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Abstract 

 

Von Willebrand disease (VWD) is one of the most severe inherited bleeding disorder recognizable in 

humans under different typologies, characterized by qualitative or quantitative deficiencies of von 

Willebrand factor (VWF). The diagnosis of the disease is difficult and linked to the experience of 

doctors, therefore a mechanistic model by Galvanin et al. has recently been proposed and applied to 

help in the disease characterization and diagnosis. However, model identification requires the 

execution of the stressful and invasive DDAVP test. The test can cause severe consequences on the 

patients and it cannot be carried out on babies or old people. Therefore, it appears clearly reasonable 

to study a way for identifying the model without the DDAVP test but only with basal clinical trials. 

This research work pretends to be only the first step towards achieving the ultimate just mentioned 

target. Response surface methodology (RSM) has been applied to find explicit correlations for the 

elimination constant ke, the proteolytic kinetic constant k1 and the constant of release k0 as function 

of basal quantities (VWF:R, VWFpp ratio, VWF:Ag), whose values are derived from a simple blood 

sample. Results show that, the new equations, once substituted in the PK model of VWD by Galvanin 

et al., allow for the identification of the modified model and the simulated responses demonstrate that 

the predictive capability of the model is fully maintained. 
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Introduction 

The work of thesis has been carried out at University College London (UCL) in collaboration with 

the Hospital of Padova. 

The overall objective of this thesis is to optimally design a minimal set of basal clinical trials for the 

identification of the pharmacokinetic (PK) model of von Willebrand disease (VWD) in order to 

decrease the time and effort required for the disease characterization and diagnosis. 

            VWD is one of the most diffuse bleeding disorders visible in humans, caused by an alteration of von 

Willebrand factor (VWF), a multimeric glycoprotein present in the blood stream. VWF acts a 

fundamental function in the haemostatic process and its alteration reflects into a coagulation disorder. 

VWD occurs in a large variety of forms and its symptoms range from sporadic nosebleeds and mild 

bleeding from small lesions in skin, to acute thrombocytopenia or prolonged bleeding episodes. 

Diagnosis of VWD may be complicated due to the various number of VWD types (1, 2A, 2B, 

Vicenza), therefore pharmacokinetic models have been recently proposed for the classification of the 

disease, elucidating the critical pathways involved in the disease characterization. However, the 

complexity of the models requires long (at least 24 h) and invasive non-routine tests like DDAVP to 

be carried out on the subjects to achieve a statistically satisfactory estimation of the individual 

metabolic parameters. Therefore, the scientific community is pushing researchers to study a way for 

identifying the mechanistic model of VWD without the need of DDAVP test, exploiting only basal 

clinical trials. The alternative basal tests which are considered in this study are: (a) Propeptide test 

(VWFpp) to quantify VWF elimination from the blood stream; (b) Antigen VWF test (VWF:Ag) to 

evaluate the number of VWF antigens in the bloodstream; (c) Collagen-binding VWF test (VWF:CB) 

to analyse the ability of VWF in binding with collagen. From these clinical trials two other important 

physiological quantities are derived for diagnostic purposes: i) VWFpp ratio expressed as the ratio 

between VWFpp and VWF:Ag; ii) VWF:R defined as the ratio between VWF:CB and VWF:Ag.  

           To achieve the overall target of the work, a simplified version of the mechanistic model of VWD by 

Galvanin et al. is used. The model assumes that high (HMW) and ultrahigh (ULMW) molecular 

weight multimers are released in the bloodstream from the endothelial cells. Then, HMW and ULMW 

multimers are cleaved by the metalloproteinase ADAMTS13 into low molecular weight multimers 

(LMW) and eliminated from the bloodstream. A modified model is proposed in this work by 

including in the formulation a set of explicit correlations linking the PK parameters (k0, k1, ke) to basal 

VWF:Ag, VWF:CB and VWFpp clinical trials and readings. The new equations are obtained using 

response surface methodology (RSM). RSM is a design of experiment technique, used to develop 
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“black-box” regression models to establish a correlation between inputs and outputs in a system. The 

approach is used to approximate the information coming from experimental data with the aim of 

defining the profile of responses in the experimental design space. 

A two-stage model identification procedure is applied based on RSM. In the first step, a model 

discrimination based on Akaike index is used to determine the best structure of the response surface 

(linear, quadratic, with interactions, etc.). In the second step a data mining procedure is carried out to 

estimate RSM parameters in the most precise way. Following the procedure suggested by Asprey and 

Macchietto, identifiability tests (sensitivity analysis and information content analysis) are conducted 

to evaluate if PK model parameters can be uniquely estimated from the experimental data. Linear 

response surfaces with interactions have been successfully applied for each type of VWD and it 

represents the first step for finding explicit correlations between the kinetic parameters (k0, k1, ke) and 

the three basal trials: VWF:Ag, VWF:CB, VWFpp and their related quantities.  

Explicit correlations have been found for k1 and ke with high degree of accuracy. Results show a good 

agreement between the simplified and the modified model including RSM correlations. 

A non-negligible degree of uncertainty is instead obtained when also an explicit correlation for k0 is 

added to the equation set. This finding is confirmed also by the medical community which stated that 

the VWF release path is the most critical to define with accuracy. 

The modified model with the explicit correlation for k1 and ke has been then used to redesign the 

DDAVP clinical trial. As result the DDAVP assay has been reduced to 3 hours instead of 24 hours. 

This strong reduction is possible because only the release kinetic constant k0 needs now to be 

estimated. Parameter k0 is linked to the release from the endothelial cells, which represents the first 

step of the VWF path in the bloodstream.  

The work of thesis represents a first step towards reaching model identification starting only from 

basal clinical trials. This will allow an accurate characterization of the disease without the invasive 

DDAVP test, resulting therefore into a better quality of life for the patients. 
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Chapter 1 

Introduction to von Willebrand disease 

In this chapter, a general overview on the disease and clinical management is given. VWD categories 

and the diagnostic instruments are described to stress out the difficulties that the operators meet in 

characterising the disease and how a model-based approach can help them in the diagnostic process.  

 

1.1 Von Willebrand disease: alteration of von Willebrand factor in the 

coagulation process 

Von Willebrand disease (VWD) is one of the most common bleeding disorders visible in humans, 

discovered by the Finnish physician Eric von Willebrand in 1926 (Berntrop, 2007). Von Willebrand 

disease is caused by a qualitative or quantitative deficiency of von Willebrand factor (VWF), that is 

a multimeric glycoprotein composed by a variable number of identical subunits, consisting of 2050 

aminoacid residues and up to 22 carbohydrate side chains (Zaverio, 2007). VWF multimers vary 

between dimers of 225,000 dalton and large structures consisting of more than 50 subunits. VWF is 

produced by endothelial cells and megakaryocytes and it can be found in subendothelial matrix, blood 

plasma and platelets. Considering its synthesis, the VWF produced in the endothelial cells can be 

secreted through two different pathways: a constitutive pathway, in which molecules are immediately 

released after synthesis and a regulated pathway where storage in organelles called Weibel-Palade (in 

endothelial cells) and α-granules (in megakaryocytes) is involved. The presence of uncleaved large 

multimers is fundamental to guarantee action where platelet adhesion and aggregation is necessary. 

The initially uncleaved VWF is then subjected to reduction in size through a proteolytic cleavage 

controlled by the metalloproteinase ADAMTS-13. Various size of the circulating multimers means 

different prohadesive functions. In particular the largest VWF multimers show enhanced 

thrombogenic functions, indeed they are released at the time of injury where the tissue is damaged, 

but in order to prevent excessive thrombus formation the physiological regulatory mechanism causes 

their cleavage from the circulation (Zaverio, 2007). VWF plays a fundamental role in the coagulation 

process: in fact, it mediates platelet adhesion, platelet aggregation, thrombus growth, and it binds, 

transports and protects the coagulation factor VIII. Precisely, in the haemostatic process, VWF 

attaches to subendothelial collagen at the one side and to platelets at the glycoprotein lb receptor at 
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the other side, therefore a platelet plug can be formed in the presence of vessel injuries. The VWF 

protein is encoded by a gene on human chromosome 12 and its primary structure, reported in figure 

1.1, shows several repeated domains. 

 

Figure 1.1. Primary structure of VWF protein (Lillicrap, 2007). 

 

The D1, D2, D’ and D3 domains are involved in the regulation of the process of multimers formation, 

D’ and D3 are also linked in the FVIII binding, while A1 and A3 domains possess collagen-binding 

properties. Precisely A1 contains the exclusive binding site for the platelet with receptor glycoprotein 

(GP) α lb, whereas A3 is the domain through which VWF binds to collagen (Lillicrap, 2007).  

 

  

(a) (b) 

Figure 1.2. Platelets adhesion (a) and aggregation (b) (Lillicrap, 2007). 

 

The structure of von Willebrand factor allows its binding to collagen and the interaction with specific 

receptors on the membrane of platelets to ensure the initiation and propagation of the coagulation 

process. As can be seen from figure 1.2.a, subendothelial VWF is able to bind platelets through 

glycoprotein α lb in case of vascular injury also in vessel characterized by high shear stresses. Hence, 

the movement of platelets is significantly reduced until platelets are able to adhere stably. Then, 

activated platelets secrete the contents of their granules and bind adhesive proteins from plasma, such 
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as fibrinogen and VWF, which form the substrate where platelets aggregation (figure 1.2.b) can 

develop to form thrombus.  

Von Willebrand disease can clearly be defined as an alteration of VWF in the coagulation process, 

indeed the predominant clinical symptoms are nosebleeds, bleeding from small lesions in skin, 

mucosa or the gastrointestinal tract, menorrhagia, excessive bleeding after trauma, surgical 

intervention or childbirth. There are several types of VWD (1, 2A, 2B, 2M, 2N, Vicenza, 3), but the 

central feature of all forms of VWD is the presence of reduced amounts of VWF or abnormal forms 

of VWF in the circulation. Precisely, Type 1 and 3 are characterized by mild or severe quantitative 

deficiencies of VWF, respectively, on the other hand, type 2 variants are characterised by qualitative 

deficiencies caused by mutations in the VWF gene (Sadler, 2003).  

 

1.2 VWD categories 

Considering some epidemiologically data, the presence of von Willebrand disease is about one in 100 

individuals, but most of them are asymptomatic. The prevalence of clinically significant cases is 

therefore one in 10000 individuals. Particularly, it is meanly detected in women and apparently more 

severe forms appear in people with blood type 0 (Lillicrap, 2007). 

Von Willebrand disease appears in several forms. In order to understand the diagnostic issues, a brief 

description of the most important VWD types is given below. 

 

1.2.1 Type 1 

Type 1 VWD is the most common form with almost 80% of the total cases. It is characterized by a 

mild to moderate quantitative deficiency of VWF but its functionality is normal. The inheritance is 

dominant, but the penetrance is strongly variable, indeed given the specific genotype one person can 

be asymptomatic having normal clinical tests, while another can have mild or moderate symptoms 

with some abnormal clinical tests. Therefore, the detection of this typology of disease is really 

challenging. The diagnostic problem is linked to the presence of an arbitrary threshold, that separates 

normal from abnormal VWF levels, indeed the boundary between type 1 VWD and low VWF should 

be better defined by determining the likelihood of an intragenic VWF mutation as a function of VWF 

level. Another issue, which complicates the diagnosis, is that the normal range of VWF levels is really 

broad, in fact 95% of the values fail between 50% and 200% of the means. Again, VWF level is 

influenced by ABO blood type with the 0 group characterized by the lowest quantity. Moreover, the 

symptoms which characterize VWD type 1 are mainly common and medically insignificant, so they 

represent a necessary but not sufficient condition for the diagnosis. All the problems just described 
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lead unfortunately to misdiagnosis and, indeed, many people diagnosed with VWD type 1 do not 

have the disease at all. Therefore, extremely negative consequences arise. Many false-positive 

patients are subjected to risky, expensive and useless treatments (DDAVP or blood products for 

surgical procedures), they are forced to change their self-image and to renounce to some activities for 

fear of bleeding. Thus, it can be easily understood that the importance of changing the approach of 

detection of VWD type 1 is relevant (Sadler, 2003).  

 

1.2.2 Type 3 

Type 3 VWD is a pathological disorder characterized by recessive inheritance of two null mutations 

that lead to extremely low or undetectable levels of von Willebrand factor and to moderate deficiency 

of FVIII. Mutations are distributed throughout the VWF gene and most are unique to the family which 

they were first identified. Usually the levels are very low (1-9 U/dL). Patients with type 3 VWD are 

therefore subjected to lifelong severe bleeding (Lillicrap, 2007).  

 

1.2.3 Type 2A 

Type 2A VWD is a pathological disorder, which shows qualitative abnormalities of VWF, due to a 

gene mutations. The VWF-dependent platelet adhesion is decreased because the proportion of large 

VWF multimers is decreased. Levels of VWF:Ag and FVIII may be normal or modestly decreased. 

The main feature of type 2A VWD is the absence of high and intermediate molecular weight 

multimers essential for coagulation and clinical trials show a low VWF:RCo to VWF:Ag ratio (<0.6) 

and abnormal RIPA. Mutations are located in the A2 domain of VWF and they can produce two 

different pathologies. Precisely, type 2AI VWD is characterized by the largest multimers retained in 

the cells of synthesis whereas in type 2AII VWD multimers are correctly synthesized and secreted 

into plasma, but then they are prematurely cleaved by the metalloproteinase ADAMTS-13. The 

inheritance of type 2A VWD is dominant with high penetration (Lillicrap, 2007). 

 

1.2.4 Type 2B 

Type 2B VWD is a pathological disorder characterized by an abnormal structure of the binding site 

for platelet glycoprotein α lb caused by missenses mutations. The defect produces an increase in 

affinity of large multimers to platelets in the blood stream. Ciculating platelets also are coated with 

mutant VWF, which may prevent the platelets from adhering at the site of the injury.Therefore, von 
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Willebrand factor is rapidly consumed. The inheritance of type 2B VWD is dominant with high 

penetration (Lillicrap, 2007). 

 

1.2.5 Type 2N 

Type 2N VWD is a pathological disorder characterized by low level of FVIII in the blood stream, 

caused by recessive mutations in the D’-D3 domains, thus the binding ability of VWF to FVIII is 

strongly reduced. The FVIII is a fundamental coagulation factor, known as antihaemofiliac factor. 

High levels of FVIII are linked with an increased risk of deep thrombosis and pulmonary embolism. 

FVIII is a glycoprotein released in the blood stream by vascular endothelial channels and sinusoidal 

liver cells. In the blood stream FVIII is linked with VWF, and together form an important coagulation 

complex (Lillicrap, 2007).   

 

1.2.6 Type Vicenza 

Type Vicenza VWD is a variant with plasma and platelet VWF level discrepancies and usually large 

VFW multimers. Its diagnosis is not easy due to the heterogeneous phenotype. The identification 

criteria consider the contribution of platelet VWF by comparison with plasma values. Clinical tests 

point out low plasma VWF but normal platelet VWF content and this can be a first useful indicator 

for its identification (Zieger, 1997). This type of VWD shows low or very low plasma VWF levels 

and the presence of ultra-large VWF meaning that the metalloproteinase ADAMTS-13 is not able to 

cut the multimers. Plasma VWF levels are the outcome of the synthesis and release of VWF from 

endothelial cells and its clearance from circulation. Most type of Vicenza patients have a normal 

platelet VWF content, which suggests a normal VWF synthesis. Moreover, after the DDAVP 

treatment the VWF level increases and this is an evidence of a normal acute release of VWF from 

both endothelial cells and Weibel Palade bodies. Thus, the low plasma level of VWF in type Vicenza 

VWD can be explained only by abnormalities occurring after the release of VWF. Indeed, type 

Vicenza VWD is characterized by an increased VWF clearance. This is an explanation of the VWD 

phenotype and the evidence that an increased clearance of VWF may be one of the cause of VWD. 

The most important step to follow for the identification of type Vicenza VWD are: at first evaluating 

the discrepancy between plasma and platelet VWF, then demonstrating a shorter VWF survival and 

the presence of ultralarge VWF multimers, in the end the identification of type Vicenza mutations 

(Casonato, 2006). 
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1.3 Diagnosis and detection of VWD 

The diagnosis and the detection of the VWD types take into consideration three components: a 

personal history of excessive bleeding, a laboratory evaluation that discovers a quantitative or 

qualitative defect in VWF and the presence of a family history of excessive bleeding. In order to 

detect VWD the most common clinical trials are: the VWF:Ag to measure the number of VWF 

antigens, VWF:CB to evaluate the ability of VWF of binding with collagen, VWF:FVIII to evaluate 

the ability of VWF of binding with FVIII, RIPA (ristocetin induced platelet aggregation) to analyse 

the functionality of platelets and not only of the VWF and VWF:RCo, which is a functional test able 

to reflect its ability to aggregate normal platelets in the presence of ristocetin. Ristocetin is an 

antibiotic, that allows to link the VWF with the receptor glycoprotein α lb on the surface of platelets. 

The combination of quantitative and functional tests enables the classification of the patients into 

VWD type (1, 2, 3) and subtype (2A, 2B, 2N, 2M, Vicenza). An important and quite invasive clinical 

test is the DDAVP, where desmopressin is administered subcutaneously at a dose of 40 mg/kg to 

patients and blood samples are collected before and after 15, 30, 60, 120, 180, 240, 480 and 24 h. 

DDAVP induces an acute release of VWF stored in the Weibel Palade bodies of the endothelial cells, 

followed by proteolysis of the UL multimers and VWF clearance. The VWF:Ag and VWF:CB after 

DDAVP are analysed by mean of a pharmacokinetic model describing the kinetic of variation in 

concentration (Casonato, 2006). Indeed, kinetically, the levels of VWF in plasma and patterns of 

HMW and LMW multimers depend on three determinants: i) the amount and rate of VWF release; 

ii) ADAMTS-13 proteolytic activity; and iii) VWF clearance from plasma. The DDAVP results 

elaborated by means of a pharmacokinetic model ensure the estimation of the amount and rate of 

VWF release, its clearance and half-life. Moreover, it enables to characterize the VWF kinetics of 

normal individuals with the 0 and non-0 blood group and for some types of VWD, even if the method 

cannot quantify the proteolytic activity of ADAMTS-13.  

The main issues linked with the use of DDAVP as mean of detection are the fact that it is a long (at 

least 24 h), hazardous and invasive non-routine test, which needs to be carried out on the subjects to 

achieve a statistically satisfactory estimation of the individual metabolic parameters. However, 

pharmacokinetic models are now available and may be exploited to help in the diagnosis of VWD. 

Therefore, alternative less invasive and more easily implementable tests than DDAVP are recently 

receiving more attention in scientific community for model-based diagnostic purposes. In particular, 

these tests are the activated conformational state test (Groot, 2009) which helps the evaluation of 

VWF functional activity, the propeptide test (VWFpp)  (Casonato, 2011) to quantify the VWF 

elimination from the blood stream and the interplatelet von Willebrand factor (Sweeney, 1992) to 

quantify the amount of VWF synthesized in the endothelial cells.  
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1.3.1 Clinical tests 

In this section, the aim is to define shortly the standard procedure for the clinical tests that have been 

considered in our study. Clinical tests were carried out by the team of Prof. Alessandra Casonato at 

the Hospital of Padova in Italy. The study considers 20 VWD patients (types Vicenza, 2B) and 42 

normal subjects, which were treated in accordance with the Helsinki Declaration, after obtaining their 

written informed consent and the Hospital of Padova approval of the ethical board. 

1.3.1.1 VWF antigen (VWF:Ag) 

Platelet VWF:Ag was measured with a home-made ELISA method, using washed platelets, adjusted 

to 1 million and lysed with Triton X-100.  A pool of normal washed platelets was used to construct 

the reference curve. The results are given in U/dL, taking the first reference curve dilution as 100 

U/dL. 

1.3.1.2 VWF collagen binding (VWF:CB) 

VWF:CB is assessed by ELISA using type III collagen (Sigma, Milan, Italy) diluted in acetic acid. 

The results are given in U/dL, taking the first reference curve dilution as 100 U/dL. 

1.3.1.3 VWF propeptide (VWFpp) 

Von Willebrand propeptide (VWFpp) was measured using a home-made ELISA method. Briefly, 

diluted reference and patient plasma samples were added to microwells on microtitration plates coated 

with a monoclonal antibody specific for VWFpp (CLB-Pro 35, Sanguin, The Netherlands); and bound 

VWFpp was assessed with a second anti-VWFpp HRP-labelled monoclonal antibody (M193904, 

Sanguin). The results are given in U/dL, taking the first reference curve dilution as 100 U/dL. 

1.3.1.4 VWF:R and VWFpp ratio 

VWFpp is used to assess the survival of VWF. It is secreted by endothelial cells as a dimer, in a ratio 

of 1:1 with mature VWF. While mature polymerized VWF survives for around 10-20 hours, VWFpp 

has a half-life of just 1-2 hours. No pathological conditions or mutations are known to affect the 

survival of VWFpp, while a number of VWF mutations are known to affect the half-life of mature 

VWF. That is why the VWFpp/VWF:Ag ratio (VWFpp ratio) gives an indirect measure of VWF 

survival. A reduced VWF half-life coincides with an increase in the VWFpp ratio: the higher the 

VWFpp ratio, the shorter the survival of VWF. 

VWF:CB measures the capacity of VWF to bind to extravascular collagen. This binding relies on the 

integrity of the collagen binding domain of VWF, as well as the presence of large VWF multimers 

(the multimeric components best able to bind collagen). A lower VWF:CB/VWF:Ag ratio (VWF:CB 

ratio) is suggestive of a reduction in, or disappearance of large VWF multimers or,  less frequently, 
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of an altered collagen binding domain of VWF. A greater reduction in the VWF:CB ratio coincides 

with a more pronounced shortage of large VWF multimers. 

