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Introduction

The Standard Model (SM) of particle physics has been experimentally tested with high
precision in a successful way and the recent observation of a state compatible with the
Higgs boson seems to validate this theory. Nevertheless it cannot provide a complete
description of Nature and today it is commonly shared the idea that it is not a fundamental
theory, but rather its low-energy version valid up to a certain energy scale Λ. A lot of hints,
in particular the solution to the hierarchy problem, points towards the presence of new
physics (NP) at Λ ∼ TeV scale; the Large Hadron Collider (LHC) at CERN has already
tested this range of energies, reaching

√
s ∼ 14 TeV but, unfortunately, no evidences of

NP have been found so far.
Among the issues which characterize the SM, that of the anomalous magnetic moment of
the muon represents a very long standing problem. In particular, the discrepancy between
the theoretical prediction and the experimental result is of 3.3σ. However it is still not
clear whether this inconsistency is due to the hadronic uncertainties which affect aµ or
it is an hint of NP. This problem led to the proposal of the experiment MUonE, whose
goal is to extract a precise value of aHad

µ using a new method based on the analysis of µe
collisions. However, the precision expected for this experiment raises the question whether
NP could pollute MUonE measurements. This work aims to analyze this issue studying
NP effects in muon-electron scattering due to both heavy and light mediators, depending
on whether their mass is higher or lower than O (1 GeV), which is the energy scale of the
MUonE experiment.
After a revision of the fundamental theoretical concepts of the SM in Ch. (1) and
the explanation of the muon g − 2 anomaly in Ch. (2), the thesis will be split in two
parts. In the first part, see Ch. (3), I will discuss heavy mediators. Here I assume that
modes have typical mass of Λ ∼ 1 TeV and, therefore, it is possible to exploit an EFT
approach constructing the most general Lagrangian invariant under the full SM gauge
group GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y . Once computed the NP corrections to the
µ±e− → µ±e− cross section, I evaluate the correlated corrections to both the total cross
section and the forward-backward asymmetry of the process e+e− → µ+µ−, which are
constrained by LEP bounds. Finally I will focus also on lepton flavor violating (LFV)
effects in muon-electron collisions such as the process µ+e− → µ−e+.
In the second part, see Ch. (4), I will concentrate on light NP mediators, for which
the model-independent EFT approach cannot be applied. In particular I will focus on
popular scenarios containing either light (pseudo)scalars, referred to as axion-like particles
(ALPs), or light (axial)vector bosons, such as the so-called dark-photons and light Z ′.
Using existing direct and indirect bounds on masses and couplings of these light particles,
I establish the maximum sizes of these light NP effects allowed in µe collisions.

The work of this thesis extends and generalises the results appeared in the paper:

v



A. Masiero, P. Paradisi and M. Passera, “New physics at the MUonE experiment at
CERN,” https://arxiv.org/pdf/2002.05418.pdf.
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Chapter 1

The Standard Model

The Standard Model (SM) of particle physics is a very successful theory. Its predictions
have been tested in the last forty years with an increasing precision and they have shown
an amazing agreement with the experimental results for a wide range of phenomena.
The coronation of the SM rely in the discovery of the Higgs boson in 2012 [1, 2], the
missing piece of this theory which was theorised fifty years before. Nevertheless, today it
is commonly shared and accepted the idea that the SM can’t be the fundamental theory
which physicists were looking for, rather its low energy effective version: indeed this model
isn’t able to provide a complete description of Nature when going to very high energies,
which implies that it needs a UV completion. The key point is to understand at what
energy scale New Physics (NP) appears and what specific generalization of the SM is
required.
This chapter is dedicated to a concise review the Electroweak (EW) and Flavor sectors
of the SM, which will be presented in Sec. (1.1), being the basis over which this entire
work is built; in Sec.(1.2), instead, the reasons why a BSM theory is needed will be briefly
mentioned and explained.

1.1 Electroweak and Flavor sectors of the SM
The Electroweak sector of the SM is based on the gauge symmetry SU(2)L ⊗ U(1)Y and
its particle content consists in three charged leptons (electron, muon and tau) with the
corresponding neutrinos, six quarks (up, down, charm, strange, top, bottom), one scalar
boson (Higgs) and four vector bosons (Bµ, W i

µ). The fermionic matter content is divided
into three generations of doublets and singlets according to the transformation properties
of the fields under the gauge group. Denoting them as ψ(T, Y ), where T and Y are,
respectively, their representations under SU(2)L and U(1)Y and the hypercharge satisfies
Y = Q− T3, this organization reads

lp
(

2,−1
2

)
epR (1,−1) qp

(
2, 1

6

)
upR

(
1, 2

3

)
dpR

(
1,−1

3

)
, (1.1)

where p = 1, 2, 3 run over the three generations and the two doublets are explicitly
lp = (νpL, e

p
L), qp = (upL, d

p
L); also the Higgs fields is charged under the EW gauge group

with φ = (2, 1/2).
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1.1. Electroweak and Flavor sectors of the SM

The EW Lagrangian in the interaction basis is

LEW
SM = −1

4W
i
µνW

iµν − 1
4BµνB

µν + (Dµφ)†(Dµφ) +
∑
ψ

ψ̄i /Dψ+

− λ

(
φ†φ− v2

2

)2

−
[
q̄Lpy

pr
u φ̃uRr + q̄Lpy

pr
d φdRr + l̄Lpy

pr
e φeRr + h.c.

] (1.2)

where W i
µ and Bµ are, respectively, the gauge fields associated to SU(2)L and U(1)Y , while

the two covariant derivatives read

Dµψ =
(
∂µ + i

g

2σiW
i
µ + ig′YψBµ

)
ψ, (1.3)

Dµφ =
(
∂µ + i

g

2σiW
i
µ + i

g′

2 Bµ

)
φ. (1.4)

In the Lagrangian of Eq. (1.2) there are no mass terms for both fermions and vector bosons,
since they would violate the gauge symmetry; nevertheless they can still be generated via
Spontaneous Symmetry Breaking (SSB) mechanism once the scalar field φ gets a non-zero
vacuum expectation value (VEV), i.e.

〈φ〉 = v =
√

−µ2

λ
= 246 GeV. (1.5)

Then, parametrizing the field as an excitation around this vacuum (imposing directly the
unitary gauge) as

φ(x) = v +H(x)√
2

(1.6)

and replacing it in the initial Lagrangian, it is possible to find the mass spectrum of the
theory, which reads

M2
W = v2g2

4 , M2
Z = v2(g + g′)2

4 , Mγ = 0, M2
H = 2λv2. (1.7)

Another interesting way to test the SM concerns its flavor sector.
If all the Yukawa couplings were null the SM Lagrangian would enjoy a global U(3)5 =
U(3)2

l ⊗ U(3)3
q flavor symmetry, corresponding to the independent unitary rotations of the

fermion fields in flavor space; nevertheless, being yψ 6= 0 and in general non-diagonal, this
symmetry is explicitly broken. As a consequence, the residual flavor symmetry group of
LSM is GF = U(1)B ⊗ U(1)e ⊗ U(1)µ ⊗ U(1)τ , where the four U(1) groups are associated,
respectively, to the baryon number and lepton family number conservation.
This interaction with the scalar field allows also leptons and quarks to receive mass but it
is possible to read the spectrum only after the diagonalization of the Yukawa matrices by
means of a field rotation. The new basis is known (quite obviously) as mass basis and it
can be recovered once the fields are rotated through the unitary matrices Lψ and Rψ as

u′L = LuuL, d′L = LddL, e′L = LeeL (1.8)

u′R = RuuR, d′R = RddR, e′R = ReeR (1.9)
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1.1. Electroweak and Flavor sectors of the SM

in such a way that for every fermion the new matrix ỹψ = LψyψR
†
ψ is diagonal. Then the

fermion mass terms read
mψi = vỹψi√

2
(1.10)

where i, as usual, run over the three generations.
The rotation to the mass basis must be performed also in all the other sectors of the
SM. Nevertheless it turns out that only the charge currents are affected by this change of
basis, since the kinetic terms and the neutral currents (both electromagnetic and weak)
transform as1

ψ̄Lγ
µψL → ψ̄LL

†
ψγ

µLψψL = ψ̄Lγ
µψL (1.11)

where it has been exploited the fact that the rotation matrix Lψ is unitary and that it
commutes with the gammas (belonging to different spaces). Clearly this does not happen
in the case of the charge sector: indeed, given the current J−µ the explicit rotation leads to

ūLγ
µdL+ ν̄Lγ

µeL → ūLL
†
uγ

µLddL+ ν̄LL
†
νγ

µLeeL = ūLγ
µVCKMdL+ ν̄Lγ

µUPMNSeL (1.12)

where VCKM ≡ L†uLd and UPMNS ≡ L†νLe are, respectively, the Cabibbo-Kobayashi-Maskawa
and Pontecorvo–Maki–Nakagawa–Sakata mixing matrices. As a consequence, while in
the interaction basis the charge current are flavor diagonal, in the mass basis tree level
Flavor Changing Charged Current (FCCC) transitions arise due to the presence of VCKM.
This matrix is of crucial importance in flavor physics, because it is the only source of
flavor-changing transitions in the SM. The most used parametrizations are the standard
parametrization, which uses three angles θi and a complex phase δ, and the Wolfenstein
parametrization, where the CKM matrix elements are expanded in powers of the small
parameter λ = |Vus| ≈ 0.22 [3]. The latter has the remarkable property of exhibiting the
strong hierarchy between the CKM matrix elements. Explicitly it is

VCKM =

 1 − λ2

2 λ Aλ3(ρ− iη)
−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1

+ O
(
λ4
)
, (1.13)

where A, ρ, η are real parameters of order one; however, sometimes it is convenient to deal
with the rescaled variables ρ̄ and η̄ provided by

ρ̄ = ρ

(
1 − λ2

2

)
+ O

(
λ4
)

η̄ = η

(
1 − λ2

2

)
+ O

(
λ4
)
.

Since VCKM is unitary, the following relations hold:∑
k=1...3

V ∗ikVki = 1
∑

k=1...3
V ∗ikVkj 6=i = 0. (1.14)

These relations are a specific feature of the SM and their experimental verification is a
powerful consistency check of the model. Among them,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 ↔ [ρ̄+ iη̄] + [(1 − ρ̄) − iη̄] + 1 = 0 (1.15)

is the phenomenologically most interesting one, because it involves the sum of three terms
of the same order in λ. It is usually represented as a triangle, known as CKM triangle, in
the complex (ρ̄, η̄) plane:

1The same is true also for the ”right-handed” structures.
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1.2. Why going beyond the SM

Figure 1.1

The angles and sides can be extracted from appropriate flavor observables in such a way
that Eq. (1.15) can be experimentally tested. The values of λ and A are known with good
accuracy [4] and this allows to express all the observables sensitive to the CKM matrix
elements in terms of ρ̄ and η̄ only. The resulting constraints are shown in the plot of
Fig. (1.2), which clearly shows that they are all consistent with a unique value of those
parameters (ρ̄ = 0.153 ± 0.013, η̄ = 0.343 ± 0.011), implying the fact that the SM provides
an excellent description of the flavor sector.

Figure 1.2

1.2 Why going beyond the SM
As briefly aforementioned, although all the theoretical successes the SM not only is not
able to provide a complete description of nature, but it also presents some discrepancies
with the experimental results. Here I will discuss some of its most important issues:

• Hierarchy problem: from a theoretical point of view, it can be expected a bigger
value for the Higgs mass respect to the experimental one (mh ≈ 126 GeV) due to
the fact that its one-loop contribution provide a correction to the bare value which

4



1.2. Why going beyond the SM

is ∝ Λ2, with Λ the scale at which NP appears. If there is no new physics up
to the Planck scale (MP ∼ 1019 GeV), this correction would be several orders of
magnitude higher than the experimental value and, for this reason, a fine tuning is
required; otherwise, invoking the naturalness hypothesis, NP should appear at Λ ∼
TeV. Nevertheless other possible solutions have been proposed throughout the years,
from SuperSymmetry to composite Higgs models.

• Neutrinos’ nature and masses: in the SM neutrinos are massless particles but, as
shown by a lot of different experiments which observe the phenomenon of neutrino
flavor oscillation, they should actually be massive. The need to explain how a
neutrino gets its mass arises also the question about its nature: indeed, if we suppose
that right-handed neutrinos νR exist, it is possible to give mass to them as for the
other fermions, thanks to the SSB. However, knowing that mν ∼ 10−1 eV, it turns out
that there is a naturalness problem in this sector of the SM, being mν

mt
= yν

yt
∼ 10−12.

This issue can be solved supposing that neutrinos are Majorana fields, i.e. they
coincide with the corresponding charge conjugate field, which get their mass through
See-saw mechanism. However the experiments have not yet pointed out the nature
of neutrinos and, so, also the question about their mass remains open.

• Dark Matter and Dark Energy: nowadays there is the strong evidence that only the
∼ 5% of the total energy budget of the universe is due to ordinary matter, i.e. the
particle content of the SM, while the remaining part is constituted for the ∼ 27% by
Dark Matter (DM) and for the ∼ 68% by Dark Energy (DE). However the nature
of DM and DE is still not known and a lot of models are continuously proposed in
order to solve this issue; in particular, the most interesting and promising ones in
the DM sector concern supersymmetric particles and the axion scenario.

• Strong CP problem: the existence of a four dimension term which arises in the QCD
sector of the SM Lagrangian, i.e. θQCDG

a
µνG

aµν , leads to CP violation. In order to
take into account the cross-section of CP violating processes, one should adjust by
hand the theta parameter as θQCD ∼ 10−10, which is unnaturally small.

• Baryon Asymmetry: this is one of the most known and precise cosmological observa-
tions we have and it consists in a tiny excess of matter over the antimatter. It is still
not clear which kind of dynamical mechanism caused this asymmetry2 but, for sure,
every model which tries to explain it should satisfy the Sakharov conditions of B, C,
CP violation and of departure from thermal equilibrium. Although the SM satisfies
all of them, the amount of asymmetry generated turns out to be incompatible with
the measured ones, leaving the question still open.

• Muon g − 2: this is a long standing inconsistency between the experimental value
of the muonic anomalous magnetic moment and the corresponding SM prediction.
At the moment the discrepancy is of 3.3σ but it is still not clear whether it is a
consequence of the fact that NP is showing in this channel or an imprecise extracted
value of the leading order hadronic contribution aHLO

µ .

2The hypothesis that the universe have been always asymmetric do not hold: indeed, if we suppose
that after the Big Bang there was already more matter than antimatter, we must also consider that the
inflation would have washed out this asymmetry, leaving an equal amount of particles and anti-particles
once ended.
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Chapter 2

The muon g − 2 and the MUonE
experiment

This chapter is devoted to the discussion of the muonic g − 2 problem, recalling firstly
in Sec. (2.1) the comparison between the experimental value of the anomaly aµ and its
theoretical prediction provided by the SM; particular attention will be put on the hadronic
contribution and the current methods for its extraction. Secondly, in Sec. (2.2) it will be
discussed a new experiment thought to provide a refined and more precise prediction of
the SM to compare with the experimental value: MUonE.

2.1 The anomalous magnetic moment of the muon
From the Dirac equation in an external electromagnetic field, i.e.

(i /D −m)ψ = 0, (2.1)

it is possible to predict a muonic magnetic moment ~µµ = gµ|e|~S/2mµ, where ~S is the spin
operator and gµ is the gyromagnetic factor of the muon. At the tree level, simply taking
the non relativistic limit of Eq. (2.1), it is easy to obtain gµ = 2; however, loops effects
introduce a small but still significant deviation to this TL value which can be parametrized
by the anomaly

aµ ≡ gµ − 2
2 . (2.2)

This quantity, known as anomalous magnetic moment, can be accurately measured in the
experiments, but also precisely predicted in the SM; their comparison provides an excellent
tool to test this theory at quantum level and significant deviations could be symptom of
NP. The E821 experiment at Brookhaven National Lab (BNL) studied the precession of
muons in a constant external magnetic field, finding [5]

aexp
µ = (11659209.1 ± 6.3) × 10−10. (2.3)

The error achieved by the BNL E821 experiment, δaexpµ = 6.3 × 10−10, corresponds to 0.54
ppm and it is dominated by the available statistics; nevertheless, the preparations for new
experiments at J-PARC [33] and Fermilab [34], which aim to measure the g − 2 of the
muon with a precision of 0.14 ppm (or even better), have already started.

6



2.1. The anomalous magnetic moment of the muon

On the theoretical side, the SM value for aµ is generally divided into the three parts

aµ = aQED
µ + aEW

µ + aHad
µ ,

each one linked to a specific sector of the SM; they will be analyzed in a while. The final
theoretical prediction is

aSM
µ = (11659183 ± 4.8) × 10−10, (2.4)

and its difference with the experimental result reads

∆aµ = aexp
µ − aSM

µ = (26.1 ± 7.9) × 10−10 ∼ 3.3σ. (2.5)

A summary plot [29] reporting the current status of the anomalous magnetic moment of
the muon can be found in Fig. (2.1)

Figure 2.1: Comparison between the SM prediction and the experimental value of aµ.
DHMZ [30] and HLMNT [31] are two theoretical estimations, while SMXX [32] corresponds
to their average; its reduced error is due to the improvements on the hadronic cross section
measurement. BNL-E821 04 ave. is the current experimental value of aµ and New (g − 2)
exp. is the same central value with a fourfold improved precision, as planned by the future
experiments at Fermilab and J-PARC.
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2.1. The anomalous magnetic moment of the muon

2.1.1 QED contribution
Quantum Electrodynamics provides the largest fraction of the contribution by far. It can
be subdivided order-by-order as follows [6]:

aQED
µ =

∑
j

cj

(
α

π

)j
(2.6)

where the coefficients cj are sum of terms which can be either constants or functions of
mµ/mi (i = e, τ ). In [6] it is present a detailed review of all the contributions up to j = 5;
in the following I will report a very brief summary, being the QED contribution not the
main result on which this thesis is focused, specifying essentially only the numerical values
of these coefficients.
At one loop there is only one diagram, which is nothing else that the vertex correction to
the three point function. It provides the Schwinger term, with c1 = 1/2. At two loops
there are nine QED diagrams [7–9]: seven of them contain muons and photons, while the
remaining two involve the vacuum polarisation of the virtual photon with a fermionic loop
(with both e and τ). All these contributions has been computed analytically, providing

c2 = 0.765857423(16).

At three-loops there are more than 100 diagrams, 36 of which are vacuum polarisations
and 12 light-by-light diagrams. The corresponding coefficient can be still calculated
analytically [10–12] and it results

c3 = 24.05050982(28). (2.7)

Starting from four loops, numerical methods and Monte Carlo simulations for the compu-
tation of the more than 1000 diagrams becomes necessary, being almost all of them not
known analytically [13, 14]. The fourth coefficient is

c4 = 130.8734(60). (2.8)

Finally, at five loop level there are more than 12000 diagram which can contribute. Their
numerical evaluation was performed in [15] and it provides

c5 = 751.917(932). (2.9)

Summing all the computations together, the QED contribution turns out to be

aQED
µ = 11658471.8859(.0026)(.0009)(.0017)(.0006) × 10−10, (2.10)

where the uncertainties are consequence of the experimental errors in the measurement
of α and of the lepton masses, but also of the numerical errors for the four and five loop
terms.

2.1.2 EW contribution
Differently from the electromagnetic interactions, the EW ones are characterized by the
presence of massive mediators (W±, Z, h); as a consequence, these contributions to the

8



2.1. The anomalous magnetic moment of the muon

anomalous magnetic moment of the muon are suppressed by factors
(
mµ

mW

)2
. This can

be seen clearly in the one-loop EW diagrams which involve the W and Z bosons, the
neutrinos and the Higgs h. These contributions have been computed analytically in [16–20]
and their sum reads

aEW
µ =

Gµm
2
µ

8
√

2π2

[
5
3 + 1

3
(
1 − 4 sin2 θW

)2
+ O

(
m2
µ

M2
W

)
+ O

(
m2
µ

m2
H

)]
(2.11)

where sin2 θW = 1 − M2
W/M

2
Z ≈ 0.223 and Gµ = 1.166 × 10−5 GeV−2. Taking the

corrections O
(

m2
µ

M2
W,Z,h

)
to be negligible allows to find

aEW
µ 1−loop = (19.482 ± 0.001) × 10−10 (2.12)

where the uncertainty are related to the measure of the Weinberg angle.
At the two loop level there is already an elevated number of diagrams: indeed, being the
SM a non-abelian theory, it is possible to construct a lot of different structures by means
of the three and four interactions among gauge bosons. Moreover, although the presence
of the aforementioned suppression, the leading order two loop contribution [21] involve
diagrams which contain a fermionic triangle loop, yielding a factor log(mW,Z/mψ) at the
amplitude level. It enhances the two loop contribution to the same order of the one loop,
but with an opposite sign:

aEW
µ 2−loop = (−41.2 ± 0.1) × 10−10

Finally, the total EW contribution results

aEW
µ = (15.36 ± 0.1) × 10−10. (2.13)

2.1.3 Hadronic contribution
The most important contributions to the anomalous magnetic moment coming from strong
interactions are due to QED diagrams with quark loops (HVP) at leading order and the
so-called hadronic light-by light scattering (HLbL)

HADHADHADHADHADHADHADHADHADHADHADHADHADHADHADHADHADµ−

γ

µ−γ γ

HADHADHADHADHADHADHADHADHADHADHADHADHADHADHADHADHAD

µ−

γ

µ−

γ γ
γ

HVP effects at higher orders have been computed but they turn out to be at least 102

times smaller than the leading order [22].
There are various alternative ways to evaluate these contributions:
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2.1. The anomalous magnetic moment of the muon

• HVP

These contributions can be extracted indirectly by examining the e+e− annihilations
by means of dispersion integral, a result based on analyticity and unitarity of the S
matrix [25–27]; in the following subsection this procedure will be discussed quite in
detail.
The result is

aHVP
µ = (693.9 ± 4) × 10−10

• HLbL

They have been extracted by using the Resonance Lagrangian Approach. This
method is based on Chiral Perturbation theory (the EFT of quark-confined states
governed by the chiral symmetries of QCD) extended to higher energies and aug-
mented with vector resonances. They are estimated as [22]:

aHLbL
µ = (10.3 ± 2.9) × 10−10.

