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Abstract
Conventional nuclear spectrometry requires the expertise of a physicist, expensive detector materials
and a commercial sofware programme. This study investigates a way to conduct spectrometry sans
a physicist and proprietary software programmes using a cost-effective scintillator material and Al.
Geant4 simulation is used to acquire the probability density function (PDF) of energy deposition spectra
from 12 nuclides on nFacet3D detector system that had been developed within this project previously.
The response of the nuclides on the detector is calculated from the energy spectra. Two individual
samples are created from up to three randomly chosen nuclides for detector response and energy
spectrum with random sample count. The initial model was a replicate of a model from a previous
research to recreate the energy spectrum from the detector response. Then two more Al models with A
feedforward neural network (FNN) and Convolutional neural network (CNN) were devised in this project
to modernise and enhance the initial model. Another model was engineered on top of the better
performing model to predict whether each of 12 nuclides is present in the sample from the detector
response using multilabel binary classification. Reconstruction of the energy spectrum exhibit up to
0.96 R2 score. In average, identification of a single nuclide reached the accuracy of 0.99. Probability of
finding all the nuclides present in a mix of nuclides correctly and not finding the ones absent is 0.91

Keywords: Nuclear Spectrometry, Artificial Intelligence, Geant4 Simulation, PVT Scintillator, Neural

Networks, Multilabel Classification, Radiation Monitoring, Nuclide Identification.

Introduction

Nuclear spectrometry has long been a cornerstone in the field of radiation dosimetry, providing critical
insights into the energy distribution of ionizing radiation. Traditionally, this intricate science required
the expertise of physicists well-versed in the complex mathematics and data analysis techniques

necessary to interpret spectra. Additionally, the utilization of commercial software programs often



incurred substantial costs, limiting accessibility to this crucial technology. In addition, the intersection of
artificial intelligence (Al) and cost-effective materials like Polyvinyl Toluene (PVT) scintillators presents

a promising avenue to reduce the costs and the expert involvement.

Nuclear spectrometry has evolved significantly over the years, with advances in detector technology
and data analysis techniques enabling increasingly accurate measurements of radiation energy
spectra. Historically, the analysis of radiation energy distributions required the application of complex
mathematical algorithms, frequently beyond the capabilities of non-experts. The process typically
involved the identification of spectral peaks, followed by energy calibration and deconvolution to extract
meaningful information. This inherently specialized and labor-intensive process limited the adoption
of nuclear spectrometry. Machine learning algorithms, specifically neural networks, have demonstrated
remarkable abilities in pattern recognition and data analysis. This has opened the door to automating
many of the intricate tasks traditionally performed by physicists. In the context of nuclear spectrometry,
Al algorithms can be trained to identify spectral features, perform energy calibration, and even extract
dosimetric parameters with minimal human intervention. One of the most significant advantages of Al-
driven nuclear spectrometry is its ability to learn and adapt continuously. Through iterative training,
these algorithms can refine their accuracy, improving their performance over time. This adaptability
is particularly valuable in the context of dosimetry, where changing radiation sources and conditions

necessitate constant calibration and adjustments.

In parallel with the enhancements by Al, the affordability and accessibility of sensing materials
have become paramount. Polyvinyl Toluene (PVT) are a cost-effective alternative to inorganic
scintillation materials or silicon detectors. Their low cost and ease of handling make them an

attractive choice for researchers seeking to reduce the financial burden associated with dosimetry



experiments. However, PVT scintillators exhibit poor energy resolution, making them inadequate for

nuclear spectrometry applications.

This research article delves into the approach that harnesses the power of Al, specifically machine
learning algorithms, to perform nuclear spectrometry for dosimetry with higher precision and efficiency.
Additionally, it explores the utilization of low-cost PVT scintillators as the sensing medium, thereby
minimizing the financial barriers to entry. This innovative combination has the potential to reshape
the methodology of radiation dosimetry, enabling faster and cheaper measurements with fewer data

meanwhile reducing the burden on physicists.

