends on the model: it is of the order one in the DFSZ model while it
is loop induced in the KSVZ model. The only laboratory experiment
which gives some bound exploiting axion-electron coupling is QUaerere
AXions experiment [71] (QUAX4). The sensitivity of QUAX reaches
gae ≲ 10−11, however astrophysical limits are at the moment more con-
straining, yielding gae ≲ 10−13.

Axion-nucleon coupling

Another possibility is to consider the axion coupling to nucleons, which
are described by eqs. 1.66 and 1.67. Also in this case astrophysics pro-
vides stronger bounds, most notably from SN1987A. Future experiments
could test regions covering smaller values of gaN , beyond astrophysical
limits, however they are still far from the prediction of DFSZ and KSVZ
models. Other promising experimental approaches exploit CP-violating
axion couplings to nucleons [72] or to the nucleon EDM [73].

4Note that QUAX includes three different experiments also involving other axion
couplings.
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Chapter 3

Non-universal axion models

In the first chapter of this thesis, we have discussed two standard axion
models, namely the KSVZ and DFSZ models. Both of them are universal
models, in the sense that the U(1)PQ symmetry does not distinguish dif-
ferent SM fermion generations. On the other hand, non-universal axion
models are characterised by generation-dependent PQ charges and they
were proposed already in 1978 by Bardeen and Tye [74]. In fact, there
are no fundamental reasons why every SM fermion generation should
carry the same PQ charge and relaxing this hypothesis might actually
offer a possible connection between the PQ symmetry and the origin of
flavour, as suggested long ago by Wilczek [13].

In this chapter we review the general structure of non-universal ax-
ion models, highlighting the modern motivations, their UV completions
and the most relevant phenomenological consequences. These include
the generation of flavour-violating axion couplings, which open the pos-
sibility for new experimental tests of the QCD axion.

3.1 General motivations

There are several motivations behind the construction of non-universal
axion model, ranging from theory to astrophysics, as well as experimen-
tal considerations. Historically, the possibility of an axion coupled to
the SM fermions in a generation dependent way was fuelled by the ob-
servation in heavy ion collisions at GSI of a sharp peak at ∼ 300keV in
the positron spectrum [75]. The data were consistent with the produc-
tion of a particle of mass ∼ 1.7MeV, of probable pseudoscalar character
[76], which then decayed into e+e−. Although the properties of such a
particle were consistent with those of the original WW axion [3; 4], in
order to evade a set of stringent experimental constraints one had to
break the relation gaµ/gae = mµ/me predicted by universal axion mod-
els. Generation dependent axion couplings remained the only way out,
and a series of interesting papers analysing this possibility appeared (see
e.g. [77; 78]). Later on the GSI anomaly disappeared, but it paved the
way for the systematic investigation of non-universal axion models.

More recently, it was pointed out in Ref. [12] that the non-universality
of the PQ charges of the SM quarks is a necessary ingredient to allow
a simultaneous suppression of the axion coupling both to protons and
neutrons, thus opening the possibility to relax the tight astrophysical
bounds on the axion decay constant fa (or equivalently on the axion
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Figure 3.1: Constraints on the gaγ vs. ma plane for different axion
models. Blue and red lines are referred to astrophobic non-universal
axion models (labelled M1–4), while the green and brown lines to DFSZ
and KSVZ respectively. All the predictions for the axion-photon cou-
pling are stopped at the value of ma set by the astrophysical bounds
on the axion couplings to nucleons and electrons. Models M1–4 allow
for a sizeable relaxation of astrophysical bounds compared to standard
DFSZ/KSVZ models. Figure from [12].

mass ma) from SN 1987A (see section 2.1.3). In fact, while it is rela-
tively simple to conceive axion models in which the axion coupling to
photons or electrons are relatively suppressed (see e.g. [69]), that is not
the case for the axion coupling to nucleons. In section 3.1.2 we will
review the argument why universal axion models such as the DFSZ do
not allow for a simultaneous suppression of axion couplings to nucleons,
and illustrate how this conclusion can be avoided in the non-universal
case.

The possibility of suppressing the axion couplings to nucleons (rele-
vant for SN 1987A) and electrons (relevant for WDs/RGB) within non-
universal axion models leads to the so-called astrophobic axion scenario
[12], in which the most relevant astrophysical limits from SN 1987A,
WDs and RGB can be considerably relaxed (see section 2.1.3 for a col-
lection of astrophysical bounds). This allows in turn to reopen the heavy
axion window up to ma ∼ 0.1 eV, which will be probed by future helio-
scopes sensitive to the axion-photon coupling (see Fig. 3.1).

Finally, a remarkable consequence of non-universal axion models,
that will be reviewed in section 3.1.1, is that they imply flavour violation
effects since the PQ charge matrix is non-diagonal. This opens up the
possibility of probing the QCD axion in flavour processes such as K →
πa, which are complementary to standard axion searches.
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Summarizing, non-universal axion models are interesting in several
respects: they generalize the universal DFSZ model (discussed in section
1.4.3) allowing for a more general structure of axion couplings. This
includes the possibility of suppressing simultaneously the axion coupling
to protons and nucleons, as well as the generation of flavour off-diagonal
axion couplings, as reviewed in the following.

3.1.1 On the origin of flavour-violating axion couplings

Relaxing the hypothesis of the universality of the PQ current in DFSZ-
like constructions leads to flavour-violating axion couplings to quarks
and leptons. Here, we preliminary show how such couplings arise in a
generalised DFSZ setup with non-universal PQ charges. Let us assume
that quarks with the same EM charge but of different generations couple
to different Higgs doublets, for definiteness H1 or H2, to which we assign
the same hypercharge YH1 = YH2 = −1

2 but different PQ charges χ1 ̸=
χ2. Let us start by considering the following Yukawa terms for the
up-type quarks

LYu = −(Yu)11q̄1Lu1RH1 − (Yu)22q̄2Lu2RH2 − (Yu)12q̄1Lu2RH1 + . . . ,
(3.1)

where we have made explicit the generation indices and neglected for
simplicity the third generation. The quark bilinear q̄1Lu2R in the last
term is needed to generate the CKM mixing, and for the present dis-
cussion it is irrelevant whether it couples to H1 or H2. Note, also,
that from PQ charge consistency χ(q̄2Lu1R) = χ(q̄2Lu2R)−χ(q̄1Lu2R)+
χ(q̄1Lu1R) = −χ2 it follows that the term q̄2Lu1RH2 is also allowed.
However, being its structure determined by the first three terms we do
not need to consider it explicitly. Projecting out from the Higgs doublets
the neutral Goldstone bosons, eq. 1.84, and identifying the axion field
precisely as done for the standard DFSZ case in section 1.4.3, we obtain

Lmu =− (mu)11ū1Lu1Re
iχ1

a
va − (mu)22ū2Lu2Re

iχ2
a
va +

− (mu)12ū1Lu2Re
iχ1

a
va + . . . .

(3.2)

Differently from the case of the standard DFSZ, a purely axial field
redefinition as u→ e−iγ5χ

a
va u is not sufficient to remove the axion from

the mass terms because of the presence of a mixing term. In such a case,
it is necessary to add a vectorial part in order to remove the axion and
the field redefinitions (distinguishing u1 and u2) read:

u1 → e−i(γ5χ1+χ2)
a
va u1

u2 → e−i(γ5χ2+χ1)
a
va u2 .

(3.3)

By introducing a vector of the two quark flavours u = (u1, u2)
T and the

two matrices of charges χ12 = diag(χ1, χ2) and χ21 = diag(χ2, χ1) the
variation of the fermion kinetic terms due to the redefinitions above is:

δ(ūi/∂u) =
∂µa

va
(ūχ12γµγ5u+ ūχ12γµu) =

=
∂µa

va
(ūLχLγµuL + ūRχRγµuR),

(3.4)
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where in the second step χR = (χ1 +χ2)(
1

1) and χL = (χ2 −χ1)(
1

−1).
Note that in the case of right handed fields the PQ charge matrix χR

is proportional to the identity in generation space. Hence, upon going
to the mass basis via a unitary transformation, uR → Uu

RuR, the axion
interactions remain diagonal. On the other hand, χL is not propor-
tional to the identity and hence after the rotation to the mass basis,
uL → Uu

LuL, flavour off-diagonal couplings controlled by the matrix

(χ2 − χ1)U
u
L

(
1
−1

)
Uu†
L unavoidably appear. In the light of this exam-

ple, it should be clear that non-universal axion models, which are char-
acterised by a PQ charge matrix not proportional to the identity, imply
flavour-violation axion couplings.

3.1.2 Astrophobic axions

As already mentioned, non-universal models provide a possibility to sup-
pressed the gaN coupling (withN = p, n). The goal of this section (which
follows Refs. [12; 40]) is to show which conditions have to be fulfilled in
order to achieve this suppression. As we will see, a necessary condition
is that only the light quarks are responsible for the PQ-colour anomaly.
Then either the heavier quarks are not charged at all under the PQ
symmetry (but this would be problematic from the point of view of re-
producing CKM mixing) or their contribution to the PQ-color anomaly
need to cancel among each other.

The general expression for the adimensional axion-nucleon coeffi-
cients, Cap,n, was provided in eqs. 1.67-1.68. Neglecting a small O(5%)
contribution due to the strange quark, we can combine the previous two
equations into

Cap − Can = (c0u + c0d − 1)(∆u+∆d) (3.5)

Cap + Can = (c0u − c0d − fud)(∆u−∆d) (3.6)

where fud =
md −mu

md +mu
≃ 1/3, c0u,d are model-dependent axion couplings

to quarks (defined in eq. 1.38), while ∆u and ∆d are non-perturbative
matrix elements. The nucleophobic axion scenario is hence obtained by
requiring that both the above expressions are zero1, which can be cast
as a condition on the model-dependent coefficients c0u,d (independently
from the values of ∆u and ∆d). However, these conditions cannot be
realized in universal axion models, since c0u,d = 0 in KSVZ and c0u + c0d
in DFSZ are different from zero.

On the other hand, non-universal axion models offer a way out. Con-
sidering only the first-generation Yukawa terms, the associated axion
coupling are (see eq. 1.74):

q̄1Lu1RH1 → c0u =
1

2N
(χq1 − χu1) =

χ1

2N
(3.7)

q̄1Ld1RH̃2 → c0d =
1

2N
(χq1 − χd1) = − χ2

2N
. (3.8)

1It is possible to show that the axion-pion coupling is proportional to Cap − Can.
Hence, a nucleophobic axion is necessarily also pionphobic.
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Instead the PQ-colour anomaly factors due to all quarks and to the first
generation quark only are defined respectively by

2N =
3∑

i=1

(2χqi − χui − χdi)

2Nl = 2χq1 − χu1 − χd1 = χ1 + χ2 .