Both these theoretical techniques can be compared with the Lattice QCD (LQCD) approach,
which aims to obtain the contributions by directly calculating the path-integrals of the
confined quarks and gluons using the rules of high-energy QCD [23]. Although this
technique is naturally all-inclusive regarding the hadronic processes, it is limited by
computational complexity, causing a lack of precision.

2.1.3.a How to extract the HLO

This subsection is devoted to describing the method employed in the past for the indirect
extraction of the leading order HVP contribution to aµ and, subsequently, to layout a
novel method [24] that forms the basis of the proposed MUonE experiment.
First of all, a generic vacuum polarisation (VP) function is usually denoted as Π(q2).
Since the SM is a renormalisable theory, the bad divergent behaviour at large momenta
is regulated by the introduction of a proper counterterm which generates an analogous
diagram, only with the symbol ⊗ indicating the counterterm insertion in place of the
vacuum polarisation function:

µ−

γ

µ−γ γ µ−

γ

µ−γ γ

Only the sum of these two diagrams allows to get rid of any unphysical divergences at
large momenta. By imposing that the loop correction be vanishing in the low-momentum
transfer limit (which is a consistency with the classical limit), this counterterm turns

10



2.1. The anomalous magnetic moment of the muon

out to be −Π(0). Therefore from now on it will be directly considered the renormalised
quantity

Π̄(q2) = Π(q2) − Π(0) = q2

π

∫ +∞

s0
ds

Im[Π(s)]
s (s− q2 − iε) , (2.14)

where s0 is the starting point of the lightest branch cut.
Now, let’s consider e+e− annihilation with a vacuum-polarisation insertion. Exploiting
the optical theorem, diagrammatically this reads

2 Im


γ γ

e+

e− e−

e+


∝
∑
X


γ

e+

e−



2

and it is telling us that the imaginary part of the vacuum polarisation is proportional to
the cross-section of the process e+e− → generic particles. Since for the final purpose we
are interested in the hadronic vacuum polarization, the attention will be put only to the
particular case of e+e− → hadrons.
Usually the hadron-production cross section is measured in units of the cross-section of the
process e+e− → µ+µ− in the me = 0 limit. It is, then, suitable to define the Rγ(s) factor

Rγ(s) := σ (e+e− → γ → hadrons)
σ (e+e− → γ → µ+µ−) = σ (e+e− → γ → hadrons)

4πα2

3s
. (2.15)

Plugging (2.14) and (2.15) together, once exploited analytically the relation provided by
the optical theorem, it is possible to find

Π̄(q2) = Π(q2) − Π(0) = αq2

3π

∫ +∞

4m2
π

ds
Rγ(s)

s (s− q2 − iε) (2.16)

where s0 now starts at the π mass, since the pions are the lightest hadrons that can be
produced.
Now, it is possible to derive the expression for the HVP corrections to aµ. The amplitude
can be easily recovered from that of the QED three point vertex function modifying the
internal photon propagator with the insertion of the renormalised VP function Π̄(q2) as a
multiplicative factor:

− ieū (p2) Γµ (p1, p2)u (p1) =

= ieµε/2
∫ dDq

(2π)D
−igαβ
q2

[
Π̄
(
q2
)]
ū (p2)

γβ i
[(
/q + /p2

)
+mµ

]
(q + p2)2 −mµ

γµ
i
[(
/q + /p1

)
+mµ

]
(q + p1)2 −mµ

γα

u (p1) =

= −ieµε/2 α

3π

∫ +∞

4m2
π

ds

s
Rγ(s)

∫ dDq

(2π)D
−igαβ
q2 − s

×

× ū (p2)
γβ i

[(
/q + /p2

)
+mµ

]
(q + p2)2 −mµ

γµ
i
[(
/q + /p1

)
+mµ

]
(q + p1)2 −mµ

γα

u (p1) =

= α2

3π2

∫ +∞

4m2
π

ds

s
Rγ(s)ū (p2)

[
F1
(
k2, s

)
γµ + i

2mµ

F2
(
k2, s

)
σµνγν

]
u (p1) .

(2.17)
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2.1. The anomalous magnetic moment of the muon

where the result has been expressed in terms of the two form factors F1,2. In order to find
the g-factor it is necessary to send k → 0 and to recall that in this limit F1(0, s) = 1, for
consistency with the renormalisation conditions. The F1 factor reproduces the tree-level
contribution, therefore to find the anomaly one focuses on the F2(0, s) contribution. The
standard way in literature to express such a result is:

aHLO
µ = α2

3π2

∫ +∞

4m2
π

ds

s
Rγ(s)K(2)

µ (s) (2.18)

K(2)
µ (s) =

∫ 1

0
dx

x2(1 − x)
x2 + (1 − x)s/m2

µ

This result shows its utility once splitted into two parts in the integration range by
setting the reference scale s̃ upon which QCD can be computed perturbatively. Then,
there will be two contributions: the high-energy term, in which the Rγ factor can be
computed analytically, and the low energy one, in which Rγ can be measured experimentally
by annihilating e+e− pairs and measuring the relative cross-sections Nevertheless, the
measure of the latter contribution is not easy to perform and the experimental difficulties
in its analysis constitutes the big uncertainty in the SM prediction. Indeed Rγ is highly
fluctuating at low energy due to the presence of a lot of resonances and threshold effects,
as it can been seen by the plot

Figure 2.2: Behaviour of the function Rγ in the non-perturbative region
√
s ∈ [0, 13] GeV.

Note the high number of resonances in correspondence of mesons production thresholds;
on the other side, the region with

√
s > 13 GeV is well reproduced by perturbative QCD.
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2.2. The MUonE experiment

2.2 The MUonE experiment
The MUonE experiment [35] has been thought as an alternative and competitive way to
extract the leading hadronic contribution to aµ without relying on the measure of the
cross section for the process e+e− → hadrons, being its behaviour at low energies the
responsible of the big uncertainty in the SM prediction.
However, before entering in the detailed description of this experiment, let’s firstly discuss
the kinematics of the process.

2.2.1 Kinematics
MUonE is a fixed target experiment in which energetic muons scatter with electrons at
rest. The process can be schematically written as

e−(p1) + µ−(p2) → e−(p3) + µ−(p4),
with the three Mandelstam variables which are simply

s = (p1 + p2)2 = (p3 + p4)2, t = (p1 − p3)2 = (p2 − p4)2, u = (p1 − p4)2 = (p2 − p3)2

and which satisfy s+ t+ u = 2m2
µ + 2m2

e.
In the reference frame of the laboratory, the momenta of the involved particles are explicitly

• pµ1 = (me, 0)

• pµ2 = (Eµ, ~pµ)

• pµ3 = (E ′e, ~pe′)

• pµ4 = (E ′µ, ~pµ′)

whit, as usual, the dispersion relation Ei =
√
m2
i + |~pi|2.

In the experiment the energy of the incoming muon flux is Eµ = 150 GeV (which is a
typical energy available at the M2 beam line in CERN’s North Area); then, given E

′
e the

recoil energy of the electrons, it follows

s = 2meEµ +m2
µ +m2

e = 0.164 GeV2, t = −2me(E
′

e −me) (2.19)

with
tmin < t < 0 and tmin = −

λ(s,m2
e,m

2
µ)

s
= −0.143 GeV2, (2.20)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz is the Källen function. Moreover, it is
also convenient to define the variable x, which is related to t by

x(t) =
1 −

√
1 −

4m2
µ

t

 t

2m2
µ

. (2.21)

The conservation of the total four-momentum implies explicitly the two equationsme + Eµ = E ′e + E ′µ ⇒ Eµ = Te + E ′µ
~pµ = ~pe

′ + ~pµ
′ , (2.22)
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2.2. The MUonE experiment

where in the first one the definition of kinetic energy E ′e = me+Te has been used. Rewriting
the second equation as ~pµ

′ = ~pµ − ~pe
′, it follows the equality∣∣∣ ~pµ′∣∣∣2 =

∣∣∣~pe′∣∣∣2 + | ~pµ |2 − 2
∣∣∣~pe′∣∣∣| ~pµ| cos θe, (2.23)

where θe is the diffusion angle of the electron respect to the direction of the incident muon;
exploiting also the energy conservation, this angle satisfies the relation

cos θe =

∣∣∣~pe′∣∣∣2 + | ~pµ |2 −
∣∣∣ ~pµ′∣∣∣2

2
∣∣∣~pe′∣∣∣| ~pµ|

. (2.24)

The diffusion angle of the muon, θµ, can be obtained proceeding in the same way, this
time rewriting the second equation of (2.22) as ~pµ − ~pµ

′ = ~pe
′ and, again, squaring it:

cos θµ =

∣∣∣ ~pµ′∣∣∣2 + | ~pµ |2 −
∣∣∣~pe′∣∣∣2

2
∣∣∣ ~pµ′∣∣∣| ~pµ|

. (2.25)

Now let’s see how to find the maximum value for these two angles. In order to achieve this
purpose, it is necessary to equate the value of the Mandelstam variable s in the laboratory
frame (slab) with that in the center of mass frame (scm), where their explicit expression are

slab = (Eµ +m)2 − |~pµ|2 = m2
µ +m2

e + 2Eµme

scm = (E∗µ + E∗e )2,

with Ee,µ =
√
p∗2 +m2

e,µ; a little bit of easy algebra leads to

p∗2 = m2
e(Eµ −mµ)

m2
em

2
µ + 2meEe

. (2.26)

The maximum angles exist if and only if the condition

β =

√
E2
µ −m2

µ

Eµ +me

> β∗e,µ = p∗√
p∗2 +m2

e,µ

(2.27)

is satisfied; inserting Eq. (2.26) in βe,µ it follows

βe = β, βµ =

√
E2
µ −m2

µ

Eµ +me

(
m2

µ

m2
e

) < β (2.28)

from which, using the general relation sin θmaxe,µ = β∗
e,µγ

∗
e,µ

βγ
, it is possible to find

sin θmaxµ = me

mµ

, sin θmaxe = 1 ⇒ θmaxe,µ = 90°. (2.29)

Another important quantity that can be found is the energy E ′e of the diffused electrons
as a function of the angle θe. This can be done using the Lorentz transformation E∗e =
γ(E ′e − βp′e cos θe) = γme, where it has been used the fact that in the center of mass frame
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2.2. The MUonE experiment

the energy of the electron is the same before and after the scattering (E∗e ). Solving for E ′e
it can be found:

E ′e(θe) = me

(
1 + β2 cos θe2

1 − β2 cos θe2

)
, (2.30)

from which it follows E ′e(θmaxe ) = me. Moreover, using again the Lorentz transformation
provided just above, together with the explicit expression for β present in (2.27), it is
possible to see that the kinetic energy takes its maximum value for cos θ∗ = 1, which has
explicit expression

Tmaxe =
2me(E2

µ −m2
µ)

2meEµ +m2
e +m2

µ

. (2.31)

This results is strictly linked to the difference ∆Ee = E
′max
e − E

′min
e = 2γβp∗; indeed,

inserting the usual quantities already derived, it turns out to be exactly Tmaxe :

∆Ee =
2me(E2

µ −m2
µ)

2meEµ +m2
e +m2

µ

≡ Tmaxe . (2.32)

This results should not surprise since, noticing that Tmine = 0, it follows immediately from
∆Ee = Tmaxe − Tmine .

2.2.2 Theoretical motivations for MUonE
Having discusses the basic, but still fundamental, kinematical features of the µe scattering,
we can now turn on the theoretical motivations for this experiment.
As aforementioned, the idea which has motivated the proposal of MUonE relies in the
needed to find an alternative way to e+e− → hadrons processes for the extraction og aHad

µ .
This can be achieved noticing that, once took again the previous results, aHLO

µ can be
related to the running of αQED working in the space-like region. Switching the s and x
integrations [36] in Eq. (2.18) it is possible to obtain

aHLO
µ = α

π

∫ 1

0
dx(x− 1)Π̄Had[t(x)], (2.33)

with
t(x) =

x2m2
µ

x− 1 < 0, (2.34)

where the integral is expressed in terms of the renormalised HVP function with the
space-like variable t, in contrast to the time-like variable s of the previous relation.
Let us now take a look at the running of the QED coupling constant α, another well-
understood effect of radiative corrections. It is written down at a specified squared
momentum transfer q2 in terms of α measured at a different squared momentum transfer
and the general VP function

α(t) = α(0)
1 − ∆α(t) (2.35)

−∆α(q2) = Re[Π̄(q2)].
∆α has various contribution, depending on the kinds of VP functions at play. In particular,
∆αQED, given by the QED corrections to the photon propagator, is very well known and
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2.2. The MUonE experiment

its contribution can be factorised from the whole running in order to isolate the hadronic
contribution ∆αHad.
The corrections to α must depend only on the real part of Π̄, since the VP function
can acquire a non-vanishing imaginary part whenever q2 > 4m2, with m the mass of
some massive particle involved in the VP. Nevertheless, if the transferred momentum
q2 is space-like, then Π̄(q2) can be safely identified with its real part, since by the same
unitarity-based reasoning the imaginary part would vanish in that kinematic region.
Based on these considerations, it is possible to lay out a procedure to find out the Hadronic
VP correction to aµ by actually measuring the hadronic contribution to the running of α.
Firstly ∆α has to been measure with space-like square momentum transfer t; then, the
known QED contribution must be subtracted and the resulting quantity

∆αHad(t) = Re[ΠHad(t)] ≡ Π̄Had(t) (2.36)

is then substituted into Eq. (2.33), bringing to

aHLO
µ = α

π

∫ 1

0
dx(x− 1)∆αHad[t(x)] (2.37)

Although it is based on Eq. (2.18), this is a very different approach respect to the previous
one and it presents also an important benefit: the radiative corrections keep the hadrons
fully-virtual, as opposed to having final hadronic states which can, in general, give rise
to very complex subsequent processes. The advantage of studying space-like momentum
transfer rather than time-like is evident from Fig. (2.3): the space-like momentum forbids
resonances, which allows the photonic VP function to be smooth in its domain (lower
panel). On the contrary, the time-like region opens up the possibility for resonances, pair
production and threshold behaviour that cause spikes and troths in the VP function (upper
panel).
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2.2. The MUonE experiment

Figure 2.3

A precise value of (2.37) entails an accurate value of α(t) in the space-like region through
the measure of the cross section of some physical process. An option could be the Bhabha
scattering e+e− → e+e− which, however, is still characterized by an s channel contribution
in addition to the desired t channel:

γ γ

e−

e+ e+

e−

γ

γ

e−e−

e+ e+

To be competitive with time-like measurements, a space-like estimate of aµ must be given
with an accuracy of ∼ 1%. Given the peak value of ∆αHad to be ∼ 10−3, the experimental
precision in the cross-section measurement needs to be of the order 10−5 or 10 ppm [29];
however, there are no currently existing e+e− collider which can provide such a high level
of accuracy.
A more practical alternative is represented by the muon-electron elastic scattering µ±e− →
µ±e− 3:

3In the diagram I only reported the process µ−e− → µ−e−; its partner process has the same structure,
with a switched muonic current’s flow.

17



2.2. The MUonE experiment

γ

γ

e−e−

µ− µ−

Not only this scattering is a pure t channel process, but also the required precision could
already be potentially achieved at existing facilities.
The experiment would take the form of a fixed-target collision [29]: a high-energy (150-200
GeV) muon beam is already available at CERN’s North area and it will be directed on a
fixed target, enabling the measurement of the differential cross-section of muons which
scatter with the electrons in the atomic orbitals of the layer; in the following section it will
be reported a quite detailed analysis on the kinematics. The MUonE experiment [37] aims
to extract the running α(t) by measuring the cross-section with a precision of ∼ 10 ppm
to provide a ∼ 1% estimate of aHLO

µ , in order to be competitive with the new upcoming
g− 2 experiments. However, the precision expected for this experiment raises the question
whether NP could pollute the measurements or not. This work aims to analyze this issue,
studying NP effects in muon-electron scattering due to both heavy and light mediators,
depending on whether their mass is higher or lower than O (1 GeV), which is the energy
scale of the MUonE experiment. Since in the former case it is possible to employ an
effective field theory (EFT) approach, in the next chapter this tool will be briefly reviewed.
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Chapter 3

Heavy new physics effects at MUonE

As mentioned in the last chapter, this work aims to analyze possible signals of NP in µe
scatterings due to heavy and light mediators, depending on whether their mass is higher or
lower than O(1 GeV). In the former case it will be employed an effective field theory (EFT)
formalism, whose main theoretical aspects will be recalled in Sec. (3.1), constructing the
most general effective Lagrangian invariant under the electromagnetic gauge group U(1)em.
After the computation of the NP contributions to the µ±e− → µ±e− differential cross
section in Sec. (3.4), corrections to correlated observable, as the total cross section and the
forward-backward asymmetry of the process e+e− → µ+µ−, will be computed; then, from
the comparison with the experimental results, NP will be constrained and, subsequently, it
will be evaluated whether it could affect MUonE measurements or not. The same analysis
will be carried out also for lepton-flavor violation (LFV) NP effects in Sec. (3.5).
The case related to light mediators will be discussed in the following chapter.

3.1 Effective Field Theories
The basic idea under the construction of an effective field theory (EFT) is that, whenever
there is a situation in which it is necessary to deal with a quantum field theory (QFT)
with two (or more) very different energy or length scales, it is possible to construct a
simpler theory by performing an expansion in the ratio of these scales. I will provide
immediately an illustrative example, reconnecting to what mentioned in the introduction.
As a consequence of the fact that the Standard Model of particles physics leaves many
questions unanswered, it is very probable that there should exist some BSM physics
involving new heavy particles with masses Λ � v, i.e. much above the scale of electroweak
symmetry breaking. While the complete Lagrangian of the UV theory is at present a pure
utopia, we can construct its low-energy version – the so called SMEFT – by extending the
usual SM Lagrangian with higher dimensional local operators built out the field content
of this theory:

LSMEFT = LSM +
∑
n≥1

∑
i

C(n)
i

Λn
Q(n)
i , (3.1)

where Q(n)
i are all the possible operators of dimension D = 4 + n which must respect the

symmetries of the Standard Model, such as Lorentz and gauge invariance. There is, of
course, an infinite set of such operators but, at the same time, there exists only a finite set
of them (which forms a complete basis) for each dimension D; moreover, the contributions
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3.1. Effective Field Theories

of these operators to any given observable are suppressed by powers of (v/Λ)D−4 in relation
to those of the Standard Model. On the other side, the C(n)

i are known as Wilson coefficient
and they are the dimensionless couplings which contain all the information about the
short-distance physics which has been integrated out. The above equation is useful only
because the infinite sum over n can be truncated at some value nmax since matrix elements
of the operators Q(n)

i scale like powers of m, where m � Λ represents the characteristic
scale of the low-energy effective theory (m = v in the case of SMEFT), i.e.

〈f |Q(n)
i |i〉 ∼ mn+δ, (3.2)

where δ is set by the external states; truncating the sum at nmax one makes an error of
order (m/Λ)n � 1 relative to the leading term.
In this work I will deal only with operators up to D = 6, since D ≥ 7 operators are
suppressed by higher powers of the inverse of Λ.