1.3.1.5 DDAVP 

DDAVP (1-desamino-8-D-argine vasopressin; Emosint, Sclavo, Italy) was administered 

subcutaneously at a dose of 0.3 μg kg-1. Blood samples were collected before and 15, 30, 60, 120, 

180, 240, 480 min and 24 h after administering DDAVP. The time courses of the VWF:Ag and 

VWF:CB plasma concentrations after the DDAVP challenge were analysed using the SGM 

mathematical model that is described in section 2.1. In the study, this clinical trial is fundamental to 

calculate the values of the PK parameters for each VWD category and healthy subjects. 

The clinical data derived from the execution of these medical assays have been fundamental for the 

development of the work here presented. 

 

1.4 Pharmacokinetic model of VWD 

Pharmacokinetic models are extensively used nowadays in preliminary drug development, in 

preclinical studies for the formulation of new therapies and in clinical diagnosis. PK models have 

been developed to conceptualize, in simple terms, the processes that take place between an organism 

and a chemical substance. Moreover, prediction by PK simulation can reduce the in vivo experiments, 

anticipate the response of patients to new drugs increasing both efficacy and safety. Again, knowing 

the desired response, model based design of experiments techniques can be applied to optimise 

clinical studies in different stages starting from diagnosis (Galvanin, 2013).  

The PK model taken as reference in this research work is a simplified version of the model proposed 

by Galvanin et al. (2017), that is a two compartments model designed to analyse the time courses of 

plasma VWF:Ag and VWF:CB levels after DDAVP clinical trials. From now on, this model will be 

referred to as SGM (simplified Galvanin model). 

As reported in figure 1.3, the SGM is able to characterize the mechanisms of VWF release, 

proteolysis, clearance and the multimers distribution of VWF in the plasma. The model is described 

by a system of differential and algebraic equations where each subject is characterized using three 

main PK constants, namely the VWF release rate k0 [h-1], the proteolysis rate k1 [h-1] and the 

elimination rate ke [h
-1], which is assumed to be the same for both the UL+HMW multimers and the 

LMW multimers. The amount of released VWF is represented by parameter D [U/dL]. It is important 

to notice that, for a given subject, parameter k0 quantifies the rate of release, while D quantifies the 

amount of VWF released from the endothelial cells.  
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Figure 1.3. SGM model structure; VWF:Ag and VWF:CB measurements are identified by dashed 

boxes; D = release of UL+HMW multimers after DDAVP administration (UL = ultra-large; HMW 

= high-molecular-weight; LMW = low-molecular-weight). 

 

The physiological assumptions at the core of the model are: 

1. UL, HMW and LMW multimers are present in the basal state and/or after DDAVP; 

2. UL and HMW multimers can be cleaved to form LMW multimers; 

3. The VWF:Ag measurements enable to assess the quantities of UL+HMW+LMW 

multimers; 

4. The VWF:CB measures the UL+HMW multimers. 

The use of the PK model allows to estimate the model parameters through DDAVP measurements 

which are paradigmatic for each category of disease.  

The mathematical structure that define the model and the parameter estimation procedure are 

described in section 2.1. 

 

1.5 Objectives 

As mentioned in §1.3, the SGM of VWD requires the execution of a long-lasting (24 h) DDAVP 

test to estimate the model kinetic parameters. Therefore, the overall objective of the project is to 

optimally design a minimal set of basal clinical trials for the identification of the PK model of 

VWD, in order to decrease the time and effort required for disease characterization and diagnosis. 

The idea is to reduce the execution time of the DDAVP modifying the SGM by introducing explicit 

correlations, which relate the PK parameters to basal clinical quantities.  

D

UL+
HMW

LMW

ke

ke

VWF:CB

VWF:Ag

k0

k1
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A more ambitious goal is to eliminate completely the execution of the DDAVP clinical trial. This 

challenge is tackled substituting in the SGM basal state correlations for all the model kinetic 

parameters. 

Suitable relations between the available experimental data are investigated to reach the target. 

Furthermore, the applicability of regression models needs to be verified for building the 

mathematical structure of the correlations.  

Once the basal state equations are defined, they are substituted in the SGM and the DDAVP can 

be shortened or even avoided. 

The statistical tools required for achieving the main goals of the work of thesis are presented in the 

following chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

13 

 

Chapter 2 

Identification and modification of VWD 

pharmacokinetic model 

In this chapter, the description of the SGM model of VWD and the methodology used to achieve the 

research goals are described. Moreover, a brief explanation of the procedure applied for model 

modification and identification is given. 

 

2.1 The SGM mathematical structure  

The SGM is described as a set of differential and algebraic equations. The two differential equations 

are written as: 

dxUL+HMW

dt
=k0D e-k0(t-tmax)-k1(xUL+HMW-xb

UL+HMW)-ke(xUL+HMW-xb
UL+HMW) (2.1) 

dxLMW

dt
=k1(xUL+HMW-xb

UL+HMW)-ke(xLMW-xb
LMW) (2.2) 

 

where: 𝑥𝑈𝐿+𝐻𝑀𝑊 and 𝑥𝐿𝑀𝑊 are the number of UL+HMW and LMW multimer units [U] contained 

in the plasma; the subscript b refers to the basal state; t is the time; and tmax is the time at which the 

release profile peaks. In the PK model k0 represents the kinetics of VWF release from endothelial 

cells; k1 the proteolytic conversion of large and ultra-large VWF multimers into LMW multimers and 

ke represents the clearance of VWF from the circulation. The amount of VWF released after DDAVP 

is measured by the parameter D, and the release time is represented by parameter tmax.  

The antigen concentration 𝑦𝐴𝐺 [U/dL] and collagen binding concentration 𝑦𝐶𝐵 [U/dL] are defined as: 

yAG=
xUL+HMW+xLMW

Vd

 
 

(2.3) 

yCB=
xUL+HMW

Vd

 

 

(2.4) 
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where: Vd = 40 mL/kgbw is the approximate distribution volume. Basal conditions are assumed at t(0), 

i.e. 𝑥(0) = [ 𝑥𝑏
𝑈𝐿+𝐻𝑀𝑊     𝑥𝑏

𝐿𝑀𝑊 ] = [ 𝑦𝑏
𝐶𝐵𝑉𝑑     𝑦𝑏

𝐴𝐺𝑉𝑑 − 𝑦𝑏
𝐶𝐵𝑉𝑑].  As suggested by Galvanin et al. 

(2014), a correction was introduced in the definition of the collagen binding measurements to account 

for the different affinity of multimers to collagen observed in different types of VWD: 

yCB'=kyCB
y

b
AG

y
b
CB

 

 

(2.5) 

where k is the correction factor. 

 

2.1.1 Parameters estimation procedure 

The set of parameters to be estimated from the available measurements is  

θ = [ 𝑘0    𝑘1    𝑘𝑒    𝐷     𝑘     𝑦𝑏
𝐶𝐵    𝑡𝑚𝑎𝑥]. Their estimation is based on the maximum likelihood 

principle and carried out using the commercial software gPROMS®. Measurements are assumed to 

be normally distributed with a standard deviation of 2 U/dL. The parameter set θ is determined for 

each individual by iteratively solving an optimization problem. A crucial step in the parameter 

estimation exercise is setting the value of the first guess θ0 for θ. In this study, θ0 was obtained by 

carrying out a preliminary parameter estimation for each group of subjects (healthy, VWD type 2B, 

and VWD type Vicenza) using fictitious concentration profiles corresponding to the average profiles 

of all the subjects belonging to a given group. Then the parameter estimation routine was initialized 

with θ0, and the set of parameters was estimated for each individual subject based on his/her own 

concentration profiles. 

A two-step iterative procedure was used to estimate the parameters, basing on each subject’s VWF:Ag 

and VWF:CB readings: 

Step 0 – all parameters (𝑘0    𝑘1    𝑘𝑒    𝐷     𝑘     𝑦𝑏
𝐶𝐵    𝑡𝑚𝑎𝑥 ) are left free to vary starting from the 

initialization value θ0; 

Step 1 – [𝐷     𝑘     𝑦𝑏
𝐶𝐵    𝑡𝑚𝑎𝑥] are set at the value identified in the previous step, and the kinetic 

parameters [𝑘0    𝑘1    𝑘𝑒] are estimated; 

Step 2 –[𝑘0    𝑘1    𝑘𝑒  𝐷] are set at the value used in the previous step, and the correction parameters 

[𝑘     𝑦𝑏
𝐶𝐵] and 𝑡𝑚𝑎𝑥 are estimated; 

Steps 1 and 2 are repeated until the estimates do not vary significantly (i.e. until the difference 

between the estimates is lower than 0.1% for each parameter).  
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Parameter estimation results are given in the appendix A for each subject in terms of estimated values 

and related statistics on parameter estimation. Knowing the values of the PK parameters of each 

subject considered in the study is fundamental for the application of RSM technique necessary for 

model modification. 

 

2.2 Methodology 

 

2.2.1 Model-based design of experiments (MBDoE) 

Models can present different strength and weaknesses, degrees of complexity and descriptive 

capabilities. Complex models might be capable of realizing low residuals when they are used to fit 

the experimental data, but too high complexity may result in a very difficult identification of the 

parameters. However, the identification of the model requires the execution of experiments, which 

may involve the employment of costly facilities, resources and time. It is therefore of great importance 

planning the experiments carefully, taking into account the specific target, which, in this case, is the 

identification of the modified PK model of VWD through the improvement of the estimates of its 

parameters. Many researchers devoted their efforts to develop advanced MBDoE techniques for both 

model design (MD) and parameters precision (PP) (Box & Lucas, 1959) (Espie & Macchietto, 1989). 

These theories allow for the identification of the best experiment campaign also in complex nonlinear 

dynamic systems through the numerical maximization/minimization of properly defined objective 

functions. If the target is to improve the precision of the parameters, then the objective function to 

minimize is a certain measure of the predicted covariance matrix associated to the parameter estimates 

𝐕𝛉. The versatile mathematical framework in which these theories were developed made possible 

their application in different branches of science: automotive, nuclear physics, medicine, kinetics and 

many others (Bard, 1974). The following sections are dedicated to present the mathematical tools that 

have been applied in this thesis. 

 

2.2.1.1 Information content analysis 

Validation and identification of the simplified model of Galvanin et al. (2017) was conducted in a 

previous research work. The model has been found capable of describing the proteolysis of VWF in 

the individual subjects provided the correct PK parameters. 

In order to optimally design a minimum set of clinical tests for the characterization of the disease, the 

information content of the system needs to be maximized. The application of DoE techniques aims at 
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minimizing the variances of the experimental measurements, which are then related to the uncertainty 

on the estimated parameters. This goal can be achieved defining the optimal experimental sets and 

measurement times leading to the maximum information content derivable from the experiment 

(Fedorov, 2014).  

Considering the SGM (2017) sensitivity analysis has been performed and Fisher information matrix 

has been calculated to evaluate the time required by the parameters to achieve the maximum 

information content from the DDAVP clinical trial. This step is fundamental in order to understand 

which parameters are more critical and which direction should be taken for optimally modify the 

pharmacokinetic model. 

Sensitivity analysis is carried out assigning a small perturbation (1%) to the PK parameters acting on 

one factor at a time and observing how it affects the predictive capability of the model itself. 

Sensitivity analysis was considered for both the model responses: antigen concentration yAg and 

collagen-binding concentration yCB. In mathematical terms this can be written as: 
 

q
i

Ag
=

yAg(θi
')-yAg(θi)

θi
'
-θi

     i=1,…,Nθ     (2.5) 

q
i
CB=

yCB(θi
')-yCB(θi)

θi
'
-θi

     i=1,…,Nθ     (2.6) 

Where 𝜃𝑖 and 𝜃𝑖
′ represent the original and perturbed sets of parameters, respectively and 𝑁𝜃 is the 

number of model parameters. 

Sensitivity analysis gives only a qualitative idea of the information, whereas the information is 

expressed quantitatively by the Fisher information matrix 𝐇. Considering the maximum likelihood 

estimate presented in §2.4.3.1, if 𝛷 is defined as the logarithm of the likelihood function, the Hessian: 

H=
∂

2
Φ

∂θ∂θ
=

∂
2
ln (L(θ̂)

∂θ∂θ
                  (2.7) 

is also called Fisher information matrix (FIM) and it quantifies the information carried by measurable 

random variable z about non-measurable unknown parameters 𝛉. Due to the fact that this matrix is 

the Hessian of a log-likelihood function, also the approximation 𝐕𝛉 ≅ 𝐇−𝟏 holds (§2.4.3.2). 

Intuitively, the covariance matrix 𝐕𝛉 and the Fisher matrix 𝐇 represent two sides of the same coin. 

The higher the information carried by the measurements, the lower the uncertainty associated to the 

estimated parameters. Assumed that a model is given to describe a certain physical phenomenon and 

that some experiments have been performed to obtain a first rough estimation of the parameters, the 

first estimate is 𝛉𝟎 and the associated covariance matrix is 𝐕𝛉𝟎. The goal is to improve the estimate 

reducing the elements of the covariance matrix associated to the parameters performing new 
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experiments. It is possible to quantify approximately in advance the posterior covariance matrix 𝐕𝛉 

after the conduction of Nexp experiments as: 

                Vθ≅ [V
θ

0
-1+ ∑ Hi

Nexp

i=1
]

-1

       (2.8) 

 Where 𝐇𝑖 represents the information matrix associated to the i-th experiment in a hypothetical 

campaign of Nexp experiments. Under certain conditions, it is possible to use an approximate form of 

the Fisher matrix. In particular, it is possible to refer to a log-likelihood function considering totally 

uncorrelated measured variables: 

Φ=ln(L(θ̂))=
1

2
∑ ∑ [log(2πσij

2) + (
ŷij-yij

σij
)

2

]
Nm

j=1

Nexp

i=1
     (2.9) 

The kl-th element of the Fisher information matrix is also defined as the kl-th element of the Hessian 

matrix associated to function Φ: 

[H]kl= [
∂

2
ln(Φ)

∂θ∂θ
]

kl

= ∑ ∑ [
1

σij
2 (

∂ŷij

∂θk

∂ŷij

∂θl
) +

1

σij
2 (ŷ

ij
-y

ij
)

∂
2
ŷij

∂θk∂θl
]

Nm

j=1

Nexp

i=1
       (2.10) 

If residuals are small, it is acceptable to write the following approximation: 

[H]kl≅ ∑ ∑ [
1

σij
2 (

∂ŷij

∂θk

∂ŷij

∂θl
)]

Nm

j=1

Nexp

i=1
      (2.11) 

The term 
𝜕𝑦̂𝑖𝑗

𝜕𝜃𝑘
 is called sensitivity of the j-th output variable with respect to the k-th parameter in the 

conditions investigated in the i-th experiment. Throughout this work, notation (11) for the Fisher 

matrix is used to plot the information in the experimental design space to visualize the most 

informative experimental conditions (Bard, 1974). 

The trace of the Fisher matrix has been calculated and is used to represent the overall information 

content for a hypothetical discrete sampling times (tsp) and it is adopted as suitable scalar measure of 

the information:  

Id= ∑ tr[Hθ]tsp
      (2.12) 

 

2.2.2 Parameter estimation problem 

When a model has already been selected among a set of candidates to describe a system, its 

identification reduces to the estimation of its parameters. In this paragraph, the model identification 

problem is presented taking into consideration the uncertainty intrinsically linked to the 
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measurements and also to the description of the statistical instrument necessary to assess the quality 

of the results (Bard, 1974). 

Be 𝒚̂𝒊 = 𝐟(𝐱, 𝐮𝐢, 𝛉) the vector of output variables predicted by the model in the experimental 

conditions adopted in the i-th experiment, x is the vector of the state variables, ui the input variables 

that can be modified and 𝛉 the vector of the model parameters, the quantity 𝜌𝑖𝑗(𝛉), named as residual, 

represents the difference between measured and predicted value for the j-th output variable in the i-

th experiment: 

      ρ
ij
(θ)=y

ij
-ŷ

ij
(θ)      (2.13) 

The parameter estimation problem is then recast in terms of finding the best set of parameters 𝛉 that 

minimizes a certain objective function Φ that depends on the quantity 𝜌𝑖𝑗(𝛉). This function could be 

defined as the sum of the squared residuals, but this approach does not take into account the 

uncertainty intrinsically associated to the measurements. The conditions under which a model is 

identified are never quite repeatable because of the random nature and the limited accuracy of any 

measurement technique. These disturbances are as much part of the physical reality as are the 

quantities appearing in the model. A model cannot be called complete if it does not take into account 

the casual nature of the measurements. Therefore, the appropriate description of random events is 

made through the concept of probability. In a rigorous mathematical description, the complete 

characterization of the behaviour of a random variable x is given by the definition of an associated 

probability density function PDF which associates a probability of realisation to any possible value 

of the variable. One of the most popular PDF is represented by: 

      p(x)=
1

√2πσ2
e

-
1

2
(

x-μ

σ
)

2

         (2.14) 

Which is the univariate normal distribution with mean 𝜇 and standard deviation 𝜎. The success of the 

normal distribution is not only due to its easily treatable mathematical structure, but also to the fact 

that it has been discovered to describe closely the errors associated to many measurements in nature 

(Bard, 1974). 

 

2.2.2.1 The maximum likelihood estimate 

Assuming that the difference between the measured and the true values of the quantities appearing in 

the model as output variables 𝑦𝑖𝑗 − 𝑦𝑖𝑗
∗  are normally distributed random variables with zero mean and 

a certain standard deviation (SDV) 𝜎𝑖𝑗 and that the model used to fit the experimental data is correct, 

then a true value does exist for the set of parameters 𝛉∗ such that the model prediction is exact. Thus, 
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for that particular value of the parameters, the residuals 𝜌𝑖𝑗(𝛉∗) follow the same distribution of the 

measurement errors 𝑦𝑖𝑗 − 𝑦𝑖𝑗
∗ , indeed: 

ρ
ij
(θ

*)=y
ij
-ŷ

ij
(θ

*)= y
ij
-y

ij
*                               (2.15) 

Consider now the joint probability density function of the residuals 𝜌𝑖𝑗(𝛉), assumed as completely 

uncorrelated, normally distributed random variables with zero mean and standard deviation equals to 

the SDV of the associated measurement 𝜎𝑖𝑗: 

                              L(θ)= ∏ ∏
1

√2πσij
2
e

-
1

2
(

x-μ

σij
)

2

Nm

j=1

Nexp

i=1
     (2.16) 

The joint PDF of the residuals is also called likelihood function. The parameter estimation problem, 

can be reformulated in terms of finding the values of the parameters 𝛉 which maximizes the objective 

function 𝐿(𝛉), causing the final residuals obtained after maximization to be distributed like the 

corresponding measurement error (Bard, 1974): 

maxθ{L(θ)}=maxθ {∏ ∏
1

√2πσij
2
e

-
1

2
(

x-μ

σij
)

2

Nm

j=1

Nexp

i=1
}    (2.17) 

This definition is implemented in gPROMS to estimate the PK parameters in the modified model. 

Assuming to use an exact structural model, it is rigorously acceptable to declare that residuals and 

measurements errors follow the same distribution. However, in a quasi-exact model this 

simplification is not cause of much harm and the non-perfect structure of the model is usually detected 

through a posterior analysis (i.e 𝜒2-test). Moreover, the number of measurements available will be 

always limited and might not be sufficient for a reliable estimate of the model parameters.  

A number of tools, described below, are given to the modelers in order to asses the quality of the 

fitting and of the estimates.  

 

2.2.2.2 The covariance matrix 

A certain objective function Φ, has been chosen to be maximized/minimized in order to estimate the 

set of model parameters 𝛉. It is not possible to compute a value 𝛉̂ and state that the estimate obtained 

represents the “true” values of the parameters; in fact the computed value obtained depends on the 

measured values 𝒚𝑖 (𝑖 = 1,2,3, … , 𝑁𝑒𝑥𝑝), which are affected by uncertainty. This paragraph is made 

to explain the mathematical tool necessary to assess how the uncertainty associated to the measured 
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values impacts the confidence we can assign on the estimated non-measurable parameters. Assume 

that 𝛉 is an 𝑁𝜃 vector of model parameters and that a certain value 𝛉̂ has been computed 

maximizing/minimizing an objective function Φ.  

A new column vector z with dimensions 𝑁𝑒𝑥𝑝𝑁𝑚 which contains all the vectors 𝒚𝑖 (𝑖 =

1,2,3, … , 𝑁𝑒𝑥𝑝) is defined: 

      z= [y
11

,…,y
1Nm

,…,…,…,y
Nexp1

,…,y
NexpNm

]
T

     (2.18) 

Also two other column vectors 𝛿𝛉̂ and 𝛿𝒛 are defined. In particular, 𝛿𝛉̂, with dimension 𝑁𝜃, 

represents a shift of the estimated value 𝛉̂ for the parameters derived from a variation 𝛿𝒛 in the 

measured values for the output variables. If 𝛉̂ has been computed maximizing/minimizing the 

objective function Φ, the following condition is satisfied: 

∂Φ(θ̂, z)

∂θ
=0      (2.19) 

Where the left-hand term represents the column vector of dimension 𝑁𝜃 whose elements represent 

the partial derivatives of the objective function Φ with respect to the parameters. If the function Φ is 

continuous, a small variation in the measured values 𝛿𝒛 results in a small shift of the computed value 

𝛉̂ in the space of the parameters: 

                             
∂Φ(θ̂+δθ̂,z+δz)

∂θ
=0       (2.20) 

Expanding the condition to the first term of Taylor expansion it is possible to quantify approximately 

the variation of the estimated value for the parameters shift 𝛿𝛉̂. 

