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Abstract

Human activities as agriculture and urban construction have altered a large portion
of natural ecosystems and vegetation cover, defining three new land cover classes:
croplands, urban and built-up areas and mosaics of croplands and natural vegeta-
tion. In a period in which climate is rapidly changing, understanding how climatic
conditions are linked to the global distribution of human-modified land covers has
fundamental importance. Our goal is to identify the aforementioned relationships
and build models that predict realistic fractions of land covers associated with hu-
man activities only based on climate data.

Decision trees and random forests have been employed to solve the three multiple
regression problems, one for each human-modified land cover class. Experiments for
optimal model selection have been conducted. Out of three land cover classes, only
croplands responded well to modelisation.

Decision trees exhibited sensible predictive accuracy and good potential for climatic
patterns description, yet little robustness. Whereas, Random forests guaranteed
higher accuracy and more stability, proving to be reasonably informative models.
They provided valuable insights into the nature of the connections between climate
and the distribution of croplands.
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Introduction

Climate change is a modern reality that is having an increasing impact on life
on Earth, causing disorders among ecosystems. Human beings face the changes
adapting, strong of their capabilities and technology, which allow them to maintain
the same, or even improve, living standards. Their actions have implications for
the environment and, the precarious equilibrium between human beings and nature
deteriorates, affecting the climate in turn.

This terrible vicious cycle is that in which the human race is trapped nowadays.
To break the circle, humans have to step back, analyse the situation, identify the
problems and find solutions. It might seem hard all at once, indeed there are so many
interconnected topics to consider, yet, facing one at a time might be a good strategy.

With this view, the present study came to life. To restore the balance between
human beings and the ecosystem, we need to understand the relationships that
connect them. Then, the following research pointed at the comprehension of the
links between climate and the global distribution of land cover classes associated
with human activities, that is, croplands and urban areas.

Experience suggests that there are areas whose early vegetation cover has been
completely replaced by cities or plantations while other lands have maintained their
original aspect. Besides, many halfway shades exist. We deduce that human impact
has not been the same everywhere and, climate may have been a determinant factor.
Indeed, many questions arise on this theme, for instance: How has the climate
affected the distribution of croplands and urban areas? Has farming been strongly
dependent on climatic conditions? Human knowledge in science and technology have
been able to overcome climatic limitations when necessary?

Moreover, aside from preventing further climate changes, we are very interested
in their possible consequences, that is: How will climate change affect the choice
of areas for agriculture? Will the distribution of urban areas be influenced? Good
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knowledge of how these activities are related to climatic conditions might help in
understanding and predicting the effects of future climate scenarios. Hence, this has
been another guide line of the research project.

This thesis is the report of the study that has been conducted to find answers
to the previous questions. In practice, this has occurred through the research of
patterns that relates climatic conditions to the distribution of human activities on
the Earth’s surface in a cause-effect relationship. In more specific terms, our purpose
has been the global prediction of realistic percentages of human-modified land covers
only based on climate data.

The research has inspected data organised onto a hexagonal geodesic discrete
global grid. Each tile of the grid is an observation described by climatic features
and fractions of land covers associated with urban areas and agriculture. The latter
land cover class is divided in turn into areas with a considerable presence of croplands
(at least 60%) and mosaics of small-scale cultivation (between 40% and 60%) and
natural vegetation.

The prediction task is consequently structured as three distinct multiple regres-
sion problems, one for each land cover class, in a supervised learning setting. Consid-
erable attention has been dedicated to the interpretability of the resulting models.
To this end, tree-based methods have been employed (decision trees and random
forests) because they are non-parametric methods that can often model complex
and highly non-linear relationships while maintaining good interpretability.

The main challenge of this study is that over time humans have been able to
develop strategies to adapt to hostile environments and that historical and social
events have influenced the development of inhabited areas. Therefore, it is reason-
able to suppose that the presence of urban areas or croplands is not only determined
by climatic conditions, but many other factors might be relevant. The identification
of clear and meaningful patterns could be misled by the absence of such additional
information.

The content of the thesis is organised as follows:

Chapter 1 An overview of the theoretical background of decision trees and ran-
dom forests is given. Moreover, their strengths and weaknesses are explained.
The purpose of this chapter is to give the reader the fundamental tools for
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understanding the regression analysis and the reasons that motivated the em-
ployment of these models.

Chapter 2 The mathematical formulation of the regression problem is provided.
The dataset is analysed, described and prepared for model learning.

Chapter 3 The framework of the solution of the regression problem via decision
trees is explained. All the stages of the decisional process for finding the
optimal model are described and motivated. The performances of the so-
obtained decision tree are evaluated and, the patterns that it has learnt are
interpreted.

Chapter 4 Similarly to Chapter 3, the regression analysis performed through ran-
dom forests is described. The results are illustrated and interpreted.

Conclusion This final chapter contains an overview of the results of the research.
Ideas for future works are briefly discussed.
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Chapter 1

Tree-based methods

Tree-based methods are grounded on the idea of segmenting the feature space X
into a set of simple regions and then fitting a constant value in each one in order
to make predictions. The primary methods of this family of models are known as
decision trees, since the set of splitting rules used to partition the feature space can
be summarised in a tree.

The key advantages of tree-based methods are their conceptual simplicity and
interpretability. Moreover, they can be used for both regression and classification
problems, reason why they are generally referred to as classification and regression
trees, in short, CARTs (Breiman et al., 1984).

In what follows we will focus only on the regression task, so that, terms like
decision tree and regression tree will be considered interchangeable. However, many
on the considerations will hold also for a classification scenario.

1.1 Regression trees

Let us consider a regression problem with a continuous response Y and a
p-dimensional predictor space X . The purpose of a regression tree is the descrip-
tion of the variation of the single response variable Y in the predictor space X , by
repeatedly partitioning the data into more homogeneous groups using combinations
of predictor variables.
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1.1.1 Tree growing

The process of building a regression tree can be outlined in two steps:

1. Partition the predictor space intoM disjoint homogeneous regions R1, . . . , RM ;

2. For every observation that falls into the region Rm, the same prediction is
done: a constant value cm.

These two apparently easy tasks hide more elaborate operations that we are going to
investigate. In order to do that, let us formalise the context in which the regression
tree should grow.

Let our data consist of N observations, each one composed of p predictors and
one response, that is

(xi, yi) , i = 1, . . . , N

with xi = (xi1, . . . , xip) a p-dimensional vector. Assuming that the partitioning
operation of the predictor space into M regions returns R1, . . . , RM and that the
response is modelled as a constant cm in each region Rm, m=1, . . . ,M , for a new
observation x the model prediction can be computed as

ŷ := f(x) =
M∑
m=1

cm1Rm(x).

The main issue of the tree-growing process is the way of creating the regions
R1, . . . , RM . In principle, they could have any shape, but the most spread choice is to
divide the predictor space into hyperrectangles. This choice is motivated by the ease
of the building process and of the interpretation of the resulting predictive model.

The ideal goal of the partitioning algorithm is to find the regions R1, . . . , RM that
minimise the overall rss 1 among all possible constant values cm used for prediction
in each region:

min
R1,...,RM

M∑
m=1

(
min
cm∈R

∑
i :xi∈Rm

(yi − cm)2
)
.

It is straightforward to prove that the inner minimisation problem can be solved by
choosing cm as the mean of the response values for the training observations falling

1Residual Sum of Squares, i.e., rss(f) =
∑n

i=1(yi − f(xi))
2.
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within Rm (commonly referred to as mean response) 2 , that is

ŷm :=
1

Nm

∑
i :xi∈Rm

yi , with Nm = |{xi ∈ Rm}|.

This result reduces the minimisation problem to be solved by the tree-building
algorithm to

min
R1,...,RM

M∑
m=1

∑
i :xi∈Rm

(yi − ŷm)2. (1.1)

The argument of (1.1) is called training error and it is denoted by R(T ), where T
is the decision tree that segments the predictor space into R1, . . . , RM . Moreover, if
we denote the within rss of a predictor region Rm by

R(m) =
∑

i :xi∈Rm

(yi − ŷm)2

then the overall rss, i.e., the training error, can be written as

R(T ) =
M∑
m=1

R(m).

R(m) is the total squared deviation of each observation in Rm from the mean re-
sponse ŷm. Clearly summing over all regions, we get the total squared deviation of
each observation from the corresponding model prediction. In this sense R(T ) is
also referred to as the impurity of the tree T , and analogously R(m) is the impurity
of region Rm.

When building a decision tree, considering every possible partition of the feature
space into M boxes is computationally unfeasible. Therefore, the idea behind the
building process is to repeatedly split the data on the basis of a simple rule applied
to a single feature. At each split the data is partitioned into two disjoint groups.
The splitting procedure is then recursively applied to each group separately.

2Let us suppose that Nm observations fall within the region Rm and that they are indexed from
1 to Nm. So, let us define the function f(cm)=

∑Nm

j=1(yi − cm)2. Differentiating f once in cm, we
have

f ′(cm) = −2
Nm∑
j=1

(yj − cm) = −2
Nm∑
j=1

yj + 2Nmcm.

The only root of this function is c= 1
Nm

∑Nm

j=1 yj . Looking at the sign of the second derivative,
f ′′(cm)=2Nm > 0, we can conclude that c is the unique point of minimum for f .
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A top-down, greedy algorithm, called recursive binary splitting comes in handy.
It is top-down because it starts considering all points belonging to a single region, the
entire predictor space X (which happens in the root of the tree), then successively
splits it into subregions; each split corresponds to two new branches further down
on the tree and each subregion to a new node. It is greedy because, at each step of
the tree-building process, the chosen split is the best at that specific step, instead of
a split that would lead to a better tree in some future step. The definition of best
split will be clarified in a moment.

Starting with all the data points, in order to choose the best split, we select the
splitting predictor Xj and the cutpoint s such that the regions

R1(j, s) = {X |Xj < s} R2(j, s) = {X |Xj ≥ s}

produce the greatest reduction in the rss of the resulting tree. In other words, the
recursive binary splitting algorithm solves the minimisation problem

min
s, 1≤j≤p

{ ∑
i :xi∈R1

(yi − ŷ1)2 +
∑

i :xi∈R2

(yi − ŷ2)2
}
. (1.2)

When the number of features p is not too large, this problem can be solved quickly,
since the determination of the cutting point s for each feature is of fast execution
(Hastie, Tibshirani, and Friedman, 2009).

Once the best split have been found, the data points are partitioned into two
disjoint regions and the same procedure is repeated within both of them. The process
continues until a given stopping criterion is reached or no further splitting is possible.

As mentioned above, as soon as theM regions have been created, every prediction
is done by assigning to each observation the mean response of the region it belongs to.

1.1.2 Tree pruning

The recursive binary splitting algorithm can produce good predictions on the
training observations, but it is likely to produce an overlarge tree that overfits3 the
training data. Tree size, i.e., the number of leaves of the tree, is a tuning parameter

3With the term overfitting we identify the situation in which the model memorises excessively
the training data instead of learning the fundamental structure, hence, it fails to generalise on
unseen data reliably.
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governing the model complexity. This means that an excessively large tree might
result to be too complex while an overly small tree might not capture the important
structure of the data.

Slightly reducing the number of splits in the tree, then the number of predictor
regions and the tree size, might lead to a lower variance and a better interpretation,
at the cost of a little bias. This technique is known as pruning. Accordingly to the
way it is performed, we can distinguish two main approaches:

Pre-pruning It is also known as forward pruning or online pruning. It prevents the
generation of non-significant branches, by means of some stopping rule that
decides when it is desirable to terminate some of the branches prematurely as
the tree is generated.

When growing the tree, some significant measures can be used to assess the
goodness of a split and, so, to either prevent or allow the creation of two
new branches. If the split of a node results in falling below a prespecified
threshold, then further partitioning of the given subset is halted, otherwise, it
is expanded. High thresholds result in oversimplified and small trees, whereas
low thresholds result in very little simplification and large trees. There are
various techniques for pre-pruning, but in general, it is not recommended.