3.1.1 Running couplings
Essentially, in constructing the effective Lagrangian of Eq. (3.1) the contributions from
virtual particles are split up into short and long distance modes as∫ ∞

0

dω

ω
=
∫ Λ

0

dω

ω
+
∫ ∞

Λ

dω

ω
, (3.3)

where the first term is sensitive to IR physics and is absorbed into the matrix elements
〈Q(n)

i 〉, while the second is sensitive to UV physics and it is absorbed into the Wilson
coefficients C(n)

i . However, let’s suppose that we are performing a measurement at a
reference energy scale E such that m � E < Λ. We can then integrate out the high-
energy fluctuations of the light Standard Model fields (with frequencies ω > E) from the
generating functional because they will not be needed as source terms for external states.
This yields a different effective Lagrangian which, however, has the same operators Q(n)

i

(since any Standard Model particles haven’t been removed). What changes is the split-up
of modes, which now reads ∫ ∞

0

dω

ω
=
∫ E

0

dω

ω
+
∫ ∞
E

dω

ω
, (3.4)

As a consequence, the values of the Wilson coefficients and operators matrix elements
need to be different, but in such a way that

LEFT =
∑
n=0

∑
i

C(n)
i (E)
Λn

Q(n)
i (E) =

∑
n=0

∑
i

C(n)
i (Λ)
Λn

Q(n)
i (Λ). (3.5)

Generally speaking, the effective Lagrangian that has to be studied is

LEFT =
∑
n=0

∑
i

C(n)
i (µ)
Λn

Q(n)
i (µ), (3.6)

whose matrix elements are, by construction, independent of the arbitrary factorization
scale µ (with m ≤ µ ≤ Λ). Here Q(n)

i (µ) are renormalized composite operators defined
in dimensional regularization with the M̄S scheme, while C(n)

i (µ) are the corresponding
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3.1. Effective Field Theories

renormalized Wilson coefficients. The scale µ serves as the renormalization scale for these
quantities, but at the same time it is the factorization scale which separates short-distance
(high-energy) from long-distance (low-energy) contributions.
Here a couple of comments are appropriate. First of all, the terms with n = 0 are just
those of the renormalizable Lagrangian of the low-energy theory. As a consequence,
parameters such as αs(µ) or m(µ) might contain some information about short-distance
physics through their scale dependence. An example is provided by the µ dependence
of gauge couplings and mass parameters in supersymmetric extensions of the Standard
Model, suggesting a unification of the strong and electroweak forces at a scale Λ ∼ 1016

GeV. Secondly, operators with n ≥ 1 are those which start to be interesting, since their
coefficients tell us something about the fundamental high-energy scale Λ. The most evident
example is that of the weak interactions at low energy. These are described by four-fermion
operators with mass dimension D = 6, whose coefficients are proportional to the Fermi
constant

√
2GF = 1/v2. The numerical value of GF indicates the fundamental mass scale

of EW symmetry breaking, allowing to estimate the masses of the heavy weak gauge
bosons W± and Z long before these particles were discovered.
At any fixed n, the basis Q(n)

i (µ) of composite operators can be renormalized in the
standard way, allowing, however, for the possibility of operator mixing:

Q(n)
i,0 =

∑
j

Z
(n)
ij (µ)Q(n)

j (µ). (3.7)

The operators with the subscript ”0” on the left-hand side are bare operators, while those
on the right-hand side are the renormalized ones. In the presence of operator mixing, in the
renormalization of Q(n)

i,0 other operators Q(n)
j (µ), with i 6= j, are needed as counterterms4.

Moroever, in dimensional regularization there is no mixing between operators of different
dimension D and, consequently, this regularization method is as the most convenient one5.

3.1.2 Anomalous dimension and RG evolution equation for the
Wilson coefficients

From the fact that the bare operators on the left-hand side of Eq. (3.7) are scale
independent, it follows that

dZij(µ)
d lnµ Qj(µ) + Zij(µ)dQj(µ)

d lnµ = 0, (3.8)

which can be solved to give

dQk(µ)
d lnµ = −

(
Z−1

)
ki

(µ)dZij(µ)
d lnµ Qj(µ) ≡ −γkj(µ)Qj(µ). (3.9)

In matrix notation, this simply reads

d
−→
Q(µ)
d lnµ = −γ(µ)−→Q(µ), with γ(µ) = Z−1(µ)dZ(µ)

d lnµ . (3.10)

4Let’s note that the renormalization constants Z(n)
ij contain a wave-function renormalization factor

Z
1/2
a for each component field contained in the composite operators, in addition to renormalization factors

absorbing the UV divergences of the 1PI loop corrections to the operator matrix elements.
5In order to have an handle notation, from now on I will drop always the superscript “(n)”.
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3.2. SM cross section and experimental sensitivity

The quantity γ is called the anomalous-dimension matrix of the composite operators and
it can be obtained from the coefficient of the 1/ε pole term in Z.
Since the effective Lagrangian is µ independent by construction, for every n ≥ 0

dCi(µ)
d lnµ Qi(µ) + Ci(µ)dQi(µ)

d lnµ =
[
dCi(µ)
d lnµ δij − Ci(µ)γij(µ)

]
Qj(µ) = 0. (3.11)

which, exploiting the linear independence of the basis operators, leads to

Ċi = µ
dCi
dµ

= γijCj. (3.12)

Using ordinary perturbation theory, the differential equation (3.12) can be formally solved,
imposing as initial condition Ci(Λ) once computed by matching the full theory with the
effective one, obtaining

Ci(µ) = Pexp

[∫ x=µ

x=Λ
dx
γ(x)
β(x)

]
ij

Cj(Λ), (3.13)

where P denotes the coupling constant ordering of the anomalous dimension matrix. It is
worth to stress again on the fact that the operator renormalization produces an operator
mixing thanks to the anomalous dimension matrix γij: this implies that operators that
weren’t present at the scale Λ can arise at different scales due to the evolution of their
coefficients, as aa consequence of the fact that their running may contain coefficients of
other operators which were present at Λ scale.
Finally, in order to obtain the theory at low energy, the matching procedure must be
employed. To determine the values of the coefficients Ci it is necessary to compute the
amplitudes M at a given order of both the modified theory (by the integration of heavy
degrees of freedom) and the constructed EFT:

M = 〈fn |L| in〉 =
∑
i

Ci 〈fn |Qi| in〉 + h.c. (3.14)

In general, in order to obtain LEFT at the generic scale µ, one have to solve (3.12) in the
LLA limit, obtaining

Ci(µ) = Ci(Λ) + Ċi(Λ) ln Λ
µ
. (3.15)

Fulfilling the matching condition, the Lagrangian is obtained once summed over all the
possible coefficients and flavor structures:

LEFT = 1
Λ2

∑
i

∑
prst

Ciprst(µ)Qi
prst. (3.16)

3.2 SM cross section and experimental sensitivity
Let’s start the discussion firstly recalling the SM prediction for the differential cross section
of the process

e−(p1) + µ−(p2) → e−(p3) + µ−(p4),
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3.2. SM cross section and experimental sensitivity

where the electron and muon masses will be now respectively denoted as m and M .
In the following I will refer to the differential cross section dσ/dt, which is given by the
general formula

dσ

dt
= 1

16π
1

λ(s,m2,M2)
∣∣∣M∣∣∣2, (3.17)

where |M|2 is the unpolarized squared matrix element, i.e.

|M|2 = 1
4
∑
spin

M∗M.

In principle, in the SM this process can be mediated by the photon γ, the weak Z boson
and the Higgs boson H

and the total unpolarized squared matrix element reads

|Mtot|2 = 1
4
∑
spins

(|Mγ|2 + |MZ |2 + |MH |2 +2Re[M∗
γMZ ]+2Re[M∗

γMH ]+2Re[M∗
ZMH ]).

(3.18)
Nonetheless, only the pure photon and the interference with the Z boson contributions
can be seen at MUonE since the other ones require a sensibility greater respect to that of
the experiment (10 ppm). In the following subsections I will report a brief recap of these
contributions.

3.2.1 QED contribution
The amplitude for the scattering mediated by the photon γ is simply

Mγ = ie2

t
ū(p3)γµu(p1)ū(p4)γµu(p2) (3.19)

from which it follows, after the computations of the two traces, that∣∣∣Mγ

∣∣∣2 = 64π2α2

t2
f(s, t) (3.20)

where f(s, t) = t2/2 + st + (M2 + m2 − s)2. Combining Eq. (3.17) with the result just
found, it is possible to find the total QED contribution

dσ0

dt
= 4πα2

t2
f(s, t)

λ(s,m2,M2) (3.21)
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3.2. SM cross section and experimental sensitivity

3.2.2 Weak Z boson contribution
In this case, the full amplitude is

MZ = i
(
ig

2cW

)2
ū (p3) γµ

(
geV − geAγ

5
)
u (p1)

(
−gµν + PµPν

M2
Z

)
t−M2

Z

ū (p4) γν
(
gµV − gµAγ

5
)
u (p2)

(3.22)
where P = p1 − p3 = p2 − p4 and cW is the cosine of the Weimberg angle; moreover it has
been assumed that

geV = gµV = 1
4 − s2

W geA = gµA = 1
4 . (3.23)

Since the working condition is that of |P |2 � M2
Z , Eq. (3.22) can be rewritten employing

the Fermi theory as

MZ = −4iGF√
2
ū (p3) γµ

(
geV − geAγ

5
)
u (p1) ū (p4) γµ

(
gµV − gµAγ

5
)
u (p2) . (3.24)

Then, the interference term with the photon is

MγZ = 2Re[M∗
γMZ ] =

∣∣∣M̄γ

∣∣∣2δ−Z (3.25)

where the explicit expression for the relative contribution δ−Z to the total differential cross
section reads

δ−Z = − GF t

4πα
√

2

[
a2
θ − t(s− u)

2f(s, t)

]
. (3.26)

The plot for δ−Z as a function of t in the range of interest is

Figure 3.1

From Fig. (3.1) it is possible to note that δZ is at most ∼ 1.6 × 10−5 (in correspondence
of t = tmin = −0.143 GeV2) and, therefore, the Z − γ interference is barely detectable.
Moreover, the pure Z contribution of

∣∣∣M̄Z

∣∣∣2 can be safely neglected, being O(G2
F ).
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3.2. SM cross section and experimental sensitivity

3.2.3 Weak W+ boson contribution
Since the experiment is characterized by an incoming beam of both µ±, in the case of
scattering between positive muons and electrons there could be also the process µ+e− →
νeν̄µ. This time the scattering is mediated by the W+ boson and its corresponding tree
level diagram is

W+

e− νe

ν̄µµ+

Also in this case, being |t| � m2
W , it is possible to employ the Fermi theory; proceeding in

this way, the amplitude simply reads

Mν̄ν = −iGF√
2
ū(p3)γµ(1 − γ5)u(p1)v̄(p4)γµ(1 − γ5)v(p2). (3.27)

It is already clear that the cross section for this process will be highly suppressed by the
presence of G2

F : indeed, after a little bit of simple algebra and neglecting O(m2/s) terms,
it is possible to find

σ(µ+e− → νeν̄µ) = G2
F (M2 + 2s)

12π ∼ 10−12 GeV−2 (3.28)

for s = 0.164 GeV2, which is several order of magnitude smaller compared to the pure QED
one (σ0 ∼ 10−2 GeV−2), similarly to the pure Z contribution in µe scattering; therefore,
this process can be safely neglected.

3.2.4 Higgs contribution
The amplitude for diagram (c) can be easily written as

MH = −imM

v2 ū(p3)u(p1)
1

t−m2
H

ū(p4)u(p2). (3.29)

All the Higgs contributions, the pure one in
∣∣∣M̄H

∣∣∣2 and also the two interference with γ
and Z, can be neglected; indeed, taking the ratio of the Higgs amplitude respect to that
of the Z boson, i.e.

MH

MZ

∝ mM

M2
Z

t−M2
Z

t−M2
H

t�M2
Z,H≈ 5 × 10−5

(125)2 (3.30)

it is possible to note that it is already very suppressed, implying that all the Higgs
contributions are beyond the resolution of MUonE.
Then, the total SM differential cross section at LO reads

dσ−LO
dt

= dσ0

dt

(
1 + δ−Z

)
(3.31)
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3.3. NLO contributions

3.2.5 µ−e− → µ−e− vs µ+e− → µ+e− cross section
So far it has been only discussed the scattering of muons with electrons; nevertheless, as
mentioned a couple of times and remembered in subsection (3.2.3), in the incident beam
there could be either muons and antimuons. However, the QED and weak contributions
to the µe scattering behave differently in considering µ+ instead of µ−. Indeed, while
Eq. (3.21) holds also for antimuons, as a result of the QED invariance under both charge
conjugation (C) and parity (P), the same is not true for the Z contribution (3.26), being
parity violated by weak interactions 6. As a consequence, the total differential cross section
for the µ−e− → µ−e− and µ+e− → µ+e− processes will have the same QED part and a
different weak one. In particular, after a very easy computation, the general result reads

dσ±LO
dt

= dσ0

dt

(
1 + δ±Z

)
, (3.32)

where the weak contribution is

δ±Z = − GF t

4πα
√

2

[
a2
θ ± t(s− u)

2f(s, t)

]
. (3.33)

For sake of clarification, from now on it will be reported the computations and the
corresponding plots only for muons; nevertheless, the final results for both muons and
antimuons will still be provided.

3.3 NLO contributions
Next-to-leading order (NLO) QED corrections to Eq. (3.32) has been computed a long
time ago in [11-17]; however in those computations there have been made some very
specific assumptions, as a vanishing electron mass, the soft approximation, and so on.
A more recent and general calculation of the full set of NLO QED and EW corrections,
where some of these simplifications are relaxed, can be found in [59].
The only hadronic contribution to Eq. (3.32) at NLO is provided by the LO QED diagram
with one HVP insertion in the virtual photon propagator, i.e.

HADHADHADHADHADHADHADHADHADHADHADHADHADHADHADHADHAD

e−

γ

e−

γ

µ− µ−

6Notice that the question does not even arise in the case in which the mediator is W+.
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3.4. Heavy NP mediators

This contribution can be evaluated simply remembering the factorization property for the
VP function already used in Eq. (2.17), which holds both for leptonic and hadronic VP,
leading to an amplitude

MNLO,H = Mγ[Π̄Had(t)]. (3.34)

It is now easy to obtain the contribution to the total unpolarized amplitude squared, which
is given by the interference term with the pure QED:

MNLO,H = 1
4
∑
spin

2Re(M∗
γMNLO,H) = −2Π̄Had(t)|M̄γ|2 = 2∆αHad(t)|Mγ|2 (3.35)

3.4 Heavy NP mediators
In this section I will analyze possible heavy NP effects in low-energy collisions of positive
and negative muons with electrons. The mass Λ of the mediators are assumed to be much
larger than O(1GeV), allowing the employment of an EFT approach in order to take into
account the leading NP contributions.

3.4.1 Effective Lagrangian
The most general effective Lagrangian for charged leptons which is invariant under the
electromagnetic gauge group U(1)em can be written, up to D = 6 operators, as

LLEFT = 1
Λ2

[
dprst1 (ēpLerR) (ēsLetR) + h.c.+ .

dprst2 (ēpLγµerL) (ēsLγµetL) +
dprst3 (ēpLγµerL) (ēsRγµetR) +

dprst4 (ēpRγµerR) (ēsRγµetR)
]
+

dpr0
Λ (ēpLσµνerR)Fµν + h.c.

(3.36)

where, again, p, r, s, t are flavor indices. The dipole operators can contribute at tree level
to the µe scattering through a double operator insertion; nevertheless all of them can
be safely neglected thanks to the current tight experimental constraints on the leptonic
dipole moments. Moreover, also semileptonic operators should be, in principle, added
to Eq. (3.36); however they can contribute only at loop level through the generation of
operators already present in LLEFT, but this time suppressed by 1/Λ4. Then, they can be
neglected without problems.
Once assured that the Lagrangian of Eq. (3.36) is sufficient for our purpose, it is possible
to open it and to explicit the flavor indices in order to select the structures of interest.
Using the Fierz Identities (A.1), the starting Larangian can be written as the sum of two
contributions:

LLEFT = LLFC + LLFV (3.37)
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3.4. Heavy NP mediators

where the lepton flavor conserving (LFC) piece reads

LLFC = 1
Λ2

[
(a1 + ia2) (µ̄LµR) (ēLeR) + h.c.+

(a3 + ia4) (µ̄LeR) (ēLµR) + h.c.+
(a5 + ia6) (µ̄LµR) (ēReL) + h.c.+
a7 (µ̄LγµµL) (ēLγµeL) + a8 (µ̄RγµµR) (ēRγµeR) +

a9 (µ̄LγµµL) (ēRγµeR) + a10 (µ̄RγµµR) (ēLγµeL)
]

(3.38)

while the lepton flavor violating (LFV) one is

LLFV = 1
Λ2

[
b1 (µ̄LeR) (µ̄LeR) + b2 (µ̄ReL) (µ̄ReL) +

b3 (µ̄LeR) (µ̄ReL) + b4 (µ̄LγµeL) (µ̄LγµeL) +

b5 (µ̄RγµeR) (µ̄RγµeR) + h.c.
]
.

(3.39)

While Eq. (3.38) contributes to the process µ±e− → µ±e−, Eq. (3.39) violates the electron
and muon family numbers of two units (but still preserving the total lepton number),
generating, for example, the scatterings µ+e− → µ−e+ and e−e− → µ−µ− ; here, the
dimensionless coefficients ak (with k = 1, .., 10) are real while bl (with l = 1, .., 5) are
complex. Let’s note that, having in mind the µe elastic scattering, only flavor structures
with two electrons and two muons have been taken into account; however, from Eq. (3.36)
also operators with one (three) electron and three (one) muons can arise, providing the
additional LFV processes µ±e− → e±e− and µ±e− → µ±µ−. Nevertheless both of them
are highly constrained by the experimental bounds [60] of the processes µ → eγ and
µ → 3e, which are

Br(µ+ → e+γ) ≤ 4.2 × 10−13 and Br(µ+ → e+e−e+) ≤ 1 × 10−12.

Since they are very rare processes and our purpose relies in trying to understand under what
conditions NP effects are maximum in µe scattering, from now on only the Lagrangians
(3.38) and (3.39) will be considered.

3.4.2 Heavy NP in µ±e− → µ±e− scattering
The leading corrections induced by LLFC to the LO QED differential cross section dσ0/dt
are given by7

dσ±LFC
dt

= dσ0

dt
δ±LFC (3.40)

where, once defined z+ = s and z− = u,

δ±LFC = t

8παΛ2
1

f(s, t) [2mMaS(z∓ − z±)

+ 2mMaT (z± − t−M2 −m2)

+ aV f(s, t) + aA
2 t(z± − z∓)]

(3.41)

7The detailed computation can be found in (A.2).
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3.4. Heavy NP mediators

with the coefficients aS,V,T,A defined as

aS = a1 + a5
aT = a3
aV = a7 + a8 + a9 + a10
aA = a7 + a8 − a9 − a10.

(3.42)

In Eq. (3.41) terms suppressed by (t/Λ2)2 and a2
θ have been neglected. It is interesting

to see that by means of the EFT approach we are taking into account all possible NP
contributions due to heavy mediators of mass ∼ Λ independently on their nature. Indeed
if, for example, the heavy DOF which has been integrated out was a scalar (pseudoscalar),
we would end up with the same contribution of Eq. (3.41) simply with a1 = a5 (a1 = −a5)
and with all the other ak equal to zero; as a consequence, for a heavy scalar δLFC depends
only on aS, while for a pseudoscalar it would be null. An explicit example of this can be
provided using the Higgs boson as a mediator. The amplitude for this process is (3.29)
and the corresponding interference with the photon ones lead to the unpolarized squared
matrix element

MγH

t�M2
H≈ 32παm2M2

v2M2
Ht

(s− u). (3.43)

Then, the corresponding shift to the total differential cross section is

dσ−

dt
= dσ0

dt
δ−γH

with
δ−γH = t

8πα
1

f(s, t) [2mMa(s− u)] , (3.44)

where it has been defined a = 2mM/M2
H and Λ2 = 1/(

√
2GF ). The reasonment done

above is true also for other kind of particles: the leading effect of a heavy vector (axial)
boson to δLFC is obtained choosing a7 = a8 = a9 = a10 (a7 = a8 = −a9 = −a10) and all
other ak = 0. Therefore, for a heavy (axial) vector, δLFC depends only on the parameter
(aA) aV . Similarly, the coefficient aT is introduced taking into account heavy spin-1 tensor
particles.
A necessary condition for NP to affect the measurements of the MUonE experiment is
that they are larger than the expected experimental resolution of O(10−5). Barring large
accidental cancellations among the aS,T,V,A contributions to δ±LFC, at MUonE’s energies
this implies

|aA,V | & 10
(

Λ
1TeV

)2

|aS,T | & 104
(

Λ
1TeV

)2

. (3.45)

This is well illustrated by the following plots where, respectively, values of the coefficients
which are lower (3.2) and comparable (3.3) to the bounds of (3.45) are taken into account.
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3.4. Heavy NP mediators

Figure 3.2: The red line represents the NP contribution to the µe differential cross
section, while the blue area is the sensitivity range of MUonE. In this case Λ ∼ 102 GeV
and aA = aV = aS = aT = 10−2; as expected, choosing values of the parameters that
are smaller than the lower bounds (3.45), makes the NP contribution not detectable at
MUonE.

Figure 3.3: The red line represents the NP contribution to the µe differential cross
section, while the blue area is the sensitivity range of MUonE. In this case Λ ∼ 102 GeV
and aA = aV = 10−1 and aS = aT = 102; as expected, choosing values of the parameters
which correspond to the lower bounds (3.45), makes the NP contribution detectable at
MUonE.

Another interesting way to observe it consists in plotting δ−LFC as a function of both t and
the coefficients aA,V,S,T .
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3.4. Heavy NP mediators

Figure 3.4: The two plots represent the dependence of δ−LFC on t and aV (up) or aA
(down). As it can be seen, δ−LFC reach MUonE sensitivity of O (10−5) only for t → tmin
and if the Wilson coefficients take the lower bound of (3.45).
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Figure 3.5: The two plots represent the dependence of δ−LFC on t and aT (up) or aS
(down). As it can be seen, δ−LFC reach MUonE sensitivity of O (10−5) only for t → tmin
and if the Wilson coefficients take the lower bound of (3.45).

