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“You’re going to be all right. You just stumbled over a
stone in the road. It means nothing. Your goal lies far
beyond this. Doesn’t it? I’m sure you’ll overcome this.
You’ll walk again… soon.”

Kentaro Miura
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Abstract

Since its first release, the Android Operating System (OS) has been affected by
a significant issue: the existence of multiple customized versions, handled by
different mobile device vendors. One of the main consequences of the Android
fragmentation issue regards the distribution of security updates to end-user de-
vices. In particular, I have focused on the time required by Google and other
mobile vendors to send security updates. I have found that, on average, Google
takes more than 84 days to send an update, after its development is already
complete, while Samsung takes, on average, over 39 days to integrate a Google
security patch in its custom Android OS. During this time window, end-users are
left exposed to attackers.

In this thesis, I propose VirtualPatch, a solution aimed at allowing the im-
mediate distribution of Android security patches after their development, thus
shrinking the aforementioned time window. VirtualPatch is a virtualization-based
approach that protects apps by loading security patches targeting different An-
droid architecture layers and, being executed at the application-layer, it does not
require an update of the underlying Android OS. I chose seven Common Vul-
nerabilities and Exposures from the Android Security Bulletins and managed to
successfully implement and deploy the associated security patches through my
solution. Moreover, while the state-of-art already proved the runtime overhead
introduced by the virtualization technique to be negligible, I measured also the
average time required to load the security patches, which I found to be less than
60 milliseconds. Overall, VirtualPatch is an effective and efficient solution ad-
dressing the issue of the security patch distribution for Android users. Given
the significance of the issue, I really hope to make a contribution to the whole
Android community.
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1
Introduction

In the last decade, mobile devices and in particular smartphones have found
widespread utilization. A recent report [1] estimates the number of unique mobile
device users to be around 6 billion and forecasts this number to keep increasing
in the next few years. Among different mobile operating systems, Android is
the undisputed leader, being installed on more than 71% of smartphones [2].
In comparison, the closest competitor is iOS, installed on about 28% of mobile
devices, less than half of Android OS. There are many different vendors that
produce Android smartphones, and it is probably thanks to this that Android
devices have found such a widespread utilization. This is made possible by the
Android Open Source Project (AOSP), which provides the source code of Android
OS to the vendors. On the other hand, having many different Android device
makers has also negative effects, such as fragmentation.

Fragmentation in Android is caused by the vendors customizing the stock An-
droid OS, in order to make their devices look more appealing in the eyes of
potential customers. This customization in turn makes it difficult to deliver soft-
ware updates: when the source code of the AOSP is updated, the responsibility of
publishing these updates and deploying them to user devices falls to the vendors
themselves. Vendors need to adapt the code to their own customized versions of
the OS, a process that requires time and effort, and, as a consequence, Android
devices are not always updated, and when they are the updates are often delayed.
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The Android fragmentation problem has led in the past to sporadic security
updates, and for this reason, Google has worked to make it easier to deliver secu-
rity updates to Android devices. The results of these efforts are project Treble [3],
a refactor of the Android architecture that separates the OS framework from
the device-specific low-level software, and project Mainline [4], which makes it
possible to update some components of the Android Operating system without
a full system update, through Google Play system updates. However, while a
step in the right direction, these solutions only cover a small part of the Android
architecture, and so system updates are still required for most of the security
patches.

In order to guarantee users a certain level of security, the licensing agreement
between Google and device manufacturers reportedly stipulates that they must
provide security updates for at least two years after a device is released, and at
least four security updates during the first year [5].

These terms are broad enough that the actual security patch situation changes
from vendor to vendor, and from device to device. For instance, taking into consid-
eration the 3 biggest Android device vendors, Samsung publishes monthly, quar-
terly, or biannual firmware security updates for different devices, and promises
at least 4 years of security updates for devices launched in 2019 or later, without
however specifying how regular the updates will be [6]; Xiaomi publishes monthly
or quarterly security updates for different devices, and promises security updates
for at least two years after launch [7]; Huawei publishes monthly or quarterly
security updates for different devices, but does not mention for how long after
launch these updates will be published [8]. In all cases, the vendors specify that
the update schedule is subject to change, so it is not possible for users to know
how regular the updates will be before buying a device.

With so many devices and so many users involved, security updates in Android
are a very critical issue. In this thesis, I first try to determine the current security
patch situation in Android, by analyzing data from official Android Security Bul-
letins as well as data about security updates for the biggest Android device vendor
(Samsung). Then, I propose a potential solution that leverages app-level virtual-
ization to deploy security patches to user devices, without requiring modifications
of the underlying operating system or special privileges.

The rest of this thesis is organized as follows:
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• in Chapter 2, I analyze the current situation of security updates in Android,
first looking at the delay from when a security patch is committed to the
AOSP repository to when it is published in an Android Security Bulletin
(i.e. Section 2.1), and then at the delay incurred when the biggest Android
vendor (Samsung) integrates a security patch into its customized version of
the Android OS (i.e. Section 2.2);

• in Chapter 3, I give some background information about the Android ar-
chitecture (i.e. Section 3.1), Virtualization (i.e. Section 3.2), and how an
app-level virtualization Framework for Android works (i.e. Section 3.3);

• in Chapter 4, I provide an overview of previous work related to the analysis
of Android Security Bulletins (i.e. Section 4.1), alternative ways to deploy
security updates in Android (i.e. Section 4.2), and app-level virtualization
in Android (i.e. Section 4.3);

• in Chapter 5, I describe first the design (i.e. Section 5.1) and then the
implementation (i.e. Section 5.2) of VirtualPatch, a solution that uses app-
level virtualization to deploy security updates on Android devices;

• in Chapter 6, I discuss the evaluation of VirtualPatch, done by imple-
menting security patches for 7 real Common Vulnerabilities and Exposures
(CVE)s (i.e. Section 6.1 through Section 6.4) and analyzing the time that
it takes to load these patches (i.e. Section 6.5) in VirtualPatch;

• in Chapter 7, I discuss the results I obtained and the limitations of Virtu-
alPatch, and give some ideas for future extensions of this work.
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2
Motivation

In order to better understand the actual situation of security patches in Android, I
scraped some data from security bulletins and from the official Samsung website 1

and analyzed it. In the following sections, I give an overview of the data collection
process and report my findings on Android security updates.

2.1 Android Security Bulletin

Google publishes monthly Android Security Bulletins, which contain details about
security vulnerabilities affecting Android devices. These details include a list of
CVEs, with references to commits in the Android repositories that fixed those
vulnerabilities. Since some of the Android components are not open-source, not
all CVEs have references to the commits.

To each security bulletin, it corresponds a security patch level. Vulnerabilities
reported on a certain monthly bulletin are fixed on devices that have an operating
system version with a security patch level greater or equal to the bulletin date.

According to Google, “Android partners are notified of all issues at least a
month before publication” [9] so that they have the time to adapt the patches to
their customized version of Android and deploy security updates.

I scraped all Android Security Bulletins published between August 2015 and
1https://samsung.com/

17

https://samsung.com/


May 2022. For each bulletin, I collected the list of CVEs, and for each CVE I
collected the links of the references, i.e. the web pages with information about
commits that fixed the vulnerability. I then scraped all of the references, col-
lecting data about the dates of the commits, and for each CVE I defined the
“security patch complete” date, i.e. the latest date among all the dates collected
from commits referenced by the CVE. This date should indicate when a vulnera-
bility was finally fixed in the source code. Since some CVEs affect closed-source
components, not all CVEs that appear in the security bulletin have these refer-
ences. In total, I collected data on 4349 CVEs, 2062 of which had references to
one or more commits.

With this data, I computed the “security patch release delay”, i.e. the time
it takes from the “security patch complete” date to when the vulnerability is
published on the bulletin. We can consider this delay to be a time window during
which the CVE is known, a fix for the vulnerability is known, but user devices
remain vulnerable.

Figure 2.1 shows the “security patch release delay” for CVEs that appeared
in Android Security Bulletins between January 2019 and May 2022. Among all
these vulnerabilities, I found 117 for which the “security patch release delay” was
more than 1 year. Even after removing these outliers, the average delay is more
than 84 days. Overall, around 6.88% of CVEs have a publish delay of 6 months
or more, which becomes 14.50% if we only consider CVEs for which we have the
commit dates.

I also considered that the Android ecosystem is vastly different from the time
when the first security bulletin was published, and so this information may not
reflect the current situation. Thus, I repeated the analysis taking into considera-
tion only bulletins published after Android 10 was released. I chose this Android
version because it is the first release that introduced Project Mainline. With this
configuration, the average “security patch release delay” is over 99 days, and the
percentage of updates with more than 6 months of “security patch release delay”
becomes 9.33%, which grows up to 17.45% if we consider only CVEs that have
at least one reference to the AOSP repository. This shows that despite Google’s
efforts, the situation is still far from ideal, and there is a need for a solution that
can be widely adopted by users.
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Figure 2.1: Publish delay of CVEs in the Android Security Bulletin.

2.2 Samsung website

To update Samsung devices, users can either connect their device to a computer
and use Smart Switch [10], or they can install the Over-The-Air (OTA) update
directly from their device. On the official website, there is no link to a list of up-
dates, and no way to download the firmware files. However, the protocol used by
Samsung devices to communicate with the Samsung Samsung Firmware Update
Server (FUS) has been reversed and there are some third-party applications that
allow users to download firmwares directly from Samsung servers. For instance,
samloader [11] is an open-source application written in python that can be used to
download the latest firmware for any Samsung Android device, provided that the
user knows the model code and the Country Specific Code (CSC) of the device.

I decided to use samloader to collect data about software updates on Samsung
devices. Since samloader communicates directly with the FUS, the data collected
this way should be trustworthy, i.e. it should reflect what really happens on
Samsung devices. However, for each device Samsung only stores the latest update,
so samloader cannot be used to get the history of software updates. In addition,
while I was only interested in the metadata of the software updates (the date
it was published and the security patch level), with samloader I was forced to
download the whole firmware archive, which can be up to several gigabytes in
size and that I also needed to extract.
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While looking at the communication between samloader and the FUS, I noticed
that in the response the FUS sends to samloader there is an Uniform Resource
Locator (URL) that is unique for each device 2 and points to an “update notify”
webpage on the official Samsung website, that shows the list of software updates
received by the device along with their security patch level and the date in which
the updates were published.

I scraped the “update notify” webpage of 386 Samsung devices released between
January 2019 and December 2021, collecting data about 6538 software updates
that were published between January 2019 and May 2022 3. From the data, I saw
that on average there are 45 days between subsequent security updates for the
same device. I also computed the “patch integration delay”, i.e. the number of
days from when Google publishes an Android security bulletin to when a security
update with the related security patch level is published. In order to take into
account the fact that devices that do not have a monthly security update release
schedule skip some of the patches, I considered those security patches as being
released along with the next security patch. For example, if a device receives an
update with security patch level 01-06-2020 on June 2 and then it receives the
next update on September 10 with security patch level 01-09-2020, I consider the
updates with security patch level 01-07-2020 and 01-08-2020 to be received on
September 10 as well. Also, since there are sometimes multiple updates with the
same security patch level, on each device I only considered the first update for
each security patch level.

Figure 2.2 shows the “patch integration delay” of the security patches released
between January 2019 and May 2022, for Samsung devices released between Jan-
uary 2019 and December 2021: on average, this delay was over 39 days, and 25%
of the updates were published with more than 57 days of delay.

2.3 Key takeaway

From the analysis of the data I collected from the Android security bulletin and
Samsung, we can see that it takes a considerable amount of time for security
patches to reach users, giving malicious actors a large time window they can take

2the format of the URL is https://doc.samsungmobile.com/{model}/{csc}/doc.html,
replacing model with the model code of the device and csc with the CSC

3Appendix A contains the full list of devices used in this study.
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advantage of to exploit the vulnerabilities. While in the last years there have
been some efforts to improve the situation, there is still much work that needs to
be done, and it is important to find solutions that can reduce this time window
to a minimum.

Figure 2.2: Patch delay of software updates.

21



22



3
Background

3.1 Layers of the Android architecture

The Android platform is composed of many different components, which can
roughly be grouped in layers as shown in Figure 3.1. In the following paragraphs,
I describe the layers in terms of which components they contain.