For instance, a possible strategy, proposed by Breiman et al. (1984), is to
accept a split only when the resulting impurity decrease exceeds some threshold
β. However, as Breiman et al. (1984) itself pointed out, this approach has two
weaknesses. First, when the improvement threshold is too low, the resulting
tree is extremely large, and the overfitting problem has not been solved yet.
Second, when β is large, it is too short-sighted, indeed, there may be nodes
whose profitless splits according to such a threshold value would be followed
by splits with a significant impurity decrease.

Post-pruning It is also known as backward pruning. In this case, first a large
decision tree is generated and then non-significant branches are removed.

A commonly used approach aims to retain the decision tree but to replace
some of its subtrees by leaf nodes, thus converting a complete tree to one of
its possible subtrees 4. More in detail, we generate a (complete or very large)

4A subtree T ⊆ T0 is defined as any tree that can be obtained by collapsing any number of
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tree T0 and we selectively prune it upward. Clearly to examine all the possible
subtrees can be computationally unfeasible, then we need a way to select a
small set of subtrees, among which the one with the lowest test error estimate
will be chosen.

Cost-complexity pruning

Focusing on the post-pruning approach, the generally preferred strategy is the
cost-complexity pruning, also known asminimal error-complexity pruning or weakest-
link pruning, introduced by Breiman et al. (1984). The purpose of the algorithm is
to find a sequence of nested trees, each of which is the best of all trees of its size.

As already mentioned in more general terms, in this technique we build a large
tree T0 by letting the partitioning procedure continue until terminal nodes are either
small enough or contain only identical observations. We then define, for each subtree
T , the cost-complexity criterion

Cα(T ) =

|T |∑
m=1

∑
i :xi∈Rm

(yi − ĉm)2 + α|T | =: R(T ) + α|T |.

Here Rm is the predictor region corresponding to the mth terminal node and |T | is
the subtree size. The complexity parameter α can be interpreted as the complexity
cost for each terminal node, so that, the subtree cost Cα(T ) is a linear combination
of the training error and a complexity penalty.

The idea of cost-complexity pruning is to find, for each value of α ≥ 0, the
subtree Tα ⊆ T0 that minimises Cα(T ), i.e., the solution of

argmin
T⊆T0

Cα(T ). (1.3)

The tuning parameter α controls the trade-off between the subtree complexity
and its adaptability to the training data. Notice that when α=0, then the solution
of (1.3) is T0 itself, while, as α increases, a price for having many terminal nodes is
payed and the dimension of the resulting subtree decreases.

The existence of a unique solution of (1.3) for each value of α is proved by
Breiman et al. (1984). Moreover, it is noticed that, although α runs through R+,
only a finite number of subtrees of T0 exist and only a subset of them is examined by

internal non-terminal nodes of T0.
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the cost-complexity pruning algorithm. Then, only the corresponding finite number
of effective α values is identified:

A = {α0=0, α1, α2, . . . }.

In order to better explain this idea, let us assume Tαk
be the solution of (1.3) for

α = αk; thus, it keeps being solution of (1.3) for α > αk until a larger value αk+1

(αk+1 > αk) is identified, such that a smaller subtree Tαk+1
is solution of (1.3) for

α=αk+1. The same reasoning can be repeated until the pruned tree collapse in the
root of T0, a single-node tree.

In conclusion Breiman et al. (1984) proved that cost-complexity pruning returns
a finite increasing sequence of complexity parameters

α0 < α1 < α2 < . . .

corresponding to a finite sequence of subtrees of T0, with progressively fewer terminal
nodes. In addition, the sequence of subtrees results to be decreasing, that is,

{Tα}α∈A ⊆ T0 : Tα′ ⊃ Tα′′ if α′ < α′′. (1.4)

Furthermore, as α grows, branches of T0 get pruned in a nested and predictable
way and the pruning operations are computationally rapid, requiring only a small
fraction of the total tree construction time. So, obtaining the whole sequence of sub-
trees as a function of α is an easy process (Breiman et al., 1984; James et al., 2013).

Selection of the best-pruned tree

The cost-complexity pruning results in a nested sequence of subtrees,

T0 ⊃ T1 ⊃ · · · ⊃ {t1}

where Tk :=Tαk
and {t1} is the root of T0. Since each subtree is the best of its size

according to (1.3), choosing the best tree among them, means choosing the best
size. The meaning of best depends on the criterion used to evaluate a tree.

It is evident that, if the criterion is the training errorR(T ), then the best subtree
is T0 itself. However, we are not interested in the model that is able to describe the
training data the best way is possible, but we would prefer a model that is able
to generalise its predictive power to new unseen data. Assuming that R̂(T ) is an
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unbiased estimate of the generalisation error of a regression tree, then we would
choose the subtree minimising this error measure, i.e., solving

argmin
k

R̂(Tk). (1.5)

Breiman et al. (1984) proposed two possible choices for R̂(T ): the validation-set
error estimate and the v-fold cross-validation error estimate. The former method
is computationally more efficient than the latter, but the cross-validation approach
makes a more effective use of the of the training data and is able to highlight
information regarding the stability of the model.

Another reason in favour of the cross-validation approach is the possibility to
quantify the uncertainty of each generalisation error estimate R̂(Tk) computing its
standard error in every problem setting. Indeed, v-fold cross-validation inherently
returns an estimate R̂(Tk) which is the mean of v values R̂1(Tk), . . . , R̂v(Tk). In
short terms, each of them is the generalisation error of the same decision tree (with
fixed hyperparameters), computed on a different validation set that has been inde-
pendently drawn from the same distribution of the training data. Therefore, the
standard error on the sample mean R̂(Tk) can be estimated as:

se
(
R̂(Tk)

)
=
σ̂
(
R̂(Tk)

)
√
v

where σ̂
(
R̂(Tk)

)
is the sample standard deviation.

Breiman et al. (1984) explains how the standard error comes in handy: it is
necessary to apply the one-standard-error rule (1se rule), that is,

Defined k0 =argmin
k

R̂(Tk), then the tree selected is Tk1 , with k1>k0,

such that k1 is the maximum k satisfying

R̂(Tk1) ≤ R̂(Tk0) + se
(
R̂(Tk0)

)
.

In other words, the 1se rule picks the simplest tree whose generalisation error esti-
mate is at most one standard error away from the best-performing tree’s generali-
sation error estimate.

The 1se rule shows its power especially when the error curve, as function of the
tree size, presents the following behaviour: an initial steep decrease is followed by a
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flat valley in which the minimum is achieved, and a gradual increase comes after. In
this case, the position of the minimum is unstable and might be affected by many
factors (data distribution, model hyperparameters, random seeds, etc.). The 1se
tree size might reduce this instability still returning a model whose generalisation
error is comparable with the best-performing tree.

1.1.3 Reasons behind the use of regression trees

There are many reasons to motivate the use of regression trees, and more in
general, decision trees, as it is emphasised by Breiman et al. (1984), De’ath and
Fabricius (2000), Hastie, Tibshirani, and Friedman (2009), James et al. (2013),
Prasad, Iverson, and Liaw (2006), and Piramuthu (2008).

First of all, regression trees are easy to explain and interpret, thanks to the fact
that they are graphically displayable. As already mentioned and as the name sug-
gest, the sequence of splitting rules applied to the feature space X can be represented
with a binary tree: the root of the tree contains the entire X , the branches describe
all the sequential divisions of X and the terminal nodes, or leaves, stand for the
final predictor regions. Furthermore, the regression trees growing process follows
closer than other methods the human decision-making. A plus point in favour of
their interpretability.

Moreover, in a data analysis, regression trees can be useful for both exploring and
modelling the data. When considering modelling the data, it can be done with two
possible purposes: describing the data, that is, identifying a systematic structure
that characterise the data or, predicting specific responses on new unobserved data.
Again, trees are useful for both tasks. They perform local, greedy learning that
allows to find a sensible, even if not necessarily optimal, models in a reasonable time.

Moving more into technical details, regression trees are non-parametric models,
which means that they make no distributional assumptions about the predictor or
the response variables and their accuracy is not affected by correlation between
predictors. They can handle both qualitative and quantitative predictors without
the need to create dummy variables. They are invariant to monotonic transformation
of numeric predictors and responses, hence they avoid the thorny task of identifying
the form of relationship between the predictors and the response variable.
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When relationships between predictors and response and between predictors
themselves, are complex and highly non-linear, regression trees might be very accu-
rate. They clearly operate at their best with rectangular true models. On the other
hand, they are outperformed by linear models when problems have a good linear
structure, since they do not take into account linear relationships. Anyway, it can
happen that, even with this problems, they are able to highlight some insights on
the data structure that are not evident from a linear model.

In the event that data present some missing predictor in some observation, the
commonly chosen strategies applied are the drastic removal of any incomplete ob-
servation or the filling of missing values with a specific statistic computed on the
non-missing observations. However regression trees offer valid alternatives that allow
to avoid the reduction of the training data and the consequent loss of information
or the possible introduction of bias that the referred-to strategies might cause.

All the above mentioned advantages of regression trees explain the reason why
they are perfectly suited for ecological data analysis. Indeed, ecological data are
often complex, unbalanced and contain missing values. The relationship between
variables often involve high-order interactions, therefore they are unlikely well de-
scribed by linear models and other commonly used statistical modelling techniques
(De’ath and Fabricius, 2000).

On the other hand, the major problem of regression trees is their non-robustness:
a small variation in the data can result in a totally different estimated tree. There-
fore, they suffer from high variance due to the hierarchical nature of the constructing
process: a small variation in the top of the tree propagates down with effect on all the
future splits. A diverse and more stable splitting criterion might attenuate this prop-
agation effect, yet it is not possible to fully prevent it when dealing with a single tree.

A fact that should be highlighted is the lack of smoothness of the prediction
surface generated by regression trees. As we have already mentioned, regression trees
performed very well with true rectangular models since they split the predictor space
into rectangles. If the size of the tree had no limit, the tree could approximate every
decision boundary with arbitrary precision, but in practice, when the underlying
model is expected to be smooth, performances of regression trees can degrade.

Regretfully, compared with other supervised learning approaches, regression trees
are not very competitive in terms of predictive accuracy, although it always depends
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on the specific problem. Anyway, it is worth mentioning that the combination of
multiple regression trees to yield to a single prediction results in a dramatic im-
provement of performances, at the expense of some loss in interpretability (Caruana
and Niculescu-Mizil, 2006; García-Gutiérrez et al., 2015).

1.2 Random forests

As already mentioned, decision trees suffer from high variance resulting to be
non perfectly robust models. This fact motivated the introduction of techniques
that aggregate many trees together in order to obtain more powerful models with
lower variance than a single tree. Let us remember that in the following the focus
is on the regression scenario, even though many of the observations would hold also
for a classification problem.

1.2.1 From bagging to random forests

Bagging

Bagging, or bootstrap aggregation, is a general-purpose procedure for reducing
the variance of an estimated prediction function. It is often used in the context of
high-variance and low-bias models. Regression trees are a perfect candidate, indeed,
if they are sufficiently deep, they can be considered unbiased and it is a fact that
they are strongly affected from variance.

The reliability of bagging is given by some fundamental properties of expec-
tation and variance of random variables: let us consider B identically distributed
random variables W1, . . . ,WB with expected value µ and variance σ2. Their mean
has expected value

E
[
1

B

B∑
i=1

Wi

]
= µ (1.6)

that is, the same as each individual variable. If independence of the variables holds,
their mean has variance

Var
(
1

B

B∑
i=1

Wi

)
=
σ2

B
(1.7)

which is strictly smaller than the variance of each individual variable.
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Bagging exploits these two properties. The idea, applied to regression trees, is to
average the outcome of many different trees, trained on data drawn from the same
distribution (hence, on identically distributed datasets), in order to obtain a single
prediction for a given unseen observation. The resulting model would have low bias
(due to the fact that the original trees are unbiased and property (1.6) holds) and
lower variance than each single tree taken individually. Thus, the improvement due
to the average, is only related to the reduction of the model variance.