Nevertheless these bounds should be immediately compared to those obtained requiring
the perturbativity and the unitarity of the theory: the former brings to the condition
|ak|, |bl| ≤ 16π2, while the latter implies:

|ak|, |bl|
Λ2 <

16πηk,l
s

(3.46)
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3.4. Heavy NP mediators

with ηk,l coefficients of O(1). The perturbativity bounds immediately exclude any kind
of pollution to the elastic µe scattering cross section from both aT and aS which can be,
then, safely neglected; this fact allows to define also two observables in order to prove
separately both aA and aV . This can be done simply taking Eq. (3.41) and evaluating at
the endpoint t = tmin the two quantities

(δ+
LFC + δ−LFC)tmin

= aV
4παΛ2 tmin

(δ+
LFC − δ−LFC)tmin

= aA
4παΛ2 (tmin − 2M2 + 2s),

where the electron mass m has been neglected.

3.4.3 Heavy NP in e+e− → µ+µ−

The LFC Lagrangian of Eq. (3.38) contributes also to the process e+e− → µ+µ−, whose
cross section and forward-backward asymmetry AFB have been widely studied and precisely
measured at LEP.
At energies

√
s � M , both the electron and muon masses can be neglected and the total

cross section reads 8

σ(e+e− → µ+µ−) = σSM + σNP, (3.47)

where

σSM = 4πα2

3s + αGF

3
√

2
a2
θM

2
Z

s−M2
Z

+ G2
F

96π
(
a2
θ + 1

)2 sM4
Z

(s−M2
Z)2

σNP = 1
Λ2

(
aV
α

6 + aA
GF

48π
√

2
sM2

Z

s−M2
Z

)
.

(3.48)

Similarly, it is possible to compute the the new asymmetry, which is

AFB = ASM
FB

[
1 + r(s)

Λ2

(
aA (s−M2

Z)√
2GFM2

Z

− aV s

16πα

)]
, (3.49)

with

ASM
FB =

3sGFM
2
Z

[
4πα

√
2 (s−M2

Z) + a2
θsGFM

2
Z

]
128π2α2 (s−M2

Z)2 + (a2
θ + 1)2

s2G2
FM

4
Z + 16πα

√
2a2

θGFM2
Zs (s−M2

Z)

the usual full SM prediction, and

r(s) = 128π2α2 (s−M2
Z)2 − s2G2

FM
4
Z

128π2α2 (s−M2
Z)2 + s2G2

FM
4
Z

.

It is worth to underline that in the NP contributions all the suppressed terms, as (s/Λ2)2

and those multiplied by aθ, have been systematically neglected. For a detailed computations
of the NP contributions to both the cross section and the forward-backward asymmetry
check (A.4).

8The detailed computations can be found in (A.3) and (A.4)
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NP effects on these two observables can be constrained by means of a comparison of the
LEP-II data [38], which read

σ (e+e− → µ+µ−)EXP
σ (e+e− → µ+µ−)SM

= 0.9936 ± 0.0141 (3.50)

AEXP
FB (e+e− → µ+µ−)
ASM

FB (e+e− → µ+µ−) = 0.9925 ± 0.0212 (3.51)

where these two values refer to the the mean value of those ratios in the energy range
130 ≤

√
s ≤ 207 GeV. Imposing these two constraints at the 2σ level, it follows that the

coefficients aA,V must satisfy the bound

|aA,V | . 1
(

Λ
1 TeV

)2

. (3.52)

It is immediate to see that this requirement doesn’t allow to fullfill the condition (3.45),
making NP not detectable at MUonE. Hereafter I report two exemplary plots which show
the consistence with this bound:

Figure 3.6: The black dashed line represents the averaged ratio R between the experi-
mental value of AFB and its SM prediction for the data taken at the following energies:
130, 136, 161, 172, 183, 189, 192, 196, 200, 202, 205, 207 GeV; the green boundary represents
the experimental uncertainty; the black dots correspond to the ratio of the experimental
AFB with the new prediction for this observable (i.e. that with NP contributions) with
aA = aV = 10. They turn out to be absolutely not consistent with the experimental
bounds.
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Figure 3.7: The red dashed line represents the averaged ratio R between the experi-
mental value of AFB and its SM prediction for the data taken at the following energies:
130, 136, 161, 172, 183, 189, 192, 196, 200, 202, 205, 207 GeV; the green boundary represents
the experimental uncertainty; the black dots correspond to the ratio of the experimental
AFB with the new prediction for this observable (i.e. that with NP contributions) with
aA = aV = 1. They turn out to be consistent with the experimental bound, differently
from the previous case where aA = aV = 10. This confirms the theoretical bounds provided
by Eq.(3.52)

Let’s now analyze the possibility of still having heavy new physics, but at energies well
below the electroweak scale v.
Since we want to rely again on the EFT approach, it is necessary to require that

√
s � Λ;

for this reason, LEP-II data cannot longer be used, differently from the of low-energy ones
from PEP [39], PETRA [40] and TRISTAN [41], which ran at a center of mass energy√
s = 29, 35, 59 GeV respectively. The measured values of σ(e+e− → µ+µ−) and of AFB

provides the following ratios

σ (e+e− → µ+µ−)EXP
σ (e+e− → µ+µ−)SM

=


0.994 ± 0.022,

√
s = 29 GeV

0.984 ± 0.027,
√
s = 35 GeV

0.987 ± 0.019,
√
s = 58 GeV

(3.53)

AFB (e+e− → µ+µ−)EXP
AFB (e+e− → µ+µ−)SM

=


0.995 ± 0.164,

√
s = 29 GeV

1.076 ± 0.170,
√
s = 35 GeV

0.977 ± 0.065,
√
s = 58 GeV

(3.54)

These experimental values are very useful to constrain the coefficients aV and aA; indeed,
observing that s � M2

Z , the two equations (3.47) and (3.49) can be safely approximated
by

σ(e+e− → µ+µ−) ≈ 4πα2

3s + αaV
6Λ2 (3.55)

AFB ≈ ASM
FB

(
1 − aA√

2GFΛ2

)
(3.56)

allowing to probe separately aA and aV .
Once imposed PEP bounds it is possible to find that these two coefficients must satisfy

|aV | .
(

Λ
TeV

)2

, |aA| . 10−2
(

Λ
TeV

)2

(3.57)
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which, as seen before, do not allow visible NP effects at MUonE, since they would provide
δLFC < 10−5. Nevertheless it is important to underline that what has just been discusses
is true for

√
s � Λ < v, i.e. for Λ ≥ 100 GeV, since for smaller values the EFT approach

would break down.
At mass scales below ∼ 100 GeV new particles are strongly disfavoured by LEP bounds. In
this scenario, the effective couplings aV and aA can be present only through the exchange
of a vector boson U that couples to leptons in a ”V-A way”, i.e. ¯̀γµ(g

′(`)
V − g

′(µ)
A )`U`.

Equations (3.47) and (3.49) are still true, once replaced aX/Λ2 → 4geXg
µ
X/(s−M2

U ), with
X = V,A. These couplings are constrained by both LHC experiments (for the mass range
10 .MU . 50 GeV) [42] and the BaBar experiments (MU . 10 GeV) [43]; in the former
case it is possible to refer to Fig. 6 of [42], which provides the bounds for the pure vector
coupling gV as a function of MU , while for the latter one it is available the upper bound
gV . 7 × 10−4. In both cases, assuming that these constraints hold also for gA and barring
accidental cancellations, it easily follows that contributions of NP lying below v do not
affect µe scattering at MUonE.

3.5 Heavy NP and LFV effects
After the detailed analysis of LLFC and the possibility to pollute MUonE measurements,
in this section the attention is turned on the LFV case provided by (3.39). As already
mentioned, LLFV violates both the electron and muon family numbers by two units (still
preserving the total lepton number) generating, for example, the processes µ±e− → e±e−

and µ±e− → µ±µ−. Although there are no relevant experimental bounds on these
two processes, the coefficients of LLFV can be still constrained analyzing the muonium-
antimuonium (Mu − Mu) oscillation (with Mu and Mu which refer, respectively, to µ+e−

and µ−e+ bound states)9.
It has been shown by Feinberg and Weimberg [46] that the time integrated probability for
the Mu − Mu oscillation satisfies

P (Mu − Mu) ' 2|〈Mu|LLFV|Mu〉|2

Γ2
µ

(3.58)

where Γµ = G2
FM

5/192π3 ≈ 3 × 10−19GeV is nothing else that the muon decay rate. The
evaluation of the matrix element provides10

|〈Mu|LLFV|Mu〉| = |b1 + b2 − 3b3 + 4b4 + 4b5|
2πa3

0Λ2 (3.59)

where a0 = (αm)−1; then, exploiting all the numerical values, the prediction for the
oscillation probability reads

P (Mu − Mu) ≈ 10−9
(1TeV

Λ

)4
|b1 + b2 − 3b3 + 4b4 + 4b5|2 (3.60)

which has to be compared with the current experimental bound [47]

P (Mu − Mu) ≤ 8.2 × 10−11 (3.61)
9Historically this phenomenon has been predicted by Pontecovo [44] in 1957, well before the discovery

of muonium [45] in 1960.
10See (A.5) for details on the computation.
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at the 90% of C.L.. It is almost immediate to notice that (3.61) is satisfied by the
theoretical prediction of P if and only if the coefficients do not exceed the values

|b1,2| . 0.3
(

Λ
1TeV

)2

, |b3,4,5| . 0.1
(

Λ
1TeV

)2

. (3.62)

Also in this case, in order to understand whether NP flavor violation effects can affect
MUonE measurements, it is necessary to check if, saturating the bounds of Eq. (3.62),
the dominant contribution to the µ+e− → µ−e+ differential cross section is higher than
O(10−5).
The five amplitudes associated to the terms of (3.39) are

M1 = ib1

4Λ2 ū(p3)(1 + γ5)u(p1)v̄(p2)(1 + γ5)v(p4)

M2 = ib2

4Λ2 ū(p3)(1 − γ5)u(p1)v̄(p2)(1 − γ5)v(p4)

M3 = ib3

4Λ2 ū(p3)(1 + γ5)u(p1)v̄p(2)(1 − γ5)v(p4)

M4 = ib4

4Λ2 ū(p3)γµ(1 − γ5)u(p1)v̄(p2)γµ(1 − γ5)v(p4)

M5 = ib5

4Λ2 ū(p3)γµ(1 + γ5)u(p1)v̄(p2)γµ(1 + γ5)v(p4).

In this case it is convenient to perform the computations by means of Mathematica, being
the calculation of the unpolarized squared amplitude very long and easily subject to errors,
even working with the simplification of m = M = 0. In this limit, the final result of the
amplitude, combined with the usual reference formulas in (A.1), provides

dσLFV

dt
= dσ0

dt
δLFV, (3.63)

where

δLFV =
(

t

8παΛ2

)2 5∑
l=1

|bl|2cl(s, t), c1,2,3(s, t) = t2

f(s, t) , c4,5(s, t) = (s+ t)2

f(s, t) .

(3.64)
Being the functions c1,2,3(s, t) and c4,5(s, t) (at most) of order O(10−1) and O(1) respectively,
it’s easy to check that the MUonE measurements can be affected by NP LFV effects if

|b1,2,3| & 104
(

Λ
1TeV

)2

, |b4,5| & 103
(

Λ
1TeV

)2

(3.65)

which, however, are excluded by the experimental bound on the muonium-antimuonium in
Eq. (3.62).

3.6 NP above the EW scale
So far it has been investigated the case of NP at scales Λ . v, where v ∼ 246 GeV is
the electroweak VEV; in such a scenario, the construction of the most general effective
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Lagrangian requires to add operators up to dimension D = 6 invariant only under the
electromagnetic gauge group U(1)em, leading to Eq. (3.37), (3.38) and (3.39).
Nevertheless, if NP lies above the EW scale, the effective Lagrangian must be invariant
under the full SM gauge group; the full list of all the 59 D = 6 operators which satisfy
this requirement can be found in (A.7) while the detailed way to construct them is well
illustred and explained in [61] and [62]. The previous expressions must be substituted with

LSMEFT = 1
Λ2

[
cprst``

(
¯̀
pLγ

µ`rL
) (

¯̀
sLγµ`tL

)
+

cprst`e

(
¯̀
pLγ

µ`rL
)

(ēsRγµetR) +

cprstee (ēpRγµerR) (ēsRγµetR)
]
,

(3.66)

where ` and e are the SU(2)L doublet and singlet respectively. As for the previous case, the
Lagrangian should contain also semileptonic operators, as

(
¯̀
pLγ

µ`rL
)

(q̄sLγµqtL); however,
their contribution to the µe scattering can takes place only at loop level, allowing us to
safely neglect them since only the largest possible NP contributions are interesting. It is
clear that this Lagrangian cannot contain again the four-lepton scalar operators present
in the case of U(1)em, being not invariant under the full SM group; moreover, having
enlarged the symmetries of the theory, i.e. restricted the number of allowed operators, it is
almost obvious that some of them will be no more present. Indeed, matching the Wilson
coefficients of LSMEFT and LLFC at tree level, it is possible to find

a1 = a2 = a3 = a4 = 0,

a5 + ia6 = −2c2112
`e ,

a7 = c1122
`` + c2211

`` + c1221
`` + c2112

`` ,

a8 = c1122
ee + c2211

ee ,

a9 = c2211
`e ,

a10 = c1122
`e ,

(3.67)

while the matching with LLFV reads

b1 = b2 = 0, b3 = −2c2121
`e ,

b4 = 2c2121
`` , b5 = c2121

ee .

(3.68)

In this scenario, then, the results of Eqs. (3.41), (3.47) and (3.49) are still correct, with
the exception that now aS = a5 and aT = 0; similarly, in the LFV sector Eq. (3.60) is
valid, this time with the lack of the coefficients b1 and b2.
Another interesting fact, which arises as a result of the underlying SU(2)L, symmetry is
that LSMEFT contains interactions with neutrinos; using directly the relations provided by
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(3.67), the most important ones are

Lν
SMEFT = 1

Λ2 [a9 (ν̄µLγµνµL) (ēRγµeR) +

a11 (ν̄µLγµνµL) (ēLγµeL) +
a12 (ν̄eLγµeL) (µ̄LγµνµL

) +
a12 (ν̄µLγµeL) (ēLγµνeL

) + ...],

(3.69)

where the new real coefficients are

a11 = c1122
`` + c2211

`` , a12 = c1221
`` + c2112

`` (3.70)

and the dots in Eq. (3.69) stand for terms contained in Eq. (3.66) but not phenomenolog-
ically relevant. The most interesting ones are the scattering νµe → νµe, the annihilation
e+e− → ν̄µνµ and the decay µ → eν̄eνµ. The inclusion of NP effects in the latter process
brings to a redefinition of the Fermi constant, replacing G0

F/
√

2 = 1/(2v2) with

G0
F√
2

= GF√
2

+ a12

4Λ2 (3.71)

where GF is the experimental value extracted from the measure of the decay rate. It is
important to notice that this shift affects every observable linked to weak interactions and
a very smart way to test such a NP contribution is to analyze observables which do not
receive any direct NP effect, such as the tau decay τ → `ν̄`ντ . Nevertheless, comparing
with τ decay data it is possible to find the constraint

|a12| . 0.5
(

Λ
1 TeV

)2

(3.72)

which forbids any observable NP effect in µe scattering due to a12. Indeed, the presence
of this contribution would provide an additional term to the total cross section of the
process µ+e− → ν̄µνe which is almost similar to that of Eq. (3.28); the difference is only
in the coefficient which, since we want to deal with the interference term, can be recovered
substituting one GF/

√
2 factor with 2a12/(4Λ2), providing

σNP(µ+e− → ν̄µνe) = GFa12(M2 + s)
12

√
2πΛ2 . (3.73)

Imposing the previous bound, this contribution turns out to be smaller than its SM
analogous, being σNP(µ+e− → ν̄µνe) ∼ 5 × 10−14GeV−2 and not detectable at MUonE.

3.6.1 Heavy NP in νµe
− → νµe

−

As already mentioned, the Lagrangian of Eq. (3.66) gives rise to interactions correlated to
the µe scattering which involve neutrinos. The first process to investigate is the scattering
νµe
− → νµe

−, described by the two Feynman diagrams:
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Z

e− e−

νµνµ νµ

e−

νµ

e+

whose amplitudes are 11

MZ = −iG0
F√
2

M2
Z

M2
Z − t

ū(p3)γµ(1 − γ5)u(p1)[gLū(p4)γµ(1 − γ5)u(p2) + gRū(p4)γµ(1 + γ5)u(p2)]

(3.74)

MNP = ia12

4Λ2 ū(p3)γµ(1 − γ5)u(p1)[ū(p4)γµ(1 − γ5)u(p2) + ū(p4)γµ(1 + γ5)u(p2)] (3.75)

so that the sum of them simply reads

Mtot = −iG0
F√
2
ū(p3)γµ(1 − γ5)u(p1)[g

′

Lū(p4)γµ(1 − γ5)u(p2) + g
′

Rū(p4)γµ(1 + γ5)u(p2)],

(3.76)

where the new chiral coefficients explicitly read

g
′

L =
(
s2
θ − 1

2

)(
M2

Z

M2
Z − t

)
−

√
2a11

4GFΛ2

g
′

R = s2
θ

(
M2

Z

M2
Z − t

)
−

√
2a9

4GFΛ2 .

The total amplitude (3.76) is the same of the weak one, but with different chiral coefficients;
then, the total tree level cross section can be recovered directly from the SM one simply
applying the replacements gL,R → g

′
L,R, leading to

σ(νµe− → νµe
−) = (G0

F )2s

π

(
|g′

L|2 + |g′
R|2

3

)
. (3.77)

Lastly, defining gV,A = gL±gR and imposing the experimental bounds gV = −0.040±0.015
and gA = −0.507 ± 0.014 at the σ level, it follows, barring accidental cancellations,

|a9,11| .
(

Λ
1 TeV

)2

. (3.78)

11From now on the superscript e will be removed and the chiral coefficients will refer only to the charge
leptons
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3.6.2 Heavy NP in e+e− → νµν̄µ

The second interesting process to analyze is the annihilation e+e− → νµν̄µ since the
presence of NP modifies the number of neutrinos Nν .
The diagrams for this process are

Z

e+

e− νµ

ν̄µ e+

e−

ν̄µ

νµ

and the corresponding amplitudes

MZ = −iG0
F√
2

M2
Z

M2
Z − s

ū(p3)γµ(1 − γ5)v(p4)[gLv̄(p2)γµ(1 − γ5)u(p1) + gRv̄(p2)γµ(1 + γ5)u(p1)]

(3.79)

MNP = i

4Λ2 ū(p3)γµ(1 − γ5)v(p4)[a9v̄(p2)γµ(1 − γ5)u(p1) + a11v̄(p2)γµ(1 + γ5)u(p1)]
(3.80)

so that their sum reads

Mtot = −iG0
F√
2
ū(p3)γµ(1 − γ5)v(p4)[g

′

Lv̄(p2)γµ(1 − γ5)u(p1) + g
′

Rv̄(p2)γµ(1 + γ5)u(p1)],

(3.81)

where the new coefficients are still those provided above.
As for the previous process, also in this case the total amplitude is the same of the SM
one, except for the new coefficients; then, making the proper substitutions, it is possible
to immediately find

σ(e+e− → νµν̄µ) = (G0
F )2s

6π
(
|g′

L|2 + |g′

R|2
)
. (3.82)

Factorizing the SM contribution, this last result can be rewritten as

σ(e+e− → νµν̄µ) = σSM(e+e− → νµν̄µ)
[
1 + 1√

2GFΛ2

(
s−M2

Z

M2
Z

)(
a11g

′
L + a9g

′
R

|g′
L|2 + |g′

R|2

)]
(3.83)

where terms ∝ 1/Λ4 have been neglected. Let’s remember that in the SM the couplings of
neutrinos to the Z boson are flavor blind, i.e. they are the same for every generation and
not only for the muonic one; then, it is simple to define the total cross section

σ(e+e− → νν̄) = σSM(e+e− → νν̄)
[
3 + 1√

2GFΛ2

(
s−M2

Z

M2
Z

)(
a11g

′
L + a9g

e
R

|geL|2 + |g′
R|2

)]
,
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which can be rearranged as

σ(e+e− → νν̄) = Nν
(GF )2s

6π

(
M2

Z

M2
Z − s

)2 (
|g′

L|2 + |g′

R|2
)

(3.84)

once defined the new total number of neutrinos as

Nν = 3 + 1√
2GFΛ2

(
s−M2

Z

M2
Z

)(
a11g

′
L + a9g

′
R

|g′
L|2 + |g′

R|2

)
. (3.85)

Comparing this last result with the measurement Nν = 2.92 ± 0.05 from LEP-II [38], it
follows that the two coefficients a9 and a11 must satisfy a more stringent bound respect to
the previous one, which is

|a9,11| .
(

Λ
1 TeV

)2

. (3.86)
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Chapter 4

Light new physics effects at MUonE

In this chapter I will focus on the analysis of light mediators, with masses of O(1 GeV),
and their contributions on the low-energy µe scattering differential cross section. In this
scenario the EFT approach is no more allowed and it is necessary to specify the spin and
the interactions of the new mediators with the SM particles. In particular, I will take into
account the cases of both a spin-0 and a spin-1 dynamical fields: in the former case the
SM is supplemented by axion-like particles (ALPs) and it is discussed in Sec. (4.1), while
the latter is representative of models with light Dark Photons or Z ′ vector bosons, which
will be analyzed respectively in Sec. (4.2) and Sec. (4.3).

