
Dipartimento di Ingegneria dell'Informazione

Corso di Laurea magistrale in Bioingegneria

Closed-loop control of anesthetic drugs

administration: a comparison between PID

and MPC

Relatore: Prof. Simone Del Favero

Correlatrice: Dott. ssa Eleonora Manzoni

Laureanda: Anastasia Borghi

Anno accademico: 2021-2022

Data di laurea: 14/07/2022





Contents

Sommario 3

Abstract 4

Introduction 5

1 Patient modeling and simulation 7

1.1 Anesthesia paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Patient modeling and simulation . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 PKPD models of the patient . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Control objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Open-loop simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 PID 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Induction phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Maintenance phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Di�erent set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.1 Induction phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.2 Maintenance phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 MPC 68

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Patient model for MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 Model linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 MPC design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Induction phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Comparison between PID and MPC . . . . . . . . . . . . . . . . . . . . . . 92

Conclusion 99

Bibliography 100

2



Sommario

Il controllo automatico dell'anestesia è una questione rilevante nella pratica clinica in

quanto provvede ad una somministrazione sicura e personalizzata di farmaci anestetici,

fornendo al tempo stesso vantaggi per gli anestesisti, come ad esempio la riduzione del

carico di lavoro e la conseguente possibilità di focalizzarsi su compiti di alto livello e la

gestione delle emergenze, e per i pazienti stessi, in quanto si minimizzerebbe la possi-

bilità di errore umano, come il sottodosaggio o sovradosaggio accidentale. L'obiettivo

di questa tesi è il confronto di due controllori per la somministrazione in closed-loop di

farmaci anestetici. Questo lavoro bene�cia dell'esistenza di un simulatore del paziente,

implementato in Matlab&Simulink 1, che riceve in ingresso le dosi di farmaci anestetici

e fornisce in uscita variabili anestetiche ed emodinamiche, tramite le quali è possibile

monitorare gli e�etti dell'anestesia nel paziente. Per l'implementazione del controllo

automatico dell'anestesia sono stati progettati un controllore Proporzionale-Integrale-

Derivativo (PID) ed un controllore Model Predictive Control (MPC). Questo problema

di controllo è un problema multivariabile, in quanto sono stati considerati tre farmaci

da controllare. Per questo motivo sono stati progettati tre controllori PID, applicandoli

direttamente al suddetto simulatore. Con la strategia MPC è invece possibile gestire casi

multivariabili. Preventivamente all'applicazione del controllore MPC, vista la presenza

di non linearità nel simulatore, il modello del paziente è stato estratto dal simulatore e

linearizzato. Le performance dei due controllori sono state testate e confrontate in diversi

scenari simulativi su una popolazione di 24 pazienti.

1C. Ionescu, M. Neckebroek, M. Ghita and D. Copot. An Open Source Patient Simulator for Design
and Evaluation of Computer Based Multiple Drug Dosing Control for Anesthetic and Hemodynamic
Variables. IEEE Access, 2021.
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Abstract

The automated control of anesthesia is a relevant issue in clinical practice since it provides

a safe and individualized administration of anesthetic drugs, providing at the same time

advantages for the anesthesiologists, such as the workload reduction and the consequent

possibility of focusing on high level tasks and emergency management, and for the patients

themselves, since the possibility of human error, such as under- or over-dosing, would be

minimized. The aim of this thesis is to compare two controllers for the implementation

of the closed-loop anesthetic drugs delivery. This work bene�ts from the existence of

a patient simulator, implemented in Matlab&Simulink 2, which receives in input the

doses of the anesthetic drugs and outputs the anesthetic and hemodynamic variables,

through which is possible to monitor the e�ects of anesthesia in the patient. For the

implementation of the automated control of anesthesia, a Proportional-Integral-Derivative

(PID) controller and a Model Predictive Control (MPC) controller have been design. This

control problem is a multivariable problem, since three drugs have been considered. For

this reason three PID controllers have been designed, applying them directly to the above

mentioned simulator. Previously to the application of the MPC controller, the patient

model has been extracted form the simulator and linearized. The performance of the two

controllers have been tested and compared in several simulative scenarios on a population

of 24 patients.

2C. Ionescu, M. Neckebroek, M. Ghita and D. Copot. An Open Source Patient Simulator for Design
and Evaluation of Computer Based Multiple Drug Dosing Control for Anesthetic and Hemodynamic
Variables. IEEE Access, 2021.
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Introduction

E�ective control of the total intravenous anesthesia (TIVA) is one of the most important

issues in the �eld of surgery, because millions of people worldwide undergo operations

daily. Indeed, inadequate intraoperative anesthesia can cause several complications, such

as [11], [12]:

� unintended intraoperative awareness, caused by underdosing of anesthetic drugs;

� deep hypnotic levels, caused by overdosing of anesthetic drugs, that are associated

with postoperative mortality. A cumulative time with Bispectral Index (BIS, an

hypnotic level index that will be considered in this thesis) <45 has been associ-

ated with poor outcomes in the elderly, in patients with cancer and during cardiac

surgery;

� changes in the hemodynamic system, for example low mean arterial pressure;

Indeed, patient safety is the motivation of the use of automation in clinical anesthesia

delivey. Nowadays, computer-controlled drug administration is implemented by open-

loop target-controlled infusion (TCI) systems, the �rst step toward automation of drug

delivery. TCIs maintain a constant infusion rate of the anesthetic, modeled using phar-

macokinetics principles for the target e�ect-site or plasma concentrations dictated by the

clinicians. However, the anesthesiologist is implied in the control loop by selecting the

initial target doses and adjusting them accordingly to the peri-operative evaluation of

the patient's state. The e�ect of the drugs on each patient is assumed by the clinicians

based on monitoring devices and clinical expertise. While this strategy is manually closed

by the anesthesiologist, closed-loop control systems use direct measurements from the

patient monitoring in order to automatically adapt the drugs infusion rates. The mea-

sured responses of the patient are used as feedback for the controller [12]. Several studies

claim that automated administration outperform manual control of anesthetic drugs. For

instance, the results of a meta-analysis of randomized controlled trials to evaluate the

safety and accuracy of closed-loop systems for anesthesia regulation, compared with man-

ual control, have been published in [4]. In particular, to assess the clinical signi�cance of

the control aspect of closed-loop systems, it has been investigated from this meta-analysis

if there is a signi�cant improvement in the percentage of time of "desired" control (the

variable of interest to control in the prede�ned range of target control) with respect to

manual control. Regarding anesthesia, the improvement has been assessed to 17% for
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maintenance of a target level of anesthesia. Moreover, unershooting and overshooting

have been chosen as parameters of safety evaluation: the improvement was 12% for avoid-

ance of undershooting or overshooting a given level of anesthesia.

An important aspect to consider in the introduction of automated drug delivery systems

is the workload reduction and vigilance increase of clinicians. The anesthesiologists would

be released from repetitive trivial tasks, allowing them to focus on decisions that require

human cognitive processes, emergency clinical decisions or medical sta� cooperation. The

workload reduction can also avoid human distractions or bias introduced by possible

burnout of the anesthesiologists, thus resulting in the minimization of accidental over- or

under-dosing of anesthetic drugs [12]. Another feature to deal with is cost-e�ectiveness:

through the quanti�cation of the performance of closed-loop control of drugs administra-

tion it is possible to analyze the cost-savings with respect to the manual infusion control.

In fact, the reduction of the workload of the anesthesiologists and the reduction of the

amount of drug used are important issues to assess the socio-economic bene�ts of the

automation of anesthesia [26]. Another advantage of the automated drug dosing is that it

allows a better personalized approach and knowledge-based precision therapy with higher

reproductibility. Indeed, a decrease in variation in clinical practice is a key goal in quality

improvement, and only feedback has the ability to reduce the e�ect of uncertainty, in this

case mainly due to interpatient variability. Thus, appropriately designed and implemented

closed-loop control systems in anesthesia will provide less variability in desired clinical ef-

fects than manual adjustments performed by the anesthesiologists [11]. Over the past

decades, research groups have focused on multiple control strategies, patients states mon-

itors, adaptive optimization algorithms, drugs interactions, modelling approaches, and

more other components of the complex process towards the control of anesthesia. The

new technologies and methodologies brought by control systems could change the way

people receive anesthesia. It would enable personalized services that are more responsive

to patient's state, o�ering optimized drug doses and preventive surgical approaches that

ultimately create a more sustainable patient peri- and post-anesthesia care [12].

This thesis is organized as follows. Chapter 1 provides the description of the anesthesia

paradigm, with the introduction of the drugs and monitoring variables, and the report of

the patient simulator, with the mathematical formulation of the patient model. Moreover,

the control objectives and the indices for the performance assessment are examined. Fi-

nally, the open-loop simulation results are reported. Chapter 2 contains the PID control

design, with the tuning description, and the results of the simulations of the induction

and maintenance phases of anesthesia. Chapter 3 reports the MPC strategy, with the

patient model linearization, the design description of the controller, and the results of the

simulation of the induction phase of anesthesia. Ultimately, the comparison between the

PID and the MPC control has been performed.

6



Chapter 1

Patient modeling and simulation

1.1 Anesthesia paradigm

The term anesthesia refers to a drug-induced reversible pharmacological state, based on

three main e�ects induced on the patient: hypnosis, analgesia and are�exia. In this thesis,

the total intravenous anesthesia (TIVA) has been considered. The TIVA uses the con-

tinuous infusion or repeated boluses of short-acting hypnotic drugs, opioids and muscle

relaxants. The presentation of this material is mainly inspired by the treatment proposed

in [28].

Hypnosis

Hypnosis is de�ned as the level of unconsciousness or amnesia required to prevent intra-

operative awareness and memorization. Several parameters computed using the raw data

from the electroencephalogram (EEG) have been used to monitor the level of hypnosis, for

example the spectral edge frequency, the auditory evoked potentials and the approximate

entropy. Recently, the Bispectral Index (BIS) has taken the lead, being the index most

widely used by anesthesiologists and researchers in the �eld to infer hypnosis. The BIS is

an EEG-based index system. A sensor, placed on the forehead of the patient, transmits

EEG signals to a digital signal converter, which sends the information to the monitor for

processing and analysis. The BIS uses a proprietary algorithm that elaborates the EEG

signal in real time and computes the BIS index, which is a natural number. This index is

dimensionless and ranges from 0 to 100, and indicates the patient's level of consciousness.

A value of 100 corresponds to a complete awake and conscious state, whereas 0 corre-

sponds to a profound state of coma or unconsciousness that is re�ected by an isoelectric

EEG. This system measures speci�c features of the spectrogram, the bispectrum, and the

level of burst suppression and uses a predetermined weighting scheme to convert these

features into the BIS index value. From a clinical point of view, a patient is considered

to be appropriately anesthetized when the BIS value ranges from 40 to 60 [28]. Table 1.1

reports the level of hypnosis related to the BIS scores [29].
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In this simulation, the drug administered to induce hypnosis is Propofol. Propofol, a phe-

nolic derivate, is a fast-acting and fast-recovery drug, the most frequently provided for

the TIVA, and it has been broadly acknowledged as most suitable for use with closed-loop

control systems. At the neurophysiology level, it is an agonist at the GABA receptors

which function is to enhance inhibition. There is usually a balance between excitatory

and inhibitory control of pyramidal neurons, and Propofol improves the inhibitory ef-

fects. Moreover, it a�ects the thalamus by increasing inhibition, which decreases excita-

tory inputs to the cortex. Propofol potential side e�ects are cardiovascular depression (see

Section 1.2.1), respiratory depression, pain during injection and allergic reactions [2], [28].

BIS score Level of hypnosis

[100 - 90] Awake state

[90 - 70] Light and moderate sedation

[70 - 60] Deep sedation

[60 - 40] General anesthesia

[40 - 1] Deep hypnotic state

0 Flat EEG

Table 1.1: Bispectral index score

Analgesia

Analgesia is de�ned as the absence of pain. During anesthetic procedures, this state is

necessary for the suppression of the physiological responses to nociceptive stimulations.

Monitoring analgesia is considered the most complex task during anesthesia. In recent

years, a lot of tools to objectively assess the analgesia component, excepting the doctor's

expertise, have been invented and commercialized. They are based on the frontal elec-

troencephalography (EEG) and electromyography (EMG) responses, evaluation of the

autonomic state and autonomic reactions, spinal re�ex pathways and calculated drug

concentrations. However, there are currently no validated objective indexes of nocicep-

tion recommended for clinical use, so no reliable pain measurement device has yet been

introduced in clinical practice. The physiological pathway of pain is a complex process

consisting of three main phases:

� The microscopic level consists of phenomena involved in transduction: when a stim-

ulus is applied to the skin, the nociceptors located there trigger action potentials

by converting the physical energy from a noxious thermal, mechanical or chemical

stimulus into electrochemical energy;

� The mesoscopic level mainly describes the pain transmission phase: the signals are

transmitted in the form of action potentials via nerve �bers from the site of transduc-

tion (periphery) to the dorsal root ganglion, which then activates the interneurons;
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� The macroscopic level includes the action-reaction phase from stimulus to signal

modulation and perception: the appreciation of signals arriving in speci�ed areas of

the cerebral cortex as pain, based on descending inhibitor and facilitator input from

the brainstem that modulates the nociceptive transmission from the spinal cord.

Despite modern techniques, pain remains a highly subjective experience and health care

professionals have to rely on patients' ratings. Several factors, such as age, race and gen-

der, seem to modify patients' pain perception and reporting. Identi�cation of the optimal

pain scale in noncommunicative (anesthetized) patients is in progress, and no single tool

at the present time is universally accepted [7]. In this simulation, the variable used to

assess the pain level is the Richmond agitation sedation scale (RASS). RASS, which is a

dimensionless variable, is a 10 point scale, with four levels of anxiety or agitation (+1 to

+4), one level to denote a calm and alert state (0), and 5 levels of sedation (-1 to -5). The

values and descriptions of each level of the scale are listed in Table 1.2. This scale can be

used to assess both sedation and analgesia, but in this simulation it is only used to eval-

uate analgesia. The identi�cation of the RASS score is performed by clinicians through

the verbal or motor stimulation of the patient and the observation of its response, and it

is considered to be highly reliable in medical and surgical, ventilated and nonventilated,

sedated and nonsedated patients [30].

