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Abstract

The domain of logistics involves managing the flow of goods to meet

the customer needs. The Vehicle Routing Problem (VRP) is a well-

known problem in the field of Operation Research, often used to model

and efficiently solve logistics problems. Real life VRPs present various

combination of constraints to model different scenarios, making them

more challenging to manage than classic VRPs described in the literature.

This paper proposes a matheuristic based algorithm to solve large-scale

instances of a real life VRP enriched with popular constraints such as

Time Windows or the use of a heterogeneous fleet of vehicles. The key

step of the proposed algorithm is the optimization of a Set Covering

Problem, making it highly adaptable to tackle the complexities of real

life VRPs with different constraints. The algorithm was tested with

benchmark instances up to 1000 customers and compared to the more

competitive ALSN algorithm developed by Optit S.r.l.
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Chapter 1

Introduction

The problem of logistics and efficient transportation for distributing goods is one

of the main study topics of the field of Operations Research (OR). Logistics is the

discipline that manages the flow of goods and supply from one facility to another

to satisfy some customer needs. Other than the routing process of supplies, key

activities of logistics also comprehend restock, future planning, tracking of goods

and storage managing. A good logistics system tries to achieve its goal by optimizing

delivery times, transportation costs and resources, in order to reduce waste while

improving customer service and satisfaction. Logistics is used by many organizations

in daily activities such as garbage collection, mail delivery, public transportation and

supply restock for businesses.

Examples of multinational corporations that makes an intense use of logistics

there is Amazon, Wal-Mart, Aldi Group and Carrefour. In Italy we can find Coop

and Conad, together with Poste Italiane, BRT and DHL, as stated by AGCOM [1].

OR is used when there’s the need to make complex decisions that can be solved

using mathematical methods. A logistics problem is a perfect example of decisions

making that need to be optimized minimizing costs and maximizing efficiency.

The challenge of efficient transportation of goods makes arise the so-called Vehi-

cle Routing Problem (VRP) that focuses on the optimization of routing design from

some origin points to multiple destinations. Its main goal is to determine the most

cost-efficient routes to take to provide services or deliver goods to a set of geograph-

ically dispersed customers, given a set of depots and a fleet of vehicles, without the

violation of problem-specific constraints (Braekers et al. [5]) - e.g. travel distances,

time limits, time windows, vehicles capacity and more factors.

It’s important to introduce some terms that refer to the VRP and that will be

recurrent during the entire paper.
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Chapter 1. Introduction

In the case of VRP we call a depot the origin point from where the flow of goods

starts and customer (or client) a point of delivery. A Transport Request can also

be used when talking about a point of delivery, meaning that a customer must be

served. A route is sequence of customers that are visited consecutively by a vehicle

starting and ending at a depot. Referring to the convention of Cattaruzza et al. [8],

different terms can be used by different authors to talk about the same structures,

such as trip and journey.

Figure 1.1 shows an example of a simple VRP instance, where some customers

are served by three different vehicles (the red, green and blue route) departing from

the same depot. Each route serves four different customers and the total cost of a

route is given by the sum of the arcs that connect each node of the graph.

On recent decades, this problem has been researched and studied to improve its

possible application over real life problems, thus incorporating real life constraints.

Toth and Vigo [43] cover in their work most of the VRP variants and their practical

issues depending on such parameters and constraints. It is used by many companies

to solve the problem of road transportation targeting costs, fuel consumption, cus-

tomer satisfaction and other important aspects for the managing of a company. For

those companies, solving the transportation problem means improving the work-life

balance of their employees, reducing the driving time, fuel costs and gaining more

profits.

The VRP was firstly introduced in 1959 by Dantzig and Ramser [13] as the

”Truck Dispatching Problem” to solve the problem of transportation of oil from a

central hub (the depot) to some gas stations (the customers). It was firstly addressed

as a generalization of the Traveling Salesman Problem (TSP) where the salesman

was required to return to the ”terminal point” (the depot) every m point visited.

Introducing the condition of capacity of the salesman, the problem becomes really

similar to the VRP we know today.

In 1964 it was modeled by Clarke and Wright [11] and then solved using a greedy

approach. After that, many new approaches were proposed to find both optimal and

approximate solution to the problem, such as Local Search and Simulated Annealing,

as well as presenting many new models and variants more relevant to real life routing

problems.

It is important to make clear that the VRP is not the only optimization prob-

lem used to solve efficient logistics. VRP is often used for planning deliveries and

optimizing routing where multiple customers must be satisfied. It can be integrated

with other formulations such as the TSP to find intra route optimality. In fact VRP

2



depot
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Figure 1.1: Example of VRP with a single depot and three routes that serve different customers.

can be seen as multiple TSP to be solved (one per route) once all customers are

assigned to different routes and vehicles, hence the problem becomes how to cluster

the customers and only then how to visit them in the single routes. Noteworthy are

also the Knapsack Problem and the Bin Packing Problem. Both can be used when

there’s the need to allocate goods having limited vehicles with a limited capacity

and both can optimize supply stocking and storage usage with large demands from

customers.

Current used VRP models need to reflect real life challenges, and are significantly

different from the standard formulation, with an increasing complexity of constraints

that need to mimic traffic congestion, demand information and pickup and delivery

times. Classical variants as the Capacitated Vehicle Routing Problem (CVRP), or

the VRP with Time Windows (VRPTW), are classified as specific optimization

problems families that are still very popular in the community (Caceres-Cruz et

al. [6]) and are still present as constraints in real case studies. In the CVRP the

vehicles have a limited capacity and the requests must be assigned based on their

quantity (weight, volume...) without violating the capacity of the vehicle. In the

VRPTW each request must be served within a certain time windows and must

account for service time or idle times. A more detailed description of some VRP

variants can be found in Chapter 3.

While the current VRP literature is rather vast and often focuses only on specific

variants of the VRP, there are taxonomies as Braekers et al. [5] and overview articles

as Toth and Vigo [42, 43], or Golden et al. [22] that could help understand the

development of the field in order to better approach the real life problem introduced

with this thesis, see Chapter 4.
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Chapter 1. Introduction

1.1 Objectives

The VRP is a known NP-hard problem and as such it cannot be optimally solved by

an algorithm in polynomial time (see Lenstra and Kan [26]). Exact algorithms can

only be used over small instances of the problem, but they become highly inefficient

over real life instances, where the size is considerably large. Only heuristics and

metaheuristics algorithms are suitable to solve real life VRP, meaning that there’s

no guarantee of finding an optimal solution.

The work presented with this thesis has been carried out in collaboration with

the company Optit S.r.l. [39], which specializes in the development and design of OR-

based software. Their expertise lies in optimizing routing, scheduling, and various

decision-making processes within logistics and other industrial domains.

The aim of this paper is to use both heuristics and exact methods to develop

an algorithm to solve a rich VRP that arises in a real life distribution logistics

application commissioned by one of Optit clients. The main focus of the algorithm

is to solve the real life VRP using the Set Covering (SC) formulation as the main

step, leading to a modular algorithm that can be easily adapted to different variants

of the VRP.

One of the main objectives of this research project is the comparison between

this SC-based algorithm and the algorithm currently used by the company, which

is largely based on an Adaptive Large Neighborhood Search (ALNS) metaheuristic

based over Pisinger and Ropke LNS [32].

This ALNS algorithm works by applying different refinement operators at each

iteration based on the solution quality and operator efficiency of previous iterations.

An example of common operators from the literature can be ruin-and-recreate ap-

plied to both single routes or the entire solution, or the operators for swap, replace

and k-opt moves applied intra-route and inter-route.

The instances used for the comparison are based on data provided by one of

Optit’s clients. The real life scenario taken into consideration is the delivery of goods

for the HORECA (Hotel, Restaurant and Cafè or Catering) sector, that encompasses

the whole food service industry.

The main problems to consider are the distribution of the customers and their

demands. Within the HORECA sector, the distribution area to account for com-

prehends both city center, where only smaller vehicles can enter, and areas that

can also be served by larger vehicles. Different municipalities and districts can also

dictate which vehicles can operate and which not, adding more incompatibilities and

constraints to the problem.
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1.2 Structure of the Thesis

While an ALNS algorithm must consider the feasibility of a solution and must

adapt during each iteration to be able to always find better solutions, the SC ap-

proach can focus more on the generation of good sets of routes.

1.2 Structure of the Thesis

This paper has the following structure. Section 2 reviews some papers taken from

the literature on algorithms using the Set Covering or Set Partitioning formulation

to solve the VRP and other heuristic methods to solve large instances. Section 3

formally define the classic VRP with an arc-based formulation, describes its main

variants and states the Set Covering Problem formulation applied to the VRP. The

VRP variant that is going to be the main study case of this thesis is described in

Section 4. Section 5 describes in details the algorithm developed and the choices

that were made to implement it efficiently. The final results can be found in Section

6 to show a direct comparison of the performance of this approach versus the ALNS

algorithm. The conclusion Section 7 introduces some possible future work and a

final analysis.
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Chapter 2

Literature Review

Following is a concise overview of the algorithms that solve the VRP using a Set

Partitioning or Set Covering formulation that hold particular relevance to this thesis.

A small section is dedicated to some papers on decomposition strategies, constructive

algorithms and heuristics that were used in this thesis algorithm.

Since our study case is a real life VRP that includes multiple constraints, it

is difficult, if not nearly impossible, to find the exact same VRP variant in the

literature. Most proposed algorithms in the literature focus on specific variants of

the VRP. While relevant for academic study cases, this approach is very unpractical

in real life scenarios. To solve a rich VRP, one of the best strategy to maintain a

highly flexible algorithm that tackles different constraint combinations, is to develop

hybrid algorithms that solve a Set Partitioning or Set Covering model. The main

idea is to delegate the generation of feasible routes to an initial phase of the algorithm

while letting routes combination and the solution optimization to the mathematical

model.