(3.9)

Then we can discuss in turn the two conditions required by nucleophobia.
Setting eq. 3.5 to zero implies c0u + c0d = 1, that is:

Nl

N
= 1 . (3.10)

Assuming that the light quark sector is associated to the first family,
Nl = N1, then the above condition is realized if N2 = −N3, namely the
QCD anomaly coefficients of the second and third generation cancel each
other. Clearly, this requires a non-universal assignment of PQ charges,
and the simplest option is that N1 = N2 = −N3 = N , namely the first
two generations of quarks carry the same PQ charge, which differs from
that of third generation quarks. This structure of PQ charges will be
denoted as 2+1.

The second condition for nucleophobia is obtained by setting to zero
eq. 3.6, thus we want c0u − c0d = fud ≃ 1

3 . From the previous derivation
of the DFSZ model and in particular from eq. 1.89 we have that tanβ =
v2/v1 and tan2 β = −χ1/χ2. Putting together the eqs. 3.7 and 3.8 and
considering the second expression in eq. 3.9, we get:

c0u − c0d =
1

N
(χ1 − χ2) . (3.11)

Since N2 = −N3 from the previous condition, then Nl = N = N1 and
we obtain:

c0u − c0d = s2β − c2β . (3.12)

The second nucleophobic condition, c0u−c0d ≃ 1/3, then implies s2β ≃ 2/3

(or equivalently tan2 β ≃ 2).
To sum up, the first nucleophobic condition simply follows from the

PQ charge assignment, while the second one is obtained by tuning the
vacuum angle β so that tanβ ≃

√
2. It should be finally noted that such

a value of tanβ is fully within the perturbative domain of the Yukawa
couplings [40].

The suppression of axion-electron coupling is still needed in order to
evade WDs/RGB bounds, and it can be achieved in two ways. The first
one consists in the introduction of a third Higgs doublet,H3, that couples
to leptons. The electrophobia condition implemented in a three-Higgs
doublet model (3HDM) is explained in [47], here we will summarise the
main concepts. With the introduction of H3, an extra non-hermitian
operator is required in the scalar potential. A possibility is to consider

H†
3H1ϕ

2 +H†
3H2ϕ

†. (3.13)

As we have done in the DFSZ model with only two doublets, we impose
the PQ charge conservation and the orthogonality condition between the
PQ and the hypercharge currents. These requirements read

− χ3 + χ1 + χϕ = 0 , (3.14)
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χ1v
2
1 + χ2v

2
2 + χ3v

2
3 = 0 . (3.15)

In order to decouple the axion from electrons we need to take the limit
χ3 → 0. Setting the normalization χϕ = 1, this is obtained for tan2 β =
2. It is remarkable that we obtain then the same condition derived in
the section 3.1.2, which also ensures nucleophobia.

A second way to implement electrophobia consists in setting to zero
the electron-axion coupling with an extra contribution coming from
flavour mixing [12].

3.2 Flavour violation: IR vs. UV dynamics

As discussed in section 3.1.1, when the PQ symmetry is generation de-
pendent, some flavour violating signatures arise. Most of the studies on
non-universal axion models focus on the flavour-violating effects involv-
ing the axion. We will refer to these effects as due to IR dynamics since
the low-energy axion field is explicitly involved in the flavour-violating
process, as for example K → πa. On the other hand, in UV complete
models there are also heavy radial modes which might be responsible for
flavour-violating 4-fermion operators. In contrast to the previous case,
we will refer to this kind of flavour violation as due to UV dynamics,
since it depends on the degrees of freedom on the UV completion.

The main goal of this thesis is to study the interplay between these
two sources of flavour violation. While here the discussion will be kept
qualitative and general, in chapter 4 we will focus on a specific non-
universal axion model, labelled M1, that will be studied in greater detail.

3.2.1 Flavour violation from IR dynamics

Let us start with the Lagrangian in the IR regime. We are interested
in the flavour-violating axion coupling terms, keeping in mind that we
have a generation-dependent PQ symmetry which yields a PQ charge
matrix which is no more proportional to identity. We call χfL and χfR

the PQ charge matrices for left and right fermion respectively, then the
Peccei Quinn current in the full generality is

Jµ
PQ = f̄LχfLγ

µfL + f̄RχfRγ
µfR . (3.16)

In order to go to the mass basis we have to rotate the fields fL,R →
VL,RfL,R and we get

Jµ
PQ = f̄LV

†
LχfLVLγ

µfL + f̄RV
†
RχfRVRγ

µfR , (3.17)

which reads in terms of vector and axial components

Jµ
PQ =

1

2

(
f̄V †

LχfLVLγ
µ(1− γ5)f + f̄V †

RχfRVRγ
µ(1− γ5)f

)
. (3.18)

The non-trivial structure of these non-universal models is now clear: in
the case of universal models the PQ charge matrices are proportional
to the identity and hence the unitary rotation matrices disappear in the
mass basis. Whereas, in the case of generation dependent PQ charges,
the charge matrix does not commute anymore with the diagonalization
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matrices and flavour mixing terms arise. The Lagrangian can be simply
derived from eq. 3.18 and it reads

L ⊃ ∂µa

va
f̄

[
(V †

LχfLVL + V †
RχfRVR) + (U †

RχfRVR − V †
LχfLVL)γ5

]
γµf

=
∂µa

2fa
f̄i(C

V
ij + CA

ijγ5)γ
µf .

(3.19)

In the step above we have used the eq. 1.71, while the vector and axial
current coefficients are defined as:

CV =
1

2N
(V †

RχfRVR + V †
LχfLVL) , (3.20)

CA =
1

2N
(V †

RχfRVR − V †
LχfLVL) . (3.21)

3.2.2 A paradigmatic example: K → πa

Given the expression of CV and CA we want to constrain them by apply-
ing experimental bounds. Indeed, flavour-violating experiments, such as
the meson decay into an invisible final state, can be used in order to
probe the value of the off-diagonal terms in CV,A matrices. The process
leading to the stronger constraint is the kaon decay, namely

K+ → π+a . (3.22)

It is crucial to note, however, that for this process the only relevant
part in the quark current is the vector one. The meson particle is a
pseudo-scalar particle, then it is odd under parity. At the same time
QCD preserves parity, then in a general current term with an axial
and a vector part, the entries corresponding to the axial current do not
contribute. Namely we have that ⟨k+| JV

µ +JA
µ |π+⟩=⟨k+| JV

µ |π+⟩, since
the axial current is proportional to γ5 and ⟨k+| JA

µ |π+⟩ = 0. In the light

of that, K+ → π+a searches will give constraints only on CV . Moreover,
the process is a flavour violating decay since the positively charged kaon
is formed by an up and an anti-strange quark, while the pion is composed
by an up quark and an anti-down on. The flavour violation is clear in
the left Feynman diagram in Fig. 3.2. The constraints on vector current
regard only the strange and down sector and in particular the involved
entry in the matrix will be CV

sd.

In order to find the constraints, let us consider the transition rate

Γ(K+ → π+a) ≃ m3
K

16πf2a
|CV

sd|2 . (3.23)

The principal process through which the kaon decays in the SM isK+ →
µ+ν, represented in the right diagram in Fig. 3.2, with transition rate:

Γ(K+ → µ+ν) ≃ mK

8π
(GF fKmµ|Vus|)2 . (3.24)

In the last equation, we have labelled with fK the kaon decay constant,
with GF the Fermi constant and with |Vus| the CKM matrix element
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Figure 3.2: Feynman diagrams of different channels of kaon decay.
The left diagram represents the kaon decaying into a pion and an axion,
while the right one represents the main kaon decay channel into in the
SM.

which is relevant for the decay. Approximating ΓTOT ≃ Γ(K+ → µ+ν)2,
the branching ratio in K → πa is obtained by taking the ratio between
eq. 3.23 and 3.24, that reads:

Br(K+ → π+a) ≃ (GF fKmµ|Vus|)−2m
2
K

2f2a
|CV

sd|2 . (3.25)

From the experiments E949+E787 [79] one infers the experimental bound

Br(K+ → π+a) < 0.73 · 10−10 , (3.26)

which implies
|CV

sd| < 2.9 · 10−12fa(GeV) , (3.27)

or equivalently a constraint on the axion mass

ma < 17 · |CV
sd|−1µeV. (3.28)

Hence, we conclude that flavour bounds on the axion mass can be
even more constraining than astrophysics, depending, of course, on the
size of the off-diagonal element CV

sd. We finally observe that it is pos-
sible to set constraints also on other elements of CV,A (including axial
components) by looking at other flavour-violating processes which in-
volve meson and baryon decays as well as neutral meson oscillations. A
collection of bounds can be found for instance in Ref. [80].

3.2.3 Flavour violation from UV dynamics

In UV completions, such as the DFSZ model discussed in section 1.4.3,
there are heavy degrees of freedom in the scalar sector which comprise
for instance the radial modes of the 2HDM. Beyond the light SM Higgs,
h, these results into a CP-even neutral state, H, a CP-odd one, A, and
a charged scalar field, H±. As it will be shown explicitly in the next
chapter, when these states are integrated out in non-universal axion
models, they lead to 4-fermion operators which provide new sources
of flavour-violation, complementary to the previously discussed flavour-
violating processes involving the axion field.

Since the final goal is to constrain the coefficient of four fermion
operators arising from the Yukawa sector and in particular the quark

2In the SM the branching ratio in K+ → µ+ν is around 63.4%.
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one, let us restrict the expression of the Lagrangian to the Yukawa terms.
We want now to clarify why a non-universal model implies a flavour
violating signature from the point of view of the UV degrees of freedom.
Making explicit the flavour indices i, j, the Yukawa Lagrangian for the
quark sector of the most general 2HDM can be written as

L ⊃ −q̄L,iuR,j

[
Y u
1,ijH1 + Y u

2,ijH2

]
+ q̄L,idR,j

[
Y d
1,ijH̃1 + Y d

2,ijH̃2

]
+ h.c. ,

(3.29)
where the Y u

1,2 and Y d
1,2 are the Yukawa matrices which depend on the

specific non-universal model to be considered. Here we will keep the
discussion general, while in chapter 4 we will make this structure explicit
by referring to a specific non-universal axion model. Then the quark
mass matrices are given by:

Mu =
v√
2
cβY

u
1 +

v√
2
sβY

u
2 ,

Md =
v√
2
cβY

d
1 +

v√
2
sβY

d
2 ,

(3.30)

For completeness we also write the Lagrangian for the lepton Yukawas

L ⊃ l̄L,ieR,j

[
Y e
1,ijH̃1 + Y e

2,ijH̃2

]
, (3.31)

and the corresponding lepton mass matrix:

Me =
v√
2
cβY

e
1 +

v√
2
sβY

e
2 . (3.32)

Again, Y e
1 and Y e

2 represent the structure of the lepton Yukawa coupling
which will depend on the considered model.