                            
∂Φ(θ̂+δθ̂,z+δz)

∂θ
≅

∂Φ(θ̂,z)

∂θ
+

∂
2
Φ(θ̂,z)

∂θ∂θ
δθ̂+

∂
2
Φ(θ̂,z)

∂θ∂θ
δz    (2.21) 

Note that the first term of the expansion is equal to 0 because it has been supposed that  𝛉̂ represents 

an extremum point of the objective function. Also notice that: 

∂
2
Φ(θ̂,z)

∂θ∂θ
=H       (2.22) 

Represents the symmetric Hessian matrix of function Φ evaluated with respect to the parameters 

whose kl-th element is: 

[H]kl=
∂

2
Φ(θ̂,z)

∂θk∂θl
        (2.23) 
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From the Taylor series the term 𝛿 𝛉̂ is isolated: 

               
∂

2
Φ(θ̂,z)

∂θ∂θ
δθ̂+

∂
2
Φ(θ̂,z)

∂θ∂θ
δz≅0   (2.24) 

                          δθ̂≅-H-1 (
∂

2
Φ(θ̂,z)

∂θ∂z
) ∂z   (2.25) 

The covariance matrix associated to the estimates is defined as the expected value of the squared 

deviation of the parameters from their expected value 𝐸(𝛉): 

                                     Vθ=E{[θ- E(θ)][θ- E(θ)]T}       (2.26) 

 

If it is assumed that 𝐸(𝛉) = 𝛉̂ then the covariance matrix associated to the parameter estimates, 

approximated to the first term of the Taylor expansion, is evaluated as follows: 

Vθ≅E [(-H-1 (
∂

2
Φ(θ̂,z)

∂θ∂z
) ∂z ) (-H-1 (

∂
2
Φ(θ̂,z)

∂θ∂z
) ∂z )

T

]   (2.27) 

Vθ≅E [H
-1 (

∂
2
Φ(θ̂,z)

∂θ∂z
) ∂z∂z

T (
∂

2
Φ(θ̂,z)

∂θ∂z
)

T

H
-1]    (2.28) 

Notice that the only term containing random variable is 𝜕𝐳𝜕𝐳𝑻, which represents the 

𝑁𝑒𝑥𝑝𝑁𝑚  × 𝑁𝑒𝑥𝑝𝑁𝑚  covariance matrix associated to the measurement 𝐕𝐳. It is therefore possible to 

rewrite explicitly the covariance matrix of the estimates: 

                                                    Vθ≅H
-1 (

∂
2
Φ(θ̂,z)

∂θ∂z
) Vz (

∂
2
Φ(θ̂,z)

∂θ∂z
)

T

H
-1     (2.29) 

The formula applies for every choice of the objective function, however, for a specific class of 

functions 𝛷 including the sum of squared residuals and the natural logarithm of the likelihood 

function, it can be demonstrated that also the following approximation holds: 

Vθ≅H
-1       (2.30) 

The quality of the above approximation improves as the variance of the measurements decreases and 

the fitting of the model gets better (Bard, 1974). 
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2.2.2.3 The t-test 

The comparison of the variances associated to the estimated vector 𝛉̂ already gives good information 

about the parameters that require more attention and the possible critical structural weaknesses of the 

model. However, to assess the statistical quality of the parameters, it is necessary to compare the 

value of each parameter estimated within its confidence region. Precisely, it is important to define the 

dimension of the confidence region assigned to the parameter with respect to the absolute value of 

the parameter itself. A parameter estimation problem involving 𝑁𝜃 parameters is solved assuming a 

dataset of 𝑁𝑒𝑥𝑝 × 𝑁𝑚 measurements. In this thesis, to assess the statistical value of the estimates, a 

one-tailed t-test with 95% of significance is performed comparing the t-value of each estimated 

parameter 𝜃𝑖 with the reference t-value of a Student distribution with degree of freedom 𝑁𝑒𝑥𝑝𝑁𝑚 −

𝑁𝜃: 

θ̂i

t0.975(NexpNm-Nθ)√Vθ,ii
>t0.95(NexpNm-Nθ)   ∀ i=1,…,Nθ   (2.31) 

Where the t-value appearing in the bottom part of the left-hand term is evaluated for a Student 

distribution with degree of freedom 𝑁𝑒𝑥𝑝𝑁𝑚 − 𝑁𝜃 at a cumulated probability equals to 0.975 and the 

t-value of reference appearing in the right-hand side is evaluated at a cumulated probability of 0.95 

to perform the one-tailed test with 95% of significance. The satisfaction of this condition is considered 

as a proof of good estimation of the parameters (Bard, 1974). 

 

2.2.2.4 The Chi-squared for the goodness of fit evaluation 

In a conventional parameter estimation problem, a proposed model is used to fit a set of data, indeed 

the model used might not reflect exactly the nature of the physical phenomenon. In this work, to 

detect a bad fitting a 𝜒2-test on the residuals with 95% of significance is performed. The 𝜒2
𝑟𝑒𝑓

 

depends on the number of degrees of freedom 𝑁𝑒𝑥𝑝𝑁𝑚 − 𝑁𝜃 specific of each case. The test is 

important to understand if the residuals computed at the end of the parameter estimation problem can 

be justified by the measurements errors. Summing up 𝑁𝑒𝑥𝑝𝑁𝑚 − 𝑁𝜃 squared random variables 

following the standard normal distribution, the result will be smaller than 𝜒2
𝑟𝑒𝑓

 with a probability of 

95%. The reference value is compared to the squared weighted residuals obtained as solution of the 

parameter estimation problem: 

χ
sample
2 = ∑ ∑ [

ρij
(θ̂)

σij
]

2
Nm

j=1

Nexp

i=1
     (2.32) 
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If the model is exact and the sample used for the fitting is sufficiently large, the values computed for 

𝛉̂ are expected to be very close to the “true” values, thus the model identified would be very close to 

the “true” model and the residuals would be consequence of the measurement errors only. If these 

errors are normally distributed and the values of the SDVs associated to the measurements are known 

precisely and not underestimated, then 𝜒𝑠𝑎𝑚𝑝𝑙𝑒
2 ≤ 𝜒2

𝑟𝑒𝑓
 with a probability of 95% (Bard, 1974). If 

we are not sure about the measurement uncertainty and about the reliability of the model, and if it 

happens    𝜒𝑠𝑎𝑚𝑝𝑙𝑒
2 > 𝜒2

𝑟𝑒𝑓
, the errors can be interpreted in 5 different ways: 

• the available experimental data are not sufficient to estimate correctly the parameters; 

• the assumption of having measurements errors following a normal distribution with zero mean 

is wrong; 

• the value of the SDVs associated to the measurements have been globally underestimated; 

• the model is wrong; 

• a combination of the 4 previous cases. 

 

2.2.3  MBDoE for parameter estimation 

A model is available together with preliminary experimental data, therefore the solution of a 

parameter estimation problem leading to the computation of first set of parameters 𝛉𝟎 is possible. The 

evaluation of the covariance matrix 𝐕𝛉𝟎 and the t-tests performed on the parameters allow evaluating 

whether a satisfactory estimation of the parameters may be achieved or some parameters are affected 

by strong correlation and very high variance. If the second case occurs, it is necessary to amend the 

unsatisfactory estimates performing new experiments. As presented in § 2.4.3.2, it is possible to 

quantify approximately the posterior covariance matrix 𝐕𝛉 resulting by the execution of a certain set 

of 𝑁𝑒𝑥𝑝 experiments through the evaluation of the FIM. By doing so, it is possible to design an 

experiment campaign with the aim of minimizing a certain measure of the posterior covariance matrix 

𝐕𝛉. In general, the covariance matrix of the estimates identifies a conference ellipsoid in the 𝑁𝜃-

dimensional hyperspace. Improving the parameters estimates means reducing the size of this region 

of confidence choosing the proper scalar measure as target to minimize. Different meaningful scalar 

quantities can be chosen as objective function, but the most established and popular methods are: 

• A-optimal: which consider the trace of 𝐕𝛉 as scalar function to be minimized. The trace of 

the covariance matrix associated to the parameter estimates quantifies the volume of the 

polyhedron circumscribing the confidence ellipsoid in the  𝑁𝜃-dimensional space of the 

estimates; 
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• D-optimal: for which the determinant of the matrix 𝐕𝛉 is chosen as objective function. The 

determinant of the covariance matrix quantifies the volume of the confidence ellipsoid; 

• E-optimal: in which the largest eigenvalue of  𝐕𝛉 is assumed as measure to minimize. The 

largest eigenvalue of the covariance matrix quantifies the length of the longest axis of the 

confidence ellipsoid. 

 

2.2.4 Response surface methodology (RSM) 

Response surface modelling (RSM) is a technique strictly related to the design of experiment, used 

to develop black-box models (regression models), searching for a correlation between inputs and 

outputs variables in systems where no information is given on what is happening inside. Considering 

the seminal work by Box-Behnken (1960), this approach is used to interpolate or approximate the 

information coming from experimental data, with the aim of defining the profile of the response in 

the experimental workspace. The objective consists into hypothesize an analytical form of the 

response surface, which manages to fit or approximate the experimental data reducing the distance 

between real and simulated response. In this way, the error of the model is reduced and the response 

can be estimated from the inlet variables. Mathematically, the response model surface is an 

approximating k-dimensional hyper-surface, acting in a space k+1 dimensional, made of k factors 

and the output function. In the study, we are interested in defining explicit correlations for the PK 

parameters k0, k1, ke as a function of two inlet variables, which are represented by a combination of 

basal clinical trials. Therefore, the workspace we are dealing with is 3D, whereas the hypersurface is 

2D. The advantage of the response surface modelling consists in the possibility of representing the 

combinations of input variables suitable to obtain the desired response with the lowest error. The 

analytical forms of the response surface models can be various; for instance, possible choices are: 

1. Linear response surface model without interaction 

f̂(x)=b0+ ∑ bj
k
j=1 xj      (2.33) 

2. Linear response surface model with interactions 

f̂(x)=b0+ ∑ bj
k
j=1 xj+ ∑ ∑ bjrxjxr

k
r=1

k-1
j=1,j<r    (2.34) 

3. Quadratic response surface model 

f̂(x)=b0+ ∑ bj
k
j=1 xj+ ∑ ∑ bjrxjxr

k
r=1

k
j=1     (2.35) 
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Based on Akaike index (Akaike, 1974) evaluations and knowing the physiology of the disease 

considered, linear response surface model with interactions appears to be the best candidate 

correlation for truly representing the real system. The Akaike index is a measure of the relative quality 

of statistical models for a given set of data. Given a collection of models for the data, AIC estimates 

the quality of each model, relative to each other models. Hence, AIC (Akaike index criterion) 

provides a means for model selection (Akaike, 1974). The AIC value of the model is the following: 

 

AIC=2k-2ln(L̂)      (2.36) 

 

Where k is the number of model parameters, whereas 𝐿̂ is the maximum value of the likelihood 

function for the model. 

In the fitting procedure, the values of the parameters are evaluated through the Least squared method, 

suitable for the overdetermined systems, that is, the number of parameters that needs to be estimated 

is lower than the available experimental points. The reliability of the response provided by the 

analytical form of the hypersurface increases with the increase in the amount of the experimental data 

available.  

 

2.2.4.1 Goodness of fit 

Response surface modelling approach has been applied in OriginPro® graphics and data analyser. 

Indeed, after data fitting, it is important to evaluate its goodness. A visual examination of the fitted 

curve displayed in the curve fitting should be the first step. Different goodness of fit measures can be 

used for both linear and nonlinear parametric fits and they are described as follow:  

• Residuals 

The residuals from a fitted model are defined as the difference between the response data and the fit 

to the response data at each predictor value. Assuming the model that fits the data is correct, the 

residuals approximate the random errors. Therefore, if the residuals appear to behave randomly, it 

suggests that the model fits the data well. However, if the residuals display a systematic pattern, it is 

a clear sign that the model fits the data poorly. Mathematically they are described as: 

                         ri=ŷ
i
-y

i
       (2.37) 

• Goodness of fit statistics 

The sum of squares due to error (SSE) shows the total deviation of the response values from the fit 

to the response values: 

SSE= ∑ (y
î
-y̅)

2N
i=1       (2.38) 
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Where 𝑦𝑖̂ is the estimate by the regression model, while 𝑦̅ is the average of the observed data 𝑦𝑖. A 

value closer to 0 indicates a better fit.  

R-square measures how successful the fit is in explaining the variation of the data. R-square is the 

square of the correlation between the response values and the predicted response values. This statistic 

is defined as the ratio of the sum of squares (SSE) of the regression and the total sum of squares 

(SST): 

R2=
SSE

SST
=1-

SSR

SST
      (2.39) 

where SSR is the residual sum of squares: 

SSR= ∑ (ŷ
i
-y

i
)

2N
i=1      (2.40) 

and SST is the total sum of squares: 

                                                                               SST= ∑ (y
i
-y̅)

2N
i=1               (2.41) 

𝑅2 can take only values between 0 and 1, a value closer to 1 indicates a better fit. If the number of 

fitted coefficients in the model increases, 𝑅2 might increase although the fit may not improve. To 

avoid this situation, the 𝑅̅2 statistic can be used. It is possible to get negative 𝑅2 for equations that do 

not contain a constant term.  

𝑅̅2 uses the 𝑅2 statistic described above and adjust it based on the residual degrees of freedom. The 

residual degrees of freedom is defined as the number of response values n minus the number of fitted 

coefficients m estimated from the response values. Mathematically it is described as follow: 

R̅
2
=1-

SSR
dfe

⁄

SST
dft

⁄
      (2.42) 

Where dfe are the degrees of freedom of the estimate on the underlying population error variance, 

while dft are the total degrees of freedom of the system considered. 

The 𝑅̅2 statistic can take only values less or equal to 1, with a value closer to 1 indicating a better fit. 

Root mean squared error (RMSE) is also known as the fit standard error and the standard error of the 

regression. A RMSE value closer to 0 indicates a better fit. 

Once suitable correlations are defined, data mining approach is applied to determine the coefficients 

of the surface for each category of disease and healthy subject in the most precise way. 
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2.4.6 Software 

The entire RSM has been carried out in OriginPro® data analyser by OriginLab corporation. 

OriginPro® offers extended analysis tools for statistics 3D fitting, image processing and signal 

processing (2007). In particular, non-linear curve fitting can be performed with user-defined functions 

and this has been used to develop and test the regression model.  

The parameter estimation and the information content analysis of the simplified model by Galvanin 

et al. and the model identification procedure and simulations of the modified model have been instead 

carried out in gPROMS® Model Builder environment 4.1.0. gPROMS® is an advanced modelling 

software by PSE in London. The software is a dynamic equation oriented simulator, which allows to 

solve robustly large scale DAEs systems (2004). One of the main characteristics of the software is 

that it possesses a powerful optimization and parameter estimation tools, which allows a trustworthy 

resolution of the parameter estimation problem with a great accuracy (2004). 

 

2.3  Model modification and identification approach  

In this paragraph, a summary of the main steps of the work is given to contextualize the described 

methodology in the development of the work of thesis. The overall steps are defined in the block-

diagram reported in figure 2.1.  

 
Figure 2.1. Summary of the overall steps of the project. 
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Information content analysis on the SGM is executed to discover the DDAVP execution time required 

for the identification of the PK parameters. Then, RSM is applied to define suitable correlations 

between the PK parameters and the basal clinical trials.  

Once defined, the new equations are substituted in SGM, modifying it. From now on, we will refer 

to the modified SGM model as MGM (modified Galvanin model).  

Following the directions defined in the work by Miao et al. (2011), local sensitivity analysis for model 

identification is performed, to understand whether the MGM is still locally identifiable or not. 

After that, the comparison between the profiles of response produced by the SGM and MGM is 

carried out to evaluate if the DDAVP can be shortened and redesigned or if it can be completely 

avoided. 
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Chapter 3 

Preliminary analysis of the model 

information content 

The results of the information content analysis (sensitivity analysis and evaluation of Fisher 

Information matrix) executed on SGM are presented in this chapter. This analytical procedure is 

fundamental to determine the starting point for model modification through RSM. 

 

3.1 Results of the sensitivity analysis 

The sensitivity analysis has been performed on the SGM to understand the time required by the three 

kinetic parameters (k0, k1, ke) for reaching the maximum in the sensitivity. This analysis allows to 

visualize the sampling-time range to achieve the highest information that can be gathered from the 

DDAVP clinical trial. The initial set of parameters has been reported in table 3.1 for each category of 

disease and healthy subjects considered in the study. The values have been derived considering the 

average of the kinetic parameters for each category in the pool of subjects. The experimental data for 

the subjects in the pool are reported in appendix A. 

Table 3.1. Initial set of model parameters. 
 

HnonO HO 2B Vicenza 

k0 2.87E-02 2.64E-02 1.77E-02 6.66E-02 

k1 2.37E-04 6.25E-04 4.71E-03 1.50E-03 

ke 7.04E-04 1.52E-03 3.23E-03 8.18E-03 

 

The sensitivity analysis has been carried out on three out of five model parameters. Indeed, k0, k1 and 

ke are the model kinetic parameters, which aim to be calculated directly from basal clinical trials. The 

analysis has been executed for both the model responses, antigen VWF:Ag and collagen VWF:CB 

concentrations, producing a perturbation of 1% on each model parameters one factor at a time. 

As is possible to see from figure 3.1, the dynamic sensitivity executed for the VWF:Ag response in 

HO subjects shows that parameter k0 can be estimated achieving the maximum of the information 

around 175 min in the experiment time. The sensitivity of k1 is set to zero, meaning that the parameter 
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cannot be estimated from the experimental data. The sensitivity of ke, instead, does not reach a 

maximum in the time range of the clinical trial. Therefore, a greater sampling time should be used to 

get a better estimation of the model parameter.  
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Figure 3.1. Dynamic sensitivity for VWF:Ag response in HO category. 

 

Considering now the dynamic sensitivity on VWF:CB response in figure 3.2, parameter k0 reaches 

the maximum in the sensitivity around 175 min as in the previous plot. The proteolytic parameter k1 

can here be identified from the experimental data reaching the maximum in the sensitivity around 

500 min, whereas ke, as before, requires the longest time to achieve its sensitivity peak. This means 

that the time required for the most informative estimation is the maximum for parameter ke. 

Furthermore, neither the sensitivity of k1, nor the sensitivity of ke achieve the stabilization in the 

experiment time. Hence, a longer sampling time should be advised for the system to stabilize. If the 

system does not reach stabilization in the experimental time, we are not able to see the entire 

behaviour of the sensitivity profiles of the parameters and deviations or peaks may not be detectable. 
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Figure 3.2. Dynamic sensitivity for VWF:CB  response in HO category. 

 

The same approach has been applied also for HnonO subjects. The dynamic sensitivities of the two 

model responses are reported in figures 3.3 and 3.4. 
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Figure 3.3. Dynamic sensitivity for VWF:Ag response in HnonO category. 

 

From figure 3.3 the same conclusions written for VWF:Ag response in the case of HO subjects can 

be derived. Indeed, parameter ke requires the longest sampling time and it does not reach the 

stabilization of the sensitivity at the end of the experimental time. Parameter k1 instead cannot be 

identified from the experimental data, whereas parameter k0 requires the shortest sampling time to 

achieve the sensitivity peak. 
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Figure 3.4. Dynamic sensitivity for VWF:CB 
 response in HnonO category. 

 

In case of VWF:CB response in HnonO category, the estimation of the parameters can be performed 

from the experimental data, but only the dynamic sensitivity of k0 reaches the peak in the time range 

of the experiment and the stabilization at the end of the sampling time. Moreover, until 250 min as 

sampling time, the profiles of parameters k1 and ke overlap, meaning that measurements taken here 

will not allow a distinction between these parameters. 

The same conclusions can be derived also analysing the dynamic sensitivity for the unhealthy 

categories. The results of sensitivity analysis conducted for the antigen and collagen responses in case 

of 2B category are presented in figures 3.5 and 3.6.  
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Figure 3.5. Dynamic sensitivity for VWF:Ag response in 2B category. 

 

 



Preliminary analysis of the model information content 

 

33 

 

0 500 1000

-1.4E+07

-1.2E+07

-1.0E+07

-8.0E+06

-6.0E+06

-4.0E+06

-2.0E+06

0.0E+00

2.0E+06

4.0E+06

6.0E+06

D
y
n
a
m

ic
 s

e
n
s
it
iv

it
y
 V

W
F

:C
B

 [
U

/d
L
]

Time [min]

 k0

 k1

 ke

 
Figure 3.6. Dynamic sensitivity for VWF:CB  response in 2B category. 

 

Results show that parameter ke requires the longest time for achieving the maximum in the sensitivity 

in case of VWF:Ag response and it does not reach the stabilization of the sensitivity at the end of 

experimental time. On the other hand, in case of VWF:CB response, all the sensitivities executed for 

the three parameters achieve the sensitivity peak in the sampling time and the stabilization at the end 

of the considered time range. Therefore, if samples are taken around the maximum of the profiles 

parameters k0, k1 and ke can be uniquely estimated from the experimental data with good precision. 

However, as is possible to see in the experimental time-range [0 100] of figure 3.6, the sensitivities 

of parameters k1 and ke overlap, meaning that if samples are collected in this range, the two parameters 

are totally correlated and parameters cannot be estimated. 

Again, results of the dynamic sensitivity for Vicenza category are reported in figures 3.7 and 3.8.  
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Figure 3.7. Dynamic sensitivity for VWF:Ag response in Vicenza category. 
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Figure 3.8. Dynamic sensitivity for VWF:CB  response in Vicenza category. 

 

The same conclusions as for 2B subjects can be derived also analysing the results of Vicenza category. 

Indeed, in case of VWF:CB response, all the profiles of the sensitivity show the peak in the 

experimental time. However, as is possible to see from figures 3.7 and 3.8, parameter ke requires the 

longest time for reaching the peak in the collagen response, and in both the responses it is not able to 

get the stabilization at the end of the sampling time. 

 

3.2 Results of FIM (Fisher Information Matrix) evaluation  

Analysis of the sensitivity shows where it is possible to have the maximum of the information for 

each response in each category considering the different model parameters, but, in this way, it is not 

easy to generalize where it is better to sample in order to maximize the information we can get from 

the clinical trials. Therefore, more appropriate metric needs to be used for multiple input/multiple 

output systems like ours. Analysis on the maximum of the information is carried out on the Fisher 

information matrix (§2.2.1.1). The trace of the Fisher information matrix is one of the most important 

metric to evaluate the region where to sample in order to get the maximum in the information for 

improving parameter estimation. In figures 3.9, 3.10, 3.11 and 3.12 the trace of FIM on the two 

responses for each category of disease and healthy subjects is reported. 
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        Figure 3.9. Trace of FIM in HnonO category.            Figure 3.10. Trace of FIM in HO category. 
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            Figure 3.11. Trace of FIM in 2B category.           Figure 3.12. Trace of FIM in Vicenza category. 