4.1 Axion-like particles
Axion-like particles (ALPs) represent a very interesting SM extension, where light pseu-
doscalar bosons arise naturally as pseudo-Nambu-Goldstone-Bosons of an underlying
broken symmetry. These candidates are strongly motivated since they can give an answer
to some of the open questions briefly described in Sec. (1.2) as, for example, the origin of
dark matter and the hierarchy problem.
The most general Lagrangian describing the interactions of a spin zero particle Φ with
leptons is

Lint.
Φ = ¯̀

iL

(
CΦ
R

)
ij
`jRΦ + ¯̀

iR

(
CΦ
L

)
ij
`jLΦ + h.c. (4.1)

where CΦ
R and CΦ

L are off-diagonal matrices which induce LFV [48] and CP violating effects.
Nevertheless, imposing both the flavor and CP conservation, i.e. requiring that Cij

L,R ∝ δij ,
it is possible to recover the standard and familiar expression

Lint.
s,a = ysl ¯̀̀ s+ yal ¯̀γ5`a (4.2)

with s(a) a real scalar (pseudoscalar) particle, ` can be either e, µ and where it has been
defined ys` = Re(Cs

R + Cs
L)`` and ya` = Im(Ca

R − Ca
L)``.

The TL contribution to the µe scattering differential cross section comes from a t channel
exchange of both an a and a s particles due to Lint.

s,a
12. The corresponding Feynman

diagrams are simply

12Nonetheless, not imposing any constraint on flavor conservation would allow also LFV effects by
means of t and s channel processes.
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s

e− e−

µ−µ−

a

e− e−

µ−µ+

and the two related amplitudes read

Ms = −yseysµū(p3)u(p1)
−i

t−m2
s

ū(p4)u(p2)

Ma = −yaeyaµū(p3)γ5u(p1)
−i

t−m2
a

ū(p4)γ5u(p2),
(4.3)

providing a total amplitude

M = Mγ + MZ + Ms + Ma.

Then, the total unpolarized squared matrix element is

|M|2 = |Mγ|2 + MγZ + |Ms|2 + Mγs + |Ma|2 (4.4)

where the first two contributions (and also the absence of |M̄Z |2) have been already
discussed in Sec. (3.2), while the other three terms are explicitly

|Ma|2 = t2(yaeyaµ)2

(t−m2
a)2

|Ms|2 = (yseysµ)2

(t−m2
s)2 [(t− 4M2)(t− 4m2)]

Mγs = 16παmM
t

(yseysµ)
(t−m2

s)
[t− 2(M2 +m2 − s)].

(4.5)

Actually in Eq. (4.4) there should be also Mγa, Msa, MZs(a); nevertheless, the first two
turn out to be exactly zero once computed the traces, while the other ones are highly
suppressed by the presence of the factor GFmMg2

V (A).
Finally, referring as usual to (A.1) for the reference formulas, the contribution to the
differential cross section can be easily computed to be

dσ±s,a
dt

= dσ0

dt
(1 + δ±sLFC + δ±aLFC), (4.6)

with

δ±sLFC =
(

t

8πα

)2 (yseysµ)2

(t−m2
s)

2
(t− 4m2) (t− 4M2)

f(s, t)

± yseysµ
2πα

mM

(t−m2
s)

(t2 − 2t (m2 +M2 − s))
f(s, t)

(4.7)
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δ±aLFC =
(

t

8πα

)2 (yaeyaµ)2

(t−m2
a)

2
t2

f(s, t) . (4.8)

In order to understand whether these contributions can be detected at MUonE it is firstly
necessary to have some upper bound for yΦe and yΦµ (with Φ = s, a). The most stringent
constraint on the former comes from the electron g− 2 and it can be found once calculated
the contribution to the anomaly ae coming from Lint

Φ (in the limit m � mΦ) and imposed
the experimental bound |∆ae| < 10−12; it reads13

|yΦe| . 5 × 10−4
(

mΦ

0.1 GeV

)
. (4.9)

Proceeding in a similar way, by means of the experimental value of the muonic g − 2 and
other low energy experimental constraints [53], it follows

|yΦµ| . 2 × 10−3 (4.10)

for values of mΦ smaller than a few GeV. The combination of these two bounds leads to
yΦeyΦµ ≤ 10−6(mΦ/0.1 GeV), constraining δΦ

LFC ∼ 10−7 and, so, not detectable at MUonE.
Although the TL turned out to be not visible, it is important to underline the fact that it
could not be the dominant contribution. This can happen if one of the two couplings yΦ`
is so small that it approaches zero; in this case, the leading contribution would be some
one loop-induced vertex corrections.
At low energies, the general form of (4.2) for the description of ALP interactions with
fermions and photons, up to dimension-5 operators, is

LALP = 1
2∂µΦ∂µΦ − 1

2m
2
ΦΦ2 + e2cγγ

Λ ΦFµνF̃ µν − ∂µΦ
Λ

∑
ψ,i,j

ψ̄iγ
µ(vij − aijγ5)ψj (4.11)

where Λ stands for the EFT cutoff, F̃ µν = 1/2εµνρσFρσ is the dual field strength tensor
and the matrices vij, aij are hermitian and real. The interaction of the scalar field with
fermions in this new Lagrangian, however, can still be brought back to that of (4.2) by
means of the equation of motions. Indeed, the integration by part of this term lead to

− ∂µΦ
Λ ψ̄iγ

µ(vij − aijγ5)ψj I.B.P.= +Φ
Λ∂µ

[
ψ̄iγ

µ(vij − aijγ5)ψj
]

+ total derivative =

= Φ
Λ

[
ψ̄i
←
/∂ (vij − aijγ5)ψj + ψ̄i(vij + aijγ5)/∂ψj

]
= −iΦΛ

[
(mj −mi)vij + (mj +mi)aijγ5

]
,

(4.12)

where in the last passage it has been exploited the Dirac equation, while the total
derivative has been neglected since the fields vanish at infinity; moreover, notice that the
”old” couplings ys` and ya` are the equivalent (but not the same) of the ”new” ones −vii/Λ
and −aii/Λ.
The Feynman rules for the two new interactions are

Φ

i

j

= 1
Λ

[
(mj −mi)vij + (mj +mi)aijγ5

]
.

13For the explicit expression of the ALP contribution to the anomaly of a given fermion ψi see (4.25).
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Φ

pα

kβ

= −4ie2

Λ cγγp
µkνεµανβ

However, since we are working in the LFC scenario, the condition i = j must be always sat-
isfied; this fact modifies the second Feynman rules, which now become simply (2m/Λ)aiiγ5.
The relevant diagrams are

e−

γ

e−Φ

µ− µ−

= MA

e− e−

γ

Φ
µ− µ−

= MB

e−

γ

e−e−

µ− µ−

= MC

e− e−

γ

µ−µ− µ−

= MD

In the following I will assume that the very small coupling which tends to zero is aee and
so it will be reported explicitly the results for MB and MD; an analogous analysis can
be brought on considering the opposite case, where the amplitudes MA and MC can be,
respectively, recovered substituting M → m. Focusing only on the part of the diagrams
with the loop-vertex functions, which has, then, an uncontracted index14, the amplitudes
can be generally Lorentz-decomposed as

iMρ = ieū(p− q)Σρ(q2)u(p), (4.13)

with
Σρ
ii(q2) =

[
γσF ii

1

(
q2
)(

gρσ − qρqσ

q2

)
+ iσρσqσ

2M F ii
2

(
q2
)]
, (4.14)

14Let’s notice that it has been implicitly used the notation M = ieū(p4)γρu(p2)M∇〈o.
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where the explicit expressions of the two form factors F1,2(q2) depend on the fact that we
are dealing with the linear (∝ a) or the quadratic (∝ a2) contribution. The computation
of the loop diagrams with Mathematica and Package-X leads to the expressions

Fquad
1 µµ (q2) =

a2
µµM

2

4π2Λ2

[
B0(q2;M,M) + A0(mΦ) − A0(M)

M2 +m2
ΦC0(M2, q2,M2;mΦ,M,M)+

+ 2C00(M2,M2, q2;mΦ,M,M) − 2M2C11(M2,M2, q2;mΦ,M,M)
]

(4.15)

Fquad
2 µµ (q2) =

a2
µµM

3

4π2Λ2

[
C22(M2, q2,M2;mΦ,M,M) + 2C12(M2, q2,M2;mΦ,M,M)+

+C11(M2, q2,M2;mΦ,M,M)
]

(4.16)
for the quadratic term and

F lin
1 µµ(q2) = −q2 e

2cγγaµµM
2

4π2Λ2

[
C11(M2,M2, q2; 0,M,mΦ) + C11(M2,M2, q2;mΦ,M, 0)

]
(4.17)

F lin
2 µµ(q2) = −e2cγγaµµM

2

2π2Λ2

[
2C00(M2,M2, q2;mΦ,M,M) +M2C11(M2, q2,M2;mΦ,M,M)+

+ 2C00(M2,M2, q2;mΦ,M, 0) +M2C11(M2,M2, q2;mΦ,M, 0)
]

(4.18)
for the linear one, where the results have been left in term of the Passarino-Veltman
(PAVE) functions. In the explicit form of F lin

1,2 µµ, the functions C00 and C11 appear two
times, but they depend on different sets: this is a consequence of the fact that there is
also another diagram which should be considered, which is similar to the fourth one but
with the exchange of the photon and the scalar in the loop.
One can also compute the 1-loop corrections to the two diagrams with amplitudes (4.3) in
which the mediator is the ALP; however, without making any calculation, it is easy to
understand that these kind of contributions would be very small and, indeed, applying the
previous bounds they turn out to lie far beyond the sensitivity of MUonE. Indeed, going
back to the previous notation, the typical amplitude would be M1-loop

Φ ∝ y2
Φ`MΦ, where Φ

can be either s, a.
The total amplitudes would, then, be15

MB = ieMρ
Bū(p3)γρu(p1) = αa2M2

πΛ2 P (4.19)

MD = ieMρ
Dū(p3)γρu(p1) = 4α2cγγaM

2

Λ2 L (4.20)

where in P and L are contained the spinorial structures and the explicit expressions of
the PAVE functions. Now it is possible to compute the shift δALP which is induced in the
SM differential cross section by these diagrams. Since all of them can be parametrized

15For sake of convention, from now on it will be aadopted aµµ = a
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4.1. Axion-like particles

by (4.13), the computation can be performed only one time and, then, depending on the
contribution we want to analyze the proper form factors will be employed. The only
relevant ”product of diagrams” is that with the SM one mediated by the photon 16, i.e. it
is necessary to compute

M̄int = 1
42 Re

∑
spin

M∗
γM (4.21)

which, after the computation of the traces and the differential cross section through the
formulas in (A.1), provides

δALP = 2F1. (4.22)

In order to understand whether these contributions can be detectable at MUonE it is
necessary, as usual, to check if there are allowed values of a and mΦ (from experimental
bounds on other observables) for which δALP ∼ 10−5.
First of all, the evaluation of the PAVEs contained in the squared bracket of Eqs. (4.19)
and (4.20), respectively denoted as Squad and Slin, as a function of the ALP’s mass and t
provides the interesting plots

Figure 4.1: Dependence of P on t and the ALP’s mass. The ”cut” in the graph is a
consequence of particular combinations of the couple (t,mΦ) for which the PAVE functions
are not defined; consequently, they are forbidden.

16Let’s remember that in this regime of energies the weak contribution is suppressed by the presence of
GF .
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4.1. Axion-like particles

Figure 4.2: Dependence of L on t and the ALP’s mass.

In Fig. (4.1) it is possible to note that, for a given value of the ALP’s mass in the range
mΦ ∈ [0, 1] GeV, the value of P is left unaffected by that of t ∈ [−0.143, 0] GeV2; in
addition roughly speaking |P | ∈ [0, 102]. Similar conclusions hold also for Fig. (4.2), where
|L| ∼ 10−1.
From these two plots, then, it is clear that loop induced vertex functions allowed by ALPs
can be detected at MUonE if and only if the conditions

αa2M2

πΛ2 & 10−7 (4.23)

for the quadratic contribution and

4α2cγγaM
2

Λ2 & 10−6 (4.24)

for the linear one are satisfied.
At this point, however, the couplings a and cγγ can still take whatever value, always under
the conditions of perturbativity and unitariry; for this reason, the first step to understand
whether the requirements (4.23) and (4.24) are satisfied consists in constraining them
by means of the experimental measures of some other observables. The most suitable
one in the LFC scenario is, probably, the lepton anomaly ∆a`i : the idea is simply to
constrain the two couplings requiring that the contributions to this anomaly coming from
the Lagrangian (4.11) are within the experimental bounds.
First of all, from the computations of the loop induced diagrams already performed, the
contribution to the lepton anomaly for a given flavor i is

(∆a`i) = −
m2
`i

16π2Λ2

[
64παemcγγaii

(
log Λ2

m2
`i

− h2 (xi)
)

+ 4 |aii|2 h1 (xi)
]

(4.25)

where, given xi = (mΦ/mi)2,

h1(x) = 1 + 2x− (x− 1)x log x+ 2x(x− 3)
√

x

x− 4 log
(√

x+
√
x− 4

2

)
(4.26)
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4.1. Axion-like particles

h2(x) = 1 + x2

6 log x− x

3 − x+ 2
3

√
(x− 4)x log

(√
x+

√
x− 4

2

)
. (4.27)

Now, since we are dealing with a = aµµ, the bound |∆aµ| . 10−9 must be employed.
For the reference maximum value mΦ = 1 GeV, barring accidental cancellations, this
requirement applied to the quadratic contribution leads to

a . 10
(

Λ
1 TeV

)
(4.28)

which, once applied to the linear one, implies

cγγ . 10
(

Λ
1 TeV

)
. (4.29)

For a little bit smaller ALP’s mass, mΦ = 10−1 and mΦ = 10−2, the bounds are similar
and they read

a . 1
(

Λ
1 TeV

)
(4.30)

which, once applied to the linear one, implies

cγγ . 1
(

Λ
1 TeV

)
. (4.31)

It is easy to check that even if the couplings take the highest possible values allowed by
these bounds, both (4.23) and (4.24) cannot be satisfied, implying that also these kind of
contributions are not visible at MUonE. Some summary plots of the dependence of the
two form factors F1 on the mass mΦ and the parameters a or cγγ are the following:

Figure 4.3: Dependence of the quadratic form factor F1 on the couple of parameters
(a,mΦ) in the range of interest for t = −0.1 Gev2. As mentioned above, even saturating
Eq. (4.28), δALP = 2F1 < 10−5. As for Fig. (4.1), the two white regions represent the
couples of values (a,mΦ) which are forbidden.
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4.1. Axion-like particles

Figure 4.4: Dependence of the linear form factor F1 on the couple of parameters (cγγ,mΦ)
in the range of interest, with t = −0.1 Gev2. Here the linear coupling a has been chosen as
the maximum one according to the bound (4.28) but, as aforementioned, even saturating
also Eq. (4.29), δALP = 2F1 < 10−5.

This analysis in the LFC context has been performed quite generally, assuming reasonable
values for couplings and masses when needed. Similar conclusions can be reached also in
the other case, where it is yΦµ to tend to zero; as aforementioned the computations are the
same, except for the substitution M → m and the fact that the a = aee coupling should
be constrained through the electron anomaly |∆ae| . 10−12.
An extension of this discussion can be found in [51], where it has been taken into account
the possibility of LFV using i 6= j; it is possible to show that, taking the case i = j from
those general results, one recovers the expression (4.15) and (4.17), which have been found
independently. Nevertheless, in this scenario an interesting discussion can be already
carried out at the tree level; this will be done in a while, after a couple of comments.
In addition to the previous consistency check, it is possible to verify that the gauge
invariance of the theory is still valid. In order to test this problem, it is firstly necessary
to study the process `i → `i + γ, where the photon is on-shell and satisfies q2 = 0. The
one-loop diagrams induced by ALPs are

`

γ

`Φ `

γ

`

(4.32)

and, again, both the amplitudes can be generally Lorentz decomposed as

iMρ (`i → `iγ) = ieūi(p− q)Σρ
ii(0)ui(p), (4.33)

where
Σρ
ii(0) = iσρσqσ

m`i

F2 ii(0). (4.34)
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4.1. Axion-like particles

Therefore, a good check consists in verifying that in the limit q2 → 0 both the F1(0) = 0
and the two F2(0) match with the corresponding form factors of this process. It is very
easy to see that in this limit (4.17) satisfies immediately this condition, having factorised
a q2 factor; on the other side, the remaining three form factors requires the employment of
numerical tools, being necessary to exploit all the PAVE functions; replacing the muon
mass M with that of a generic lepton m`i , by means of Mathematica it has been verified
that also (4.15) vanishes in this limit, while the two F2 acquire the structure

F lin
2 ii(0) = −

αm2
`i
aiicγγ

2πΛ2

[
2 ln

(
Λ2

m2
Φ

)
− log xi
xi − 1 − (xi − 1) log

(
xi

xi − 1

)
− 2

]
(4.35)

Fquad
2 ii (0) = −

m2
`i
a2
ii

16π2Λ2

[
2xi − 3 + (x2

i − 3xi) log xi + 2x3/2
i

√
(xi − 4) log

(√
xi +

√
xi − 4

2

)]
(4.36)

which is precisely what we would get studying directly the decay `i → `j + γ.
Lastly, it is possible to make another important remark in relation to the form factors,
specifically on the two F1(q2). Indeed, if we are in the interesting regime m2

Φ � M2 � q2,
these two functions can be expanded around q2 = 0 as

F1(q2) = q2Ḟ1(0) + O(q4), (4.37)

where Ḟ ≡ dF
dq2 . Once again these computations are lengthy if performed by hand and they

require a numerical resolution. Thanks the use of Mathematica and Pakage-X it has been
possible to easily Taylor-expand around q2 = 0 both the form factors, whose expressions
read

Ḟ lin
1 (0) = acγγα

6πΛ2

[
6x2Li2

(
x− 1
x

)
− π2x2 + 3 (x+ 1) + 3 (x− 1)x log x

x− 1+

+3x2x− 1
x− 1 log x

] (4.38)

Ḟquad
2 (0) = − a2

16π2Λ2

[7x− 48
3 +

(
7
3 − 4x+ 7x2

6

)
log x+

+
(3x− 5)

√
x(x− 4)

2 log
(√

x+
√
x− 4

2

)]
,

(4.39)

where x = (mΦ/M)2 and Li2(z) is the Dilogarithm function defined as

Li2(z) =
∞∑
k=1

zk

k2 ; |z| < 1.

Finally we can turn the attention on the LFV scenario; relaxing the hypothesis of lepton
flavor conservation, the diagrams which would affect the µe scattering are
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Φ

e− µ−

e+µ+

Φ

µ+

e− µ−

e+

with amplitudes

Mt
LFV = Cij

XC
ji
X′

t−m2
Φ
ū(p3)iPu(p1)j v̄(p4)jQv(p2)i

Ms
LFV = Cij

XC
ji
X′

s−m2
Φ
ū(p3)iPv(p4)j v̄(p2)jQu(p1)i

(4.40)

where i, j = 1, 2, X,X ′ = L,R and P,Q could be either (1 ± γ5). The computation of the
two squared amplitudes

∣∣∣Ms,t
LFV

∣∣∣2 is very similar to that performed in (3.64); indeed they
bring to the µe differential cross section the two NP contributions

δt
LFV =

(
tCXCX′

8πα(t−m2
Φ)

)2
m2M2

f(s, t)

δs
LFV =

(
tCXCX′

8πα(s−m2
Φ)

)2
m2M2

f(s, t) .
(4.41)

A quick check with the bound imposed by the experimental value for the muonium-
antimuonium oscillation probability leads to |Cij

X | . 10−4(mΦ/0.1 GeV), which makes
(4.41) several orders of magnitude below MUonE resolution.
On the other side, the computation of the interference term strongly depends on the signs of
the γ5 in its (unique) trace. Depending on these factors, the trace can still be 64m2M2 (as
happens for the two contributions which give rise to (4.41)) or both ∼ 16m2t and ∼ 16M2t;
in each case, however, imposing the aforementioned bound for the CX coefficients, it is
simple to see that also the interference term lies several orders of magnitude below the
sensitivity of MUonE.
Let’s notice that in this discussion it has been implicitly assumed to work at energies
different respect to the mass of the mediator; indeed, taking exactly the value

√
s = mΦ

all the amplitudes would diverge and, in order to avoid this issue, the loop treatment
should be employed, leading to an additive factor (iΓΦmΦ, where ΓΦ is the decay rate of
the spin-zero field) in the denominator of the propagator. It is easy to take into account
this improvement in the theoretical prediction and it can be done avoiding computations
from the beginning; the results, however, is again the same, as shown in [52]17.