Note that in the case of universal axion models, such as the DFSZ
model, H1 couples only to up-type quarks and H2 couples only to down-
type quarks. In this case one has simply Mu ∝ Y1 and Md ∝ Y2,
so in the mass basis also the Yukawa interactions of the scalar radial
modes contained in H1,2 are diagonal and there are no flavour-changing
currents. The situation is different instead in the case on non-universal
axion models, where both types of Higgses can couple to up-type and
down-type quarks. An example of this structure, leading to flavour-
violating axion couplings, was given in section 3.1.1 (see eq. 3.1). Then,
given the general structure in eq. 3.30, in the basis where quark masses
are diagonal, Yukawa interactions are not necessarily diagonal and hence
flavour-violating sources mediated by the heavy Higgs radial modes are
generated. Upon integrating out the latter, these results in flavour-
violating 4-fermion operators.

In the next chapter we will analyse in greater detail a specific UV
complete non-universal model, we will diagonalize both the quark and
Higgs sectors, and finally derive the flavour-violating 4-fermion operators
upon integrating out the heavy radial modes.
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Chapter 4

Anatomy of a non-universal
axion model

In this chapter we study in more detail an explicit non-universal axion
model, labelled M1 model and first introduced in Ref. [12], with the final
goal of highlighting the interplay between IR and UV sources of flavour
violation, due respectively to the axion field and the heavy radial modes
of the UV completion. The study of the latter aspect represents the
original contribution of this thesis.

4.1 The M1 model

The scalar sector of the M1 model comprises two Higgs doublets H1,2 ∼
(1, 2,−1/2) and a complex singlet σ ∼ (1, 1, 0). This is the same field
content of the DFSZ model discussed in section 1.4.3, with the only
difference that now the Yukawa sector admits for H1 and H2 to couple
to the same flavours, according to the following Yukawa Lagrangian:

LY
M1 =− yuαβ q̄αuβH1 − yu33q̄3u3H2 − yuα3q̄αu3H1 − yu3β q̄3uβH2

+ ydαβ q̄αdβH̃2 + yd33q̄3d3H̃1 + ydα3q̄αd3H̃2 + yd3β q̄3dβH̃1

+ ylαβ l̄αeβH̃1 + yl33 l̄3e3H̃2 + ylα3 l̄αe3H̃1 + yl3β l̄3eβH̃2 ,

(4.1)

where α, β = 1, 2, denote first two generations. It is crucial to note that
the Yukawa terms feature a so-called 2+1 structure, namely with the
first two generations always coupling to the same type of Higgs. As we
will see in a moment, this implies that first two generations always have
the same PQ charge.

The PQ charges of the scalar fields are fixed by imposing two condi-
tions, as already done for the case of the DFSZ model in section 1.4.3.
Specifically, we want to impose the PQ invariance and the orthogonality
between the PQ and hypercharge currents, namely, we want to ensure
that there are no mixing terms between axion and Z boson. If we con-
sider that the singlet σ couples with the two Higgs doublets through the
term H1H

†
2σ

2 then the PQ charges for the Higgs doublets can be defined
as in the DFSZ case, i.e. χ1 = −2s2β and χ2 = 2c2β, where we adopted

the normalization χσ = 1 and defined tanβ =
v2
v1

, which takes values in

the perturbative unitarity domain tanβ ∈ [0.25, 170]. Eventually, taking
into account the PQ invariance of the Yukawa Lagrangian in eq. 4.1,
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the PQ charges in the quark sector read:

χq = 2(0, 0, 1), χu = 2(s2β, s
2
β, s

2
β) χd = 2(c2β, c

2
β, c

2
β), (4.2)

while for the lepton sector we have:

χl = −2(0, 0, 1), χe = −2(s2β, s
2
β, s

2
β). (4.3)

Note that we have simplified the PQ charges by exploiting the invari-
ance of the theory under baryon and lepton number, which have been
employed in order to set χq1 = χq2 = 0 and χl1 = χl2 = 0, respectively.
Moreover, the M1 model is such that only the LH doublets q and l have
non-universal PQ charges, and hence flavour-violating axion couplings
will only involve LH fermions (as it can be read from eqs. 3.20-3.21).

To complete the presentation of the M1 model we also specify the
scalar potential, which coincides with that of the DFSZ model and reads

VM1 =−m2
11(H

†
1H1)−m2

22(H̃2
†
H̃2)−m2

33|σ|2

+ λ1(H
†
1H1)

2 + λ2(H̃2
†
H̃2)

2 + λ3|σ|2 + λ4(H
†
1H̃2)

†(H†
1H̃2)

+ λ12(H
†
1H1)(H̃2

†
H̃2) + λ13|σ|2(H†

1H1) + λ23|σ|2(H̃2
†
H̃2)

+ (λ5σ
2H†

2H1 + h.c.).

(4.4)

For later purpose we also specify the embedding of the EM charged
eigenstates into the scalar representations

H1 =

v1 + h01 + iη1√
2

h−1

 , H2 =

v2 + h02 + iη2√
2

h−2

 (4.5)

and

σ =
vσ + σ0 + iη0σ√

2
, (4.6)

which will be employed for the calculation of the scalar spectrum in sec-
tion 4.3.1. In the same section we will discussed the tuning mechanism
through which we can decouple the electroweak scale, associated to v1
and v2 and the fa scale associated to vσ. The link between vσ and fa is
the same discussed in eqs. 1.71 and 1.90.

4.2 Yukawa sector

The goal of this section is to derive the rotation matrices which diago-
nalise the quark mass matrices, that is

Mdiag
u = V †

uLMuVuR , Mdiag
d = V †

dLMdVdR . (4.7)

In the case of the M1 model, we can write

Mu =
v√
2
cβY

u
1 +

v√
2
sβY

u
2 ,

Md =
v√
2
cβY

d
1 +

v√
2
sβY

d
2 ,

(4.8)
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where from eq. 4.1 it follows that

Y u
1 =


yu11 yu12 yu13

yu21 yu22 yu23

0 0 0

 , Y u
2 =


0 0 0

0 0 0

yu31 yu32 yu33

 , (4.9)

Y d
1 =


0 0 0

0 0 0

yd31 yd32 yd33

 , Y d
2 =


yd11 yd12 yd13

yd21 yd22 yd23

0 0 0

 , (4.10)

Hence, given a Yukawa texture, one can in principle find the diagonal-
izing matrices by applying the bi-unitary transformations in eq. 4.7.
Instead of solving this problem in full generality, we make a simplifying
assumption here, namely that rotation matrices are CKM-like. Follow-
ing Ref. [14], this is obtained via the following ansatz for the Yukawa
matrices:

Y u
1 =

√
2

vcβ


mu 0 0

0 md 0

0 0 0

 , Y u
2 =

√
2

vsβ


0 0 0

0 0 0

0 0 mt

 (4.11)

Y d
1 =

√
2

vcβ


0 0 0

0 0 0

0 0 mb

 , Y d
2 =

√
2

vsβ


md λms ρλ3mb

0 ms λ2mb

0 0 0

 ,

(4.12)

where λ ≃ 0.23 and ρ ≃ 0.12 are coefficients entering the Wolfenstein
parametrization of the CKM matrix [81], that is defined in terms of the
LH rotation matrices as

VCKM = V †
uLVdL . (4.13)

Note that the ansatz above corresponds to an already diagonal Mu ma-
trix, hence, VuL = VuR = 1 and VCKM = VdL, which implies that only
mixing in the down-quark sector is physical. Regarding instead axion
interactions only the LH matrix VdL appears in eq. 3.20 and 3.21, since
PQ charges are universal in the RH sector.

This particular ansatz for the Yukawa matrices might seem quite re-
strictive. However, it is sufficient for our goal, namely for the comparison
between flavour-violation from low- and high-energy dynamics. As dis-
cussed in section 3.2.2 the only relevant quantity for the K → πa decay
is the vector coefficient CV

sd, which is different from zero with this defini-
tion of the Yukawa matrices. On the other hand, if we had for instance
considered a diagonal matrix in the down sector, then we would have
to consider other processes involving flavour violation in the up-quark
sector. A possible follow-up of this work could consist in relaxing the
assumptions made previously and define in a very general way the mass
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matrices Mu and Md. For the rest of the thesis, we will limit ourselves
to the simpler scenario considering above.

Let us now perform the diagonalization of Md, in order to show that
indeed VdL ≃ VCKM . This can be done by working in perturbation
theory, i.e. assuming small mixing angles, as reviewed in Appendix A.1.
We summarize here the main steps. The general idea is to diagonalize
the matrix Md using a bi-linear transformation, that is:

Mdiag
d = V †

dLMdVdR , (4.14)

which, in turn, are composed by the product on the rotation matrices
(assuming real parameters for simplicity):

VdL = V12L × V13L × V23L V †
uR = V23R × V13R × V12R . (4.15)

After performing all the steps, see Appendix A.2, the left-handed rota-
tion has, as expected, the following form:

VCKM ≃ VdL ≃


1 λ ρλ3

−λ 1 λ2

λ3(1− ρ) −λ2 1

 (4.16)

which reproduce in first approximation the CKM matrix [81].
Note that differently from Ref. [14], here the element ”13” in Y d

1

matrix of eq. 4.12 has a dependence from ρ. This is because the authors
in that paper wanted to avoid the effects of quark flavour violation. In
this sense they set the ρ coefficient equal to unit and, as a result, they got
a zero value in an element of the final rotation matrix. Our treatment
is more general and matches better the CKM matrix that we want to
reproduce.

Considering λ = 0.226 and ρ = 0.139 [81] we obtain the numerical
matrix:

VCKM ≃


1 0.226 0.0016

0.226 1 0.0510

0.0099 0.0510 1

 , (4.17)

that is in good agreement with the numerical value of the CKM.

4.3 Higgs sector

Let us discuss now the Higgs sector. Our goal is to compute the mass
spectrum of the particles involved in the M1 model scenario. The simpler
case of the 2HDM is reviewed in Appendix B. Here, instead, we consider
the more involved case including two Higgs doublets and a complex
singlet, comprising the M1 model.

4.3.1 The mass spectrum in the M1 model

The potential in the eq. 4.4 represents our starting point. From now on,
we will take λ∗5 = λ5, namely we will consider λ5 as a real coefficient.
This is without loss of generality, since all results will be proportional
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to 2 Re(λ5)=λ
∗
5 + λ5 and, moreaover, it is possible to set λ5 real via a

proper re-phasing of the scalar fields.