So, theoretically, if one had B different training sets derived from the same
population, a separate regression tree could be fitted on each of them, obtaining
B predictive functions f̂ 1(x), . . . , f̂B(x). Then, averaging, the prediction would be
computed as

f̂avg(x) =
1

B

B∑
i=1

f̂ i(x). (1.8)

This argument presents two flaws. First, it is really unlikely to have at our
disposal B different training sets from the same population. A possible solution
to this problem is to perform bootstrap on the available training set, generating B
different datasets sampled from the original one with replacement. The procedure
so obtained is known as bagging (Breiman, 1996a).

Summing up, bagging applied to regression trees, involves the creation of B
regression trees, using B bootstrapped training sets from the original dataset, and
averaging of the resulting predictions.

Notice that trees have not been pruned. Indeed overfitting and variance related
problems are solved via averaging. Adding pruning would help in reducing overfit-
ting, but would add bias in each single tree and so, in the resulting model.

There is still the second issue to talk about. Property (1.7) holds only if the
independence of the B variables is guaranteed. For instance, if the same B variables
are only identically distributed with positive pairwise correlation ρ, the variance of
the average will be

Var
(
1

B

B∑
i=1

Wi

)
= ρσ2 +

1− ρ
B

σ2. (1.9)

Hence, as the number of trees B grows, the variance is dominated by the first term
ρσ2, so that, the correlation between variables would diminish the advantages of
averaging. In order to prevent this drawback, a trick can be used, that leads to the
definition of random forests.
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Random forests definition

A Random forest (regressor) (Breiman, 2001a) provides an improvement to the
bagging procedure with a slight modification that decorrelates bagged trees enhanc-
ing the variance reduction of the average model. This tweak regards the choice of
predictors when splits of the feature space X are performed.

More in detail, when a regression tree is grown on a bootstrapped training set,
at each split, a random sample of m predictors, with m<p, is drawn from the full
set of p predictors. These predictors are split candidates, which means that the best
split must be searched only among them, excluding the other predictors. Once the B
regression trees are grown as described above, the prediction is computed as in (1.8).

Therefore, random forests overcome the problem of correlation between boot-
strapped trees by forcing each split to consider only a subset of the predictors. The
decorrelation of trees makes the average model less variable and so, more reliable.

A typical value for m in regression tasks is bp/3c, but it might vary depending
on the specific case and it should be considered as a tuning parameter. Notice that
if m= p, classic bagging is performed. A small value of m is helpful when there is
a large number of correlated predictors. Indeed, the more m decreases, the more
the pairwise correlation of trees ρ in the ensemble is reduced, hence, by (1.9), the
variance of the average prediction decreases.

1.2.2 Deeper into random forests

Out-of-bag error estimation

Random forests have an important feature, the out-of-bag (oob) samples : it can
be proved that on average, each bagged tree is trained on 2/3 of data points in the
original training set. The remaining 1/3 of the original training set is referred to as
the oob sample of the tree.

Thus, in order to obtain a honest estimate of the test error of a random forest,
one could exploit the oob samples of each tree in the forest, without the need of
using cross-validation or a validation-set.

The idea of oob error estimation is the following: for each observation (xi, yi),
one can compute a prediction growing a new random forest that aggregates only the
bagged trees trained on bootstrapped samples in which the ith observation did not
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appear. Once the oob prediction has been computed for the entire original training
set, the oob error can be obtained and used as generalisation error estimate for the
whole random forest.

The test error estimate so obtained is valid because the response for each obser-
vation is predicted only using trees that have been fitted without that observation.
Moreover, the oob error estimate is very close to the k-fold cross-validation error
estimate and it is dramatically more convenient in computational terms, especially
when the training set is very large (Hastie, Tibshirani, and Friedman, 2009; Breiman,
1996b).

Variable importance measures

Bagging and random forests typically result in improved accuracy over prediction
using a single decision tree. However, the aggregation of many trees affects the
interpretability of the resulting model, which is a relevant merit of decision trees. It
is no longer possible to represent the model as a single tree.

Anyway, it is still possible to extract from a random forest an overall summary of
the importance of each variable, that is, its contribution in predicting the response.

Let us consider for the moment a single regression tree. Each internal node n
of the tree corresponds to the split of a region of the feature space X into two sub-
regions. The improvement of the split criterion of an internal node n is the local
importance attributed to the predictor used in the split corresponding to the con-
sidered node n. In the regression setting, the improvements is the total amount of
which the rss is decreased by the concerned split. The total importance of a pre-
dictor in the tree is the accumulation over all internal nodes of the local importance
values of the predictor.

More formally, Breiman et al. (1984) proposed the following calculation of the
importance of the jth predictor:

I2j (T ) =
∑

n internal
node of T

i2n δj,v(n) (1.10)

Here, i2n represents the squared local importance of the predictor used in the split
of node n; v(n) returns the predictor index used in node n for the split and δj,v(n) is
the Kronecker delta controlling whether the jth predictor and the v(n)th predictor
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correspond. Therefore, the squared importance of variable Xj is the sum of the
squared local improvements over all internal nodes for which it was chosen as the
splitting variable.

Measure (1.10) can be generalised to a random forest by averaging the importance
of predictor Xj over all trees in the forest, i.e.,

I2j =
1

B

B∑
i=1

I2j (Ti)

The stabilisation introduced by averaging makes this measure of variable impor-
tance more reliable than that computed in a single tree. Moreover, one should be
able to compute this measure for every predictor since the split-candidates selection
operated by random forests makes possible that every single predictor is included in
the model (Hastie, Tibshirani, and Friedman, 2009).

Variable importance values can be used to obtain ranking of variables by their
importance within the model. Furthermore, what is so interesting about variable
importance returned by tree-based methods is that it allows to measure the impact
of each predictor even in a multiple regression problem, when predictors may be
involved in high-order interactions. This is fundamental in biological and ecological
settings. For instance, in an ecological classification scenario, Cutler et al. (2007)
noticed that, even though the most important predictors in the variable importance
rankings returned by random forests cannot be said to be right or wrong, they
generally coincided closely with the expectations based on ecological understanding
of the problem.

1.2.3 Reasons behind the use of random forests

The primary motivation for the introduction of random forests is to fix the
instability problem that affect single decision trees. As already mentioned before,
aggregating many trees smooths the hard cut decision boundary created by a single
decision tree, which in turn reduces the model variance and maintains a low bias.
The resulting model benefits of robustness and, in many cases, is able to outclass
a single decision tree in describing the structure of the data and in generalising its
predictive power.

Furthermore, as a ensemble of decision trees, random forests inherit many of
the characteristics of decision trees, for instance: they are able to model complex
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interactions among predictors and between predictor and response variables; they
are able to treat with missing data with alternatives to their complete removal;
they have no distributional assumptions on the input data and they are invariant
to monotonic transformations of predictor and response variables; their accuracy is
not affected by multicollinearity problem.

Therefore, many applications of random forests in ecological settings have evi-
denced their competitive performances with respect to the best available statistical
models, for both classification (Cutler et al., 2007; Gislason, Benediktsson, and
Sveinsson, 2006) and regression (Prasad, Iverson, and Liaw, 2006) scenarios.

On the other side, random forests lose in interpretability with respect to decision
trees. Obtaining a pictorial representation of the model is no longer possible, and un-
derstanding how exactly the model has returned a specific outcome is harder because
of the contribute of many simpler decision trees. However alternative tools for the
understanding of the model structure and the relationships between the predictors
and the response are available, e.g., variable importance measures (Breiman, 2001a),
permutation importance measure, partial dependence plots (Breiman, 2001b), etc.

Lastly it is necessary to notice that for its own nature, training a random forest
is a longer process than training a single decision tree, therefore the computational
effort and the execution time for building the model grows with the depth of the
trees, their number inside the forest and the size of split candidates set used. Luckily
reducing the number of slip candidates, each split is faster because only a subset of
data is analysed. Moreover, random forests can be parallelised on multiple machines,
which results in a faster computation time.
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Chapter 2

Data analysis

In this chapter we inspect the data and we formally define the leading regression
problems of this work. Once the formal setting is determined, we move to the de-
scription of the preprocessing and the analysis phases of the dataset, which purpose
is to lay the best the foundations for the machine learning modelling phase.

2.1 Dataset description and problem statement

2.1.1 Dataset description

The dataset used in this study consists of bioclimatic predictors and land cover
fraction variables for the entire Earth’s surface.

Bioclimatic predictors are a set of 19 standard measures of temperature and pre-
cipitation, used frequently in ecological applications. They describe annual trends,
seasonal mean climate conditions, and extreme or limiting environmental factors.
A brief description, obtained by O’Donnel and Ignizio (2012), is given in Table A.1.
All the predictors are numerical variables and it can be noticed that they may
be considered divided into two main groups: Temperature-Related (tr) predictors
(bio01, . . . , bio11) and Precipitation-Related (pr) predictors (bio12, . . . , bio19).

Bioclimatic data have been derived from the open access data source WorldClim
v2.0 (Fick and Hijmans, 2017), containing high spatial resolution global weather
and climate data. This dataset has been built with observations averaged across a
temporal range of thirty years, 1970-2000.
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Code Name Description

igbp12 Croplands At least 60% of area is cultivated cropland.

igbp13 Urban and built-up lands At least 30% impervious surface area in-
cluding building materials, asphalt and ve-
hicles.

igbp14 Croplands/Natural vegetation
mosaics

Mosaics of small-scale cultivation 40-60%,
with natural tree, shrub or herbaceous veg-
etation.

Table 2.1: Description of human-modified land cover classes (Friedl and Sulla-Menashe,
2019).

Land cover fraction variables have been obtained from the MODIS Land Cover
Type Product (MCD12Q1 ) (Friedl and Sulla-Menashe, 2019), year 2018. Each land
cover fraction variable gives the fraction, i.e. the percentage, of the associated land
cover type, classified according to the International Geosphere-Biosphere Programme
(IGBP) legend. The description of all 17 land cover classes is in Table A.4.

For the purpose of this work the interest falls on the land cover classes associ-
ated with human activity: croplands (igbp12), urban and built-up lands (igbp13)
and croplands/natural vegetation mosaics (igbp14). They are briefly explained in
Table 2.1 and the difference among them can be immediately understood by looking
at the aerial photographs in Figure 2.1.

Both datasets are global mappings of the variables over regular grids with square
cells. However, because WorldClim and MCD12Q1 are provided in differing coor-
dinate reference systems, at differing spatial resolutions, these datasets have been
spatially resampled onto an Icosahedral Snyder Equal Area (ISEA), aperture 3,
hexagonal geodesic discrete global grid, having equal-area (2600 km2) hexagonal
cells (Sahr, White, and Kimerling, 2003).

Briefly, each observation of the dataset resulting from the spatial resampling
operation is an hexagonal tile, labelled by the geographical longitude and latitude
coordinates of its centroid, described by the bioclimatic predictors and the land
cover fraction variables corresponding to its specific geographic region.
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Figure 2.1: Aerial photographs illustrating the three human-modified land cover classes in
the IGBP’s classification system. Respectively, croplands (igbp12) on the left, urban and
built-up lands (igbp13) in the middle and croplands/natural vegetation mosaics (igbp14)
on the right. These photographs are all from Kenya, and they are all mapped at the same
spatial scale.

2.1.2 Problem statement

The dataset just described can be regarded as 4 distinct elements. Bioclimatic
predictors form the largest part of the dataset and they constitute the feature matrix
in the regression task, that is, they can be thought as a matrix

X ∈ Rn×19

where the jth predictor corresponds to the jth column and the ith grid tile to the
ith row of X. Here n is the number of observations in the dataset1. Denoting the
jth bioclimatic predictor with bioj or with Xj is equivalent.