2.1 SP and SC based Algorithms

Balinski and Quandt [3] introduce the idea of the so-called Petal Algorithms, con-

sisting in the solution of a Set Partitioning problem with routes as input objects, in

order to find a solution to the VRP. Being impractical due to the large number of

columns in the mathematical problem, Petal Algorithm revolved to solving the SP

heuristically.

Many approaches can be applied to solve the SP problem, with Column Gener-

ation as one of the most popular strategies. A good pricing technique and the use

of heuristics led Caprara et al. [7] to winning the FASTER competition, organized
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Chapter 2. Literature Review

in 1994 by Ferrovie dello Stato SpA and the e Italian Operational Research Society,

which aimed at crew scheduling for railway applications.

As already stated, the use of Column Generation to overcome the computational

complexity of the Integer Linear Programming (ILP) formulation of the SP is one of

the most used techniques in the literature. In 1976, Foster and Ryan [19] described

this approach applied to a VRP with constraints inspired by real world vehicle

scheduling problem, with major interest over multiple days planning.

Another popular approach is to use Local Search heuristics together with the SP

formulation. Rochat and Taillard [34] carry out this technique to solve efficiently the

VRP by focusing on Tabu Search. The article demonstrates how an extensive use

of this well-known heuristic, together with the solution of a SP problem as a post

optimization technique, led to the improvement of nearly forty problem instances

taken from the literature.

Other works have followed the example of using the SP formulation for dealing

with different VRP variants. Kelly et al. [23] study the use of simple constructive

and improvement heuristics against the use of more competitive algorithms. The

choice of using a simple Local Search makes the code more flexible and faster,

more suited to the use of an SP formulation and to solve a rich VRP. The authors

actually use a relaxation of the SP that highly reminisce a Set Covering formulation,

in which over-coverages of customers may appear. This small difference implies that

the solution found by the model is not considered feasible and that the need to

develop a Patching heuristic to remove multi-covered customers from all but one

route arises.

Not many works in the literature use the SC formulation instead of the SP one.

The main disadvantage is the need to add a subroutine that removes the extra

customers from all the routes but one, to regain feasibility in the solution. It’s more

common to find paper that address the SP methodology while also allowing the

possible use of an SC formulation instead.

De Franceschi et al. [20] model a new heuristic extending a procedure proposed

for the TSP in 1981 by Sarvanov and Doroshko. The aim of the paper is to address

the Distance-Constrained Capacitated VRP through the use of an underling ILP

that solve an SP formulation. However, it is also stated that the same procedure

can be applied to an ILP having the structure of an SC, resulting in an easier

problem to solve that only needs a simple reallocation subroutine for the multi-

covered customers.

Overall, the majority of the papers analyzed propose modular algorithms that

8



2.2 Decomposition methods for large instances

aggregate iteratively an initial Local Search with the optimization of a SP model.

This approach is considered highly relevant for real life scenarios since it produce

good results in different combinations of VRP variants such as the Capacitated VRP,

Asymmetric VRP, Open VRP and others.

Subramanian et al. [40] propose a hybrid algorithm for a VRP with homogeneous

fleet. The developed algorithm makes use of the interaction between a Mixed Integer

Programming (MIP) solver and an Iterated Local Search (ILS) based heuristic to

solve an SP formulation of the VRP mainly focusing on flexibility in order to address

more than one VRP variant. The ILS heuristic makes it possible to separate the

generation of feasible routes from the creation of the final solution. When instances

of different VRP variants need to be solved, only the ILS module must be adapted

to generate routes that follow the new constraints. The main problem of this kind of

strategy resides in solving the SP efficiently. The adopted solution by Subramanian

et al. lies in the choice of the dimension of the input set, i.e. the number of routes.

The strategy that they choose to make that decision is based over the total number

of customers and the average number of customers per route.

The most used strategy in the literature still remains the Column Generation

with pricing. A good example is set by Cavaliere et al. [10]. The algorithm developed

is able to solve large scale instances of different variants of the VRP. The Local

Search heuristic is based over the Lin and Kerninghan [28] heuristic (LK) originally

developed for the TSP and extended to tackle many VRP variants. The Column

Generation phase uses an LP relaxation of the SP formulation applied to a restricted

set of routes filtered from a core set generated beforehand by the local search phase.

Computing the reduced costs of the variables of the problem, the best theoretical

routes are extracted and included in the Mixed Integer Problem (MIP) formulation

of the SP.

2.2 Decomposition methods for large instances

To speed up the execution of VRP algorithms, many use decomposition techniques

that help to make the problem easier. Decomposition techniques are used when the

instances of the problem are too large and there is the need to split it in smaller

sub-problems. This way the initial VRP can be considered like many small TSPs,

easier to manage and to solve.

In 1993, Ryan et al. [36] study the Petal Method heuristic that uses a special

petal-like structure for route generation, with the depot at the center and the routes

9



Chapter 2. Literature Review

that space around it. This decomposition technique has been proved very efficient

for large instances with the property of having a central depot surrounded by the

customers. This work also proves that a more generalized petal approach for route

generation can lead to optimal VRP solutions. The idea of generating more struc-

tured and intuitive routes is widely used in practice and a similar approach is also

used in the algorithm developed for this thesis real VRP instance.

In the state-of-the-art, the most used decomposition techniques for the VRP are

based on customer partitions. Customer partitions allow for different decomposition

approaches that consider the geometric position of the requests, e.g. geographically

close customers, their temporal aspects such as their Time Windows, or even previ-

ous solution attributes and route structure. Early works consider the partitions of

vehicles across the possible routes of the solution as a decomposition strategy, but

it results less efficient for various VRP variants (such as the VRPTW) compared to

customer partitions.

As an example, the work of Taillard et al. [41] is applied to VRP instances

with many available vehicles. It introduces a decomposition strategy based on the

shortest paths between customers. The main idea is that customers that are near

to each other are probably good candidates to be in the same route. This method

can be generalized to non-Euclidean problems and works well with different distance

based units.

Vidal et. al. [44] in 2013 proposes a simple decomposition framework that par-

titions the customers in different subproblems to solve separately based over their

relative positions. In their work they present a structural and geometrical decom-

position technique that addresses large scale instances more efficiently. For smaller

instances, the work of Goeke et al. [21] describes a new decomposition method based

over already generated routes. Instead of focusing on customers alone, the cluster-

ing strategy proposed generates the subproblems considering single routes and their

closest routes as candidate sets of customers. Their work demonstrates how the use

of some decomposition methods result useful even with medium instances.

Temporal aspects are used by Shaw [38] in 1997 to define the relatedness of two

requests based over their Time Windows. Later, the same strategy was used by

Ropke and Pisinger [35] to solve a Pickup and Delivery VRP with Time Windows.

To choose which request can be effectively visited after another, the possible time

of visit is a valuable criterion in such a choice. Close customers with similar TWs

are considered good candidates to lie sequentially in the same route.

The importance of decomposition techniques in solving large VRP instances is

10



2.2 Decomposition methods for large instances

also addressed by the work of Santini et al. [37] for the INFORMS Journal on Com-

puting. They prove that the use of such strategies generally improve the solution

quality regardless of the applied algorithm. Focusing on the most used heuristics,

one of the best performing route-based decomposition technique is found to be

barycenter clustering, obtaining excellent results on both Adaptive Large Neighbor-

hood Search (ALNS) and Hybrid Genetic Search (HCG). It’s also essential to point

out the importance of parameter tuning. In almost every paper about decomposition

clustering, it is mentioned that even if a decomposition strategy performs really well

on a given instance, without the proper value for each parameter, it can actually

result in a worse solution than when no clustering is used.
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Chapter 3

Vehicle Routing Problem

3.1 Arc-based VRP formulation

The following model formulation is based on the one proposed by Laporte, Mercure,

and Nobert [25] and then used by Toth and Vigo [43].

The VRP can be defined as a complete directed graph G = (V,A). The vertex

set V represents the depot as node 0, and all the customers, i.e. the Transport

Requests. Each arc (i, j) of the set A = {(i, j) : i, j ∈ V, i ̸= j} represents a path

that a vehicle can take to visit node j departing from node i. It is important to

highlight the fact that the graph is directed, meaning that (i, j) ̸= (j, i) as shown in

Figure 3.1, and that each pair of nodes has two arcs that connects them.

depot

i j

̸=
depot

i j

Figure 3.1: Different routes with the same visited customers.

Each arc has an associated cost of crossing cij that can indicate travel distances,

travel time or any other metric cost that must be evaluated. In the original version of

the problem, the costs for moving between two points are symmetric, i.e. the graph

G = (V,A) is complete and undirected with arcs (i, j) = (j, i) and cost cij = cji.

The choice of a subset of arcs in sequence from depot to depot models a route,

as can be seen in Figure 3.2. We formally define a route as a sequence r =

13



Chapter 3. Vehicle Routing Problem

(i0, i1, i2, ..., is, is+1) with i0 = is+1 as depot of departure and arrival, and the set

S = {i1, i2, ..., is} as the customers served by the route r. The cost of a route is the

sum of all the costs associated to the arcs crossed, that is c(r) =
∑s

p=0 cip,ip+1 . The

computation of the route cost can change depending on the VRP variant of choice.

There could be additional external costs or costs depending on the properties of the

route itself, or even penalties or prizes depending on the customer served. The cost

of a route usually reflect the distance that a vehicle needs to travel in order to visit

all the customers, or could depend on the time it takes to do so, or the fuel costs

plus the driver wage.

depot

i : customer

j

Route

cij : crossing cost

Figure 3.2: Example of route with crossing cost on the arcs.