In order to minimize the potential, we start by imposing the station-
ary conditions:

∂VM1

∂v1
= 0,

∂VM1

∂v2
= 0,

∂VM1

∂vσ
= 0,

which read:

m2
11 = λ1v

2
1 +

λ12v
2
2

2
+
λ13v

2
σ

2
+
λ5v2v

2
σ

2v1
(4.18)

m2
22 = λ2v

2
2 +

λ12v
2
1

2
+
λ23v

2
σ

2
+
λ5v1v

2
σ

2v2
(4.19)

.

m2
33 = λ3v

2
σ +

λ13v
2
1

2
+
λ23v

2
2

2
+ λ5v1v2 (4.20)

Given the embedding of the EM eigenstates in eq. 4.5 and 4.6, the
fields can be divided in two charged states (h−1 , h

−
2 ), three CP-odd scalars

(η1, η2, η0σ) and three CP-even scalars (h01, h02, σ0). The spectrum is
computed by taking the second derivatives of VM1 with respects fields
and by imposing the stationary conditions above. One finds:

• Firstly, the mass matrix Mc associated to the charged fields h−1
and h−2 is:

M2
c =


λ4v

2
2

2
− λ5v2v

2
σ

2v1
−λ4v1v2

2
+
λ5v

2
σ

2

−λ4v1v2
2

+
λ5v

2
σ

2

λ4v
2
1

2
− λ5v1v

2
σ

2v1

 . (4.21)

• Secondly, the pseudo scalar mass matrix Mps associated to η1, η2
and η0σ is:

M2
ps =


−λ5v2v

2
σ

2v1

λ5v
2
σ

2
−λ5v2vσ

λ5v
2
σ

2
−λ5v1v

2
σ

2v2
λ5v1vσ

−λ5v2vσ λ5v1vσ −2λ5v1v2

 . (4.22)

• Finally, the neutral scalar fields, h01, h02 and σ0 correspond to the
mass matrix Mns:

M2
ns =


2λ1v

2
1 −

λ5v2v
2
σ

2v1
λ12v1v2 +

λ5v
2
σ

2
λ13v1vσ + λ5v2vσ

λ12v1v2 +
λ5v

2
σ

2
2λ2v

2
2 −

λ5v1v
2
σ

2v2
λ23v2vσ + λ5v1vσ

λ13v1vσ + λ5v2vσ λ23v2vσ + λ5v1vσ 2λ3v
2
σ

 .

(4.23)
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At this point, to determine the mass eigenvalues we can make some
physical considerations. The hierarchy between different mass scales
should be imposed: the PQ scale is larger than the electroweak scale,
which implies v1, v2 ≪ vσ. As a matter of fact, we can require, at least
at tree level, that:

λ13 ∼
c13v

2

v2σ
, λ23 ∼

c23v
2

v2σ
, λ5 ∼

c5v
2

v2σ
(4.24)

where c13, c23, c5 are O(1) coefficients and v2 = v21 + v22. This choice
will ensure the decoupling among the heavy neutral scalar scale (PQ
scale) and the other lighter scales present in the mass spectrum (Higgs
and 2DHM scale). Given this parametrization, we can now compute the
mass eigenvalues perturbatively.

In detail, the charged scalar mass matrix 4.21 is of rank 1. This is
due, as in the 2HDM case, to the presence of a null eigenvalue corre-
sponding to the would-be Goldstone boson mode associated to the W
boson. Instead, the other eigenvalue is:

m2
H± = v2λ4 +

v4σλ5
v1v2

LO−−→ v2λ4 +
v4c5
v1v2

(4.25)

where the leading order (LO) expression is computed using 4.24. Sim-
ilarly also the matrix 4.22 is of rank 1. Being of dimension three, this
means that it has two zero eigenvalues: the first one is referred to the
Goldstone boson absorbed by the Z boson, while the second one cor-
responds to the axion, namely the Goldstone boson associated to the
breaking of U(1)PQ. The third non-zero eigenvalue is

m2
A =

λ5
v1v2

(v2v2σ + 4v21v
2
2)

LO−−→ v4c5
v1v2

(4.26)

For what concerns the CP-even scalar section, the mass matrix is
of rank 3. Hence, we expect three non-zero eigenvalues related to the
mh,mH and mσ. However, due to the same consideration as before,
regarding the hierarchy structure of the mass fields, it is convenient to
rewrite the mass matrix 4.23 at leading order using 4.24. Therefore,
keeping all terms of O(v2) the matrix turns out to be:

2λ1v
2
1 −

v2v2c5
2v1

λ12v1v2 +
v2c5
2

0

2λ12v1v2 +
v2c5
2

λ2v
2
2 −

v2v1c5
2v2

0

0 0 2λ3v
2
σ

 (4.27)

The eigenvalues associated to it are:

m2
h ∼ m2

H ∼ O(v2), (4.28)

m2
σ ∼ 2λ3v

2
σ . (4.29)

Hence, once the heavy σ0 state is decoupled one is left in the EFT
with a standard 2HDM, whose scale is assumed to be not far from the
electroweak scale. The diagonalization of the 2HDM can be done by
following some standard steps which are reviewed in Appendix B.
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4.4 Lagrangian in the mass basis

In the previous sections we have diagonalized both the fermion and the
scalar sector. Hence, we proceed now with the identification of the
Lagrangian in the mass basis, that is the preliminary step in order to
integrate out the heavy radial modes of the 2HDM, that is H,A,H±.

Let us start with eq. 3.29 and focus for simplicity on the dow-
quark sector (similar considerations apply to up-type quarks and charged
leptons). Thus, let us consider:

L ⊃ −q̄L,idR,j

[
Y d
1,ijH̃1 + Y d

2,ijH̃2

]
. (4.30)

The decomposition of the Higgs fields are given in eq. 4.5. In the case
of tilde fields, we report them here for convenience:

H̃1 =

 h+1

−v1 + h01 + iη1√
2

 , H̃2 =

 h+2

−v2 + h02 + iη2√
2

 . (4.31)

To obtain the final Lagrangian in the mass basis we have to follow
through three different steps:

• decomposition of SU(2)L space;

• projection on the Higgs mass basis;

• projection on the fermions mass basis.

It is convenience to first rotate the Higgs doublets in a basis where only
one of them, say Φ1, picks up the whole electroweak VEV, that isΦ1

Φ2

 =

 cβ sβ

−sβ cβ

H̃1

H̃2

 . (4.32)

Indeed, it can be easily verified that with this definition:

⟨Φ1⟩ ∼ cβv1 + sβv2 = v

⟨Φ2⟩ ∼ −sβv1 + cβv2 = 0 .
(4.33)

Applying the definition in eq. 4.32, one finds:

Φ1 =

 G+

1√
2
(−v − cβh01 − sβh02 + iG0)

 (4.34)

Φ2 =

 H+

1√
2
(sβh01 − cβh02 + iA)

 (4.35)

where we have used the following definitions:

G+ = cβh
+
1 + sβh

+
2

G0 = cβη1 + sβη2

H+ = −sβh+1 + cβh
+
2

A0 = cβη2 − sβη1 ,

(4.36)
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with G+,0 denoting the would-be Goldstone bosons eaten by the W and
the Z.

At this point, we decompose the SU(2)L components in eq. 4.30
and focus, for illustrative purposes, on the terms proportional to the
H+ component, which read:

L =q̄LY
d
1 H̃1dR + q̄LY

d
2 H̃2dR

⊃ūLY d
1 (sβ(−H+))dR + ūLY

d
2 (cβ(H

+))dR

=− ūL

[
V †
uLY

d
1 VdRsβ − V †

uLY
d
2 VdRcβ

]
dRH

+

=− ūLVCKM

[
(V †

dLY
d
1 VdR)sβ + (V †

dLY
d
2 VdR)

s2β
cβ

− (V †
dLY

d
2 VdR)

1

cβ

]
dRH

+

=− ūLVCKM

[
sβ

√
2md

vcβ
− 1

cβ
V †
dLY

d
2 VdR

]
dRH

+

=− ūLVCKM

[√
2md

vcβ
sβ − 1

cβ
ϵd

]
dRH

+ ,

(4.37)

where we have used the diagonal mass matrices defined as:

√
2mu = vsβV

†
uLY

u
2 VuR + vcβV

†
uLY

u
1 VuR , (4.38)

√
2md = vsβV

†
dLY

d
2 VdR + vcβV

†
dLY

d
1 VdR . (4.39)

A similar procedure can be followed in order to compute the terms
proportional to A and H. For the latter case, however, one has to
perform a final rotation in order to diagonalize the CP-even sector. This
is explicitly obtained via the orthogonal transformationh01

h02

 =

 cα sα

−sα cα

H
h

 , (4.40)

where the angle α can be related to the parameters of the scalar potential
of the 2HDM (see Appendix B).

Following the same steps, as already done for the H+ field, also for
the A and H components, and including also the up-quark and charged-
lepton sectors, we finally arrive at the full interaction Lagrangian in the
mass basis, which can be written in a compact way as

LY =− ūLih[C
hu
ij ]uRj − d̄Lih[C

hd
ij ]dRj − ēLih[C

he
ij ]eRj+

− ūLiH[CHu
ij ]uRj − d̄LiH[CHd

ij ]dRj − ēLiH[CHe
ij ]eRj+

+ ūLiA[C
Au
ij ]uRj + d̄LiA[C

Ad
ij ]dRj + ēLiA[C

Ae
ij ]eRj+

− d̄LiH
−V ∗

ki[C
H−

u
kj ]uRj − ūLiH

+Vik[C
H+

d
kj ]dRj+

− ν̄LiH
+U∗

ki[C
H+

e
kj ]eRj + h.c. ,

(4.41)

where V and U denore respectively the CKM and PMNS mixing matri-
ces. The Cij coefficients, which encode both the diagonalization of the
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fermion and scalar sectors, are found to be:

Chu
ij =

mui

vsβ
δij(cα) + ϵuij

(
− cα−β

sβ

)
Chd
ij =

mdi

vcβ
δij(−sα) + ϵdij

(
cα−β

cβ

)
Che
ij =

mei

vcβ
δij(−sα) + ϵeij

(
cα−β

cβ

)
CHu
ij =

mui

vsβ
δij(sα) + ϵuij

(
− sα−β

sβ

)
CHd
ij =

mdi

vcβ
δij(cα) + ϵdij

(
sα−β

cβ

)
CHe
ij =

mei

vcβ
δij(cα) + ϵeij

(
sα−β

cβ

)
CAu
ij =

mui

vsβ
δij(−icβ) + ϵuij

(
i

sβ

)
CAd
ij =

mdi

vcβ
δij(−isβ) + ϵdij

(
i

cβ

)
CAe
ij =

mei

vcβ
δij(−icβ) + ϵeij

(
i

cβ

)
CH−

u
kj =

√
2
mui

vsβ
δkjcβ −

ϵukj
sβ

C
H+

d
kj =

√
2
mdi

vcβ
δkjsβ −

ϵdkj
cβ

CH+
e

kj =
√
2
mei

vcβ
δkjsβ −

ϵekj
cβ

,

(4.42)

where we have introduced the ϵ matrices:

ϵu = V †
uLY

u
1 VuR (4.43)

ϵd = V †
dLY

d
2 VdR (4.44)

ϵe = V †
eLY

e
2 VeR , (4.45)

which encode the source of flavour violation due to the radial modes,
H,A,H+, that we want to integrate out in order to obtain the flavour-
violating 4-fermion operators.