1In Section 2.2 a number for n will be properly defined.
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The remaining three elements of the dataset are the three land cover fraction
variables igbp12, igbp13 and igbp14 that can be mathematically represented as
three n-dimensional vectors, respectively

Y1, Y2, Y3 ∈ [0, 1]n.

Clearly, there is a correspondence between the ith row of X and the ith component
of Yk, k=1, 2, 3. These variables represent three possible responses of a regression
analysis. Hence, three different regression problems are defined, one for each human-
modified land cover fraction variable.

So, the aim of this work is the identification, by means of tree-based methods
introduced in Chapter 1, of three possible functions f̂1, f̂2, f̂3 : R19 → [0, 1]n such that

ŷk = f̂k(x) , k = 1, 2, 3 (2.1)

i.e., three models for predicting human-modified land cover fraction ŷk from biocli-
matic conditions x.

Simultaneously, given the strong descriptive power of tree-based methods, if such
models exist, they may be used in order to extrapolate, from the data, eventual
patterns that relates climatic conditions with human activities.

2.2 Data preprocessing and analysis

The dataset is composed of n=196 832 data points, each one corresponding to
a tile of the hexagonal geodesic discrete global grid on which the Earth’s surface
is represented. However, since not all the observations might be relevant, essential
and reliable, preprocessing is required. The operations involved in this phase ensure
a higher data quality, simplify and accelerate the training process, prevents the
learning methods from integrating useless or misleading information and from being
affected by missing or noisy values.

Moreover, even though we have seen that tree-based models are non-parametric
models, that is, there are no specific distributional assumptions on the input data,
it is important to analyse the dataset in order to put the learning methods in the
best position for modelling the information that data carry along.

Thus, all the data points have been object of preprocessing and analysis regarding
grid tiles composition, missing values, outliers and correlation.
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2.2.1 Identification of land tiles

As the Earth’s surface is divided between lands and seas, it is necessary to
consider that many of the grid tiles describe only water bodies (igbp00, including
oceans, seas, lakes). So, selecting only grid tiles corresponding to lands was required.

It is obvious that grid tiles are not clearly classifiable into only-land tiles and only
water tiles, because many of them describe areas in which water bodies and lands
meet. Hence a threshold of 50% land covering percentage has been set in order to
select the grid tiles that would have been subject of the analysis. We generically refer
to the so selected grid tiles as land tiles. They form the 28.59% of the original dataset.

2.2.2 Dealing with missing values

When processing real-world data it is often possible to find missing information,
whose absence might be motivated by many factors, such as impossibility to collect
or compute variables, errors in the collection phase or in the data entry process,
etc. Therefore, a fundamental step in the preprocessing phase has been seeking for
missing values in the dataset and treating them in the best way.

A first action done about missing values has been keeping only data points having
at least one bioclimatic predictor available. Luckily only the 0.71% of the land tiles
did not satisfy this assumption. The result was a new dataset composed of n=55 867

observations (28.38% of the original dataset, 99.29% of the land tiles).
Then we have checked for the presence of eventual missing values in the feature

matrix X and in the response variables Y1, Y2 and Y3. Responses did not present
any missing value, while only seven rows of the feature matrix presented one missing
value each, all of them in the predictor bio03, isothermality. Additional investiga-
tion proved that such data points are geographically located in the frigid climatic
zones, whose very low temperatures do not always have enough variability to allow
the computation of the isothermality measure. Considering the fact that the above
mentioned areas are poorly connected with human activities, the easiest and most
convenient solution to treat the missing values has been the removal of such data
points from the dataset.

In conclusion, the resulting dataset is composed of n=55 860 observations (still
28.38% of the original dataset, 99.29% of the land tiles), each one described by 19

25



Figure 2.2: Dataset geographic map. Each violet point represents an observation in the
dataset after preprocessing. All the points are equidistant from the neighbouring observa-
tions, but the projection of the spherical surface of the Earth on a flat surface causes the
expansion on the upper and lower sides of the map (equidistant cylindrical map projection).

bioclimatic predictors and associated to 3 possible land cover fraction variables with-
out any missing information. The geographic map of the data points is in Figure 2.2.

2.2.3 Dealing with outliers

It is always a good practice to look for unusual values in the dataset, which
might affect the learning phase. Indeed, if the trained models have learnt outliers,
the resulting patterns could be significantly different from the real patterns without
the outliers. Even decision trees, that are generally considered to be robust to
outliers, might be misled by the presence of outliers (Piramuthu, 2008).

This becomes a dangerous problem when the unusual value of an observation is
caused by an error somewhere in the data-gathering phase, because the model will
learn an incorrect information. However, when outliers derive from natural varia-
tions of the data generation process, they must be taken into account because they
are an intrinsic constituent of the data distribution that one wants to study, learn
and describe. Therefore, in the latter case, even if the removal of outliers could
result in the reinforcement of the model statistical power, their presence is essen-
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tial for the creation of a realistic and suitable model that guarantees the inherent
characteristics of the training data.

In this study outliers have been identified for each bioclimatic predictor with
the interquartile method, that quantifies the mildness/extremeness of each value
in relation to the overall empirical distribution of the predictor itself. Then three
operations have been performed for each bioclimatic predictor:

1. count of the outliers;

2. count of the outliers for each climatic zone2;

3. graphic analysis of the empirical distribution by means of histograms, kernel
densities and boxplots.

In Table A.2 it is possible to find the number of outliers for each bioclimatic
predictor. Looking at the table it is evident that only four predictors do not have
outliers, while the rest has unusual values in percentages that vary between 0.09%
and 12.48%.

An apparent aspect for each bioclimatic predictor is the presence of only either
upper outliers (values above the maximum whisker) or lower outliers (values below
the minimum whisker). In particular, among the predictors with more outliers, tr
predictors present lower outliers, while pr predictors present upper outliers. In other
terms, outliers are related to low temperature and heavy precipitation.

The same conclusion can be drawn by looking at the empirical distributions in
Section A.1.3. Notice that, due to the huge values of outliers in the pr predictors,

2On the basis of latitudinal extent, the Globe is divided into three climatic zones, identified by
the major circles of latitude and by uniform inner climatic characteristics:

Frigid Zones Respectively North, and South. The North Frigid Zone is lower bounded by the
Arctic Circle at 66°33’ N. The South Frigid Zone is upper bounded by the Antarctic Circle
at 66°33’ S.

Temperate Zones Respectively North, and South. The North Temperate Zone is between the
Arctic Circle at 66°33’ N and the Tropic of Cancer at 23°27’ N. The South Temperate Zone
is between the Tropic of Capricorn at 23°27’ S and the Antarctic Circle at 66°33’ S.

Torrid Zone It is between the Tropic of Cancer at 23°27’ N and the Tropic of Capricorn at
23°27’ S.
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they have been excluded from the colorbar scale in the geographic maps, to allow
differences among the inner values of the distributions to be perceived. The same
colour of the maximum value represented in the colorbar is used for the outliers.

Lastly, the count of outliers falling in each climatic zone has been performed and
the result can be seen in Table A.3. Here, it is possible to see that almost all the
outliers of the tr predictors, with a significant number of outliers, are geographically
located in the Frigid Zones (North and South); conversely, almost all the outliers
in the pr predictors, with a significant number of outliers, are geographically lo-
cated in the Torrid Zone. Matching observations can be done in the geographical
representation of outliers in Figure A.1.

A reliable interpretation of the above considerations could be the following: ob-
served outliers are due to natural variations of the climate over the Globe at local
level. It is typical that very low temperature values are detected in the Frigid Zones,
even if they are unusual in the rest of the Globe; similarly it is natural that very
heavy precipitation values are detected in the Torrid Zone.

Thus, one should deduce that the high number of outliers is caused by local
climatic variations on the Earth’s surface that cannot be incorporated in a data
distribution on a large scale. Hence, it was necessary to keep the outliers in the
bioclimatic predictors in order to preserve and learn such local climatic differences.

2.2.4 Data Correlation

The correlation matrix of bioclimatic predictors can be visualised in Figure 2.3.
It hides a particularity: the correlation coefficients contained in the triangular lower
half have been computed with the Spearman method, while in the triangular upper
half the Pearson method has been used. Thanks to the symmetry of correlation
matrices there is no information loss with this compact representation.

Let us point out that Pearson correlation coefficients identify only linear relation-
ships between pairs of continuous variables, while Spearman correlation coefficients
are able to evaluate monotonic relationships between them. More precisely, there
are differences in the relationships that the two methods highlight: the Spearman
method can identify a larger variety of relationship but it is not capable of saying
whether or not they are linear, which is a prerogative of the Pearson coefficient.
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Figure 2.3: Correlation matrix of the bioclimatic predictors. The lower triangular half of
the matrix contains the Spearman correlation coefficients, while the upper triangular half
contains the Pearson correlation coefficients. Each predictor bio01,. . . , bio19 is denoted
only with its numerical id (e.g., bio01 → 01). Correlation values always belong to the
interval [−1, 1], where the value 1 identify a perfect positive correlation and the value −1
a perfect negative correlation. The value 0 denotes the absence of any correlation.

Anyway, it is evident that both methods emphasise the same correlation pat-
terns among the bioclimatic predictors with really small differences. Let us exclude
for the moment the bioclimatic predictors that describe temperature or precipita-
tion variability, that are bio02, bio03, bio04, bio07 and bio15 (Figure 2.4). It is
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Figure 2.4: Correlation matrix of the bioclimatic predictors excluding that quantifying
variability (bio02, bio03, bio04, bio07 and bio15). The matrix is structured as that in
Figure 2.3.

possible to notice that the remaining tr predictors (now quantifying absolute tem-
peratures) are strongly positively correlated among them, and the same holds for the
remaining pr predictors (that now quantify absolute precipitation). When looking
at correlations between the two groups, they appear weakly, and sometimes not at
all, correlated. These results might suggest that, at global level, temperature and
precipitation do not vary together; this fact might be false, instead, on a local scale.
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When including the predictors that describe variability in the temperature and
precipitation measures, the correlation values computed among the entire set of
predictors appear to be more complicated to interpret. One could deduce that
variability measures might be more relevant on a local scale while they lose power
when considered on a global scale.

If predictors are highly correlated, we talk about multicollinearity. This is the
case of our bioclimatic predictors indeed. Fortunately for us, large pairwise corre-
lation among predictors is not of concern for tree-based models (Piramuthu, 2008),
whose performances are immune to multicollinearity by nature; indeed each split of
the predictor space is performed by means of one, and only one, predictor, and it
cannot be altered by the effect of the others.

However even with tree-based models multicollinearity has a side effect: imagine
that a group of very influential predictors is highly correlated with other predic-
tors that are weakly, or not at all, associated with the response variable. In the
tree-growing process, the latter predictors might appear as well suited as the truly
important predictors for splitting the predictor space (Strobl et al., 2008). It follows
that interpreting the importance of predictors in the model is harder and requires
more care than when treating uncorrelated, or slightly correlated, predictors.

2.2.5 Analysis of the response variables

The final step of the dataset analysis has been dedicated to the response variables
igbp12, igbp13 and igbp14, and their interactions with the bioclimatic predictors.

In each tile of the grid that approximates the Earth’s surface, the three response
variables can take values in the interval [0, 1], that is,

Y
(i)
k ∈ [0, 1] ∀ i = 1, . . . , n, k = 1, 2, 3.

The value 0 identifies the absence and the value 1 identifies the absolute dominance,
of the land cover class in the surface area described by the grid tile. Each intermedi-
ate value corresponds to the percentage of the area occupied by the land cover class.

Empirical distributions

The fact that tree-based models do not have specific assumptions on the dis-
tribution of the input data is a real relief in ecological analysis. Indeed real-world

31



ecological data have often uncomfortable distributions that do not satisfy the as-
sumptions of many statistical methods. The three possible response variables of
this study, igbp12, igbp13 and igbp14, are no exception: their distributions are
unimodal and strongly positive skewed.