Assuming we have a fleet K of available vehicles, the objective is to determine a

set of minimal cost routes of size < |K| that meet all customer demands. This set

of feasible routes generates the solution to the VRP.

Let S ⊆ V/ {0}, for directed graphs we define the in-arcs and out-arcs of S

as δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} and δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S}. It

is standard practice to also define δ+(i) := δ+({i}) for S = {i}. It follows the

mathematical model of the VRP: We define the decision variable xij:

xij =

1 (i, j) is part of the solution

0 otherwise

14



3.1 Arc-based VRP formulation

The two index vehicle flow formulation for the VRP is the following:

min
∑
i∈V

∑
j∈V

cijxij (3.1a)

s.t.
∑

j∈δ+(i)

xij = 1 ∀i ∈ V/ {0} (3.1b)

∑
i∈δ−(j)

xij = 1 ∀j ∈ V/ {0} (3.1c)

∑
j∈δ+(0)

x0j ≤ |K| (3.1d)

∑
(i,j)∈δ+(S)

xij ≥ r(S) ∀S ⊆ V/ {0} , S ̸= ∅ (3.1e)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.1f)

The objective function (3.1a) must minimize the total routing costs. Constraints

(3.1b) and (3.1c) represent the flow conservation constraint that ensures that every

customer is visited exactly once. For each node i ∈ C the solution must have

exactly one arc entering the node and one arc exiting it, meaning also that there is

a predecessor and a successor.

Constraint (3.1d) introduces the set K of vehicles and ensures that there are at

most |K| arcs exiting the depot, meaning that the solution can be served by the

available fleet of vehicles.

Equation (3.1e) represents the capacity constraint as well as the Subtour Elimi-

nation Constraint (SEC). It imposes that the routes must be connected and that the

total demand of the customers served per route must not exceed the vehicle capacity.

The value r(S) denotes the minimum number of vehicles required to serve the set

S ⊆ V/ {0}. In the CVRP variant, where each customer demands a certain quantity

and each vehicle has a limited capacity, r(S) can be computed by solving the bin

packing problem (Martello and Toth [29]) or using the lower bound ⌈q(S)/Q⌉, with
q(S) the total weight of the customers in S and Q the bins size.

To summarize, a feasible solution for the general VRP formulation has the fol-

lowing properties:

1. each route must visit vertex 0, i.e. the depot, as the first and last vertex of

the sequence

2. each vertex i ∈ V/ {0} is visited exactly by one route

3. the final solution must not exceed the fleet size

15



Chapter 3. Vehicle Routing Problem

3.2 VRP Taxonomy

This section aims to cover some of the most important VRP variants in order to

introduce the constraints that will be considered in the real life problem addressed

in this thesis. It is not in any way an exhaustive VRP taxonomy and does not

pretend to be one.

In more than 50 years of history (Laporte [24]), the literature presented many

variants of the VRP, each with one or more constraints added to the classical math-

ematical model. The growth rate of the VRP literature called for the publications

of many taxonomies (such as Braekers et al. [5], Toth and Vigo [43] and Eksioglu et

al. [17]) that identify and classify any existing VRP variants. The need for a way

to consolidate more efficiently all the differences and similarities, the relationships

and practical applications of each routing problem, led to the use of a classification

based on the single constraint result effect.

The most common variants studied in the literature are described next:

Asymmetric cost matrix VRP (AVRP) For all i, j ∈ V , the cost for going

from i to j is different from going from j to i. This makes it so that the

problem can be modeled using a directed graph. In the literature it’s more

common to find variants that use symmetric costs, while the AVRP is more

suitable for real life scenarios. AVRP can be used to better model cases such

as urban areas and services such as mail delivery and garbage collection.

Pickup and Delivery VRP (PDVRP) Unlike the classic VRP, the customers

can demand both delivery and pickup actions when visited. In more complex

variants the capacity of a vehicle must be checked at each vertex since the

transported goods must not exceed it at any point in a route. The pickup

demand can be returned to the depot [46] or delivered to another customer.

A real life scenario could be public transportation.

Split Delivery VRP (SDVRP) This variant can be seen as a relaxation of the

classic VRP. It states that a single request can be split between different

vehicles (Dror and Trudeau [15, 16]). In traditional VRP a customer request

must be served by a single vehicle, however in SDVRP it can be served by

multiple routes. This variant can be useful when a demand exceeds a vehicle

capacity or when splitting it leads to reduced costs.

Multiple Depots VRP (MDVRP) When a company has more than one depot

to serve its customers, a route can start and end at different depots. There
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3.2 VRP Taxonomy

can be different vehicles at each depot due to limited capacity, or each depot

can serve different customers (Renaud et al. [33]).

Open VRP (OVRP) This variant can be used when the vehicles are not required

to end their route at a depot after covering the last request of the route, or

the final trip to the depot is not counted on the costs (Golden et al. [27]).

Capacitated VRP (CVRP) The most common VRP variant, it adds the con-

straint that each vehicle has a certain capacity, meaning that can transport a

certain quantity of goods. It is usually expressed in pallets, kg and m3.

Distance-Constrained VRP (DCVRP) Route length can often be added as a

global constraint as in Laporte et al. [25]. It is usually applied to distance, but

it can also be applied to duration, routing costs, or number of stops in a route.

This variant introduces an upper bound to the length of a route in the sense

that assuming dij > 0 as the distance between vertex i to j, and L > 0 as an

upper bound on the spatial distance, for each route r = (i0, i1, i2, ..., is, is+1)

we have the new constraint
∑s

p=0 dip,ip+1 ≤ L.

Multi-Trip VRP (MTVRP) Considering the daily planning of a routing prob-

lem, a vehicle could end their planned route way before the working day ends.

Allowing a vehicle to perform multiple trips during a given time frame can

result in improved efficiency and cheapest solutions. This variant is often ap-

plied to real life scenarios and city logistics. Good examples can be found in

Battarra et al. [4], Cattaruzza et al. [9] and Mingozzi et al. [30].

VRP with Time Windows (VRPTW) Cordeau et al. [12] introduces the con-

straints of Time Windows. Each vertex i ∈ V/ {0} can have multiple Time

Windows (TWs) [ai, bi], i.e. time frames within which it can be visited. When

a route starts, time must be accounted for and properties such as travel, ser-

vice, and waiting/idle times can be introduced in the problem. Travel time is

the duration of crossing an arc. Idle times may occur when a vehicle arrives at

vertex i before time ai, hence when its TW has not started yet. Service time

can be defined as the time it takes for the delivery service once the vehicle

arrives at a customer location, e.g. parking and unloading, and is essential to

compute arrival and departure times for each visit. When a vertex i is visited,

the variables recording the arrival time tARR
i , the start of the service tSERi and

the departure time tDEP
i are updated.
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Chapter 3. Vehicle Routing Problem

Heterogeneous Fleet VRP (HFVRP) An heterogeneous fleet (Baldacci et al.

[2]) consists of vehicles that differ in capacity, variable and fixed costs, speed

and accessible areas, i.e. visitable customers. Fixed costs are those costs that

cover a driver salary and vehicle maintenance. A heterogeneous fleet K can

be partitioned in |P | subsets of homogeneous vehicles, that is with the same

properties, and can be defined as K = K1 ∪ K2 ∪ ... ∪ K |P |. Fleet size can

also be part of the variant, being unlimited or limited, to better suit real case

scenarios. Often in real life cases the transport service company can also use

multiple fleets, making available its own or relying on third parties.

VRP with Profits (VRPP) When a limited fleet is used, it can lead to the im-

possibility of covering every request of the problem. Only a subset of requests

can be covered and a strategy for choosing which ones must be adopted. To

control the selection process a prize is added at each customer and it will be

removed from the final cost of the route. Note that when negative prizes are

used, they become penalities.

3.3 Set Covering Formulation

The Set Covering (SC) formulation of the VRP problem can help solve different VRP

variants. The objective of the SC formulation is to determine the best combination

of (feasible) routes that partition all customers, minimizing the overall cost.

The integration of the SC formulation in the VRP framework can help address

the complexities of the constraints of the VRP variant that needs to be solved. The

SC only needs to select a subset of pre generated (feasible) routes, without the need

to consider the specific constraints of the VRP variant. This way only the route

generation algorithm must handle the specific constraints of the VRP variant.

Let Ω be a set of (feasible) routes of the VRP, and V/ {0} be the set of Transport
Requests to satisfy. We denote as cr the cost of the route r ∈ Ω, |K| as the number

of available vehicles and ari is a binary variable that asserts if the request i ∈ V/ {0}
is covered by route r ∈ Ω.

We define the decision variable θr as such:

θr =

1 route r is part of the solution

0 otherwise

Then the SC for the general VRP can be formulated as follows:
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3.3 Set Covering Formulation

min
∑
r∈Ω

crθr (3.2a)

s.t.
∑
r∈Ω

θr ≤ |K| (3.2b)∑
r∈Ω

ari θr ≥ 1 ∀i ∈ V/ {0} (3.2c)

θr ∈ {0, 1} ∀r ∈ Ω (3.2d)

The objective function (3.2a) aims to minimize the total solution cost required

by the selected routes. Constraint (3.2b) ensures that the number of chosen routes

doesn’t exceed the number of available vehicles, and constraint (3.2c) grants that all

customers are served by at least one route. This implies that the solution returned

by solving the SC problem is not a feasible solution for the initial VRP and that it

still needs to be manipulated in order to make sure that each customer is covered

by exactly one of the selected routes.