4.5 4-fermion operators

The goal of this final section is to derive the 4-fermion coefficients, Cijkl,
following the integration of the heavy radial modes, H,A,H+. This will
be done, within an EFT approach, by using the classical equation of
motion for the heavy fields in the static limit (i.e. neglecting higher-order
derivative terms). The latter are then substituted back into the original
Lagrangian, thus formally obtaining the associated effective Lagrangian.
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4-fermion operators from H

Let us start with H. The Lagrangian associated to this field, which
involves up and down quarks and includes also the hermitian conjugate
terms, reads:

L ⊃− d̄LiHC
Hd
ij dRj − d̄Rj(C

Hd
ji )†HdLi+

− ūLiHC
Hu
ij uRj − ūRjH(CHu

ji )†uLi −
1

2
m2

HH
2 .

(4.46)

We can now integrate out the heavy field, namely H. To achieve this
we derive the Lagrangian in H and we obtain the associated equation
of motion:

∂L
∂H

= 0 ⇒ H =
1

m2
H

[− d̄LiC
Hd
ij dRj − d̄Rj(C

Hd
ji )†dLi+

− ūLiC
Hu
ij uRj − ūRj(C

Hu
ji )†uLi] .

(4.47)

After substituting back into eq. 4.46, the final result reads:

LEFT ⊃+
1

2

1

m2
H

[
d̄LiC

Hd
ij dRj + d̄Rj(C

Hd
ji )†dLi+

+ ūLiC
Hu
ij uRj + ūRj(C

Hu
ji )†uLi

]2
.

(4.48)

4-fermion operators from A

With the same procedure, we find that the effective Lagrangian contain-
ing the 4-fermion operators relative to the A is:

LEFT ⊃+
1

2

1

m2
A

[
d̄Li(C

Ad
ij )dRj + d̄Rj(C

Ad
ji )+dLi

+ ūLiC
Au
ij uRj + ūRj(C

Au
ji )†uLi

]2
.

(4.49)

4-fermion operators from H±

The case of a complex scalar is slightly different, so we report here the
intermediate steps explicitly. The starting Lagrangian is:

L ⊃− d̄LiH
−V ∗

kiC
H−

u
kj uRj − d̄Rj(C

H+
d

jk )†V ∗
ikH

−uLi+

− ūLiH
+VikC

H+
d

kj dRj − ūRj(C
H−

u
jk )†VkiH

+dLi −m2
H±H

+H−

(4.50)

The equations of motion associated to each fields are:

∂L
∂H− = 0 ⇒ H+ = − 1

m2
H±

[d̄LiV
∗
kiC

H−
u

kj uRj + d̄RjV
∗
ik(C

H+
d

jk )†uLi] (4.51)

∂L
∂H+

= 0 ⇒ H− = − 1

m2
H±

[ūLiVikC
H+

d
kj dRj + ūRjVki(C

H−
u

jk )†dLi] (4.52)
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which are one the complex conjugate of the other. Hence, in terms
of the quark bi-linear

B = [d̄LiV
∗
kiC

H−
u

kj uRj + d̄RjV
∗
ik(C

H+
d

jk )†uLi]

B∗ = [ūLiVikC
H+

d
kj dRj + ūRjVki(C

H−
u

jk )†dLi] ,
(4.53)

the final effective Lagrangian reads:

LEFT ⊃ BB∗

m2
H±

. (4.54)

While we have focussed here just on quark fields, a similar procedure
can of course be applied for charged leptons.

4.5.1 Coefficients of 4-fermion operators

We now collect the coefficients of the 4-fermion operators, by performing
the square terms in eq. 4.48, 4.49 and 4.54. The most general effective
Lagrangian including the possible 4-fermion operators obtained by inte-
grating out the heavy fields of the 2HDM reads:

L4−fermion
EFT ⊃

(
C

q̄LqRq̄′Lq
′
R

ijkl q̄LiqRj q̄
′
Lkq

′
Rl + h.c.

)
+

+

(
C

q̄LqRq̄′Rq′L
ijkl q̄LiqRj q̄

′
Rkq

′
Ll + h.c.

)
+

+

(
C ūLdRd̄LuR
ijkl ūLidRj d̄LkuRl + h.c.

)
+

+

(
C ūLdRd̄RuL
ijkl ūLidRj d̄RkuLl

)
+

+

(
C d̄LuRūRdL
ijkl d̄LiuRj ūRkdLl

)
,

(4.55)

where q, q′ stand either for u or d quarks.

Finally, the explicit expression for the 4-fermion coefficients is found
to be:
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C ūLuRūLuR
ijkl =

1

2m2
H

CHu
ij CHu

kl +
1

2m2
A

CAu
ij C

Au
kl

C d̄LdRd̄LdR
ijkl =

1

2m2
H

CHd
ij C

Hd
kl +

1

2m2
A

CAd
ij C

Ad
kl

C ūRuLūRuL
jilk =

1

2m2
H

(CHu
ji )†(CHu

lk )† +
1

2m2
A

(CAu
ji )†(CAu

lk )†

C d̄RdLd̄RdL
jilk =

1

2m2
H

(CHd
ji )†(CHd

lk )† +
1

2m2
A

(CAd
ji )†(CAd

lk )†

C ūLuRd̄LdR
ijkl =

1

m2
H

CHu
ij CHd

kl +
1

m2
A

CAu
ij C

Ad
kl

C ūLuRūRuL
ijkl =

1

m2
H

CHu
ij (CHu

kl )† +
1

m2
A

CAu
ij (CAu

kl )†

C ūLuRd̄RdL
ijkl =

1

m2
H

CHu
ij (CHd

kl )† +
1

m2
A

CAu
ij (CAd

kl )
†

C d̄LdRūRuL
ijlk =

1

m2
H

CHd
ij (CHu

lk )† +
1

m2
A

CAd
ij (CAu

lk )†

C d̄LdRd̄RdL
ijlk =

1

m2
H

CHd
ij (CHd

lk )† +
1

m2
A

CAd
ij (CAd

lk )†

C d̄RdLūRuL
jilk =

1

m2
H

(CHd
ji )†(CHu

lk )† +
1

m2
A

(CAd
ji )†(CAu

lk )†

C d̄LuRūLdR
ijsr =

1

m±2
H

V ∗
kiVslC

H−
u

kj C
H+

d
lr

C d̄LuRūRdL
ijsr =

1

m±2
H

V ∗
kiVlsC

H−
u

kj (CH−
u

rl )†

C d̄RuLūLdR
ijsr =

1

m±2
H

V ∗
ikVsl(C

H+
d

jk )†C
H+

d
lr

C d̄RuLūRdL
ijsr =

1

m±2
H

V ∗
ikVls(C

H+
d

jk )†(CH−
u

rl )† .

(4.56)

Similar expressions can be obtained for 4-fermion operators involving
lepton fields.

4.6 Comparison between low-energy and high-
energy sources of CP violation

In the previous sections we have determined the flavour-violating axion
couplings to SM fermions (see section 3.2.1) and the flavour-violating
4-fermion operators induced by the heavy radial modes of the 2HDM
(see section 4.5.1). Note that these formulae are general, in the sense
that they hold in any non-universal axion model and they depend from
the flavour rotation matrices VuL , etc., and in the case of the axion
couplings also from the PQ charge matrices as well as the axion decay
constant, fa, and in the case of the 4-fermion operators from the mass
scale of the radial modes, mH,A,H± . The latter should be regarded as
a free parameter which can be anywhere between the electroweak scale
and fa. On the other hand, in order to make some predictions we need
to make further assumptions. First of all, we have considered a specific

64



4.6. COMPARISON BETWEEN LOW-ENERGY AND
HIGH-ENERGY SOURCES OF CP VIOLATION

non-universal axion model, denoted as M1 model and studied in detail
in the present chapter. Moreover, we have done some assumptions on
the flavour structure of the quark Yukawa matrices (see Appendix A.2),
which basically correspond to trivial mixing in the up-quark sector and
VdL ≃ VCKM.

We can now proceed to compare these two sources of flavour viola-
tion. For simplicity, we will focus on two observables involving s → d
transitions, namely K → πa and K0-K̄0 oscillations, which provide two
of the most stringent constraints on the kind of scenarios considered in
this thesis.

4.6.1 Constraints from K → πa

As discussed in section 3.2.2, this kaon decay mode provides the strongest
constraint on the coupling CV

sd. The general expression of CV is given in
eq. 3.20, while the bound provided by this process is given in eq. 3.27,
that we report here for convenience

|CV
sd| < 2.9 · 10−12fa(GeV) . (4.57)

Since we have computed the expression of VdR and VdL which correspond
respectively to the identity matrix and to VdL ≃ VCKM, we are now
able to provide an explicit expression for CV , defined in our model as
CV = V †

dLχdLVdL, which reads:

CV =


λ6(1− ρ)2 −λ5(1− ρ) λ3(1− ρ)

−λ5(1− ρ) λ4 −λ2

λ3(1− ρ) −λ2 1

 . (4.58)

The K → πa process corresponds to an s → d transition, that is pro-
portional to the 12 element of the matrix above, and hence of order λ5.
Using λ = 0.23, we can translate the general constraint in eq. 4.57 in a
bound on the axion decay constant (holding in our model)

fa ≳ 109GeV , (4.59)

which is of the same order of the limits set by astrophysics (see section
2.1.3).

4.6.2 Constraints from K0-K̄0 oscillations

K0-K̄0 oscillations represent another example of a flavour-violating pro-
cess involving s → d transitions, which are particularly relevant in the
presence of 4-fermion operators. Fig. 4.1 represents the Feynman dia-
gram for the K0-K̄0 oscillation process within an EFT approach, where
the 4-fermion structure is manifest. Following this approach, in order
2to determine the associated 4-fermion Wilson coefficient, mediated for
instance by the CP-even field H, we need the numerical expression of
the ϵd = V †

dLY
d
2 VdR matrix, defined by eq. 4.44. Actually, this is fully

determined since VdL ≃ VCKM, VdR coincides with the product of eqs.
A.20, A.24 and A.28, while the expression of Y d

2 is defined in eq. 4.12.
Since the oscillation involves down and strange quarks and, in particular
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Figure 4.1: The 4-fermion Feynman diagram of K0-K̄0 oscillations
in a EFT approach.

it is described by ⟨K0| s̄ds̄d |K̄0⟩, the associated bi-linear operator is (see
eq. 4.42):

CHd
21 = ϵd21

sα−β

cβ
, (4.60)

where ϵd21 ≃
√
2mdλ

3

vsβ
. The Wilson coefficient of the s̄ds̄d 4-fermion

operator can be read off the second line in eq. 4.56, where we focus on
the H contribution. Hence, we obtain:

C s̄ds̄d
2121 =

(
md

v

)2 1

2m2
H

(
λ3

sβ

sα−β

cβ

)2

∼
(
10−7

mH

)2

, (4.61)

where we have taken O(1) trigonometrical functions. Note, however,
that in some specific limits the trigonometrical functions might act ei-
ther as a suppression or enhancement factor. Nevertheless, since our
discussion here is somewhat qualitative we will not consider this extra
model dependency.