Table 2.2 presents a numerical summary of their empirical distributions, while
graphical representations (histograms, kernel densities and boxplots) are in Figures
A.21a, A.23a, A.24a. It is evident that the largest percentage of the values in the
response variables is equal to 0: approximately 60% in igbp12 and igbp13, even
80% in igbp14. Looking individually at each variable we can notice what follows:

igbp12 has the distribution with largest variability among the others. More than
half of the population has value 0, but the remaining 38% of the observations
spreads the entire interval (0, 1], even though, it maintains a positive skewed
distribution toward 0 (Figure A.21c).

igbp13 has a distribution in which more than half of the values is equal to 0,
similarly to igbp12, but less variability of the positive fractions is present.
Indeed the positive values do not spread all over the interval (0, 1] but their
density drops to zero rapidly the farther we are from 0 (Figure A.23c) and the
maximum value is only 0.8695.

igbp14 has a distribution that collapses on 0. Each positive value is considered
to be an outlier. Indeed, only less than the 20% of the observations has a
strictly positive value. Variability of the positive fractions is better than that
of igbp13, with a slightly heavier tail toward the larger values (Figure A.24c),
but again value 1 is never achieved.

It is a fact that the strongly positive skewed distribution of the three response
variables might be an obstacle in the regression problem, introducing a bias into the
models in favour of the prediction of null values, or at least, values close to zero.
Therefore, this problem needs to be taken into consideration when analysing the
performances of the models.

Pairwise relationships between responses and bioclimatic predictors

The last step of the data analysis has focused on the research of possible pair-
wise relationships between the human-modified land cover fraction variables and the
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igbp12 igbp13 igbp14

Count 55860 55860 55860

Count of zero fractions 34645 35262 44808

Percentage of zero fractions 62.02% 63.13% 80.21%

Minimum 0.0 0.0 0.0

Minimum whisker 0.0 0.0 0.0

1st quartile 0.0 0.0 0.0

Median 0.0 0.0 0.0

3rd quartile 0.0088 0.0012 0.0

Maximum whisker 0.0219 0.0031 0.0

Maximum 1.0 0.8695 0.9246

Mean 0.0791 0.0051 0.0096

Standard deviation 0.2101 0.0248 0.0491

Sample skewness* 3.014 13.01 8.75

Sample skewness of positive fractions* 1.41 8.16 3.803

* Computed by means of the adjusted Fisher-Pearson standardised moment coefficient.

Table 2.2: Numerical summary of the empirical distribution of the human-modified land
cover fraction variables.

bioclimatic predictors. Indeed, this work aims exactly at finding patterns inside the
bioclimatic predictors that could relate to the land covers. As it has already been
remarked, in an ecological analysis it is really difficult to find simple connections
between the predictors and the response, but it is worth making an attempt, even
if only for having an idea of how powerful the predictors might be.

Correlation coefficients among the response variables and the bioclimatic predic-
tors have been computed and they are displayed in Figures A.25, A.28 and A.31.
Both, Pearson and Spearman, correlation coefficients have been used, but it is evi-
dent that there are neither linear nor monotonic relationships among the response
variables and the bioclimatic predictors. Generally speaking the Spearman coeffi-
cients show a larger monotonic correlation with the pr predictors, but all the co-
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efficients do not even pass the value 0.4, therefore any further interpretation might
be misleading.

An additional investigation has been performed by means of pairwise scatter plots
(Figures A.26, A.29, A.32) and 2-dimensional, 50 × 50 equal-area bins histograms
(Figures A.27, A.30, A.33). For each pair predictor-response (Xj, Yk), j=1, . . . , 19

and k=1, 2, 3, both the plots have been created, in which the bioclimatic predictor
is the independent variable and the response is the dependent variable.

Similar considerations might be done referring either to the scatter plots or to
the 2D histograms. Then, let us take into consideration the 2D histograms because
they better allow perceiving the concentration of points in each point of the plane. It
is immediately evident that the largest concentration of data points is in the lowest
row of the grid describing the plane, which means close to the null value for the
response variable and, apparently, in a sufficiently independent way of the value of
the bioclimatic predictor on duty. This fact is clearly due to the strongly positive
skewed distributions of the response variables but also means that there is no specific
range of values for each bioclimatic predictor for which the response variables are
more likely to take the zero value.

If we look only at the 2D histograms for the response igbp12 (Figure A.27),
it happens that the data points corresponding to positive values of the response
variable are distributed like vertical slots of the plane (the purple vertical stripes
in the plots). This means that, even if there is no apparent specific pattern that
relates the response variable with each bioclimatic predictor taken individually, it
is possible to identify ranges of values for each predictor in which it is very unlikely
that there will be a land cover composed of croplands (the black vertical stripes).
This kind of patterns might be easily identified by tree-based models.

As for the responses igbp13 and igbp14, similar ranges of predictor values might
be identified, even though the plots do not present the vertical slots that characterise
igbp12. Indeed no data points are present in the upper part of each plot because
of the more positive skewed distributions of the non-null fractions of igbp13 and
igbp14 and the smaller number of positive values for these responses.

It must be remarked that this is a general impression and that on singular pairs
predictor-response it might be possible to describe a slightly more detailed pattern,
but none of them appears to be so relevant to be worth mentioning.
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Chapter 3

Regression analysis with decision
trees

In the course of this chapter, the solution of the regression problems (2.1) by
means of decision trees is described. Therein, the theoretical background, introduced
in Chapter 1, meets our real-world dataset, described in Chapter 2, and the technical
obstacles of the implementation.

Retain that, three distinct regression problems have been developed in parallel.
The outline of the regression analysis on each response variable has been mostly
the same, but every one has been treated individually. The results are completely
contrasting among the three response variables, indeed, while regression trees seem
to be a good modelling choice for cropland fractions (igbp12), the other response
variables related to urban areas (igbp13) and mosaics of croplands and natural
vegetation (igbp14) do not react just as well. For these reasons and for a better
understanding of the way the regression analysis has been developed, the explanation
of each step will be focused only on the response igbp12. At the end of the chapter
an overview of the outcomes for the other two responses is available.

3.1 Implementation

The code produced for the results described in this chapter is in Python 3.
The machine learning tools employed are supplied by the scikit-learn library
(Pedregosa et al., 2011). Many other Python libraries have provided the fundamen-
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tal tools for processing, organisation and visualisation steps, in particular: pandas
(McKinney, 2010; Reback et al., 2020), geopandas (Jordahl et al., 2020), NumPy
(Harris et al., 2020), seaborn (Waskom et al., 2020), matplotlib (Hunter, 2007;
Caswell et al., 2020).

Let us look at a few technical matters, before moving to the true regression analysis.

Scoring metrics and estimation strategy of generalisation performances

The performance of a regression tree can be evaluated in many ways, indeed,
there exist various scoring metrics in the literature that can be applied to a regres-
sion model in order to estimate the goodness of the prediction on some input data.
Regression trees, as described in Section 1.1.1, are built in order to solve the min-
imisation problem (1.1) on the tree impurity, then, the natural scoring metric that
one can use is the rss, or equivalently, the mse1, computed among the true and the
predicted response.

rss and mse are absolute measures of the lack of fit of the model to the training
data. However, since their unit is the same as the response values, understanding
which is a good value is not always easy. The unique rule that holds is the lower, the
better, but how low is low enough? As a matter of fact, in this work, where response
values are in [0, 1], mse appeared to be misleading because its values seemed to be
always small, even when the model performances were not excellent.

In view of the above, we decided to support the analysis with a second scoring
metric, whose value is independent of the scale of the response: the coefficient of
determination R2, i.e.

R2 = 1− rss
n∑
i=1

(yi − y)2
.

This statistic measures the percentage of variance in the response variable that is
explained by the predictors, or, in other words, it quantifies the goodness of fit of the
model to the training data. Its value is generally inside the interval [0, 1] (indeed, it
represents a percentage). A R2 of 1 means that the regression predictions perfectly
fit the true response values, while a value 0 identifies the model whose predictions
are always equal to the expected response, independently of the predictors. Anyway,

1Mean Squared Error, i.e., mse(f̂) = 1
n

∑n
i=1(yi − f̂(xi))

2.
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it happens that R2 assumes negative values when the model fits the data worse than
the mean response.

It is important to notice that mse measures the lack of fit, while R2 measures the
goodness of fit of the model prediction with respect to the true response variable,
then, the first metric is to be minimised, while the second is to be maximised.
Throughout this work, in order to have consistency in the scoring metric objective
(minimisation or maximisation), we decided to apply a simple linear transformation
to the R2 statistic and use 1−R2 in its place. The so obtained scoring metric is
equivalent to R2, in the sense that there is no information loss by using one or the
other, but, in order to identify the best-performing model, this new measure must
be minimised, as well as the mse.

In conclusion, the scoring metrics used in this work to evaluate the performances
of the trained models are the mse and 1−R2. In particular, cooperating with 10-fold
cross-validation, they have been used to estimate the performances over unseen data.

Division of the dataset into training and test sets

Before starting the regression analysis, we have randomly split the whole dataset
into training (90%) and test (10%) subsets to save part of the data points from
being learnt by the models and exploit them for model evaluation. Once the two
subsets were created, we ensured that both of them kept approximately intact the
distribution of the original response variable. Apparently, random splitting seemed
to guarantee this property, then no further deed on the two subsets has been required.

3.2 Tree growing and pruning

In Section 1.1.1 and 1.1.2, the processes of growing and pruning a regression
tree have been extensively described. Here, we explain how they have been put into
practice when dealing with our real-world data.

The main tool of this phase has been the function DecisionTreeRegressor,
provided by scikit-learn. It is able to build a full unpruned regression tree, but
also, it allows large customisation of the model growing and pruning by means of a
set of hyperparameters: it permits to set the split quality measure and the strategy
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used to select the best split when growing the tree, to apply forms of pre-pruning
and cost-complexity pruning.

Throughout the entire investigation, the approach used to grow the regression
trees has been the recursive binary splitting, as it is described in Section 1.1.1. The
criterion employed to measure the impurity of the trees and the subregions of the
predictor space has been the mse, which is nothing but an unbiased version of the
rss used in the theoretical description of the greedy algorithm.

Tree growing and pruning proceeded according to the following outline:

1. the effect of the maximum depth of the tree on the scoring metrics has been
inspected;

2. reliable optimal values of the complexity parameter α have been researched;

3. combinations of pre-pruning and cost-complexity pruning have been attempted
in order to identify possible relevant models for this work. During this step,
an alternative random splitting approach has been employed too.

Let us look into more in detail at each of these stages.

3.2.1 Controlling the maximum depth of the tree

This first step of the regression analysis had the simple purpose of familiarising
with the regression trees and understanding how they were going to be able to model
the distribution of cropland fractions around the globe.

The results can be summarised with Figure B.1, which describes the evolution
of the scoring metrics as the maximum depth of the regression tree increases, trans-
forming the tree root into a full unpruned tree. The scoring metrics have been
evaluated on the training set (blue line) and estimated for unseen data (orange
line). Three important observations should be noticed by looking at Figure B.1:

• The two scoring metrics equally describe the model performances, even though
using two different ranges of values. If we should consider only the tree mse,
its values when the tree is only a few levels deep, are close to 0.03, which is a
small error per se. However, when we observe the correspondent 1−R2 values,
they are close to 0.6, which means that, at such shallow depth, the models
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are not yet well-performing, even if their mse might suggest so. This is the
confirmation that including the 1−R2 scoring metric has been a wise choice.

• It is evident how, the more the tree grows deeper into the predictor space, the
more it is overfitting the training data. Indeed, the training mse and 1−R2

drop approximately to zero around depth 25.

• Although the training scores might be considered almost zero after depth 25,
their generalisation estimates reach the minimum around depth 13 (mse: 0.016,
1−R2: 0.368), just after a steep decrease, and slowly start increasing again
thereafter, levelling off once crossed depth 25. This fact suggests that, after
a given depth, the trees do not benefit too much from further growing, which
should be kept under control instead.