Analgesia is obtained with the infusion of analgesic drugs, in this case Remifentanil has

been examined. Remifentanil is an opioid with a unique pharmacokinetic pro�le. It dif-

fers from the other opioids since it possesses an ester linkage, making it susceptible to

nonspeci�c esterases in tissues and blood, thus resulting in a rapid and uniform clear-

ance leading to highly predictable onset and o�set of action. Remifentanil has a rapid

blood-brain equilibration time of between 1 and 1.5 min. The time for the concentration

of Remifentanil at its e�ect-site to decrease by 50 % is also short: 3 to 5 min. Computer

modeling predicts that the time for Remifentanil concentration to decrease by 80 % is

less than 15 min. Thus, it has a fast onset and o�set, allowing it to be easily titratable

in a clinical setting. Although the rapid termination of its e�ect may reduce problems

associated with side e�ects, it also results in the absence of any analgesic activity in the

immediate withdrawal period. Remifentanil side e�ects include respiratory depression

and hemodynamic alterations (see Section 1.2.1), in particular with high doses or when

coadministered with other agents that produce vasodilatory e�ects, such as Propofol [6].
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RASS score Term Description

+4 Combative Overly combative/violent, danger to sta�

+3 Very agitated Aggressive behaviour

+2 Agitated Nonpurposeful movements

+1 Restless Anxious but not aggressive

0 Alert and calm

-1 Drowsy Not fully alert/sustained awakening with eye contact

-2 Light sedation Brie�y awakens with eye contact to voice

-3 Moderate sedation Movements to voice/no eye contact

-4 Deep sedation No responce but movements to physical stimulation

-5 Unarousable No response to any stimulation

Table 1.2: Richmond agitation sedation scale

Are�exia

Are�exia, evaluated through the neuromuscular blockade (NMB), is de�ned as the lack

of movement and it aims to achieve an adequate level of paralysis to perform surgical

procedures. NMB is dimensionless and is expressed in [%]. This variable varies from

0% to 100%, where 0% represents the total paralysis and 100% represents the total mus-

cular activity. From a physiological point of view, the principal pharmacological e�ect

of neuromuscular-blocking drugs (NMBD) is to interrupt the transmission of synaptic

signaling at the neuromuscular junction (NMJ), a chemical synapse located in the pe-

ripheral nervous system, by interacting with the nicotinic acetylcholine receptor (AChR).

In this thesis, the neuromuscular-blocking drug considered is Atracurium, a nondepolariz-

ing NMBD. Regarding the duration of the e�ect, it is classi�ed as an intermediate-acting

drug (its e�ect lasts from 45 to 60 min). The chemical classi�cation is benzylisoquinolines,

and it is a mixture of 10 stereoisomers. The drug is cleared by Hofmann elimination, a

nonbiologic and spontaneous process independent on renal, hepatic and enzimatic func-

tions, thus it is indicated for patients with severe renal and hepatic diseases. The clearance

rate is in�uenced by pH and body temperature. Atracurium does not have in�uence on

the cardiovascular system, indeed it is recommended when the cardiovascular stability is

required [28], [2].

NMB monitoring has three main purposes [28],[7]:

� To ensure appropriate relaxation of vocal cords and neck muscles to allow safe

tracheal intubation and mechanical ventilation, and facilitate its timing;

� To assess the muscle tonus during surgery, allowing for adjustment to particular

surgical requirements of immobility and muscle relaxation;

� To estimate the level of residual NMB and muscle strength at the end of the surgical

procedure, to decide the timing of tracheal extubation and assumption of sponta-
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neous autonomous ventilation.

The principle of NMB monitoring consists of the electrical stimulation of a motor nerve

and the evaluation of the induced muscle response. Usually the electrodes are applied

over the cleaned skin above the ulnar nerve at the wrist. The electrical stimulation can

be generated in various ways, including the train-of-four (TOF), which is characterized

by a sequence of four pulses (twitches) at 0.5 s intervals. The train of pulses is repeated

with a TOF period that can be selected and is typically 20 s, a value that ensures the

recovery of the muscle to its unstimulated state. TOF is a useful method for NMB mon-

itoring because it provides a good measure of neuromuscular blockade, it is less painful

than other stimulation techniques (for example tetanic stimulation) and it does not a�ect

subsequent recovery [7], [28].

Hemodynamic variables

To complete the anesthesia paradigm the hemodynamic system must be taken into ac-

count. The goal of hemodynamic management is to maintain an adequate organ perfusion.

Since organ perfusion is di�cult to measure in vivo, systemic blood pressure is monitored

as an indicator of blood �ow and organ perfusion. The relationship between systemic

blood pressure and systemic perfusion can be modeled by the the following law:

MAP - CVP = SVR × CO, where MAP is the mean arterial pressure, CVP is the central

venous pressure, SVR is the systemic vascular resistance and CO is the cardiac output.

In this simulation, the hemodynamic system is monitored through MAP and CO. Mean

arterial pressure can be calculated with the following formula: MAP = CO × TPR,

where TPR is the total peripheral vascular resistance. The measurement unit of MAP is

[mmHg]. Cardiac output can be obtained by: CO = HR × SV, where HR is the heart

rate and SV is the stroke volume, which is the volume of blood pumped from the left

ventricle per beat and it is in�uenced by preload, afterload and myocardial compliance

and contractility [28]. The measurement unit of CO is [l/min]. Hypnotic and analgesic

drugs in�uence the hemodynamic variables (MAP and CO), as reported in Section 1.2.1

Phases of anesthesia

There are three phases of anesthesia during a standard surgery procedure [7]:

� Induction phase: it is the initial phase of anesthesia, during which the anesthetic

variables (BIS, RASS and NMB) are driven from the baseline values to the target

values;

� Maintenance phase: at this stage the surgery procedures are performed, once the

required levels of the anesthetic variables are achieved. It is important to maintain
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an adequate level of hypnosis despite the occurrence of disturbances, mainly due to

noxious stimuli;

� Emergency phase: it is the �nal phase of anesthesia, during which the administation

of the drugs is stopped (usually during or at the end of the skin closure). The patient

starts to recover from anesthesia after 8-10 min.

1.2 Patient modeling and simulation

1.2.1 PKPD models of the patient

V2 MUSCLE V1 BLOOD V3 FAT

Effect− site Compartment Hill Function

k21

k12

k13

k31
k1e

u(t)

ke0

Ce y(t)

k10

Figure 1.1: PKPD model for one drug

The goal of anesthesia during surgery procedures is to rapidly induce unconsciousness and

avoid awareness during the operation, to titrate analgesia to avoid responses to nocicep-

tive stimulations, to induce paralysis, to maintain hemodynamic stability and to facilitate

rapid recovery. This cannot be achieved with constant infusion rates of anesthetic drugs:

boluses are given to rapidly induce anesthesia, to adjust drug dosing during the proce-

dure and in anticipation or response to stimulations. As an anticipation of the end of the

surgery, drug dosing adjustments can be made to ensure rapid recovery. For these reasons

and for prediction and model-based control purposes of anesthesia, an appropriate model

of the patient is crucial in capturing the complex physiological phenomena of the inter-

action between drugs and patient responses. The presentation of this material is inspired

by the treatment proposed in [7] and [16]. The most popular modeling approach is the

PKPD population model [7]. A PKPD model in general consists of a pharmacokinetic

(PK) model section in series with a pharmacodynamic (PD) model section. The PK model

component provides the concentration of the drug over time in the sampled body �uid

(normally blood). The PK compartmental models are the most commonly used for drug

kinetics and are based on Gaussian normalized distributions. PK principles refer to the

dose-concentration dependency by modeling the processes of absorption, distribution and

elimination of the drug in the body. The PD model component relates the concentration

of drug obtained by the PK model to the observed e�ect at the e�ect-site compartment,

i.e. the site of action of the drug [10]. Usually, in biological systems, the PK component
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is linear while the PD component is non linear.

In Figure 1.1 it is shown a generic PKPD model of a drug, which is valid for Propofol and,

excluding the Hill function, also for Remifentanil. The three compartments of the upper

part of Figure 1.1 (Blood, muscle and fat) are the PK model components, while the e�ect-

site compartment and the Hill function are the PD model components. It is common to

�nd in the literature individual compartments associated with tissue types: in the con-

text of the TIVA, the central compartment represents the blood, being the site where the

drug is administered. The peripheral compartments (fat and muscles) only exchange drug

with each other indirectly through the central compartment. Furthermore, the drug is

assumed only to be eliminated from the central compartment; in the intravenous context,

such elimination occurs typically through metabolism in the liver, combined with renal

excretion. It is straightforward to derive the state space equations for a compartment

system of arbitrary order and topology. However, increasing the number of parameters

also increases the demand on clinical identi�cation data to avoid over-�tting. For clinical

purposes, the three compartmental model generally provides an adequate �t for experi-

mental PK data of most anesthetic drugs. Regarding the linearity of the model, the only

non linear part is the Hill function. This type of models, that consist of a linear dynamic

followed by a non linear dynamic are called Wiener-Hammerstein models [23].

Models for anesthetic variables

The number of compartments of the PK model required to capture response dynamics

vary between drugs: the PK models of Propofol and Remifentanil are three compartmental

linear models [16], as presented in Equation 1.1.⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1̇(t) = −(k10 + k12 + k13)x1(t) + k21x2(t) + k31x3(t) +

1

V1

u(t)

x2̇(t) = k12x1(t)− k21x2(t)

x3̇(t) = k13x1(t)− k31x3(t)

(1.1)

where xi [mg/ml] (i=1,2,3) is the concentration of the drug in the i-th compartment, kij

[min−1] is the drug transfer rate from the i-th to the j-th compartment, ki0 [min−1] is

the drug metabolic rate of the i-th compartment, u(t) [mg/min] is the drug infusion rate

in the central compartment (blood) and V1 [l] is the volume of the central compartment

[16].

An additional hypothetical e�ect-site compartment is added to represent the lag between

plasma drug concentration and drug response [23]. xe is the drug concentration in this

compartment and it is called e�ect-site compartment concentration. The e�ect com-

partment receives drug from the central compartment by a �rst-order process and it is
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considered as a virtual additional compartment:

xė (t) = k1ex1(t)− ke0xe(t) (1.2)

The di�erential equation of the e�ect-site compartment is linear and it is considered as

the �rst part of the PD model. Below the matrices of the state space representation of

the PK model and the previously mentioned e�ect-site compartment are reported:

A =

⎡⎢⎢⎢⎢⎣
−(k10 + k12 + k13) k21 k31 0

k12 −k21 0 0

k13 0 −k31 0

k1e 0 0 −ke0

⎤⎥⎥⎥⎥⎦ (1.3)

B =

⎡⎢⎢⎢⎢⎢⎣
1

V1

0

0

0

⎤⎥⎥⎥⎥⎥⎦ (1.4)

C =
[︂
0 0 0 1

]︂
(1.5)

D =
[︂
0
]︂

(1.6)

From the matrix representation it is straightforward to notice that the input u(t) acts

directly only on the plasma concentration, the output is in�uenced only by the e�ect-site

concentration and there is no feedforward.

Propofol PK model parameters are calculated using the following set of equations [16]:

k10 =
Cl1

V1

[min−1]; k12 =
Cl2

V1

[min−1]; k13 =
Cl3

V1

[min−1];

k21 =
Cl2

V2

[min−1]; k31 =
Cl3

V3

[min−1]; ke0 = k1e = 0.456 [min−1];

V1 = 4.27 [l]; V2 = 18.9− 0.39(age− 53) [l]; V3 = 238 [l];

Cl1 = 1.89 + 0.0456(weight− 77)− 0.0681(lbm− 59) + 0.0264(height− 177) [l/min];

Cl2 = 1.29− 0.024(age− 53) [l/min];Cl3 = 0.836 [l/min];

where Vi (i = 1,2,3) is the volume of the i-th compartment and Cli (i = 1,2,3) is the

clearance rate of the i-th compartment. Through these equations, the PK model of

Propofol includes the interpatient variability; in fact, the parameters age, weight, height

and lbm are patient speci�c (see Table 1.3).

The Propofol transfer rate from the plasma compartment to the e�ect-site compartment

is considered in clinical practice to be equal to the rate of drug removal from the e�ect-site

compartment: ke0 = k1e = 0.456 [min−1]. The second part of the Propofol PD model is

the dose-e�ect response and it is represented by a nonlinear Hill function [23]:

E = E0 − Emax
xγ
e

Cγ
50 + xγ

e
(1.7)
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where E denotes the e�ect of Propofol (BIS index) at the e�ect-site, xe is the e�ect-site

concentration of Propofol at time t, E0 is the baseline value, meaning that there is no

drug infusion and the patient is awake, Emax is the maximum e�ect that can be achieved

by the drug infusion, C50 is the Propofol concentration needed to attain 50 % of Emax and

γ is the Hill coe�cient of sigmoidicity, representing the steepness of the curve but also

the degree of nonlinearity. γ and C50 delineate the patient sensitivity to the drug. These

values, reported in Table 1.3, are patient dependent, thus also the Hill function for the

BIS index includes the interpatient variability.