Constraints on the Wilson coefficients, arising from flavour-violating
4-fermion operators, have been derived for instance in Ref. [82]. In the
case of K0-K̄0 oscillations, for the specific operator discussed above, one
finds

C s̄ds̄d
2121 ≲

(
1

107GeV

)2

, (4.62)

which in turn implies
mH ≳ 1GeV . (4.63)

Strictly speaking this bound is not applicable since the EFT approach
implicitly assumes mH ≳ v (which is also phenomenologically required
by LHC bounds on the mass scale of the 2HDM). On the other hand,
we can conclude that K0-K̄0 oscillations do not pose an important
constraint on the scenario under consideration. Note, however, that
this conclusion is strongly dependent on the particular flavour ansatz
that we did for the Yukawa matrices, yielding to the suppression factor
(ϵd)2 ∼ (mdλ

3/v)2 in the Wilson coefficient of the 4-fermion operator.
In more general cases the entries of the rotation matrices can be of O(1)
and hence the constraining power of flavour observables can reach up to
mH ∼ 107 GeV.
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Chapter 5

Conclusions

In this thesis, we have studied the interplay between different sources
of flavour violation in non-universal axion models, arising both from
low-energy (flavour-violating axion couplings) and high-energy dynamics
(flavour-violating couplings of the radial modes present in UV complete
models). The former type of flavour violation was well studied in the
literature, and it is usually approached from an EFT point of view in
which one writes the most general effective axion Lagrangian coupling
to SM fermions (see eq. 3.19) and sets bounds on the couplings from a
series of flavour observables, such as e.g. K → πa, involving the axion
field. On the other hand, UV completions for flavour-violating axion
effective Lagrangians arise in models where the PQ charges are non-
universal and, as discussed in this thesis, such constructions can be
interesting in several respects. General motivations for non-universal
axion models include a potential connection with the SM flavour puzzle,
and the possibility of relaxing standard astrophysical axion bounds.

Within a specific class of UV completions, based on the same field
content of the standard DFSZ model, but with different types of Higgs
doublets coupling to different generations of quarks and leptons (see
e.g. eq. 4.1), it turns out that the heavy degrees of freedom of the 2HDM,
namely the radial modes H,A,H±, have in general flavour-violating
Yukawa couplings to the SM fermions. Hence, after integrating out
these heavy degrees of freedom one generates flavour-violating 4-fermion
operators, with a different pattern of flavour violation compared to the
axion-induced one.

The main objective of this thesis was to investigate this latter type of
flavour violation within a specific non-universal axion model (denoted
as M1 model) that was analysed in detail in Chapter 4, which also
represents the original contribution of the present thesis. In particular,
we have computed the spectrum of the model and diagonalized both the
scalar and fermion sector, a preliminary step in order to integrate out the
heavy radial modes of the 2HDM and obtain the associated 4-fermion
operators.

Not surprisingly, one finds that the two sources of flavour violation
discussed above are in general decorrelated, basically for two reasons:
first, the axion induced processes scale like 1/fa, while the radial modes
induced ones scale like 1/mH,A,H± . In general the scale of the 2HDM is
a free parameter which is phenomenologically and theoretically bounded
to be above the electroweak scale and below fa. The second reason has to
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do with a degeneracy in flavour space, since the rotation angles entering
the diagonalizing matrices VuL , etc., are basically unconstrained (but for
the combination which determine the CKM matrix). Hence, it should
be clear that extra assumptions need to be made in order to highlight a
possible correlation between the two different sources of flavour violation.

To this end, we have further assumed that the structure of the quark
Yukawas are such that VuL ≃ 1 and VdL ≃ VCKM, so that the quark
flavour coefficients turn out to be all fixed within the M1 model. This
flavour ansatz provides a high level of flavour protection and represents
the size of minimal flavour violation that is expected in order to re-
produce the CKM. Within these flavour assumptions, and taking as an
example s→ d transitions which provide very stringent constraints, one
finds that axion-mediated flavour violation implies fa ≳ 109 GeV (still
competitive with astrophysical bounds), while flavour violation mediated
by the radial modes implies mH,A,H± ≳ 1 GeV. The latter result (based
on a simple estimate) suggests that in the most flavour-protected sce-
nario flavour-violating processes are not competitive with direct searches
of the 2HDM at the LHC. However, relaxing the stringent flavour hy-
pothesis VdL ≃ VCKM, and allowing instead for O(1) mixing angles in
the down sector pushes the reach of flavour observables on the scale of
the 2HDM up to mH,A,H± ∼ 107 GeV.

To conclude, we remark that this thesis work provides only a first ex-
plorative study and it can be extended in several respects. For instance,
from a model-independent point of view one should consider a more
general class of flavour observables giving constraints an all possible 4-
fermion operators (including semi-leptonic and 4-lepton ones). While
from a model-dependent point of view other non-universal axion models
and flavour ansatz should be considered, in order to classify the patterns
of flavour violation which might complementary emerge from an axion
discovery in low-energy flavour-violating processes and the correlated
signals in other flavour observables, which might help in reconstructing
the UV theory.
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Appendix A

Perturbative
diagonalization of Yukawa
matrices

A.1 Bi-unitary transformations for a 3 × 3 ma-
trix

A general 3× 3 matrix can be diagonalized through a bi-unitary trans-
formation. We will follow here the derivation in Ref. [83], in the case of
small rotations which can be dealt with in perturbation theory. Let us
consider a matrix Y , then we will have Ydiag = U ′Y U where U ′ and U
are two unitary matrices. In particular, we will consider for simplicity
the case of real parameters, which corresponds to orthogonal transfor-
mations. Let us define the initial matrix Y and the final matrix Y diag

respectively as:

Y =


y11 y12 y13

y21 y22 y23

y31 y32 y33

 , Y diag =


˜̃y11 0 0

0 ỹ22 0

0 0 y33

 (A.1)

We will perform different rotations for each sectors, as indicated by
the subscript of the matrix elements. The first rotation is performed
in ”23” sector, the second one in ”13” sector and the last one involves
sector ”12”. The diagonalization reads (note that we keep only the sin
since we are working under the assumption of small angles):

Y diag =


1 −s12 0

s12 0

0 0 1




1 0 −s13
0 1 0

s13 0 1



1 0 0

0 1 −s23
0 s23 1

Y ·

·


1 0 0

0 1 s′23

0 −s′23 1




1 0 s′13

0 1 0

−s′13 0 1




1 s′12 0

−s′12 1 0

0 0 1


(A.2)
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The different angles can be found by solving three different systems,
one for each rotation, where we constrain the off-diagonal term to be
zero. Moreover, after each rotation each element of the matrix will be
influenced by the operator that has been applied to it. Note that the
one tilde symbol˜ indicates a given element after one rotation, while a
double tilde symbol˜̃ indicates that a given element has been subjected
to a double rotation. The following results are truncated at O(s2).

Rotation in sector ”23”

After the rotation in sector ”23” we obtain the following matrix:
y11 y12 − s′23y13 s′23y12 + y13

y21 − s23y31 y22 − s′23y23 − s23y32 s′23y22 + y23 + s23y33

s23y21 + y31 s23y22 − s′23y33 + y32 s23y23 + s′23y32 + y33

+O(s2) .

(A.3)
Now we set the off diagonal term in the sector considered to be zero
with the following system:{

s23y22 − s′23y33 + y32 = 0

s′23y22 + y23 − s23y33 = 0
, (A.4)

which in turn gives the first rotation angles:

s23 ≃
y23
y33

+
y32y22
y233

s′23 ≃
y32
y33

+
y23y22
y233

(A.5)

After this first rotation, the different elements of the matrix become:

ỹ12 = y12 − y13s
′
23 ỹ21 = y21 − y31s23 (A.6)

ỹ13 = y13 + y12s
′
23 ỹ31 = y31 + y21s23 (A.7)

ỹ22 ≃ y22 −
2y23y32
y33

. (A.8)

Rotation in sector ”13”

Now the matrix which we have to rotate in sector ”13” is the one ob-
tained from the rotation of the previous sector. In particular, the matrix
after this second rotation reads:
y11 − ỹ13y13′ − ỹ31s13 ỹ12 s′13y11 + ỹ13 − s13y33

ỹ21 ỹ22 s′13ỹ21

y11s13 + ỹ31 − s′13y33 ỹ12s13 s13ỹ13 + s′13ỹ31 + y33

+O(s2) .

(A.9)
To impose the diagonalization we set{

s′13y11 + ỹ13 − s13y33 = 0

y11s13 + ỹ31 − s′13y33 = 0
(A.10)

which gives the following rotation angles:
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s13 ≃
ỹ13
y33

+
ỹ31y11
y233

s′13 ≃
ỹ31
y33

+
ỹ13y11
y233

(A.11)

After this rotation the only new relevant term, up to higher orders, is:

ỹ11 ≃ ỹ11 −
2ỹ13ỹ31
ỹ33

. (A.12)

Rotation in sector ”12”

The final rotation is performed in sector ”12” and the matrix is:


y11 − s′12ỹ12 − s12ỹ21 ỹ12 + s′12ỹ11 − s12ỹ22 0

ỹ11s12 + ỹ12 − s′12ỹ22 s12ỹ12 + ỹ22s
′
12ỹ21 0

0 0 y33

+O(s2) .