 

As is possible to see from the figures, the trace does not reach the maximum in the information content 

for all the categories with the exception of Vicenza category considering the antigen concentration. 

This behaviour has been produced by the trend of the sensitivity on parameter ke. On the other hand, 

the peak in the information content is achieved considering the collagen response in all the cases 

except for HnonO category, for which a longer experiment time should be advised. 

As is possible to understand from this preliminary analysis k1 and ke requires the longest time for 

achieving the sensitivity peak in the DDAVP execution. Moreover, the elimination constant ke does 

not even reach the maximum of the information content in the 24 hours of DDAVP execution. 

Therefore, to achieve the goal of the project, that is to reduce the DDAVP execution time, it seems 

reasonable to work on the definition of suitable correlations able to calculate k1 and ke parameters 

using only basal values derived from standard clinical trials. Furthermore, from the results obtained, 

the release parameter k0 requires the minimum time for reaching the sensitivity peak. However, to 

tackle the ambitious target of the research, that is to avoid the DDAVP execution, a basal state 
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correlation should be defined also for the release parameter k0. The procedure applied in the definition 

of the suitable basal state relations for the calculation of the kinetic parameters are reported in the 

following chapter. 
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Chapter 4 

Model modification and validation 

 

4.1 Results of model modification 

In this chapter, RSM is applied to find basal state correlations between k0, k1, ke parameters and 

standard clinical trials (§1.3.1). Once defined, the new equations are substituted in the SGM 

developing the MGM, with the target of reducing the time or avoid the DDAVP execution. The 

general procedure that has been followed for the development of the response surfaces is described 

in figure 4.1. 

 

Figure 4.1. RSM procedure. 
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4.1.1 RSM for ke 

The information content analysis (§3) confirmed clearly that the SGM is uniquely identifiable and 

the PK parameters might be estimated from the experimental data. However, the sensitivity analysis 

demonstrated that the time required to achieve the maximum in the information for parameter ke is 

the highest compared to the other kinetic parameters (k0, k1). Therefore, it seems clearly interesting to 

investigate an explicit correlation, which allows to calculate the elimination constant ke from basal 

clinical trials, without considering the DDAVP test. The correlation has been investigated through 

the RSM, developing a so called black-box model, which considers ke as output variable and the two 

physiological ratios VWFpp ratio and VWF:R (derived by the three basal clinical trials VWF:Ag, 

VWF:CB, VWFpp) as inputs. The basal values of the three clinical trials for each subject in each 

category of disease considered in the research work have been supplied by the Hospital of Padova; 

whereas the values of ke for each patient have been estimated with the procedure described in §2.1.1. 

Patients’ values of the above defined quantities, required for the development of the regression model, 

are reported in appendix A. The collaboration with the medical school has been fundamental in the 

definition of the response surfaces. Indeed, the physiology of VWF represents a good starting point 

for finding reliable correlations. Preliminary studies and data analysis have been conducted to define 

the best regression model, whose average AIC is 40.3 ± 5.36. The mathematical form of the most 

performant surface of fitting is the linear response surface with interactions (eq. 4.1): 

𝑘e = 𝐴 + 𝐵 ∙ VWFpp ratio + 𝐶 ∙ VWF: R + 𝐷 ∙ VWFpp ratio ∙ VWF: R            (4.1) 

The determination of the right correlation is the result of a long set of experiments, which have been 

carried out to find the most significant relations between the model parameters and the basal clinical 

trials. The overall procedure is reported in appendix B (§B.1).  

The fittings of the experimental data with the linear response surface with interactions are illustrated 

in figures 4.2, 4.3, 4.4 and 4.5, for the different categories.  
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Figure 4.2. Linear response model surface with interactions considering HnonO subjects (subjects removed: 

1, 9, 13, 10, 8, 6). 

 

 

Figure 4.3. Linear response model surface with interactions considering HO subjects (subjects removed: 17, 

19, 25, 26, 28, 31). 
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Figure 4.4. Linear response model surface with interactions considering 2B subjects 

(subject removed: 39). 

 

 

Figure 4.5. Linear response model surface with interactions considering Vicenza subjects (subjects removed: 

48, 49). 
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As is visible in the response surface images, some subjects were removed from the pool to improve 

the result of the fitting, because they behaved as outliers. The abnormal space position of those 

subjects is associated to medical factors that arose during the DDAVP execution causing irreversible 

deviations from the class of belonging. Precisely, some of the removed subjects fainted or collapsed 

during the DDAVP execution or they are affected by additional blood-coagulation disorders that 

produce an alteration on the VWF levels. Moreover, some of the abnormal subjects, belonging to 2B 

or Vicenza categories, possess other mutations on the VWF gene in addition to those expected, 

therefore a deviation occurs. 

The relative error of the surface fitting in the four considered categories is illustrated in figures 4.6, 

4.7, 4.8 and 4.9. The quality of the fitting can be analysed through the statistics presented in tables 

4.1, 4.2, 4.3 and 4.4 for HnonO, HO, 2B and Vicenza subjects, respectively. 

 

 

Figure 4.6. Relative error in linear response model fitting with interactions for HnonO subjects (subjects 

removed: 1, 9, 13, 10, 8, 6). 
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Table 4.1. Statistics of the fitting with HnonO subjects (subjects removed: 1, 9, 13, 10, 8, 6). 

 

 

  
Figure 4.7. Relative error in linear response model fitting with interactions for HO subjects (subjects removed: 

17, 19, 25, 26, 28, 31). 
 

 

Table 4.2. Statistics of the fitting with HO subjects (subjects removed: 17, 19, 25, 26, 28, 31). 

 

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A 0.01468 0.00498 2.94712 0.04209 8.50E-04 2.85E-02

B -0.01521 0.00508 -2.99186 0.04026 -2.93E-02 -0.00109

C -0.01316 0.0045 -2.92471 0.04304 -2.57E-02 -6.67E-04

D 0.01438 0.00458 3.13695 0.03495 0.00165 2.71E-02

Number of points 8

Degrees of Freedom 4

Reduces Chi-Squared 2.02E-08

Residual Sum of Squares 8.09E-08

R Value 0.9257

Adj. R-Square 0.74962

HnonO statistics
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Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A -0.01397 0.00503 -2.77471 0.03915 -0.02691 -0.00103

B 0.01484 0.00448 3.31547 0.02111 0.00333 0.02634

C 1.31E-02 4.36E-03 2.99477 0.03028 1.85E-03 2.43E-02

D -0.01209 0.00382 -3.16506 0.02495 -0.02192 -0.00227

Number of points 9

Degrees of Freedom 5

Reduces Chi-Squared 9.25E-08

Residual Sum of Squares 4.62E-07

R Value 0.90983

Adj. R-Square 0.72446

HO statistics
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Figure 4.8. Relative error in linear response model fitting with interactions for 2B subjects (subject removed: 

39). 
 

Table 4.3. Statistics of the fitting with 2B subjects (subject removed: 39). 

 

 

 
Figure 4.9. Relative error in linear response model fitting with interactions for Vicenza subjects (subjects 

removed: 48, 49). 

36 37 38 39 40 41 42
-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

36

37

38

40
41

42 relative error

re
la

ti
v
e
 e

rr
o
r

identification

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A 0.0093 0.00286 3.25126 0.08299 -0.00301 0.0216

B -0.00348 0.00122 -2.85955 0.10363 0.00873 0.00176

C -0.02435 0.00846 -2.87773 0.10252 -0.06075 0.01206

D 0.01299 0.00354 3.6745 0.06673 -0.00222 0.02821

Number of points 6

Degrees of Freedom 2

Reduces Chi-Squared 1.35E-07

Residual Sum of Squares 2.69E-07

R Value 0.97905

Adj. R-Square 0.89634

2B statistics
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Table 4.4. Statistics of the fitting with Vicenza subjects (subjects removed: 48, 49). 

 

 

The statistics are generated by the Nonlinear surface fit analyser package in OriginPro software.  

Table 6 has been reported to summarize the most important statistics produced by the analysis.  

 

Table 4.5. Summary of goodness of fit statistics. 

 DoF Reduced chi-sqr Residuals sum of squares R2 𝑹̅𝟐 

HnonO 4 2.02E-08 8.09E-08 0.9257 0.74962 

HO 5 9.25E-08 4.62E-07 0.90983 0.72446 

2B 2 1.35E-07 2.69E-07 0.97903 0.89634 

Vicenza 1 3.19E-07 3.19E-07 0.92946 0.45561 

 

As is possible to understand from the results of the statistics reported in table 4.5 and from the fitting 

illustrated in the images, the regression model successfully interpolates the experimental data. The R2 

is indeed higher than 90% in all the considered categories indicating a good quality of the fitting. 

Moreover, as is clearly shown in tables 4.1, 4.2, 4.3 and 4.4, the t-value is higher than the chi-squared 

of reference stating that the experimental points are sufficient for the development of a reliable 

response surface; also, the confidence intervals show meaningful values in line with a high quality of 

the fitting.  

The new explicit correlation for parameter ke, which has been found statistically reliable, produces a 

deep reduction on the DDAVP execution time and this statement finds clear confirmation in the 

following section. 

 

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A 0.02005 0.01106 1.8133 0.32084 -0.12045 0.16055

B -0.00162 0.00181 -0.89051 0.53683 -0.02466 0.02143

C -0.00916 0.01158 -0.79152 0.57375 -0.15626 0.13794

D 0.00138 0.00177 0.77778 0.57917 -0.02112 0.02387

Number of points 5

Degrees of Freedom 1

Reduces Chi-Squared 3.19E-07

Residual Sum of Squares 3.19E-07

R Value 0.92946

Adj. R-Square 0.45561

Vicenza statistics



Model modification and validation 

 

45 

 

4.1.1.1 SGM modification and simulation of MGM_1 

The SGM has been modified (figure 4.10) adding in the equations set the new explicit correlation for 

ke (eq. 4.1). This modification leads to the development of MGM_1 (modified Galvanin model, first 

version). The algebraic relation introduces four new model parameters (A, B, C, D), whose values 

have been obtained from the fitting procedure executed in OriginPro®. The values of the parameters 

for each category considered in the study are summarized in table 4.6. 

 
       Figure 4.10. MGM_1 scheme. 

 

 

                                        Table 4.6. Model parameters of the RSM. 

 HnonO HO 2B Vicenza 

A 0.01468 -1.20E-02 0.0093 0.02005 

B -0.01521 1.31E-02 -0.00348 -0.00162 

C -0.01316 0.01089 -0.02435 0.00916 

D 0.01438 -1.03E-02 0.01299 0.00138 

 

The MGM_1 can be represented as in figure 4.10, in which it is shown how the value of ke is 

determined by two basal quantities (VWF:R and VWFpp ratio), whereas k0 and k1 still need to be 

estimated by the DDAVP. To compare the profiles generated by the SGM (§2.1) and MGM_1, the 

average subject for each category has been taken as reference. The average input data for each 

category, required to simulate MGM_1, are reported in table 4.7. 
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Table 4.7. VWFpp ratio and VWF: R average values in the considered categories. 

 VWFpp ratio VWF: R 

HnonO 1.040 1.252711 

HO 1.113 1.258576 

2B 2.320 0.363891 

Vicenza 0.881 8.843210 

 

The comparison between the average ke values calculated with the new explicit correlation and the 

average ke estimated values in the SGM are presented in table 4.8. 

 

           Table 4.8. Calculated average ke values and the average estimated ke values. 
 

ke calculated by 

MGM_1 

ke estimated 

through SGM 

relative error 

HnonO 6.73E-04 7.04E-04 0.046062407 

HO 0.001858 0.00152 0.181916039 

2B 0.003332 0.00323 0.030612245 

Vicenza 0.00840673 0.00818 0.026970059 
5.  

 

As is possible to read from table 4.8, the calculated and the estimated values of ke are numerically 

close within each other, indeed the relative error is lower than 10% in all the categories except for 

HO category. This can be due to the intrinsic internal variability of the pool of subjects considered in 

the study for the HO category. This finding reflects on the profiles of VWF:Ag and VWF:CB 

responses. From figures 4.11, 4.12, 4.13 and 4.14, it is clearly evident that the profiles of SGM and 

MGM_1 overlap in each category with exception of HO category, but the deviation (< ± 20 U/dL) 

produced in the value of the peak of the two model responses VWF:Ag and VWF:CB can be accepted 

by the medical community. 
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(a) (b) 

Figure 4.11. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_1 and SGM in HO category. 

 

 

 

 

 

(a) (b) 

Figure 4.12. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_1 and SGM in HnonO category. 

 

 

 

 

 

  

0 500 1000

80

100

120

140

160

180

V
W

F
:A

g
 [
U

/d
L
]

Time [min]

 SGM

 MGM_1

0 500 1000

100

120

140

160

180

V
W

F
:C

B
 [
U

/d
L
]

Time [min]

 SGM

 MGM_1

0 500 1000

100

150

200

250

V
W

F
:A

g
 [

U
/d

L
]

Time [min]

 SGM

 MGM_1

0 500 1000
100

150

200

250

V
W

F
:C

B
 [

U
/d

L
]

Time [min]

 SGM

 MGM_1



Model modification and validation 

 

48 

 

  

(a) (b) 

Figure 4.13. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_1 and SGM in 2B category. 

 

 

 

 

 

 

(a) (b) 

Figure 4.14. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_1 and SGM in Vicenza category. 

 

4.1.1.2 Information content analysis on MGM_1 

Information content analysis has been executed in order to evaluate whether MGM_1 is still locally 

identifiable.  

The local sensitivity analysis has been conducted in gPROMS® acting a perturbation of 1% on the 

model parameters, which mainly characterize MGM_1.  

In particular, the vector of the modified model parameters can be represented as a two dimensional 

array: 
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𝜃 = [𝑘0, 𝑘1] 

The sensitivity analysis has been conducted for each parameter in the vector and for each category of 

disease or healthy subjects. Results of the two model responses VWF:Ag and VWF:CB are reported 

in figures 4.15 and 4.16 for the healthy subjects HnonO and HO, whereas the profiles of the 

sensitivities in the 2B and Vicenza categories are presented in figures 4.17 and 4.18, respectively. 
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(a) (b) 

Figure 4.15. Dynamic sensitivity for VWF:Ag 
 (a) and VWF:CB (b) responses in HnonO category for 

parameters k0 and k1. 
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(a) (b) 

Figure 4.16. Dynamic sensitivity for VWF:Ag 
 (a) and VWF:CB (b) responses in HO category for 

parameters k0 and k1. 
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(a) (b) 

Figure 4.17. Dynamic sensitivity for VWF:Ag 
 (a) and VWF:CB (b) responses in 2B category for parameters 

k0 and k1. 
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(a)  (b) 

Figure 4.18. Dynamic sensitivity for VWF:Ag 
 (a) and VWF:CB (b) responses in Vicenza category for 

parameters k0 and k1. 

 

It is important to consider that also the sensitivity for VWFpp ratio has been executed in the modified 

model being a countercheck for the time required by the identification of the elimination constant ke 

in SGM. 
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Figure 4.19. Dynamic sensitivity for VWF:Ag and VWF:CB responses in HnonO category on VWFpp ratio. 
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(a) (b) 

Figure 4.20. Dynamic sensitivity for VWF:Ag (a) and VWF:CB (b) responses in HO, 2B and Vicenza 

categories on VWFpp ratio. 

 

As it is possible to understand from the profiles in each category (figures 4.15, 4.16, 4.17, 4.18), the 

parameter k1 cannot be identified by VWF:Ag experimental data, whereas it can be identified by 

VWF:CB response. Parameter k0 instead peaks in both the model responses, but the highest value of 

the peak is associated to the antigen concentration in all the categories, meaning that VWF:Ag 

response is more informative for the estimation of the release kinetic parameter. 

Hence, DDAVP clinical trial needs to be carried out for the estimation of the two model parameters 

k0 and k1. However, as the plots illustrate, the execution time required to achieve the sensitivity peak 
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of the two parameters (k0, k1) in MGM_1 is shorter (almost halved) compared to the identification 

time needed by the elimination constant ke in SGM. To stress out the improvement, the sensitivities 

for each category on VWFpp ratio have been reported in figures 4.19 and 4.20 (two figures are 

required to represent the profiles between the different categories because scales are different). 

VWFpp ratio is clinically used to indirectly quantify the elimination constant ke. The profiles of the 

sensitivity on VWFpp ratio produced by MGM_1 show almost the same trends of the sensitivity on 

ke in SGM. Figures 4.19 and 4.20 have been inserted in the discussion to confirm that MGM_1 is 

clearly able to represent the physiology of the system, evaluating the elimination constant ke with 

VWFpp ratio quantity, in agreement with medical literature. However, we are not interested in the 

time required by VWFpp ratio to get the highest sensitivity value, because only its basal value, 

together with that of VWF:R, is used for the calculation of the elimination constant ke thorough the 

new explicit correlation (eq. 4.1). 
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4.1.2 RSM for k1 

As demonstrated in §4.1.2, the definition of a correlation for parameter ke theoretically allows to halve 

the DDAVP execution time. However, still 8-12 hours are required to achieve a statistical satisfactory 

estimation of the proteolytic parameter k1 through the DDAVP clinical trial. Therefore, to improve 

the reduction of the DDAVP execution time a suitable correlation for parameter k1 has been 

investigated. Several basal state clinical quantities (i.e. VWFpp ratio, VWF:R and VWF:Rco) can be 

related to the proteolytic parameter. As reported in appendix B.2, the investigation of the right 

correlation for parameter k1 has been challenging. Indeed, not only the quality of the fitting and the 

physiological meaning of the equation need to be considered, but also the clinical trials that have to 

be executed must be easy to conduct. This is fundamental to respect the concept of simplification that 

is at the core of the research goal. 

In collaboration with the medical school, we deducted that the proteolytic parameter k1 is related to 

VWF:Ag, which represents the number of antigens in the blood stream, and to the elimination that 

can be measured by the VWFpp ratio at the basal state. Therefore, reasonably k1 can be expressed as 

function of VWF:Ag and VWFpp ratio. The linear response surface with interactions for the 

proteolytic parameter is mathematically defined as follow: 

𝑘1 = 𝐴 + 𝐵 ∙ VWF: Ag + 𝐶 ∙ VWFpp ratio + 𝐷 ∙ VWF: Ag ∙ VWFpp ratio (4.2) 

The correlation (eq. 4.2) seems to work well as results demonstrate. The fitting with the linear 

response surfaces with interactions are reported in figures 4.21, 4.22, 4.23 and 4.24 for HnonO, HO, 

2B and Vicenza categories, respectively. 
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Figure 4.21 Linear response model surface with interactions considering HnonO subjects (subjects removed: 

1, 9, 13, 10, 8, 6). 

 

 

 
Figure 4.22. Linear response model surface with interactions considering HO subjects (subjects removed: 17, 

19, 25, 26, 28, 31). 
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Figure 4.23 Linear response model surface with interactions considering 2B subjects (subject removed: 39). 

 

 

 
Figure 4.24 Linear response model surface with interactions considering Vicenza subjects (subjects removed: 

48, 49). 

 

The quality of the fitting is confirmed also by the statistical results reported in tables 4.9, 4.10, 4.11 

and 4.12 for HnonO, HO, 2B and Vicenza category, respectively. 
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Table 4.9. Statistics of the fitting with HnonO subjects (subjects removed: 1, 9, 13, 10, 8, 6). 

 
 

 

Table 4.10. Statistics of the fitting with HO subjects (subjects removed: 17, 19, 25, 26, 28, 31). 

 

 

Table 4.11. Statistics of the fitting with 2B subjects (subject removed: 39). 

 

 

 

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A -0.00312 0.00103 3.039 0.038 0.006 -2.71E-04

B 4.09E-06 1.36E-05 3.002 0.040 3.08E-06 7.87E-05

C 0.02233 8.82E-04 2.636 0.057 -1.23E-04 0.005

D -2.96E-05 1.23E-05 -2.408 0.073 -6.37E-05 4.25E-06

Number of points 8

Degrees of Freedom 4

Reduces Chi-Squared 1.11E-08

Residual Sum of Squares 4.43E-08

R Value 0.92

Adj. R-Square 0.72

HnonO statistics

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A -0.00122 9.04E-04 -1.234 0.241 -0.003 8.54E-04

B 3.72E-05 1.13E-05 3.286 0.006 1.25E-09 6.18E-05

C 0.00256 9.79E-04 2.613 0.023 4.25E-04 0.005

D -5.33E-05 1.59E-05 -3.344 0.006 -8.80E-05 -1.86E-05

Number of points 16

Degrees of Freedom 12

Reduces Chi-Squared 9.85E-08

Residual Sum of Squares 1.18E-06

R Value 0.73

Adj. R-Square 0.41

HO statistics

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A -0.01163 1.23E-02 -0.945 0.518 -0.168 0.145

B 4.25E-04 3.22E-04 1.321 0.412 -0.004 0.005

C 0.00432 4.67E-03 0.925 0.524 -0.055 0.064

D -1.28E-04 1.24E-04 -1.034 0.489 0.002 0.001

Number of points 5

Degrees of Freedom 1

Reduces Chi-Squared 8.25E-07

Residual Sum of Squares 8.25E-07

R Value 0.94

Adj. R-Square 0.51

2B statistics
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Table 4.12. Statistics of the fitting with Vicenza subjects (subjects removed: 48, 49). 

 

 

The most significant statistics related to the explicit correlation defined for the proteolytic parameter 

k1 are summarized in table 4.13. 

 

Table 4.13. Summary of goodness of fit statistics. 

 DoF Reduced chi-sqr Residuals sum of squares R2 𝑹̅𝟐 

HnonO 4 1.11E-08 4.43E-08 0.91714 0.72201 

HO 12 9.85E-08 1.18E-06 0.72549 0.40793 

2B 1 8.25E-07 8.25E-07 0.93672 0.51018 

Vicenza 1 7.36E-09 7.36E-09 0.99951 0.99612 

 

The summary is important to have an immediate visualization of the most important quality-of-fit 

indexes. As it is clearly visible, the R2 is high, greater than 90% for almost all the categories, with 

exception of HO category. This is again due to the high internal variability of the pool of subjects. 