Methods and Materials
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Figure 1: M1 detector system



Figure 2: M2 detector system

nFacet3D project has two detector prototypes: M1 and M2. Both of these prototypes are composed of
4 x 4 voxels of polyvinyl toluene (PVT) scintillator, EJ-200. They are cubes of size 5 cm x 5 cm x 5 cm.
M1 system has a 0.25 mm LiF:ZnS layer on three side of the voxels and M2 system has one layer
thereof on the top of the voxels. That lithium has 95% ¢Li and 5% "Li. LiF:ZnS layer and the PVT

is contained inside a Tyvec high-density polyethylene fibres to confine the scintillated light inside. The
scintillated light inside the Tyvec is transferred to the MPPC sensor using wave length shifting (WLS)

fibres.
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Figure 3: Structure of a single voxel

Simulation

To obtain optimal energy spectra from diverse sources, a Geant4 simulation is implemented using
Geant4 version 11.1.2[1], [2], [3]. The choice of employing GDML technology for geometry is justified

due to the intricate nature of the detector’s geometry, which comprises numerous intricate components.
Moreover, the simulation benefits from the availability of the detector’s geometry in the .STEP file format.
This Geant4 simulation encompasses the modelling of neutrons and muons, in addition to gamma
particles, to support future research endeavours and the collaborative efforts of other project members.
This multifaceted simulation is graphically represented in the Figure 4 demonstrating the distinct

separation of gamma and neutron events.
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Figure 4: Time-Over-Threshold and Peak value over pedestal for particle identification (PID).
NS: Nuclear scintillation, ES: electron scintillation

The simulation had the detector mentioned above and 12 different sources are created 1 m away from
the centre of the detector. The sources were %Co, 24'Am, '37Cs, 85Kr, 192Ir, 226Ra, 22Na, '3'Ba, %Ga, '52Eu,
131, 210pg, 252G, AmLi, AmBe. From this point on, these nuclides will be referred without the mass number
because there is no other isotope. Each source was simulated at 25 different positions, starting from the
@ angle of the spherical coordinates 0 ° to that of 90 °. My colleague in the same project, Eliot Martin,
worked on the conversion from .STEP to .gdml and the script creating macros for the configuration
mentioned. ROOT 6.28.04 [4] is used to record the results and inspect them. In the end, the following
variables are recorded in the designated .root files for gamma, neutron, and muon:
+ eventID
« the cube in which the energy deposition takes place
+ the face of the detector from which the initial particle enters

+ the kinetic energy of the initial particle when it enters the detector



+ energy of the particle when it is created

+ whether the neutron is captured by the °Li

+ energy deposited

The plastic scintillator used in this detector doesn’t show the Compton edge properly due to the nature
of organic scintillators. The simulation of this detector response required a convolution of the ideal

spectrum probability density function (PDF) with a special kernel [5]:

S*(E,a,b,c) = f(EO,a, b,c) * 5(50) "
where:
2\/m(E-E) 2
f(E, a,b,c) = Ae_(Wo,a,b?C)) -

FWHM(E,, a,b,c) = a + by/E, + CE2 (3)

S* is the spectrum with Gaussian energy broadening (GEB), S is the ideal spectrum and f is the

convolution kernel. When normalised with A, f function also gives the PDF of E undergone GEB.
To simplify the a and c values were cancelled to have a Gaussian kernel in our work:

E-Ey

f(Eqr @ byC) = Ae_(of) (4)

The sigma value for the nFacet detector was taken 0.1 as a sensible placeholder.

The .root file of each source-position file is read via uproot 4.3.5 [6]. For each energy deposition
value, the f distribution is formed and a random variable is drawn from it. Because of noise values
below a certain threshold is discarded in the detector readout - this is takes as .1 MeV in our case as

a placeholder. As a result, only the energy values above this threshold is present in the spectrum. This



newly created and the original energy distribution are put in a histogram with 500 bins with limits 0.1 and

1.6 MeV. Then the value in each bin is divided by the total sum of bins to acquire the PDF.

Two datasets are created for two different tasks: energy spectra reconstruction and nuclide
identification. The datasets were created in regard to possible stochastic changes in real life scenarios.
The process is as follows for the dataset of reconstruction task. First, a random integer between 1 and
3 inclusively is chosen for the number of sources mixed in the spectrum. That many sources and their
ratios are then chosen randomly again. The number of counts in those spectra is kept between 40000
and 100000. With these sources and according to their ratios two spectra are sampled for the ideal
energy deposition and detector response from their PDF functions. These are designated as input and
target data for the ML model. For the source identification task, the input is the same; the target is the
the sources present in the sample in the binary multilabel target format. All these are stored in .npy

binary files using NumPy 1.25.1 [7].