17Let’s note that in this reference it has been used a different notation, based on quantities computed
in (2.2.1).
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4.2 Dark Photon
Another well motivated extension of the SM is the so called Dark Photon (DP) scenario,
which consists in adding an extra U(1) gauge group that mixes with the SM electromagnetic
one. The Lagrangian needed to describe such an extension is

LDP = −1
4VµνV

µν + 1
2m

2
DPVµV

µ + eεJµemVµ, (4.42)

where Vµ and Vµν are, respectively, the DP and the corresponding field strength, ε is a
dimensionless parameter which takes into account for the kinetic mixing and mDP is the
DP mass. The TL contribution to the µe differential cross section due to Eq. (4.42) is
very simple to calculate and its corresponding diagram and amplitude read

DP

e− e−

µ−µ−

MDP = e2ε2ū(p3)γµu(p1)
i(gµν − kµkν

m2
DP

)
t−m2

DP
ū(p4)γνu(p2) = ie2ε2

t−m2
DP
ū(p3)γµu(p1)ū(p4)γµu(p2),

(4.43)
where it has been used the facts that k = p1 − p3 = p2 − p4 and that the Dirac equation in
the momentum space can be used either as /pu(p) = mu(p) and ū(p)/p = −mū(p), implying:

ū(p3)γµu(p1)kµkν ū(p4)γνu(p2) = ū(p3)( /p1 − /p3)u(p1)ū(p4)( /p2 − /p4)u(p2) = 0. (4.44)

In this scenario, then, the total unpolarized squared matrix element is

|M|2 = |MDP|2 + MγDP ≈ MγDP (4.45)

where the pure DP contribution can be safely neglected, having a ε4 dependence; indeed,
taking into account the fact that for DP in this range of masses it holds the experimental
limit ε2 . 2 × 10−7 [54, 55], this contribution is not visible at MUonE.
Computing the traces, Eq. (4.45) becomes explicitly

MγDP = 128π2α2ε2f(s, t)
t(t−m2

DP)

leading to
dσ±DP
dt

= dσ0

dt
δ±DP, (4.46)

with
δ±DP = 2ε2t

t−m2
DP
. (4.47)
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Imposing the previous bound on the parameter ε it follows that δDP . 4 × 10−7 and, then,
as it can be seen by Fig.(4.5) it is not visible at MUonE

Figure 4.5: This plot shows how δDP changes varying both t and mDP, once selected the
upper bound ε = 2 × 10−7. This contribution never reach the sensibility of MUonE and,
in particular, in the limit m2

DP � t it tends to the constant value δDP = 4 × 10−4.

4.3 Z ′ vector bosons
Models with an underlying U(1) symmetry allow also direct couplings of SM particles
with a new vector boson

LZ′ = −1
4Z
′
µνZ

′µν + 1
2m

2
Z′Z ′µZ

′µ + ¯̀γµ(g`V + g`Aγ5)`Z ′µ, (4.48)

where g`(A)V are the (axial) vector coupling of leptons to the Z ′ 18.
Once again, the relevant and leading contribution to the µe differential cross section comes
from the interference with the photon one of the SM. In particular, that due to Eq. (4.48)
is

MZ′ = iū(p3)γµ(geV + geAγ5)u(p1)
(ηµν − kµkν

m2
Z′

)
t−m2

Z′
ū(p4)γν(gµV + gµAγ5)u(p2)

which, again, can be simplified a lot exploiting the properties of the Dirac equation and
the conservation of the four momenta, as for the DP scenario; nevertheless, while in
the previous case the term kµkν/m

2
Z′ became null, here it provides a term suppressed by

∼ 4m2/m2
Z′ which can be, however, safely neglected, leading to

MZ′ = i

t−m2
Z′
ū(p3)γµ(geV + geAγ5)u(p1)ū(p4)γν(gµV + gµAγ5)u(p2). (4.49)

18These couplings should be not confused with those involved in the neutral weak current JZ ; never-
theless I will carry on this handler notation always omitting the superscript ′, unless differently stated.
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The total unpolarized squared matrix element is, then,

|M|2 ≈ MγZ′ = 32πα
t(t−m2

Z′)
[geV g

µ
V f(s, t) + geAg

µ
At(u− s)]

and exploiting the relations in (A.1), once defined z+ = s and z− = u, leads to the final
result

dσ±

dt
= dσ0

dt
δ±Z′ , (4.50)

with
δ±Z′ = t

2πα (t−m2
Z′)

[
geV g

µ
V + geAg

µ
A

t (z± − z∓)
2f(s, t)

]
. (4.51)

The most stringent bounds on the vector couplings geV g
µ
V comes from the searches of light

vector bosons in the process e+e− → γZ ′ → `+`−γ at BaBar [56] and KLOE [57]; actually
these analyses were performed in the DP context but with a good approximation they
can be still employed in this framework 19. For the mass range 0.2 ≤ mZ′ ≤ 10 GeV
the experimental bounds provide the constraint geV g

µ
V . 10−7, while under the dimuon

mass threshold, in particular for 0.02 ≤ mZ′ ≤ 0.2 GeV, only the electron vector coupling
can be constrained, with (geV )2 . 10−7 [56]. Focusing on the first mass range, it follows
immediately that the shift induced by purely vector couplings satisfies

δ±Z′ . O(10−6) (4.52)

so that it is not visible at MUonE.
Other constraints on these vector couplings and new bounds on the axial ones can be set
by the leptonic g − 2.
Let’s see how to recover them. Firstly let’s take the general interaction

Lint =
∑
F,X

µ̄
[
gVγ

µ + gAγ
µγ5

]
FXµ, (4.53)

where the sum runs over all the possible fermions F and gauge bosons X; then, the
contributions to the muonic anomalous magnetic moment are

µ−

F

γ

µ−

F

X µ−

X

γ

µ−

X

F

19In particular, the bounds for the product ge
V g

µ
V can be identified with those of the Lµ − Le model

of [54].
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whose analytical expressions [58] read20

[aµ]a = −
qFm

2
µ

4π2

∫ 1

0
dx
[
g2

V

{(
x− x2

)(
x+ 2mF

mµ

− 2
)

− 1
2M2

X

(
x3 (mF −mµ)2

+x2
(
m2

F −m2
µ

)(
1 − mF

mµ

)}
+ g2

A {mF → −mF}
] {
m2
µx

2 +M2
X(1 − x) + x

(
m2

F −m2
µ

)}−1

(4.54)

[aµ]b =
qXm

2
µ

8π2

∫ 1

0
dx

[
g2
V

{
4mF

mµ

x2 − 2x2(1 + x) +
m2
µ

M2
X

[
−x2(x− 1) +

−mF

mµ

(
−2x3 + 3x2 − x

)
− m2

F

m2
µ

(
2x− 3x2 + x3

)
+ m3

F

m3
µ

(
x− x2

)]}
+g2

A {mF → −mF}
]

{
m2
µx

2 +
(
M2

X −m2
µ

)
x+m2

F(1 − x)
}−1

.

(4.55)
The computation of all the contributions is quite complicated to perform by hand and it
is necessary to employ a numerical resolution. Nevertheless both Eq. (4.54) and (4.55)
can be simplified for our purpose; indeed, imposing LFC (i.e. F = µ) and taking the Z ′ as
the only X boson, being the contribution of interest, they become

[aµ]a = M2

4π2

∫ 1

0
dx
[
gµ2
V (x2 − x3) + gµ

2

A

(
(5x2 − 4x− x3) − 2x3M2

m2
Z′

)]
×{M2x2+m2

Z′(1−x)}−1

(4.56)
and, since there is no γ − Z ′ coupling in Eq. (4.48),

[aµ]b = 0. (4.57)

The same steps can be repeated to find [ae]a, but it is simple to notice that no calculations
are needed since it is sufficient to perform the replacements gµ2

V (A) → ge2V (A) and M → m.
Focusing on the mass range mZ′ . 0.2 GeV and imposing the bounds |∆ae| ≤ 10−12 and
|∆aµ| ≤ 10−8 it follows

gµV . 10−3, gµA . 5 × 10−4 (4.58)

geV . 4 × 10−3, geA . 2 × 10−3. (4.59)

It is possible to notice that in this case the constraints on the vector couplings are a little
bit worse than those found through the data of BaBar experiment; nevertheless, also in
this case the resulting shift turns out to be δ±Z′ . O(10−5) and, so, it lies below MUonE
sensitivity. Contrary to the light vector boson searches mentioned before, direct searches
of light Z ′ with also axial-vector couplings have not been yet performed but it is still
reasonable to think that the bound for geV g

µ
V found in [56] and [57] holds also for geAg

µ
A.

Nevertheless, with the previous analysis based on the g − 2 constraints, it still possible to
verify that also the axial-vector contribution to Eq. (4.51) is of the order δ±Z′ . O(10−5).
As for the ALP scenario, also in this model it is interesting to relax the hypothesis of flavor
conservation and to check whether LFV effects induced by the Z ′ are visible at MUonE.
At tree level the two relevant Feynman diagrams are

20Note that the g2
A contribution can be recovered from the g2

V one simply making the substitution
mF → −mF
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Z
′

e− µ−

e+µ+

Z
′

µ+

e− µ−

e+

and the corresponding amplitudes read

Mt
LFV =

−i(ηµν − kµkν

m2
Z′

)
t−m2

Z′
ū(p3)iγµ(gijV + gijAγ5)u(p1)j v̄(p2)jγν(gjiV + gjiAγ5)v(p4)i

Ms
LFV =

−i(ηµν − kµkν

m2
Z′

)
s−m2

Z′
ū(p3)iγµ(gijV + gijAγ5)v(p4)j v̄(p2)jγν(gjiV + gjiAγ5)u(p1)i

(4.60)

where, again, i, j = 1, 2. Ignoring suppressed terms, as the powers of m2, the resulting
shifts to the µe differential cross section read

δs
LFV ≈

(
t

16πα(s−m2
Z′)

)2 1
f(s, t)

[
32mM(gij4V − gij4A )(s−M2)+

8(gij2V + gij2A )2(2t2 + s2 +M4 − 4M2t+ 2st− 2M2s)+

32gij2V gij2A (s2 + 2st− 2M2s−M4)
]

δt
LFV ≈

(
t

16πα(t−m2
Z′)

)2 1
f(s, t)

[
32mM(gij4V − gij4A )(t−M2)+

16(gij2V + gij2A )2(f(s, t) − M4

2 −M2t)+

32gij2V gij2A (f(s, t) − M4

2 −M2t)
]
.

(4.61)

The comparison with the probability of muonium-antimuonium oscillation provides also
in this case the necessary bounds for the couplings; imposing the experimental bound
(3.61) it is easy to find that, for the range mZ′ . 0.2 GeV, the axial-vector couplings must
satisfy the condition gijV,A . 10−4, constraining δt, s

LFV . 10−14 and, so, it is absolutely not
detectable at MUonE. The same conclusion is easily reached also for the interference term,
whose contribution to the µe scattering differential cross section translates into the shift

δint
LFV ≈

(
t

8πα

)2 1
(s−m2

Z′)(t−m2
Z′)f(s, t)

[
mM(gij4V − gij2A gij2V )

(
M2 − s+ t

2

)
+

(gij4V − gij4A )
(
M4 − s2 + t2 + 2st

2

)]
. 10−15.

(4.62)
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Chapter 5

Conclusions

The interpretation of the anomalous magnetic moment of the muon represents one of the
most intriguing challenges of the Standard Model.
The discrepancy between the measurements and the theoretical prediction can be explained
either with the large error in the leading hadronic contribution aHad

µ or new physics effects.
In order to solve this problem, it has been proposed the new experiment MUonE. The
purpose of this project consists in measuring precisely aHad

µ through the elastic scattering
of energetic muons with electrons at rest. This analysis allows to avoid the problem of
mass thresholds and resonances which affects the standard technique of dispersion integral,
based on e+e− → hadrons data. As explained in Ch. (2), in order to be competitive
enough, the sensitivity of MUonE should be O (10−5) and it naturally raises the question
whether the measure could be polluted by new physics.
In this thesis it has been analyzed in detail this problem considering both heavy and
light NP degrees of freedom, depending on the fact that their mass is higher or lower
O (1 GeV). In the former case it has been employed a model independent approach base on
EFT, constructing the most general effective Lagrangians invariant under U(1)em (3.4.1)
and SU(2)L ⊗ U(1)Y (3.6) up to dimension six. In both these scenarios the full set of
NP contributions to the µe differential cross section has been computed, finding terms
from vector and axial vector interactions. However, once analyzed their contributions to
correlated observables and compared with the experimental bounds, it has been shown
that their effects in the µe scattering at MUonE are strongly disfavoured. In the pure
U(1)em case also scalar and tensor interactions appear, but their suppression due to the
electron and muon masses do not allow them to pollute MUonE measurements. Moreover,
in both cases pseudoscalar interactions provide vanishing interference contributions with
the leading QED amplitude and, consequently, they do not contribute at dimension-six
operators level.
In the U(1)em scenario it has been explored also the possibility of contamination in µe
collisions due to LFV effects. Once again, however, it has been shown that, taking into
account the current constraints on muonium-antimuonium oscillations, these contributions
lies far beyond MUonE sensitivity.
Light NP has, instead, been analyzed specifying the spin and the interactions of the new
particles with the SM ones, having no more the possibility to rely on the EFT approach.
In particular, it has been considered the cases of both spin-0 and spin-1 dynamical fields.
In the former case it has been studied the ALPs’ scenario, where the field content of the
SM is enriched with light (pseudo) scalars. Both LFC and LFV effects have been taken
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into account: each one, however, using, respectively, the constraints from the electron’s
g − 2 and the muonium-antimuonium oscillation probability, has been shown to be far
below MUonE’s sensitivity.
In the latter case there have been considered two very popular possibilities: the Dark
Photon and the Z ′ boson. The first is introduced enlarging the SM group with an extra
U(1) and a kinetic mixing term which allows an interaction with the photon γ. However,
the current bound on the kinetic mixing constrains NP effects in the µe scattering to be
too small to be detected at MUonE. On the other hand, the same conclusions can be
reached also for the Z ′ boson: indeed, as it has been shown, the bounds on its couplings
due to direct searches do not allow for significant and measurable NP effects.
In conclusion, it can be safely stated that it is very unlikely that NP contributions will
pollute MUonE’s measurements of the µe scattering differential cross section and the
corresponding extraction of ∆αh(q2); this confirmes and strongly reinforces the MUonE
proposal.
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Appendix A

A.1 Useful relations
Here I report some useful relations for the computation of all the results of this thesis:

Tr[1] = 4
Tr [ any odd # of γ′s] = 0
Tr [γµγν ] = 4ηµν

Tr [γµγνγργσ] = 4 (ηµνηρσ − ηµρηνσ + ηµσηρν)
Tr [γ5] = 0
Tr [γµγνγργσγ5] = −4iεµνρσ

Tr [γµ1γµ2 . . . γµn ] =
n∑
k=2

(−1)kηµ1µk × Tr [γµ2 . . .�Sγ
µk · · · γµn ] if n even

Tr [γµ1 . . . γµnγ5] = 0 if n odd or n ≤ 3
γµγµ = 4
γµγνγµ = −2γν

γµγνγργµ = 4ηνρ

γµγνγργσγµ = −2γσγργν

εαβγδεαβγδ = −24
εαβγµεαβγν = −6δµν
εαβµνεαβρσ = −2

(
δµρ δ

ν
σ − δµσδ

ν
ρ

)
dσ

dΩ = 1
64π2s

|~p1|
| ~p1′ |

|M|2 for 1 + 2 → 1′ + 2′ in the CM frame

dσ

dt
= 4πs√

λ12λ34

dσ

dΩ = 4πs
λ

dσ

dΩ , with λ = λ(s,m2
i ,m

2
j) = (s−m2

i −m2
j)2 − 4m2

im
2
j

Fierz identities for commuting spinors a, b, c and d:

(āγµPL/Rb)(c̄γµPL/Rd) = −(āγµPL/Rd)(c̄γµPL/Rb) (A.1)

(āγµPL/Rb)(c̄γµPR/Ld) = 2(āPR/Ld)(c̄PL/Rb) (A.2)

(āPL/Rb)(c̄PR/Ld) = 1
2(āγµPR/Ld)(c̄γµPL/Rb) (A.3)
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A.1. Useful relations

(
āPL/Rb

) (
c̄PL/Rd

)
= 1

2
(
āPL/Rd

) (
c̄PL/Rb

)
+ 1

8
(
āσµνPL/Rd

) (
c̄σµνPL/Rb

)
(A.4)

(
āσµνPL/Rb

) (
c̄σµνPL/Rd

)
= 6

(
āPL/Rd

) (
c̄PL/Rb

)
− 1

2
(
āσµνPL/Rd

) (
c̄σµνPL/Rb

)
(A.5)
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A.2. Detailed computation of NP contributions to µe scattering

A.2 Detailed computation of NP contributions to µe

scattering
The LFC Lagrangian of Eq. (3.38) is explicitly

LLFC = 1
4Λ2

[
(a1 + ia2)µ̄(1 + γ5)µē(1 + γ5)e+ h.c.+

(a3 + ia4)µ̄(1 + γ5)eē(1 + γ5)µ+ h.c.+
(a5 + ia6)µ̄(1 + γ5)µē(1 − γ5)e+ h.c.+
a7µ̄(1 + γ5)γµµē(1 + γ5)γµe+
a8µ̄(1 − γ5)γµµē(1 − γ5)γµe+
a9µ̄(1 + γ5)γµµē(1 − γ5)γµe+

a10µ̄(1 − γ5)γµµē(1 + γ5)γµe
]
.

(A.6)

All these terms can be represented with the Feynman diagram

with different coefficients (and sign of γ5) depending, clearly, on the operator which is
taken into account. Since all of them have a factor ∝ 1/Λ2, in calculating the unpolarized
squared Feynman amplitude |M|2 it will be considered only the product of the amplitude
of a given piece of Eq (A.6), Mi (i=1,...,10), with that of the photon. In other words 21:

|Mtot|2 = 1
4
∑
spins

(|Mγ|2 + 2ReM∗
γMZ + 2Re

10∑
i=1

M∗
γMi). (A.7)

As already discussed in the main corpse of this thesis, all the |Mi|2 have been neglected
since they present a 1/Λ4 dependence, as well as |MZ |2, being suppressed by G2

F s
2 and

all the amplitudes which involve the Higgs boson H.
Let’s start the computation remembering that the amplitude of the diagram mediated by
the photon is

Mγ = ie2

t
ū(p3)γµu(p1)ū(p4)γµu(p2). (A.8)

From the Lagrangian (A.6) it follows that the first operator provides an amplitude

M1 = i(a1 + ia2)
4Λ2 ū(p3)(1 + γ5)u(p1)ū(p4)(1 + γ5)u(p2), (A.9)

21In the following computations it will adopted the notation Mγ(Z)i = 1
2 Re

∑
spins M∗

γ(Z)Mi.
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A.2. Detailed computation of NP contributions to µe scattering

so that

Mγ1 = e2a1

8Λ2t
Tr
[
γµ( /p3 +m)(1 + γ5)( /p1 +m)

]
Tr
[
γµ( /p4 +M)(1 + γ5)( /p2 +M)

]
. (A.10)

The passages in the calculation of the first trace explicitly read

Tr
[
γµ( /p3 +m)(1 + γ5)( /p1 +m)

]
= Tr

[
γµ /p3(1 + γ5)( /p1 +m)

]
+mTr

[
γµ(1 + γ5)( /p1 +m)

]
=

= Tr
[
γµ /p3( /p1 +m)

]
+mTr

[
γµ( /p1 +m)

]
= mp3αTr[γµγα] +mp1αTr[γµγα] = 4m(p3 + p1)µ;

(A.11)

the computation for the second trace, however, can be avoided simply observing that it
can be directly recovered from the previous result applying the substitutions p3 → p4,
p1 → p2, m → M :

Tr
[
γµ( /p4 +M)(1 + γ5)( /p2 +M)

]
= 4M(p2 + p4)µ.

Putting all together and exploiting the relations between scalar products and the mandel-
stam variables, it can be found

Mγ1 = 8παa1mM

Λ2t
(s− u). (A.12)

However it is possible to notice immediately one thing: in computing the trace (A.11)
there is no renmant of the γ5 and its signs. This means that the same result (with the
coefficient a5 instead of a1) can be immediately recovered from the third term of the
Lagrangian without any calculation:

Mγ5 = 8παa5mM

Λ2t
(s− u) (A.13)

Summing these two contributions and defining aS = a1 + a5, one easily finds the ”scalar”
shift to the µe differential cross section

δ1+5
LFC = t

8παΛ2
1

f(s, t) [2mMaS(s− u)]. (A.14)

The second operator of (A.6) is a little bit subtle compared to the previous two, requiring
the use of the Fierz identities; exploiting the fourth one in (A.1), it is possible to rewrite

(a3 + ia4)
Λ2 [µ̄LeRēLµR] = −(a3 + ia4)

2Λ2

[
µ̄LµRēLeR + 1

4 µ̄Lσ
µνµRēLσµνeR

]
. (A.15)

Let’s analyze these two pieces separately.
In the case of the term with no gammas, the amplitude reads

M3′ = −i(a3 + ia4)
8Λ2 ū(p3)(1 + γ5)u(p1)ū(p4)(1 + γ5)u(p2), (A.16)

while the unpolarized one is
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A.2. Detailed computation of NP contributions to µe scattering

Mγ3′ = − e2a3

16tΛ2 Tr
[
γµ( /p3 +m)(1 + γ5)( /p1 +m)

]
Tr
[
γµ( /p4 +M)(1 + γ5)( /p2 +M)

]
.