However, the 𝑅̅2 is relatively high meaning that the correlation can work for the estimation of k1 with 

a low error. 

 

4.1.2.1 SGM modification and simulation of MGM_2 

The new explicit correlation for k1 (eq. 4.2) has been substituted in MGM_1, giving rise to MGM_2 

(modified Galvanin model, second version). The MGM_2 can be graphically represented as in figure 

4.25, where it is clearly visible that both the elimination constant ke and the proteolytic constant k1 

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A -0.0034 9.43E-04 -3.898 0.160 -0.0156 8.31E-03

B 8.15E-04 9.43E-05 8.644 0.073 -3.83E-04 2.01E-03

C 1.36E-04 1.32E-04 1.035 0.488 1.54E-03 1.81E-03

D -5.04E-05 1.34E-05 -3.762 0.165 -2.21E-04 1.20E-04

Number of points 5

Degrees of Freedom 1

Reduces Chi-Squared 7.36E-09

Residual Sum of Squares 7.36E-09

R Value 0.99

Adj. R-Square 0.99

Vicenza statistics
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can be calculated directly from basal clinical trials, whereas k0 still requires the DDAVP execution to 

be estimated. 

 
Figure 4.25. MGM_2 scheme for model identification. 

 

The algebraic relation introduces four new model parameters (A, B, C, D), whose values have been 

obtained from the fitting procedure executed in OriginPro®. The values of the parameters for each 

category considered in the study are summarized in table 4.14. 

                                    Table 4.14. Model parameters of the RSM. 

 HnonO HO 2B Vicenza 

A -0.00312 -0.00122 -0.01163 -0.00368 

B 4.09E-06 3.72E-05 4.25E-04 8.15E-04 

C 0.00233 0.00256 0.00432 1.36E-04 

D -2.96E-05 -5.33E-05 -1.28E-04 -5.04E-05 

 

To compare the profiles generated by the SGM (§2.1) and MGM_2, the average subject for each 

category has been taken as reference. The average input data for each category, required to simulate 

the models, are those reported in table 4.15. 
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Table 4.15. VWFpp ratio and VWF: Ag average values in the considered categories. 

 
 

VWFpp ratio 
VWF: Ag 

[U/dL] 

HnonO 1.040 94.07 

HO 1.113 77.14 

2B 2.320 35.07 

Vicenza 0.881 9.42 

 

The comparison between the average k1 values calculated with the new explicit correlation and the 

average k1 estimated values are presented in table 4.16. 

 

Table 4.16. Calculated average k1 values and the average estimated k1 values. 
 

k1 calculated by 

MGM_1 

k1 estimated 

through SGM 
relative error 

HnonO 2.55E-04 2.37E-04 0.0759 

HO 4.53E-04 6.25E-04 0.2752 

2B 0.00484 0.00471 0.0268 

Vicenza 0.00155 0.00149 0.0345 
1.  

 

As it is possible to read from table 4.16, the calculated and the estimated values of k1 are numerically 

close within each other, indeed the relative error is lower than 10% in all the categories except for 

HO category. This is due to the high internal variability of the pool of subjects considered in the study 

for the HO category. This finding reflects on the profiles of VWF:Ag and VWF:CB responses. 

Figures 4.26, 4.27, 4.28 and 4.29 show the comparison of the profiles of response between the SGM 

and MGM_2 for all the categories. From the results, it is clearly evident that the profiles of SGM and 

MGM_2 overlap in each category with exception of HO category, but the deviation (< ± 20 U/dL) 

produced in the value of the peak of the two model responses VWF:Ag and VWF:CB is still 

acceptable by the medical community, as found for MGM_1. 
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(a) (b) 

Figure 4.26. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_2 and SGM in HnonO category. 

 

 

 

 

 

(a) (b) 

Figure 4.27 Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_2 and SGM in HO category. 
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(a) (b) 

Figure 4.28. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_2 and SGM in 2B category. 

 

 

  

(a) (b) 

Figure 4.29. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_2 and SGM in Vicenza category. 

 

4.1.2.2 Information content analysis on MGM_2 

Information content analysis has been executed in order to evaluate whether MGM_2 is still locally 

identifiable.  

The local sensitivity analysis has been conducted in gPROMS® acting a perturbation of 1% on the 

release parameter k0, which is the last kinetic parameter that requires the DDAVP execution for its 

estimation. 

The sensitivity analysis has been conducted for each category of disease and healthy subjects. Results 

of the two model responses VWF:Ag and VWF:CB are reported in figures 4.30 and 4.31 for the 
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healthy subjects HnonO and HO, whereas the profiles of the sensitivity in the 2B and Vicenza 

categories are presented in figures 4.32 and 4.33, respectively. 

 

  

(a) (b) 

Figure 4.30 Dynamic sensitivity for VWF:Ag 
 (a) and VWF:CB (b) responses in HnonO category. 
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(a) (b) 

Figure 4.31. Dynamic sensitivity for VWF:Ag 
 (a) and VWF:CB (b) responses in HO category. 
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(a) (b)  

Figure 4.32. Dynamic sensitivity for VWF:Ag 
 (a) and VWF:CB (b) responses in 2B category.  
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(a) (b) 

Figure 4.33. Dynamic sensitivity for VWF:Ag 
 (a) and VWF:CB (b) responses in Vicenza category. 

 

As is clearly visible from the results of the sensitivity, the DDAVP execution time can be sensibly 

reduced to 3-4 hours. Indeed, three-four hours represent a sufficient amount of time for reaching the 

peak in the sensitivity profiles for all the considered categories. The result is highly promising because 

the DDAVP execution time might be reduced to 1/6-1/8 of the original test. This will undoubtedly 

produce a positive impact on the quality of life of the patients. The validation executed in MGM_2 is 

presented in chapter 5. 
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4.1.3 RSM for k0 

As has been demonstrated in §4.2, apparently, the use of MGM_2 in VWD characterization allows 

to reduce significantly the DDAVP execution time. Only the release parameter k0 requires now the 

DDAVP execution to be estimated. Therefore, theoretically, if a suitable correlation for parameter k0 

is found, the DDAVP is not necessary anymore and the VWF:Ag and VWF:CB profiles in time of 

the patients can be simply reproduced using basal quantities values, obtained from a simple blood 

sample. However, as for k1, the research of the right correlation for the release parameter required a 

big effort (appendix B.3). Indeed, many different clinical quantities can be related to the VWF release 

path. Furthermore, the release of VWF from the endothelial cells has not been completely understood 

yet, meaning that there is a lack of knowledge in the physiological description.  

For instance, it is impossible to directly evaluate the release rate k0. In fact, the basal clinical trials, 

as the intraplatelet VWF, are able to measure only the amount of VWF released by the cells (Q), and 

not the rate of release k0. However, as soon as the correlation for Q is defined, the kinetic parameter 

k0, can be indirectly obtained from equation 4.3, known D and tmax. Precisely, Q is the integral in time 

of the expression which defines the release physiology in the PK model of VWD (eq. 2.1). 

𝑄 = ∫ 𝑘0𝐷𝑒−𝑘0(𝑡−𝑡𝑚𝑎𝑥)
𝑡

0

 

 

(4.3) 

 

Thanks to the joint work with the medical school, two correlations have finally been found suitable 

for the evaluation of Q. The first correlation defines Q as function of VWF:R and intraplatelet VWF 

(intra), which is commonly used by the medical community to evaluate the amount of VWF released 

by the cells. The mathematical form of the generated linear response surface with interactions is 

expressed as follow: 

𝑄 = 𝐴 + 𝐵 ∙ 𝑖𝑛𝑡𝑟𝑎 + 𝐶 ∙ VWF: R + 𝐷 ∙ 𝑖𝑛𝑡𝑟𝑎 ∙ VWF: R (4.4) 

 

Fitting the experimental data with the regression model defined in equation 4.4 has given remarkable 

results, which are presented in figures 4.34, 4.35 and 4.36 for HO, 2B and Vicenza categories. 

Experimental intraplatelet VWF data were not available for HnonO category.  
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Figure 4.34. Linear response model surface with interactions considering HO subjects (subjects removed: 17, 

19, 25, 28, 31). 

 

 
Figure 4.35. Linear response model surface with interactions considering 2B subjects (subject removed: 39). 
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Figure 4.36. Linear response model surface with interactions considering Vicenza subjects (subject removed: 

49). 

 

The quality of the fitting is demonstrated also from the values of the statistics reported in tables 4.17, 

4.18 and 4.19. 

 

Table 4.17. Statistics of the fitting with HO subjects (subjects removed: 17, 19, 25, 28, 31). 

 
 

 

 

 

 

 

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A -2.25E+04 7.99E+03 -2.819 0.106 -5.69E+04 1.18E+04

B 234.31 71.72 3.267 0.082 -74.27 542.88

C 2.17E+04 6.61E+03 3.277 0.082 -67.84 5.01E+04

D -203.05 59.78 -3.396 0.077 -460.26 54.17

Number of points 6

Degrees of Freedom 2

Reduces Chi-Squared 1.25E+05

Residual Sum of Squares 2.51E+05

R Value 0.96

Adj. R-Square 0.81

HO statistics
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Table 4.18. Statistics of the fitting with 2B subjects (subject removed: 39). 

 
 

 

Table 4.19. Statistics of the fitting with Vicenza subjects (subjects removed: 49). 

 

 

As visible from the figures and the statistics just reported, the fitting is good and the correlation could 

theoretically allow us to satisfy the ambitious target of the research project, which is to completely 

avoid the execution of the DDAVP clinical trial. The problem is that, again, “simplification” is also 

one of the goals that must to be met in the project. Therefore, correlations must contain basal 

quantities derived by standard clinical trials. As in the case of VWF:Rco correlation for the proteolytic 

parameter (see §B.2), here, intraplatelet VWF is a medical test that requires significant effort, good 

ability in platelets management and uncommon laboratories tools to contain the measurement errors. 

This means that correlation (4.4) cannot be used at our purpose.  

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A 4.20E+03 1.25E+03 3.349 0.078 -1.2E+03 9.60E+03

B -7.37 12.09 -0.610 0.604 -59.39 44.64

C -2.45E+03 3.02E+03 -0.814 0.501 1.54E+03 1.05E+03

D 38.24 27.83 1.374 0.303 -81.48 157.96

Number of points 6

Degrees of Freedom 2

Reduces Chi-Squared 1.17E+05

Residual Sum of Squares 2.34E+05

R Value 0.92

Adj. R-Square 0.64

2B statistics

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A -2.71E+05 2.56E+04 -10.580 0.060 -5.96E+05 5.45E+04

B 2.83E+03 266.54 10.609 0.059 -558.87 6.22E+03

C 2.74E+05 2.62E+04 10.471 0.061 -5.84E+04 6.06E+05

D -2.81E+03 272.15 10.354 0.061 -6.27E+03 641.71

Number of points 5

Degrees of Freedom 1

Reduces Chi-Squared 5.88E+04

Residual Sum of Squares 5.88E+04

R Value 0.99

Adj. R-Square 0.97

Vicenza statistics
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Hence, another correlation has been investigated. The mass balance around the overall control volume 

of SGM (fig.3) has been executed and, as result, the amount of VWF released is function of the 

elimination constant ke and of VWF:Ag. The linear response surface with interactions that has been 

developed is defined by the following equation: 

𝑄 = 𝐴 + 𝐵 ∙ 𝑘𝑒 + 𝐶 ∙ 𝑉𝑊𝐹: 𝐴𝑔 + 𝐷 ∙ 𝑘𝑒 ∙ 𝑉𝑊𝐹: 𝐴𝑔 (4.5) 

 

The fitting results of the experimental data with the linear response surface (eq. 4.5) are reported in 

figures 4.37, 4.38, 4.39 and 4.40 for all the considered categories. 

 

Figure 4.37. Linear response model surface with interactions considering HnonO subjects (subjects removed: 

1, 9, 13, 10, 8, 6). 
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Figure 4.38. Linear response model surface with interactions considering HO subjects (subjects removed: 17, 

19, 25, 26, 28, 31). 

 

 

 
Figure 4.39. Linear response model surface with interactions considering 2B subjects (subject removed: 39). 

 



Model modification and validation 

 

70 

 

 
Figure 4.40. Linear response model surface with interactions considering Vicenza subjects (subject removed: 

49). 

 

The statistics of the fitting for all the considered categories are reported in tables 4.20, 4.21, 4.22 and 

4.23. 

Table 4.20. Statistics of the fitting with HnonO subjects (subjects removed: 1, 9, 13, 10, 8, 6). 

 
 

 

 

 

 

 

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A -16962.24 10.5E+03 -1.607 0.206 -5.0E+03 1.6E+03

B 191.12 114.53 1.668 0.194 -173.37 555.60

C 1.52E+07 9.72E+06 1.559 0.217 -1.57 4.61

D -112581.28 10.3E+03 -1.098 0.353 -4.4E+04 2.15E+04

Number of points 7

Degrees of Freedom 3

Reduces Chi-Squared 1.12E+06

Residual Sum of Squares 3.57E+07

R Value 0.94

Adj. R-Square 0.75

HnonO statistics
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Table 4.21 Statistics of the fitting with HO subjects (subjects removed: 17, 19, 25, 26, 28, 31). 

 
 

Table 4.22. Statistics of the fitting with 2B subjects (subject removed: 39). 

 
 

 

Table 4.23. Statistics of the fitting with Vicenza subjects (subject removed: 49). 

 

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A 6.0E+03 1.73E+03 3.470 0.006 241.27 9.8E+03

B -88.37 26.68 -3.309 0.008 -147.82 -28.91

C -3.23E+06 1.25 -2.579 0.027 -6.02E+06 -4.4E+05

D 7.55E+03 2.03E+03 -3.778 0.004 3.03E+03 1.2E+05

Number of points 14

Degrees of Freedom 10

Reduces Chi-Squared 1.9E+05

Residual Sum of Squares 1.9E+06

R Value 0.92

Adj. R-Square 0.79

HO statistics

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A -3602.80 4246.15 -0.848 0.458 -1.71E+03 9.91E+03

B 142.16 121.85 1.166 0.327 -245.61 529.94

C 1.64E+06 9.78E+04 1.676 0.192 -1.47E+06 4.75

D -27636.74 3.14E+04 -0.879 0.444 -1.28E+04 7.23E+04

Number of points 7

Degrees of Freedom 3

Reduces Chi-Squared 1.9E+05

Residual Sum of Squares 5.7E+05

R Value 0.91

Adj. R-Square 0.66

2B statistics

Regression parameters Value Standard error t-Value Prob>|t| 95%  LCL 95%  UCL

A -18437.71 1445.84 -12.75 0.050 -3.68E+03 -66.51

B 2483.33 166.48 14.92 0.043 368.01 4.60E+03

C 2.72E+06 186.44E+03 14.62 0.043 3.56E+04 5.09

D -2.98E+05 20.38E+03 -14.66 0.043 5.57E+05 -3.97E+04

Number of points 5

Degrees of Freedom 1

Reduces Chi-Squared 3.41E+04

Residual Sum of Squares 3.41E+04

R Value 0.99

Adj. R-Square 0.98

Vicenza statistics
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As it is possible to understand from the results obtained and from the summary of the most important 

statistics reported in table 4.24 and 4.25 for the response surfaces 4.4 and 4.5, the fitting with the new 

explicit correlations is good. 

       Table 4.24. Summary of goodness of fit statistics for response surface (4.4). 

 DoF Reduced chi-sqr Residuals sum of squares R2 𝑹̅𝟐 

H0 2 1.25E+05 2.52E+05 0.96 0.81 

2B 2 1.17E+05 2.35E+05 0.92 0.64 

Vicenza 1 5.88E+04 5.88E+04 0.99 0.97 

 

       Table 4.25. Summary of goodness of fit statistics for response surface (4.5). 

 DoF Reduced chi-sqr Residuals sum of squares R2 𝑹̅𝟐 

Hnon0 3 1.12E+06 3.57E+07 0.94 0.75 

H0 10 1.87E+05 1.87E+06 0.92 0.79 

2B 3 1.92E+05 5.74E+05 0.91 0.66 

Vicenza 1 3.41E+05 3.41E+05 0.99 0.98 

 

The definition of suitable correlations for the amount of VWF released from the endothelial cells and 

the consequent evaluation of the release rate k0 allows us to think that the overall ambitious goal of 

the project, the DDAVP elimination, may be reached. In the following section, equations (4.4) and 

(4.5) are singularly tested in MGM_2 developing MGM_3 (modified Galvanin model, third version).  

 

4.1.3.1  SGM modification and simulation of MGM_3 

The new correlations for Q have been tested in the MGM_2, developing MGM_3, the third level of 

modification of SGM. MGM_3 can be represented as in figure 4.41. Precisely, two versions of 

MGM_3 exist: the first defines Q as in equation 4.4 and it is therefore named as MGM_3_intra, 

whereas the second evaluates Q through equation 4.5 and it is defined as MGM_3_Ag. 
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             Figure 4.41. MGM_3 scheme. 

 

The algebraic relations introduce four new model parameters (A, B, C, D), whose values have been 

obtained from the fitting procedure executed in OriginPro®. The values of the parameters for each 

category considered in the study are summarized in table 4.26 and 4.27 for equations (4.4) and (4.5), 

respectively. 

                     Table 4.26. Model parameters of the RSM for response surface 45. 

 HO 2B Vicenza 

A -22536.65 4202.56 -270557.15 

B 234.31 -7.37 2827.81 

C 21680.84 -2456.82 274077.65 

D -203.05 38.24 -2816.23 

 

                    Table 4.27. Model parameters of the RSM for response surface 46. 

 HnonO HO 2B Vicenza 

A -16962.24 5992.55 -3602.80 -18437.71 

B 191.12 -88.37 142.16 2483.33 

C 1.52E+07 -3.23E+06 1.64E+06 2.73E+05 

D -112581.28 75479.14 -27636.74 -298690.97 
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Some subjects belonging to the considered categories (HnonO, HO, 2B and Vicenza) have been taken 

as reference to compare the profiles generated by the SGM and MGM_3 in both the versions 

(MGM_3_intra and MGM_3_Ag). The input data required to simulate MGM_3 for every patient are 

reported in table 4.28. 

 

Table 4.28. Input data required to simulate MGM_3. 

 Patient 7  

HnonO 

Patient 11 

HnonO 

Patient 32 

 HO 

Patient 37 

2B 

Patient 45 

Vicenza 

VWF:Ag [U/dL] 51.70 104.50 63.20 39.60 6.90 

VWF:CB [U/dL] 57.20 155.20 93.80 9.30 5.60 

VWF:R 1.11 1.48 1.48 0.23 0.81 

VWFpp ratio 1.41 1.39 1.39 1.98 6.70 

Weight [kg] 60 95 50 76 87 

 

Figures 4.42, 4.43 and 4.44 show the comparison of the profiles of response VWF:Ag between the 

SGM and MGM_3_intra.  

 

 

Figure 4.42. Simulated response VWF:Ag with MGM_3_intra and SGM  for patient 32. 
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Figure 4.43. Simulated response VWF:Ag with MGM_3_intra and SGM  for patient 37. 

 

Figure 4.44. Simulated response VWF:Ag with MGM_3_intra and SGM  for patient 45. 

 

As figures 4.42, 4.43 and 4.44 illustrates, the MGM_3_intra appears to be able to reproduce the 

profiles of response for the patients. This means that the correlations (4.1), (4.2) and (4.4) are able to 

calculate the three kinetic parameters k0, k1 and ke using only basal clinical values without exploiting 

the DDAVP. However, as previously stated, correlation (4.4) is reliable, but it implies the execution 

of the non-standard clinical assay intraplatelet VWF. Therefore, correlation (4.4) should not be used 

at our purpose, while it is better to test correlation (4.5) in MGM_3. 

The comparison of the profiles generated by SGM and MGM_3_Ag are reported in figures 4.45, 4.46, 

4.47, 4.48 and 4.49 for all the patients. 
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      (a)           (b) 

Figure 4.45. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_3_Ag and SGM  for patient 7. 

 

 
 

      (a)        (b) 

Figure 4.46. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_3_Ag and SGM  for patient 11. 

 

  

        (a)         (b) 

Figure 4.47. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_3_Ag and SGM  for patient 32. 
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       (a)        (b) 

Figure 4.48. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_3_Ag and SGM  for patient 37. 

 

  

       (a)        

(b) 

Figure 4.49. Simulated response VWF:Ag (a) and VWF:CB (b) with MGM_3_Ag and SGM  for patient 45. 

 

Looking at the results obtained, the MGM_3_Ag simulates quite well the antigen and collagen 

responses for patients 11, 32 and 45. On the contrary, MGM_3_Ag produces a sensible deviation in 

the values of the peak for patients 7 and 37 in both the model responses. This is not related to the 

reliability of the correlations developed for Q, but to the strong assumption made in the model 

modification procedure. Precisely, suitable correlations have been investigated only for the three 

kinetic parameters k0, k1 and ke, while D and tmax, which are the amount and maximum time of VWF 

release, have been kept constant at the average value for each category. However, as it can be read in 

table 4.29, the standard deviation from the mean value is large, especially for D.  
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Table 4.29. Average D and tmax values for each category. 

 
D 

[U/dL] 

standard 

deviation 

tmax 

[min] 

standard 

deviation 

HnonO 425.41 101.20 75.03 13.36 

HO 567.64 154.40 60.03 14.32 

2B 597.14 332.47 126.91 42.27 

Vicenza 271.29 180.05 46.66 18.21 

 

This means that the correlations (eq. 45 and eq. 46) found for Q are right, but to simulate the profiles 

of response for a specific subject with precision, the punctual and not the average values for D and 

tmax are required. In confirmation of this, the profiles of patients 11, 32 and 45 can be correctly 

simulated because their punctual D and tmax values are closer to the average than those of patients 7 

and 37 (table 4.30).  

Table 4.30. Punctual D and tmax values for the selected subjects. 