The Hill function (closely related to the logistic function) is structurally simple and has

the following characteristics, which are observed in clinical practice: it has a linear region

around xe = C50 and saturation e�ects as xe → 0 and xe → ∞. For some drugs, the use

of the Hill function can be motivated by ligand-binding models from receptor theory [7].
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Figure 1.2: Hill functions as γ varies

In Figure 1.2 it is illustrated how the Hill function is a�ected by changing γ: as γ

increases, the steepness of the curve increases and the maximum e�ect value is achieved

quicker.
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Figure 1.3: Hill functions as C50 varies

In Figure 1.3 it is illustrated how the Hill function is a�ected by changing C50: as C50

increases, the steepness of the curve decreases and the maximum e�ect value is achieved

slower.

Regarding Remifentanil, its PK model parameters are calculated using the following set

of equations [22]:

k10 =
Cl1

V1

[min−1]; k12 =
Cl2

V1

[min−1]; k13 =
Cl3

V1

[min−1];

k21 =
Cl2

V2

[min−1]; k31 =
Cl3

V3

[min−1]; ke0 = 0.595− 0.007(age− 40) [min−1];

V1 = 5.1− 0.0201(age− 40) + 0.072(lbm− 55) [l];

V2 = 9.82− 0.0811(age− 40) + 0.108(lbm− 55) [l];

V3 = 5.42 [l];

Cl1 = 2.6 + 0.0162(age− 40)− 0.0191(lbm− 55) [l/min];

Cl2 = 2.05− 0.0301(age− 40) [l/min]; Cl3 = 0.076− 0.00113(age− 40) [l/min];

Through these equations, the PK model of Remifentanil includes the interpatient vari-

ability; in fact, the parameters age, weight, height and lbm are patient speci�c (see Table

1.3).

As for Propofol, the �rst part of the Remifentanil PD model is the e�ect-site compart-

ment, whose drug transfer rates are: ke0 = 0.357 [min−1]; k1e = 0.456 [min−1].

The second part of the Remifentanil PD model is the nonlinear dose-e�ect response [16]:
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RASS =
1

k1xe + k0

−2

s+ 2
(1.8)

where k1 = k0 = 0.81. From the control perspective of the TIVA, no direct opioid-to-

analgesia dynamic model is available, also due to the lack of reliable and robust patient-

monitoring technology and a systematic analysis of available devices for pain monitoring.

For this reason, unlike Propofol, the RASS PD component has been modeled with a �rst

order transfer function, not with an Hill function.

In the case of Atracurium, an alternative model, with a reduced number of parameters,

has been introduced [7]. The proposed model has the following transfer function, consid-

ered as the PK part:

xe(s)

u(s)
=

k1k2k3α
3

(s+ k1α)(s+ k2α)(s+ k3α)
(1.9)

where k1 = 1, k2 = 4 and k3 = 10.

The Atracurium PD model is a nonlinear Hill function:

E = Emax
Cγ

50

Cγ
50 + xγ

e
(1.10)

The entire model includes only two parameters to estimate: the parameter α of the linear

kynetics and the parameter γ of the nonlinear dynamics. The value of γ is listed in Table

1.4, while α = 0.0374. These parameters are not patient dependent, so the NMB variable

does not include the interpatient variability.

The Atracurium transfer function can be written in state space form as follows:⎧⎨⎩ẋ(t) = A(α)x(t) +B(α)u(t)

xe(t) = Cx(t)
(1.11)

where

A(α) =

⎡⎢⎣−α 0 0

4α −4α 0

0 10α −10α

⎤⎥⎦ (1.12)

B(α) =

⎡⎢⎣α0
0

⎤⎥⎦ (1.13)

C =
[︂
0 0 1

]︂
(1.14)

Whereas there is no signi�cant PKPD interaction between commonly employed neuromus-

cular blocking agents and other anesthetic drugs, it is well known that several hypnotic

and analgesic agents interact synergistically both toward loss of awareness and nocicep-

tion. Notably, Propofol exhibits a synergistic interaction with Remifentanil [7],[15]. In

clinical practice, when Remifentanil is coadministered, the synergy results in the sparing
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of the Propofol dose necessary to achieve the required level of hypnosis. The PK model

of Propofol is not a�ected by Remifentanil coadministration, and the same applies to

the PK model of Remifentanil. Consequently, the synergy is attributed to the PD. This

synergy is commonly modeled using a generalization of the Hill curve to a 3D surface (see

Figure 1.4), i.e., the hypnotic e�ect becomes a function of the normalized Propofol and

Remifentanil e�ect-site concentrations:

E = E0 − Emax
Iγ

1 + Iγ
(1.15)

where

I = UP + UR + σUPUR (1.16)

denotes the interaction term.

UP =
xeP

C50P

and UR =
xeR

C50R

are the e�ect-site concentrations of Propofol and Remifentanil,

respectively, normalized to their concentrations at half maximum e�ect. σ denotes the

amount of synergy present between Propofol and Remifentanil, and γ represents the Hill

coe�cient of sigmoidicity. γ is patient dependent (see Table 1.3), while σ = 8.2.

Figure 1.4: BIS surface model: Propofol and Remifentanil interaction
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Models for hemodynamic variables

There is evidence to claim that Remifentanil a�ects negatively the mean arterial pressure

(MAP), and this in�uence is modeled by [16]:

MAP =
−1

k1xe + k0
(1.17)

E = Emax
MAP γ

MAP γ + Cγ
50

(1.18)

where k1 = k0 = 0.31.

Remifentanil has instead a positive in�uence on cardiac output (CO):

CO =
1

k1xe + k0
(1.19)

E = Emax
COγ

COγ + Cγ
50

(1.20)

where k1 = k0 = 0.51.

Propofol causes hypotension, due to vasodilation. Hypotension can be very pronounced

(more than 40 %), and it is function of the dosage of the drug (the higher the drug dosage,

the higher the hypotension) [2]. The following equations show how MAP is negatively

a�ected by Propofol:

MAP =
−1

k1xe + k0
(1.21)

E = Emax
MAP γ

MAP γ + Cγ
50

(1.22)

where k1 = 0.61 and k0 = 0.81.

Finally, Propofol has a slight negative in�uence even on CO:

CO =
−1

k1xe + k0
(1.23)

E = Emax
COγ

COγ + Cγ
50

(1.24)

where k1 = k0 = 0.81.

The values of Emax, C50 and γ in Equations 1.18, 1.20, 1.22 and 1.24 are reported in Table

1.4.

1.2.2 Simulation

Considering the patient model presented above, it is now possible to describe the simula-

tions of the closed-loop control of anesthetic drugs administration. This simulations have

been performed on a population of 24 patients, whose biometric values are reported in

Table 1.3. The patient pro�les have been arti�cially created to mimic as close as possible
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reality, re�ecting the interpatient variability [16]. The 25th patient represents the mean

patient.

Index Age Height Weight Gender lbm

[yrs] [cm] [kg] [1=male] [kg]

1 74 164 88 1 60

2 67 161 69 1 53

3 75 176 101 1 69

4 69 173 97 1 67

5 45 171 64 1 52

6 57 182 80 1 62

7 74 155 55 1 44

8 71 172 78 1 60

9 65 176 77 1 60

10 72 192 73 1 62

11 69 168 84 1 60

12 60 190 92 1 71

13 61 177 81 1 62

14 54 173 86 1 63

15 71 172 83 1 62

16 53 186 114 1 77

17 72 162 87 1 59

18 61 182 93 1 69

19 70 167 77 1 58

20 69 168 82 1 60

21 69 158 81 1 55

22 60 165 85 1 60

23 70 173 69 1 56

24 56 186 99 1 73

25 65.2 172.9 83.1 1 61.4

Table 1.3: Patients database: PK model biometric values
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E0 Emax C50 γ

Propofol → BIS 98 94 4.16 2

Propofol → MAP 5 5 6 4.5

Propofol → CO 5 5 8 4.5

Remifentanil → MAP 70 70 17 4.5

Remifentanil → CO 15 5 12 4.5

Atracurium → NMB - 94 3.2425 2.6677

Table 1.4: Hill functions parameters

In Table 1.3, lbm is the lean body mass, that is the mass of the body minus the

storage lipid. lbm is calculated di�erently for males and females, and can be obtained by

the James equation from the height and the weight of the patient (see Table 1.3) [7]:⎧⎪⎪⎨⎪⎪⎩
lbmmale = 1.1weight− 128

height2

weight2

lbmfemale = 1.07weight− 148
height2

weight2

(1.25)

Table 1.3 reports the biometric data of the patients: age, height, weight, gender and lean

body mass are used to individualize the Propofol and Remifentanil PK model components.

Table 1.4 lists the Hill functions parameters related to the PD models of Propofol and

Atracurium and the Hill functions parameters that model the in�uence of Propofol and

Remifentanil on the hemodynamic variables. This parameters are not patient dependent,

but are the mean population values. In particular, Propofol → MAP represents the

in�uence of Propofol on MAP, i.e. the Hill function that relates the e�ect-site Propofol

concentration to the modi�cation of the MAP level. The same concept can be applied to

the other variables.
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Figure 1.5: General structure of the simulator

The patient simulator employed for this thesis, described in [16], is an open source

simulator, programmed in Matlab&Simulink from MathWorks(R) software platform. As

shown in Figure 1.5, it includes �ve inputs and �ve outputs. The inputs are the infu-

sion rates of the drugs: Propofol, Remifentanil, Atracurium, Dopamine (DP) and Sodium

Nitroprusside (SNP). DP and SNP have antagonistic e�ects on the hemodynamic sys-

tem, but are not taken into account in this thesis, thus only Propofol, Remifentanil and

Atracurium are considered as actual inputs. Regarding the measurement units of the

drugs infusion rates, Propofol infusion rate is expressed in [mg/(kg min)], Remifentanil

infusion rate in [µg/(kg min)] and Atracurium infusion rate in [mg/(kg min)]. Regarding

outputs, as explained above, BIS, RASS and NMB are the anesthetic variables, while CO

and MAP are the hemodynamic variables.

I/O BIS RASS NMB CO MAP

Propofol ⇓ − − ↓ ↓
Remifentanil ↓ ⇓ ↓ ↑ ↓
Atracurium − − ⇓ − −

Table 1.5: I/O interactions
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Table 1.5 describes the interactions between inputs and outputs of the simulator. The

direct cause-e�ect models (indicated in Table 1.5 by the double arrows) include: Propofol

to BIS, Remifentanil to RASS and Atracurium to NMB. The interaction models (indicated

in Table 1.5 by the single arrows) include: Propofol and Remifentanil synergic e�ect on

BIS, Remifentanil to NMB, MAP and CO, Propofol to CO and MAP [16]. The downward

pointing arrow means that by increasing the drug infusion rate, the corresponding variable

decreases, whereas the upward pointing arrow means that by increasing the drug infusion

rate, the corresponding variable increases. In the patient simulator, the direct cause-

e�ect models and the interaction models are the PKPD models described in Section 1.2.1,

implemented through a combination of Matlab tools, as for the state space representation

of the PK models, and Simulink blocks, as for the Hill functions.

The sampling time of the simulator is Ts = 1 s. In order to include the quantization in

the simulation, the function round (round to the nearest integer) has been used for the

anesthetic variables, because in their estimation decimal values cannot be considered.

Drug Saturation

Propofol [mg/(kg min)] [0 - 5V1/weight]

Remifentanil [µg/(kg min)] [0 - 2.5V1/weight]

Atracurium [mg/(kg min)] [0 - 10]

Table 1.6: Drugs saturation values

In order to avoid overdosing and ensure patient safety, constraints on the drugs infusion

rates have been included in the simulation. The saturation values are reported in Table

1.6. The minimum values are obviously 0 for all the drugs, since it is not possible to

administer negative doses. As reported in Table 1.6, the maximum saturation values of

Propofol and Remifentanil depend on the volume of the central compartment of the PK

model, V1 (see Section 1.2.1), and on the weight of the patient (see Table 1.3). The

maximum saturation value of Atracurium is instead constant for all the patients.

The patient simulator is designed so that it can include disturbances and anesthesiologist's

actions. The most notable disturbances are those caused by surgical and other nociceptive

stimulations, acting on the awareness level and entering the system as patient inputs.

Events such as incisions or other surgical procedures through out the maintenance phase

typically decrease the e�ect of hypnotic drugs, with a consequent increase in the BIS. A

closed-loop controller for the hypnotic component of anesthesia must therefore be designed

to attenuate these disturbances su�ciently to avoid adverse e�ects, such as awareness. A

�rst step in ensuring su�cient disturbance attenuation is to know the characteristics of

the expected disturbances [7]. As shown in Figure 1.6, the surgical stimulation is modeled

as a step of amplitude 10 [% of BIS] and duration 1000 s (about 15 min). As explained

in [26], this step can be considered as a step signal of amplitude 10, followed by another

step after 1000 s of amplitude -10.
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The model of the nociceptor pathway is described by the following transfer function:

NOCI = K
(s2 + z12 + z2)(s

2 + z32 + z4)(s
2 + z52 + z6)

(s2 + p1s+ p2)(s2 + p3s+ p4)(s2 + p5s+ p6)
(1.26)

with the following values: z1 = 90, z2 = 22500, z3 = 26.4, z4 = 27225, z5 = 31, z6 =

24025, p1 = 65.56, p2 = 22201, p3 = 48.9, p4 = 26569, p5 = 31, p6 = 24025 and K = 1.

The surgical stimulation pro�le is �ltered through this model and then added to the BIS

value given by the PD model of hypnosis [16].
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Figure 1.6: Surgical stimulation's pro�le

If the anesthesiologist is aware that a disturbance will occur, he may administer an

additional Propofol dose, through a feedforward action, to assist the controller in the dis-

turbance rejection task. The Propofol dose provided by the anesthesiologist is modeled as

a step of the same duration of the surgical simulation, and the amplitude is individualized

for each patient through the following formula: 0.05
V1

weight
[mg/(kg min)], where V1 is

the volume of the central compartment of the Propofol PK model of the patient (see Sec-

tion 1.2.1) and weight is the weight of the patient (see Table 1.3). Figure 1.7 illustrates

the pro�le of the anesthesiologist's action for patient 1.
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Figure 1.7: Anesthesiologist's drug infusion pro�le

Finally, measurement noise on the BIS can be included in the simulation, in order to

mimick real BIS signals. The noise is a gaussian noise with zero mean and variance equal

to 6.2721. The value of the variance has been estimated close to that observed from real

BIS data [26].