This formulation can be easily modified to satisfy all VRP variants with different

fleet and vehicle constraints. The main advantage of using the SC problem formu-

lation to solve the VRP is the modularity it can give to any algorithm, splitting

the route construction and the solution search in two distinct steps that can be cus-

tomized independently. This lead to the possibility of easier algorithm customization

to suite different VRP variants and rich problems. The SC formulation allows for

more flexibility and can efficient handle different objective functions without the

need of rewriting most of the code from scratch, unlike classic heuristics.
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Chapter 4

Current Problem Formulation

The VRP variant used as case study in this paper can be considered an intersection of

some of the most popular families of optimization problems studied in the literature.

The considered VRP is characterized by the presence of a single depot from which

all vehicles depart and must return to daily. Not all customers must be served even

if the main goal remains full coverage. The demand of a request cannot be split

between vehicles.

More generally, the considered VRP include the following popular variants:

• Capacitated VRP (CVRP)

• VRP with Time Windows (VRPTW)

• Distance-Constrained VRP (DCVRP)

• Vehicle Routing Problem with Profits (VRPPP)

• Asymmetric cost matrix VRP (AVRP)

• Heterogeneous fleet VRP (HVRP)

These specific features of the problem are directly translated into constraints

to be included in the mathematical model. Some other smaller constraints are

considered to be able to fully transpose the problem to a real life study case, such

as working and driving hours, or incompatibilities between vehicles and customers

to be served.
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Chapter 4. Current Problem Formulation

4.1 Constraints

The real life case study of this thesis introduces some highly specific constraints

that must be satisfied in order to find feasible routes and solve the problem. As an

extra characterization of the problem as a real life VRP, we introduce the objects

Point of Interests (PoIs). Each customer has a corresponding PoI indicating its

geographical location described by its coordinates (coordX,coordY). In the arc-

based formulation it can be identified as a node and can be associated to one or

more Transport Request.

The problem constraints are described below:

Capacity Similarly to the CVRP variant, each Vehicle has a limited capacity of

goods that it can transport. The resource capacity of each Vehicle consists

of three different values corresponding to its maximum capacity expressed in

pallets, kg and m3.

Trip Length Following the DCVRP variant, each Vehicle has a maximum distance

that it can travel per route, including the final travel to the depot.

Number of Stops per Route Similarly to the Trip Length constraint, each ve-

hicle can have a limited amount of stops per route, meaning that it can visit

a limited number of PoIs per route. Consecutive visits to the same PoI counts

as one stop only.

Time Windows Each Transport Request can have multiple Time Windows (TWs)

that must be respected in order to visit the corresponding PoI and correctly

process the operation of delivery. Each Transport Request i has an associated

set Wi of TWs. Each TW is defined (like in the VRPTW variant) by the

range [at, bt]
w, with 0 < w ≤ |Wi| for indexing. If a vehicle arrives at a PoI to

serve a Transport Request i before the start of any TWs in Wi, the rest period

is considered idle time for the Working Hours. The service starts when the

correct TW opens for the considered Transport Request. For each i ∈ V/ {0}
we define:

• tARR
i : arrival time

• tSERi : service start

• tDEP
i : departure time

Figure 4.1 shows how a simple route can result feasible even if a Time Window

is not fully respected. When a vehicle visits a Transport Request before the
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4.1 Constraints
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Figure 4.1: Example of route with Time Windows.

start of its Time Window (the node in red), the service start (tSERi = 10:00)

will differ from the arrival time (tARR
i = 09:30). This lost time is accounted as

idle time and still counts for the final duration of the route. A TW is respected

if the service starts within its bounds. No constraint exists for the end time

of the service, that can in fact exceed the end of the TW.

Working Hours For this specific study case, the rules applied to regulate the

workload of the drivers are bound to the maximum working duration and

the maximum driving duration. The working duration is computed as the

difference between the arrival time at the depot after the last visit, and the

initial departure from it, including wait time and service time. The driving

duration is the sum of the driving time between PoIs in the route, excluding

idle time before the service start.

Incompatibilities This kind of constraints are included as specific matrices that

impose a restriction over the feasibility of a route. The incompatibilities can

be found as follows:

• between pairs of PoIs

• between pairs of Transport Requests

• between Transport Requests and Vehicles

• between Vehicles and PoIs

These constraints translate to real life problem such as vehicle incompatibilities

with certain roads or locations (e.g. large vehicles can’t access small road or the

city center) or requests about goods that can be transported only by vehicles

with certain properties (e.g. frozen products that need a refrigerated storage).
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Chapter 4. Current Problem Formulation

4.2 Objective Function

The goal of optimization problems is to find the optimal solution, that it is the best

solution among all feasible solutions. The optimality of a solution can vary based

on the definition of the optimization problem. Given that every solution has a cost,

there exists maximization problems that need to find the solution of higher costs,

and there exists minimization problems, that need to find the solution of minimum

costs.

The VRP is defined as a minimization problem that aims to find the solution of

minimum cost.

We consider a feasible solution to be a set of distinct routes that cover up to

every Transport Request without using the same vehicle twice. Each route r =

(i0, i1, i2, . . . , is, is+1)
k is an ordered sequence of Transport Requests with i0 = is+1

as depot, that satisfy all the constraints described above. Each route r has an

associated vehicle k ∈ K. That means that a feasible solution doesn’t need to cover

all the Transport Requests of the instance and doesn’t need to use all available

vehicles. In our case the cost of the solutions is not the only value that assumes

a major role in the choice of a solution. Given two solutions to compare, the best

between them is the one that covers the most Transport Requests. Only in the case

where both cover the same number of requests, the solution cost is compared and

minimized.

To summary, our algorithm makes use of a hierarchical function where when

in need to compare multiple solutions, it always maximizes the number of covered

Transport Requests and then minimizes the cost of the solution.

For simplicity, we will now use the term objective function to refer to the to-

tal cost of a solution, that is the sum of the cost of the single routes of which it

is composed. The cost components of a route in the objective function are the

following.

For each vehicle k ∈ K:

• CVEH
k : fixed cost for using vehicle k.

• CDIST
k : cost per unit of traveled distance.

• CTIME
k : cost for route duration including idle time and service time.

For each Transport Request i ∈ C:

• Pi: prize for covering i.
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4.2 Objective Function

Given a route r = (i0, i1, i2, ..., is, is+1)
k, we define the traveled distance d(r) as

d(r) =
s∑

p=0

dip,ip+1

with dij the distance between the PoI of request i from the PoI of request j. Note

that if the two Transport Requests lay in the same PoI then dij = 0.

The total duration t(r) includes wait time and service time and can be defined

as the difference between the arrival time at the depot is+1 and the departure time

from depot i0. Defining the departure time from i0 as tDEP
i0

and the arrival time at

is+1 as tARR
is+1

, the total duration of the route r can be computed as

t(r) = tARR
is+1
− tDEP

i0

For each Transport Request i served by route r there is an associated prize given

for its coverage that can diminish the value of the objective function. This stratagem

mimics the worth of the client and helps the algorithm to choose which requests are

more valuable and relevant. The total prize of a route is defined as

p(r) =
s∑

p=1

Pip

In conclusion, the total cost cr of a route can be computed as follows:

cr = CVEH
k︸ ︷︷ ︸

fixed cost

+CDIST
k

s∑
p=0

dip,ip+1︸ ︷︷ ︸
variable distance cost

+CTIME
k (tARR

is+1
− tDEP

i0
)︸ ︷︷ ︸

variable duration cost

−
s∑

p=1

Pip︸ ︷︷ ︸
total·prize
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Chapter 5

Algorithm structure

This section provides the algorithm outline for the real life VRP introduced in

Chapter 4. We assume that a feasible solution always exists and that it doesn’t

need to cover all Transport Requests, nor use all the available vehicles.

The algorithm can be divided into five main steps:

1. Initialization Phase: parsing the xml input instance file and initializing the

problem structure. Additional run specific parameters are parsed from the

command line.

2. Route Generation Phase: a candidate set of feasible routes is populated run-

ning a constructive heuristic together with decomposition strategies.

3. Matheuristic Phase: this phase is split into three different modules. The first

module is called Filtering Model and uses a prizing Column Generation strat-

egy to filter the best routes generated, solving an LP relaxation of the initial

SC problem. The second module is called Infeasibility Model and revolves

around a MIP model formulated to find the Transport Requests that cannot

be covered by any solution, violating the SC constraint of coverage. Then

finally the SC problem can be correctly solved in the Set Covering Model

with the filtered routes as input and the right set of requests for the coverage

constraint.

4. Patching Heuristic Phase: the SC optimization returns some routes that must

be re-elaborated into a feasible solution. A Patching Heuristic is applied to

obtain a feasible solution. Some simple Local Search operators are used to

improve it.
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Chapter 5. Algorithm structure

5. Solution update and iterative step: the Route Generation, the Matheuristic

Phase and the Solution Fixage steps are iterated multiple times during a single

run of the algorithm. At each iteration, the solution found is compared to the

best one found so far and updated accordingly.

A high level representation of the algorithm developed is given in Algorithm 1.

Algorithm 1 High level pseudocode of the whole algorithm.

Input: VRP instance file.
Output: The best feasible solution found.
INIT()
CP ← Ø
while ∗ not timeOut ∗ do

tCP ← HEUR()
CP, S ← MATH(tCP )
S ′ ← PATCH(S)
Solution←UPDATE(S ′, Solution)

end while
return Solution

At each iteration the routes generated by the constructive heuristics are saved in

the temporary Candidate Pool (tCP ). The global Candidate Pool (CP ) is updated

and maintained for the next iteration based over the LP Filtering Phase. The

algorithm terminates when a certain time limit is reached.

The five steps introuced above are resumed by the call to the methods INIT,

HEUR, MATH, PATCH and UPDATE.