Patient 

D 

[U/dL] 

 

tmax 

[min] 

7 558.98 96.11 

11 443.06 76.07 

32 426.27 43.86 

37 294.12 113,14 

45 281.82 46.75 

 

Therefore, ideally response surfaces should be developed also for parameters D and tmax. However, 

this is not possible. Indeed, as can be read in the mathematical definition for Q (eq. 4.4), k0, D and 

tmax are all quantities required in the definition of the amount of VWF released. Moreover, in the 

article by Galvanin et al. (2017), it was demonstrated that k0 and D are highly correlated meaning that 

the two parameters cannot be calculated separately. Furthermore, tmax is not strictly related to any 

basal clinical quantities but it is function of all the release path, meaning that it is almost impossible 

to define a basal state correlation for it. In addition, it is important to consider that there is a high 

degree of uncertainty in the physiological description of the release of VWF in the bloodstream, 

therefore it is not possible to change the mathematical structure of the differential equations to 

improve the description of the VWF release. To overcome the described issues, it seems reasonable 

to execute the DDAVP just for the estimation of the release parameters (D, k0 and tmax) and then 

calculate k1 and ke using MGM_2. In this way, the main objectives of the research are satisfied. 
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Indeed, the DDAVP execution time can be sensibly reduced to 3-4 hours, whereas k1 and ke 

correlations are calculated from basal quantities derived from standard clinical trials. However, to 

confirm what stated, validation has been carried out (see §4.2 for more details).  

 

4.2 Model validation 

As described in § 4.1, SGM has been modified into 3 different versions: MGM_1, MGM_2 and 

MGM_3 (MGM_3_Ag and MGM_3_intra). The main difference between the modified versions can 

be found in the number of kinetic parameters that are calculated directly from basal state correlations, 

without considering the DDAVP execution. In particular, MGM_3 distinguishes from the other 

versions because it evaluates all the kinetic parameters (k0, k1 and ke) from basal clinical trials (§4.1.3). 

Therefore, apparently, MGM_3 could help in the achievement of the most ambitious target of the 

thesis, that is being able to completely eliminate the DDAVP execution for model identification. 

MGM_3, in both versions, has already been tested trying to simulate the model responses VWF:Ag 

and VWF:CB of subjects (7, 11, 32, 37, 45) that belong to the pool of the VWD categories considered 

in this study, but, results were not satisfying (see §4.1.3 for more details). Indeed, MGM_3 is 

characterized by a big uncertainty in the calculation of the release constant k0. The uncertainty is not 

derived by the mathematical structure of the correlation but by the average values conferred to 

parameters D and tmax. In confirmation to this deduction, model validation has been conducted on 

MGM_3_Ag, which considers the correlation for k0 built with standard clinical trials. The subjects 

taken for validation do not belong to the pool of subjects considered in the study, but to a group of 

patients that have been removed from the pool because they suffered of some medical issues during 

the DDAVP execution. Thus, the data derived from an altered DDAVP could not be used in the 

development of the response surfaces. The required input data of these subjects are reported in table 

4.31.  

Table 4.31. Required input data for model validation. 

Patients VWF:Ag VWF:CB VWFpp ratio VWF:R Weight 

1 108.9 119.3 0.71 1.10 75 

19 58.10 145.20 0.84 0.97 51 

39 34.60 12.00 1.65 0.34 50 

50 18.10 18.50 11.33 1.02 67 

 

Results are reported in figure 4.50, where it is clearly visible that MGM_3_Ag is not able to correctly 

describe the VWF release path.  
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Figure 4.50. Comparison between the simulated VWF:Ag profiles with MGM_3_Ag and SGM for patients 1 

(a), 19 (b), 39 (c) and 50 (d). 
 

Hence, with MGM_3_Ag it is not possible to achieve the elimination of the DDAVP execution. 

Probably, better results could be obtained by using MGM_3_intra, but this correlation has not to be 

used to respect the important target of simplification, which must be met in our project (see §4.1.3 

for more details). 

However, it is possible to demonstrate that the main target of the project, which is the reduction in 

time of the DDAVP execution, can be reached. As seen in §4.1.2, MGM_2 calculates directly from 

basal clinical trials k1 and ke values, whereas k0, D and tmax still need to be estimated through DDAVP. 

Luckily, parameters k0, D and tmax are all model kinetic parameters that are required for the description 

of the VWF release. Therefore, theoretically, the DDAVP execution can be reduced sensibly to the 

time required for the estimation of the release parameters. Section 4.3 has been entirely dedicated to 

the redesign of the time-reduced DDAVP. Furthermore, in §4.3, it has been demonstrated that the 
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simple reduction in time to 3 hours of the 24 hours DDAVP protocol is successful for the estimation 

of k0, D and tmax in all the considered categories.  

Model validation has been carried out for MGM_2 with the same subjects used before for the 

validation of MGM_3. In order to estimate the release parameters k0, D and tmax, in silico experimental 

data have been generated for subjects 1, 19, 39, 50, with a normal random error characterized by zero 

mean and a variance of four (see appendix C.1 for more details). Results are reported in table 4.32 

and they have been used to estimate the model parameters for each subject with the procedure 

described in §4.3.  

Table 4.32. In silico experimental data for patients 1, 19, 39 and 50. 

 

 

 

 

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 108.9 119.3 2.1865 111.0865 121.4865

15 147.06 157.21 2.2185 149.2785 159.4285

30 172.57 182.24 -1.7273 170.8427 180.5127

60 200.78 208.88 0.1547 200.9347 209.0347

120 216.9 221.13 -2.4282 214.4718 218.7018

180 216.94 217.36 -2.227 214.713 215.133

19

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 58.1 145.2 -2.1781 55.9219 143.0219

15 93.63 180.56 0.0651 93.6951 180.6251

30 112.83 199.39 1.1051 113.9351 200.4951

60 127.99 213.52 2.2012 130.1912 215.7212

120 130.02 213.39 3.0884 133.1084 216.4784

180 125.8 207.3 0.1719 125.9719 207.4719

39

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 34.6 12 -0.3848 34.2152 11.6152

15 46.81 23.94 1.7772 48.5872 25.7172

30 56.01 32.44 -1.5297 54.4803 30.9103

60 67.86 42.17 -2.8045 65.0555 39.3655

120 76.33 45.67 -2.8448 73.4852 42.8252

180 75.8 41.07 0.9764 76.7764 42.0464

50

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 18.1 18.5 -1.6089 16.4911 16.8911

15 140.13 140.46 1.3932 141.5232 141.8532

30 176.16 176.35 1.6702 177.8302 178.0202

60 168.16 168.1 -0.4874 167.6726 167.6126

120 113.57 113.3 0.4313 114.0013 113.7313

180 76.2 75.95 -2.3317 73.8683 73.6183
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Table 4.33. Results of the estimation of the release parameters with the time-reduced DDAVP for patients 1, 

19, 39 and 50. 

 

As the results presented in table 5.3 illustrate, the release kinetic parameters can clearly be estimated 

with precision compared to the values obtained with the 24 hours DDAVP protocol. The new values 

have been inserted in MGM_2 and the model has been simulated for all the different subjects. Then, 

results have been compared with the profiles produced with SGM and clearly, MGM_2 is able to 

reproduce correctly the profiles, once k0, D and tmax are estimated with a time-reduced DDAVP. The 

comparison of VWF:Ag and VWF:CB profiles for patients 1, 19, 39 and 50, is illustrated in figures 

4.51, 4.52, 4.53 and 4.54. 
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Figure 4.51. Comparison between the simulated VWF:Ag (a) and VWF:CB (b) profiles with MGM_2 and 

SGM for patients 1. 
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24 h 
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DDAVP

24 h 

DDAVP

time-reduced 

DDAVP

D  [U] 470.86 470.30 331.76 349.49 328.31 312.35 421.00 424.67

k 0 [min
-1

] 0.02570 0.02487 0.04430 0.03832 0.02620 0.02592 0.03690 0.03632

t max [min] 79.10 75.97 41.32 36.22 80.35 81.12 44.93 46.28

1 19 39 50
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Figure 4.52. Comparison between the simulated VWF:Ag (a) and VWF:CB (b) profiles with MGM_2 and 

SGM for patients 19. 
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Figure 4.53. Comparison between the simulated VWF:Ag (a) and VWF:CB (b) profiles with MGM_2 and 

SGM for patients 39. 
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Figure 4.54. Comparison between the simulated VWF:Ag (a) and VWF:CB (b) profiles with MGM_2 and 

SGM for patients 50. 
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Moreover, table 4.33 shows the comparison between the values of the kinetic parameters (k0, D, tmax, 

k1 and ke) obtained by the combination of MGM_2 and the time-reduced DDAVP and the values of 

the parameters estimated through the original 24 hours DDAVP protocol with SGM. 

 

       Table 4.33. Comparison of the model parameters of subjects 1, 19, 39 and 50. 

 

In conclusion, as results demonstrate, the approach for model identification proposed in this thesis, 

that is, combining MGM_2 and the time-reduced DDAVP, allows to successfully estimate the kinetic 

parameters of subjects that belong to the considered categories (HnonO, HO, 2B and Vicenza), but 

that are not part of the pool of subjects used to define the response surfaces. Thus, this means that 

validation gives positive results. 

 

4.3 Redesign of the DDAVP clinical trial 

As illustrated in section 4.1.3, the VWF release was found critical to define. Indeed, the linear 

response surface with interactions may work accurately in the calculation of the release kinetic 

constant, but D and tmax cannot be used at the average value of each category. Therefore, it seems 

reasonable to exploit MGM_2 (§4.2) and redesign the DDAVP clinical trial to estimate the release 

parameters. For instance, to redesign the test, the trace of FIM in MGM_2 has been evaluated. In this 

case, the trace evaluates the information content that can be brought by the parameters that define the 

release k0, D and tmax (figure 4.55.b). 
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time-reduced 

DDAVP

k 0 [min
-1

] 0.0257000 0.0248700 0.04431520 0.03832008 0.02620 0.025921 0.03690 0.03632

k 1 [min
-1

] 0.0006890 0.0006995 0.00056854 0.00057122 0.002875 0.0028663 0.00232 0.0022759

k e [min
-1

] 0.0006520 0.0006489 0.00118132 0.00118036 0.002671 0.0025464 0.00831 0.0083133

D  [U] 470.86 470.30 331.76 349.49 328.31 312.35 421.00 424.67

t max [min] 79.10 75.97 41.32 36.22 80.35 81.12 44.93 46.28

1 19 39 50
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           (a)               (b) 

Figure 4.55. Trace of FIM considering all the VWD categories in SGM (a) and MGM_2 (b). 

 

As figure 4.55.b demonstrates, three hours appear to be a sufficient amount of time in MGM_2 for 

reaching the peak in the information content considering all the VWD categories. On the contrary, 

the maximum information content cannot be reached by SGM in the DDAVP execution time, as 

visible in figure 4.55.a. Hence, considering the results obtained from the analysis of the information 

content, it may be possible to exploit MGM_2 and reduce the DDAVP to 3 hours.  

Initially, the original 24 h DDAVP design [0, 15, 30, 60, 120, 180, 480, 1440] has been simply 

reduced.  

The reduction acts both in the execution time and in the number of sampling points. Indeed, the time-

reduced DDAVP [0, 15, 30, 60, 120, 180] lasts for 3 hours instead of 24 hours and the number of 

sampling points is now fixed to 6 instead of 8. 

The time-reduced DDAVP design required validation to understand if the release parameters k0, D 

and tmax can still be estimated with precision. Thus, a random set of experimental data has been 

generated for each category, considering a normal random error with zero mean and a variance of 4. 

The set of experimental data used for design validation are reported in appendix C (§C.1). The patients 

taken as reference to conduct the validation of the time-reduced DDAVP are: patient 11 for HnonO, 

32 for HO, 37 for 2B and 45 for Vicenza categories. In silico experimental data have been generated 

to perform parameter estimation, whose applied procedure, based on each subject’s VWF:Ag and 

VWF:CB readings, is: 

Step 0: all parameters k0, D and tmax are left free to vary starting from the initialization value that is 

the punctual value for each subject estimated through the 24 hours DDAVP design with SGM. 

Step 1: tmax is set at the value used in the previous step, while k0 and D are estimated. 
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Step 2: k0 and D are set at the value used in the previous step, while tmax is estimated. 

Step 1 and step 2 are repeated until the estimates do not vary significantly (i.e. until the difference 

between the estimates is lower than 0.1 % for each parameter). 

Results of the estimation and the comparison between the 24 hours DDAVP and the time-reduced 

DDAVP are reported in table 4.34. 

 

Table 4.34. Parameter estimation results (patients 11, 32, 37 and 45) executed with the time-reduced 

DDAVP (tref = 0.1837). 

 

As it is possible to understand from the values of the parameters obtained, the time-reduced design is 

able to correctly estimate the release parameters of each patient. The standard deviation for parameter 

D is quite high, but, the goodness of the estimation is then reinforced by the t-values, which are 

substantial for all the subjects in the pool. 

However, the design used to get the experimental data for estimating the release parameters is just a 

reduction in time of the original 24 h DDAVP protocol. Thus, the time-reduced design has to be 

optimized for a reduced time-horizon. To optimize the time-reduced DDAVP protocol, the design of 

experiment package in gPROMS® has been used. The applied procedure can be summarized as 

follow: 

 

24 h DDAVP time-reduced DDAVP 95%  conf. Interval 95%  t-value standard deviation

D  [U] 558.98 578.35 120 4.6 56

k 0 [min-1] 0.0279 0.0282 0.0021 13 0.00094

t max [min] 96.11 93.75 0.63 150 0.29

24 h DDAVP time-reduced DDAVP 95%  conf. Interval 95%  t-value standard deviation

D  [U] 294.12 293.18 93 3.2 42

k 0 [min-1] 0.04585 0.04586 0.0066 7 0.0029

t max [min] 43.86 43.93 0.71 62 0.32

24 h DDAVP time-reduced DDAVP 95%  conf. Interval 95%  t-value standard deviation

D  [U] 426.27 426.32 160 2.6 72

k 0 [min-1] 0.0197 0.0197 0.0029 6.8 0.0013

t max [min] 113.15 113.14 2.1 54 0.96

24 h DDAVP time-reduced DDAVP 95%  conf. Interval 95%  t-value standard deviation

D  [U] 281.81 280.33 120 2.2 56

k 0 [min-1] 0.0606 0.0607 0.0088 6.9 0.0039

t max [min] 46.76 46.86 0.63 74 0.29

11

32

37

45
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Step 0: selection of the subjects of reference; 

Step 1: sampling time optimization in gPROMS® for each subject; 

Step 2: new DDAVP protocol definition; 

Step 3: new DDAVP protocol validation. 

 

Four subjects for each of the considered categories (HnonO, HO, 2B and Vicenza) have been taken 

as reference to conduct the optimization. The selection of the patients was executed considering 

subjects with sensibly different values of the model parameters k0, D and tmax even if belonging to the 

same class. This approach has been chosen to guarantee a complete description of the subjects in the 

pool. The patients taken as reference for each category are reported in table 4.35. 

Table 4.35. Selected subjects. 

 Patient 

HnonO 11 5 15 14 

HO 32 20 30 18 

2B 37 38 41 40 

Vicenza 45 48 43 46 
 

Punctual data of each subject (appendix A) have been inserted in gPROMS® and the time-reduced 

DDAVP [0, 15, 30, 60, 120, 180] has been used as initial guess for the sampling time to optimize. 

Then, the optimization has been carried out considering three experiment design approaches: A-

optimal, D-optimal and E-optimal. Results of the punctual optimization executed for each selected 

subject are illustrated in appendix C (§C.2). 
 

The DDAVP protocol must be unique for all the categories. Indeed, theoretically, the class of 

belonging of the patients is at the beginning unknown. To unify the protocol, the average value of 

each optimized sampling point for all the selected subjects among the categories has been evaluated. 

Results are reported in table 4.36 for the three designs. 
 

                      Table 4.36 Average optimized sampling time among the categories. 

Average A 

[min] 

Round A 

[min] 

Standard 

deviation 

Average D 

[min] 

Round D 

[min] 

Standard 

deviation 

Average E 

[min] 

Round E 

[min] 

Standard 

deviation 

0 0 0 0 0 0 0 0 0 

18.27 18 6.4 20.83 20 8.0 18.27 18 6.4 

36.51 36 9.9 37.32 35 9.0 36.51 36 9.9 

61.49 60 11.6 55.39 55 10.3 61.49 60 11.5 

156.84 155 42.9 141.09 140 44.5 156.84 155 42.9 

171.83 172 42.9 165.98 166 46.5 171.85 172 43.0 
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As is visible in the results obtained, A and E optimal designs produce an identical optimized sampling 

time considering the average values, therefore just two optimized designs have been considered (A-

optimal and D-optimal). Furthermore, the standard deviation sensibly increases in the last two 

sampling points. This is linked to the DDAVP profile that behaves differently among the categories. 

In fact, the time required for reaching the peak of release in Vicenza category is almost half of the 

time required by HnonO subjects. On the contrary, the standard deviation is lower in the initial 

sampling points because at the beginning the DDAVP trend is similar between the categories. 

A-optimal and D-optimal designs have then been tested and validated. To test their robustness, the 

designs have been carried out for the subjects that are characterized by the highest variance-

covariance matrix. In table 4.36, the determinant of the variance-covariance matrix has been reported, 

for each subject considered, as metric to define the most critical situations. This approach is called 

“worst-case” method and it represents the most intuitive way for evaluating the robustness of a 

specific design. The patients, which have been considered for validation are:  

• Patient 5 for HnonO; 

• Patient 20 for HO; 

• Patient 38 for 2B; 

• Patient 48 for Vicenza. 

 

Table 4.36. Determinant of the variance-covariance matrix for the different subjects taken as reference. 

 Patient 

HnonO 11 5 15 14 

Determinant 5.68E-03 4.1E-02 7.30E.03 5.56E-03 

HO 32 20 30 18 

Determinant 5.34E-02 5.20E-01 3.9E-02 7.51E-02 

2B 37 38 41 40 

Determinant 2.19E-02 1.05E-01 1.22E-02 9.24E-03 

Vicenza 45 48 43 46 

Determinant 1.12E-01 2.27 3.56E-01 5.06E-01 

 

Parameter estimation has been executed for all the subjects taken as reference (5, 20, 38, 48), 

following the procedure applied in the time reduced DDAVP design. Results are reported in table 

4.37 for A-optimal design and in table 4.38 for D-optimal design. 
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 Table 4.37. Parameter estimation through A-optimal protocol. 

 

 
Table 4.38. Parameter estimation through D-optimal protocol. 

 

24 h DDAVP A-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 407.02 385.64 140 2.8 62

k 0 [min-1] 0.0294 0.0299 0.0046 6.5 0.0021

t max [min] 69.19 69.56 1.2 60 0.53

24 h DDAVP A-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 412.17 453.08 220 2 100

k 0 [min-1] 0.0313 0.0298 0.0099 3 0.0044

t max [min] 40.1 40.86 3.2 13 1.4

24 h DDAVP A-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 930.25 583.59 200 2.9 89

k 0 [min-1] 0.0086 0.0168 0.0025 6.6 0.0011

t max [min] 176.32 109.7 2.2 49 1

24 h DDAVP A-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 50.6 47.43 120.00 0.41 52

k 0 [min-1] 0.0996 0.0993 0.068 1.5 0.031

t max [min] 34.54 33.79 1.2 28 0.54

5

20

38

48

24 h DDAVP D-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 407.02 342.23 120 2.7 56

k 0 [min-1] 0.0294 0.0322 0.0048 6.7 0.0021

t max [min] 69.19 71.06 1.1 64 0.51

24 h DDAVP D-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 412.17 441.789 220 2 100

k 0 [min-1] 0.0313 0.0298 0.01 3 0.0045

t max [min] 40.9 39.95 3.2 12 1.5

24 h DDAVP D-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 930.25 496.39 180 2.7 82

k 0 [min-1] 0.00855 0.01792 0.0028 6.5 0.0012

t max [min] 176.32 109.02 2.2 49 1

24 h DDAVP D-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 50.6 50.58 130 0.39 58

k 0 [min-1] 0.0996 0.09906 0.072 1.4 0.032

t max [min] 34.54 34.34 1.1 31 0.5

5

20

38

48
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As is clearly visible from the results obtained, the standard deviation is high for parameter D in all 

the selected subjects, but the t-value is generally not bad. As can be read from the tables, the values 

estimated by the new designs with MGM_2 are close to the values estimated by SGM, even if the 

sampling points are different. The results can be better visualized in figures 4.56 and 4.57.  

  

(a) (b) 

Figure 4.56. Comparison between the generated and predicted VWF:Ag (a) and VWF:CB (b) profiles for 

patient 5 using the A-optimal design. 

 

  

(a) (b) 

Figure 4.57. Comparison between the generated and predicted VWF:Ag (a) and VWF:CB (b) profiles for 

patient 5 using the D-optimal design. 
 

Figure 4.56 illustrates the comparison between the experimental data and the predicted profiles for 

VWF:Ag (a) and VWF:CB (b) responses for patient 5, using the parameters estimated with the A-

optimal design. The same comparison is shown in figure 4.57, in which, differently, the parameters 

have been estimated with the D-optimal design. As is clearly visible, both the optimized time-reduced 
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designs A-optimal and D-optimal allow to estimate correctly the parameters. Indeed, the predicted 

profiles approximate well the generated experimental data.  

To test the robustness of the redesigned DDAVP clinical trial, the parameter estimation procedure 

has been again executed on the same subjects (5, 20, 38, 48) following the A-optimal and D-optimal 

sampling times, but based on a set of experimental data characterized by an error with a variance of 

36. This analysis is quite important, because in the clinical procedures the error made on 

measurements execution is usually not negligible and the designs must be sufficiently robust to deal 

with that. 

The generate experimental data are reported in table C.3 of appendix C (§C.1). Results are reported 

in table 4.39 and 4.40 for A-optimal and D-optimal designs, respectively. As tables illustrate, the 

standard deviations associated to parameter D are higher and the t-values are sensibly lower than 

those calculated with the experimental data set generated with a variance of 2. However, the 

estimation of the parameters k0, D and tmax is acceptable, even if the related uncertainty increases 

significantly. 