By means of this simulator, it is possible to successfully reproduce the clinical expected

e�ects of various drugs interacting among the anesthetic and hemodynamic states. The

originality of the approach is the inclusion of synergy e�ects, antagonist e�ects, patient

variability, clinical value intervals, nociceptor stimulation disturbances, drug trapping

models and co-simulation of anesthestic and hemodynamic states along with their com-

plex interactions. In this thesis is therefore used a simulator, provided by the Ghent

University, which is uniquely de�ned in current state of the art and �rst of its kind for

this application of dose management problems in anesthesia. This simulator provides the

research community with accessible tools to allow a systematic design, evaluation and

comparison of various control algorithms for multi-drug dosing optimization objectives in

anesthesia [16].
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1.3 Control objectives

As explained in Section 1.1, there are three phases of anesthesia during a standard surgery

procedure. In this thesis, only the induction phase and the maintenance phase are an-

alyzed. From a control system point of view, the induction phase can be considered as

a set-point (SP) following task, while in the maintenance phase a disturbance rejection

(DR) task is carried out.

Variable Baseline

BIS [ ] 98

RASS [ ] 0

NMB [%] 94

CO [l/min] 5

MAP [mmHg] 80

Table 1.7: Baseline values of the controlled variables

Variable Target Safe interval

BIS [ ] 50 [45 - 55]

RASS [ ] -4 [(-5) - (-4)]

NMB [%] 10 [10 - 20]

CO [l/min] - [4 - 6.5]

MAP [mmHg] - [60 - 110]

Table 1.8: Control objectives

Regarding the objectives of the control of anesthesia, Table 1.7 reports the baseline

values of the anesthetic and hemodynamic variables, while Table 1.8 lists the target values

and the safe intervals. One can notice that the safe interval of the BIS is di�erent from

the interval of [40 - 60] indicated in Table 1.1 regarding the indication for the general

anesthesia. This is due to the fact that the manufacturer reports that the BIS has an

accuracy of ± 5 [14]. For this reason, the BIS safe interval has been set to [45 - 55].

Some of the most dangerous side e�ects of BIS excessive undershooting include hypoten-

sion, cognitive impairement and post-operative delirium. For this reason, the BIS refer-

ence must be tracked with a settling time of about 4-5 min, which is an acceptable time

according to clinical practice [7]. Moreover, it is speci�ed that the cardiovascular side

e�ects of Propofol are reduced if the drug is administered slowly [2].

Performance assessment

In order to evaluate the performance of the open- and closed-loop control of the BIS,

RASS and NMB, the following set of performance indices has been used [7], [14]:
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� TT [s]: observed time to target, the time required for the controlled variable to

reach for the �rst time the safe interval (see Table 1.8);

� NADIR: the lowest value of the controlled variable observed during the induction

phase;

� ST [s]: settling time, de�ned as the time when the controlled variable enters for the

last time in the safe interval (see Table 1.8);

� US [%]: undershoot, de�ned as the negative amount of which the controlled variable

exceeds the lower limit of the safe interval (see Table 1.8).

� PE [%]: performance error. PE = 100
V ariablemeasured −Reference

Reference

Regarding the hemodynamic variables, as reported in Table 1.8, CO must remain in the

range [4-6.5 l/min] and MAP in the range [60-110 mmHg].

1.4 Open-loop simulation

In this section, the results of the open-loop simulation of the induction phase of anesthesia

are presented. The drugs infusion rates have been modeled as steps, whose amplitudes

have been set to the steady-state values reported in Table 1.9.

Drug Open-loop infusion rate

Propofol [mg/(kg min)] 0.295V1/weight

Remifentanil [µg/(kg min)] 1.85V1/weight

Atracurium [mg/(kg min)] 6.9

Table 1.9: Drugs open-loop infusion rates

where V1 is the volume of the central compartment (blood) and weight is the weight

of the patient (see Table 1.3).
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Figure 1.8: Open-loop simulation - Induction phase: BIS

As can be seen in Figure 1.8, the performance of the open-loop administration of

Propofol is not acceptable. Indeed, only 15 patients show a BIS index within the desired

BIS interval (see Table 1.8). As reported in Table 1.10, the minimum BIS value obtained

during the induction phase is 36, while the maximum is 65; this values are not acceptable

during a general anesthesia procedure. The time to target indices refer only to those

patients whose BIS is in accordance to the control objectives; anyway, the maximum and

mean TTs are too high, compared to the required time to target of the induction phase

(about 4-5 min). These results con�rm the hypothesis that the open-loop administration

of Propofol can not properly handle the interpatient variability.

PID performance

min TT [s] 283

max TT [s] 2162

mean TT [s] 675.6

min BIS-NADIR [ ] 36

max BIS-NADIR [ ] 65

mean BIS-NADIR [ ] 49.4

Table 1.10: Induction phase: performance of Propofol open-loop administration
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Figure 1.9: Open-loop simulation - Induction phase: RASS

Figure 1.9 shows the RASS in response to the open-loop administration of Remifen-

tanil. The set-point following task performs well for all the patients except two; in fact,

the RASS of patient 5 stabilizes at -3, that is not acceptable, while the RASS of patient 3

stabilizes at -5. This last case is acceptable since the RASS remains within the required

interval (see Table 1.8). The time to target is the same for all the subjects, with a value

of 120 s (i.e. 1 Ts).
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Figure 1.10: Open-loop simulation - Induction phase: NMB

Figure 1.10 shows the NMB response to the open-loop administration of Atracurium.

In this case, the performance is acceptable; indeed, since the Atracurium patient model

does not include the interpatient variability, the time to target for all the patients is 61

s, and there is no undershoot.
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Figure 1.11: Open-loop simulation - Induction phase: MAP

Figure 1.11 illustrates the Mean arterial pressure in response to the open-loop admin-

istration of the drugs mentioned above. The dashed red line indicates the lower limit of

the safe MAP interval (see Table 1.8). The outcome is acceptable for all the patients

except patient 3, whose MAP level drops below the threshold, even if only slightly. This

is because patient 3 needs a lower Remifentanil dose, as can be noticed from the fact

that its RASS response is too accentuated. Indeed, as explained above, Remifentanil

has a negative in�uence on MAP. Therefore, by reducing the Remifentanil infusion rate,

the MAP level would increase. This result con�rms that the open-loop strategy can not

properly manage the interpatient variability.
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Figure 1.12: Open-loop simulation - Induction phase: CO

Regarding the Cardiac output (CO), as can be seen in Figure 1.12, the signal remains

within the safe range (see Table 1.8) for all the subjects.
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Chapter 2

PID

2.1 Introduction

Closed-loop systems are made of the following main components: the controlled system

(in this simulation, the patient undergoing TIVA), the controlled variables (the output of

the controlled system, i.e. BIS, RASS and NMB), the desired target or reference or set-

point of the controlled variables (that evaluates the loop), the manipulated variables (the

input of the controlled system, i.e. the drugs infusion rates), the actuator (the syringe

pumps) and the controller [7]. The presentation of this topic has been mainly ispired by

the treatment proposed by [3] and [7].

Controller Process
e(t) u(t) y(t)

+

ref(t)−

Figure 2.1: Closed-loop control scheme

In Figure 2.1, that shows the closed-loop control scheme, ref(t) is the reference signal,

e(t) is the control error, u(t) is the process input signal and y(t) is the process output

signal. The block diagram shows that the feedback in this particular case is not a standard

negative feedback, because as u(t) increases, y(t) decreases. More precisely, u(t) increases

if e(t) is positive, while decreases if e(t) is negative. As a result, e(t) = y(t) - ref(t).

Taking the BIS index as an example, ref(t) is the BIS reference, y(t) is the BIS signal, e(t)

is the di�erence between the BIS signal and the BIS reference, and u(t) is the Propofol

dose.

In order to perform a closed-loop control of anesthetic drugs infusion rates, a Proportional-

Integral-Derivative (PID) controller has been designed. The PID controller is a simple

implementation of feedback, it is by far the most common control algorithm and most

feedback loops are controlled by it. The PID controller can be implemented in many

di�erent forms, as a stand-alone controller or as part of a direct digital control package

or a hierarchical distibuted control system. It can be viewed as a device that can be

operated with a few rules of thumb, but it can also be approached analytically [3].
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The PID output u(t) is the sum of three actions:

u(t) = up(t) + ui(t) + ud(t), where up(t) is the proportional action, ui(t) is the integral

action and ud(t) is the derivative action. These three actions are calculated separately

and then summed. The proportional action is directly proportional to the control error:

up(t) = Kpe(t) (2.1)

where Kp is the proportional gain. Proportional control has the drawback that the process

output often deviates from the set-point, i.e. there is normally a non-zero control error in

steady state (ess). Increasing Kp increases the speed of the response and reduces ess, but

increasing it too much can cause over- or under-shooting. The steady state deviation can

be avoided by adding the integral action:

ui(t) = Ki

∫︂ t

0

e(τ)dτ (2.2)

where Ki is the integral gain. Equation 2.2 shows that the control action is proportional

to the integral of the error. Assume that there is a steady state with constant error ess

and constant control signal uss. It follows that uiss = Kiess. Since uss is a constant, it

follows that ess must be zero. This proves that if there is a steady state and the integral

action is included in the controller, the steady state error is always zero.

The derivative action is proportional to the derivative of the error:

ud(t) = Kd
de(t)

dt
(2.3)

where Kd is the derivative gain. The purpose of the derivative action is to improve the

closed-loop stability. The instability mechanism can be described as follows: because of

the process dynamics, it will take some time before a change in the controlled variable is

noticeable in the process output. Thus, the control system will be late in correcting for an

error. Adding the derivative action, the controller is made proportional to the predicted

process output, where the prediction is made by extrapolating the error by the tangent

to the error curve. The control signal is thus proportional to an estimate of the control

error at Td (see Equation 2.5) times ahead. Increasing Kd increases the stability of the

signal, but ampli�es the measurement noise.

The controller action is thus a sum of three terms: the integral term represents the past,

the proportional term represents the present and the derivative term represents the future

[3]. Indeed, as can be seen in Figure 2.2, the integral error corresponds to the past, the

proportional error to the present and the derivative error to the future.

34



Figure 2.2: PID controller - Error components

The PID algorithm can be represented by the following transfer function:

C(s) = Kp(1 +
1

sTi

+ sTd) (2.4)

where Ti is the integral time constant and Td is the derivative time constant. Ti and

Td can be derived from the integral gain and the derivative gain through the following

relations:

Ti =
Kp

Ki

Td =
Kd

Kp

(2.5)

PID control is the �rst strategy studied in depth of anesthesia regulation [7]. This control

technique applies accurate and responsive correction of the manipulated variables. The

practical advantages of this method observed in depth of anesthesia regulation are the fast

transient responses until �nally reaching a steady-state value of the controlled variables

and the high reduction of the steady-state errors. Simulation tests con�rm that the PID-

based control scheme is also robust in regards to the interpatient variability. On the other

hand, PID controllers do not have the ability to anticipate the response of the patient

[7]. This problem can be solved through a model-based strategy, that will be discussed in

Chapter 3.

2.2 Induction phase

The induction phase and the maintenaince phase are considered separately, since the di-

versity of the tasks, therefore a gain scheduling technique has been employed. The tuning
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of the PID parameters has been optimized independently for the two phases, as reported

in Table 2.5. Since the disturbance rejection task only concerns hypnosis (i.e. the BIS),

the gain scheduling technique has only been applied for the control of this variable, while

for RASS and NMB only the tuning for the set-point following task has been performed.

In this section, the results of the PID control over the population during the induction

phase are discussed. During the induction phase, the target values of the controlled vari-

ables should be rapidly attained, while avoiding, at the same time, an excessive overshoot,

as this implies an unnecessary large amount of amdinistered drugs and possible dangerous

e�ects. For this reasons, the reference of the BIS has been designed as a a ramp that goes

from the baseline BIS value (see Table 1.3) to the target BIS value (see Table 1.8) in 4

min. The choice of the shape of the reference has been made in accordance to the control

objective speci�cations (see Section 1.3). Regarding RASS and NMB, their references

have been delineated as steps from the baseline values (see Table 1.7) to the target values

(see Table 1.8).

Since there are three manipulated variables, three PID controllers have been designed.

In order to �nd the optimal PID gains (see Table 2.1), an automatic tuning has been

performed for Propofol and Remifentanil infusion control, because of the synergic e�ect

of this drugs, with the following mean squared tracking error cost function:

J(KpPropofol, KpRemifentanil) =
N∑︂
i=1

(|errBIS(iT )|2 + |errRASS(iT )|2 + p) (2.6)

where N is the simulation time, errBIS is the normalized error of the BIS, i.e.

errBIS = yBIS - refBIS adjusted with min max normalization, errRASS is the normalized error

of the RASS and p is the weight for the constraints on the hemodynamic variables. If

MAP and CO are within the safe intervals (see Table 1.8), p = 0, otherwise p = 500. The

simulation has been performed with di�erent values of KpPropofol and KpRemifentanil, i.e.

the proportional gains of the PID controllers for Propofol and Remifentanil, holding �xed

the intergral and the derivative time constants, since the integral and the derivative gains

depend on the proportial gains and on the time constants (see Equation 2.5). The optimal

proportional gains have been selected based on the correspondence with the minimum cost

function. The tuning has then been manually adjusted. The tuning of the PID gains for

Atracurium infusion control has been performed manually.