There were various models to reconstruct the energy deposition from the detector response. The
models are built using Lightning Al 2.0.6 [8] with PyTorch 2.0.1 [9] with the help of Tensorboard 2.13.0
[10] and MLflow analysis. Seed is taken as 42 for all of them. The rig utilised in this project was a
computer with two AMD EPYC 7763 64-Core CPU and eight Nvidia A100 80 GB GPU along with 503 GB

RAM.
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Figure 5: Default Model with Relu activation. Rounded rectangles are linear layers
First one was almost exactly the same as the one in the article Reconstruction of Compton Edges in
Plastic Gamma Spectra Using Deep Autoencoder [11]: 500 dense, ReLU [12], 250 Dense, ReLU, 100 Dense,
ReLU as encoder and 100 Dense, ReLU, 250 Dense, ReLU, 500 Dense as decoder. Here numbers specify
the output of the linear layer. As loss function, first mean absolute percentage error (MAPE) [13]
was tried just as in the article. However, there is a division by the target in this loss function and close to
the end of the target histogram most values are 0. Because of division by 0, this method was unstable so
this loss function was replaced by mean absolute error (MAE) [14]. The optimiser used was adadelta

[15] with weight decay 0.01. This will be called default model from now on.
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Figure 6: Default Model with Swish activation. Rounded rectangles are linear layers
The second model was an improved version of the first one keeping the model architecture the same:
ReLU was replaced with swish [16]. Adadelta optimisation was replaced with AdaBelief [17] from
pytorch-optimizers 2.11.1 [18]. Finally latent dimension (the dimension of the last layer of encoder or

first layer of decoder) is increased to 100. This will be referred as improved model in this report.
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Figure 7: Default Model with Swish activation. Rounded rectangles are linear layers and the first and last
shapes are convolutional layers

On top of this upgrade of algorithms to the original paper, the third model introduced convolutional

neural networks (CNN) modules instead of linear layers since it can be seen that Equation 4 is a

Gaussian kernel. As a matter of course, linear layers can be simplified by just enabling Gaussian and

inverse Gaussian convolution kernels. In the encoder, the resulting model had a 1 dimensional CNN

layer with 1 input channel, 1 output channel, 1 stride, 10 padding that replicates the edges, 1 dilation

and kernel size of 201. This was followed by a swish activation, a linear layer with 100 output, a

swish activation, a linear layer with 50 output, and a swish activation. The decoder part consisted

of a linear layer with 100 output, a swish activation, linear layer with 600 output, a swish activation

and deconvolution layer with 1 input channel, 1 output channel, 1 stride, 50 padding, 1 dilation and

kernel size of 201. With this model the number of differentiable parameters in the model decreased

from 250000 to 103000 with a minute sacrifice in accuracy. This model is dubbed convolutional model

throughout this text.

1



500 = 200 200 = 100 100 = 100 100 = 100 100 = 200 200 = 500 500=12

encoder decoder

Figure 8: Default Model with Swish activation. Rounded rectangles are linear layers
The last model was a bald trial to check the feasibility of identifying sources from the detector response.
At the end of the improved model, a linear layer with 12 dimensions —for each nuclide- and Sigmoid
activation is added. R2 score is replaced with multilabel accuracy with micro average. This model will be
named identification model. Another accuracy metric is formulated to properly evaluate the performance

for the use case of this model:

==

N

D Wys © Viny, & YAy & YAy, & Y (5)
i

where ¥ is the vector prediction, ¥’ is the target vector and N is the number of samples.

This accuracy metric is unique in the sense that it is formulated to account for the intricacies of
the source identification task. In essence, this metric is the probability of the model to identify all the

nuclides that are present and absent in one sample correctly.

Results

The PDFs (probability density function) of nuclides from the Geant4 simulation are given below:
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Figure 9: PDF of each chosen nuclide
If the source or one of its decay products has a B* decay, gammas from e* annihilation are also shown.
Krypton has a jagged PDF graph because the branching ratio of the decay resulting in gamma ray was
quite low. Since the results were not affected terribly, it was left as is. The compton edges for the
decay products are deliberately left unmarked to clearly state that even when a source like 226 Ra emits

gammas below the threshold, they can be identified because of its decay products.

Below are the training statistics of the default model:
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Figure 12: Validation loss on each epoch for the Figure 13: Validation R2 score on each epoch for

default model the default model

Below are the training statistics of the convolutional model:
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Figure 14: Training loss on each epoch for the Figure 15: Training R2 score on each epoch for the
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Figure 16: Validation loss on each epoch for the Figure 17: Validation R2 score on each epoch for

convolutional model the convolutional model

Convolutional model has the fastest and most stable convergence.

Below are the training statistics of the improved model:
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Figure 20: Validation loss on each epoch for the Figure 21: Validation R2 score on each epoch for

improved model the improved model

Below are the training statistics of the identification model:

WL, T

yyyyyyyyyyy

Figure 22: Training loss on each epoch for the Figure 23: Training R2 score on each epoch for the

identification model identification model

identification model the identification model

In identification model training, there are certain jumps.