 

        Table 4.39. Parameter estimation through A-optimal protocol (tref = 0.1534). 

 

 

 

24 h DDAVP A-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 407.02 405.24 1300 0.32 570

k 0 [min-1] 0.02934 0.02919 0.041 0.71 0.018

t max [min] 69.19 69.19 11 6.5 4.8

24 h DDAVP A-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 412.17 416.93 1900 0.21 870

k 0 [min-1] 0.0313 0.0321 0.096 0.34 0.043

t max [min] 40.09 41.92 28 1.5 13

24 h DDAVP A-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 930.25 467.17 1500 0.31 680

k 0 [min-1] 0.00855 0.0184 0.025 0.74 0.011

t max [min] 176.32 109.2 20 5.4 9.2

24 h DDAVP A-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 50.6 47.8 1000 0.046 460

k 0 [min-1] 0.0996 0.0996 0.61 0.16 0.27

t max [min] 34.54 34.54 9.9 3.5 4.5

5

20

38

48
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      Table 4.40. Parameter estimation through D-optimal protocol. 

 

 

As can be read from tables 4.39 and 4.40, the release parameters k0, D and tmax can be estimated correctly even 

from an in silico data set generated with a variance of 36. This result has been graphically expressed in figure 

4.58 and 4.59, taking as example subject 48. In figure 4.58, the experimental and predicted profiles of VWF:Ag 

response generated with a variance of 4 (a) and a variance of 36 (b) following the A-optimal design have been 

compared. The same comparison has been carried out for D-optimal design and reported in figure 4.59. The 

predicted profile shows the same value of the peak and the same shape in both pictures 4.58.a and 4.58.b. This is 

a graphical demonstration that the parameters k0, D and tmax have been estimated precisely, even if the error in 

the experimental data is higher in figure 4.58.b. On the contrary, the position of the peak is different in figure 

4.59.a and 4.59.b. Indeed, as readable in table 4.41, the value of D is estimated with uncertainty even if the order 

of magnitude is correct. However, the difference in the value of the peak between figure 4.59.a and 4.59.b is 

lower than 20 U/dL, therefore the error is clinically accepted. 

 

 

 

24 h DDAVP D-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 407,015 415.83 1200 0.35 540

k 0 [min-1] 0.0294 0.0307 0.037 0.82 0.017

t max [min] 69.19 73.4 9.3 7.9 4.2

24 h DDAVP D-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 412.17 419.7 1900 0.22 860

k 0 [min-1] 0.0313 0.0326 0.093 0.35 0.042

t max [min] 40.09 43.15 26 1.7 12

24 h DDAVP D-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 930.25 946.19 3100 0.3 1400

k 0 [min-1] 0.00855 0.0126 0.023 0.56 0.01

t max [min] 176.32 104.47 22 4.7 10

24 h DDAVP D-optimal design 95%  conf. Interval 95%  t-value standard deviation

D  [U] 50.6 50.57 1200 0.043 530

k 0 [min-1] 0.0996 0.0988 0.65 0.15 0.29

t max [min] 34.54 34.54 9.7 3.6 4.4

5

20

38

48
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(a) (b) 

Figure 4.58. Comparison between the experimental and predicted VWF:Ag profiles for patient 48 using the 

A-optimal design with a variance of 4 (a) and a variance of 36 (b). 

 

  

  

   (a)     (b) 

Figure 4.59. Comparison between the experimental and predicted VWF:Ag profiles for patient 48 using the 

D-optimal design with a variance of 4 (a) and a variance of 36 (b). 

The original 24 hours DDAVP protocol has been shortened thanks to the modification of SGM into 

MGM_2. Indeed, now, only the release parameters k0, D and tmax need to be estimated, whereas k1 

and ke are explicitly calculated from basal quantities. Different time-reduced DDAVP designs have 

been tested: 

• Time-reduced design (simple reduction in time of the original 24 h DDAVP protocol); 

• A-optimal design; 

• D-optimal design. 
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All the designs have been tested and validated generating a random set of experimental data for 

specific patients in each category of VWD and estimating the release parameters k0, D and tmax. Then, 

the robustness of the two optimized designs has also been analysed through the “worst-case” method. 

As reported in the discussion, all the designs allow to estimate k0, D and tmax with precision. Hence, 

it is impossible to select the best design. Furthermore, as can be clearly visualized in figure 4.60, the 

three designs are similar in terms of position in time of the sampling points.  

 

Figure 4.60. Comparison between the position of the samplings in the three considered DDAVP designs: time-

reduced, A-optimal and D-optimal design. 
 

The similarity that can be noticed mathematically between the various designs is instead considered 

equality in the clinical management. In simple terms, for doctors and nurses, the time-reduced design, 

A-optimal and D-optimal designs are completely identical. In fact, in the everyday clinical 

procedures, it is impossible to perform measurements with a precision of 10-15 minutes. Therefore, 

referring to the DDAVP execution, taking samples at 172 minutes (as in A-optimal design) or at 180 

min (as in the time-reduced design) is the same. Indeed, an error of ±8 minutes is totally admitted in 

the medical procedures. In conclusion, the three tested designs are identical and allow us to get the 

right estimation of the release parameters. For simplicity, the simple 3 hours time-reduced DDAVP 

[0, 15, 30, 60, 120, 180] has been used to test MGM_2 in different case studies (§4.2 and §4.4). 
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4.4 Model representation of out-of-category subjects 

Finally, it could be interesting to test the ability of MGM_3_Ag and MGM_2 of representing subjects 

that do not belong to the already considered categories (HnonO, HO, 2B and Vicenza). The procedure 

has been tested on patients that belong to other VWD subcategories, which in both cases show a 

symptomatology (alteration of VWF) like that observed in some of the VWD classes treated in this 

study. In particular, the subjects that have been considered are four (53, 54, 55 and 56). Two of them 

(53, 54) are defined as 2B-like patients, meaning that they possess specific mutations, which produce 

an alteration of VWF similar to that present in normal 2B patients. Instead, subjects 55 and 56 suffer 

of a particular VWD type 1, which brings the VWF to behave similarly to that of 2B patients.  

The four patients have been at first tested with MGM_3_Ag, whose required input data are reported 

in table 4.41.  

Table 4.41. Required input data for the simulation with out-of-category patients. 

Patients VWF:Ag VWF:CB VWFpp ratio VWF:R Weight 

53 32.05 29.50 1.89 0.92 60 

54 31.50 25.50 1.93 0.81 45 

55 29.70 12.90 4.00 0.43 62 

56 31.50 16.60 3.25 0.53 65 

 

MGM_3_Ag is able to simulate the subjects only with the basal state correlations for k0, k1 and ke 

tailored for 2B category. This is the first important result, because it means that the model 

MGM_3_Ag can correctly classify the patients. In confirmation of this, it is possible to analyse, in 

figure 4.61, the relative position of the response surfaces generated for each VWD category in k0 (a), 

k1 (b) and ke (c) correlations.  
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(a) (b) 

 

(c) 

Figure 4.61. Relative position of the response surfaces in k0 (a), k1 (b) and ke (c) correlations. 

As is possible to understand, the response surfaces do not cross between each other, meaning that 

classification with VWD categories can be conducted with MGM_3_Ag. 

However, as illustrated in figure 4.62, MGM_3_Ag is not able to reproduce correctly the VWF:Ag 

and VWF:CB profiles, because the error between the experimental and simulated trends is relevant 

for all the patients. 
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     (a)       (b) 

  

         (c)         (d) 

Figure 4.62. Comparison between experimental and simulated VWF:Ag and VWF:CB profiles with 

MGM_3_Ag for patients 53 (a), 54 (b), 55 (c) and 56 (d). 
 

The error is higher in the release path and in particular in the position of the peak. This observation 

reinforces the already known deduction that D and tmax cannot be used at the average value of each 

category. Therefore, the approach defined in the thesis has been used. The time-reduced DDAVP [0, 

15, 30, 60, 120, 180] has been applied to estimate the release parameters k0, D and tmax for patients 

53, 54, 55 and 56. Then, the estimated k0, D and tmax have been substituted in MGM_2 and the 

VWF:Ag and VWF:CB have been simulated and compared with the experimental DDAVP data. 

Results are reported in figure 4.63 and as can be clearly visualized, MGM_2 allows to reproduce the 

profiles with a lower error.  
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(a) (b) 

  

(c) (d) 

Figure 4.63. Comparison between experimental and simulated VWF:Ag and VWF:CB profiles with MGM_2 

for patients 53 (a), 54 (b), 55 (c) and 56 (d). 
 

Even in this case the profiles cannot perfectly overlap with the experimental data, because the patients 

do not strictly belong to the four categories considered in this study.  

Of course, the target of reproducing subjects out-of-category with MGM_2 is not to make diagnosis, 

but to observe, once the diagnosis is known, some biochemicals details, that can help physicians in 

the characterization of VWF path. In order to make a reliable model-based diagnosis and 

characterization for these particular subjects, MGM_2 should be extended also to VWD type 1 and 

to other VWD classes (2N, 2M, 2A I, 2A II) and subcategories. Future work will be indeed oriented 

on this extension in order to make the model more general. 
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Conclusions 

The diagnosis of VWD is a complex task made more difficult by the various number of VWD 

subtypes (type 1, 2A, 2B, Vicenza and others). PK models have been recently proposed for disease 

classification and characterization. The big advantage of using PK models to help in the diagnostic 

process of VWD is that it is possible to quantify the mechanisms of: 

• VWF release (k0) 

• VWF proteolysis (k1) 

• VWF elimination (ke) 

 

At first, SGM has been proposed as PK model for disease characterization and classification. The 

SGM works well for the estimation of the PK parameters, but a 24 hours DDAVP needs to be carried 

out to achieve a statistically satisfactory estimation of the disease metabolic parameters. However, 

the main issue is that a 24 hours DDAVP test is required for model identification and this is a long 

and invasive non-routine test. Therefore, in this Thesis a way for achieving model identification only 

from basal clinical trials has been studied. The alternative basal tests considered in this study are: 

• VWFpp, to quantify VWF elimination from the bloodstream 

• VWF:Ag to evaluate the number of VWF antigens in the bloodstream 

• VWF:CB to analyse the VWF in binding with collagen 

From them, two other physiological quantities are derived: 

• VWFpp ratio, expressed as VWFpp/VWF:Ag 

• VWF:R, defined as VWF:CB/VWF:Ag 

 

Response surface metodology has been applied for the development of suitable correlations, which 

relate explicitly the kinetic parameters k0, k1, ke of model SGM with basal clinical trials. 

• k0  f (VWF:Ag, VWF:R, intraplatelet VWF) 

• k1  f (VWF:Ag, VWFpp ratio) 

• ke  f (VWFpp ratio, VWF:R) 

Then, the new equations have been substituted into SGM. In particular, three levels of model 

modification have been proposed: 

• MGM_1, in which only the correlation for the elimination kinetic constant ke has been added 

in the equation set of SGM; 

• MGM_2, in which correlations for ke and k1 have been inserted in SGM; 

• MGM_3, where all the kinetic parameters k0, k1, ke are calculated directly from basal data. 
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The three models have been tested and results demonstrated that MGM_1 and MGM_2 work well for 

disease characterization, whereas MGM_3 produces a sensible error in the release description. 

Indeed, the comparison between MGM_1, MGM_2 and SGM shows that the profiles overlap. On the 

contrary, the error produced by the simulation of VWF:Ag and VWF:CB responses with MGM_3 is 

high for some subjects if compared with the profiles generated by SGM. The reason can be found in 

the assumption made for model modification. Precisely, D and tmax, which are two other relevant 

quantities for describing the release, cannot be used at the average value of each category, but they 

must be specific for each subject. The problem is that explicit correlations for D and tmax cannot be 

defined from basal trials. Hence, it is impossible to describe the release precisely with MGM_3. 

However, the results obtained from model modification highlighted the possibility to redesign the 

DDAVP based on MGM_2 and to sensibly reduce the test execution time.  

In conclusion, the most ambitious target of the project, that is the elimination of the DDAVP 

execution for model identification has not been achieved completely. Indeed, even if suitable 

correlations for the calculation of k0 at the basal state have been defined, the uncertainty on the 

average values of the parameters D and tmax does not allow to reproduce VWF:Ag and VWF:CB 

profiles with precision as in SGM. However, important achievements have been reached throughout 

this work: the SGM model has been modified into MGM_2, that explicitly evaluates k1 and ke from 

basal quantities; the release parameters still need to be estimated through the DDAVP clinical trial, 

but the DDAVP duration has been successfully reduced to three hours. The reduction in time of the 

clinical trial is remarkable because it strongly improves the quality of life of the patients that undergo 

a less stressful clinical procedure and it facilitates the clinical management considering both 

economical and organizational aspects.  

Future work will be carried out to define clearly the regions of validity of the model among the 

different categories and to reinforce model validation by applying MGM_2 and the time-reduced 

DDAVP to characterize the VWF:Ag and VWF:CB profiles of new patients, which do not belong to 

the pool of subjects already considered. Furthermore, the results obtained through this thesis could 

represent the first step towards the implementation of a software that will be developed to help 

medical doctors in the VWD diagnosis and characterization. 
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Symbols 

A first RSM parameter  [min-1] 

B second RSM parameter  [min-1] 

C third RSM parameter [min-1] 

D fourth RSM parameter [min-1] 

k0 kinetic constant of release       [min-1] 

k1 kinetic constant of proteolysis   [min-1] 

ke kinetic constant of elimination [min-1] 

D   amount of VWF released [U] 

xUL+HMW                     ultra large and high molecular weight multimers units [U] 

xb
UL+HMW                    ultra large and high molecular weight multimers units (basal state) [U] 

xLMW low molecular weight multimers units [U] 

xb
LMW low molecular weight multimers units [U] 

yAg antigen concentration [U/dL] 

yCB   collagen binding concentration    [U/dL] 

yb
Ag   antigen concentration at the basal state [U/dL] 

yb
CB collagen binding concentration at the basal state [U/dL] 

Vd approximate distribution volume [mL/kgBW] 

k correction factor   [-] 

yCB
’ corrected collagen binding concentration [U/dL] 

                                            

Greek letters 

𝜎2 variance [-] 

 

Vectors and matrices 
q sensitivity vector [𝑁𝜃] 

𝑯𝜃 Fisher information matrix [𝑁𝜃𝑥 𝑁𝜃 ] 

𝜃0 initial parameter set [𝑁𝜃] 
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𝜃  parameter set [𝑁𝜃] 

𝜃′ perturbed parameter set [𝑁𝜃] 

𝑞𝑖
𝐴𝑔 sensitivity on antigen concentration  𝑖 = 1, … , 𝑁𝜃 

𝑞𝑖
𝐶𝐵 sensitivity on collagen binding concentration 𝑖 = 1, … , 𝑁𝜃 

𝑡𝑟[𝑯𝜃]  trace of FIM 

 

[-] 

Acronyms 
VWD von Willebrand disease 

VWF von Willebrand factor 

VWF:Ag VWF antigen concentration 

VWF:CB VWF collagen binding concentration 

VWF:RCo VWF ristocetin cofactor activity 

VWFpp VWF propeptide 

VWFpp ratio VWF propeptide ratio 

VWF:R VWF collagen binding and antigen concentration ratio 

RIPA ristocetin induced platelet adhesion 

FVIII factor eight 

DDAVP desmovasopressin 

UL+HMW ultra large plus high molecular weight 

LMW low molecular weight 

RSM response surface methodology 

PK pharmacokinetic 

FIM Fisher information matrix 

SSE sum of squared errors 

SST total sum of squares 

SSR residual sum of squares 

RMSE root mean squared errors 

PSE 

DAE 

Process systems enterprise 

Differential and algebraic equation 
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Appendix A 

A.1   Available dataset for healthy subjects 

Table A1. Punctual data for Hnon0 and H0 categories. 

Patient VWF:Ag VWF:CB VWFpp 

ratio 

VWF:R ke k0 k1 Diagnos

is 

1 108.9 119.3 0.714 1.095 3.453E-04 5.74E-04 0.025 HnonO 

2 80.6 101.5 0.962 1.259 6.828E-04 1.69E-07 0.024 HnonO 

3 86.80 91.90 0.768 1.059 8.057E-04 1.61E-04 0.023 HnonO 

4 85.00 93.60 0.953 1.101 7.199E-04 1.46E-04 0.038 HnonO 

5 122.20 131.70 0.696 1.077 4.200E-04 7.12E-05 0.029 HnonO 

6 58.3 88.4 1.288 1.516 5.716E-04 4.41E-04 0.055 HnonO 

7 51.70 57.20 1.41 1.106 1.177E-03 1.19E-04 0.028 HnonO 

9 87.7 98.4 0.916 1.122 4.825E-04 5.70E-04 0.025 HnonO 

10 79.90 83.70 1.047 1.047 5.212E-04 1.69E-07 0.024 HnonO 

11 104.50 155.20 1.028 1.485 1.510E-03 4.45E-04 0.028 HnonO 

12 105.80 119.20 1.125 1.126 9.355E-04 2.53E-04 0.023 HnonO 

13 217.30 311.00 1.345 1.431 1.151E-04 3.09E-04 0.026 HnonO 

14 105.70 139.10 0.876 1.316 7.293E-04 5.56E-04 0.034 HnonO 

15 65.80 68.50 0.855 1.041 8.531E-04 1.72E-07 0.026 HnonO 

16 99.20 110.00 0.858 1.108 9.0041E-04 2.10E-07 0.0172 HO 

17 107.20 110.00 0.828 1.026 1.083E-03 3.84E-04 0.016 HO 

18 56.20 67.80 1.651 1.206 1.896E-03 2.24E-07 0.035 HO 

19 58.10 56.50 1.196 0.972 3.037E-03 1.77E-03 0.044 HO 

20 54.50 145.20 1.147 2.664 8.187E-04 3.19E-03 0.031 HO 

21 62.2 72.1 1.397 1.160 1.146E-03 2.18E-07 0.041 HO 

22 53.20 69.20 1.073 1.300 2.337E-03 5.33E-04 0.027 HO 

23 79.50 119.05 1.032 1.497 1.131E-03 5.61E-05 0.029 HO 

24 61.00 66.70 1.133 1.093 2.109E-03 4.99E-05 0.024 HO 

25 86.00 104.70 0.910 1.217 1.587E-03 7.77E-04 0.021 HO 

26 80.6 110 0.911 1.364 1.633E-03 2.22E-07 0.020 HO 

27 183.80 204.00 0.609 1.109 1.262E-03 1.33E-03 0.023 HO 

28 55.60 74.40 1.081 1.338 9.170E-04 3.96E-04 0.019 HO 

29 50.60 54.30 1.130 1.073 1.871E-03 5.46E-04 0.018 HO 

30 159.20 164.70 0.799 1.034 1.388E-03 2.25E-07 0.015 HO 

31 58.70 75.20 1.332 1.281 1.205E-03 9.92E-04 0.021 HO 
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32 63.20 93.80 1.389 1.484 1.285E-03 2.18E-04 0.046 HO 

33 58.80 68.20 1.263 1.159 2.602E-03 2.10E-03 0.025 HO 

34 62.10 53.8 1.241 0.866 9.465E-04 1.44E-04 0.020 HO 

35 53.00 64.30 1.279 1.213 1.277E-03 6.96E-04 0.034 HO 

 

 

A.2   Available dataset for 2B and Vicenza subjects 

Table A2. Punctual data for 2B and Vicenza categories. 

Patient VWF:Ag VWF:CB VWFpp ratio VWF:R ke k0 k1 Diagnosis 

36 17.50 9.25 2.77 0.528 4.573E-03 0.021 0.02015 2B 

37 39.60 9.30 1.98 0.234 2.763E-03 0.003 0.01970 2B 

38 43.00 20.7 2.1 0.481 3.673E-03 2.910E-06 0.00855 2B 

39 34.60 12 1.65 0.346 2.182E-03 0.00321 0.02617 2B 

40 42.90 10.6 2.9 0.247 2.405E-03 0.00321 0.02239 2B 

41 19.89 9.7 2.79 0.487 5.279E-03 0.00179 1.61E-02 2B 

42 48.00 10.6 2.00 0.220 2.903E-03 0.00537 0.02227 2B 

43 11.25 8.55 5.05 0.760 1.033E-02 0.00330 0.06932 Vicenza 

44 18.10 18.5 11.33 1.022 8.633E-03 7.149E-05 0.036998 Vicenza 

45 6.90 5.6 6.7 0.811 9.037E-03 0.00059 0.06059 Vicenza 

46 10.22 10.40 11.2 1.017 6.044E-03 0.00040 0.09123 Vicenza 

47 7.99 8.45 10.42 1.057 8.346E-03 6.992E-05 0.10348 Vicenza 

53 8.69 8.5 7.20 0.978 9.323E-03 5.528E-05 0.10481 Vicenza 

48 6.10 5.49 7.08 0.900 5.375E-03 2.369E-05 0.09960 Vicenza 

49 7.20 3.60 10.85 0.500 9.736E-03 0.00895 0.01920 Vicenza 
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Appendix B 

B.1 Investigation of the response surface for parameter ke 

Thanks to the collaboration with the medical school, it has been suggested to investigate a possible 

correlation between the elimination kinetic parameter ke and VWFpp ratio. Indeed, commonly blood 

coagulation experts exploit VWFpp ratio quantity to indirectly measure the elimination of VWF from 

the blood stream. Analysing the relation between VWFpp ratio and ke (fig. B.1), clusters are clearly 

visible between the different categories. 

 

Figure B.1. Correlation between VWFpp ratio and ke. 

 

As expected, Vicenza subjects show a higher VWFpp ratio compared to the other considered 

categories. This finding is due to the low VWF:Ag level in the blood stream usual in Vicenza 

category, which is caused by an increased elimination constant ke. Furthermore, as illustrated in figure 

B.2 also the correlation between ke and VWF:R has been analysed. The picture clearly shows that 

healthy subjects have a VWF:R value around 1, whereas unhealthy subjects slightly lower with a 

higher elimination constant. 
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Figure B.2. Correlation between VWF:R and ke. 