SP Kp Ki Kd

Propofol 0.05 [mg/(kg min)] 0.0002 [mg/(kg min2)] 0.001 [mg/kg]

Remifentanil 0.03 [µg/(kg min)] 0.002 [µg/(kg min2)] 0.0001 [µg/kg]

Atracurium 0.01 [mg/(kg min)] 0.0011 [mg/(kg min2)] 0.0001 [mg/kg]

Table 2.1: Tuning of PID parameters for induction phase

In this section, since the surgical stimulation occurs in the maintenance phase, distur-

bances and anesthesiologist's actions are set to zero.
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Simulation results
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Figure 2.3: PID simulation - Induction phase: BIS
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PID performance

min TT [s] 225

max TT [s] 230

mean TT [s] 225.8

min BIS-NADIR [ ] 50

max BIS-NADIR [ ] 50

mean BIS-NADIR [ ] 50

min ST [s] 225

max ST [s] 230

mean ST [s] 225.8

min US [%] 0

max US [%] 0

mean US [%] 0

min PE [%] 0

max PE [%] 9.96

mean PE [%] 2.15

Table 2.2: Induction phase: PID performance for Propofol administration
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Figure 2.4: PID simulation - Induction phase: Propofol
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Table 2.2 reports the performance of the PID controller for Propofol administration during

the induction phase: as can also be seen from Figure 2.3, the observed time to target (TT)

of the BIS follows the indicated timing (4-5 min) and the settling time (ST) is equal to

the TT since there is no undershoot. The Propofol infusion rates are illustrated in Figure

2.4.
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Figure 2.5: PID simulation - Induction phase: RASS
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PID performance

min TT [s] 160

max TT [s] 219

mean TT [s] 170.42

min RASS-NADIR [ ] -4

max RASS-NADIR [ ] -4

mean RASS-NADIR [ ] -4

min ST [s] 160

max ST [s] 219

mean ST [s] 170.42

min US [%] 0

max US [%] 0

mean US [%] 0

min PE [%] 0

max PE [%] 100

mean PE [%] 10.35

Table 2.3: Induction phase: PID performance for Remifentanil administration
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Figure 2.6: PID simulation - Induction phase: Remifentanil
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Table 2.3 lists the performance of the PID controller for Remifentanil administration

during the induction phase: as even shown in Figure 2.5, the observed time to target

(TT) of the RASS follows the indicated timing and the settling time (ST) is equal to the

TT since there is no undershoot. Figure 2.6 reports the infusion rates of Remifentanil.
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Figure 2.7: PID simulation - Induction phase: NMB
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PID performance

min TT [s] 68

max TT [s] 68

mean TT [s] 68

min NMB-NADIR [%] 10

max NMB-NADIR [%] 10

mean NMB-NADIR [%] 10

min ST [s] 68

max ST [s] 68

mean ST [s] 68

min US [%] 0

max US [%] 0

mean US [%] 0

min PE [%] 0

max PE [%] 840

mean PE [%] 39.83

Table 2.4: Induction phase: PID performance for Atracurium administration
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Figure 2.8: PID simulation for comparison with MPC - Induction phase: Atracurium
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Table 2.4 lists the performance of the PID controller for Atracurium administration

during the induction phase: as even shown in Figure 2.7, the observed time to target

(TT) of the RASS follows the indicated timing and the settling time (ST) is equal to the

TT since there is no undershoot. The NMB response is equal for all the patients since

the Atracurium to NMB model does not include the interpatient variability. Figure 2.8

reports the infusion rates of Atracurium.
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Figure 2.9: PID simulation - Induction phase: CO
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Figure 2.10: PID simulation - Induction phase: MAP

Regarding the hemodynamic system, Figure 2.9 displays the Cardiac output (CO)

response to drugs administation, while Figure 2.10 shows the Mean arterial pressure

(MAP) outcome. For all the patients, both CO and MAP remain withing the safe intervals

indicated in Table 1.8.

2.3 Maintenance phase

Feedback controllers in anesthesia primarily address the disturbance attenuation prob-

lem. As explained in Section 1.2.2, the disturbances are due to surgical stimulations. In

order to assist the controller in the disturbance rejection task, an additional Propofol dose

administered by the anesthesiologist can be included in the simulation. Since the system

dynamics is very fast, it was not considered necessary to anticipate the anesthesiologist's

action with respect to the beginning of the surgical stimulation. As previously explained,

the disturbances act only on the BIS index, thus in this section RASS and NMB are not

considered.

As mentioned in Section 2.2, a gain scheduling technique has been performed. Two dif-

ferent controllers have been designed for the two examined phases of anesthesia: initially

a PID controller with parameters optimized for the set-point following task has been em-

ployed, then, once the target BIS has been achieved, the control has been switched to
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another PID with parameters optimized for the disturbance rejection task. As mentioned

in [26], by analyzing the results of the optimal tuning methodology it can be observed

that the use of a gain scheduling technique may be bene�cial.

Kp [mg/(kg min)] Ki [mg/(kg min2)] Kd [mg/kg]

Propofol - SP 0.05 0.0002 0.001

Propofol - DR 0.02 0.0001 0.01

Table 2.5: Tuning of PID parameters for SP and DR

Table 2.5 reports the values of the PID gains for the control of Propofol administration

during induction phase and maintenance phase. Compared to the tuning for the set-

point following task, the proportional gain Kp of the PID controller for the disturbance

rejection task has been decreased to avoid oscillatory behaviours in response to the surgical

stimulation step; in order to obtain a better disturbance rejection, the derivative gain Kd

has been increased and the integral gain Ki has been decreased.

Regarding the performance of the PID control during the maintenance phase, only the

TT and the BIS-NADIR indices are meaningful, and they are calculated separately for

the positive and for the negative step signals [7]. The indices of the positive step are

denoted with the subscript p, those of the negative step with the subscript n.
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Simulation results
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Figure 2.11: PID simulation - Disturbance rejection: BIS response to surgical stimulation

PID performance

min TTp [s] 3

max TTp [s] 4

mean TTp [s] 3.12

min BIS-NADIRp [ ] 50

max BIS-NADIRp [ ] 50

mean BIS-NADIRp [ ] 50

min TTn [s] 4

max TTn [s] 9

mean TTn [s] 4.87

min BIS-NADIRn [ ] 50

max BIS-NADIRn [ ] 50

mean BIS-NADIRn [ ] 50

Table 2.6: Disturbance rejection: PID performance for Propofol administration - surgical
stimulation
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Figure 2.12: PID simulation - Disturbance rejection: Propofol infusion rate in response
to surgical stimulation

The performance of the PID controller for Propofol infusion in dealing with the distur-

bance rejection task is reported in Table 2.6. Figure 2.11 displays the BIS response to

the disturbance: after the start of the surgical stimulation, the BIS is rapidly reduced

by a bolus of Propofol and is returned to the safe range of [45-55]. After this fast initial

reduction of the BIS, the decrease to the target 50 is slightly slower. The patient with the

quickest response is patient 7, whose BIS level after the positive step of the disturbance

returns to 50 in 124 s, while the slowest is patient 16, whose BIS level returns to 50 in

181 s. Regarding the end of the disturbance, i.e. the negative step, the patient with

the quickest response is patient 7 again, whose BIS level returns to 50 in 128 s, while

the slowest is patient 16, whose BIS level returns to 50 in 187 s. Figure 2.12 shows the

Propofol infusion rates in response to the surgical stimulation. As soon as the distur-

bance starts, the controller promptly reacts by administering a bolus of Propofol. When

the disturbance ends, the BIS instantaneously decreases by 10 %, and the Propofol dose

decreases in order to re-establish the reference BIS value.
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Figure 2.13: PID simulation - Disturbance rejection: BIS response to surgical stimulation
and anesthesiologist's action

PID performance

min TTp [s] 2

max TTp [s] 2

mean TTp [s] 2

min BIS-NADIRp [ ] 50

max BIS-NADIRp [ ] 50

mean BIS-NADIRp [ ] 50

min TTn [s] 3

max TTn [s] 4

mean TTn [s] 3.16

min BIS-NADIRn [ ] 50

max BIS-NADIRn [ ] 50

mean BIS-NADIRn [ ] 50

Table 2.7: Disturbance rejection: PID performance for Propofol administration - surgical
stimulation and anesthesiologist's action
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Figure 2.14: PID simulation - Disturbance rejection: Propofol infusion rate in response
to surgical stimulation and anesthesiologist's action

If the action of the anesthesiologist is included in the simulation, the performance of the

PID controller (see Table 2.7) is better than the case where the Propofol administration

is controlled only by the PID (see Table 2.6). As it is possible to verify also from Figure

2.13, the obsereved TT are lower, both for the positive and the negative step. The

response of patient 7 is also quicker: its BIS index returns to 50 in 24 s, signi�cantly

faster than the previous case. The patient with the slower response is patient 16, whose

BIS returns to the target is 107 s. Regarding the negative step, the patient with the

quickest response is patient 7 again, whose BIS level returns to 50 in 29 s, while the

slowest is patient 16 again, whose BIS level returns to 50 in 119 s. Even in this case,

the disturbance rejection task performs better with respect to the simulation without the

anesthesiologist's action. Figure 2.14 shows the Propofol infusion rates determined by the

PID controller in response to the surgical stimulation, when also the additional Propofol

dose is administered by the anesthesiologist. The disturbance rejection has been obtained

without under- or over-shoots in both cases.
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2.4 Noise

As described in Section 2.4, it is possible to include the presence of noise on the BIS

index. The presence of this BIS related high amplitude noise is a relevant issue [26], thus

a low-pass online �lter has been employed in order to reduce it. The considered low-pass

�lter has the following discrete transfer function:

G(z) = K

Ts

T
z−1

1 + (
Ts

T
− 1)z−1

(2.7)

where K is the �lter gain (obviously set to 1), T is the �lter time constant and Ts is the

sampling time. The pole of the �lter is located in z = 1− Ts

T
.

In order to ensure a better visualization of the �ltering process, the following �gures refer

only to patient 1.
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Figure 2.15: PID simulation - Induction phase: noisy and �ltered BIS (T = 10)

Regarding the induction phase, the �ltered BIS signal shown in Figure 2.15 is obtained

by setting the �lter time constant T = 10, resulting in a pole located in z = 0.9. By in-

creasing T, the �ltered BIS would be smoother, but would also increase the delay with

which the signal is estimated, compared to the original (noisy) one.
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Figure 2.16: PID simulation - Induction phase: Filtered Propofol dose (T = 10)

Figure 2.16 displays the �ltered Propofol infusion rate during the induction phase,

using a �lter time constant of T = 10.
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Figure 2.17: PID simulation - Maintenance phase: noisy and �ltered BIS (T = 6)

Regarding the maintenance phase, the �ltered BIS signal shown in Figure 2.17 has

been obtained by setting the �lter time constant T = 6, resulting in a pole located in z

= 0.83. The BIS is smoother than the original one, but is also distorted by the �lter,

with respect to the noise free simulation. In fact, the positive step achieves a value of 58

instead of 60, while the negative step a value of 42 instead of 40.
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Figure 2.18: PID simulation - Maintenance phase: Filtered Propofol dose (T = 6)

Figure 2.18 shows the �ltered Propofol infusion rate during the maintenance phase,

concerning the case in which the �lter time constant has been set to T = 6. With respect

to the noise free case, the PID response to the surgical stimulation is di�erent, especially

in the initial instants. In Figure 2.18, the initial bolus is indeed signi�cantly reduced with

respect to Figure 2.12, resulting in a slower disturbance rejection, as can be seen in Figure

2.17.
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Figure 2.19: PID simulation - Maintenance phase: noisy and �ltered BIS (T = 10)

The �ltered BIS signal shown in Figure 2.19 has been obtained by setting the �lter

time constant T = 10, resulting in a pole located in z = 0.9. Compared to the signal

�ltered with a time constant T = 6, the BIS is smoother, but the distortion is more

pronounced. Indeed, the positive step achieves a value of 57 instead of 58 of the previous

case, while the negative step a value of 43 instead of 42.
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Figure 2.20: PID simulation - Maintenance phase: Filtered Propofol dose (T = 10)

Figure 2.20 shows the �ltered Propofol infusion rate during the maintenance phase,

concerning the case in which the �lter time constant has been set to T = 10. Compared to

the Propofol administration with T = 6, the initial Propofol bolus is even more reduced.

2.5 Di�erent set-up

In order to make the simulation more physiological, the parameters of the Hill function of

the Propofol to BIS model have been individualized for each patient (see Table 2.8). In

this case, the PD sensitivity values vary among the population. Moreover, the sampling

time of the simulator is Ts = 1 s, but RASS and NMB need a higher sampling time.

Since RASS is measured by clinicians, its sampling time has been set to 120 s, while

NMB sampling time has been set to 20 s. BIS sampling time has not been changed. The

simulation with this set-up modi�cations has been performed both for the induction and

maintenance phases of anesthesia.
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Index C50 γ E0 Emax

- [mg/ml] [ ] [ ] [ ]

1 2.5 3 98 94

2 4.6 2 98 86

3 5 1.6 91 80

4 1.8 2.5 95 102

5 6.8 1.78 94 85

6 2.7 2.8 90 112

7 2.3 4 92 104

8 7.8 2.9 95 76

9 2.9 1.88 90 63

10 3.9 3.1 90 121

11 2.3 3.1 91 77

12 4.8 2.1 96 90

13 2.5 3 93 96

14 2.5 3 97 78

15 4.3 1.9 98 94

16 2.7 1.6 95 80

17 4.5 1.9 98 82

18 2.7 1.78 92 79

19 6.8 3.1 97 91

20 9.8 1.6 91 103

21 3.2 2.1 92 90

22 5.1 2.51 98 121

23 3.67 3.1 96 85

24 5.8 2.3 93 87

Table 2.8: Patients database: PD model sensitivity values
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2.5.1 Induction phase
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Figure 2.21: PID simulation with di�erent set-up - Induction phase: BIS
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PID performance

min TT [s] 223

max TT [s] 281

mean TT [s] 239.04

min BIS-NADIR [ ] 50

max BIS-NADIR [ ] 50

mean BIS-NADIR [ ] 50

min ST [s] 223

max ST [s] 281

mean ST [s] 239.04

min US [%] 0

max US [%] 0

mean US [%] 0

min PE [%] 0

max PE [%] 7.98

mean PE [%] 2.89

Table 2.9: Induction phase: PID performance for Propofol administration - Simulation
with di�erent set-up
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Figure 2.22: PID simulation with di�erent set-up - Induction phase: Propofol
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Compared to the case where the interpatient variability on the Propofol PD model has

been included (see Figure 2.21), the di�erence is straightforward: in this case, there is no

variation in the baseline value of the patients, and the lack of individualization of the Hill

function parameters γ and C50 makes the patient responses very similar to each other.