The call to INIT initlializes the problem instance and the problem specific pa-

rameters. It is directly correlated to the Initialization Phase. The function HEUR

starts the Route Generating Phase where the candidate set tCP is populated. The

call to MATH resumes the Matheuristic Phase where three different models are solved

using the FICO Xpress Solver. The unfeasible solution S returned is then fixed

within the PATCH routine and saved in S ′ as the final feasible solution of the current

iteration. S ′ is then compared to the current global solution with the call to UPDATE.

When the time limit is reached, the best solution found is returned. The output

of the algorithm includes a detailed description of the solution and of the single

routes of which it is composed, its Key Performance Indicators (KPI) and an arc-

based graphical representation.

To summarize, the algorithm consists in a certaint number of iterations until a

time limit is reach. At each iteration the algorithm calls consecutively the main
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5.1 Phase 1: Initialization

methods HEUR, MATH and PATCH. Each iteration is linked to the previous one by the

call to UPDATE and by the global Candidate Pool CP .

5.1 Phase 1: Initialization

The input instance is populated from an xml file that follows the nomenclature

free_xxxx_POIs -xx -TRs -xx_VEHs -xx_InstanceData.xml

summarizing the instance ID and the number of PoIs, Transport Requests and ve-

hicles considered.

It is composed by some nodes corresponding to the main objects of the VRP,

following a tree-like structure:

• pois: the PoIs of the instance, defined by their coordinates (coordX and

coordY) and their Time Windows (deliveryTimeWindows).

• transportRequests: the Transport Requests that need to be served. Each

one of them has a corresponding PoI to be delivered at (deliveryPoiId), the

delivery demand quantity (deliveryDemand) and the delivery service duration

(deliveryUnitServiceDurationVariable and deliveryServiceDurationFixed).

• vehicleTypes: the available vehicles with their corresponding costs of us-

age (costFixed, costPerDistanceUnit and costPerDurationUnit), the max

number of stops it can make in a route (maxNumberOfStopsInTrip) and its

capacity (resourceCapacity).

• fleets: the vehicles are grouped in different fleets, mimicking the third party

companies that can rent their vehicles. We assume the use of non logic fleet,

meaning that each vehicle correspond to a single fleet.

• the cost matrices between PoIs: travelDistMat for the distance and travelTimeMat

for the travel duration.

• incompatibility matrices: boolean matrices to map the incompatibilities of

some elements. We find the nodes incMatPoiPoi, incMatRequestRequest,

incMatVehiclePoi and incMatVehicleRequest.

Some other algorithm specific parameters are parsed from the command line.

The implemented arguments are the following:
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Chapter 5. Algorithm structure

• -f: input file name

• -d: directory of the input file

• -t: time limit

• -s: random seed to use

• -n: size of the candidate pool

• -m: value for the BigM method of the solver

• -x: enable the oemLicensing of the XPress Solver

• -log: enable the output of the Xpress logs

All the previous parameters are not mandatory and have a default value if not

specified.

5.2 Phase 2: Route generation

At each iteration the temporary pool of routes tCP is generated. Two constructive

heuristics are proposed in order to generate routes with different characteristics to

compare with the global candidate pool CP . The choice of using simple heuristics

instead of highly performant Local Search heuristic with many inter-route operators,

lies in the objective that the Route Generation Phase must be fast and scalable. The

ALSN algorithm used by Optit already implements a very good alternative for most

constructive and refinement heuristics and a possible future approach could be the

partial merge of the ALSN with the proposed SC algorithm of this thesis.

5.2.1 Cheapest Insertion Heuristic

The first constructive heuristic is based off one of the best-known heuristics called

the Savings algorithm by Clarke and Wright [11]. The main difference is that in

the VRP considered in the original Savings algorithm all the vehicles were identical.

In our rich VRP a heterogeneous fleet is used and the incompatibility constraints

led to the choice of generating one route at a time, starting from the choice of the

vehicle as the first step of the heuristic.

The pseudocode in Algorithm 2 gives the main steps behind the implemented

Savings variant that we will now call Cheapest Insertion heuristic. The main idea
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5.2 Phase 2: Route generation

Algorithm 2 Cheapest Insertion constructive heuristic.

Input: VRP instance.
Output: Set of routes that generate a solution.
while Available vehicles > 0 AND Available Transport Requests > 0 do
∗ pick random vehicle ∗
route← new Route(vehicle)
∗ pick random start Transport Request ∗
route.add(start)
∗ compute Polar Cluster ∗
∗ compute Depot Neighborhood ∗
while no more move is available do

route← startInsertion()
end while
tCP ← tCP ∪ route

end while
return tCP

is to generate a possible solution to the VRP instance by choosing sequentially a

random vehicle and constructing a route with it. A feasible random Transport Re-

quest is chosen as starting point to initialize the route (depot→ start→ depot). It’s

important that the initialization criterion of the route, by the choice of a vehicle and

of a starting point, remains random to help make the algorithm non-deterministic.

Two possible decomposition techniques are applied in order to allow a better

route generation based over the ideal petal-like structure. Moreover, the use of a

decomposition technique helps to minimize the generation time of each route since

that way it is possible to avoid the check of the insertion of every possible request

of the instance. The decomposition techniques Polar Clustering and Depot Neigh-

borhood are described next in the Subsection 5.2.3, together with other possible

clustering methods.

The real work under the Cheapest Insertion algorithm begins after the clustering

of the Transport Requests to consider for the current route generation. The call of

startInsertion allows only feasible insertions in the route. It permits the insertion

of a new Transport Request in the current route if no constraint is violated and

chooses the insertion of maximum savings. The best insertion to make is the one

with the lowest additional cost to the route.

Consider a certain iteration of the algorithm with r as current route. After a

new insertion we obtain a new route r′. The savings given by the current insertion

is computed as
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Chapter 5. Algorithm structure

s(r′) = cr − cr′

with cr cost of route r and cr′ cost of route r
′. The algorithm chooses the insertion

with maximum savings. All Transport Requests in the current cluster are possible

candidates for the next insertion and their visit is tested in every possible position

of the current route. The while loop continues until no more possible move can be

inserted in the current route and the vehicle is considered covered. Then the route is

inserted in the temporary Candidate Pool tCP and a new iteration of the Cheapest

Insertion algorithm begins with the choice of a different vehicle, until no vehicle and

no Transport Request remain available.

The main disadvantage of the Cheapest Insertion heuristic is that it generates

one route at a time, without considering the solution as a whole. Focusing on one

single route results in a solution generated without any structure guarantee. This

feature may be a great disadvantage for a classic VRP heuristic, but the objective

of the Route Generation Phase is to populate the set CP with many routes, and

not with solutions, needed to initialize the Set Covering Phase that comes next.

5.2.2 Sequential Insertion Heuristic

The second constructive heuristic proposed tries to differ from the logic of the Cheap-

est Insertion heuristic by generating multiple routes at the same time. Let’s call this

heuristic Sequential Insertion, partially based over the work of Penna et al. [31]. The

pseudocode can be found in Algorithm 3.

Consider a restricted set of vehicles CV . Each vehicle v ∈ CV have an assigned

routev. At each iteration of the algorithm, while there are still uncovered Transport

Requests that can be inserted in the solution, all the routes associated to each

v ∈ CV are analyzed in order to insert a new request in each of them. The requests

that must be considered during an iteration are saved in the set NN and follow

the Depot Neighborhood decomposition strategy. The only difference is that the

version used in the Sequential Insertion heuristic can be considered dynamic. Each

time that the Depot Neighborhood is called, it amplifies its radius of clustering,

until all the requests of the problem instance are to be considered. For each vehicle

in CV , a possible new insertion of minimum cost is evaluated at each iteration.

Sequentially, all current routes grow one request at a time. When the vehicles are

saturated or when the currently considered requests in NN cannot be inserted in

any route, the set of vehicles is updated with a new random one.
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5.2 Phase 2: Route generation

Algorithm 3 Sequential Insertion constructive heuristic.

Input: VRP instance.
Output: Set of routes that generate a solution.
NN ← Ø
while uncovered Transport Requests > 0 do

if NN = Ø then
NN ← Depot Neighborhood++

end if
for v ∈ CV and NN ̸= Ø do
∗ evaluate the costs g(t) of all routev.insert(t) ∀t ∈ NN ∗
gmin ← min {g(t)|t ∈ NN}
routev ← route associated to gmin

∗ update NN ∗
end for
if !∃t ∈ NN : can be inserted in an v ∈ CV then
∗ update CV ∗

end if
end while
for v ∈ CV do

tCP ← tCP ∪ routev
end for
return tCP

5.2.3 Decomposition Techniques

Polar Clustering

Assuming the depot at the origin of a coordinate system, the polar coordinates

(r, θ) of all the PoIs that can be visited by the vehicles can be computed starting

from their Cartesian coordinates (x, y). The Cartesian coordinates x and y are

converted in r =
√
x2 + y2 and then the polar angle θ of every PoI is computed as

θ =


arccos(x

r
) if y ≥ 0 and r ̸= 0

− arccos(x
r
) if y < 0 and r ̸= 0

undefined otherwise

This coordinate representation allows the use of the decomposition technique

called polar clustering. After choosing the start Transport Request, a petal-like

structure for a route can be obtained by considering only the PoIs within a certain

angle from the start node. Figure 5.1 shows how from a given start request the

polar cluster can be determined using its polar angle.

The angle to compute the polar cluster can vary between some values chosen at
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start
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depot

Figure 5.1: Example of Polar Cluster from the start node.

random at each iteration to ensure non-determinism. The values considered always

remain between ±π/4 from the start node.