No matter how simple these plots might seem, they have already highlighted very
crucial aspects of the regression analysis, first of all, that pruning is definitely re-
quired in order to train models able to generalise their predictive power.

3.2.2 Researching complexity parameters

The second stage of the analysis has focused on cost-complexity pruning and,
specifically, on the identification of a reliable optimal complexity parameter α.

When we have applied cost-complexity pruning to the full regression tree that
can be fitted on our data (denoted by T0), the set A of all the possible complexity
parameters α has been returned. Unfortunately, the cardinality of this set was really
large, i.e., |A| = 18 168. Since each complexity parameter corresponds to a specific
subtree of T0, in order to find the best-pruned tree over unseen data, it seemed
unreasonable to solve the minimisation problem (1.5) on the entire set A, because it
would have been extremely computationally demanding. Therefore we had to deal
with this inconvenient more cautiously, by following two steps:

1. First, solving the minimisation problem (1.5) on a reasonably small random
sample of A with the purpose of identifying a temporary optimal complexity
parameter α̃min and, if present, the 1se complexity parameter α̃1se (that is,
obtained with the 1se rule).
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2. Then, solving (1.5) in the subset of A obtained by including all the complexity
parameters contained in a reasonably small neighbourhood of α̃min and α̃1se,
in order to identify the optimal complexity parameter αmin and, if present, its
1se complexity parameter α1se.

By means of this approach it has been possible to reduce the number of complexity
parameters to test, that is, the number of regression trees to validate through 10-fold
cross-validation, from 18 168 to a few hundred in total. Let us take a closer look at
the previous steps.

It is important to remark that, since the distribution of the complexity parame-
ters is strongly positively skewed in the interval [0, 0.002], a simple random sampling
of restrained size2, would have had a hard time in representing correctly the distri-
bution of the data points. Thus, the following strategy has been used: I) Orders of
magnitude3 of the complexity parameters in A have been computed. II) In each sub-
set of A of the form A ∩ [10k, 10k+1], the d1%e of the elements has been randomly
sampled, so that, every order of magnitude has been represented by at least one
parameter, and more populated subsets have been represented by larger samples.
III) The union of all the complexity parameters so identified has composed the set
on which the minimisation problem (1.5) has been solved in step 1.

The evolution of the generalisation scoring metrics estimates as function of the
sampled complexity parameters at step 1 are shown in Figure B.2. Both scoring
metrics agreed on the temporary optimal and 1se complexity parameters values,
contained in Table 3.1.

At this point, a reasonable assumption was that the magnitude of the optimal
complexity parameter αmin was the same, or at least very close, to that of the just
found α̃min. Therefore, during step 2, we have researched for αmin in a neighbour-
hood of α̃min and α̃se of reasonable size, i.e., A ∩ [9·10−6, 3·10−5].

Similarly as before, Figure B.3 and Table 3.2 summarise the results of the solu-
tion of (1.5) over the selected complexity parameters at step 2. In this case, when
the 1se rule has been applied, the two scoring metrics have identified two distinct
values for α̃se.

2Approximately 200 parameters.
3Given a real number x, its order of magnitude is the smallest power of 10 used to represent

that number. So, if x = a · 10k, then k is its order of magnitude.
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α (10−5) mse 1−R2

α̃min 1.08083 0.01562 0.35176

α̃1se 1.60994 0.01571 0.35361

Table 3.1: Complexity parameters se-
lected during step 1.

α (10−5) mse 1−R2

αmin 1.13655 0.01552 0.34953

α1se,mse 1.94197 0.01580 -

α1se, 1−R2 1.52811 - 0.35240

Table 3.2: Complexity parameters selected dur-
ing step 2.

At the end of the procedure, we had three distinct possible complexity parameters
to use for pruning our full regression tree T0: αmin, α1se,mse and α1se, 1−R2 .

3.2.3 Combining pre-pruning and cost-complexity pruning

During the last stage of the tree growing and pruning phase, we have let inter-
act the facts of the theoretical background of pruning with the reality of our data.
From a purely theoretical perspective, cost-complexity pruning is preferable to a
pre-pruning strategy in view of the fact that it is grounded on a rigorous mathe-
matical construction, while pre-pruning strategies are more heuristic approaches. In
practice, everything depends on the specific regression problem and on the data it is
based on. Therefore it would not be wise the a priori exclusion of some pre-pruning
techniques that might reveal useful and effective.

So, we have decided to take into consideration not only regression trees simplified
with cost-complexity pruning but, to let this approach interact with pre-pruning
strategies based on limiting the maximum depth of the trees and fixing the minimum
number of samples required to split an internal node of the tree. In other words,
we have inspected the generalisation performance estimates of the regression trees
obtained by fixing every possible combination of values of the hyperparameters in
Table 3.3, that is, every 3-tuple of the form

(d, l, α) (3.1)

where d denotes the maximum depth of the tree, l is the minimum number of samples
required to split an internal node and α is the complexity parameter. According
to the values in (3.1), we obtain different combination of pruning techniques as
explained by Table 3.4.
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Model hyperparameter Values

maximum depth d 10, 11, 12, . . . , 30, None*

minimum samples for a split l 2, 5, 10, 15, 20

ccp α 0, 1.13655·10−5, 1.52811·10−5, 1.94197·10−5

* None stands for no limitation to the maximum depth of the tree.

Table 3.3: Pruning hyperparameters and candidate values.

Combination of hyperparameters Pre-pruning ccp

(d, l, α), d 6= None, l 6= 2, α > 0 X X

(None , 2, α), α > 0 - X

(d, l, 0), d 6= None, l 6= 2 X -

(None, 2, 0) - -

Table 3.4: Combinations of pruning techniques.

Taking a step back to the tree growing process, so far, regression trees have been
built by means of recursive binary splitting, which is based on the identification of
the best split (the best predictor Xj and its best cutpoint s) in each division of the
predictor space. However, during this stage of the regression analysis, an alternative
splitting method has been taken into consideration: the random splitting approach.
This technique simplifies the minimisation problem (1.2) solved by recursive binary
splitting by randomly picking a predictor Xj, and only after that, computing the
best cutpoint s. Hence, (1.2) reduces to

min
s

{ ∑
i :xi∈R1

(yi − ŷ1)2 +
∑

i :xi∈R2

(yi − ŷ2)2
}
.

In conclusion, we included the possibility of this alternative splitting approach in the
investigation of the pruning hyperparameters described above, so that, each 3-tuple
(3.1) became a 4-tuple

(d, l, α, σ)

where σ denotes the splitting approach and can take two values: best for recursive
binary splitting, and random for the homonym approach.
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The generalisation scores estimates resulted from the above-described inspection,
implemented via exhaustive grid search, are graphically displayed in Figures B.4 and
B.5. Plots are arranged in both figure according to the same specific structure:

• Each column identifies a different splitting approach of the predictor space
during the tree growing phase. On the left, all the blue curves are related to
regression trees grown with recursive binary splitting. On the right, the orange
curves are related to models built by means of the random splitting approach.

• Each row identifies trees that share the minimum number of samples required
to split an internal node. This value increases from the top to the bottom
of the figure, which means that moving downwards the regression trees are
pruned by preventing splits of nodes of size below the pre-specified threshold.

• Each curve in a single plot connects the scores of regression trees which share
the characteristics described at the previous points and that are post-pruned
with the same complexity parameter α.

• Finally, each curve represents the evolution of the generalisation scoring metric
estimate as a function of the maximum depth of the tree.

Further considerations about these results will be given in the next section.

3.3 Evaluation of relevant regression trees

At this point of the investigation, we have explored many regression trees, grown
over the same dataset and differently pruned (or not pruned at all). Here, we draw
conclusions about their performance and, we pick the best model for our goal.

In order to do so, we decided to compare the performance of some regression
trees, selected as follows: for each combination of pruning techniques (Table 3.4),
and for each method of splitting the predictor space (best or random), the model
that minimises the generalisation score estimates (according to only one metric, or
both of them) has been selected. We refer to them as relevant models and, for not
to get confused between one model and another, we assign them a label as described
in Table 3.5.
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Label ccp Pre-pruning Splitter Label ccp Pre-pruning Splitter

T1 X X best T5 - X best

T2 X X random T6 - X random

T3 X - best T7 - - best

T4 X - random T8 - - random

- Ti,mse means that the relevant model has been chosen because it minimised the generalisation
mse for that specific combination of pruning techniques. Analogously for Ti,1−R2 .

- If both metrics agree on a model for a specific combination of pruning techniques, Ti is used.

Table 3.5: Labels of the relevant models.

3.3.1 Assessment of the relevant models’ generalisation per-
formance estimates

The pruning hyperparameters and the generalisation performance estimates of
the relevant models are described in Table B.1. Immediately it leaps out that almost
all the relevant models identified by means of mse correspond to the relevant models
selected through 1−R2. The metrics disagree only on T2, for which they pick two
trees that differ for the maximum depth parameter, but whose generalisation scores
estimates are not significantly different (this means that Ti=Ti,mse=Ti,1−R2 ∀ i 6=2).

Secondly, one can observe that the complexity parameter which guarantees better
generalisation performances is always αmin=1.13655·10−5, whether pre-pruning is
carried out or not. Hence, in this regression problem, the 1se rule for the selection
of the complexity parameter has not guaranteed improvements.

Speaking of numbers, the top three models supposed to be better in generalising
their predictive power, i.e., the regression trees whose generalisation scores estimates
are the smallest three, are, in order, T6, T1 and T2. The random splitting approach
is used in two out of three of them (T6 and T2) so that it seems to be a better choice
than recursive binary splitting. On the contrary, the regression trees that are less
capable of generalising are that not pruned at all, namely, T7 and T8, confirming the
theoretical results.

Finally, it must be noticed that the relevant models ranked far from the top three
have generalisation scores estimates which do not differ too much from that of the
top models, although significantly smaller than that of unpruned trees.
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3.3.2 Evaluation of the relevant models on the test set

The right moment for confirming the generalisation performance estimates over
the test set has come. The regression trees were evaluated on the unseen data and,
the results are shown in Table B.2.

Here, the rankings based on the scores computed on the test set seem not to
comply with the rankings derived from their estimates seen so far in Table B.1. The
regression trees that keep their rank unchanged are T1, which maintains 2nd place
on the podium, T7 and T8, which confirm to be the worst models at generalisation.

Conversely to the top three relevant models according to the generalisation scores
estimates, the true test scores see on the podium only models built with recursive
binary splitting, in order: T3, T1 and T5. Thus, even though cross-validation seemed
to favour models trained with the random splitting approach, actually, recursive
binary splitting appears to guarantee the construction of models that are more
reliable and capable of better extend their predictive power to unseen data.

Using T1 as a reference regression tree might be reasonable, indeed, employing the
combination of recursive binary splitting, pre-pruning and cost-complexity pruning,
it can perform on the test set as well as cross-validation has estimated.

Nevertheless, we must keep in mind what has been observed in Section 2.2.5: we
need to make sure that the positively skewed distribution of the cropland fractions
is not pushing the model in favour of the prediction of zero values. To this end, we
have evaluated the scoring metrics, separately, on the positive values and the null
values of the response variable. In other words, if y is the test response variable,
we have split it into two subvectors: y+, containing all the positive values, and y0,
composed of all the zeros. Then, the scoring metrics have been calculated among
y+ and the corresponding model prediction ŷ+, and among y0 and ŷ0. The results
are contained in Table B.24.

These two new metrics stress that all the models can definitely predict zero
fractions better than positive fractions. Indeed, comparing the mse values on the
positive fractions with the mse values on the null fractions, the latter are always way
smaller than the former. When the relevant models are ranked according to the new
metrics, we observe that T1 keeps 2nd place if dealing with zero fractions, while it

4Only mse has been computed on the zero fractions since a null vector has no variability of its
components that can be detected by R2.
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drops at 4th place when considering only the positive fractions. This suggests that its
ability in predicting the null values slightly compensates the errors on positive values.
On the contrary, T3, through only cost-complexity pruning, outdoes T1 in both cases,
which suggests that the model might be as much a good choice as a reference model
as T1, even if cross-validation has not placed it within the top models.