Figure 3.1: Layers of the Android Platform software stack.
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System Apps. The System Apps layer includes all the basic applications that
come with Android, e.g. apps for email, SMS messaging, calendars, and contacts.
Although they may have more privileges than third-party applications, such as
the privileged permissions [12], users generally can install alternative applications
and set them as the default to replace these system apps. A notable exception
is the system Settings app. Android assigns the User Identifier (UID) 1000 to
Settings, and this results in the application having special permissions, such as
the ability to send broadcasts to protected BroadcastReceivers.

Java API Framework. The Java API Framework includes all the Android
Java classes that a developer can use when building their applications. These
classes provide modular system components and services that are the basic build-
ing blocks for most applications and include UI components, proxy classes used
to communicate with system services (e.g. the ActivityManager class, used to
communicate with the ActivityManagerService) and ContentProviders that ap-
plication can use to access data managed by system applications (e.g. the contacts
saved on the device).

Native C/C++ Libraries. This layer contains Android system core compo-
nents that contain native code, i.e. libraries written in C or C++ and compiled
into binary code. Android provides developers with Java bindings they can use
to access some of the functionality of these libraries. An example is the OpenGL
ES library, which can be accessed through the Java OpenGL API provided by
the Android Framework. Some libraries that are part of this layer are not made
available to app developers, but are used internally by the Framework classes (e.g.
libminikin to compute the app layout).

Android Runtime. In Android, each application runs inside its own process,
which contains its own instance of the Android Runtime (ART). ART is the Vir-
tual Machine that executes the Dalvik Executable format and Dalvik Executable
format (DEX) bytecode specification and replaces Dalvik in Android 5.0 and later
versions. In addition to ART, this layer also includes the core runtime libraries,
a set of libraries that provide some of the functionality of the Java programming
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language. Finally, this layer contains libraries tied to operations such as the
system init and reboot.

Hardware Abstraction Layer. This layer provides interfaces for device
hardware capabilities that can be used by the Java API Framework layer. Hard-
ware Abstraction Layer (HAL) includes library modules for different types of
hardware devices (e.g. camera, Bluetooth), which are loaded by the Android
system when the framework API makes a call to access a device hardware. Ab-
stracting the details of hardware access provides a more modular architecture, and
makes it easier to implement functionality without affecting the higher layers so
that device vendors can update the framework without affecting this layer.

Linux Kernel. Android is an operating system based on Linux and uses a
modified version of the Linux Kernel with some additions aimed at mobile devices,
such as the Binder IPC driver and Low Memory Killer, a more aggressive memory
management system.

3.2 Virtualization

Virtualization in computing allows the creation of virtual versions of actual re-
sources, such as storage devices, CPUs, or operating systems.

The most traditional type of virtualization is Hardware Virtualization, which
abstracts the details of the hardware and allows the creation of virtual machines
that behave like a computer with an operating system. This type of virtualiza-
tion relies on an hypervisor, that creates and runs the virtual machines. Virtual
machines are isolated and independent from each other, and different virtual ma-
chines can have different operating systems installed. Examples of software that
uses this type of virtualization are VirtualBox [13] and KVM [14].

In recent years, OS-level virtualization is becoming more popular, in part
thanks to the shift to cloud technologies. This type of virtualization is imple-
mented by the operating system, which allows the creation of isolated containers
and assigns them resources. Compared to virtual machines in Hardware Vir-
tualization, OS-level virtualization happens at a higher level, and all containers
share the same underlying operating system, with the advantage of allowing more
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lightweight virtualization. The most popular example of OS-level virtualization
is Docker containers [15].

In Android, neither Hardware Virtualization nor OS-level virtualization is avail-
able1. However, there are some app-level virtualization frameworks that allow
host applications (also called containers) to install and launch guest applications
(also called plugin applications or simply plugins) inside a virtual environment
they create. App-level virtualization is mainly used by the so-called dual-instance
applications, which are applications that can be used to run multiple instances of
the same application at the same time on a singular device. Users find this type
of application particularly useful to log in to multiple social media accounts. The
most notable example of an app-level virtualization framework is VirtualApp [19].
In the following section, I describe the main mechanisms VirtualApp uses to cre-
ate the virtual environment and launch plugin applications.

3.3 VirtualApp

In order to understand how app-level virtualization in Android works, I studied
the source code of VirtualApp, which is the most popular open-source virtual-
ization framework, with over 8000 stars on GitHub. To achieve app-level virtu-
alization, VirtualApp employs an architecture with multiple processes that can
communicate with each other:

• Host Application: this application acts as the container, and handles the
installation and launch of plugin applications inside the virtual environment
VirtualApp creates.

• Server Process: this is a process that contains several “Virtual Services”
that VirtualApp creates and that are necessary for the virtual environment
to work. An example of such a service is the VPackageManagerService,
which is used to install applications inside the container and interact with
them.

1There have been some attempts at implementing OS-level virtualization on Android [16][17],
and it looks like Hardware Virtualization support is coming with Android 13 [18], however at
the time of writing stock Android devices do not support either form of virtualization out-of-
the-box.
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• Guest Application: VirtualApp launches each guest application inside a
dedicated, separate process. Before actually loading the code of the plugin
application, VirtualApp sets up the virtual environment inside which it will
run.

With VirtualApp, it is possible to install and launch inside a container plugin
applications that are not installed on the host operating system. From the point
of view of the Android operating system, all plugin applications are part of the
same container application, and they all share the same UID. To enable the
guest applications to run inside the virtual environment created by the container
application, VirtualApp employs a number of different mechanisms.

3.3.1 Dynamic Proxies

Dynamic proxies are provided by the Java language as a part of its reflection
functionality. Dynamic proxies are defined through an invocation handler, which
implements the invoke method that is called whenever a method is called on
the proxy object. Listing 3.1 shows an example of a simple invocation handler
that forwards method calls to the original object. While this example is very
simple, it is clear that more complex invocation handlers are very flexible and
can change the arguments of the call before forwarding it to the original object or
even return some value without calling the method on the original object at all.
The getProxy() method in the example shows how a dynamic proxy instance
can be created from an invocation handler.

Android applications make extensive use of system services, to perform opera-
tions that go from starting activities to accessing the device sensors. In Android,
all communication between applications and services is done through the Binder.
To communicate using the Binder Android generally uses proxy classes that are
automatically generated from an interface defined using Android Interface Defini-
tion Language (AIDL). For instance, the PackageManager class, which is defined
by the Android Framework APIs, under the hood handles all the communica-
tion with the PackageManagerService using a proxy class that implements the
IPackageManager interface.

To load guest applications inside the virtual environment and make it possible
for these applications to work and call system services, VirtualApp uses dynamic

27



proxies and injects them into the guest application process, so that they are used
instead of the proxy classes when the guest application tries to communicate
with a particular system service. This allows VirtualApp to intercept all calls
to system services the guest application makes, and if necessary change their
arguments. This in turn makes it possible even for applications that are installed
only inside the virtual environment, and not in the underlying operating system,
to call system services.

import java.lang.reflect.*;

public class MyProxy implements InvocationHandler {

private Object obj;

public static Object getProxy(Object obj) {
return Proxy.newProxyInstance(

obj.getClass().getClassLoader(),
obj.getClass().getInterfaces(),
new MyProxy(obj));

}

private MyProxy(Object obj) {
this.obj = obj;

}

public Object invoke(Object proxy, Method m, Object[] args)
throws Throwable

{
return m.invoke(obj, args);

}
}

Listing 3.1: Definition of a simple dynamic proxy.

3.3.2 ClassLoader Hook

A ClassLoader in Java is an object responsible for loading classes at runtime.
ClassLoader itself is an abstract class, and classes that extend this class and
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implement its methods are platform-dependent. In Android, there are multiple
classes that extend ClassLoader, but they all inherit from BaseDexClassLoader,
which defines the common functionality needed to load classes from dex and apk
files. A BaseDexClassLoader instance contains a DexPathList, which points
to a list of DexFile objects. On construction, BaseDexClassLoader constructs
the DexPathList from a default library path, i.e. loading DEX files from the
application folder. DexPathList in turn initializes the DexFile objects, which
are loaded by calling the native openDexFileNative() method. This process is
shown in Figure 3.2.

Figure 3.2: Sequence diagram showing how a dex file is loaded by BaseDexClassLoader.

When a plugin application is installed inside the container, but not on the
host operating system, the files that belong to that application are installed in
the data folder of the container, and for this reason, the system ClassLoader is
unable to load the application correctly. VirtualApp solves this issue by hooking
the openDexFileNative() method so that when it is called it loads the files from
the correct folder. To do this, VirtualApp uses Cydia Substrate, a native inline
hooking library. Since the original Cydia Substrate requires root, VirtualApp
uses a modified version.

3.3.3 Storage redirection

As I mentioned, from the Android operating system point of view a plugin appli-
cation is just a part of the container application, and all plugin applications share
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the same UID. This however is in contrast to what happens with usual Android
applications, which have unique UIDs that are specific for each application.

Android normally uses the UID to restrict the files and directories that a specific
application can access. In particular, each application has its own private data
folder, which no other application can access. However, since the container and
all the plugin applications share the same UID, they all have access to the same
data folder, and this can result in conflicts or errors, since guest applications may
try to access their “original” data folder instead of the data folder of the container
application.

To address these issues, VirtualApp uses native hooks to intercept calls to
functions related to input/output (e.g. open(), create(), etc.) and change their
arguments so that they instead target a data folder that they have access to. In
particular, VirtualApp assigns to each guest application instance a private data
folder inside the private data folder of the host application so that they do not
interfere with each other. This also prevents plugin applications from accessing
files of other plugin applications.

Technical details Figure 3.3 gives an overview of how VIrtualApp performs
storage redirection: the startIORelocater() method calls redirectFile() and
redirectDirectory() repeatedly to initialize the list of storage locations that
will be redirected in the guest app, and then it calls enableIORedirect() to en-
able storage redirection. This method in turn causes the native startUniformer
method to be called, which uses Cydia Substrate to hook all functions related
to file input/output (e.g. openat, fstatat, link, etc.). These replaced func-
tions are the ones that perform the actual storage redirection: they use the list
of redirected storage locations previously defined to change the arguments they
receive before forwarding the requests to the original functions. Figure 3.4 shows
an example of how a storage redirection hook works.

3.3.4 Installing a guest application

To be flexible, VirtualApp provides two different ways to install a guest application
inside a container: cloning it from an application installed in the host operating
system, or installing it from an apk file the user provides.
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Figure 3.3: Sequence diagram showing how VirtualApp redirects the storage of a guest app.

Figure 3.4: Sequence diagram showing an example of how the storage redirection hook works.

Cloning is particularly useful for Dual-instance apps, a kind of application that
allows the users to run multiple instances of the same application at the same
time. Dual-instance apps can be used for example to log in to multiple social
media accounts without needing to log out every time to switch accounts. When
cloning, the user does not need to find the apk file of the desired application,
but can just download it from the Google Play Store, without running the risk
of downloading a maliciously modified app. Additionally, when cloning an appli-
cation, VirtualApp gives the option to keep the cloned app up-to-date with the
updates installed on the host operating system.

However, there are some limitations when cloning. For instance, in older An-
droid versions, some applications could be installed in the host operating system
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with forward-locking [20]. If this was the case, the apk file of the application was
stored in an encrypted filesystem image, and it could not be accessed by other
applications, including the VirtualApp container. While this is no longer the case
in recent Android versions, other limitations still apply.

For example, installing an application in the host operating system is required
for cloning it, but it may be undesired or even not possible in some situations.

When the user wants to install an application only inside the VirtualApp con-
tainer, they can install it directly from the apk file. In such a scenario, VirtualApp
creates a directory for the package inside the container data directory and copies
all the application files inside it. While installing plugin applications from apk
files is more flexible and can save some space on the device, it opens the door to
repackaging attacks: if the apk file is obtained from an untrustworthy source, it
could be a repackaged version of the desired app containing some malware. In
addition, if the user wants to keep the plugin application up to date, they need
to manually retrieve and install the apk file of the new version of the application
every time there is an update.

Technical details Figure 3.5 provides an overview of the steps involved in
the installation process. To install a plugin application inside a VirtualApp con-
tainer, the user would typically need to use the VirtualCore class and call its
installPackage() method. The arguments of this method let the user specify
a path for the apk file of the application and some options which affect how the
application is installed. I reported the available options in Listing 3.2.

The useSourceLocationApk option is of particular interest. When it is set
to false, the source apk file is copied inside VirtualApp’s data directory, so if
the original changes or is removed the plugin application is not affected. On the
other hand, when this option is set to true, VirtualApp does not copy the source
apk file. This is the case when the plugin app is cloned from the host Android
operating system and the user wants it to be automatically kept up to date. To
retrieve the path to the apk file of an installed application the user just needs to
use the Android PackageManager class.