The use of this decomposition technique leads to the creation of routes in the

form of a petal-like structure with the depot as the center. In a practical analysis

of solutions given as benchmark from the ALNS algorithm of developed by Optit,

it has been highlighted how some optimal routes can slightly diverge from this kind

of structure, allowing some small requests from around the depot to be inserted

in a route, trying to completely saturate a vehicle, i.e. to use all of its capacity.

Extending the polar cluster of considered requests at each iteration with a small

neighborhood of the depot can help achieve better results.

Depot Neighborhood

A neighborhood of a node is defined as the set of PoIs within a certain distance

from it. A simple approach could be to choose a certain radius r and to take all the

PoIs within that radius, with the depot as center, as illustrated in Figure 5.2..

To ensure that a minimum number of requests are taken into account, after the

radius neighborhood, if the considered Transport Requests are not enough based on

a minimum value parameter, the algorithm adds to the cluster the nearest requests

until the requested size is met.

The Neighborhood Depot decomposition technique can be used iteratively ex-

panding the radius of the cluster sequentially, exploring a wider area at each call.

Depot Neighborhood and Polar Clustering can be applied together as another

decomposition approach (Figure 5.3) based over both distance and polar angle. This

different strategy can result in much smaller total travel distance since it groups

together closer requests that are probably more related.
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Figure 5.2: Example of Depot Neighborhood.
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Figure 5.3: Example of Depot Neighborhood and Polar Clustering.

Temporal decomposition

Temporal decomposition, in case of Time Window constrained problems, can

result highly efficient to early partition the customers. The main idea behind this

approach is the fact that Time Windows can limit the visits to a Transport Requests

to a certain period of the day. By logic, requests with similar tight Time Windows

won’t be visited in the same route unless their corresponding PoI are very close or

even the same one.

A vehicle has more probability of visiting early open Transport Requests at the

start of a route, rather than at the end of the working shift. The same applies to

Transport Requests that have open Time Windows at the end of the day.

A possible use of this time property is the partitioning of Transport Requests

based over their Time Windows constraint. In a heuristic algorithm, the choice
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Chapter 5. Algorithm structure

of a start node can change the effectiveness of the method. Early open Transport

Requests can result in a good possible set of nodes to choose from. Requests that

have late closing Time Windows can be left as the final visit before the return to

the depot.

5.3 Phase 3: Mathematical Approach

5.3.1 Filtering and Column Generation

The filtering Phase follows a similar approach to the one proposed in the paper

of Cavaliere et al. [10]. The Set Covering Problem becomes highly impractical to

solve when the size of the input set is too large. To exploit this kind of problem

a Filtering Phase has been set up. Figure 5.4 shows a simple flow chart describing

how the phase works.

The objective of this phase is to find a small and good set of routes from which to

start the SC optimization. After the Route Generation phase, the algorithm has two

sets of routes from which he must draw the best ones. The temporary Candidate

Pool set tCP contains the routes generated during the current iteration, while the

global Candidate Pool CP is maintained between iterations and must be updated

with the best routes at every call of the Filtering Phase. The CP set has a limited

size that can be set during the initialization phase, with a standard value of 15.000

routes.

To select the best routes to maintain in the CP set, the LP relaxation of the

SC is solved optimizing both CP and tCP sets. The reduced costs of the routes

are computed. The reduced costs are defined as the amount by which an objective

function coefficient needs to change in order for the corresponding variable to become

positive in the optimal solution. It means that when the reduced cost of a route is

small, it should be a good candidate for a solution and could possibly be a great

variable to consider in the SC optimization.

The new CP set is populated using the routes associated to the variables with

the smallest reduced costs. Since the VRP considered uses a heterogeneous fleet,

to ensure that all vehicles have an adequate number of possible routes to choose

from in the final SC model, the variables and their reduced costs are partitioned

in different sets based over the vehicle used. For each set, a subset of routes with

the smallest reduced costs is selected. This ensures that every vehicle has a similar

number of routes to choose from in the CP for the SC optimization.
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LP Relaxation

Reduced Costs
filtering

updated CP

temporary
Candidate Pool

global
Candidate Pool

Figure 5.4: Flow Chart of the Filtering Phase.

5.3.2 Set Covering Phase

The main difference between the classic SC formulation for the VRP described in

Section 3.3 and the one used for the VRP variant of this thesis, is the use of a

heterogeneous fleet where each vehicle k ∈ K is considered different and unique

from one another. In a real life scenario, this property is directly associated to the

use of vehicles identified by a license plate.

The new SC formulation doesn’t use the general vehicle constraint (3.2b) that

ensures that the number of chosen routes doesn’t exceed the number of available

vehicle. Instead, a new binary variable brk is introduced:

brk =

1 route r uses vehicle k

0 otherwise

This variable is used to count how many times a vehicle k is used in the final

solution. The new constraint becomes
∑

k∈K brkθr ≤ 1 and replaces the old vehicle

constraint in the new SC formulation.

The objective function is also be adapted to account for the prize Pi of each

request i served by the solution. We define the variables zi, ∀i ∈ V/ {0}:

zi =

1 request i is served by at least one route

0 otherwise

Then the new SC formulation becomes:
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Chapter 5. Algorithm structure

min
∑
r∈Ω

crθr −
∑

i∈V/{0}

Pizi︸ ︷︷ ︸
prize

(5.1a)

s.t.
∑
k∈K

brkθr ≤ 1︸ ︷︷ ︸
new vehicle constr.

∀i ∈ V/ {0} (5.1b)

∑
r∈Ω

ari θr ≥ 1 ∀i ∈ V/ {0} (5.1c)

θr ∈ {0, 1} ∀r ∈ Ω (5.1d)

Because of the presence of the vehicle constraint (5.1b) of the SC formulation and

the incompatibility constraints in the Route Generation, it is not possible to assume

that exists a solution that covers all Transport Requests. In addition, the decom-

position techniques used in the Route Generating phase don’t offer any guarantee

over which Transport Requests are served and which not.

The SC constraint (5.1c) imposes that every Transport Request must be covered

by at least one route. Since there’s the possibility that not all Transport Requests

are present in the final solution, this constraint can cause the SC problem to result

infeasible. Two different approaches were evaluated to fix this possible situation,

each with their positive and negative aspects.

Fake Routes Formulation

To ensure that every Transport Request is covered by the solution, some fake routes

are added to the input of the SC problem. In particular, one fake route θi is added

for every Transport Request i ∈ V/ {0}, and it uses a fake vehicle ki that serves

only that route and that covers only that request. We define the new vehicle set

K ′ = K ∪ {ki : i ∈ V/ {0}} to be used in the vehicle constraint (5.1b) instead of K.

Each of the new routes is associated to a large cost M to disincentive the solver on

choosing that route if not necessary. The SC problem always results feasible with

the choice of a fake route that causes a big penalty in the value of the objective

function. The Fake Route Formulation also adds the necessity of a subroutine that

removes the fake routes from the output solution.

The new formulation makes use of the Big M method to model the new objective

function as:
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5.3 Phase 3: Mathematical Approach

min
∑
r∈Ω

crθr +
∑

i∈V/{0}

Mθi︸ ︷︷ ︸
fake routes

−
∑

i∈V/{0}

Pizi

The implementation uses the BIG M parameter of the FICO Xpress Solver. By

documentation, the ”Big M” factor can bring round-off errors in the optimization

process and must be tuned according to the other costs in the objective function.

In addition to this, the SC formulation results redundant and the new fake routes

make the problem heavier to solve. Different values of the BIG M parameter result

in different route choices because of the round-off errors it brings.

Two-Model Formulation

To avoid slow down and the addition of artificial columns in the problem, an-

other possible approach involves the deployment of a second, easier to solve, model

identifying the Transport Requests that cause the original SC to be infeasible.

After the Filtering Phase, the new updated CP is given in input to another math-

ematical model (Figure 5.5), which solution correspond to the Transport Requests

that cannot be covered by any possible solution.

Filtering Model

Infeasibility
Model

SC Model

Figure 5.5: Flow Chart of the developed Matheuristic.

We introduce the decision variable yi, ∀i ∈ V/ {0}:

yi =

1 request i cannot be served by any route in the solution

0 otherwise
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Chapter 5. Algorithm structure

The objective of the new model is to find the Transport Requests that would

cause the general SC model to result infeasible. Those requests are then removed

from the SC constraint (5.1c).

The new intermediate model called Infeasibility Model is formulated as:

min
∑

i∈V/{0}

yi (5.2a)

s.t.
∑
k∈K

brkθr ≤ 1 ∀i ∈ V/ {0} (5.2b)∑
r∈Ω

ari θr + yi ≥ 1 ∀i ∈ V/ {0} (5.2c)

θr ∈ {0, 1} ∀r ∈ Ω (5.2d)

yi ≥ 0 ∀i ∈ V/ {0} (5.2e)

It is solved by the commercial MIP solver of FICO Xpress and the result is

processed to model the SC formulation already introduced without the need of the

variable zi. The objective function (5.2a) aims to minimize the number of requests

that cannot be covered. The modified SC constraint (5.2c) allows the variable yi

to take the value of 1 when the request i is not covered by any route with θr = 1,

avoiding infeasibility reaching the minimum bound (≥ 1).

5.4 Phase 4: Patching Heuristic

After the SC model is solved, an infeasible solution to the VRP is returned. The Set

Covering Problem mainly differs from the Set Partitioning Problem by the number

of routes in which a certain request can appear. The solution given by the SC opti-

mization can present some Transport Request served multiple times. By removing

the redundant request, the final solution cost diminish if done properly.

A Patching Heuristic is developed to remove the redundant requests optimizing

the final solution cost. For each route with a multi covered request, a new possible

set of routes is generated by removing the excess request. The new possible solutions

are analyzed in order to choose from which routes to remove the excess request, and

which route to maintain unaltered. The minimum cost solution is chosen.