In conclusion, both T1 and T3 are the best trees according to the metrics com-
puted on the whole test set and, they still perform well when null values are separated
from positive values in the response variable so that strong bias toward zeros might
be excluded. However, to avoid bias also toward the test set, we stick to the choice
of T1 as the optimal model since its sufficiently good performances are confirmed by
the cross-validation estimates.

Therefore, the desired function f̂1 in (2.1) is that returned by T1. From now on,
we refer to this regression tree simply as T and we denote with f̂1,T the correspondent
regression function.

3.3.3 Final considerations on the regression tree T

Summing up, the regression tree T has been built using recursive binary splitting
and perfected by combining pre and post-pruning techniques:

• the maximum depth of the tree is d=27;

• a minimum of l=15 observations inside an internal node of the tree is required
for a split to be performed;

• cost-complexity pruning has been carried out with parameter α=1.13655·10−5.

According to Table B.2, the model has been able to explain the 64% of the
variability of the response variable values over the unseen data that compose the
test set; this percentage reduces to 56% if we consider only the positive values of the
response5. Anyway, the employment of pruning techniques allowed to improve the
percentage of explained variability by 6% with respect to a full unpruned tree built
with recursive binary splitting6. These outcomes are not so trivial if we consider

5T has a test 1−R2 equal to 0.359, which implies a R2 of 0.641 and a test 1−R2 for y>0 equal
to 0.445343, that is, R2 of 0.554657.

6The full unpruned tree T7 has a test 1−R2 equal to 0.420501, and a test 1−R2 for y>0 equal
to 0.503715.
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Figure 3.1: Geographic map of the residuals of the regression tree T computed on the
whole dataset (training set + test set). Red shades denote under estimation, while blue
shades indicate over estimation of the true response values. Every white point represents
a correctly predicted response value.

the complexity level of the relationships we want to detect and the simplicity of the
model that has been used.

Furthermore, we can have a practical sense of the errors that the tree T com-
mits and check whether there is any geographical pattern concerning them. Indeed,
the dataset on which this regression problem is defined hides an additional feature
behind the purely numerical values of predictors and responses, that is, the geo-
graphical distribution of the data points. Then, it is possible to plot the regression
model residuals on top of a geographic map.

The result of this idea can be found in Figure 3.1. Comparing this map with
the distribution of the fractions of cropland in Figure A.22, we can confirm that
our model is definitely more capable of predicting whether no cropland is present
than the correct fraction if cropland cover is there. Indeed, the residuals with large
positive absolute value are concentrated in the areas in which there are the largest
cropland fractions.
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Figure 3.2: 2D graphic representation of T .

In this context, it is worth mentioning that, by repeating multiple times the
regression analysis with different random states of the function that splits the dataset
in training and test subsets, we have noticed slightly different performances of the
relevant models. Thus, this is proof that the instability problem of regression trees
is actually present and, despite pruning, it has been influencing the analysis.

Therefore, to obtain a more stable model with better generalisation performance
and more reliable informative capabilities, we have decided to combine the power of
many regression trees, using the random forest method, as described in Chapter 4.
However, before that, further analysis on T will be done in order to extract in-
sights about the relationships between the bioclimatic predictors and the land cover
fraction variable igbp12 that it has been able to learn.

3.4 Interpretation of the results

So far, we have inspected how the regression trees have been built and pruned,
we have numerically quantified their predictive performances on unseen data and,
we have identified the regression tree T to be the optimal reference model. However,
we are still missing the core question of this work, that is, are there relationships
between the climatic conditions and the percentage of lands dedicated to crops in a
given geographic area?

The purpose of this section is answering to this question, or more precisely,
extracting human-understandable insights from T regarding the patterns that it
has learnt. It could be possible to look directly at the 2D representation of the
tree (Figure 3.2), but, given its large size, deriving useful information might be
arduous. Then, in order to do that, we have exploited different techniques: impurity-
based variable importance measure, permutation importance measure and partial
dependence plots.
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Impurity-based variable importance measure

In Section 1.2.2 we have seen that the importance measure of a predictor ac-
cording to a decision tree is evaluated as the decrease of the model impurity (mse)
induced by the splits in which the predictor itself has been involved. Figure B.6
shows the ranking of the importance values of each bioclimatic predictor within the
regression tree T . In line with this criterion, the variables that mainly drive the
model are:

1. bio11: mean temperature of coldest quarter
2. bio10: mean temperature of warmest quarter
3. bio12: annual precipitation
4. bio08: mean temperature of wettest quarter
5. bio03: isothermality

The decrease of mse induced by the previous variables is much larger than that
caused by the remaining, indeed, a sudden drop arises in the barplot in Figure B.6,
just after bio03. Anyway, it is worth noticing that every bioclimatic predictor has
been employed for the partition of the predictor space, with no exclusions.

Permutation importance measure

Conversely to the impurity-based variable importance measure, computed ex-
ploiting the characteristic inner structure of a decision tree, permutation importance
measure (Breiman, 2001a) is a more general inspection technique that can be used
for a large variety of learning methods, as long as the dataset has a tabular structure.

In a few words, for a given predictor, this measure is defined to be the decrease in
the model prediction score when the predictor values are randomly shuffled among
the observations. Rearranging the predictor values breaks the relationship existent
in the model between the predictor itself and the response. Hence, the difference be-
tween the model prediction scores obtained before and after this operation quantifies
the dependence of the response on the predictor.

Lastly, permutation importance can be evaluated either on the training or the
test set and, the results assume different connotations: in the first case, we obtain
the importance of the predictor in the description of the training data, while in the
second, the contribution of the predictor in the generalisation power of the model
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is estimated. Predictors that reveal to be important on the training set but not on
the test set may be related to overfitting.

We have measured the permutation importance of the bioclimatic predictors in
the regression tree T . The scoring metric used was the prediction mse. Besides, in
order to have more stable estimates of the importance values, they have been aver-
aged over 10 random shufflings for each predictor. Both the training (Figure B.7a)
and the test set (Figure B.7b) have been used, so that we have obtained two com-
parable rankings. Even though there are some little variations in the position of the
middle-ranked predictors, the permutation importance values for model description
and model generalisation capability agree on the most important predictors in the
model, namely:

1. bio12: annual precipitation
2. bio10: mean temperature of warmest quarter
3. bio08: mean temperature of wettest quarter
4. bio03: isothermality
5. bio01: annual mean temperature

Notice that four out of five predictors are the same elected by the impurity-based
variable importance. The relevant difference regards the predictor bio11 (mean
temperature of the coldest quarter), which causes the largest mse decrease in T , yet
its permutation importance is only at the 5th place for model description and the
6th place for model generalisation capability. It is worth remarking that the decrease
of importance of the bioclimatic predictors in these two rankings does not present a
sharp drop after the top five predictors, like in the previous, but it is more regular.

Partial dependence plots

The most effective way to understand the model f̂1,T would be looking at its
graphical representation as a function of its arguments. Unfortunately, human per-
ception is limited to 3 dimensions, so that there is no way of looking at the plot
of a 19-dimensional function as a whole. A useful alternative is partial dependence
plots (Hastie, Tibshirani, and Friedman, 2009), that is, a collection of plots, each
one showing the partial dependence of the model function f̂1,T on a subset of at
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most two predictors. Despite these plots cannot provide a comprehensive represen-
tation of the model function, they might emphasise relevant interactions between
the response variable and some predictors.

In Figure B.8, one can see 19 partial dependence plots, one for each bioclimatic
predictor. Every plot contains the estimated marginal average of f̂1,T on a given
predictor (blue line) and the corresponding confidence interval (light blue area).
Clearly, the estimation of the partial dependence of f̂1,T on a predictor making use
of all its values would have been computationally too expensive, hence 100 equally-
spaced values for each predictor have been utilised instead.

In a few words, in every partial dependence plot, we can perceive the effect of
each bioclimatic predictor on the model response values after accounting for the
(average) effect of the other predictors on f̂1,T . Although most of the variables have
an approximately constant relationship with the response variable, few of them show
more peculiar non-linear relationships, mainly characterised by drops and jumps:

bio01 The average predicted fraction of cropland suddenly rises immediately after
the annual mean temperature crosses 0 degrees and slightly keeps increasing
thereafter.

bio03 The relationship between the isothermality values and the predicted cropland
fractions is approximately inverse linear, with a low slope.

bio10 The association with the average predicted fraction of croplands is constant
as long as the mean temperature of the warmest quarter is lower than 15
degrees, then, the fraction values start rising and they present a relevant jump
around 29 degrees, after which they level off.

bio11 The constant association between the response and the mean temperature
of the coldest quarter is interrupted by a sudden drop, around 5 degrees; then
the cropland fractions slightly increase again.

bio12 After the annual mean precipitation reaches about 300 millilitres, the crop-
land fraction values suddenly rise, and after 1200 millilitres, slightly decrease
again.
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Notice that these are the same variables top-ranked by means of the previous im-
portance measures, except for bio08, whose partial dependence plot is hardly inter-
pretable.

In conclusion, we have seen that when dealing with cropland fractions, regression
trees have revealed to be sufficiently good methods to learn the patterns that connect
the distribution of land cover fractions with the climatic conditions supplied by
the bioclimatic predictors. Furthermore, they proved to be reasonably informative
about these patterns, indeed, thanks to the regression tree T , we ended up with
useful knowledge.

3.5 About igbp13 and igbp14

When the same stages of the regression analysis applied to igbp12 have been re-
peated onto the response variables igbp13 and igbp14, we have obtained completely
different results, in the sense that regression trees have not been able to learn any
pattern connecting the distribution of land cover fractions for this two variables, to
the climatic conditions summarised by the bioclimatic predictors.

No matter which pruning technique has been applied, the best-performing regres-
sion trees have been able to explain no more than, respectively, 11% (test 1−R2: 0.89)
and 34% (test 1−R2: 0.66) of the variability in the response variables of unseen data,
which classifies them as slightly better than the models that uniformly predict the
mean response value.

The apparent impossibility in finding well-performing regression trees might be
interpreted in two different ways:

a) Regression trees are not able to identify the desired relationships, but different
machine learning methods might manage to do so.

b) There is no relationship between the distribution of the two responses values
and the bioclimatic predictors.

In our opinion, at each response variable is connected a different motivation.
If we consider the response igbp13, that is, the fractions of land cover occupied
by urban areas, the more likely motivation is the second one. During the past
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centuries, the human being has been able to develop and perfect much technology,
with the main purpose of facilitating his life in all aspects: to supply his dietary and
energetic needs, to defeat health problems, to improve his housing situation, and to
get protection from hostile climatic conditions. Therefore, if it is reasonable to think
that the presence of a human settlement was mainly driven by the most comfortable
climatic conditions in the long-gone past, once the ability to shape the surrounding
space to his liking had been developed, it is more likely that the choice of the location
of a residential area during the past years has been motivated by alternative reasons
(historical or social events, presence of raw materials, etc.). For these reasons, and
probably many others that we have no knowledge of, we think that it is not possible
to predict the percentage of urban areas basing on climatic conditions only.

On the other hand, igbp14 describes the percentage of land cover constituted by
small-scale cultivation mixed with natural vegetation, therefore, it is conceptually
closer to the object of igbp12 than that of igbp13. So, why there should be no
association between the climatic conditions and the distribution of this kind of land
cover fractions? Now, the most appropriate motivation might be the first listed
above: regression trees are not the perfect model to learn these eventual patterns.
There could be various reasons, and each one of them might be treated in many ways,
but one that has been stressed by this work, is that the strongly positive skewed
distribution of the response values should definitely be taken into consideration, not
only when evaluating the model, but also during its training. For instance, zero-
inflated models might be employed in order to learn the fact that numerous response
values are often zero.
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Chapter 4

Regression analysis with random
forests

The regression analysis performed with decision trees has been quite successful
when dealing with cropland fractions. Though, as the theory of Chapter 1 suggests,
the aggregation of the predicted power of many trees might enhance the performance
and increase the stability of a single tree. Moreover, it could guarantee a more
reliable interpretation of the patterns that connect the bioclimatic predictors to the
response variable igbp12.