The updateStrategy option dictates how VirtualApp behaves when the user
tries to install a package that has already been installed inside the virtual en-
vironment: it can ignore the new package, compare the versions and install the
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package only if it is a new version, or overwrite the previously installed package
regardless of the version numbers.

Figure 3.5: Sequence diagram showing how VirtualApp installs a guest application from an
apk file (top) or by cloning (bottom).

The installPackage() method forwards the installation request to the
VAppManagerService in the VirtualApp server process, and it is this service
that performs the actual installation. The related code can be found in the
installPackageImpl() method. This method performs the following steps in
order:

1. first, it uses Java reflection to access methods of the internal
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NativeLibraryHelper class, extracting native libraries from the apk file
and copying them into the dedicated directory.

2. Then, it copies the apk file in a dedicated directory inside the VirtualApp
data directory.

3. After that, the DexOptimizer class takes care of invoking dex2oat with
the correct arguments. dex2oat is a command-line tool used by ART to
compile apk files ahead of time and improve performance and usually is run
by the operating system to optimize installed applications.

4. Finally, it updates the PackageCacheManager, adding the info and meta-
data of the application to it, so that the package appears in the list of
VirtualApp installed packages and can be launched.

public class InstallOptions implements Parcelable {
public boolean useSourceLocationApk = false;
public boolean notify = true;
public UpdateStrategy updateStrategy =

UpdateStrategy.COMPARE_VERSION;

public enum UpdateStrategy {
TERMINATE_IF_EXIST,
FORCE_UPDATE,
COMPARE_VERSION,
IGNORE_NEW_VERSION

}
// ...

}

Listing 3.2: Options that can be passed to VirtualApp when installing a package.

If the useSourceLocationApk option is true, only the first and the last steps
are performed because VirtualApp uses the apk file in the host operating system
directly when launching the plugin application. Using the original apk file ensures
that when the app is updated in the host operating system the update is reflected
inside the container.
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To allow users to install multiple instances of the same application, Virtu-
alApp provides the MultiAppHelper class. Using its installExistedPackage()
method, the user can create an additional instance of a plugin application that is
already installed in VirtualApp. Under the hood, VirtualApp uses
VUserManagerService and assigns a different bogus user for each instance. When
the (real) user launches a specific instance of the application, the application is
launched as if it were launched by the bogus user. Since applications have sep-
arated data directories for different users, the instances will be independent of
each other. Additionally, this solution has the advantage that all the executable
files of a plugin application are shared among instances, saving some space on the
device.

After this process is complete, the plugin application is installed inside the
container and can be loaded and launched in the virtual environment.

3.3.5 Launching a plugin application

Launching a plugin application inside a container is a complex process. Since
the container needs to have total control over the plugin application, using the
usual Android APIs to launch it is not possible, since different applications have
different UIDs and are generally isolated from each other.

To overcome this limitation, VirtualApp declares several stub Activities, and
then when starting the Activity of a plugin application it finds a free stub Ac-
tivity and assigns it to that application. The stub Activity then initializes the
virtual environment, setting up the storage redirection and the native hooks re-
quired to run the plugin application inside the container. This way, the plugin
application is run as a part of the container application, with the same UID, and
the container has total control over it. Additionally, this allows VirtualApp to
load guest applications that are not installed on the host operating system.

In addition to stub Activities, the VirtualApp container application extends the
Android Application class, in order to inject VirtualApp Dynamic Proxies in the
plugin application in place of the original system service classes.

Technical details The steps detailed in this section are summarized in Fig-
ure 3.6. To launch an installed plugin app, VirtualApp provides the
VActivityManager. Using the launchApp() method the user can specify the
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package name of the plugin application they wish to launch, as well as the partic-
ular instance. This method creates an Intent to launch the requested application
and then calls the queryIntentActivities() method of
VPackageManagerService to look for activities that can be launched with that
Intent. VPackageManagerService resides in the VirtualApp server process, and
when queried it iterates over the list of activities that the installed plugin ap-
plications make available. If any suitable Activity is found, VActivityManager
sends a request to the VActivityManagerService using an Intent to start that
Activity. VActivityManagerService, which is inside the VirtualApp server pro-
cess as well, finds an unused stub Activity, initializes its process, and wraps the
original Intent inside of a new Intent that targets the free Activity. Finally, it
calls Android ActivityManager to start the stub Activity. The main method
related to these steps is startActivityProcess() of ActivityStack.

All stub activities are instances of the ShadowActivity class, which overrides
the onCreate() method so that it initializes the virtual environment, extracts the
wrapped Intent, and starts the Activity of the plugin application. The environ-
ment initialization is performed by injecting a custom Handler into the current
ActivityThread. This custom Handler, defined in the HCallbackStub class,
calls VClient.bindApplicationNoCheck() on Activity launch.
bindApplicationNoCheck() does all the initialization work, including hooking
native methods and the ClassLoader and redirecting the storage of the plugin
application. Then, it creates the actual Application using the internal Android
class LoadedApk through Java reflection. After the custom Handler is injected,
onCreate can just call the startActivity method with the extracted Intent, and
the new Activity will be started inside a virtual environment.

To inject the Dynamic Proxies that replace Android Services inside the plugin
app, VirtualApp requires the container to override the attachBaseContext()
method of Application so that it calls VirtualCore.startup(). Inside the
startup() method, the InvocationStubManager class is used to first initialize
and then inject all Dynamic Proxies inside the plugin application. These proxies
will intercept all requests made by the plugin application to Android system
services, and change them as needed so that the plugin application works inside
the virtual environment.
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Figure 3.6: Sequence diagrams showing how VirtualApp launches a plugin application (top)
and creates its virtual environment (bottom).
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4
Related Work

In this section, I provide an overview of previous works that are related to my
thesis, divided by topic: analysis of Android Security Bulletins (i.e. Section 4.1),
solutions to deploy security updates on Android devices (i.e. Section 4.2), and
app-level virtualization in Android (i.e. Section 4.3).

4.1 Android Security Bulletins

Android Security Bulletins have been analyzed by previous studies to gain a bet-
ter understanding of security vulnerabilities in the Android ecosystem. Using
the data extracted from the bulletins, researchers analyzed the different vulner-
ability patterns and the code complexity of the related patches [21], in order to
understand system-level vulnerabilities in Android. Other studies focused on the
timing aspect of security patches, analyzing the delay in the propagation of kernel
security patches from the upstream [22] and the delay with which CVEs appear in
vendor-specific security bulletins [23]. In this work, I considered all security vul-
nerabilities published in Android Security Bulletins, as well as software updates
for Samsung devices, to draw the attention to the fact that after a vulnerability
is fixed in the Android source code there is a considerable delay before that patch
is able to reach user devices.
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4.2 Android security patches

It is not uncommon for Android devices to only get sporadic software updates,
and in the past, this was even more common. For this reason, many potential
alternative ways to deploy security updates to Android devices have been pro-
posed. PatchDroid [24] used a daemon launched at system startup to monitor
processes and apply patches to processes using ptrace. The PatchDroid applica-
tion could then be used to install patch libraries on the system. FireDroid [25],
which was similar in design, focused instead on enforcing security policies on pro-
cesses spawned on Android devices by interleaving process system calls and could
be used to block OS and application vulnerabilities. More recently, KARMA [26]
was proposed as a solution to patch kernel vulnerabilities on Android on-the-
fly using a kernel module, adapting the patches to different devices. Similar to
KARMA, Embroidery [27] adapts binary code patches to different devices using a
system daemon that requires root. InstaGuard [28] patches vulnerabilities using
rules that require no code addition, and that can be generated automatically from
high-level descriptions of vulnerabilities. Another solution that was proposed to
automatically generate patches is VULMET [29], which uses the official patches
to generate hot-patches that can be loaded dynamically (e.g. by using Patch-
Droid). All these solutions have in common the fact that they require either a
modification of the Android operating system or root privileges and so they were
never extensively employed. Reference Hijacking [30] on the other hand replaces
the libraries that an Android process uses by defining a custom Application class
that customizes Zygote behavior, and so it can be used to patch vulnerabilities
in the Framework libraries without modifying the underlying operating system
However, it requires the target application to be modified so that it uses the
custom Application class instead of the default one. Thanks to app-level vir-
tualization, VirtualPatch overcomes these limitations and can be used on stock
Android without having to change the code of the guest applications and without
root privileges.

Project Mainline, introduced by Google as a part of the Android 10 release,
modularizes some of the Android system Components (e.g. Media Codecs and
adbd) so that they can be updated from the Google Play Store, without a full
system update. In this sense, Project Mainline has goals similar to those of
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VirtualPatch. However, only a small part of all the components of the Android
architecture are included in Project Mainline. Since the release of Android 10,
1390 CVEs have been published in the Android Security Bulletin, and only 38 of
these vulnerabilities have been patched with Google Play system updates (2.73%),
so Project Mainline is far from being a solution for the security updates problem.
None of the CVEs that I considered in the evaluation of VirtualPatch has been
patched via Google Play system updates. This shows that VirtualPatch can be
used to patch vulnerabilities that are outside of the scope of Project Mainline.

4.3 App-level virtualization

App-level virtualization in Android was first introduced in 2015 with Boxify [31]
and NJAS [32], which independently suggested two different approaches to cre-
ate a secure sandbox that could be used to run untrusted applications and could
provide better permission management than the Android operating system. Af-
terward, different virtualization engines began to come to light, the most popular
of which are DroidPlugin [33] and VirtualApp [19], and app-level virtualization
started to appeal to researchers: some studies described how open-source vir-
tualization frameworks achieved app-level virtualization [34] [35], while others
explored the security implications of this technique [34] [36] [37] [38]. None of the
previous works have proposed the idea of using app-level virtualization to deploy
security patches on Android devices.
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5
VirtualPatch

5.1 Design

Android is a complex platform, composed of many different components. Each
layer of the Android architecture contains components that have different char-
acteristics, and due to this difference, to patch CVEs that affect different layers
we need to use different methods. VirtualPatch is a solution that leverages app-
level virtualization to patch vulnerabilities in 4 out of the 6 layers of the Android
architecture: System Apps, Java API Framework, Native Libraries, and Android
Runtime. The remaining layers (HAL and Linux Kernel) operate at a lower level
than app-level virtualization, and so cannot be patched using this technique. In
this section I describe the overall design of VirtualPatch (i.e. Section 5.1.1) and
the basics of how it can patch vulnerabilities in different layers (i.e. from Sec-
tion 5.1.2 to Section 5.1.5).

5.1.1 Overview of VirtualPatch

VirtualPatch uses app-level virtualization to dynamically load security patches on
Android devices, without requiring a system update or root privileges. Thanks
to app-level virtualization, VirtualPatch runs on stock Android OS.

As depicted in Figure 5.1, depending on the layer affected and on the specific
CVEs, VirtualPatch can use different techniques to fix security vulnerabilities:
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• System Apps patches can either intercept the interaction between the guest
app and an Activity of a system app 1 or completely replace a vulnerable
system app 2 ;

• Java API Framework patches can either hook Java classes that are part of
the Framework 3 or intercept the communication between the guest app
and Android System Services 4 ;

• Native Libraries patches can hook functions and methods of native libraries 5 ;

• Android Runtime patches can hook Java classes that are part of the ART
core runtime libraries 6 .

Figure 5.1: Overview of the architecture of VirtualPatch.

Since the virtual environment creation is a complex procedure that involves
multiple steps executed in different processes, different security patches can be
loaded at different points during this procedure. Figure 5.2 illustrates the main
steps involved in the virtual environment creation, highlighting when the different
patches first introduced in Figure 5.1 can be loaded.

5.1.2 System Apps vulnerabilities

CVEs affecting this layer are related to vulnerabilities in the default system ap-
plications that are installed along with the operating system, such as Activities
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that leak data (e.g. CVE-2021-0444) or that allow malicious applications to gain
additional privileges (e.g. CVE-2021-0591, CVE-2021-0604). Depending on the
specific CVE and on the affected System App, I designed two different approaches
to patch vulnerabilities in this layer: (i) patching the application and then in-
stalling the patched application inside the virtual environment, and (ii) checking
and sanitizing the Intents used by guest applications to launch system apps.

Figure 5.2: Overview of how VirtualPatch creates the virtual environment and loads the
different security patches.