An example of a possible multi covered request situation (in red) after the SC

optimization is shown in figure 5.6. The red crosses mimic the application of the

Patching Heuristic to fix the solution, removing the excess request from one route,
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5.5 Phase 5: Solution Update

optimizing the overall costs.

depot

Figure 5.6: Example of a possible patching step for the SC solution.

A simple local search phase is developed in order to reinsert the requests removed

from the SC model with the Two-Model Formulation. The operator REINSERT works

by testing the possible insertion of each uncovered request within each route in the

solution until a minimal feasible insertion is found.

After that another basic local search operator is applied. The operator RELOCATE

is developed to further optimize the routes. The choice of using only simple local

search operators is made to show how they can still improve the solution, without

the need of an extensive use of more aggressive heuristics.

The RELOCATE operator falls in the inter route structure category. It takes a

Transport Request i currently belonging to route r and removes it. Then it tries

to reinsert it in any other route in the current solution. Let’s consider that the

current solution is composed by n routes. The RELOCATE routine compares n different

solutions and maintain the one with minimum cost. The RELOCATE operator is

called multiple times until no more improving moves are possible. If there are still

uncovered requests after the first local search phase, the code iterates again starting

from the REINSERT operator.

5.5 Phase 5: Solution Update

At each iteration of the program, a new feasible solution S ′ is generated. If a previous

solution S is present, it must be compared to the current one. The algorithm

considers different factors to decide which is the best solution between the two.

• The coverage of the solution: the number of Transport Requests served.

• The cost of the objective function, i.e. the total cost of the solution.

Assume we have two solutions S and S ′. The first criterion implies that S

is better than S ′ if it serves more Transport Requests. When the total number
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Chapter 5. Algorithm structure

Number of Routes: 27

Number of Requests: 250

Total Distance: 4451037

Total Cost: 9172.77

Total Prize: 0

Objective Function: 9172.77

Mean Sauration: [ 9.25926% , 67.6333% , 77.9168% ]

Vehicle: 0

Capacity: 100 3500 10000

Coverage: [5%, 82.2571% , 67.18%]

Vehicle: 1

Capacity: 100 3500 10000

Coverage: [5%, 90.4% , 18.11%]

...

...

Figure 5.7: Example of KPI console log.

of visited requests is the same, then the cost of the solutions is compared. The

minimum cost solution is saved for the next iteration of the program.

The algorithm continues to iterate over the three phases (Route Generation,

Filtering and Patching) until a time limit is reached.

After the run is over, it can be useful to analyze the solution that the algorithm

gives in output based over some Key Performance Indicators (KPI). The main fac-

tors to look for are the coverage of the solution, i.e. the number of covered requests,

the number of routes in the solution and the saturation of each vehicle used. The

KPI of the solution are shown in the console log (Figure 5.7) and also printed in

a text file together with more detailed information about the composition of each

route (Figure 5.8).

Because of the inner nature of the measure unit of each coverage value, it is

not possible to obtain a high coverage percentage for all three of them. In a good

solution of the problem, given a route covered by a certain vehicle, to assert that the

vehicle has saturated, only one of the three measures will almost reach the 100% of

coverage. Therefore, the mean saturation values computed are never going to reach

the full saturation percentage.
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Chapter 5. Algorithm structure

The graphical plot of the solution is also generated using the software GNUPLOT

[45] version 5.4 patch level 6. For the graphical representation of the solution, an arc-

based formulation is used similar to the one introduced before. The only difference

lies in the definition of the set of vertices V that in the VRP definition represented

the Transport Requests. For simplicity, the new set of vertices that are plotted

correspond to the geographical position of each request, meaning that each node

plotted correspond to a real PoI defined by its coordinates. The depot always lies

at coordinate (0,0).

(a) Instance of 50 Transport Requests. (b) Instance of 250 Transport Requests.

Figure 5.9: Example of solution plot using the GNUPLOT software.

Figure 5.9a is an example of a possible plot of the solution of a VRP instance of

50 Transport Requests, 51 PoIs and 10 available vehicles. In this case, the exceeding

PoI refers to the central depot. As can be clearly seen, the solution is composed

of 8 routes, meaning that 8 vehicles out of 10 were used. This solution highlight

the petal like structure mentioned before. The same structure is also found in the

solution of larger instances, as can be seen in Figure 5.9b.
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Chapter 6

Results

This chapter presents the results obtained from running the presented algorithm

over an artificial set of instances generated by Optit to test its own ALNS algorithm.

Some of the tables that are described in this section are too large and were therefore

put in the appendix.

The implementation of the algorithm described in this paper was coded in

C++17. Tuning and testing were performed on a Computer with an Intel®Core™i7-
8550U 1.8GHz CPU and 12 GB DDR4 of RAM. The commercial solver used to model

and optimize the Linear Programming problems is FICO Xpress v9.2.2 [18].

6.1 Parameter Tuning

The algorithm uses some parameters that needed to be tuned beforehand in order

to perform better for the generation of the final results. The instances used to tune

these parameters are a subset of the entire set of instances provided by Optit and

do not include the instances used for the final benchmark.

The instances considered can be differentiated by the number of POIs (Point of

Interests), Transport Requests and vehicles. Table 6.1 describes how four different

categories of instances were considered based on those parameters. Instance IDs

refers to the name of the instance file, then NPoI is the number of PoI of the

instance, NReq the number of Transport Requests to serve and NVeh the number

of available vehicles.

The tables reported next show the results of the tuning of the global parameter

Candidate Pool Size and the decomposition parameters Polar Angle and Depot

Neighborhood Size.
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Instance IDs NPoI NReq NVeh

free 0006-0010 51 50 10
free 0016-0020 100 250 30
free 0026-0030 251 250 50
free 0036-0040 501 500 60

Table 6.1: The four subset of instances for tuning.

6.1.1 Candidate Pool Size

At each iteration of the algorithm, a temporary Candidate Pool tCP of 10000 routes

is populated by the Route Generation Phase. The Set Covering problem is solved

over the global Candidate Pool CP that is updated at every iteration with new

routes. Since the SC optimization performance depends on how many columns the

problem has in input, the size of SC must be tuned accordingly. For the set of smaller

instances of 50 Transport Requests (from free 0006 to free 0010) the time limit of

each run has been set to 1 minutes, with the tunes values of CP size of 2000,3000 and

5000 routes. For the other three sets, because of the higher number of requests to

visit, the time limit has been set to 10 minutes each. The instances of 250 Transport

Requests (from free 0016 to free 0020 and from free 0026 to free 0030) were

tested with CP size of 5000, 10000 and 15000. The last set of instances with 500

Transport Requests (from free 0036 to free 0040) has been tested with CP size

of 10000, 15000 and 20000.

Table 6.2 shows the results of the tuning of the CP size. The table columns can

be read as follows:

CP: the size of the Candidate Pool set.

NR: the number of routes in the final solution

NReq: the number of Transport Requests served by the solution

ObjF: the value of the Objective Function of the solution
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Chapter 6. Results

Some rows were highlighted to better analyze the results obtained. The cells

colored in red show that within a certain run, the number of Transport Requests

visited was inferior to the other runs. This behavior must be accounted for the

choice of the CP size, since a solution that covers fewer requests is poorer than the

others. At the contrary, the cells in green emphasize the good result of the run

that covered more requests than the other two. After the tuning, for each set of

instances, the CP size value chosen can be read in table 6.3.

Instance IDs CP size

free 0006-0010 3000
free 0016-0020 5000
free 0026-0030 15000
free 0036-0040 10000

Table 6.3: The four subset of instances for tuning.

Unexpectedly, the CP size values don’t seem to grow with the number of Trans-

port Requests, nor with the aspect ratio of Requests over available vehicles. This

result is probably the direct consequence of using a Set Covering model instead of

a more popular Set Partitioning model. The SC problem in fact doesn’t give any

warranty over the optimization of the feasible route that can be obtained after the

Patching Heuristic. After the SC Phase, a more competitive local search phase could

be more appropriate and could result more performing.

6.1.2 Decomposition tuning

In the Route Generation Phase two decomposition techniques are called in order

to make the algorithm fast and scalable. The Polar Clustering strategy works by

taking all Transport Requests within a certain value from the polar angle of a starting

requests. Such method is combined with the Depot Neighborhood technique that

computes a subset of Transport Requests based on the closeness to the central depot.

The parameters tuned are the value of the angle θ for the Polar Clustering and

the size of the Depot Neighborhood to include in the partition. The test were divided

by neighborhood size based over the number of Transport Requests of each instance.

The values tested for the neighborhood size were 5%, 10% and 20% of the total of

the requests, each with the Polar Clustering parameter θ with values 40◦, 20◦ and

30◦. The tuning was computed only on the three smaller sets of instances with 50

and 250 Transport Requests.
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All the performance profiles were plotted with the use of the software Perfor-

mance Profile by D. Salvagnin (2016) based over the work of Dolan and Mor [14].

Table 6.4 shows the solution results with Depot Neighborhood size equal to

5% of the number of Transport Requests in each instance. Highlighted in red, the

instances free 0019 and free 0020 performed slightly worse with θ = 30 and θ = 20

respectively. Looking at the results with the same coverage between runs, it can be

seen that the solutions with θ = 40 have the lowest objective function. A similar

conclusion can be taken by analyzing the performance profile in Figure 6.1. The

tests made with θ = 40 performed clearly better than the other two.

1.00 1.05 1.10 1.15 1.20 1.25 1.30
Obj Function

0.0

0.2

0.4

0.6

0.8

1.0
Tuning of Polar Clustering angle with Depot Neighborhood size 5% 

40
30
20

Figure 6.1: Tuning of Polar Clustering angle with Depot Neighborhood size 5%.