(A.17)
The two traces are very simple and they turn out to respectively be

Tr[1] = 4m[pµ1 + pµ3 ]

Tr[2] = 4M [p4µ + p2µ]

so that (A.17) becomes

Mγ3′ = −8παa3

tΛ2 mM [2p1 · p2 + 2p3 · p4] = −8παa3

tΛ2 mM [s− u]. (A.18)

On the other side, the term with σµν leads to the amplitude

M3′′ = (a3 + ia4)
32Λ2 ū(p3)(1 + γ5)[γµ, γν ]u(p1)ū(p4)(1 + γ5)[γµ, γν ]u(p2) (A.19)

and, correspondingly, to the unpolarized one

Mγ3′′ = e2a3

64tΛ2 Tr
[
γρ( /p3 +m)(1 + γ5)[γµ, γν ]( /p1 +m)

]
Tr
[
γρ( /p4 +M)(1 + γ5)[γµ, γν ]( /p2 +M)

]
.

(A.20)

As already done, it is sufficient to calculate only a trace and then making the correct
substitutions in order to find the other one. Their explicit expressions are

Tr[1] = 8m(pµ3ηρν − pν3η
ρµ + pν1η

ρµ − pµ1η
ρν) (A.21)

Tr[2] = 8M(p4µηρν − p4νηρµ + p2νηρµ − p2µηρν), (A.22)

so that the final unpolarized amplitude becomes

Mγ3′′ = −24παa3

tΛ2 mMt. (A.23)

Finally, summing these two amplitudes, i.e. M̄3′ and M̄3′′ , the total contribution reads

M3 = M3′ + M3′′ = 16πα
tΛ2 mM(u− t−m2 −M2), (A.24)

where it has been used s+ t+ u = 2m2 + 2M2; from this expression it follows the ”tensor”
shift to the total differential cross section dσ

dt
, which is

δ3
LFC = taT

8παf(s, t)Λ2 2mM(u− t−m2 −M2), (A.25)

where aT = a3.
Let’s move on to the operators of (A.6) which involve a gamma matrix, starting from the
fourth and the fifth; their amplitudes are
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A.2. Detailed computation of NP contributions to µe scattering

M7 = ia7

4Λ2 ū(p3)(1 + γ5)γρu(p1)ū(p4)(1 + γ5)γρu(p2) (A.26)

M8 = ia8

4Λ2 ū(p3)(1 − γ5)γρu(p1)ū(p4)(1 − γ5)γρu(p2). (A.27)

It is sufficient to compute M7 since, then, M8 can be found without making any effort
using only a simple consideration (as done before for the a5 coefficient); the unpolarized
matrix element is

Mγ7 = e2a7

8Λ2t
Tr
[
γµ( /p3 +m)(1 + γ5)γρ( /p1 +m)

]
Tr
[
γµ( /p4 +M)(1 + γ5)γρ( /p2 +M)

]
.

(A.28)

The first trace is

Tr
[
γµ( /p3 +m)(1 + γ5)γρ( /p1 +m)

]
= 4(m2ηµρ + pρ1p

µ
3 + pρ3p

µ
1 − p1 · p3η

µρ − iεµαρβp3αp1β)

while the second, with the usual substitutions p3 → p4, p1 → p2, m → M , reads

Tr
[
γµ( /p4 +M)(1 + γ5)γρ( /p2 +M)

]
= 4(M2ηµρ + p1ρp3µ + p3ρp1µ − p1 · p3ηµρ − iεµγρδp

γ
4p

δ
2).

Using the properties of the Levi-Civita tensor, reported in (A.1), one easily arrives to the
result

Mγ7 = 8παa7

tΛ2 [f(s, t) + t

2(u− s)]. (A.29)

As anticipated, the amplitude M̄γ8 can be immediately recovered noticing a simple thing:
the difference between (A.26) and (A.27) is only in the two signs of γ5. This means that,
repeating the various steps, the sames traces arise, now with the two Levi-Civita tensors
both multiplied by i and no more by −i. However, being i2 = (−i)2 = −1, the product of
the two traces remains the same and, then, the unpolarized amplitude is

Mγ8 = 8παa8

tΛ2 [f(s, t) + t

2(u− s)] (A.30)

Finally, we are left with the last two operators of LLFC, whose amplitudes now contain
one (1 + γ5) and one (1 − γ5):

M9 = ia9

4Λ2 ū(p3)(1 − γ5)γρu(p1)ū(p4)(1 + γ5)γρu(p2) (A.31)

M10 = ia10

4Λ2 ū(p3)(1 + γ5)γρu(p1)ū(p4)(1 − γ5)γρu(p2). (A.32)

Let’s focus on (A.31), since the same will be clearly true also for the other amplitude. The
fact that, this time, only one of the two γ5 has different sign respect to those of (A.26)
causes a change of sign of the Levi-Civita tensor in one of the two traces
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A.3. Detailed Computation of the NP contributions to σ(e+e− → µ+µ−)

Tr
[
γµ( /p3 +m)(1 + γ5)γρ( /p1 +m)

]
= 4(m2ηµρ + pρ1p

µ
3 + pρ3p

µ
1 − p1 · p3η

µρ + iεµαρβp3αp1β)

Tr
[
γµ( /p4 +M)(1 + γ5)γρ( /p2 +M)

]
= 4(M2ηµρ + p1ρp3µ + p3ρp1µ − p1 · p3ηµρ − iεµγρδp

γ
4p

δ
2).

Consequently, taking again their product and repeating the usual steps, now it is no more
the term (p1 · p4)(p2 · p3) which disappears, but (p1 · p2)(p3 · p4). Therefore

Mγ9 = 8παa9

tΛ2 [4m2M2 + 4(p1 · p4)(p2 · p3) − 2M2(p1 · p3) − 2m2(p2 · p4)] =

= 8παa9

tΛ2 [M2t+m2t+ (s+ t−m2 −M2)2] = 8παa9

tΛ2 [f(s, t) + t

2(s− u)]
(A.33)

and, analogously,

Mγ10 = 8παa10

tΛ2 [f(s, t) + t

2(s− u)]. (A.34)

Finally, summing Mγ7, Mγ8, Mγ9 and Mγ10 and defining aV = a7 + a8 + a9 + a10 and
aA = a7 + a8 − a9 − a10, we recover also the ”axial” and ”vector” shifts

δ7+8+9+10
LFC = t

8παf(s, t)Λ2 [aV f(s, t) + aAt

2 (u− s)]. (A.35)

This result concludes the calculations necessary to obtain Eq. (3.41).

A.3 Detailed Computation of the NP contributions
to σ(e+e− → µ+µ−)

This section is devoted to the computation of the total cross section of the scattering
e+e− → µ+µ−. First of all, in the pure SM the process is described by the Feynman
diagrams

γ

e+

e− µ−

µ+

Z

e+

e− µ−

µ+

where the explicit amplitudes are

Mγ = ie2

s
ū(p3)γµv(p4)v̄(p2)γµu(p1) (A.36)

and22

MZ = 8iGF√
2
ū(p3)γµ(gV − gAγ5)v(p4)

M2
Z

s−M2
Z

v̄(p2)γµ(gV − gAγ5)u(p1), (A.37)

22Here the propagator should be modified with the vacuum polarization of the Z boson in order to
avoid the divergence at

√
s = MZ ; nevertheless, working in energy ranges which do not include this scale,

this correction can be ignored.

67



A.3. Detailed Computation of the NP contributions to σ(e+e− → µ+µ−)

providing the unpolarized amplitude

|M|2 = |Mγ|2 + |MZ |2 + MγZ .

Let’s notice that the term ∝ kµkν in the propagator has been neglected since it can be
entirely rewritten in terms the lepton masses; however, working at energies much higher
than these them allows to take m = M = 0, simplifying a lot the computation of the
traces.
The final differential cross section can be rewritten in the same form of the QED one

dσ

d cos θ = π

2
α2
em

s

[
A
(
1 + cos2 θ

)
+B cos θ

]
whit

A = 1 − 8
√

2 (GF s)
e2 g2

V + 32 (GF s)2

e4

(
g2
V + g2

A

)2

B = −32 (GF s)√
2e2 g2

A + 256 (GF s)2

e4 g2
V g

2
A.

The total SM cross section, then, is simply

σSM = 4πα2

3s A.

Now I turn the attention on NP contributions. Let’s firstly notice that the a1, a3 and a5
pieces don’t contribute 23: indeed the amplitude for the NP diagram is simply

M1 = i(a1 + ia2)
4Λ2 ū(p3)(1 + γ5)v(p4)v̄(p2)(1 + γ5)u(p1) (A.38)

so that

Mγ1 ∝ Tr
[
(1 + γ5) /p1γ

µ
/p2
]

Tr
[
(1 + γ5) /p3γµ /p4

]
. (A.39)

However, due to the properties of the traces, this is clearly null. This statement holds also
for the interference term with the Z boson, being

MZ1 ∝ Tr
[
(1 + γ5) /p1γ

µ(gV − gAγ5) /p2
]

Tr
[
(1 + γ5) /p3γµ(gV − gAγ5) /p4

]
.

Taking, for example, the first trace, it can be opened as

Tr[1] = Tr
[
(gV − gA) /p1γ

µ
/p2
]

+ Tr
[
(gV − gA)γ5 /p1γ

µ
/p2
]

which, again, vanishes.
The first operators which, then, provide a non zero contributions are those multiplied by
the coefficients a7 and a8. The amplitude of the former is

M7 = ia7

4Λ2 ū(p3)(1 + γ5)γνv(p4)v̄(p2)(1 + γ5)γνu(p1) (A.40)

and the unpolarized one reads
23This will be demonstrated only for a1 but it is the same for all of them.
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A.3. Detailed Computation of the NP contributions to σ(e+e− → µ+µ−)

Mγ7 = a7e
2

8Λ2s
Tr
[
(1 + γ5)γν /p1γ

µ
/p2
]

Tr
[
(1 + γ5)γν /p4γµ /p3

]
. (A.41)

As usual it is sufficient to compute the first trace and, then, the second can be straightfor-
wardly obtained with the proper substitutions (p1 → p4, p2 → p3,m → M):

Tr[1] = 4
(
pν1p

µ
2 + pν2p

µ
1 − p1 · p2η

µν + iεναµβp1αp2β
)

(A.42)

Tr[2] = 4
(
p4νp3µ + p3νp4µ − p3 · p4ηµν + iενγµδp

γ
4p

δ
3

)
. (A.43)

Their product leads to the unpolarized squared amplitude

Mγ7 = 8παa7

Λ2s
(s+ t)2 (A.44)

and, exactly as happened in the computation of σ(µ±e− → µ±e−), it is equal to Mγ8
(except, obviously, for a8 instead of a7).
Also for the last two operators of LLFC it is possible to rely on a reasoning similar to that
made for the µ±e− → µ±e− scattering: respect to the case of the term multiplied by a7,
those multiplied by a9 and a10 have one (and not two as for a8) γ5 with different sign.
Consequently, the two traces will have the same form of (A.42) and (A.43) but, this time,
one Levi-Civita tensor takes the minus sign; once computed their product, it follows

Mγ9 = 8παa9

Λ2s
t2 (A.45)

Mγ10 = 8παa10

Λ2s
t2. (A.46)

Finally, summing all the contributions it is possible to proceed to compute the total
cross section for the interference with the photon; defining x = cos θ, in the CM frame
t = −s/2(1 − x) and the total amplitude reads

Mγtot = 2παs
Λ2

[
(a7 + a8)(1 + x)2 + (a9 + a10)(1 − x)2

]
.

Now, the differential cross section is simply
dσγtot
dΩ = 1

64π2s
× 2παs

Λ2

[
(a7 + a8)(1 + x)2 + (a9 + a10)(1 − x)2

]
=

= α

32πΛ2

[
(a7 + a8)(1 + x)2 + (a9 + a10)(1 − x)2

] (A.47)

and the resulting total one reads

σγtot = 2π
∫ 1

−1

dσγtot
dx

dx = α

16Λ2

∫ 1

−1
dx
[
(a7 + a8)(1 + x)2 + (a9 + a10)(1 − x)2

]
=

= αaV
6Λ2 ,

(A.48)

where aV = a7 + a8 + a9 + a10
24.

Let’s now put the attention on the contribution coming from the interference with the Z
24NB: although one term is (1 − x)2 while the other (1 − x)2, since the interval of integration is

symmetric the odd terms do not contribute. As a consequence since they differ exactly a odd terms, after
the integration they gave the same result, which is 8/3.
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A.3. Detailed Computation of the NP contributions to σ(e+e− → µ+µ−)

boson. The Feynman amplitudes of interest are, now, (A.37) and (A.40). In the following
computations (already characterized by a 1/Λ2 factor) I will neglect the gV contribution,
being gV = aθ/4 ∼ −10−2; in this way (A.37) becomes simply

MZ = 8iGFg
2
A√

2
ū(p3)γµγ5v(p4)

M2
Z

s−M2
Z

v̄(p2)γµγ5u(p1) (A.49)

and the unpolarized squared matrix element, then, reads

MZ7 = a7GFg
2
A√

2Λ2
M2

Z

(s−M2
Z) Tr

[
(1 + γ5)γν /p1γ

µγ5 /p2
]

Tr
[
(1 + γ5)γν /p4γµ/γ5p3

]
. (A.50)

Paying attention to use properly the anticommutation relation between γ5 and the other
gammas, the two traces turn out to be

Tr[1] = −4
(
pν1p

µ
2 + pν2p

µ
1 − p1 · p2η

µν − iεναµβp1αp2β
)

Tr[2] = −4
(
p4νp3µ + p3νp4µ − p3 · p4ηµν − iενγµδp

γ
4p

δ
3

)
,

providing the results

MZ7 = a7GF

4
√

2Λ2
M2

Z

(s−M2
Z)s

2(1 + x)2 (A.51)

and
MZ8 = a8GF

4
√

2Λ2
M2

Z

(s−M2
Z)s

2(1 + x)2. (A.52)

Thus, the differential cross section due to these two terms is

dσZ(7+8)

dΩ = 1
64π2s

× (a7 + a8)GF

4
√

2Λ2
M2

Z

(s−M2
Z)s

2(1 + x)2 = (a7 + a8)GF s

256π2
√

2Λ2
M2

Z

(s−M2
Z)(1 + x)2

(A.53)

and the corresponding total one reads

σZ(7+8) = 2π
∫ 1

−1

dσZ(7+8)

dx
dx = (a7 + a8)GF s

128π
√

2Λ2
M2

Z

(s−M2
Z)

∫ 1

−1
dx(1 + x)2 =

= (a7 + a8)GF s

48π
√

2Λ2
M2

Z

(s−M2
Z) .

(A.54)

Also this computation is almost ended, but we have firstly to deal with the last two
operators of LLFC. Their amplitudes are

M9 = ia9

4Λ2 ū(p3)(1 − γ5)γρu(p1)ū(p4)(1 + γ5)γρu(p2) (A.55)

M10 = ia10

4Λ2 ū(p3)(1 + γ5)γρu(p1)ū(p4)(1 − γ5)γρu(p2), (A.56)

which have both a (1+γ5) and a (1−γ5) terms, differently from the previous contributions
in which there were two (1 + γ5) or two (1 − γ5). This difference has two effects: as
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usual, the Levi-Civita tensors in the two traces have opposite signs but, this time, as a
consequence of the different channel of interaction, the unpolarized matrix element gains a
minus sign, becoming

MZ9 − a9GF

4
√

2Λ2
M2

Z

(s−M2
Z)s

2(1 − x)2 (A.57)

and, similarly,

MZ10 = − a10GF

4
√

2Λ2
M2

Z

(s−M2
Z)s

2(1 − x)2. (A.58)

Once summed these two contributions, the related shift to the differential cross section
takes the form

dσZ(9+10)

dΩ = − 1
64π2s

× (a9 + a10)GF

4
√

2Λ2
M2

Z

(s−M2
Z)s

2(1 − x)2 = −(a9 + a10)GF s

256π2
√

2Λ2
M2

Z

(s−M2
Z)(1 − x)2

(A.59)

which, if integrated, provides the corresponding total one

σZ(9+10) = 2π
∫ 1

−1

dσZ(9+10)

dx
dx = −(a9 + a10)GF s

128π
√

2Λ2
M2

Z

(s−M2
Z)

∫ 1

−1
dx(1 − x)2 =

= −(a9 + a10)GF s

48π
√

2Λ2
M2

Z

(s−M2
Z) .

(A.60)

Combining the previous results, the final interference term between the NP Lagrangian
and the SM Z boson reads

σZtot = aAGF s

48π
√

2Λ2
M2

Z

(s−M2
Z) (A.61)

where aA = a7 + a8 − a9 − a10.
Finally, the total correction to the SM cross section obtained summing (A.48) and (A.61)
becomes

σNP = 1
Λ2

[
αaV

6 + aAGF s

48π
√

2
M2

Z

(s−M2
Z)

]
(A.62)
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A.4 Detailed computation of NP contributions to AFB
of e+e− → µ+µ−

Here it will be shown the explicit computations for the NP contribution to the forward-
backward asymmetry of the e+e− → µ+µ− process; nevertheless, as for the previous
section, let’s firstly recall the SM result.
The forward-backward asymmetry is defined as

AFB = σF − σB

σF + σB
=
∫ 1

0
dσ
dx
dx−

∫ 0
−1

dσ
dx
dx

σtot
(A.63)

and the SM prediction is simply
AFB = 3B

8A. (A.64)

However, since in the NP contribution there is already the suppression due to Λ2, I directly
neglect aθ (and its powers) in A and B, i.e. in the following computations it will be used

A = 128π2α2(s−M2
Z)2 +G2

F s
2M4

Z

128π2α2(s−M2
Z)2

B = − GF sM
2
Z

2
√

2πα(s−M2
Z)
.

Now we are ready to deal with the corrections to the asymmetry.
The NP differential cross sections are explicitly

dσZ
dx

|NP = GF s

128π
√

2Λ2
M2

Z

(s−M2
Z)
[
(a7 + a8)(1 + x)2 − (a9 + a10)(1 − x)2

]
dσγ
dx

|NP = α

16Λ2

[
(a7 + a8)(1 + x)2 + (a9 + a10)(1 − x)2

]
.

The integration of both of them is very easy to perform and it brings to the difference

σF − σB|NP = 1
Λ2

[
aA
α

8 + aV
GF s

64
√

2π
M2

Z

(s−M2
Z)

]
,

so that the forward-backward asymmetry due to NP contributions is

ANP
FB = 1

σtot
× 1

Λ2

[
aA
α

8 + aV
GF s

64
√

2π
M2

Z

(s−M2
Z)

]
. (A.65)

Now, in order to find the result of Eq. (3.49) it is necessary to rewrite the total asymmetry
factorizing the SM contribution as

AtotFB = ASM
FB

[
1 + δNP

FB

]
(A.66)

with
δNP

FB = ANP
FB

ASM
FB
. (A.67)
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For this purpose let’s firstly rewrite the total asymmetry as

AtotFB = (σF − σB)|SM + (σF − σB)|NP

σSM
[
1 + 3s

4πα2A
σNP

] =

= ASM
FB

 1(
1 + 3s

4πα2A
σNP

) + (σF − σB)|NP

(σF − σB)|SM
(
1 + 3s

4πα2A
σNP

)
 ,

where the denominator in the first equality is nothing else that the total cross section in
which the SM part has been factorized. Eq. (A.66) and the explicit expression of (A.67)
are immediately recovered and found after the expansion

1(
1 + 3s

4πα2A
σNP

) ≈
(

1 − 3s
4πα2A

σNP

)
,

which provides
δNP

FB = − 3s
4πα2A

σNP + (σF − σB )|NP

(σF − σB)|SM
. (A.68)

Exploiting the approximated expressions of A and B aforementioned, these two term read
explicitly

3s
4πα2A

σNP = 2s(s−M2
Z)

[128π2α2(s−M2
Z)2 +G2

F s
2M4

Z ]

[
8
√

2παaV (s−M2
Z) + aAGF sM

2
Z

Λ2
√

2

]

(σF − σB)|NP

(σF − σB)|SM
= − 1

16παGFM2
ZΛ2

[
8
√

2παaA(s−M2
Z) + aVGF sM

2
Z

]
.