The first approach is based on the fact that, when an application tries to start a
new Activity, VirtualPatch intercepts the Intent to ensure the new Activity runs
inside the virtual environment, and it first looks for a suitable Activity inside the
container (i.e. it searches for an app installed inside the container that defines an
Activity with an intent-filter that matches the received Intent). This results
in the patched application being launched instead of the vulnerable application
provided by the host operating system.

However, in some situations, it may not be possible to install the patched
application inside the container. For instance, since the Settings app has special
permissions that cannot be granted to other applications, it is not possible to
have an alternative Settings application. The second approach is useful in these
situations, allowing VirtualPatch to check and sanitize the Intents used by guest
applications before they are forwarded to the operating system. The sanitization
could for example block certain Intents or remove some extras from the Intent
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when VirtualPatch detects that there is an attempt to exploit vulnerabilities in
a system application.

5.1.3 Java API Framework vulnerabilities

CVEs affecting this layer can be vulnerabilities in the Java classes provided by
the Framework (e.g. CVE-2019-9376) or vulnerabilities in a system service (e.g.
missing permissions checks), that runs inside a separate process and applications
only access through proxy classes (e.g. CVE-2021-0521).

For CVEs that affect Java classes that are used in the main application process,
a potential patch strategy is to hook the vulnerable methods, replacing them with
their fixed versions when the virtual environment is created, before any code of the
guest application is executed. Figure 5.3 illustrates how this type of patch works:
inside the guest application, all calls to the original (i.e. vulnerable) method
are intercepted by the hook installed by the patch, which can for example some
validation on the call arguments and decide whether to call the original method
or not.

Figure 5.3: Difference between running an app outside (top) and inside (bottom) a virtual
environment with a Java hook patch.

To patch CVEs that affect system services, the idea is to intercept the communi-
cation between the guest application and the service, checking the requests made
to the service and ensuring that no malicious request is forwarded to the actual
service. To do this I decided to leverage dynamic proxies. Figure 5.4 illustrates
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how this type of patch works: while in a normal application the communication
with a system service happens directly, in a guest application running inside the
virtual environment created by VirtualPatch all the communication with the sys-
tem service is intercepted by a dynamic proxy. It is the dynamic proxy itself that
forwards the requests of the guest application to the system service, potentially
changing the arguments or the values returned to the guest app.

Figure 5.4: Difference between running an app outside (top) and inside (bottom) a virtual
environment with a Dynamic Proxy patch.

5.1.4 Native C/C++ Libraries vulnerabilities

CVEs that affect this layer are vulnerabilities in the native code of the libraries
that are a part of the layer (e.g. CVE-2021-0313). To patch these CVEs, it
is possible to hook the affected functions and replace them with patched ones,
similar to what I proposed for the Java API Framework layer. In this case
however both the original and the fixed functions are written in native code, so
a different hooking method is necessary, e.g. Procedure Linkage Table (PLT)
hooking.

5.1.5 Android Runtime vulnerabilities

CVEs affecting this layer are the least frequent among all CVEs, so it is difficult
to get a clear picture of their features. Some affect native code that is executed
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for example during system reboot (e.g. CVE-2021-0395), whereas others affect
Java code in the core runtime libraries (e.g. CVE-2021-0341). While app-level
virtualization naturally cannot be used to patch vulnerabilities that affect the
reboot procedure, it can be used to patch CVEs related to Java core libraries. In
this case, Java classes and methods can be hooked and replaced, just as described
for the Java API Framework layer.

5.2 Implementation

In this section I describe the technical details of VirtualPatch, first giving an
overview of the overall implementation (i.e. Section 5.2.1), and then describing
the techniques that VirtualPatch uses to patch vulnerabilities at the System Apps
(i.e. Section 5.2.2), Java API Framework (i.e. Section 5.2.3), Native Libraries (i.e.
Section 5.2.4), and Android Runtime (i.e. Section 5.2.5) layers.

5.2.1 Overview

VirtualPatch is based on an open-source version of VirtualApp. I modified how
VirtualApp creates the virtual environment to add the functionality needed for
all the different types of patches, and I developed a library that offers some APIs
that can aid developers in writing security patches for VirtualPatch. Every patch
is a standalone file that is loaded at runtime and can either be included as an
asset in the apk of VirtualPatch or be loaded from the device’s external memory.

For patches written in Java, the library provides the PatchLoader class, which
defines the lifecycle hooks that other patches can use to specify when the patch
is loaded inside the virtual environment, and the SecurityPatch class, which
provides methods patch developers can use to modify the virtual environment. A
patch of this type extends the PatchLoader class and is compiled into an apk or
a dex file. Table 5.2 lists the PatchLoader hooks that patches can override, and
Table 5.1 illustrates the APIs provided by SecurityPatch.

For patches written in native code, the patch file is simply a shared library that
uses JNIEnv.RegisterNatives() to register the nativeLoad() JNI method of
the NativeLoader class. VirtualPatch will call this method to apply the patch.

We can observe that it is possible for multiple patches to target the same
method or function. My implementation takes this fact into account and prevents
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conflicts between patches from happening.
Appendix B shows some code examples that use VirtualPatch APIs to imple-

ment security patches.

Method and Description
void init(): should be called before any other method to initialize the
SecurityPatch class.

void hookJavaMethod(Object target, Method hook, Method backup):
can be used to hook a java method defined by the Class target, possibly
saving a reference to the original method in backup so that it can be called
from hook.

void sanitizeIntent(Method sanitize): can be used to add an Intent san-
itizer to the virtual environment.

void addMethodProxy(String className, String methodName, Method
proxy): can be used to add a dynamic proxy to the virtual environment.
className indicates the name of the class that defines the method that should
be replaced by the proxy, methodName indicates the name of the method the
proxy should replace, and proxy is the new method.

Object callNextProxy(Object who, Method method, Object... args):
can be called from a method proxy to call the next proxy in the chain.

Object[] getProxyArgs(Object[] args): can be called from a method
proxy to get the arguments used in the original call.

Table 5.1: Summary of SecurityPatch APIs.

5.2.2 System Apps

When patching a system app, often it is possible to just install a fixed version
of the application inside the virtual environment. Since the source code of sys-
tem applications is generally available 1, in this case we just need to get the
updated code and build the application. This is the most straightforward way
to patch some of the CVEs that affect system applications, although it results
in a stock version of the application being installed, which may be different from

1https://android.googlesource.com/platform/packages/
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the one present on the device if the manufacturer customized it. However, most
functionality should be the same, so this should not be a problem.

Method Description
void onEnvCreate() Called in the guest application process dur-

ing virtual environment creation. Can be
used to add Java hooks to the guest appli-
cation.

void onDynamicProxyCreate() Called before dynamic proxies are created.
Should be used to add dynamic method prox-
ies for system services.

void onServerCreate() Called in the server process before all Virtu-
alApp services are created. Can be used to
add Java hooks to VirtualApp services and
to add Intent sanitizers.

Table 5.2: Summary of PatchLoader hooks.

A potential alternative to compiling the app from the source code is to pull
the apk of the application from the device, disassemble it, apply the same patch
applied in the mainline application (e.g. by modifying the smali code), and then
recompile it. This procedure needs to be repeated for each different customized
version of the application.

The other way CVEs affecting this layer can be patched is by sanitizing the
Intents used by apps that run inside the virtual environment, so that poten-
tially harmful Intents are blocked before vulnerable activities are launched and
exploited. To implement this kind of patch, I extended VirtualApp’s
VActivityManagerService, adding Intent sanitizers.

An Intent sanitizer is a static Java method that receives an Intent to sanitize
in input and returns a sanitized Intent. The sanitizer can change the input Intent
in any possible way: it can remove some of its extras, it can change the action
or the target component, and so on. In addition, the sanitizer can also decide
to completely block an Intent, preventing the request to start the target Activity
from reaching Android ActivityManager.
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VirtualPatch keeps a list of Intent sanitizers, and individual patches can add
their sanitizers to this list. When a guest application tries to start an Activity
using an Intent, VirtualPatch “chains” the Intent sanitizers, i.e. it calls the first
sanitizer in the list, then uses the Intent returned by this sanitizer to call the
second sanitizer in the list, and so on until the last Intent sanitizer in the list is
called or one of the sanitizers decides to block the Intent by returning null. The
Intent obtained at the end of the chain (if any) is the Intent that VirtualApp
passes to the ActivityManager. With this procedure, if an application tries to
exploit a CVE by using a malicious Intent, the malicious Intent will be intercepted
by one of the patches and sanitized or blocked.

5.2.3 Java API Framework

As I mentioned, at this layer CVEs affect either Android system services, to
which an application can communicate, or Java classes that are used directly by
the application.

In the first case, since VirtualApp already needs to intercept and modify some
calls to the system services in order for the guest application to work inside the
virtual environment, the basic functionality is already provided by VirtualApp
itself, in the form of dynamic method proxies. However, VirtualApp dynamic
proxies are not designed with security patches in mind, and so they are lacking
in some aspects. Most notably, it is not possible to have multiple proxies for the
same method, a scenario that is likely to happen when there are many patches.
For this reason, I extended VirtualApp dynamic proxies to allow chaining multiple
proxies. The proxy chain is basically a linked list of method proxies. When the
proxy chain intercepts a call to some service, it calls the first method proxy in
this linked list. The proxy can perform any operation required by the patch. For
instance, it can do additional input validation, and then it can decide to either
call the next proxy in the chain, possibly changing the arguments of the call, or
interrupt the chain. This process is repeated until either the last proxy in the
list is reached, at which point the original method is called, or one of the proxies
in the chain interrupts the chain and returns some value without calling the next
proxy. This solution is flexible and allows multiple patches to intercept calls to
the same method without conflicts.
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In the case of CVEs affecting Java classes used directly by the application, the
idea is to hook the vulnerable methods and replace them with fixed methods or
sanitize their inputs before they are called. For this purpose, I used YAHFA [39],
a library that can be used to hook Java methods in ART. YAHFA modifies ART
internal data structures to change pointers to the methods of a class. As illus-
trated in Figure 5.5, YAHFA can be used to replace any method of a Java class
with a hook method defined in a patch, possibly also saving a reference to the orig-
inal method in a backup method that can be called from the hook method. This
allows us to write patches that, for instance, only include additional validation,
and then call the original method without having to completely reimplement it.

Figure 5.5: Overview of how the Java ART hook works by modifying pointers to Java methods.

5.2.4 Native C/C++ Libraries

Native C/C++ libraries export functions used either directly by an application,
or internally by some class of the Framework that in turn is used by an app.
When there is a CVE in a native library, virtualization can be used to replace
the affected functions in the guest application process, using native hooks. While
VirtualApp comes with its own inline hooking framework, a modified version
of Cydia substrate [40], it is difficult to use because it is mostly designed for
internal use by VirtualApp and is poorly documented. For this reason, I added
ByteHook [41] to VirtualPatch. ByteHook is an Android PLT hook library, which
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supports all recent Android versions up to Android 12. Additionally, it supports
multiple hooks for the same function, so that different patches that target the
same function can coexist, and it can hook all the dynamic libraries in the process.

PLT hooking is based on how dynamically loaded libraries are linked by the
operating system. in Android, as in Linux, executable files are in Executable
and Linkable Format (ELF). An ELF file contains a series of sections that can
contain different types of data: for example, the code of a program is generally
stored in the text section, while the information needed for linking is stored in
the dynamic section. In the context of dynamically linked libraries, there are two
ELF sections that are important:

1. got: contains the Global Offset Table (GOT), which is a list of entries that
point to global variables imported from shared libraries;

2. plt: contains the PLT, which is a list of entries that point to functions
imported from shared libraries.

To enable lazy loading, i.e. to load the pointers to the shared library functions
only if the functions are called, each entry in the PLT points to an entry in the
GOT, which at first points to a generic “loading function”, and the first time
the function is called the GOT entry is overwritten with the pointer to the actual
function. Figure 5.6 illustrates what happens when a dynamically loaded function
is called from a program. The idea behind PLT hooks is to replace the entry in
the GOT so that when the program tries to call that function a different function
gets called instead.

Patches for vulnerabilities in the Native Libraries layer can use ByteHook to
hook native functions. I defined the NativeLoader class, a Java class with a
native method named nativeLoad() that native patches are required to imple-
ment. To load a native patch, I leverage the fact that libraries loaded with
System.load() can use JNIEnv.RegisterNatives() to override methods defined
by libraries loaded previously. Every native patch registers this method, so to
apply all patches VirtualPatch can load the shared libraries one at a time, and
call NativeLoader.nativeLoad() each time.