The performance (see Table 2.2) is also better in this case: with respect to the case where

the interpatient variability on the PD model is considered, the time to target indices are

lower, as well as the performance errors. Figure 2.4 shows the Propofol infusion rates con-

cerning the simulation with no interpatient variability on the Propofol PD model. This

case is of course less physiological with respect to the case with individualized PD model

parameters.

100 200 300 400 500 600

Time [s]

-4

-3

-2

-1

0

[ 
]

RASS

Figure 2.23: PID simulation with di�erent set-up - Induction phase: RASS
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PID performance

min TT [s] 241

max TT [s] 361

mean TT [s] 291

min RASS-NADIR [ ] -4

max RASS-NADIR [ ] -4

mean RASS-NADIR [ ] -4

min ST [s] 241

max ST [s] 361

mean ST [s] 291

min US [%] 0

max US [%] 0

mean US [%] 0

min PE [%] 0

max PE [%] 100

mean PE [%] 18.23

Table 2.10: Induction phase: PID performance for Remifentanil administration - Simula-
tion with di�erent set-up
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Figure 2.24: PID simulation with di�erent set-up - Induction phase: Remifentanil
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Compared to the case with Ts = 1 s, the set-point following task for the RASS is

slower, as can be seen from Figure 2.23 and Table 2.10. In fact, the minimum, maximum

and mean time to target indices are higher, as well as the performance errors. The settling

time is equal to the time to target, with 14 patients reaching the target -4 in 241 s (2Ts)

and the remaining 10 patients in 361 s (3Ts). The Remifentanil infusion rates, illustrated

in Figure 2.24, clearly show the interpatient variability.
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Figure 2.25: PID simulation with di�erent set-up - Induction phase: NMB
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PID performance

min TT [s] 68

max TT [s] 68

mean TT [s] 68

min NMB-NADIR [%] 10

max NMB-NADIR [%] 10

mean NMB-NADIR [%] 10

min ST [s] 121

max ST [s] 121

mean ST [s] 121

min US [%] 0

max US [%] 0

mean US [%] 0

min PE [%] 0

max PE [%] 840

mean PE [%] 62.34

Table 2.11: Induction phase: PID performance for Atracurium administration - Simula-
tion with di�erent set-up
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Figure 2.26: PID simulation with di�erent set-up - Induction phase: Atracurium
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Compared to the case with Ts = 1 s, the set-point following task for the NMB is

slower, as can be seen from Figure 2.25 and Table 2.11. Indeed, the minimum, maximum

and mean time to target indices are higher, as well as the mean performance errors. The

settling time is equal to the time to target since there is no undershoot.

2.5.2 Maintenance phase
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Figure 2.27: PID simulation with di�erent set-up - Disturbance rejection: BIS response
to surgical stimulation
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PID performance

min TTp [s] 2

max TTp [s] 25

mean TTp [s] 6.26

min BIS-NADIRp [ ] 50

max BIS-NADIRp [ ] 50

mean BIS-NADIRp [ ] 50

min TTn [s] 3

max TTn [s] 58

mean TTn [s] 16.87

min BIS-NADIRn [ ] 50

max BIS-NADIRn [ ] 51

mean BIS-NADIRn [ ] 50.04

Table 2.12: Disturbance rejection: PID performance for Propofol administration - surgical
stimulation - Simulation with di�erent set-up
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Figure 2.28: PID simulation with di�erent set-up - Disturbance rejection: Propofol infu-
sion rate in response to surgical stimulation

The performance of the PID controller for Propofol infusion in dealing with the distur-

bance rejection task is reported in Table 2.12. Figure 2.27 displays the BIS response to
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the disturbance: after the start of the surgical stimulation, the BIS is rapidly reduced

by a bolus of Propofol and is returned to the safe range of [45-55]. After this fast initial

reduction of the BIS, the decrease to the target 50 is slightly slower. The patient with the

quickest response is patient 6, whose BIS level after the positive step of the disturbance

returns to 50 in 129 s, while the slowest is patient 9, whose BIS level returns to 50 in

444 s. Regarding the end of the disturbance, i.e. the negative step, the patient with

the quickest response is patient 6 again, whose BIS level returns to 50 in 137 s, while

the slowest is patient 3, whose BIS level returns to 50 in 478 s. Figure 2.28 shows the

Propofol infusion rates in response to the surgical stimulation, where it is possible to see

the increased interindividual variability in the Propofol to BIS model, with respect to the

standard simulation (see Figure 2.12). Indeed, the disturbance rejection performes better

in the case with less variability, as can be noticed by comparing the performance indices

of both cases.

1000 1500 2000 2500

Time [s]

40

45

50

55

60

[ 
]

BIS

Figure 2.29: PID simulation with di�erent set-up - Disturbance rejection: BIS response
to surgical stimulation and anesthesiologist's action
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PID performance

min TTp [s] 1

max TTp [s] 8

mean TTp [s] 2.83

min BIS-NADIRp [ ] 47

max BIS-NADIRp [ ] 50

mean BIS-NADIRp [ ] 49.58

min TTn [s] 2

max TTn [s] 24

mean TTn [s] 7.78

min BIS-NADIRn [ ] 50

max BIS-NADIRn [ ] 53

mean BIS-NADIRn [ ] 50.46

Table 2.13: Disturbance rejection: PID performance for Propofol administration - surgical
stimulation and anesthesiologist's action - Simulation with di�erent set-up
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Figure 2.30: PID simulation with di�erent set-up - Disturbance rejection: Propofol infu-
sion rate in response to surgical stimulation and anesthesiologist's action

If the action of the anesthesiologist is included in the simulation, the performance of

the PID controller (see Table 2.13) is better than the case where the Propofol admin-
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istration is controlled only by the PID (see Table 2.12). As it is possible to verify also

from Figure 2.29, the obsereved TT are lower, both for the positive and the negative

step. The response of patient 6 is also quicker: its BIS index returns to 50 in 7 s, sig-

ni�cantly faster than the previous case. The patient with the slower response is patient

3, whose BIS returns to the target is 431 s. Regarding the negative step, the patient

with the quickest response is patient 4, whose BIS level returns to 50 in 7 s, while the

slowest is patient 3 again, whose BIS level returns to 50 in 434 s. Even in this case,

the disturbance rejection task performs better with respect to the simulation without the

anesthesiologist's action. Figure 2.30 shows the Propofol infusion rates determined by the

PID controller in response to the surgical stimulation, when also the additional Propofol

dose is administered by the anesthesiologist. With respect to the case without the action

of the anesthesiologist, some patients experience a slight undershoot after the positive

step and an overshoot after the negative step, due to the disturbance rejection. These

under- and over-shoots are acceptable since the BIS index never exceeds the limits of the

safe interval; the maximum BIS-NADIR values for the positive and the negative steps are

indeed 47 and 53, respectively.
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Chapter 3

MPC

3.1 Introduction

The term model predictive control (MPC) does not designate a speci�c control stategy but

rather an ample range of control methods, which use a model of the process to obtain the

control signal by minimizing an objective function. The basic ideas of model predictive

control are the following:

� Explicit use of a model to predict the process output at future time instants;

� Calculation of a control sequence minimizing an objective function;

� Receding strategy, so that at each instant the horizon is moved towards the future,

which involves the application of the �rst control signal of the sequence calculated

at each step.

The various MPC algorithms only di�er amongst themselves in the model used to repre-

sent the process and the cost function to be minimized.

MPC presents the following advantages over other control methods:

� It can be used to control a great variety of processes, from those with relatively

simple dynamics to more complex ones;

� It can deal with multivariable cases;

� The resulting controller is an easy-to-implement control law;

� Its extension to the treatment of constraints is conceptually simple, and these can

be systematically included during the design process;

� It is very useful when future references are known;

� It is particularly attractive to sta� with only limited knowledge of control because

the concepts are very intuitive and at the same time the tuning is relatively easy.

On the other hand, its drawbacks are:
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� It is necessary for an appropriate model of the process to be available. The design

algorithm is based on prior knowledge of the model and is independent of it, but

obviously the advantages of this control method will be a�ected by the discrepancies

existing between the real process and the model used;

� Although the resulting control law is easy to implement and requires little compu-

tation, its derivation is more complex than that of the classical PID controllers. If

the process dynamic does not change, the derivation of the controller can be done

beforehead, but in the adaptive control case all the computation has to be car-

ried out at every sampling time. When constraints are considered, the amount of

computation required is even higher.

The methodology of all the controllers belonging to the MPC family is characterized by

the following strategy:

1. The future output for a determined horizon N, called prediction horizon, are pre-

dicted at each time instant t using the process model. These predicted outputs

y(t+k|t) for k=1...N depend on the known values up to instant t (past inputs and

outputs) and on the future control signals u(t+k|t) for k=1...N-1;

2. The set of future control signals is calculated by optimizing a determined criterion

in order to maintain the process as close as possible to the reference trajectory

r(t+k). This criterion usually takes the form of a quadratic cost function of the

errors between the predicted output signal and the predicted reference trajectory.

An explicit solution can be obtained if the cost function is quadratic, the model is

linear, and there are no constraints. Otherwise, an iterative optimization method

has to be used;

3. The �rst control action of the set of future control signals, u(t|t), is sent to the

process while the next control signals calculated are rejected. At the next sampling

instant (t+1), the new measurement y(t+1) is aquired, step 1 is repeated with

this new value and all the sequences are updated. Thus the next control action

u(t+1|t+1) is calculated using the receding horizon concept.

As explained above, a model is used to predict the future control actions, which are cal-

culated by the optimizer taking into account the cost function as well as the constraints.

The process model plays, in consequence, a decisive role in the control strategy. The cho-

sen model must be able to capture the process dynamics to precisely predict the future

outputs. In the di�erent MPC strategies, di�erent type of models can be employed, such

as impulse response, step response, transfer function o state space models. In this thesis,

the state space model has been used. An advantage of this model is that it can be easily

used for multivariable processes. The control law is simply the feedback of a linear com-

bination of the state vector. The state space description allows for an easier expression of

stability and robustness criteria. The optimizer is another fundamental part of the MPC
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strategy as it provides the control actions. If the cost function is quadratic, its minimum

can be easily obtained as an explicit function (linear) of past inputs and outputs and the

future reference trajectory. In the presence of inequality constraints the solution could be

obtained by numerical algorithms [5].

3.2 Patient model for MPC

Since with the MPC it is possible to control a multivariable process, a 3×3 state space

model of the patient has been created, representing the PK component of the patient

model. The inputs are Propofol, Remifentanil and Atracurium, and the outputs are BIS,

RASS and NMB. The matrices of this state space representation are the following:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(k10p + k12p + k13p) k21p k31p 0 0 0 0 0 0 0 0

k12p −k21p 0 0 0 0 0 0 0 0 0

k13p 0 −k31p 0 0 0 0 0 0 0 0

k1ep 0 0 −ke0p 0 0 0 0 0 0 0

0 0 0 0 −(k10r + k12r + k13r) k21r k31r 0 0 0 0

0 0 0 0 k12r −k21r 0 0 0 0 0

0 0 0 0 k13r 0 −k31r 0 0 0 0

0 0 0 0 k1er 0 0 −ke0r 0 0 0

0 0 0 0 0 0 0 0 −0.561 −0.0755 −0.0021

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.1)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

C =

⎡⎢⎣0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0.0021

⎤⎥⎦ (3.3)

D =

⎡⎢⎣0 0 0

0 0 0

0 0 0

⎤⎥⎦ (3.4)

where kijp and kijr (i,j = 1,2,3) are the drug transfer rates from the i-th to the j-th

compartment of Propofol and Remifentanil, respectively. This values are taken from the

state space representations of the drugs in Section 1.2.1. The state space model obtained

by these matrices contains 11 states: 4 for Propofol (x1 to x4), 4 for Remifentanil (x5 to x8)

and 3 for Atracurium (x9 to x11). The PK models of these drugs are independent of each
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other, indeed matrix A consists of three separate submatrices that are the state matrices of

the three drugs (see Section 1.2.1). In particular, A(1:4,1:4) consists of the state matrix of

Propofol, A(5:8,5:8) consists of the state matrix of Remifentanil and A(9:11,9:11) consists

of the state matrix of Atracurium. Since there are no interactions at this stage, all the

other entries have been set to 0. The same principle has been used to built the other

matrices of the multivariable model.

Subsequently, the state space model has been discretized with a sampling time Ts = 1

s. As previously explained in Section 1.2.2, the sampling times of the variables RASS

and NMB have been modi�ed to Ts = 120 s and Ts = 20 s, respectively. In this MPC

simulation, since a single state space model has been considered, the sampling time has

been kept equal to Ts = 1 s for all the variables.