(A.13)
Again, imposing the off-diagonal term to be zero we have{

ỹ12 + s′12ỹ11 − s12ỹ22 = 0

ỹ11s12 + ỹ12 − s′12ỹ22 = 0
(A.14)

which gives:

s12 ≃
ỹ12
ỹ22

+
ỹ21ỹ11
ỹ222

s′12 ≃
ỹ21
ỹ22

+
ỹ12ỹ11
ỹ222

(A.15)

Finally the only relevant term which change in this rotation is

˜̃y11 ≃ ỹ11 −
2ỹ12ỹ21
y22

. (A.16)

A.2 Yukawa sector diagonalization

We now apply the previously derived formula to the case relevant for
the M1 model discussed in chapter 4, that is for the diagonalization of
the matrix

Md =


md λms ρλ3mb

0 ms λ2mb

0 0 mb

 , (A.17)

Let us discuss in turn the perturbative diagonalization in each sector,
following the same steps as before. The first rotation in sector ”23” is
performed by:

s23 ≃ λ2, s′23 ≃ λ2
ms

mb
(A.18)

which gives the rotation matrices:

V †
23L =


1 0 0

0 1 −λ2

0 λ2 1

 , (A.19)
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V23R =


1 0 0

0 1 λ2
ms

mb

0 −λ2ms

mb
1

 . (A.20)

After this firs rotation we get:

M̃d =


md λms(1− λ4) λ3mt

(
ρ+

m2
s

m2
b

)
0 ms 0

0 0 mb

 . (A.21)

The second rotation diagonalizes the sector ”13” and yields the following
angles:

s13 ≃ λ3
(
ρ+

m2
s

m2
b

)
, s′13 ≃ λ3

md

mb

(
ρ+

m2
s

m2
b

)
(A.22)

with the associated rotation matrices:

V †
13L =


1 0 −λ3

(
ρ+

m2
s

m2
b

)
0 1 0

λ3
(
ρ+

m2
s

m2
b

)
0 1

 , (A.23)

V13R =


1 0 λ3

md

mb

(
ρ+

m2
s

m2
b

)
0 1 0

−λ3md

mb

(
ρ+

m2
s

m2
b

)
0 1

 . (A.24)

The matrix obtained after the second diagonalization reads

˜̃Md =


md λms(1− λ4) 0

0 ms 0

0 0 mb

 . (A.25)

The last rotation affects the sector ”12” with angles

s12 ≃ λ(1− ρλ4), s′12 ≃ λ
md

ms

(
1− ρλ4

)
(A.26)

and rotation matrices

V †
12L =


1 −λ(1− ρλ4) 0

λ(1− ρλ4) 1 0

0 0 1

 , (A.27)
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V12R =


1 λ

md

ms

(
1− ρλ4

)
0

−λmd

ms

(
1− ρλ4

)
1 0

0 0 1

 . (A.28)

After the combination of all the rotations we obtain the diagonal matrix:

Md =


md 0 0

0 ms 0

0 0 mb

 . (A.29)

The final left handed rotation matrix reads

VCKM = VdL ≃


1 λ ρλ3

−λ 1 λ2

λ3(1− ρ) −λ2 1

 , (A.30)

matching in a proper way the CKM matrix.
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Appendix B

The two Higgs doublet
model

The 2HDMmodel is an extension of the SM based on two Higgs doublets.
For a review see e.g. Ref. [84]; we will here focus only on the calculation
of the mass spectrum. Let us introduce two SU(2)L scalar doublets H ′

1

and H ′
2, with quantum number ∼ (1, 2, 12). We define the fields in the

following way:

H ′
1 =

 h′1
v′1 + h′01 + iη′1√

2

 H ′
2 =

 h′2
v′2 + h′02 + iη′2√

2

 . (B.1)

We can now define the most general gauge invariance potential as:

V2HDM =m2
11H

′
1
†H ′

1 +m2
22H

′
2
†H ′

2 −m2
12(H

′
1
†H ′

2 +H ′
2
†H ′

1)+

+
1

2
λ1(H

′
1
† H ′

1)
2 +

1

2
λ2(H

′
2
†H ′

2)
2+

+ λ3(H
′
1
†H ′

1)(H
′
2
†H ′

2) + λ4(H
′
1
†H ′

2)(H
′
2
†H ′

1)+

+
1

2
λ5[(H

′
1
†H ′

2)
2 + (H ′

2
†H ′

1)
2]+

+ λ6[(H
′
1
†H ′

1)(H
′
1
†H ′

2) + (H ′
1
†H ′

1)(H
′
2
†H ′

1)]+

+ λ7[(H
′
2
†H ′

2)(H
′
1
†H ′

2) + (H ′
2
†H ′

2)(H
′
2
†H ′

1)]

(B.2)

where the minus sign in front of m12 is just a convention. Even if some
coefficients such as λ5, λ6 and λ7 could be complex, we will assume from
now on that they are real. This assumption corresponds to ignore pos-
sible effects due to CP-violation [84]. Moreover, if we impose a discrete
symmetry Φ1 −→ −Φ1 one can get rid of the m12 parameter, that is
m12 = 0. In this work, we will consider m12 ̸= 0 to maintain a good
level of generality.

The VEVs of these new fields are defined as:

⟨H ′
1⟩ =

1√
2

 0

v′1

 ⟨H ′
2⟩ =

1√
2

 0

v′2

 . (B.3)
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It can be seen that this particular definition of VEVs satifies some
constraints. The electric charge matrix Q is defined with the first ele-
ment different from zero, then, in this way, the only possibility not to
break the symmetry is to define the VEV in the second entry. On the
other hand, to conserve CP symmetry we have to select vi to be real.
Another approach, in which CP violation is employed, can be found
in [85]. In the following, we assume that the vacuum does not break
spontaneously electromagnetism and CP.

B.1 Scalar spectrum

In order to derive the stationary conditions, it is convenient to define
some quantities as follow:

λ345 ≡ λ3 + λ4 + λ5 v2 ≡ v′21 + v′22 tanβ ≡ v′2
v′1
. (B.4)

Note that if v′1 and v′2 are positive, 0 ≤ β ≤ π/2. Moreover, from
now on, we will use the shorthand notation sβ ≡ sinβ, cβ ≡ cosβ etc.

Through the computation of the potential minimum we obtain the
following conditions:

m2
11 = m2

12tβ − 1

2
v2[λ1c

2
β + 3λ6cβsβ + s2β(λ345 + λ7tβ)], (B.5)

m2
22 = m2

12cotβ − 1

2
v2[λ2s

2
β + 3λ7cβsβ + c2β(λ345 + λ6cotβ)]. (B.6)

Before going further, it is useful to discuss how the degrees of freedom
(dof) are modified after a spontaneous symmetry breaking. The two
original complex fields Φ1 and Φ2 carry eight real dof. As it happens
in the SM, three of them are eaten up by W± and Z gauge bosons.
The remaining five dof correspond to a charged Higgs (particle and an
antiparticle denoted by H±), one CP-odd scalar (denoted by A), two
CP-even scalar (denoted by h and H). Notice that h correspond to the
SM Higgs boson, as opposed to H which is a heavier companion of the
Higgs.

The elements of the different mass matrices can be computed through
the second derivative of the potential evaluated on the stationary points.
It is possible to define three different mass matrix squared, one for each
type of scalar particle present in the theory. In detail, the mass matrix
squared corresponding to the charged scalar particles H± is:

 m2
12tβ − 1

2v
2sβ(cβλ6 + sβ(λ4 + λ5 + λ7tβ))

−2m2
12 +

1
2v

2(cβsβ(λ4 + λ5) + c2βλ6 + v2s2βλ7)

−2m2
12 +

1
2v

2(cβsβ(λ4 + λ5) + c2βλ6 + v2s2βλ7))

m2
12cotβ − 1

2v
2cβλ7sβ + (cβ(λ4 + λ5 + λ6cotβ))

 . (B.7)
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The mass matrix squared which describes the pseudo-scalar particles
η1 and η2 is:

 m2
12tβ − 1

2v
2s2β(2λ5 + λ6cotβ + λ7tβ

−m2
12 +

1
2v

2(λ5s2β + λ6c
2
β + λ7s

2
β)

−m2
12 +

1
2v

2(λ5s2β + λ6c
2
β + λ7s

2
β)

m2
12cotβ − 1

2v
2c2β(2λ5 + λ6cotβ + λ7tβ)

 . (B.8)

And finally the neutral scalar particles mass matrix, associated to
h01 and h02 is: m2

12tβ + 1
2v

2s2β(2λ1cot
2
β + 3λ6cotβ − λ7tβ))

m2
12 +

1
2v

2(λ345s2β + 3λ6c
2
β + 3λ7s

2
β)

m2
12 +

1
2v

2(λ345s2β + 3λ6c
2
β + 3λ7s

2
β)

m2
12cotβ + 1

2v
2c2β(2λ2t

2
β + 3λ7tβ − λ6cotβ)

 . (B.9)

Respectively from B.7 and B.8 we obtain, upon diagonalization, the
squared masses for the charged and the neutral CP-odd states:

m2
H± =

m12

cβsβ
− 1

2
v2(λ4 + λ5 + λ6cotβ + λ7tβ), (B.10)

m2
A =

m12

cβsβ
− 1

2
v2(2λ5 + λ6cotβ + λ7tβ). (B.11)

Notice that in both matrices one eigenvalue is zero: this is expected since
one of the two eigenvalues represent the mass of the would-be Goldstone
bosons associated to the W and the Z.

The masses of the CP-even states can be computed from B.9. It is
convenient to notice that the neutral mass matrix is define in terms of
mA as:

M2 ≡ m2
A

 s2β −sβcβ
−sβcβ c2β

+B2 (B.12)

where B2 is defined as:

B2 ≡ v2

 λ1c
2
β + 2λ6sβcβ + λ5s

2
β (λ3 + λ4)cβsβ + λ6c

2
β + λ7s

2
β

(λ3 + λ4)cβsβ + λ6c
2
β + λ7s

2
β λ2s

2
β + 2λ7sβcβ + λ5c

2
β


(B.13)

We can diagonalize it using a 2D rotation with of angle α, defined as
m2

diag = R−1M2R, from which one gets the following CP-even squared
mass in terms of the elements of B.12:

mH,h =
1

2

(
M2

11 +M2
22 ±

√
(M2

11 −M2
22)

2 + 4(M2
12)

2

)
(B.14)
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APPENDIX B. THE TWO HIGGS DOUBLET MODEL

Notice that the heaviest eigenvalue corresponds to the mass of H, while
the lightest one corresponds to the SM Higgs boson. Finally, the rotation
angle, α, is given by

sin 2α =
2M2

12√
(M2

11 −M2
22)

2 + 4(M2
12)

2
,

cos 2α =
M2

11 −M2
22√

(M2
11 −M2

22)
2 + 4(M2

12)
2
.

(B.15)
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A. Melchiorri, O. Mena, F. Renzi, and S. Yun, “Cosmological
Bound on the QCD Axion Mass, Redux,” arXiv:2205.07849

[astro-ph.CO].

[62] ALPS Collaboration, K. Ehret et al., “Resonant laser power
build-up in ALPS: A ’Light-shining-through-walls’ experiment,”
Nucl. Instrum. Meth. A 612 (2009) 83–96, arXiv:0905.4159
[physics.ins-det].

[63] ALPS Collaboration, A. Spector, “ALPS II technical overview
and status report,” in 12th Patras Workshop on Axions, WIMPs
and WISPs, pp. 133–136. 2017. arXiv:1611.05863
[physics.ins-det].

[64] OSQAR Collaboration, R. Ballou et al., “New exclusion limits on
scalar and pseudoscalar axionlike particles from light shining
through a wall,” Phys. Rev. D 92 no. 9, (2015) 092002,
arXiv:1506.08082 [hep-ex].