Using shared libraries directly, we can write the totality of the patch in native
code, without the need for verbose Java boilerplate. This approach has also the
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advantage that the patch files are very small, smaller than the apk files that we
would need otherwise.

Figure 5.6: Overview of how a function defined in a shared library function is called in ELF
executables.

5.2.5 Android Runtime

In the Android Runtime layer, app-level virtualization can mainly be used to
patch vulnerabilities in the core libraries. Core libraries consist mostly of Java
classes, so patches targeting CVEs in this layer hook Java methods, the same way
I described for the Java API Framework layer.
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6
Evaluation

To evaluate my solution, I picked from past Android Security Bulletins 7 CVEs
that affect different layers of the Android architecture, studied the official patches
implemented in the AOSP repository, implemented patches for VirtualPatch, and
tested them on a real device. To test the patches, I developed proofs-of-concept
exploit applications and verified that when the applications are executed inside a
patched virtual environment they cannot exploit the CVEs.

The device I used for this evaluation is a Sony Xperia XZ1 smartphone, with
Android 9 and 2019-09-01 security patch level. The criteria I used to choose the
vulnerabilities are the following:

1. Security patch level: since the smartphone I used to test the patches runs
an Android build with security patch level 2019-09-01, it is not vulnerable
to CVEs that appeared earlier in Android Security Bulletins. Since to test a
patch I need to verify that the proof-of-concept application can exploit the
vulnerability, I only chose CVEs that appear in Android Security Bulletins
since the one published in October 2019.

2. Android version: CVEs that are published in the Android Security Bul-
letin may only affect certain versions of Android. Since the test device has
Android 9 installed, I only chose vulnerabilities that affect this version of
the operating system.
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3. Layer affected: to show that VirtualPatch can be used to patch vulner-
abilities in different layers of the Android architecture, I chose CVEs that
affect all 4 layers (System apps, Java API Framework, Native Libraries,
Android Runtime).

6.1 System Apps vulnerabilities

6.1.1 CVE-2021-0604

“In generateFileInfo of BluetoothOppSendFileInfo.java, there is a possible
way to share private files over Bluetooth due to a confused deputy. This could
lead to local information disclosure with no additional execution privileges
needed. User interaction is needed for exploitation.” [42]

Vulnerability Android Bluetooth system app exports
BluetoothOppLauncherActivity, an Activity that third-party applications can
use to send files to other devices through Bluetooth, by specifying the uri of the
file that should be sent. This Activity is part of the Bluetooth application, so it
can access all the content providers of the same application, including those that
are not exported. In particular, it can get files from MmsFileProvider, which has
access to all files included in MMS messages saved on the device. On vulnerable
devices, it is possible to specify an uri that points to a file in MmsFileProvider,
so that a malicious app can bypass permission checks and send that file to another
device through Bluetooth.

Exploit I wrote an application that exploits this CVE by using a malicious
Intent to start BluetoothOppLauncherActivity. The Intent contains an extra
called STREAM that contains an uri pointing to a file in MmsFileProvider (e.g.
content://com.android.Bluetooth.map.MmsFileProvider/1).
BluetoothOppLauncherActivity shows a list of Bluetooth devices, and when
the user selects one device from the list, if the current device is vulnerable, the
file will be sent to the other device. Otherwise, an error message will be displayed
and no file will be sent.
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Security patch The official patch validates uris that are used to specify which
file to send through Bluetooth and blocks malicious uris, i.e. uris that identify files
of MmsFileProvider. To patch this CVE in VirtualPatch, I looked at the code
from the official patch and created an Intent sanitizer that worked the same way.
The sanitizer checks if the Intent targets the BluetoothOppLauncherActivity,
and if so it validates the value of the STREAM extra, blocking the Intent if a
malicious uri is detected so that no Activity is started.

6.1.2 CVE-2021-0591

“In sendReplyIntentToReceiver of BluetoothPermissionActivity.java, there is
a possible way to invoke privileged broadcast receivers due to a confused
deputy. This could lead to local escalation of privilege with User execution
privileges needed. User interaction is needed for exploitation.” [43]

Vulnerability The Settings app defines BluetoothPermissionActivity,
which is used to display a confirmation dialog for accepting incoming Bluetooth
profile connections from untrusted devices. To send the result of the dialog back
(i.e. to tell whoever started the Activity whether the user authorized the con-
nection or not), BluetoothPermissionActivity uses a broadcast. The Activ-
ity is exported, so it can be called by any application, and only requires the
BLUETOOTH_ADMIN permission, which Android does not consider “dangerous” thus
is requested at install-time. Since the Activity is part of the system Settings app,
it executes with UID 1000, and is able to access protected BroadcastReceivers. On
vulnerable devices, it is possible to specify the package and class of the Broadcas-
tReceiver that should receive the result, and a malicious app could exploit this to
call any protected BroadcastReceiver.

Exploit Among protected BroadcastReceivers, MasterClearReceiver is the
one that stands out. This BroadcastReceivers is used by the Settings app to
initiate a factory reset of the device, normally after the user has confirmed their
intentions to do so. I wrote an application that exploits CVE-2021-0591 to call
MasterClearReceier, with the result that the data on the device gets completely
wiped. The application starts BluetoothPermissionActivity with a malicious
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Intent, with the PACKAGE_NAME extra set to android and the CLASS_NAME extra
set to com.android.server.MasterClearReceiver. On vulnerable devices, once
the user answers to the connection request, BluetoothPermissionActivity will
call the MasterClearReceiver BroadcastReceiver.

Security patch The official patch changes BluetoothPermissionActivity
so that it ignores the two extras of the launch Intent, removing the ability for
other applications to specify which BroadcastReceiver should receive the result.

To patch this CVE in VirtualPatch I added an Intent sanitizer that checks
for Intents which target the BluetoothOppLauncherActivity, and removes from
them the PACKAGE_NAME and CLASS_NAME extras. This way, a guest application
cannot specify which Activity will receive the result broadcast, and so it cannot
make BluetoothOppLauncherActivity call MasterClearReceiver.

6.1.3 CVE-2021-0444

“In onActivityResult of QuickContactActivity.java, there is an unnecessary
return of an Intent. This could lead to local information disclosure of con-
tact data with no additional execution privileges needed. User interaction is
needed for exploitation.” [44]

Vulnerability The Contacts system app provides QuickContactActivity,
an Activity which other applications can use to display a dialog that shows infor-
mation about a given contact. On vulnerable devices, the Activity unnecessarily
returns an Intent, possibly leaking contact data.

Exploit The CVE requires specific user interaction for contact data to be
leaked. Once the QuickContactActivity is launched to display the information
about a contact, the user needs to perform the following operations:

1. Open the menu and select the option to link another contact to the current
contact;

2. select a contact to link;
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3. close the Activity.

Only if exactly these steps are performed, the contact data is leaked. If the
user performs any other operation after the contact is linked, there will not be
any leak. I wrote an application that detects if any Intent is leaked by the
QuickContactActivity. If the device is vulnerable and the user interacts as
described, the application receives and logs the uri of the leaked contact.

Security patch The official patch changes the onActivityResult() method
of this class, removing the Intent from the returned data.

Exploiting this CVE requires user interaction, and when the Activity is launched
there is no way to distinguish between malicious and legitimate Intents, so sani-
tizing the Intents used to launch this Activity is not possible without preventing
all applications from using it. For this reason, I decided to patch the vulnera-
bility by installing the fixed Contacts application inside the virtual environment.
To patch the application, I pulled the apk file from the device, disassembled it
using Apktool 1, changed the smali code so that the Activity.setResult() method
is called without an Intent, and finally reassembled the apk file. Smali code can
be considered the equivalent of assembly for Android DEX files. In this case, I
needed to change a single instruction, so it was a viable solution, but patching
more complex vulnerabilities with this approach may not be trivial.

6.2 Java API Framework vulnerabilities

6.2.1 CVE-2019-9376

“In Account of Account.java, there is a possible boot loop due to improper
input validation. This could lead to a local denial of service with no ad-
ditional execution privileges needed. User interaction is not needed for ex-
ploitation.” [45]

Vulnerability Android AccountManager manages a user’s online accounts.
Authenticators are services registered with the AccountManager that handle the

1https://ibotpeaches.github.io/Apktool/
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actual storage of the credentials, and other applications can ask permission to
access certain credentaisl to the AccountManager. For example, an application
could ask to get access to the Google or the Facebook account that the user saved
on the device. Due to improper input validation, it is possible on vulnerable
devices to create an Account with an empty name.

Exploit To exploit this CVE, I wrote an application that declares a bogus ac-
count type and implements a stub Authenticator for this account type. The main
Activity of the application then uses Java reflection to create an Account with
empty name, and calls the addAccountExplicitly method of AccountManager.
On vulnerable devices, the account with the empty name is added by the
AccountManager to its database of accounts, which becomes corrupted. This in
turn causes a boot loop the next time the device is turned on. To declare a new
account type and implement its Authenticator the application does not need to
request any special permission.

Security patch The official patch fixes the Account constructor so that it no
longer creates accounts with empty names. Android AccountManager is a system
service. When addAccountExplicitly is called by an application, the application
communicates with this service through the Binder IPC, and this means that
the Account to add gets serialized in the application process and deserialized in
the service process, i.e. every time the application calls addAccountExplicitly
the Account constructor is called in the service process. Since the official patch
is applied to the whole operating system, it is applied to the AccountManager
service as well.

The situation is different in VirtualPatch: the container application has total
control over the plugin application process, so it can apply the patch to the
virtual environment of the guest application, but has no control over the process
of the system service. VirtualApp however uses dynamic proxies to replace the
AccountManager service with its own service (VAccountManager, which runs in
VirtualApp’s server process). For this reason, using Java hooks to replace the
Account constructor in both the guest application and the server process is enough
to patch the vulnerability. Alternatively, the patch could validate the Account in
the AccountManagerService dynamic proxy.

60



6.2.2 CVE-2021-0521

“In getAllPackages of PackageManagerService, there is a possible informa-
tion disclosure due to a missing permission check. This could lead to local
information disclosure of cross-user permissions with no additional execution
privileges needed. User interaction is not needed for exploitation.” [46]

Vulnerability PackageManagerService is the underlying class used by
PackageManager to perform most of its operations. PackageManagerService
itself is not directly available to third-party applications and is only used by classes
in the Framework, but it is possible to use Java reflection to access it and call
its methods. PackageManagerService has a method called getAllPackages()
that, as the name implies, returns a list of all packages installed on the device.
This includes packages installed by other users as well. While accessing this kind
of information usually is not possible for applications without root permissions,
on vulnerable devices, there is no permission check.

Exploit I wrote an application that uses Java reflection to exploit this CVE.
The application uses reflection multiple times to first get the mPM field of the
ApplicationPackageManager, which is the proxy to the PackageManagerService,
and then to call its getAllPackages() method. On vulnerable devices, this call
returns the list of all installed applications.

Security patch The official patch fixes this vulnerability by allowing only
system applications, root, or shell to access this method.

I used a dynamic method proxy to patch this CVE. The proxy does not call
the original method, and instead always returns an empty list, so that there is
no information disclosure. I verified that the patch works as expected with the
exploit application, and confirmed that inside the patched virtual environment
the application cannot get the list of all applications installed on the device.
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6.3 Native C/C++ Libraries vulnerabilities

6.3.1 CVE-2021-0313

“In isWordBreakAfter of LayoutUtils.cpp, there is a possible way to slow or
crash a TextView due to improper input validation. This could lead to a
remote denial of service with no additional execution privileges needed. User
interaction is not needed for exploitation.” [47]

Vulnerability This CVE affects libminikin, a shared library that Android
uses to calculate line breaks in TextViews. The library is not directly available
to third-party applications, but any application that contains a TextView uses it.
The function responsible for computing word breaks in a string doesn’t handle
properly Unicode Bidirectional (bidi) control characters, and this can be exploited
to cause a denial of service.

Exploit Unicode provides bidi that can be used to change the direction of
a part of a string. This is especially useful in the case of strings that include
some word or some sentence written in a different language that has a different
writing direction (e.g. a string that contains English text that includes a word in
Hebrew).

To exploit this CVE, I wrote an application that passes a purposely crafted
string TextView. The string repeatedly changes the direction of the text using
bidi characters, and, on vulnerable devices, this causes the TextView to crash the
whole application.