Below are the training performance of each model:

Model CPU time (ms) | GPU time (ms)
default 21.352 3.134
improved 47.679 1.227
convolutional 14.609 1.629
identification 42.020 1.006

15



If the thermal design power of GPU is higher than that of CPU, identification model and improved model

would be the most cost-effective models due to low GPU time. The smaller convolutional model did not

necessarily result in lower power consumption.

Below one can observe a few examples of practical applications of the reconstruction models:

Ba: 0.666 Ga: 0.333

DIs|R

— Input

—— Spectrum
—— Reconstructed

Count

08 1

Energy [MeV]

Figure 26: Reconstruction of the spectrum from the detector response or input

using default model
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Figure 27: Reconstruction of the spectrum from the detector response or input

usina convolutional model
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Figure 28: Reconstruction of the spectrum from the detector response or input

using improved model

Below are the statistics on the test dataset:
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Model Loss | R2 Score
default 14.450 | 0.74742
improved | 6.77516 | 0.95698
convolutional | 8.12998 | 0.88706

Improved model has the best quantitative performance in spectra reconstruction.

Model Loss | Accuracy Score
identification | 0.03292 0.90570
This is the special accuracy metric from the Equation 5.
Source | Accuracy | Source | Accuracy | Source | Accuracy | Source | Accuracy
Co 0.99188 Am 0.99122 Cs 0.99590 Kr 0.99164
Ir 0.98861 Ra 0.99652 Na 0.98736 Ba 0.98558
Ga 0.98462 Eu 0.99358 I 0.992170 Po 0.99542

In average 0.99121 accuracy to identify a nuclide.

Discussion

When choosing the ratios of nuclides in a mix, no lower limit is set i.e. the ratio 0.0001 is equally likely to
the ratio 0.5. Consequently, there are cases the ratio of a nuclide is so low that its effect on the detector

response is not discernible from the noise. As a result, ML models fail to reconstruct or classify those

samples. Especially, the custom metric for multilabel classification.

The detector response function had some placeholder parameters. Two of them were omitted and

the last one was assumed 0.1. This value was 0.07 in the article Reconstruction of Compton Edges

in Plastic Gamma Spectra Using Deep Autoencoder [11] even though the detector in this research had

a larger version of the same scintillator material and a better photo multiplier. Even in the case the

placeholder parameters were chosen with some tolerance, the results here were quite promising.
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In the identification model training, the jumps may be due to the stochastic search of the AdaBelief

algorithm.

Though this research worked with only 12 nuclide PDFs and up to 3 different nuclides in one
sample, any number of nuclides are possible for both PDFs and samples. Since this research was
conducted to explore the feasibility. The sources are selected to represent a vast range of scenarios.
Adding new sources to the whole process is as easy as adding the atomic and mass number of the

source to the macro generating and dataset building scripts.

When there is both a nuclide and its decay product are present in the same sample, this may reduce

the performance or even confuse the model thoroughly.

Though Geant4 simulation has the capability to produce a very fine graph of PDF for each chosen
nuclide, the sample mixes still lack the cosmic muon interaction and background gamma radiation.
Muon interaction was not distinguishable in the PID graph yet its track in the detector may signal its
identity. The background radiation may be hard to simulate, starting from the sources in Geant4. Instead,
a mathematical approach may be used. The angular and energy distribution of cosmic muons are
formulated very well [19]. These can be transcribed to Geant4 macro. Background radiation can benefit

from a similar approach.

As a continuation of this research, a variety of tasks may be conducted.

+ Instead of placeholders for the GEB, actual parameters a,b,and c in Equation 1 can be measured.

« The effect of muons and background radiation can be accounted for.

The following require very minor changes in the source code but mind that data wrangling takes around
an hour, the simulation takes around 49 hours, and Al training for each model takes around 15 mins on

the computer used in this project.
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+ By setting lower limit of ratio, it can be tested whether the accuracy, 0.91, for the mixes improve in
realistic scenarios.

* Instead of 12 nuclides, more may be specified. Especially, nuclides combined with their decay
products can be put in the same mix to assess how well the model can distinguish them.

+ Performance with more than 3 nuclides in a single mix can be tested.

+ The minimum number of counts required for a predetermined accuracy, say 0.90, can be measured for
all models.

Conclusion

Thanks to this model, spectrometry no longer require expensive detector materials, commercial software

products, and physicist’s input. This project proves that cheap PVT scintillator can replace expensive

detector materials such as HPGe in spectrometry tasks. This task is achieved without utilising any

proprietary computer applications, eliminating the task of software calibration, a financial burden as

well. Furthermore, the identification model doesn't require the expertise of a human operator to interpret

the spectrum and calculate the maths of finding the nuclides. Notwithstanding, there are still some tests

that must be conducted before being production ready.
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