[65] CAST Collaboration, S. Aune et al., “Solar axion search with the
CAST experiment,” in 34th International Conference on High
Energy Physics. 10, 2008. arXiv:0810.1874 [hep-ex].

83

http://dx.doi.org/10.1088/1475-7516/2015/10/015
http://dx.doi.org/10.1088/1475-7516/2015/10/015
http://arxiv.org/abs/1501.01639
http://dx.doi.org/10.1007/s00159-019-0118-4
http://dx.doi.org/10.1007/s00159-019-0118-4
http://arxiv.org/abs/1907.00115
http://arxiv.org/abs/1907.00115
http://dx.doi.org/10.1088/1475-7516/2019/10/016
http://dx.doi.org/10.1088/1475-7516/2019/10/016
http://arxiv.org/abs/1906.11844
http://dx.doi.org/10.1088/1475-7516/2014/08/031
http://arxiv.org/abs/1405.6873
http://arxiv.org/abs/1405.6873
http://dx.doi.org/10.1103/PhysRevC.98.035802
http://dx.doi.org/10.1103/PhysRevC.98.035802
http://arxiv.org/abs/1806.07991
http://dx.doi.org/10.1023/A:1016578408204
http://dx.doi.org/10.1103/PhysRevD.91.084011
http://dx.doi.org/10.1103/PhysRevD.91.084011
https://link.aps.org/doi/10.1103/PhysRevD.91.084011
http://arxiv.org/abs/2205.07849
http://arxiv.org/abs/2205.07849
http://dx.doi.org/10.1016/j.nima.2009.10.102
http://arxiv.org/abs/0905.4159
http://arxiv.org/abs/0905.4159
http://dx.doi.org/10.3204/DESY-PROC-2009-03/Spector_Aaron
http://dx.doi.org/10.3204/DESY-PROC-2009-03/Spector_Aaron
http://arxiv.org/abs/1611.05863
http://arxiv.org/abs/1611.05863
http://dx.doi.org/10.1103/PhysRevD.92.092002
http://arxiv.org/abs/1506.08082
http://arxiv.org/abs/0810.1874


BIBLIOGRAPHY

[66] IAXO Collaboration, I. Irastorza et al., “The International Axion
Observatory IAXO. Letter of Intent to the CERN SPS
committee,”.

[67] ADMX Collaboration, S. J. Asztalos et al., “An Improved RF
cavity search for halo axions,” Phys. Rev. D 69 (2004) 011101,
arXiv:astro-ph/0310042.

[68] C. O’Hare, “https://github.com/cajohare/AxionLimits,”.

[69] L. D. Luzio, F. Mescia, and E. Nardi, “Redefining the axion
window,” Physical Review Letters 118 no. 3, (Jan, 2017) .
https://doi.org/10.1103%2Fphysrevlett.118.031801.

[70] L. Di Luzio, F. Mescia, and E. Nardi, “Window for preferred
axion models,” Phys. Rev. D 96 no. 7, (2017) 075003,
arXiv:1705.05370 [hep-ph].

[71] R. Barbieri, C. Braggio, G. Carugno, C. S. Gallo, A. Lombardi,
A. Ortolan, R. Pengo, G. Ruoso, and C. C. Speake, “Searching for
galactic axions through magnetized media: the QUAX proposal,”
Phys. Dark Univ. 15 (2017) 135–141, arXiv:1606.02201
[hep-ph].

[72] A. Arvanitaki and A. A. Geraci, “Resonantly Detecting
Axion-Mediated Forces with Nuclear Magnetic Resonance,” Phys.
Rev. Lett. 113 no. 16, (2014) 161801, arXiv:1403.1290
[hep-ph].

[73] D. Budker, P. W. Graham, M. Ledbetter, S. Rajendran, and
A. Sushkov, “Proposal for a Cosmic Axion Spin Precession
Experiment (CASPEr),” Phys. Rev. X 4 no. 2, (2014) 021030,
arXiv:1306.6089 [hep-ph].

[74] W. A. Bardeen and S.-H. Tye, “Current algebra applied to
properties of the light higgs boson,” Physics Letters B 74 no. 3,
(1978) 229–232. https://www.sciencedirect.com/science/
article/pii/0370269378905609.

[75] J. Schweppe et al., “Observation of a peak structure in positron
spectra from U + Cm collisions,” Phys. Rev. Lett. 51 (1983)
2261–2264.

[76] A. Schafer, J. Reinhardt, B. Muller, W. Greiner, and G. Soff, “IS
THERE EVIDENCE FOR THE PRODUCTION OF A NEW
PARTICLE IN HEAVY ION COLLISIONS?,” J. Phys. G 11
(1985) L69–L74.

[77] W. A. Bardeen, R. D. Peccei, and T. Yanagida, “CONSTRAINTS
ON VARIANT AXION MODELS,” Nucl. Phys. B 279 (1987)
401–428.

[78] L. M. Krauss and D. J. Nash, “A VIABLE WEAK
INTERACTION AXION?,” Phys. Lett. B 202 (1988) 560–567.

84

http://dx.doi.org/10.1103/PhysRevD.69.011101
http://arxiv.org/abs/astro-ph/0310042
https://github.com/cajohare/AxionLimits
http://dx.doi.org/10.1103/physrevlett.118.031801
https://doi.org/10.1103%2Fphysrevlett.118.031801
http://dx.doi.org/10.1103/PhysRevD.96.075003
http://arxiv.org/abs/1705.05370
http://dx.doi.org/10.1016/j.dark.2017.01.003
http://arxiv.org/abs/1606.02201
http://arxiv.org/abs/1606.02201
http://dx.doi.org/10.1103/PhysRevLett.113.161801
http://dx.doi.org/10.1103/PhysRevLett.113.161801
http://arxiv.org/abs/1403.1290
http://arxiv.org/abs/1403.1290
http://dx.doi.org/10.1103/PhysRevX.4.021030
http://arxiv.org/abs/1306.6089
http://dx.doi.org/https://doi.org/10.1016/0370-2693(78)90560-9
http://dx.doi.org/https://doi.org/10.1016/0370-2693(78)90560-9
https://www.sciencedirect.com/science/article/pii/0370269378905609
https://www.sciencedirect.com/science/article/pii/0370269378905609
http://dx.doi.org/10.1103/PhysRevLett.51.2261
http://dx.doi.org/10.1103/PhysRevLett.51.2261
http://dx.doi.org/10.1088/0305-4616/11/5/001
http://dx.doi.org/10.1088/0305-4616/11/5/001
http://dx.doi.org/10.1016/0550-3213(87)90003-4
http://dx.doi.org/10.1016/0550-3213(87)90003-4
http://dx.doi.org/10.1016/0370-2693(88)91864-3


BIBLIOGRAPHY

[79] E949, E787 Collaboration, S. Adler et al., “Measurement of the
K+ –> pi+ nu nu branching ratio,” Phys. Rev. D 77 (2008)
052003, arXiv:0709.1000 [hep-ex].

[80] J. Martin Camalich, M. Pospelov, P. N. H. Vuong, R. Ziegler, and
J. Zupan, “Quark Flavor Phenomenology of the QCD Axion,”
Phys. Rev. D 102 no. 1, (2020) 015023, arXiv:2002.04623
[hep-ph].

[81] Z. L. A. Ceccucci and Y. Sakai., “Ckm quark-mixing matrix 12 .
ckm quark-mixing matrix,”.

[82] UTfit Collaboration, M. Bona et al., “Model-independent
constraints on ∆F = 2 operators and the scale of new physics,”
JHEP 03 (2008) 049, arXiv:0707.0636 [hep-ph].

[83] L. J. Hall and A. Rasin, “On the generality of certain predictions
for quark mixing,” Phys. Lett. B 315 (1993) 164–169,
arXiv:hep-ph/9303303.

[84] J. F. Gunion and H. E. Haber, “Cp-conserving two-higgs-doublet
model: The approach to the decoupling limit,” Physical Review D
67 no. 7, (Apr, 2003) .
http://dx.doi.org/10.1103/PhysRevD.67.075019.

[85] L. Lavoura and J. a. P. Silva, “Fundamental cp-violating
quantities in an su(2)

⊗
u(1) model with many higgs doublets,”

Phys. Rev. D 50 (Oct, 1994) 4619–4624.
https://link.aps.org/doi/10.1103/PhysRevD.50.4619.

85

http://dx.doi.org/10.1103/PhysRevD.77.052003
http://dx.doi.org/10.1103/PhysRevD.77.052003
http://arxiv.org/abs/0709.1000
http://dx.doi.org/10.1103/PhysRevD.102.015023
http://arxiv.org/abs/2002.04623
http://arxiv.org/abs/2002.04623
http://dx.doi.org/10.1088/1126-6708/2008/03/049
http://arxiv.org/abs/0707.0636
http://dx.doi.org/10.1016/0370-2693(93)90175-H
http://arxiv.org/abs/hep-ph/9303303
http://dx.doi.org/10.1103/physrevd.67.075019
http://dx.doi.org/10.1103/physrevd.67.075019
http://dx.doi.org/10.1103/PhysRevD.67.075019
http://dx.doi.org/10.1103/PhysRevD.50.4619
https://link.aps.org/doi/10.1103/PhysRevD.50.4619

	Abstract
	Introduction
	Axion theory
	The axion as a pathway beyond the Standard Model
	The Strong CP Problem
	Instantons and the QCD vacuum structure
	 dependence of QCD vacuum energy
	The neutron Electric Dipole Moment
	Non-axionic solutions

	The Peccei-Quinn Mechanism
	The effective axion Lagrangian
	Axion couplings

	From axion EFTs to axion models
	WW model
	KSVZ model
	DFSZ model


	Axion phenomenology
	Astrophysical implications
	Axion production channels in stars
	Solar Axions
	Astrophysical axion bounds and hints

	Cosmological implications
	Thermal axion
	Non-thermal axion

	Experimental axion searches
	Axion experiments from the axion couplings perspective


	Non-universal axion models
	General motivations
	On the origin of flavour-violating axion couplings
	Astrophobic axions

	Flavour violation: IR vs. UV dynamics
	Flavour violation from IR dynamics
	A paradigmatic example: K a
	Flavour violation from UV dynamics


	Anatomy of a non-universal axion model
	The M1 model
	Yukawa sector
	Higgs sector
	The mass spectrum in the M1 model

	Lagrangian in the mass basis
	4-fermion operators
	Coefficients of 4-fermion operators

	Comparison between low-energy and high-energy sources of CP violation
	Constraints from Ka
	Constraints from K0-siunitxunit-deprecatedࡡ爠barbarK0 oscillations


	Conclusions
	Perturbative diagonalization of Yukawa matrices
	Bi-unitary transformations for a 33 matrix
	Yukawa sector diagonalization

	The two Higgs doublet model
	Scalar spectrum

	Bibliography