Security patch Android official patch adds these bidi characters to the list of
characters after which there is a word break, changing the isWordBreakAfter()
function.

Since isWordBreakAfter() is not an exported function of libminikin, to patch
it I would need to do it with inline hooks. However, this kind of patch would be
difficult to port to multiple devices, since the offset of the function could change
from device to device, and the function call could even be inlined by the compiler
only on some devices, making the issue even more complex. For this reason, I
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decided to find exported functions that call this function and are used by Android,
and hook them instead. I found that there is only one such function, namely
minikin::Layout::doLayoutRunCached(). I copied this function, replaced the
calls to isWordBreakAfter() with inline calls to a fixed isWordBreakAfter()
function, and hooked doLayoutRunCached() instead. Since I used PLT hooks
instead of inline hooks, which modify the PLT and use the name of the exported
function to find the correct offset in the library, this approach should be more
portable and work with different devices without major issues.

6.4 Android Runtime vulnerabilities

6.4.1 CVE-2021-0341

“In verifyHostName of OkHostnameVerifier.java, there is a possible way to
accept a certificate for the wrong domain due to improperly used crypto.
This could lead to remote information disclosure with no additional execution
privileges needed. User interaction is not needed for exploitation.” [48]

Vulnerability This CVE affects the OkHttp library. Android uses a modified
version of OkHttp as a part of the core runtime libraries, which implements the
functionality for HTTP and HTTPS connections. While applications cannot use
the library directly, standard Java classes such as HttpURLConnection and Http-
sURLConnection use it under the hood, since it provides the implementations for
these abstract classes. The vulnerability itself consists of some improper input
validation in the functions responsible for validating TLS/SSL certificates, which
could result in a certificate for the wrong domain being accepted. In particular,
the validation converts the hostnames specified in the certificates to lower-case
but does not check that the hostname only contains printable ASCII characters.
Certain characters when converted to lower-case may result in a name collision,
i.e. two different hostnames are treated as if they were the same.

Exploit The Unicode character “U+212A Kelvin Sign”, when converted to
lower-case, becomes the lower-case letter “k”, which is a collision with the upper-
case letter “K”. If an attacker were able to obtain a certificate from a trusted
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Certification Authority (CA) for a domain that uses the “U+212A Kelvin Sign”
character, that certificate could be used to impersonate a different domain and
it would be accepted by vulnerable devices. Due to the need to obtain such a
certificate from a trusted CA, I was not able to exploit this CVE, however, I was
able to add log messages to the patched methods to verify that they were called
instead of the original ones.

Security patch Android official patch fixes the input validation, checking
that the hostnames on the certificate only contain printable ASCII characters.

To patch this vulnerability, I hooked the affected methods (the two versions of
verifyHostName()), using reflection to access the internal package (i.e.
com.android.okhttp.internal.tls). In the hooks I mirrored the verification
introduced by the patch, checking that the input hostnames and patterns only
contain printable ASCII characters. If that is not the case, the method returns
false, and the certificate will be rejected. Otherwise, it calls the original method,
matching what happens in the original patch.

6.5 Time Analysis

Previous studies have analyzed the overhead introduced by app-level virtualiza-
tion itself and concluded that it is considered acceptable by both the users and
the Android documentation [49]. Thus, to evaluate the performance of my so-
lution, I focused on measuring whether the loading of the patches in the virtual
environment affects the time to launch the guest apps significantly.

I picked 30 popular applications with more than five million downloads from the
Google Play Store, installed them inside the virtual environment, and launched
them 100 times each, measuring the time it takes to load the patches. The
applications are listed in Table 6.1. Since the patches can be loaded at different
points in the virtual environment creation and in different processes, as defined by
the PatchLoader hooks, I used systrace [50] to measure the exact time it takes to
load the patches defined in the three different lifecycle hooks (onServerCreate(),
onDynamicProxyCreate(), and onEnvCreate()). Systrace is a tool provided with
the Android Platform Tools and can be used to collect and inspect timing infor-
mation about all processes. I instrumented VirtualPatch code before and after
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the calls to the functions that load the patches and parsed the traces I obtained
to extract only the timings of these sections of code.

AppID Package Downloads
1 com.alibaba.intl.android.apps.poseidon 100,000,000+
2 com.contextlogic.wish 500,000,000+
3 com.discord 100,000,000+
4 com.disney.disneyplus 100,000,000+
5 com.duolingo 100,000,000+
6 com.ebay.mobile 100,000,000+
7 com.expedia.bookings 10,000,000+
8 com.facebook.lite 1,000,000,000+
9 com.facebook.orca 5,000,000,000+
10 com.gamma.scan 100,000,000+
11 com.indeed.android.jobsearch 100,000,000+
12 com.instagram.android 1,000,000,000+
13 com.linkedin.android 1,000,000,000+
14 com.mcdonalds.mobileapp 50,000,000+
15 com.meditation.deepsleep.relax 5,000,000+
16 com.netflix.mediaclient 1,000,000,000+
17 com.outfit7.talkingnewsfree 100,000,000+
18 com.pinterest 500,000,000+
19 com.snapchat.android 1,000,000,000+
20 com.tinder 100,000,000+
21 com.ubercab 500,000,000+
22 com.whatsapp 5,000,000,000+
23 com.yahoo.mobile.client.android.finance 10,000,000+
24 com.yahoo.mobile.client.android.mail 100,000,000+
25 com.zzkko 100,000,000+
26 kjv.bible.kingjamesbible 50,000,000+
27 me.lyft.android 10,000,000+
28 org.telegram.messenger.web 1,000,000,000+
29 tv.pluto.android 100,000,000+
30 tv.twitch.android.app 100,000,000+

Table 6.1: List of applications I used in the experiments.

Additionally, I used systrace to measure the time it takes to “preload” the
patches, that is to copy the patch files into the VirtualPatch data folder. While
in the prototype VirtualPatch repeats this operation every time it is launched,
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mainly to collect this data, in a real application this operation would only be per-
formed once during patch installation. Still, even when repeating this operation,
it is only executed once when the host application is launched, even if multiple
guest applications are launched.

I report the measurements in Figure 6.1. The plot shows the average time
VirtualPatch takes to load the patches defined in the three different BasePatch
hooks and to preload patches, grouping the traces by application. From the
plot, we can see that the overhead doesn’t change much from application to
application. Note that both the onServerCreate and the preload hooks are called
from the VirtualPatch server process, which is the process in which all virtual
services declared by VirtualPatch live, and which is shared across all applications
running inside the virtual environment. This means that the overhead introduced
by these calls is incurred during the launch of the host application itself, and not
during the launch of each guest application.

(a) onEnvCreate (b) onServerCreate

(c) onDynamicProxyCreate (d) Preload

Figure 6.1: Overhead introduced by patches on different lifecycle hooks, grouped by app.

Table 6.2 summarizes the information about timings across all applications.
The “Total (app)” row indicates the total overhead added to guest applications
due to patches. As we can see, loading all the patches I implemented takes on
average less than 60 milliseconds, which is not enough to be noticed by users.
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While for this evaluation I only loaded 7 patches, VirtualPatch is designed as a
temporary solution that users can use while they wait for the device manufacturers
to publish a system update, so there should not be the need to load thousands
of patches at the same time. Even when loading 10 times as many patches as
loaded in these experiments, the overhead should remain under 600 milliseconds
which I believe to be still acceptable.

Timing Mean Std. Deviation
onServerCreate 14.32ms 0.97ms
onEnvCreate 37.18ms 2.20ms

onDynamicProxyCreate 16.98ms 1.44ms
Preload 366.97ms 6.94ms

Total (app) 53.52ms 2.70ms

Table 6.2: Overhead introduced by patches.
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7
Conclusion

In this thesis, I analyzed the current Android security patch situation, quantifying
the delay that affects the publication of security patches and their integration by
Samsung, the biggest Android device vendor. The results of my analysis show
that malicious actors have large time windows to exploit known vulnerabilities.
In order to address this issue, I studied how Android app-level virtualization
works and developed VirtualPatch, a solution that uses this technique to deploy
security patches to Android devices without requiring users to do a full system
upgrade. VirtualPatch does not require any modification to the Android OS, and
can be used on stock Android devices without special permissions (e.g. without
root privileges), which are clear benefits over previous solutions. I described the
architecture of my solution and detailed the APIs that developers can use to
implement security patches that can be loaded by VirtualPatch. Additionally, I
evaluated VirtualPatch by implementing security patches for 7 CVEs that were
published on past Android Security Bulletins and verifying that these patches
were effective in blocking exploit attempts on a vulnerable device. Finally, I
evaluated the runtime performance of VirtualPatch and showed that the overhead
added by the security patches is negligible from the user’s perspective.

While VirtualPatch is a step in the right direction, it still has some limitations
in terms of which vulnerabilities can be patched using app-level virtualization. I
have shown how this solution is able to patch vulnerabilities in components that
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are part of the System Applications, Java API Framework, Native Libraries, and
Android Runtime layers, however, I believe that VirtualPatch cannot effectively
patch vulnerabilities in the Kernel and in the Hardware Abstraction layers.

In addition, since VirtualPatch can only patch applications that users can run
inside the virtual environment, there are some vulnerabilities in the layers that
I addressed which cannot be patched with VirtualPatch. For example, since
the Settings application has special privileges, which no other application can
require, we cannot install it inside the virtual environment. Vulnerabilities that
can be exploited using the Settings application alone cannot be patched with
VirtualPatch.

Moreover, I am aware that current virtualization solutions are not designed
with security as the main concern, and that due to this the virtual environment
itself may have some vulnerabilities. However, the focus of this work was to
show that app-level virtualization can be used to patch security vulnerabilities
in Android, and not to investigate the security of current app-level virtualization
solutions. In the past, more secure virtualization solutions have been proposed,
and while their source code is not freely available, I believe that the techniques I
showcased in this work could be easily adapted to those solutions.

A similar argument can be made for the number of applications that Virtual-
Patch supports: I am aware that not all applications can be executed properly
by VirtualPatch, however, this is due to the fact that I based my work on the
open-source version of VirtualApp, which has not been updated in months. More
up-to-date solutions, including the commercial version of VirtualApp which is
being constantly updated, should offer support for most Android applications.

Finally, VirtualPatch is designed to be a temporary solution, i.e. users should
use it to install temporary patches while they wait for the device vendor to publish
a security update. While loading multiple patches at the same time should not
be a problem, as shown by the time analysis, there is a limit to it, and loading
too many patches may significantly increase the launch time of applications.

To address these limitations, future research could explore how different types
of virtualization (e.g. OS-level virtualization) can be used to patch security vul-
nerabilities or focus on the creation of a secure app-level virtualization framework
that works with recent Android releases and can be used as the basis for further
research in this field.
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A
Samsung Devices

The following table lists the Samsung devices for which I downloaded the software
update data as described in Chapter 2.