3.2.1 Model linearization

Before going into the details of the MPC design, it is necessary to deal with the issue of

the nonlinearity of the process considered in this thesis. There is nothing in the basic

concepts of the MPC against the use of a nonlinear model, since the extension of MPC

ideas to nonlinear processes is straightforward. However, this is not a trivial matter, and

there are many di�culties derived from the use of nonlinear models such as:

� The availability of nonlinear models from experimental data is an open issue, since

there is a lack of identi�cation techniques for non linear processes. On the other

hand, model attainment from �rst principles (mass and energy balance) is not always

feasible;

� The optimization problem is non convex and its resolution is much more di�cult

than the quadratic programming problem. Problems relative to local optimum

appear, not only in�uencing control quality but also deriving in stability issues;

� The di�culty of the optimization problem translates into an important increase in

computation time. This can constrain the use of this technique to slow processes;

� The study of crucial aspects such as stability and robustness is more complex in

the case of nonlinear systems, and it constitutes an open �eld of great interest for

researches [5].

In order to avoid this issues, it is possible to built a linear model that approximates

the nonlinear one for small deviations from the equilibria. Regarding the patient model

considered in this thesis, its PK component is linear, but its PD component is nonlinear.

Thus, the linearization of the model has been performed.

Considering the following generic discrete nonlinear system:⎧⎨⎩x((k + 1)T ) = f(x(kT ), u(kT ))

y(kT ) = g(x(kT ), u(kT ))
(3.5)
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with g and f su�ciently regular, assuming that (xeq, ueq) is an equilibrium point and

introducing the variables x̄ = x− xeq and ū = u− ueq, which describe the deviation from

the equilibrium, then the linearization of the system is the following linear system:⎧⎨⎩x̄((k + 1)T ) = Ax̄(kT ) +Bū(kT )

ȳ(kT ) = Cx̄(kT ) +Dū(kT )
(3.6)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
∂

∂x
f(x, u)|xeq ,ueq

B =
∂

∂u
f(x, u)|xeq ,ueq

C =
∂

∂x
g(x, u)|xeq ,ueq

D =
∂

∂u
g(x, u)|xeq ,ueq

(3.7)

Theoretical results ensure that for su�ciently small values of x̄ and ū the linear approxi-

mation is accurate.

Since the patient model considered in this thesis includes a nonlinear part (the Hill func-

tion), the PKPD model of the mean patient has been linearized around the steady state

values. To perform the linearization, the Model Linearizer MatlabSimulink tool has been

used. With this tool it is possible to trim the model to identify the operating point, based

on the desired steady state output values. The values of the operating point are reported

in Table 3.1.
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Variable Operating point

x1 0.664 [mg/ml]

x2 2.198 [mg/ml]

x3 37.02 [mg/ml]

x4 0.664 [mg/ml]

x5 2.987 [mg/ml]

x6 5.004 [mg/ml]

x7 3.203 [mg/ml]

x8 3.254 [mg/ml]

x9 7.37e-21 [mg/ml]

x10 0 [mg/ml]

x11 3285.714 [mg/ml]

x12 2.008 [mg/ml]

x13 48.81 [mg/ml]

uPropofol 0.015 [mg/(kg min)]

uRemifentanil 0.113 [µg/(kg min)]

uAtracurium 6.9 [mg/(kg min)]

yBIS 50.09 [ ]

yRASS -4.017 [ ]

yNMB 10.1 [%]

Table 3.1: Operating point for the mean patient model linearization

Once the trimming of the system is performed, the Model Linearizer tool linearizes

the multivariable state space system around the operating point. The result is a 3×3
state space model with 13 states. The addiction of two states is due to the linearization

of the transfer function that consists of the PD part of the Remifentanil to RASS model.

Below are the matrices of the linearized state space model:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8735 0.0706 0.0035 0 0 0 0 0 0 0 0 0 0

0.2335 −0.0706 0 0 0 0 0 0 0 0 0 0 0

0.1958 0 −0.0035 0 0 0 0 0 0 0 0 0 0

0.456 0 0 0.456 0 0 0 0 0 0 0 0 0

0 0 0 0 −0.8843 0.1525 0.0088 0 0 0 0 0 0

0 0 0 0 0.2555 −0.1525 0 0 0 0 0 0 0

0 0 0 0 0.0094 0 −0.0088 0 0 0 0 0 0

0 0 0 0 0.456 0 0 −0.4186 0 0 0 0 0

0 0 0 0 0 0 0 0 −0.561 −0.0755 −0.0021 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −2 0.0823

0 0 0 0 0 0 0 1 0 0 0 0 −0.0667

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.8)

73



B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.9)

C =

⎡⎢⎣0 0 0 −89.8962 0 0 0 −24.3121 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −2 0

0 0 0 0 0 0 0 −0.2941 0 0 −0.0079 0 0

⎤⎥⎦ (3.10)

D =

⎡⎢⎣0 0 0

0 0 0

0 0 0

⎤⎥⎦ (3.11)

Since the PK model of the patient for all the drugs is linear, the linearization did not

a�ect it. Indeed, matrix A di�ers from the one reported in Equation 3.1 only for the two

additional states of Remifentanil. Regarding matrix C (see Equation 3.10), the �rst raw

is related to the BIS (that depends on Propofol and Remifentanil, i.e. states 4 and 8),

the second raw concerns the RASS (that depends only on Remifentanil), and the third

raw is related to the NMB (that depends on Remifentanil and Atracurium). Matrix C

substitutes the Hill functions of BIS and NMB and the transfer function of RASS, relating

the e�ect-site concentrations of the drugs directly to their e�ect at the site of action.

To assess the performance of the linearization step, the outputs of the linearized model

have been compared to the outputs of the original nonlinear models, in the presence

of sinusoidal perturbations of the equilibrium point inputs. Di�erent amplitudes of the

sinusoids have been tested.
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Figure 3.1: Performance of the linearization on BIS: 6% sinusoidal input perturbation
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Figure 3.2: Performance of the linearization on BIS: 30% sinusoidal input perturbation

Figure 3.1 shows the BIS index of the linearized Propofol to BIS model and of the

original nonlinear model, in response to a 6% sinusoidal perturbation of the equilibrium

point input. As expected, for small variations from the equilibrium, the linear approxi-

mation coincides with the response of the nonlinear model. Subsenquently, the amplitude

of the sine wave has been increased in order to obtain a 30% perturbation: as shown in

Figure 3.2, for such variation from the equilibrium the linear approximation no longer

coincides with the original signal.
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Figure 3.3: Performance of the linearization on RASS: 5% sinusoidal input perturbation
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Figure 3.4: Performance of the linearization on RASS: 90% sinusoidal input perturbation

Regarding RASS, initially the sinusoidal input perturbation has been set to 5% (see

Figure 3.3), then it has been increased to 90% (see Figure 3.4). For both this sinusoidal

inputs, the linear approximation is adequate, since the linearized model output and the

nonlinear model output coincide. This procedure has been performed for the sole purpose

of verifying if the linear approximation of the model is adequate. Indeed, it is a completely

non-physiological approach, since the minimum measurable RASS value is -5, while the

output obtained by the input perturbation reaches -8.
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Figure 3.5: Performance of the linearization on NMB: 2% sinusoidal input perturbation
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Figure 3.6: Performance of the linearization on NMB: 30% sinusoidal input perturbation

In order to assess the performance of the linearization on the NMB model, initially

a sinusoidal input perturbation of 2% has been tested. As can be seen in Figure 3.5,

for such a small variation from the equilibrium, the approximation is acceptable, i.e. the

linear and nonlinear model outputs coincide. Figure 3.6 shows the NMB response to

a sinusoidal input perturbation of 30%, which causes a discrepancy in the linear and

nonlinear model responses, meaning that the linear approximation is not acceptable for

such large variations from the equilibrium.

3.3 MPC design

Prediction horizon

When designing MPC, an important parameter to choose is the prediction horizon (N).

As reported in [7], when only hypnosis is controlled, a prediction horizon of 10 s is often

selected. But since the hemodynamic models included in the patient model have larger

time constants, the prediction horizon also needs to be larger to guarantee feasibility.

Simulations have been performed with a prediction horizon varying between 10 and 500

s. The results indicated that the set-point for the BIS will be reached for all the values

of N larger than 10. When analyzing the results for the hemodynamic variables, it has

been noticed that small values of N lead to instability of CO and MAP. Furthermore, it
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has been observed that the transition from instability to stability is within the range of

50 to 100 s. Hence, the simulation has been repeated with prediction horizons between

50 and 100 s. From the results it is evident that the prediction horizon needs to be at

least 60 s to avoid instability in the induction phase. For this reason, in this simulation

the prediction horizon has been set to N = 60.

Output prediction

The model of the patient is characterized by the following state space representation:⎧⎨⎩x((k + 1)T ) = Ax(kT ) +Bu(kT )

y(kT ) = Cx(kT ) +Du(kT )
(3.12)

where A, B, C and D are the matrices obtained at the linearization step (Equations 3.8

- 3.11). For the Markov property, the update equation states that x((k+1)T) is fully

determined by x(kT) and u(kT) at time kT. This means that x(kT) at time kT contains

all the past history of the system, therefore all the information needed to compute the

evolution of the system is held by x(kT) and the sequence of future inputs [21].

In matrix notation, the state prediction can be expressed as:⎡⎢⎢⎢⎢⎢⎢⎢⎣

x̂(k + 1|k)
x̂(k + 2|k)
x̂(k + 3|k)

...

x̂(k +N |k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

X̂

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A

A2

A3

...

AN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

As

x̂(k|k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B 0 . . . 0

AB B . . . 0

A2B AB . . . 0
...

...
. . .

AN−1B AN−2B . . . B

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Bs

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u(k)

u(k + 1)

u(k + 2)
...

u(k +N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

U

(3.13)

Thus, in compact form:

X̂ = Asx̂(kT |kT ) + BsU (3.14)

Since y(kT) = Cx(kT), the output prediction is straightforward to calculate [21]:⎡⎢⎢⎢⎢⎢⎢⎢⎣

ŷ(k + 1|k)
ŷ(k + 2|k)
ŷ(k + 3|k)

...

ŷ(k +N |k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Ŷ

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

CA

CA2

CA3

...

CAN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

A

x̂(k|k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

CB 0 . . . 0

CAB CB . . . 0

CA2B CAB . . . 0
...

...
. . .

CAN−1B CAN−2B . . . CB

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

B

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u(k)

u(k + 1)

u(k + 2)
...

u(k +N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

U

(3.15)

Thus, in compact form:

Ŷ = Ax̂(kT |kT ) + BU (3.16)
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State estimation

In the calculation of the output prediction, it has been assumed that x(kT) is available

at the time kT. In this simulation, the state variable is not accessible from the plant,

since the number of states of the nonlinear plant is di�erent from the number of states of

the linearized model. Therefore, a state observer is needed in order to estimate the state

variable for the feedback. The state observer employed in this thesis is a Kalman �lter.

The Kalman �lter receives the process measurements and the manipulated variables (i.e.

the output of the MPC) as inputs, and uses them to estimate the state variable, based

on the state space linearized model of the patient. The tuning of the �lter has been

performed by selecting the process noise covariance matrix (Qkf), the measurement noise

covariance matrix (Rkf) and the process and measurement noise cross-covariance matrix.

Equation 3.17 reports the process noise covariance matrix:

Qkf =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0054 0 0 0 0 0 0 0 0 0 0 0 0

0 0.049 0 0 0 0 0 0 0 0 0 0 0

0 0 13.71 0 0 0 0 0 0 0 0 0 0

0 0 0 0.0054 0 0 0 0 0 0 0 0 0

0 0 0 0 0.09 0 0 0 0 0 0 0 0

0 0 0 0 0 0.251 0 0 0 0 0 0 0

0 0 0 0 0 0 0.104 0 0 0 0 0 0

0 0 0 0 0 0 0 0.107 0 0 0 0 0

0 0 0 0 0 0 0 0 0.001 0 0 0 0

0 0 0 0 0 0 0 0 0 0.001 0 0 0

0 0 0 0 0 0 0 0 0 0 0107900 0 0

0 0 0 0 0 0 0 0 0 0 0 0.041 0

0 0 0 0 0 0 0 0 0 0 0 0 23.825

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.17)

Qkf is a diagonal matrix, because the uncertainty that a�ect the evolution of one state

has been assumed to be independent on the uncertainty a�ecting the other states. The

entries of the process noise covariance matrix have been calculated using the following

formula:

Qkf ii = (0.1(x̄+ ϵ))2 (3.18)

where ϵ = 0.01, that has been added to avoid null values of the entries. With this

calculation, the standard deviation of the model error has been set to 1/10th of the value

of the state at the equilibrium point.

Equation 3.19 represents the measurement noise covariance matrix:

Rkf =

⎡⎢⎣1 0 0

0 6.27 0

0 0 1

⎤⎥⎦ (3.19)

Rkf is a diagonal matrix, since the error committed in measuring one output is independent

of the error committed measuring the others. The entries of the matrix are the values of

the variance of the measurement errors of the sensors.

The process and measurement noise cross-covariance matrix has been set to 0, since the
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measurement errors and the process errors have been considered uncorrelated.

Constraints

Another aspect to consider in the design of the MPC are the constraints. In this case, the

constraints on the amplitude of the manipulated variables must be taken into account,

since the infusion rates of the drugs are saturated. For all the drugs, the saturation u(kT)

∈ [umin, umax] ∀k can be expressed as a linear inequality: Au(kT) ≤ b, with A =

[︄
1

−1

]︄

and b =

[︄
−umin

umax

]︄
.

The saturation values [umin, umax] are reported in Table 1.6. It is important to notice

that u(kT), in output from the MPC, is an incremental variable, not the actual physical

variable. The actual physical variable is obtained from the sum of the incremental variable

u(kT) and the steady-state value ueq. The controller also requires in input the incremental

state variable. Since the Kalman �lter estimates the state using the linearized model, its

output is already the incremental state variable. In fact, the input of the Kalman �lter

are the incremental control variables and the incremental outputs of the process, obtained

by subtracting the steady-state values to the actual output variables (both for BIS, RASS

and NMB) [21]. All the steady-state values are listed in Table 3.1.