In Eq. (3.49) the term δNP
FB is expressed by factorizing the function

r(s) = [128π2α2(s−M2
Z)2 −G2

F s
2M4

Z ]
[128π2α2(s−M2

Z)2 +G2
F s

2M4
Z ]

and, as it can been seen from the previous expressions, there are some efforts to deal with
in trying to do the same also in (A.68). Since the computation is very long (although
conceptually simple) and having just explained how it should be done, I will report directly
the result, which is

δNP
FB = −r(s)

Λ2
1

[128π2α2(s−M2
Z)2 −G2

F s
2M4

Z ]×

×
[
−64

√
2π2α2aA(s−M2

Z)3

GFM2
Z

+ aVG
2
F s

3M4
Z

48πα + 3aAGF sM
2
Z(s−M2

Z)√
2

+ 24παaV (s−M2
Z)2

]
(A.69)

The last passage consists in making a division between polynomials. Defining

• y = s−M2
Z
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• P (y) =
[
−64

√
2π2α2aAy

3

GFM
2
Z

+ aV G
2
F s

3M4
Z

48πα + 3aAGF sM
2
Zy√

2 + 24παaV y2
]

• D(y) = [128π2α2y2 −G2
F s

2M4
Z ]

• R(y) what remains from the division

• Q(y) the quotient

the following relation holds:

P (y)
D(y) = Q(y) + R(y)

D(y) .

In particular

• The quotient results
Q(y) = aV s

16πα − aAy√
2GFM2

Z

(A.70)

• The rest is
R(y) = 4aAs2GFM

2
Zy√

2
+ aVG

2
F s

3M4
Z

4πα (A.71)

Neglecting R(y), 25 then it follows

δNP
FB = r(s)

Λ2

(
aA(s−M2

Z)√
2GFM2

Z

− aV s

16πα

)
. (A.72)

which is precisely Eq. (3.49).
Although this seems to be the only way to proceed, there is a better and faster approach
which can be employed: the idea is to directly sum the amplitudes MZ and all the
Mi, with i = 7, 8, 9, 10, obtaining something which has the same structure of the weak
amplitude but with redefined chiral coefficients. This way requires firstly to rewrite MZ

in terms of gR,L rather than gV,A, which is

MZ = 2iGF√
2

M2
Z

s−M2
Z

[g2
Lµ̄(p3)γµ(1 − γ5)µ(p4)ēγµ(1 − γ5)e(p1)+

g2
Rµ̄(p3)γµ(1 + γ5)µ(p4)ēγµ(1 + γ5)e(p1)+
gLgRµ̄(p3)γµ(1 − γ5)µ(p4)ēγµ(1 + γ5)e(p1)+
gLgRµ̄(p3)γµ(1 + γ5)µ(p4)ēγµ(1 − γ5)e(p1)].

(A.73)

Then, summing all the non vanishing NP contributions, the total amplitude reads

Mtot = 2iGF√
2

M2
Z

s−M2
Z

[Cµ̄(p3)γµ(1 − γ5)µ(p4)ēγµ(1 − γ5)e(p1)+

Dµ̄(p3)γµ(1 + γ5)µ(p4)ēγµ(1 + γ5)e(p1)+
Eµ̄(p3)γµ(1 − γ5)µ(p4)ēγµ(1 + γ5)e(p1)+
Eµ̄(p3)γµ(1 + γ5)µ(p4)ēγµ(1 − γ5)e(p1)]

(A.74)

25I checked for different energy ranges and I found that R(y)
D(y) is really suppressed respect to Q(y) unless

√
s = MZ or very closed to MZ ; howeve,r in that case computations must be done again in order to

consider the factor iΓZMZ , as previously explained, has been removed.
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where
C = g2

L +
√

2a7

8GFΛ2
s−M2

Z

M2
Z

D = g2
R +

√
2a8

8GFΛ2
s−M2

Z

M2
Z

E = gLgR +
√

2(a9 + a10)
8GFΛ2

s−M2
Z

M2
Z

.

It is easy, now, to understand how one should proceed: the SM prediction of the asymmetry
must be firstly rewritten in terms of the usual gL,R by means of the definitions of gV,A and,
then, they must be substituted in terms of the new coefficients C,D,E and of the NP
pieces trough the above relations.
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A.5 LFV computation
In this section I will provide details on the derivation of Eq. (3.59) [64]. I rename the five
operators as

Q1 = (µ̄LeR)(µ̄LeR)
Q2 = (µ̄ReL)(µ̄ReL)
Q3 = (µ̄LeR)(µ̄ReL)
Q4 = (µ̄LγαeL)(µ̄LγαeL)
Q5 = (µ̄RγαeR)(µ̄RγαeR)

and in the following I will focus Q3; nevertheless, the computation is perfectly analogous
also for the other four operators and for this reason it will be only sketched.
First of all, let’s notice that this operator can be rewritten in a different way by means of
the third Fierz identity in (A.1) as

(µ̄LeR)(µ̄ReL) = −1
2(µ̄RγµeR)(µ̄LγµeL). (A.75)

However, although the result must (and indeed it is) the same in both cases, the computa-
tion is much more simple without exploiting such an identity. The corresponding matrix
element, then, is simply

〈Mu|Q3|Mu〉 = 〈Mu|b3(µ̄LeR)(µ̄ReL)
Λ2 |Mu〉. (A.76)

Here the non-relativistic (NR) bound states are normalized as 〈Mu(~p)|Mu(~p′)〉 = 2Ep(2π)3δ3(~p−
~p′) and, being the Muonium essentially a Coulomb bound state of µ+ and e−, it can be
expressed as [65]

|Mu〉 =
√

2MM

2m2M

∫ d3p

(2π)3

√
2Ep

√
2E ′pϕ̃(p)a(e)†

p b
(µ)†
p′ |0〉, (A.77)

where MM is the Muonium mass and ϕ̃ is the Fourier transform of the spatial wave function
describing the bound state, i.e.

ϕ̃(p)
∫
drϕ(~r)ei~p·~r.

Exploiting also the electron and muon fields as

ψ(x) =
∫ d3p

(2π)3
1√
2Ep

∑
s

[
aspu

s(p)e−ipx + b†sp v
s(p)eipx

]

and using the anticommutation relation among the ladder operators {ap, a†p′} = (2π)3δ3(p−
p′), it is possible to rewrite Eq. (A.76) in the form

〈Q3〉 = [(ūPLv) (v̄PRu) + (v̄PLu) (ūPRv)

− (v̄PLv) (ūPRu) − (ūPLu) (v̄PRv)] ×
∣∣∣∣∣
∫ d3p

(2π)3 ϕ̃(p)
∣∣∣∣∣
2

.
(A.78)
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Here u and v are nothing else that spinors, whose dependence on the momentum has been
neglected being in the NR regime; their explicit expressions are

u(m) =
√
m

(
ξ
ξ

)
v(m) =

√
m

(
η

−η

)
ū(M) =

√
M(ξ†, ξ†)γ0 v̄(M) =

√
M(η†,−η†)γ0,

where ξ and η are two-component spinor such that ξ†ξ = η†η = 1; moreover, in the Weyl
chiral basis the γ’s have the form

γ0 =
(

0 1
1 0

)
γα =

(
0 σα
σ̄α 0

)
γ5 =

(
−1 0
0 1

)
,

with σα = (1, ~σ) and σ̄α = (1,−~σ).
Then, the first term in the squared brackets of Eq. is explicitly

(ūPLv) (v̄PRu) = 1
4mM

(
ξ†, ξ†

)
γ0
(
1 − γ5

)( η
−η

)(
η†,−η†

)
γ0
(
1 + γ5

)( ξ
ξ

)
=

= mM
(
ξ†, ξ†

)( η
0

)(
η†,−η†

)( 0
ξ

)
=

= −mM
(
ξ†η

) (
η†ξ

)
.

(A.79)

Focusing only on the projection onto the singlet state, which can be obtained by means
of the substitution [65] ξ†η = 1/(

√
2), the previous result simply reads −mM/2 . Notice

that these steps are precisely the same that have to be followed in computing the scond
piece in (A.5).
For what concerns the third term, its computation is

(v̄PLv) (ūPRu) = 1
4mM

(
η†,−η†

)
γ0
(
1 − γ5

)( η
−η

)(
ξ†, ξ†

)
γ0
(
1 + γ5

)( ξ
ξ

)
=

= mM
(
η†,−η†

)( η
0

)(
ξ†, ξ†

)( 0
ξ

)
= mM

(
η†η

) (
ξ†ξ
)

= mM.

(A.80)

Also in this case, these steps are the same of those necessary for the forth piece in (A.5).
Summing all the four contributions, we end up with

〈Q3〉 = −6mM
∣∣∣∣∣
∫ d3p

(2π)3 ϕ̃(p)
∣∣∣∣∣
2

. (A.81)

On the other side, the term
∣∣∣∫ d3p

(2π)3 ϕ̃(p)
∣∣∣2 is, almost by definition, the squared modulus of

the spatial wavefunction at zero distance, properly normalized with the fermion masses as
|ϕ(0)|2/4mM . Remembering that for a NR Coulombic bound state the wave function in
the ground state is

ϕ(r) = 1√
πa3

0

e−r/a0 ,
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the final expression for this matrix element reads

〈Mu|b3(µ̄LeR)(µ̄ReL)
Λ2 |Mu〉 = − b3

Λ2
|ϕ(0)|2

4mM 6mM = − 3b3

2πΛ2a3
0

(A.82)

where a0 = (mα)−1 is the Bohr radius 26.
The computation for operators Q1 and Q2 is almost identical; the only difference that has
to be taken into account is the fact that in these cases there are either two PL or two PR
and not one of both of them. Take, for example, Q2; its matrix element reads

〈Q2〉 = [(ūPLv) (v̄PLu) + (v̄PLu) (ūPLv)

− (v̄PLv) (ūPLu) − (ūPLu) (v̄PLv)] ×
∣∣∣∣∣
∫ d3p

(2π)3 ϕ̃(p)
∣∣∣∣∣
2

.

The computation of the first term in the squared brackets follows the sames steps of (A.79),
but with a difference in the final sign due to the mentioned difference in the projectors:

(ūPLv) (v̄PLu) = 1
4mM

(
ξ†, ξ†

)
γ0
(
1 − γ5

)( η
−η

)(
η†,−η†

)
γ0
(
1 − γ5

)( ξ
ξ

)
=

= mM
(
ξ†, ξ†

)( η
0

)(
η†,−η†

)( ξ
0

)
=

= mM
(
ξ†η

) (
η†ξ

)
= mM

2 .

The final matrix elements for these two operators are

〈Mu|b1(µ̄LeR)(µ̄LeR)
Λ2 |Mu〉 = b1

2πΛ2a3
0

〈Mu|b2(µ̄ReL)(µ̄ReL)
Λ2 |Mu〉 = b2

2πΛ2a3
0
.

(A.83)

Finally, let’s briefly see Q4 and Q5. As already pointed out, as well as for the computations
already performed, the modus operandi is the same. The only difference is only the presence
of the γ’s, whose presence is not so problematic as it could appear. Let’s take Q4 (the
reasonment holds also for Q5); its matrix element is

〈Q4〉 = [(ūγαPLv) (v̄γαPLu) + (v̄γαPLu) (ūγαPLv)

− (v̄γαPLv) (ūγαPLu) − (ūγαPLu) (v̄γαPLv)] ×
∣∣∣∣∣
∫ d3p

(2π)3 ϕ̃(p)
∣∣∣∣∣
2

.

Focusing, again, on the first term in the squared brakets, it turns out to be

(ūγαPLv) (v̄γαPLu) = 1
4mM

(
ξ†, ξ†

)
γ0γα

(
1 − γ5

)( η
−η

)(
η†,−η†

)
γ0γα

(
1 − γ5

)( ξ
ξ

)
=

= mM
(
ξ†, ξ†

)( σ̄α 0
0 σα

)(
η
0

)(
η†,−η†

)( σ̄α 0
0 σα

)(
ξ
0

)
=

= mM
(
ξ†σ̄αη

) (
η†σαξ

)
= mM Tr

[
ηξ†σ̄α

]
Tr
[
ξη†σα

]
.

26Actually it should be a0 = µα, with µ the reduced mass of the system; nevertheless, being m � M ,
it is a very good approximation to take µ ≈ m
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Projecting onto the singlet state, i.e. using the relation

ηξ† = 1√
2

1,

the previous term becomes simply

(ūγαPLv) (v̄γαPLu) = mM

2 Tr [σ̄α] Tr [σα] = 2mM,

being only the α = 0 contribution not traceless.
Finally, the two amplitudes explicitly read

〈Mu|b4(µ̄LγαeL)(µ̄RγαeR)
Λ2 |Mu〉 = 4b4

2πΛ2a3
0

〈Mu|b5(µ̄RγαeR)(µ̄RγαeR)
Λ2 |Mu〉 = 4b5

2πΛ2a3
0
.

(A.84)
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A.6 Dimension six U(1)em invariant operators
Here I provide the U(1)em dimension-six operators made of the field content of the Standard
Model which allow to construct the most general LEFT [63].

(L̄L)(R̄R)
QV
νe (ν̄LpγµνLr)(ēRsγµeRt)

QV
ee (ēLpγµeLr)(ēRsγµeRt)

QV
νu (ν̄LpγµνLr)(ūRsγµuRt)

QV
νd (ν̄LpγµνLr)(d̄RsγµdRt)

QV
eu (ēLpγµeLr)(ūRsγµuRt)

QV
ed (ēLpγµeLr)(d̄RsγµdRt)

QV
ue (ūLpγµuLr)(ēRsγµeRt)

QV
de (d̄LpγµdLr)(ēRsγµeRt)

QV
νedu (ν̄LpγµeLr)(d̄RsγµuRt)

QV (1)
uu (ūLpγµuLr)(ūRsγµuRt)

QV (8)
uu (ūLpγµTAuLr)(ūRsγµTAuRt)

Q
V (1)
ud (ūLpγµuLr)(d̄RsγµdRt)

Q
V (8)
ud (ūLpγµTAuLr)(d̄RsγµTAdRt)
Q

(1)
du (d̄LpγµdLr)(ūRsγµuRt)

Q
V (8)
du (d̄LpγµTAdLr)(ūRsγµTAuRt)

Q
V (1)
dd (d̄LpγµdLr)(d̄RsγµdRt)

Q
V (8)
dd (d̄LpγµTAdLr)(d̄RsγµTAdRt)

Q
V (1)
uddu (ūLpγµdLr)(d̄RsγµuRt)

Q
V (8)
uddu (ūLpγµTAdLr)(d̄RsγµTAuRt)

(L̄L)(L̄L) and (R̄R)(R̄R)
QV
νν (ν̄LpγµνLr)(ν̄LsγµνLt)

QV
ee (ēLpγµeLr)(ēLsγµeLt)

QV
νe (ν̄LpγµνLr)(ēLsγµeLt)

QV
νu (ν̄LpγµνLr)(ūLsγµuLt)

QV
νd (ν̄LpγµνLr)(d̄LsγµdLt)

QV
eu (ēLpγµeLr)(ūLsγµuLt)

QV
ed (ēLpγµeLr)(d̄LsγµdLt)

QV
νedu (ν̄LpγµeLr)(d̄LsγµuLt)
QV
uu (ūLpγµuLr)(ūLsγµuLt)

QV
dd (d̄LpγµdLr)(d̄LsγµdLt)

Q
V (1)
ud (ūLpγµuLr)(d̄LsγµdLt)

Q
V (8)
ud (ūLpγµTAuLr)(d̄LsγµTAdLt)
QV
ee (ēRpγµeRr)(ēRsγµeRt)

QV
ee (ēRpγµeRr)(ēRsγµeRt)

QV
eu (ēRpγµeRr)(ūRsγµuRt)

QV
ed (ēRpγµeRr)(d̄RsγµdRt)

QV
uu (ūRpγµuRr)(ūRsγµuRt)

QV
dd (d̄RpγµdRr)(d̄RsγµdRt)

Q
V (1)
ud (ūRpγµuRr)(d̄RsγµdRt)

Q
V (8)
ud (ūRpγµTAuRr)(d̄RsγµTAdRt)

(L̄R)(L̄R)
QS
ee (ēLpeRr)(ēLseRt)

QS
eu (ēLpeRr)(ūLsuRt)

QT
eu (ēLpσµνeRr)(ūLsσµνuRt)

QS
ed (ēLpeRr)(d̄LsdRt)

QT
ed (ēLpσµνeRr)(d̄LsσµνdRt)

QS
νedu (ν̄LpeRr)(d̄LsuRt)

QT
νedu (ν̄LpσµνeRr)(d̄LsσµνuRt)

QS(1)
uu (ūLpuRr)(ūLsuRt)

(L̄R)(L̄R)
QS(8)
uu (ūLpTAuRr)(ūLsTAuRt)

Q
S(1)
ud (ūLpuRr)(d̄LsdRt)

Q
S(8)
ud (ūLpTAuRr)(d̄LsTAdRt)

Q
S(1)
dd (d̄LpdRr)(d̄LsdRt)

Q
S(8)
dd (d̄LpTAdRr)(d̄LsTAdRt)

Q
S(1)
uddu (ūLpdRr)(d̄LsuRt)

Q
S(8)
uddu (ūLpTAdRr)(d̄LsTAuRt)

X3 and (L̄R)(R̄L)
QG fABCGAν

µ GBρ
ν GCµ

ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QS
eu (ēLpeRr)(ūRsuLt)

QS
ed (ēLpeRr)(d̄RsdLt)

QS
νedu (ν̄LpeRr)(d̄RsuLt)
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A.7 Dimension six SU(3)C ⊗ SU(2)L ⊗ U(1)Y invariant op-
erators

Here I provide the 59 SU(3)C ⊗ SU(2)L ⊗ U(1)Y dimension-six operators made of the field
content of the Standard Model which allow to construct the most general SMEFT.

X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

φ6 and φ4D2

Qφ (φ†φ)3

Qφ2 (φ†φ)2(φ†φ)
QφD (φ†Dµφ)∗(φ†Dµφ)

ψ2φ3

Qeφ (φ†φ)(l̄perφ)
Quφ (φ†φ)(q̄purφ)
Qφ (φ†φ)(q̄pdrφ)

ψ2Xφ+ h.c.
QφG (φ†φ)GA

µνG
Aµν

QφG̃ (φ†φ)G̃A
µνG

Aµν

QφW (φ†φ)W I
µνW

Iµν

QφW̃ (φ†φ)W̃ I
µνW

Iµν

QφB (φ†φ)BI
µνB

Iµν

QφB̃ (φ†φ)B̃I
µνB

Iµν

QφWB (φ†τ Iφ)W I
µνBµν

QφW̃B (φ†τ Iφ)W̃ I
µνBµν

X2φ2

QeW (¯̀
pσ

µνer)τ IφW I
µν

QeB (¯̀
pσ

µνer)φBµν

QuG (q̄pσµνur)TAφ̃GA
µν

QuW (q̄pσµνur)τ I φ̃W I
µν

QuB (q̄pσµνur)φ̃Bµν

QdG (q̄pσµνdr)TAφGA
µν

QdW (q̄pσµνdr)τ IφW I
µν

QdB (q̄pσµνur)φBµν

ψ2φ2D

Q
(1)
φ` (φ†iD̄µφ)(¯̀

pγµ`r)
Q

(3)
φ` (φ†iD̄Iµφ)(¯̀

pτ
Iγµ`r)

Qφe (φ†iD̄µφ)(ēpγµer)
Q

(1)
φq (φ†iD̄µφ)(q̄pγµqr)

Q
(3)
φq (φ†iD̄Iµφ)(q̄pτ Iγµqr)

Qφu (φ†iD̄µφ)(ūpγµur)
Qφd (φ†iD̄µφ)(d̄pγµdr)
Qφud (φ†iD̄µφ)(ūpγµdr)

(L̄L)(R̄R)
Q`e (¯̀

pγ
µ`r)(ēsγµet)

Q`u (¯̀
pγ

µ`r)(ūsγµut)
Q`d (¯̀

pγ
µ`r)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)
Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q
(1)
qd (q̄pγµqr)(d̄sγµdt)

Q
(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(R̄R)(R̄R)
Qee (ēpγµer)(ēsγµet)
Quu (ūpγµur)(ūsγµut)
Qdd (d̄pγµdr)(d̄sγµdt)
Qeu (ēpγµer)(ūsγµut)
Qed (ēpγµdr)(d̄sγµdt)
Q

(1)
ud (ūpγµur)(d̄sγµdt)

Q
(8)
ud (ūpγµTAur)(d̄sγµTAdt)

(L̄L)(L̄L)
Q`` (¯̀

pγ
µ`r)(¯̀

sγµ`t)
Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτ iqr)(q̄sγµτ iqt)

Q
(1)
`q (¯̀

pγ
µ`r)(q̄sγµqt)

Q
(3)
`q (¯̀

pγ
µτ i`r)(q̄sγµτ iqt)

(L̄R)(R̄L) and (L̄R)(L̄R)
Q`edq ( ¯̀

p
j
er)(d̄sqjt )

Q
(1)
quqd (q̄pjur)εjk(q̄ksdt)

Q
(8)
quqd (q̄pjTAur)εjk(q̄ksTAdt)

Q
(1)
`equ ( ¯̀

p
j
er)εjk(q̄ksut)

Q
(3)
`equ ( ¯̀

p
j
σµνer)εjk(q̄ksσµνut)

where φ†iD̄µφ ≡ φ†(Dµ −
←
Dµ)φ and φ†iD̄I

µφ ≡ φ†(τ IDµ −
←
Dµτ

I)φ, with ϕ†
←
Dµϕ ≡ (Dµϕ)†ϕ.
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