Model CSC Model CSC Model CSC
SM-A426B EVR SM-A426B 3IE SM-A426B BRI
SM-A426B XSG SM-A426B ROM SM-E426B INS
SM-M526B INS SM-M526B CAU SM-M526B GTO
SM-M526B ZTO SM-M526B SER SM-A528B EVR
SM-A528B 3IE SM-A528B BRI SM-A528B INS
SM-A528B GTO SM-A528B ZTO SM-A528B XSG
SM-A528B ROM SM-F926B EUX SM-F926B EVR
SM-F926B 3IE SM-F926B CAU SM-F926B GTO
SM-F926B ZTO SM-F926B XSG SM-F926B SER
SM-F711B EUX SM-F711B EVR SM-F711B 3IE
SM-F711B CAU SM-F711B GTO SM-F711B ZTO
SM-F711B XSG SM-F711B SER SM-E225F INS
SM-M325F INS SM-A226B EVR SM-A226B 3IE
SM-A226B BRI SM-A226B INS SM-A226B CAU
SM-A226B XSG SM-A226B SER SM-A226B ROM
SM-A226B TGY SM-A225F INS SM-A225F CAU
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Model CSC Model CSC Model CSC
SM-A225F XSG SM-A225F SER SM-A225F ROM
SM-A225M GTO SM-A225M ZTO SM-T730 EUX
SM-T730 KOO SM-T736B BRI SM-T736B XSG

SM-T736B ROM SM-T736B TGY SM-T220 EUX
SM-T220 BRI SM-T220 KOO SM-T220 INS
SM-T220 CAU SM-T220 GTO SM-T220 ZTO
SM-T220 XSG SM-T220 SER SM-T220 TGY
SM-T225 EUX SM-T225 BRI SM-T225 INS
SM-T225 CAU SM-T225 GTO SM-T225 ZTO
SM-T225 SER SM-T225 ROM SM-T225 TGY
SM-E5260 CHC SM-M426B INS SM-E025F INS
SM-F127G INS SM-A725F INS SM-A725F XSG
SM-A725F SER SM-A725F ROM SM-A526B EVR
SM-A526B 3IE SM-A526B ZTO SM-A526B XSG
SM-A526B ROM SM-A525F EUX SM-A525F INS
SM-A525F CAU SM-A525F XSG SM-A525F SER
SM-A325F INS SM-A325F CAU SM-A325F XSG
SM-A325F SER SM-A325F ROM SM-M625F ZTO
SM-M625F XSG SM-E625F INS SM-M127G INS
SM-M022G INS SM-A022G CAU SM-A022G SER
SM-G991B EVR SM-G991B 3IE SM-G991B CAU
SM-G991B GTO SM-G991B ZTO SM-G991B XSG
SM-G991B SER SM-G991B ROM SM-G996B EVR
SM-G996B 3IE SM-G996B CAU SM-G996B GTO
SM-G996B ZTO SM-G996B XSG SM-G996B SER
SM-G996B ROM SM-G998B EVR SM-G998B 3IE
SM-G998B CAU SM-G998B GTO SM-G998B ZTO
SM-G998B XSG SM-G998B SER SM-G998B ROM
SM-A326B EVR SM-A326B 3IE SM-A326B ZTO
SM-A326B XSG SM-A326B ROM SM-M025F INS
SM-A025G EVR SM-A025G 3IE SM-A025G ROM
SM-A125F EVR SM-A125F 3IE SM-A125F INS
SM-A125F CAU SM-A125F XSG SM-A125F SER
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Model CSC Model CSC Model CSC
SM-A125F ROM SM-A125F TGY SM-F415F INS
SM-F415F ZTO SM-G780F EVR SM-G780F 3IE
SM-G780F INS SM-G780F CAU SM-G780F ZTO
SM-G780F XSG SM-G780F SER SM-G780F ROM
SM-G780G EVR SM-G780G 3IE SM-G780G CAU
SM-G780G XSG SM-G780G SER SM-G780G ROM
SM-M515F INS SM-M515F ZTO SM-M515F XSG
SM-M515F SER SM-M515F ROM SM-N980F EUX
SM-N980F 3IE SM-N980F INS SM-N980F CAU
SM-N980F GTO SM-N980F XSG SM-N980F SER
SM-N980F ROM SM-N985F CAU SM-N985F GTO
SM-N985F XSG SM-N985F SER SM-F707B ROM
SM-T870 EUX SM-T870 BRI SM-T870 KOO
SM-T870 GTO SM-T870 XSG SM-T870 SER
SM-T870 TGY SM-M317F XSG SM-M317F SER

SM-M317F ROM SM-M017F INS SM-M015G INS
SM-A217M ZTO SM-A716B BRI SM-A716B XSG
SM-A516B EVR SM-A516B 3IE SM-A516B BRI
SM-A516B ROM SM-A215U SPR SM-P610 BRI
SM-P610 KOO SM-P610 GTO SM-P610 XSG
SM-P610 SER SM-P610 ROM SM-P610 TGY

SM-G980F EVR SM-G980F 3IE SM-G980F CAU
SM-G980F XSG SM-G980F SER SM-G980F ROM
SM-G985F CAU SM-G985F XSG SM-G985F SER
SM-G985F ROM SM-G988B EVR SM-G988B 3IE
SM-G988B CAU SM-G988B GTO SM-G988B ZTO
SM-G988B XSG SM-G988B SER SM-G988B ROM
SM-M115F BRI SM-M115F INS SM-M115F XSG
SM-M115F SER SM-M115F ROM SM-A315F INS
SM-A315F CAU SM-A315F XSG SM-A315F SER
SM-A415F EVR SM-A415F 3IE SM-A415F CAU
SM-A415F SER SM-A415F ROM SM-M215F INS
SM-M215F XSG SM-M215F SER SM-M215F ROM
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Model CSC Model CSC Model CSC
SM-A115F CAU SM-A115F XSG SM-M315F INS
SM-M315F ZTO SM-M315F XSG SM-M315F SER
SM-F700F BRI SM-F700F GTO SM-F700F ZTO
SM-F700F XSG SM-F700F SER SM-F700F ROM
SM-F700F TGY SM-G715FN XSG SM-G715FN ROM
SM-N770F EVR SM-N770F BRI SM-N770F CAU
SM-N770F GTO SM-N770F ZTO SM-N770F XSG
SM-N770F SER SM-N770F ROM SM-N770F TGY
SM-G770F EVR SM-G770F CAU SM-G770F GTO
SM-G770F ZTO SM-G770F XSG SM-G770F SER
SM-G770F ROM SM-A015F CAU SM-A015F XSG
SM-A015F SER SM-A715F EVR SM-A715F 3IE
SM-A715F BRI SM-A715F INS SM-A715F CAU
SM-A715F GTO SM-A715F ZTO SM-A715F SER
SM-A715F ROM SM-A715F TGY SM-A515F EVR
SM-A515F 3IE SM-A515F BRI SM-A515F INS
SM-A515F CAU SM-A515F GTO SM-A515F ZTO
SM-A515F XSG SM-A515F SER SM-A515F ROM
SM-A515F TGY SM-M307F INS SM-A207F INS
SM-A207F CAU SM-A207F XSG SM-A207F SER
SM-A207F ROM SM-M107F INS SM-A707F INS

SM-A507FN INS SM-A307G GTO SM-A908B EVR
SM-F900F BRI SM-F900F GTO SM-F900F ZTO
SM-F900F XSG SM-F900F SER SM-F900F ROM
SM-A107F INS SM-A107F CAU SM-A107F XSG
SM-A107F SER SM-A102U SPR SM-N975F EVR
SM-N975F INS SM-N975F CAU SM-N975F GTO
SM-N975F ZTO SM-N975F XSG SM-N975F SER
SM-N975F ROM SM-M405F INS SM-G977B EVR
SM-A6060 CHC SM-A6060 TGY SM-A805F EVR
SM-A805F 3IE SM-A805F BRI SM-A805F INS
SM-A805F CAU SM-A805F GTO SM-A805F ZTO
SM-A805F XSG SM-A805F SER SM-A805F ROM
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Model CSC Model CSC Model CSC
SM-A205F INS SM-A205F XSG SM-A202F EVR
SM-A202F 3IE SM-A202F ROM SM-G975N KOO
SM-G973N KOO SM-G970F EVR SM-G970F 3IE
SM-G970F BRI SM-G970F INS SM-G970F CAU
SM-G970F GTO SM-G970F ZTO SM-G970F XSG
SM-G970F SER SM-G970F ROM SM-A505F INS
SM-A505F XSG SM-A305N KOO SM-A105F INS
SM-A105F CAU SM-A105F XSG SM-A105F SER
SM-T720 BRI SM-T720 KOO SM-T720 XSG
SM-T720 SER SM-T510 BRI SM-T510 KOO
SM-T510 CAU SM-T510 GTO SM-T510 ZTO
SM-T510 XSG SM-T510 SER SM-T510 ROM
SM-T510 TGY SM-M305F INS SM-M105F INS

Table A.1: List of Samsung devices used in the study.
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B
Patch Examples

This section contains code examples of patches that use different VirtualPatch
APIs.
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B.1 Intent Sanitizers (CVE-2021-0591)

public class Patch extends SecurityPatch.PatchLoader {
static final String ACTION =
"android.bluetooth.device.action.CONNECTION_ACCESS";

@Override
public void onServerCreate() throws Throwable {

SecurityPatch.init();
Method m = getClass()
.getDeclaredMethod("sanitizeIntent", Intent.class);

SecurityPatch.sanitizeIntent(m);
}

public static Intent sanitizeIntent(Intent i) {
Intent ret = new Intent(i);
String action = ret.getAction();
if(action != null && action.startsWith(ACTION)) {
ret.removeExtra("android.bluetooth.device.extra.PACKAGE_NAME");
ret.removeExtra("android.bluetooth.device.extra.CLASS_NAME");

}
return ret;

}
}
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B.2 Java Hooks (CVE-2019-9376)

public class Patch extends SecurityPatch.PatchLoader {
@Override
public void onServerCreate() throws Throwable {

installPatch();
}
@Override
public void onEnvCreate() throws Throwable {

installPatch();
}

public void installPatch() throws Throwable {
SecurityPatch.init();
Constructor<?> target =
Account.class.getDeclaredConstructor(Parcel.class);

Method hook = getClass()
.getDeclaredMethod("hook", Account.class, Parcel.class);

Method backup = getClass()
.getDeclaredMethod("backup", Account.class, Parcel.class);

SecurityPatch.hookJavaMethod(target, hook, backup);
}

public static void hook(Account thiz, Parcel in) {
String name = in.readString();
String type = in.readString();
if (TextUtils.isEmpty(name)) {
throw new android.os.BadParcelableException(
"the name must not be empty: " + name

);
}
if (TextUtils.isEmpty(type)) {
throw new android.os.BadParcelableException(
"the type must not be empty: " + type
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);
}
in.setDataPosition(0);
backup(thiz, in);

}

public static void backup(Account thiz, Parcel in) {}
}
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B.3 Dynamic Method Proxy (CVE-2021-0521)

public class Patch extends SecurityPatch.PatchLoader {

public static List<String>
getAllPackagesPatch(Object who, Method method, Object... args) {
return new ArrayList<>();

}

@Override
public void onDynamicProxyCreate() throws Throwable {
try {
SecurityPatch.init();
Method m = getClass()
.getDeclaredMethod(
"getAllPackagesPatch",
Object.class,
Method.class,
Object[].class

);
SecurityPatch
.addMethodProxy(PMS, "getAllPackages", m);

} catch (Exception e) {
e.printStackTrace();

}
}

}
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B.4 Native Hook (CVE-2021-0313)

The patched function is the same as the original function, but since isWordBreakAfter
calls are inlined by the compiler I had to copy it to make it call the patched
isWordBreakAfter. For this reason the target function is not very interesting,
and since it is very long I omitted its code to limit unnecessary clutter.

static inline bool isWordBreakAfter(uint16_t c) {
if (c == ' ' || (0x2000 <= c && c <= 0x200A) || c == 0x3000) {
return true;

}
if ((0x2066 <= c && c <= 0x2069) ||

(0x202A <= c && c <= 0x202E) ||
c == 0x200E ||
c == 0x200F) {

return true;
}
return false;

}

float doLayoutRunCached(/*...*/) {
// patched function

}

void minikinHook() {
// full name omitted due formatting constraints
char* target_name =
"_ZN7minikin6Layout17doLayoutRunCached...";

bytehook_hook_partial(
allow_filter_for_hook_all,
NULL,
NULL,
target_name,
doLayoutRunCached,

92



NULL,
NULL

);
}

JNIEXPORT jint JNI_OnLoad(JavaVM *vm, void *reserved) {
JNIEnv *env;
jint result = (*vm)->GetEnv(vm, (void **) (&env), JNI_VERSION_1_6);
if ( result != JNI_OK) {
return JNI_ERR;

}
jclass c = (*env)->FindClass(
env,
"dev/sime1/patch/NativeLoader"

);
if (c == NULL) return JNI_ERR;
static const JNINativeMethod methods[] = {
{

"nativeLoad",
"()V",
(void *) (minikinHook)

},
};
int rc = (*env)->RegisterNatives(
env,
c,
methods,
sizeof(methods) / sizeof(JNINativeMethod)

);
if (rc != JNI_OK) return rc;
return JNI_VERSION_1_6;