Cost function

A fundamental part of the MPC design is the cost function. In this case, a quadratic

cost function for reference tracking has been considered. Below, the expression of the cost

function in matrix notation [21]:

J = (Ŷ(k)− Y0(k))
TQ(Ŷ(k)− Y0(k)) + (U(k))TR(U(k)) (3.20)

where

Ŷ(k) = [ŷT (k + 1|k) . . . ŷT (k +N |kT )]T

Y0(k) = [yT0 (k + 1|k) . . . yT0 (k +N |kT )]T

U(k) = [uT (k) . . . uT (k +N − 1)]T

Y0(k) is the reference trajectory of the process outputs. The references of BIS, RASS and

NMB are the same signals taken into account in the PID simulations (see Section 2.2).

Since the future evolution of the reference is known a priori, it is possible to design a

lookahead MPC, i.e. the system is able to respond proactively, before the changes in the

reference have occurred, avoiding delays in the process responses [5]. More precisely, the

reference contains N values for each output.
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Q and R in Equation 3.20 are the weight matrices:

Q =

⎡⎢⎣0.0001 0 0

0 0.01 0

0 0 0.0001

⎤⎥⎦ (3.21)

R =

⎡⎢⎣5 0 0

0 1 0

0 0 10

⎤⎥⎦ (3.22)

The presence of the two terms in the cost function (Equation 3.20) forces the MPC al-

gorithm to �nd a trade-o� between the predicted control error and the cost of a control

action. Indeed, the ratio between Q and R regulates the controller aggressiveness [21].

Numerical solution using Quadratic Programming

A quadratic programming problem is a problem of this kind:

J =
1

2
xTEx+ xTF (3.23)

Mx ≤ γ (3.24)

where E, F, M and γ are compatible matrices and vectors. Without loss of generality,

E is assumed to be symmetric and positive de�nite. Equation 3.23 reports the cost

function while Equation 3.24 presents the constraints. In these equations, x represents

the decision variable. A quadratic programming problem it is a convex optimization

problem, which means that there is no local minima and the convergence is guaranteed.

In the unconstrained case, it is possible to obtain a closed-form solution, while in the

constrained case a numerical solution is required [21].

From Equation 3.20, replacing Ŷ(k) with the expression in Equation 3.16, it is possible

to obtain:

J = 2((Ax̂(kT |kT )− Y0(k))
TQB)U(k) + UT (k)(BTQB +R)U(k) (3.25)

that is a quadratic programming problem.

Several alghoritms that can compute the numerical solution are available. In order to

perform the optimization, the Matlab function quadprog with the Active Set algorithm

has been employed in this simulation.

3.4 Induction phase

This section reports the results of the simulation of the model predictive control of the

induction phase of anesthesia. The simulation includes the same variables of the PID con-
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trol simulation, i.e. the anesthestic variables BIS, RASS and NMB and the hemodynamic

variables CO and MAP. Even in this case, the simulation has been ran on the set of 24

patients, whose biometric values are reported in Table 1.3.

Simulation results

0 100 200 300 400 500
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60
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80

90

100

[ 
]

BIS

Figure 3.7: MPC simulation - Induction phase: BIS

Figure 3.7 shows the response of the BIS to Propofol and Remifentanil administration.

For all the patients, the BIS signal perfectly follows the BIS reference, except in the initial

part (i.e. the �rst 100 s) where there is a slight delay in the response. As reported in

Table 3.2, the settling time (ST) is equal to the time to target (TT), since there is no

undershoot. Figure 3.8 shows the Propofol infusion rates.
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MPC performance

min TT [s] 214

max TT [s] 217

mean TT [s] 215.4

min BIS-NADIR [ ] 50

max BIS-NADIR [ ] 50

mean BIS-NADIR [ ] 50

min ST [s] 214

max ST [s] 217

mean ST [s] 215.4

min US [%] 0

max US [%] 0

mean US [%] 0

min PE [%] 0

max PE [%] 3.68

mean PE [%] 0.29

Table 3.2: Induction phase: MPC performance for Propofol administration
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Figure 3.8: MPC simulation - Induction phase: Propofol
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Figure 3.9: MPC simulation - Induction phase: RASS

Figure 3.9 illustrates the response of the RASS to Remifentanil administration. This

variable follows the RASS reference for all the patients except for patient 3, whose RASS

remains at value -5, which is still within the accepted RASS interval (see Table 1.8),

therefore there is no undershoot for any patient. In fact, as can be seen in Table 3.3, the

settling time (ST) is equal to the time to target (TT). Figure 3.10 shows the Remifentanil

infusion rates.
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MPC performance

min TT [s] 50

max TT [s] 205

mean TT [s] 85.29

min RASS-NADIR [ ] -4

max RASS-NADIR [ ] -5

mean RASS-NADIR [ ] -4.08

min ST [s] 50

max ST [s] 205

mean ST [s] 85.29

min US [%] 0

max US [%] 0

mean US [%] 0

min PE [%] 0

max PE [%] 75

mean PE [%] 3.69

Table 3.3: Induction phase: MPC performance for Remifentanil administration
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Figure 3.10: MPC simulation - Induction phase: Remifentanil
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Figure 3.11: MPC simulation - Induction phase: NMB

Figure 3.11 shows the NMB response to Atracurium and Remifentanil administration.

The signal is the same for all the subjects since the Atracurium to NMB model does not

include the interpatient variability. As reported in Table 3.4, the time to target (TT)

is equal to the settling time (ST) since there is no undershoot. Figure 3.12 shows the

Atracurium infusion rates.
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MPC performance

min TT [s] 49

max TT [s] 49

mean TT [s] 49

min NMB-NADIR [%] 10

max NMB-NADIR [%] 10

mean NMB-NADIR [%] 10

min ST [s] 49

max ST [s] 49

mean ST [s] 49

min US [%] 0

max US [%] 0

mean US [%] 0

min PE [%] 0

max PE [%] 820

mean PE [%] 21.22

Table 3.4: Induction phase: MPC performance for Atracurium administration
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Figure 3.12: MPC simulation - Induction phase: Atracurium
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Figure 3.13: MPC simulation - Induction phase: CO
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Figure 3.14: MPC simulation - Induction phase: MAP

Regarding the hemodynamic system, both CO and MAP remain within the safe ranges

during the induction phase, as can be seen from Figure 3.13 and Figure 3.14.

3.5 Comparison between PID and MPC

In this section the comparison between the results of the simulations of the PID control

and the MPC is performed. The comparison has been conducted only for the induction

phase, since the maintenance phase in the MPC case has not been investigated. Tables

3.5, 3.6 and 3.7 report the di�erences between the performance indices of the PID and

MPC simulations for Propofol, Remifentanil and Atracurium administration, respectively.

For a generic performance index, the term ∆index can be expressed as:

∆index = indexPID - indexMPC, representing the di�erence between the value of a perfor-

mance index for the PID control performance evaluation and the value of the same index

for the MPC performance evaluation. As an example, taking into account the minimum

time to target of the BIS:

∆min TT = min TTPID - min TTMPC = 225 - 214 = 11 s.

For all the performance indices used in this thesis it is valid that the lower the index, the

better the control performance. Therefore:

� if ∆index > 0, the control performance is better for the MPC with respect to the
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PID control;

� if ∆index = 0, the control performance is equal for the MPC and the PID control;

� if ∆index < 0, the control performance is better for the PID control with respect

to the MPC.

Performance comparison

∆min TT [s] 11

∆max TT [s] 13

∆mean TT [s] 10.4

∆min BIS-NADIR [ ] 0

∆max BIS-NADIR [ ] 0

∆mean BIS-NADIR [ ] 0

∆min ST [s] 11

∆max ST [s] 13

∆mean ST [s] 10.4

∆min US [%] 0

∆max US [%] 0

∆mean US [%] 0

∆min PE [%] 0

∆max PE [%] 6.28

∆mean PE [%] 1.86

Table 3.5: Induction phase: Di�erences between the PID and MPC performance indices
for Propofol administration

Regarding the control of Propofol administration, as presented in Table 3.5, the BIS-

NADIR is the same for the PID and the MPC simulations, since there is no undershoot

in the BIS signal. The ∆TT indices are positive values, both in the minimum, mean

and maximum cases, as well as the ∆PE in the mean and maximum cases. Therefore, in

this case the MPC controller performs better than the PID controller in carrying out the

set-point following task.
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Performance comparison

∆min TT [s] 110

∆max TT [s] 14

∆mean TT [s] 85.13

∆min RASS-NADIR [ ] -1

∆max RASS-NADIR [ ] 0

∆mean RASS-NADIR [ ] -0.08

∆min ST [s] 110

∆max ST [s] 14

∆mean ST [s] 85.13

∆min US [%] 0

∆max US [%] 0

∆mean US [%] 0

∆min PE [%] 0

∆max PE [%] 25

∆mean PE [%] 6.66

Table 3.6: Induction phase: Di�erences between the PID and MPC performance indices
for Remifentanil administration

Regarding the control of Remifentanil administration, as presented in Table 3.6, the

∆TT indices are positive values, therefore the RASS response is quicker in the MPC

simulation. The only negative values are the ∆RASS-NADIR in the minimum and mean

cases, meaning that the PID controller performs better in tracking the RASS reference.

Nevertheless, the ∆PE is positive both for the mean and the maximum cases.
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Performance comparison

∆min TT [s] 19

∆max TT [s] 19

∆mean TT [s] 19

∆min NMB-NADIR [%] 0

∆max NMB-NADIR [%] 0

∆mean NMB-NADIR [%] 0

∆min ST [s] 19

∆max ST [s] 19

∆mean ST [s] 19

∆min US [%] 0

∆max US [%] 0

∆mean US [%] 0

∆min PE [%] 0

∆max PE [%] 20

∆mean PE [%] 18.61

Table 3.7: Induction phase: Di�erences between the PID and MPC performance indices
for Atracurium administration

Regarding the control of Atracurium administration, Table 3.7 shows that there are

no negative ∆index values, therefore the MPC performance is better or equal to the PID

control performance. In particular, the ∆TT is positive, meaning that the set-point fol-

lowing task has been carried out quicker with the MPC controller, compared to the PID

controller.

Concerning the hemodynamic system, CO and MAP remain within the safe intervals both

in the PID and MPC simulations.
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Figure 3.15: Comparison of the �gures of the PID and MPC simulations - Anesthetic
variables

In order to provide a better visualization of the comparison between the PID and the

MPC simulations of the induction phase of anesthesia, Figure 3.15 shows the charts of the

anesthetic variables of the PID simulation (left side of the �gure) paired with the charts

of the same variables, obtained from the MPC simulation (right side of the �gure).
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(b) MPC simulation - CO
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(c) PID simulation - MAP
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Figure 3.16: Comparison of the �gures of the PID and MPC simulations - Hemodynamic
variables

A paired visualization has been also attained for the hemodynamic variables: the left

side of Figure 3.16 shows the charts of the hemodynamic outcomes of the PID simulation,

while the right side presents the charts of the same variables, obtained from the MPC

simulation.

To conclude the comparison, the pros and cons of both control strategies are reported.

Advantages of the PID control:

� Easy use and tuning;

� Good performance for simple problems;

� Low computational complexity.

Disadvantages of the PID control:

� It can not deal with multivariable cases;

� Not appropriate for complex systems.

Advantages of the MPC:

� Possibility to manage multivariables cases;
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� Good performance even for complex systems;

� Possibility to include the constraints in the controller design;

� Useful if the reference is known in advance.

Disadvantages of the MPC:

� High computational complexity;

� It is necessary to know the model of the system; furthermore, if the model is nonlin-

ear, it is recommended to linearize it, with possible loss of performance if the linear

approximation is too rough.
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Conclusion

In this thesis the complex task of automated control of anesthesia has been addressed.

Di�erent simulations have been ran in order to compare them and discuss their positive

aspects and limitations. Initially, an open-loop simulation has been executed: the results

obtained are not satisfactory, con�rming the need to include a closed-loop approach in the

anesthesia delivery. Regarding the closed-loop control of anesthetic drugs administration,

two di�erent methods have been tested: the proportional-integral-derivative (PID) control

and the model predictive control (MPC). Compared to the open-loop simulation, both

closed-loop strategies performed better, showing the ability to manage the interpatient

variability in a more e�ective way. The MPC technique performed better with respect

to the PID technique, on the basis of the indices taken into account in the performance

assessment.

The PID control method has been extensively tested in this thesis, both for the induction

and the maintenance phase of anesthesia, with the addiction of the action of the anesthe-

siologist. Moreover, for the PID simulation, a di�erent set-up with the addiction of the

interpatient variability on the PD model of the BIS and the modi�cation of the sampling

time of RASS and NMB has been tested, in order to perform a robustness test. Regarding

the MPC technique, the simulation has been ran only for the induction phase, since in

this case the addiction of an intergral action for the MPC should be introduced. In order

to complete the comparison between the PID and the MPC strategies, the simulation

for the maintenance phase of anesthesia could be performed in the MPC simulation, i.e.

adding the disturbances (the surgical stimulation) and the anesthesiologist's action, with

the addiction of the integral action. Future work could also include the introduction in the

MPC simulation of the modi�cations made to the simulator for the PID control, such as

the di�erentiation of the sampling times for the various anesthetic variables (BIS, RASS

and NMB). In the MPC simulation, this could be carried out by appropriately modifying

the variance of the Kalman �lter, in particular for RASS and NMB.

The patient simulator would also bene�t from the introduction of a new pain monitoring

system and a PD model for analgesia, as a separate output variable to be controlled [16].
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