 

Looking at figure B.1, linear trends between the categories might be considered. However, as figures 

B.3, B.4, B.5 and B.6 demonstrate a one factor linear correlation for ke does not work. 

 

Figure B.3. Linear fitting of VWFpp ratio and ke considering HnonO category. 

 

 

Figure B.4. Linear fitting of VWFpp ratio and ke considering HO category. 
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Figure B.5. Linear fitting of VWFpp ratio and ke considering 2B category. 

 

 

Figure B.6. Linear fitting of VWFpp ratio and ke considering Vicenza category. 

 

As is possible to understand from the results obtained a one factor correlation is not sufficient to allow 

the calculation of the elimination constant from basal state clinical quantities. Therefore, RSM has 

been applied for studying a suitable correlation for ke as function of VWFpp ratio and VWF: R. In 

particular, two analytical forms of the correlation have been investigated. As seen in §4, linear 

response surface with interactions has been chosen to modify the SGM (2017) into MGM_1. 

However, also the quadratic response surface with interactions has been studied as possible 

mathematical form of the correlation.  
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(a) (b) 

 

 

(c) (d) 

Figure B.7. Quadratic fitting for parameter ke HnonO (a), HO (b), 2B (c) and Vicenza (d) categories. 

 

However, even if the fitting appears to work well (from both visual and statistical analysis) for all the 

categories of disease, the choice goes on the linear response surface with interaction instead of on the 

quadratic response surface, because the AIC is lower (see table B.1). The AIC is a good index for the 

evaluation of the quality of fitting (§2.2.4), and its definition states that the best model is the model 

with the lowest number of parameters but able to produce a high-quality fitting.  
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Table B.1. AIC index for linear and quadratic response surface with interactions. 

  AIC 

  Linear response surface Quadratic response surface 

HnonO 4.64E+01 4.74E+01 

HO 4.10E+01 4.44E+01 

2B 4.06E+01 4.21E+01 

Vicenza 3.33E+01 4.44E+01 

 

In conclusion, visual, mathematical and statistical analysis confirms that linear response surface with 

interactions is the best structure for model modification of the system considered in the study. 

 

B.2 Investigation of the response surface for parameter k1 

Several basal clinical quantities can be meaningfully related to the definition of the correlation for 

the proteolytic parameter k1. In particular, some of the clinical measurements that can be related to 

the proteolytic parameter are: VWFpp ratio, VWF:R and VWF:Rco. As figure B.8 illustrates, the 

analysis of the one factor correlation between VWFpp ratio and k1 shows clusters between the 

different categories but trends are clearly not recognizable. This means that, as for ke, a one factor 

correlation is not sufficient for the calculation of k1 using basal state quantities. Therefore, RSM needs 

to be applied. 

 

Figure B.8. Correlation between VWF:R and k1. 

 

Considering that both k1 and ke are related to VWF:R and VWFpp ratio, a linear response surface 

with interactions has been developed for k1 as function of ke and VWF:R. However, as is visible from 
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figure B.9 and from the R2 in table B.2, the results of the fitting are completely not satisfying, meaning 

that other correlations need to be investigated. 

  

(a) (b) 

  

(c) (d) 

Figure B.9. Linear response surface with interactions considering HnonO (a), HO (b), 2B (c) and Vicenza (d) 

categories. 
 

Table B.2. R2 values for the different categories. 

 R2 

HnonO 0.56164 

HO 0.79905 

2B 0.58816 

Vicenza 0.96522 
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It is known that VWF:Rco is one of the most important assays  for the evaluation of the proteolytic 

behaviour of VWF. Therefore, RSM has been applied finding a new explicit correlation for k1 as 

function of VWF:R and VWF:Rco. The form of the correlation is again a linear response surface with 

interactions. The correlation has been tested for HO, 2B and Vicenza categories because VWF:Rco 

experimental values for HnonO category were not available. As visible from figure B.10 and table 

B.3, results of the fitting are really satisfying. 

 

 

 

(a) (b) 

 

(c) 

Figure B.10. VWF:Rco linear response surface with interactions considering HO (a), 2B (b) and Vicenza (c) 

categories. 

 

 



Appendix B 

 

116 

 

Table B.3. R2 values for the different categories in VWF:Rco correlation. 

 R2 

HO 0.99132 

2B 0.98601 

Vicenza 0.98931 

 

However, the target of the project is not only the reduction of the time required by the DDAVP 

execution, but also to simplify the diagnosis and characterization of VWD. Therefore, simplification 

implies not only the reduction of the DDAVP execution time, but also the definition of possible 

correlations, which depend on clinical trials easy to conduct. To respect this purpose, VWF:Rco must 

not be adopted in the definition of k1. Indeed, VWF:Rco is a time-demanding assay that requires 

specific instrumentations and a good ability in platelets management to limit the errors. 

Starting from the SGM a mass balance on a restricted control volume (UL+HMW multimers) has 

been executed. This allows us to find a new possible correlation for k1 as function of VWF:R and k0. 

As figure B.11 illustrates and as it can be read from table B.4, the fitting and the related statistics 

appear to be good. 

 

 

 

  

(a) (b) 
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(c) (d) 

Figure B.11. Linear response surface with interactions considering HnonO (a), HO (b), 2B (c) and Vicenza 

(d) categories. 

Table B.4. R2 values for the different categories. 

 R2 

HnonO 0.91985 

HO 0.93521 

2B 0.98516 

Vicenza 0.97263 

 

As table B.4 demonstrates, the value of R2 is higher than 90% in all the considered categories, 

meaning that the fitting is really good. However, once the correlation for k1 is substituted in MGM_1, 

the calculated value for the proteolytic parameter is completely incorrect in all the categories (table 

B.5).  

Table B.5. Average k1 estimated and calculated values in the considered categories. 

 Average k1 estimated Average k1 calculated 

HnonO 0.001610986 
 

0.00241648 

HO 0.000383822 0.00065246 

2B 0.003211634 -0.00256928 

Vicenza 0.000552848 -0.00035932 

 

This means that the parameters of the response surface do not allow a physical representation of the 

system.  

The definition of the most suitable correlation for parameter k1 has been reported in §4.1.2.  
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B.3 Investigation of the response surface for parameter k0 

The definition of the right correlation for the release parameter k0 has been quite challenging. Indeed, 

as for the proteolytic parameter k1 (§4.1.2 and §B.2), various basal state clinical quantities can be 

related to k0. Again, the collaboration with the medical school has been fundamental for determining 

the right response surface structure. The release of VWF from the endothelial cells is indirectly 

measured by the intraplatelet VWF (intra) and VWF:R quantities. In particular, intraplatelet VWF is 

the medical assay used for quantifying the amount of VWF contained in the endothelial cells. 

Therefore, it seems reasonable to investigate a correlation for k0 as function of VWF:R and 

intraplatelet VWF. Results of the regression execution are reported in figure B.12 for HO, 2B and 

Vicenza categories. Intraplatelet VWF experimental data were not available for HnonO category. 

  

(a) (b) 

 

(c) 

Figure B.12. Linear response surface with interactions considering HO (a), 2B (b) and Vicenza (c) categories. 
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As it is possible to visualize from the pictures reported in figure B.12 and from the values of the 

most important statistics in table B.6, the experimental data are not satisfactorily fitted by the 

response surface. 

Table B.6. R2 and 𝑅̅2 values for the different categories. 

 R2 𝑹̅𝟐 

HO 0.63318 -0.0484 

2B 0.66386 -0.39823 

Vicenza 0.96374 0.8220 

 

The correlation seems to work well only for Vicenza subjects, whereas for HO and 2B categories the 

fitting is really bad. This result is a clear demonstration that a more suitable correlation exists to 

represent the VWF release path. 

 

The error made in the definition of the correlation for the release is conceptual. Indeed, differently 

from what happens for proteolysis and elimination of VWF, the clinical trials can measure only the 

amount of VWF (Q) released from the cells. Then, the rate of release can be obtained indirectly (§4.3). 

A correlation for Q has been tested as function of VWFpp ratio and VWF:R. Indeed, physiologically 

the measurement of the release is influenced by the elimination and by the amount of circulating 

multimers.  

 

However, as figure B.13 and table B.7 illustrate, the result of the fitting is not completely satisfying 

for all the categories.  
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(a) (b) 

  

(c) (d) 

Figure B.13. Linear response surface with interactions considering HnonO (a), HO (b), 2B (c) and Vicenza 

(d) categories. 

 

Table B.7. R2 and 𝑅̅2 values for the different categories. 

 R2 𝑹̅𝟐 

HnonO 0.77254 0.29442 

HO 0.52356 -0.27029 

2B 0.73185  0.07121 

Vicenza 0.88174  0.10984 

 

Clearly, the statistics reported in table B.7 do not define a good fitting. 
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The correlations that have been found suitable for describing the VWF release path have been 

presented in §4.1.3. 
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Appendix C 

C.1 In silico experimental data 

To generate a random set of experimental data, at first the predicted values of the two model responses 

have been considered at each sampling time. Then, a random error has been added to the predicted 

values following equation c.1. 

𝑦𝑖 = 𝑦̂𝑖 + 𝑒̂𝑖 𝑤𝑖𝑡ℎ 𝑖 = 1, … , 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 c.1 
 

The random error has been calculated in Matlab®, using the function randn and specifying zero mean 

and variance of four. The experimental data of the patients taken as a reference in each category are 

reported in table C.1. These values have been used to test the time reduced DDAVP protocol. The 

same procedure has been applied also to test the A-optimal and D-optimal protocols, whose generated 

experimental data are reported in figures C.2.a and C.2.b, respectively. 

 

 

 Figure C.1. In silico experimental data to test the time reduced DDAVP protocol.  

11 Time prediction VWF:Ag random error experimental point prediction VWF:CB random error experimental point

0 104.5 1.0753 105.5753 155.2 1.0753 156.2753

15 177.6479 3.6678 181.3157 228.13252 3.6678 231.80032

30 225.1998 -4.5177 220.6821 275.1458 -4.5177 270.6281

60 275.5614 1.7243 277.2857 323.8963 1.7243 325.6206

120 302.2496 0.6375 302.8871 346.6452 0.6375 347.2827

180 302.0264 -2.6154 299.411 342.48572 -2.6154 339.87032

32 Time prediction VWF:Ag random error experimental point prediction VWF:CB random error experimental point

0 63.2 -0.8672 62.3328 93.8 -0.8672 92.9328

15 117.34521 0.6852 118.03041 147.82715 0.6852 148.51235

30 143.66428 7.1568 150.82108 173.8805 7.1568 181.0373

60 161.33072 5.5389 166.86962 190.85645 5.5389 196.39535

120 161.19516 -2.6998 158.49536 189.30708 -2.6998 186.60728

180 155.20584 6.0698 161.27564 182.08286 6.0698 188.15266

37 Time prediction VWF:Ag random error experimental point prediction VWF:CB random error experimental point

0 39.6 1.4508 41.0508 9.3 1.4508 10.7508

15 72.25269 -0.1261 72.12659 41.031067 -0.1261 40.904967

30 95.239914 1.4295 96.669414 61.735085 1.4295 63.164585

60 121.67035 -0.4099 121.26045 81.59661 -0.4099 81.18671

120 134.4222 -0.2483 134.1739 80.67713 -0.2483 80.42883

180 127.80084 2.9794 130.78024 64.68337 2.9794 67.66277

45 Time prediction VWF:Ag random error experimental point prediction VWF:CB random error experimental point

0 6.9 2.8181 9.7181 5.6 2.8181 8.4181

15 82.85841 2.8344 85.69281 81.221756 2.8344 84.056156

30 103.607574 1.343 104.950574 101.361916 1.343 102.704916

60 95.83524 -2.415 93.42024 92.530495 -2.415 90.115495

120 60.249924 1.4345 61.684424 56.1989 1.4345 57.6334

180 37.558464 3.2605 40.818964 33.77802 3.2605 37.03852
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Figure C.2.a. In silico experimental data to test the A-optimal DDAVP protocol. 

5

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 122.2000 131.7000 1.0753 123.2753 132.7753

18 162.6000 171.7165 3.6678 166.2678 175.3843

36 186.4600 194.6567 -4.5177 181.9423 190.139

60 203.8744 210.3768 1.7243 205.5987 212.1011

155 220.3806 218.8309 0.6375 221.0181 219.4684

172 220.9146 217.9103 -2.6154 218.2992 215.2949

20

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 54.50000 145.20000 1.4508 55.95080 146.6508

18 74.39568 164.98500 -0.1261 74.26958 164.8589

36 84.15627 174.5037 1.4295 85.58577 175.9332

60 88.86657 178.8371 -0.4099 88.45667 178.4272

155 81.99046 170.8617 -0.2483 81.74216 170.6134

172 80.09875 168.8741 2.9794 83.07815 171.8535

38

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 39.60000 9.30000 2.8181 42.41810 12.11810

18 77.53214 45.94188 2.8344 80.36654 48.77628

36 102.31800 67.65028 1.3430 103.66100 68.99328

60 121.67000 81.59582 -2.4150 119.25500 79.18082

155 131.56740 71.73276 1.4345 133.00190 73.16726

172 129.10210 66.94031 3.2605 132.36260 70.20081

48

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 6.10000 5.49000 1.7768 7.87680 7.26680

18 39.02970 38.39014 -2.2941 36.73560 36.09604

36 39.52139 38.84163 -2.1377 37.38369 36.70393

60 33.89742 33.11793 -1.6190 32.27842 31.49893

155 17.82841 17.08548 -5.8886 11.93981 11.19688

172 16.14233 15.40515 2.8768 19.01913 18.28195
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Figure C.2.b. In silico experimental data to test the D-optimal DDAVP protocol. 

 

To test the robustness of the redesigns DDAVP, experimental data with a variance of 36 have been 

generated and then used for parameters estimation. The in silico generated experimental data are 

reported in figure C.3.a and C.3.b. 

5

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 122.20000 131.70000 -0.8672 121.33280 130.83280

20 165.91250 174.94700 0.6852 166.59770 175.63220

35 185.44340 193.69510 7.1568 192.60020 200.85190

55 201.17480 208.05700 5.5389 206.71370 213.59590

140 219.69590 219.43950 -2.6998 216.99610 216.73970

166 220.74860 218.31780 6.0698 226.81840 224.38760

20

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 54.50000 145.20000 0.6384 55.13840 145.83840

20 75.87579 166.44260 0.6257 76.50149 167.06830

35 83.79285 174.15550 -1.7298 82.06305 172.42570

55 88.39232 178.43770 -0.0601 88.33222 178.37760

140 83.69383 172.67300 -0.3298 83.36403 172.34320

166 80.75890 169.56500 1.2554 82.01430 170.82040

38

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 39.60000 9.30000 0.9778 40.57780 10.27780

20 80.84943 48.98615 2.0694 82.91883 51.05555

35 101.21150 66.74510 1.4538 102.66530 68.19890

55 118.63240 79.74600 -0.6069 118.02550 79.13910

140 133.25810 75.81951 0.5877 133.84580 76.40721

166 130.02460 70.33113 -1.5746 128.45000 68.75653

48

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 6.10000 5.49000 0.6504 6.75040 6.14040

20 39.74037 39.09612 -1.5099 38.19013 37.58622

35 39.70003 39.02229 2.7406 42.44063 41.76289

55 35.12236 34.41067 -3.423 31.69936 30.98767

140 19.54972 18.80308 -0.2045 19.34522 18.59858

166 16.70778 15.96841 -0.4829 16.22488 15.48551
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Figure C.3.a. In silico experimental data with a variance of 36 to test the A-optimal DDAVP protocol. 

5

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 122.20000 131.70000 3.2260 125.4260 134.9260

18 162.60060 171.71650 11.0033 173.6039 182.7198

36 186.46610 194.65670 -13.5531 172.913 181.1036

60 203.87440 210.37680 5.1730 209.0474 215.5498

155 220.38060 218.83090 1.9126 222.2932 220.7435

172 220.91460 217.91030 -7.8461 213.0685 210.0642

20

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 54.50000 145.20000 4.3524 58.85240 149.5524

18 74.39568 164.98500 -0.3783 74.01738 164.6067

36 84.15627 174.50370 4.2885 88.44477 178.7922

60 88.86657 178.83710 -1.2298 87.63677 177.6073

155 81.99046 170.86170 -0.7449 81.24556 170.1168

172 80.09875 168.87410 8.9382 89.03695 177.8123

38

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 39.60000 9.30000 2.9334 42.53340 12.23340

18 77.53214 45.94188 6.2082 83.74034 52.15008

36 102.31800 67.65028 4.3613 106.67930 72.01158

60 121.67000 81.59582 -1.8206 119.84940 79.77522

155 131.56740 71.73276 1.7632 133.33060 73.49596

172 129.10210 66.94031 -4.7237 124.37840 62.21661

48

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 6.10000 5.49000 1.9511 8.0511 7.4411

18 39.02970 38.39014 -4.5296 34.5001 33.8605

36 39.52139 38.84163 8.2218 47.7432 47.0634

60 33.89742 33.11793 -10.2691 23.6283 22.8488

155 17.82841 17.08548 -0.6135 17.2149 16.4720

172 16.14233 15.40515 -1.4487 14.6936 13.9565
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Figure C.3.b. In silico experimental data with a variance of 36 to test the A-optimal DDAVP protocol. 

 

 

 

 

 

 

 

 

 

 

 

 

5

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 122.20000 131.70000 -2.6016 119.5984 129.0984

20 165.91250 174.94700 2.0557 167.9682 177.0027

35 185.44340 193.69510 21.4704 206.9138 215.1655

55 201.17480 208.05700 16.6166 217.7914 224.6736

140 219.69590 219.43950 -8.0993 211.5966 211.3402

166 220.74860 218.31780 18.2095 238.9581 236.5273

20

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 54.50000 145.20000 8.4542 62.9542 153.6542

20 75.87579 166.44260 8.5032 84.3790 174.9458

35 83.79285 174.15550 4.029 87.8219 178.1845

55 88.39232 178.43770 -7.2449 81.1474 171.1928

140 83.69383 172.67300 4.3034 87.9972 176.9764

166 80.75890 169.56500 9.7814 90.5403 179.3464

38

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 39.60000 9.30000 5.3304 44.9304 14.6304

20 80.84943 48.98615 -6.8824 73.9670 42.1038

35 101.21150 66.74510 -6.4132 94.7983 60.3319

55 118.63240 79.74600 -4.857 113.7754 74.8890

140 133.25810 75.81951 -17.6657 115.5924 58.1538

166 130.02460 70.33113 8.6303 138.6549 78.9614

48

Time Prediction VWF:Ag Prediction VWF:CB Random error Experimental point VWF:Ag Experimental point VWF:CB

0 6.10000 5.49000 1.9152 8.0152 7.4052

20 39.74037 39.09612 1.8772 41.5772 40.9733

35 39.70003 39.02229 -5.1893 34.5107 33.8330

55 35.12236 34.41067 -0.1803 34.9421 34.2304

140 19.54972 18.80308 -0.9893 18.5604 17.8138

166 16.70778 15.96841 3.7662 20.4740 19.7346
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C.2 Punctual sampling time optimization results 

The results of the optimization executed for three experiment design A, D and E-optimal are reported 

in figure C.4. Subjects 11, 5, 15, 14 belong to HnonO category; subjects 32, 20, 30, 18 to HO category; 

subjects 37, 38, 41, 40 to 2B category, whereas patients 45, 48, 43 and 46 belong to Vicenza category. 

 

 

Figure C.4. Punctual sampling time optimization for the selected subjects. 

 

 

 

 

 

 

11 5 15 14

A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal

[min] [min] [min] [min] [min] [min] [min] [min] [min] [min] [min] [min]

0 0 0 0 0 0 0 0 0 0 0 0

16.202 19.806 16.199 15.632 17.951 15.714 17.595 19.039 17.475 15 17.01 15

31.202 34.806 31.199 30.632 32.951 30.714 32.595 34.039 32.475 30 32.01 30

46.202 49.806 46.199 45.632 47.951 45.714 47.595 49.039 47.475 45 47.01 45

185 169.96 185 185 185 185 185 185 185 185 176.24 185

200 200 200 200 200 200 200 200 200 200 200 200

32 20 30 18

A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal

[min] [min] [min] [min] [min] [min] [min] [min] [min] [min] [min] [min]

0 0 0 0 0 0 0 0 0 0 0 0

15 15 15 15 15 15 27.798 32.114 27.796 15 18.355 15

30 30 30 30 30 30 42.798 47.114 42.796 30 33.355 30

152.56 45 152.72 45 45 45 57.798 62.114 57.796 45 48.355 45

167.56 138.02 167.72 173.21 160.19 173.34 185 185 185 159.73 139.6 159.74

182.56 153.02 182.72 188.21 175.19 188.34 200 200 200 174.73 154.62 174.74

37 38 41 40

A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal

[min] [min] [min] [min] [min] [min] [min] [min] [min] [min] [min] [min]

0 0 0 0 0 0 0 0 0 0 0 0

20.576 24.575 20.5 38.538 43.903 38.509 21.097 28.734 21.163 15 21.794 15

35.576 39.575 35.5 53.538 58.903 53.509 36.097 43.734 36.163 30 36.794 30

50.576 54.575 50.5 68.538 73.903 68.509 51.097 58.734 51.163 45 51.794 45

185 178.48 185 185 88.903 185 185 173.06 185 185 165.03 185

200 200 200 200 200 200 200 200 200 200 200 200

45 48 43 46

A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal A-optimal D-optimal E-optimal

[min] [min] [min] [min] [min] [min] [min] [min] [min] [min] [min] [min]

0 0 0 0 0 0 0 0 0 0 0 0

15 15 15 15 15 15 15 15 15 15 15 15

30 30 30 53.018 53.866 53.038 30 30 30 58.721 30 58.758

75.364 74.445 75.146 68.018 68.866 68.038 66.807 64.152 66.848 73.721 45.491 73.758

90.364 89.445 90.146 83.018 83.866 83.038 81.807 79.152 81.848 88.721 60.491 88.758

105.36 104.45 105.15 98.018 98.866 98.038 96.807 94.152 96.848 103.72 75.491 103.76