}
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8
Riassunto in Italiano

8.1 Introduzione

Fin dal suo rilascio iniziale, Android è stato affetto dal problema della frammen-
tazione, ossia la presenza di diverse versioni personalizzate del sistema operativo,
rilasciate dai diversi produttori di dispositivi. Una delle principali conseguenze
di questo problema riguarda la diffusione delle patch di sicurezza, che impiegano
molto tempo a raggiungere i dispositivi degli utenti. Ho studiato gli Android Se-
curity Bulletin, e analizzato come il più grosso produttore di dispositivi Android
(Samsung) gestisce gli aggiornamenti di sicurezza, trovando che dal momento in
cui una vulnerabilità viene risolta a quando la soluzione arriva ai dispositivi degli
utenti passano spesso diverse settimane. Per questo motivo, ho sviluppato Virtu-
alPatch, una soluzione basata sulla virtualizzazione app-level che può essere uti-
lizzata per proteggere app eseguite su dispositivi Android da vulnerabilità, senza
richiedere un aggiornamento dell’intero sistema. Inoltre, per valutare Virtual-
Patch, ho sviluppato patch di sicurezza ed exploit per 7 diverse CVE, localizzate
in diversi livelli dell’architettura di Android, e verificato che tali patch siano ef-
ficaci nella difesa contro exploit. Infine, ho misurato il tempo che VirtualPatch
impiega a caricare le patch di sicurezza, per sottolineare come queste patch di
sicurezza non introducano ritardi significativi nell’esecuzione delle app all’interno
di VirtualPatch.
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8.2 Motivazione

Google pubblica mensilmente l’Android Security Bulletin, un bolletino nel quale
viene fornita una lista di vulnerabilità a cui sono soggetti dispositivi Android e
per le quali sono state pubblicate delle patch di sicurezza. Nonostante ogni mese
vengano scoperte e pubblicate nel bollettino nuove vulnerabilità, la maggior parte
dei dispositivi Android non viene aggiornata con la stessa frequenza. Per com-
prendere meglio e quantificare il ritardo con cui le patch di sicurezza raggiungono
i dispositivi Android, ho studiato il modo in cui Samsung, che è il maggior produt-
tore mondiale di dispositivi Android, gestisce gli update di sicurezza per i propri
dispositivi. Ho raccolto dati sugli update di sicurezza Android dai vari Android
Security Bulletin, dai repository contenenti il codice sorgente di Android, e dal
sito ufficiale Samsung. L’analisi dei dati evidenzia che:

• in media una vulnerabilità appare all’interno di un Android Security Bul-
letin 84 giorni dopo il relativo commit che risolve la vulnerabilità;

• Samsung impiega in media più di 39 giorni per integrare le patch di sicurezza
nella sua versione personalizzata di Android

Questi dati evidenziano come ci sia bisogno di una soluzione che possa accor-
ciare il ritardo tra la scoperta di una vulnerabilità e l’installazione della patch di
sicurezza nei dispositivi degli utenti.

8.3 VirtualPatch

Per risolvere il problema sopraccitato, ho progettato VirtualPatch, una soluzione
che utilizza la tecnica di virtualizzazione app-level per proteggere dallo sfrutta-
mento di vulnerabilità. VirtualPatch è un’applicazione che gli utenti possono
installare nei loro dispositivi Android, e funziona da Container, permettendo agli
utenti di installare e lanciare altre applicazioni all’interno di un ambiente virtuale
che crea. Inoltre, VirtualPatch permette agli utenti di caricare patch di sicurezza
all’interno dell’ambiente virtuale. Le patch di sicurezza sono dei file che vengono
caricati dinamicamente da VirtualPatch a tempo di esecuzione. Ho progettato
VirtualPatch tenendo a mente l’estensibilità, e definendo delle API che gli svilup-
patori possono utilizzare per scrivere patch di sicurezza.
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L’architettura di Android contiene molti componenti, i quali possono essere
raggruppati in diversi livelli. Componenti appartenenti a diversi livelli hanno
caratteristiche diverse, e per questo le patch di sicurezza che agiscono su diversi
livelli usano meccanismi diversi.

System Apps. CVE in questo livello sono collegate a vulnerabilità nelle appli-
cazioni di sistema Android. Per sfruttare queste vulnerabilità, è necessario lan-
ciare le relative applicazioni di sistema, quindi ho pensato a due diversi metodi
di difesa:

1. installare una versione dell’applicazione non affetta dalla vulnerabilità
all’interno dell’ambiente virtuale;

2. sanificare gli Intent usati per lanciare le applicazioni di sistema.

Ho implementato gli “Intent sanitizer”, che possono essere aggiunti dalle patch e
che vengono chiamati ogniqualvolta un Intent viene usato per lanciare un’Activity.
Gli Intent sanitizer possono controllare gli Intent e rimuovere eventuali dati peri-
colosi che contengono, oppure bloccare completamente il lancio dell’Activity.

Java API Framework. CVE in questo livello possono essere vulnerabilità
nelle classi Java fornite dal Framework, oppure vulnerabilità nei servizi di sistema
Android, che sono in un processo separato e a cui l’applicazione accede attraverso
classe proxy. Per la scrittura di Patch per le classi del Framework, VirtualPatch
utilizza YAHFA, una libreria che modifica le strutture interne di ART per effet-
tuare l’hooking di metodi Java, permettendo in questo modo di sostituire metodi
vulnerabili con metodi non vulnerabili. Per la scrittura di Patch per servizi di
sistema, VirtualPatch sfrutta i dynamic proxy, uno dei meccanismi chiave della
virtualizzazione app-level, estendendoli per evitare conflitti tra diverse patch.

Native Libraries. CVE in questo livello sono vulnerabilità nelle librerie na-
tive utilizzate dalle app. In modo simile a quanto descritto per le classi Java, le
patch di sicurezza possono fare l’hooking di metodi e funzioni vulnerabili. Siccome
in questo caso si tratta di codice nativo, VirtualPatch utilizza un meccanismo di-
verso per fare l’hooking, ossia PLT hooking.
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Android Runtime. CVE in questo livello sono le meno frequenti di tutte, e
per questo risulta difficile avere un’idea chiara delle loro caratteristiche. Alcune
sono vulnerabilità nel codice nativo di processi come il reboot, con cui patch
per l’ambiente virtuale non possono interagire. Altre invece affliggono le “core
runtime libraries”, librerie Java che implementano certe funzionalità come, ad
esempio, le connessioni HTTP e HTTPS. In questo caso, le classi ed i metodi
scritti in Java possono essere rimpiazzati usando lo stesso metodo descritto per
le classi del Framework.

8.4 Valutazione

Per valutare VirtualPatch, ho scritto patch di sicurezza per 7 CVE che sono
apparse in Android Security Bulletin passati. Queste CVE affliggono tutti i livelli
dell’architettura Android che ho descritto in precedenza. Per testare le patch, ho
sviluppato ed eseguito delle app che implementano exploit per le relative CVE. Ho
verificato che all’interno dell’ambiente virtuale creato da VirtualPatch gli exploit
falliscono, mentre quando eseguite su un dispositivo vulnerabile (Sony Xperia
XZ1 con Android 9 e patch di sicurezza del 2019-09-01) riescono a sfruttare con
successo le vulnerabilità.

CVE-2021-0604 L’applicazione di sistema Bluetooth esporta l’Activity
BluetoothOppLauncherActivity, la quale può essere utilizzata da applicazioni
di terze parti per mandare dei file ad altri dispositivi utilizzando una connes-
sione Bluetooth. Questa Activity ha accesso a tutti i Content Providers che
fanno parte della sua stessa applicazione, e per questo è in grado di utilizzare
MmsFileProvider, il quale ha accesso a tutti i file ricevuti negli MMS salvati nel
dispositivo. Specificando un URI che punta ad un file in MmmFileProvider, app
malevole sono in grado di accedere a tali file senza i permessi necessari, se eseguite
su dispositivi vulnerabili. Ho scritto una patch di sicurezza che usa un Intent san-
itizer per bloccare Intent che contengono URI relativi a file di MmsFileProvider.

CVE-2021-0591 L’applicazione di sistema Impostazioni definisce
BluetoothPermissionActivity, che viene utilizzata per mostrare un messag-
gio di conferma per accettare richieste di connessione da parte di dispositivi
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sconosciuti. Tale Activity utilizza un messaggio Broadcast per notificare della
scelta effettuata dall’utente, ed essendo parte dell’app Impostazioni ha acceso a
Broadcast Receivers protetti. Ho sviluppato un’app che sfrutta questa vulnera-
bilità per chiamare MasterClearReceiver, un Broadcast Receiver che causa la
formattazione del dispositivo. La relativa patch utilizza un Intent sanitizer che
rimuove alcuni extra pericolosi dagli Intent che hanno come target
BluetoothPermissionActivity, rendendo impossibile sfruttare la vulnerabilità.

CVE-2021-0444 L’app Contatti fornisce l’Activity QuickContactActivity,
che può essere utilizzata da app di terze parti per mostrare una schermata con in-
formazioni relative ad uno specifico contatto. Nei dispositivi vulnerabili, questa
Activity restituisce un Intent non necessario, il quale potrebbe causare la rive-
lazione di dati sensibili. Per risolvere questa vulnerabilità, ho estratto il file apk
dell’app dal dispositivo, l’ho disassemblato, modificato il codice smali facendo
in modo che l’Activity non restituisse nessun Intent, ed infine ricompilato ed
installato l’app Contatti modificata all’interno dell’ambiente virtuale.

CVE-2019-9376 Questa vulnerabilità è causata dalla corruzione di Account-
Manager, resa possibile dal fatto che le app sono in grado di aggiungere utenti
con nome vuoto. Questa corruzione fa sì che il dispositivo rimanga bloccato in
fase di avvio. La patch che ho scritto effettua l’hooking del costruttore usato per
creare l’account, rendendo impossibile che venga passato un’account con nome
vuoto a AccountManager.

CVE-2021-0521 Il metodo getAllPackages() di PackageManagerService è
un metodo nascosto, il quale restituisce la lista di tutte le applicazioni installate
nel dispositivo. Nei dispositivi vulnerabili, tale metodo non effettua nessun con-
trollo sui permessi dell’app che lo chiama, e può essere utilizzato per avere la lista
di tutte le app installate da tutti gli utenti presenti nel dispositivo. La patch che
ho scritto crea un dynamic proxy che restituisce sempre una lista vuota.

CVE-2021-0313 Questa CVE affligge libminikin, una libreria condivisa che
Android usa per calcolare il layout delle TextView. La libreria non viene usata
direttamente dagli sviluppatori di app Android, ma viene usata internamente
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da alcune classi del Framework. Questa vulnerabilità è causata dal fatto che
libminikin tratta erroneamente alcuni caratteri Unicode legati a testi bidirezion-
ali, e può essere sfruttata per causare Denial of Service. L’app che ho scritto
per testare questa vulnerabilità crea una stringa molto lunga che contiene questi
caratteri Unicode e la passa ad una TextView. Nel caso in cui il dispositivo sia
vulnerabile, questo causa un crash dell’app. La patch che ho scritto utilizza la
tecnica di PLT hooking per rimpiazzare la funzione vulnerabile in libminikin.

CVE-2021-0341 Android include la libreria OkHttp come parte delle “core
runtime libraries”, la quale fornisce le funzionalità legate alle connessioni HTTP
e HTTPS. Questa vulnerabilità consiste in un errore nella validazione dell’input
delle funzioni responsabili della verifica di certificati TLS/SSL, con il risultato
che un certificato potrebbe essere accettato per un hostname diverso da quello
corretto. La patch che ho scritto effettua l’hooking delle funzioni affette da questa
vulnerabilità, aggiungendo i controlli dell’input mancanti prima di chiamare i
metodi originali.

Analisi delle prestazioni. Per valutare le prestazioni di VirtualPatch, ed in
particolare l’overhead causato delle patch di sicurezza, ho misurato il tempo che
VirtualPatch impiega a caricare le patch di sicurezza. Ho installato 30 applicazioni
popolari all’interno di VirtualPatch, ed ho lanciato ognuna delle applicazioni 100
volte, utilizzando systrace per effettuare le misurazioni. In media, per caricare
tutte le patch VirtualPatch impiega meno di 60ms, ed è quindi impercettibile per
gli utenti

8.5 Conclusione

Dati provenienti dagli Android Security Bulletins e dati riguardanti gli aggiorna-
menti software dei dispositivi Samsung suggeriscono che ci sia una finestra tem-
porale piuttosto larga da quando una vulnerabilità di sicurezza viene scoperta a
quando i dispositivi degli utenti sono finalmente protetti. Con VirtualPatch, è
possibile installare patch di sicurezza su dispositivi Android velocemente e senza
richiedere un aggiornamento completo del sistema, rendendola una soluzione ide-
ale per installare patch di sicurezza temporanee, nell’attesa che i produttori inte-
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grino le patch di sicurezza ufficiali pubblicate da Google all’interno dei repository
di Android nelle loro versioni personalizzate. VirtualPatch può essere utilizzata
per patch di sicurezza a diversi livelli dell’architettura Android, con overhead
trascurabile.
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