Table 6.5 sums up the results of the tuning with a Depot Neighborhood of size

equal to 10% of the requests of each instance. The tests with θ = 20 perform

way worse than the other two, with less coverage for the instances free 0006 and

free 0020. Even though the test with θ = 40 produces a better coverage for instance

free 0019, by the performance profile in Figure 6.2 can be deducted that the tests

with θ = 30 resulted the cheapest overall, followed by θ = 40.

The tuning results with Depot Neighborhood size of 20% of the total requests
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Figure 6.2: Tuning of Polar Clustering angle with Depot Neighborhood size 10%.

are shown in Table 6.6. Both tests with θ = 40 and θ = 30 resulted with better

coverage for some instances (highlighted in green). The tests with θ = 20 didn’t

perform well again. It is now clear how a small angle is not suitable for partitioning

the requests to form the popular petal like structure in the solution. Figure 6.3 shows

the performance profile of these tests, with the value θ = 30 the best performing.

After the three tuning phases, the solutions that must be compared are the ones

produced by using respectively Neighborhood Depot size 5%, 10% and 20% with

a Polar Clustering angle of 40◦, 30◦ and 30◦. As can be seen in the performance

profile in Figure 6.4, the results with parameters 20% - 30◦ perform the best within

the first instances, surpassed only by some solutions obtained with the parameters

5% - 40◦ at last. The final parameter tuning resulted with the choice of the bigger

Depot Neighborhood of 20% the size of the Transport Requests set, meaning that

in fact the requests around the depot can help generate the cheapest routes, while

the Polar Clustering angle parameter should not be too small nor too big, with the

choice of θ = 30.
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Figure 6.3: Tuning of Polar Clustering angle with Depot Neighborhood size 20%.
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Figure 6.4: Final Tuning of Polar Clustering and Depot Neighborhood.
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6.2 Benchmark comparison

The solved instances by the ALNS algorithm that were made available by Optit are

four sets divided by the characteristics of the number of PoIs, number of Transport

Requests and number of available vehicles. Table 6.7 describes the instances that we

are going to compare next and with which tuned parameters the algorithm developed

has solved them. The column CPsize refers to the size of the Candidate Pool, θ the

Polar Clustering angle parameter and DNsize the size of the Depot Neighborhood

(20% of the Transport Requests set size).

Instance IDs NPoI NReq NVeh CPsize θ DNsize

free 0001-0005 25 50 10 3000 30 10
free 0021-0025 251 250 30 15000 30 50
free 0031-0035 100 500 60 10000 30 100
free 0031-0035 200 1000 100 15000 30 200

Table 6.7: The four subset of instances for tuning.

Table 6.8 compares the benchmark solution values of Optit, generated by their

ALSN algorithm with time limit of 300 seconds and a maximum of 1000000, with

the results of the SC algorithm proposed in this thesis. The SC algorithm is run

with a time limit of 15 minutes per instance. The choice of having a wider time

limit is to bring closer the gap of performance between the two algorithms. It is

essential to remember that the SC algorithm doesn’t have the goal to surpass the

ALSN algorithm, instead it should be ideal to merge them trying to improve the

weaknesses of both.

The table is divided in two main columns representing the ALSN solutions (left)

and our algorithm solutions (right).

Looking at the last two columns of the table, with the values of the number of

Transport Requests covered and the cost of the objective function, some cells are

highlighted in red, yellow and green.

Firstly, more evidence is made for the NReq column, since a solution with more

coverage results always better without the consideration of the solution cost.

The green instances show more coverage, meaning that the decomposition tech-

niques used were highly performing, while other instances like free 0035 or free 0048

,these same techniques led to covering much less requests, resulting into too strict

partitions. Less coverage is mainly found within the bigger instances of 500 and

1000 Transport Requests. Those instances were not particularly tested during the

tuning parameter phase and the decomposition techniques resulted less effective.
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ALSN algorithm SC algorithm

NR NReq ObjF NR NReq ObjF

free 0001 5 50 2199.147 7 50 2522.91
free 0002 4 50 2134.198 6 50 2410.45
free 0003 7 50 2197.347 9 50 2338.26
free 0004 5 50 2356.434 7 50 2621.28
free 0005 4 50 1993.333 7 50 2549.51

free 0021 22 250 10046.749 26 250 10402.7
free 0022 22 250 10424.536 30 250 11521.1
free 0023 26 250 10887.098 29 250 10634.2
free 0024 23 249 9968.519 25 250 10069
free 0025 25 249 11211.501 29 250 10710.9

free 0031 60 500 19472.044 54 500 16603.9
free 0032 60 499 18981.504 57 498 18825.4
free 0033 57 500 17126.099 55 500 17274.6
free 0034 52 500 17014.202 50 499 16217.7
free 0035 60 500 20391.985 57 495 20139.4

free 0046 100 983 34589.704 100 988 38620.567
free 0047 100 965 39888.517 100 842 52540.2
free 0048 100 989 36276.13 100 915 54577
free 0049 100 994 35631.464 100 942 56679.6
free 0050 100 997 34878.231 98 996 35633.4

Table 6.8: Comparison of the ALSN algorithm with the SC algorithm.

Meanwhile, when the same coverage is met, the smaller instances (from free 0001

to free 0005) resulted in worse costs. The yellow highlights mean that the solution

cost found is within the 20% of the cost of the ALSN solution. We say that those

results are good for a first approach to an SC algorithm based over the cheapest

paths heuristic, but it can be easily improved by adding some more competitive

local search.

Overall, the SC algorithm developed resulted in more expensive solutions than

the ALSN solutions. The results can be partitioned in three groups: small instances

of 50 Transport Requests, medium instances of 250 and 500 Transport Requests and

big instances of 1000 Transport Requests.

To sum up, the SC algorithm worked as follows:

Small Instances: although the SC algorithm solutions fully cover the Transport

Requests set, the results show a great difference of approximately 300 unit

of costs from the ALSN objective function values. One possible cause is due

56



6.2 Benchmark comparison

to use of simple constructive heuristic without an extensive use of any local

search, narrowing down the number possible routes to generate.

Medium Instances: the SC algorithm exploits the incompatibility constraints by

combining different routes with the objective of finding the solution with more

coverage. Without the solution feasibility constraint, more routes are merged

together where the ALSN algorithm must maintain solution feasibility. The

SC algorithm shows more difficulties following the performance of the ALSN

algorithm with the growth of the Transport Requests set size.

Big Instances: with the growing number of Transport Requests to combine to

generate different routes, the lack of a competitive local search heuristic and

the use of too strict decomposition techniques that are not tuned to such

instance sizes, lead the SC algorithm to generate too expensive routes.
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Chapter 7

Conclusions

In this thesis we have presented a possible matheuristic framework for the solution

of a rich VRP, with focus over the use of a Set Covering formulation. The SC

Formulation takes in input a large set of routes that are optimized with the objective

of finding a minimum cost solution to the VRP.

The algorithm can be described as modular, consisting of a main module that

hosts the matheuristic itself, solving three different mathematical models. Two more

modules are needed for the algorithm to work as intended: a constructive heuristic

needed to generate the input set of routes, and a Patching Heuristic that fixes the

SC solution into a feasible VRP solution. Those two modules can be re implemented

with any heuristic of choice, making the algorithm fully customizable for many VRP

variants that needs to be solved.

The constructive heuristic implemented uses a simple cost based criterion to

choose the next best Transport Request insertion in a route, merging the shortest

path method with time and distance unit costs. The use of simple heuristics main-

tains the algorithm fast and scalable, giving more focus on the matheuristic module

in the middle.

Some light decomposition techniques are used based on customer partitioning. In

particular, Polar Clustering that takes advantage of the natural petal like structure

of the routes, and Depot Neighborhood that exploits the closeness to the depot.

The choice of using both helps the algorithm to be faster and better performing.

Some light Local Search is also added to the Patching Heuristic applied at the end of

the SC optimization in order to demonstrate how the solution can be easily further

improved.

The results obtained from the SC algorithm show how it can be used to exploit

the common weaknesses of other Local Search heuristics, like the ALSN heuristic
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used by Optit. The SC algorithm works well with multiple inter-route constraints

since the use of the SC formulation results more relaxed than the sequential gener-

ation of feasible solution of the common Local Search heuristics.

With large instances, the SC algorithm clearly performs worse because of the

need of a more focused constructive heuristic and more competitive decomposition

techniques. The lack of a real Local Search phase after the Matheuristic Phase is

also a major weakness.

Overall, the SC algorithm proposed has definitely potential for improvements.

As a possible future work, the first hypothesis to test is to change the constructive

heuristic with a more popular one from the literature, fast and scalable, to generate

good routes for the SC model input set. Different criteria can be used other than the

euclidean distance and time duration to generate routes with different underlying

principles. Many different decomposition techniques can be tested, starting from

time based partitioning or even vehicle partitioning.

The Patching Heuristic can also be improved by adding more Local Search oper-

ators that works both intra-route and inter-route, exploiting both Route Generation

Phase and Mathematical Phase as a single constructive heuristic to work upon. In

fact, the second main idea is to merge the SC algorithm with the ALSN algorithm

by Optit, trying to cover the weakness of both algorithms.

All-in-all, the SC algorithm demonstrated great promise for complex medium

instances, being easily adaptable to many real life VRPs. The focus on route combi-

nation rather than solution feasibility helps the algorithm to find solution with full

coverage, other than the minimization of costs. Being fully customizable, the SC

algorithm result highly adaptable to real life logistic problems, making the study of

the SC problem attractive for future development of the field.
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