For these reasons, throughout this last chapter, we describe how the regression
analysis has been carried out using random forests. We will focus only on the
regression problem involving the response variable igbp12, indeed, as well as for
regression trees, the random forests have failed with the other two responses.

4.1 Implementation

Once again, the code produced for the results presented in this chapter is in
Python 3 and many libraries have contributed with useful tools for the regression
analysis (e.g., pandas, geopandas, NumPy, seaborn, matplotlib, etc.), in particular
scikit-learn, which provides the RandomForestRegressor function, capable of
growing a random forest.

Let us look at a few technical matters, before moving to the true regression analysis.
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Scoring metrics and estimation strategies of generalisation performances

In Chapter 3, the employed strategy to estimate the generalisation performance
of regression trees has been the typical 10-fold cross-validation, which remains a valid
approach for random forests as well. Nonetheless, due to the increased complexity of
random forests compared to decision trees, the running time of the cross-validation
approach results to be dramatically longer.

As a consequence, we have opted to replace cross-validation with the out-of-
bag error estimation, as described in Section 1.2.2. This strategy is very spread and
recommended when dealing with random forests, and more generally when bagging is
used (Probst, Wright, and Boulesteix, 2019; Probst and Boulesteix, 2017; Gislason,
Benediktsson, and Sveinsson, 2006; Cutler et al., 2007), because it reduces the
running time by k times compared to k-fold cross-validation, and, in the meanwhile,
it guarantees an honest estimate of the generalisation performance of the model
(Breiman, 1996b).

In order to compute the oob score of a random forest, one should have full control
over the growing process of each tree of the forest, and especially, on the exact sam-
ples used to build each tree. The scikit-learn’s function RandomForestRegressor
does not allow the needed management of the bootstrapped samples, yet the func-
tion is capable of returning the out-of-bag R2 value, therefore, it has been possible
to use it for our purposes.

It follows that, as a result of the above-mentioned technical limitation, we have
been forced to abandon the mse as a scoring metric used for estimating the gen-
eralisation performance of random forests, in favour of the only 1−R2. It remains
unaltered the role of mse and 1−R2 as scoring metrics when directly evaluating the
model performance on the test set.

Division of the dataset into training and test sets

For this regression analysis we kept the same training and test sets randomly
created for the regression analysis with decision trees in order to produce comparable
results.
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4.2 Forest growing and tuning

As regards regression trees, we have seen that pruning strategies are required to
enhance their generalisation power. On the contrary, random forests, as presented in
Section 1.2, draw their strength from the averaging of many unbiased trees and from
the randomness that characterises their growing. Therefore, in order to obtain a well-
performing unbiased random forest, no pruning of the individual trees is required.

Consequently, it may appear that a random forest could be trained without the
need of much thinking about its construction, leaving all the merit to the final av-
eraging operation and to the randomness of bootstrapped training sets and split
candidates. On one hand, this may be true, indeed, any random forest implemen-
tation works reasonably fine even without too much interaction with the user. On
the other hand, this is possible because many of the hyperparameters that control
the structure of each tree, the structure and the size of the whole forest, and its
randomness are set by default to values that commonly work fine.

Though, not all the hyperparameters of a random forest are equally significant:
some of them should be tuned, others must be selected according to external factors
and, still, others might be ignored. During this section, we are going to see the way
they have been treated in our work.

4.2.1 Tuning model hyperparameters

In accordance with Probst, Wright, and Boulesteix (2019) and the references
therein, the impact of several hyperparameters on the random forest performance
had been studied in the course of the literature and it revealed that the effect
of tuning1 is generally less evident with random forests than with other machine
learning algorithms. Despite that, some hyperparameters proved to have a larger
impact on the model performance than others, and that the research for their optimal
values might result advantageous.

1The term tuning stands for the procedure of finding the optimal values of one or several
hyperparameters for a machine learning algorithm on a specific dataset. Optimality may have a
different meaning, in line with the considered problem, but typically refers to model performance
onto unseen data.
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In light of these findings, over the current regression analysis, we tuned the hy-
perparameters which have evidenced larger performance gain as per Probst, Wright,
and Boulesteix (2019), namely, in order of relevance:

1. The number of split candidates m, that is, the quantity of randomly sampled
predictors out of which the best split of the predictor space is determined when
growing each regression tree.

2. The size s of the bootstrapped training sets on which the trees are fitted.

3. The minimum number of samples l required to split an internal node of the tree.

The former two hyperparameters, m and s, are related to the randomness of
the forest and their tuning makes it possible to find a good compromise between
the stability and the strength of the model. In different terms, it is the negotiation
between the decrease of correlation among the trees in the forest and the guarantee
that each one of them is sufficiently accurate in prediction. As per Breiman (2001a),
this is precisely the key point of the random forest model.

For the note, the variety of trees in the forest grows (then, the correlation de-
creases), the lower is the number of split candidates m and the smaller is the boot-
strap sample size s. This happens because when few split candidates are randomly
selected, predictors with moderate effect on the response variable are more likely to
be chosen than otherwise. Hence, the significant predictors are less used for split-
ting and the variability in the structure of trees increases. Similarly, reducing the
bootstrap sample size allows fitting trees on more diversified training sets, rising
variability among the estimators. As a consequence, the random forest benefits
more stability.

The counterpart of reducing their values is that the model accuracy could dra-
matically lessen. Indeed, either when the training size of a regression tree diminishes
or when the tree is trained with sub-optimal predictors, its performance obviously
worsens. Thus, it is evident that a trade-off between the two side-effects is required
and that the optimal values of these two hyperparameters are problem-dependent
(Goldstein, Polley, and Briggs, 2011; Genuer, Poggi, and Tuleau, 2008; Martínez-
Muñoz and Suárez, 2010).

Meanwhile, the minimum number of samples l directly affects the structure of
the trees, limiting their depth. Even though its impact on the performance gain is
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Model hyperparameter Values

number of split candidates m 1, 2, . . . , 19

bootstrapped training set size s* 10%, 20%, . . . , 100%

minimum samples for a split l 2, 5, 10, 15, 20

* Expressed as a percentage of the whole training set size n. For instance,
if s=30%, then, the bootstrap sample size is ns=0.3n.

Table 4.1: Tuning hyperparameters and candidate values.

usually less relevant than the other two, it could potentially be improved by tuning
(Lin and Jeon, 2006) and it has shown relevance when noisy predictors are present.
(Segal, 2004).

In our specific regression problem, tuning has been performed via exhaustive grid
search to minimise the out-of-bag 1−R2, i.e., to optimise the generalisation perfor-
mance of the random forest. The grid of values among which the optimal combina-
tion has been researched is that obtained by considering every 3-tuple of the form

(m, s, l)

where the candidate values of m, s, and l are in Table 4.1. It is necessary to specify
that the tuning has been conducted for a random forest composed of 200 regression
trees, but we will return on this aspect later on.

The influence of these hyperparameters on the estimated generalisation perfor-
mance of the random forest is summarised by the three plots in Figure B.9. Each
plot contains four curves obtained by fixing the values of two out of three hyperpa-
rameters and plotting the evolution of the out-of-bag 1−R2 as a function of the third.

Inspecting each plot individually, two patterns are immediately perceivable: the
estimated generalisation score decreases as the bootstrap sample size s increases
(Figure B.9b) and it is almost directly proportional to the minimum number of
samples l (Figure B.9c). These relationships appear to be independent of the number
of split candidates m.

In Figure B.9a instead, we can see convex curves whose minimum point is altered
by changing the values of s and l. When l is large and s is small, the optimal value
of m is approximately around 10, yet, its optimality is questionable given the flat
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trend of the convexity. It moves toward lower values as the sample size s increases
and the number of samples l decreases. It is worth mentioning that for m=19 we
are effectively applying bagging instead of the random forest model since all the
predictors are always examined when a split has to be performed. Besides, passing
from bagging to random forests definitely benefits the model performances.

The inspection so concluded has elected the following random forest configuration
as the optimal one in terms of generalisation power:

1. m=6 candidate predictors randomly drawn at each split of the predictor space;

2. training sets composed of s= n= 55 860 observations sampled with replace-
ment from the true training set;

3. a minimum of l=2 observations inside an internal node of a tree for a split to
be performed.

As concerns s and l, the default settings in scikit-learn have been proved to
be optimal toward this regression problem, indeed, the bootstrapped training sets
maintain the size of the true training set and nodes are split until no further division
is possible (i.e., until each node is composed of a single observation). As for the num-
ber of split candidates, the standard behaviour of scikit-learn is the employment
of bagging, therefore, finding the optimal value for this hyperparameter has been
the most important result of the inspection. Besides, notice that m=6 corresponds
to the commonly suggested choice bp/3c, where p is the number of predictors.

4.2.2 Picking the number of trees in the forest

In order to conclude the growing and tuning phase, we need to take into account
a fourth hyperparameter that affects the size and the complexity of the random
forest model, namely, the number of trees which compose the ensemble, denoted by
t. We have been treating this hyperparameter separately from the previous because
it must not be considered as a tuning parameter, but, it should be set sufficiently
high as long as it is computationally manageable (Probst and Boulesteix, 2017). Let
us argument this statement and see how it had influenced our regression analysis.

Breiman (2001a) proved that the generalisation mse of a random forest is conver-
gent as the number of trees t grows and, he provided an upper bound to such error.
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Later on, Probst and Boulesteix (2017) theoretically and empirically proved that
the generalisation mse2, either estimated via out-of-bag samples or evaluated on a
test set, is a monotonously decreasing function of t. Furthermore, their empirical
analysis showed that the largest error reduction is achieved when the first 100 trees
are trained and, thereafter, the performance gain obtained by adding more trees is
minimal. In other terms, the generalisation error curve exhibits a steep decrease
followed by a plateau when narrowing to the limit error3.

An additional fact that the authors remarked is the influence that the specific
dataset and other model hyperparameters might have on the convergence rate. One
can clearly do nothing about the data, though, as concerns the hyperparameters, an
observation can be done: operating on the number of split candidates, the bootstrap
sample size or other parameters affecting the structure of the trees allows to have
more diversified but less powerful estimators, then, their number must be higher to
guarantee precise predictions and let the ensemble reaching the error convergence.

The facts just described have had two consequences on our regression analysis.
First, the tuning of hyperparameters in Section 4.2.1 has been performed onto a
random forest composed of 200 trees. Even if in presence of altered values of the
hyperparameters, this should be a sufficiently large size that:

• guarantees a reliable estimate of the generalisation performance,

• avoids that the simple addition of a few more trees to the ensemble might
drastically change the optimal combination of values for the hyperparameters
chosen.

Second, we had to make sure that the monotonously decreasing trend of the
generalisation error proved for mse was true even in our problem, where the gener-
alisation performance is computed employing 1−R2.

2More generally, this result holds whenever the generalisation performance of the random forest
is based on average loss, like the mse, which is computed as the average of the squared errors.

3This observation is supported in the classification setting also by Oshiro, Perez, and
Baranauskas (2012). Nonetheless, in the course of the empirical study of Probst and Boulesteix
(2017), a non-monotonous behaviour of the generalisation performance of random forests in binary
classification has been observed, even though only in specific circumstances and for certain error
measures.
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Figure 4.1: Evolution of the out-of-bag 1−R2 as a function of the number of trees t in the
random forest with fixed hyperparameters m=6, s=100% and l=2.

To this purpose, in Figure 4.1 we can see the curve describing the model gen-
eralisation performance, estimated through out-of-bag 1−R2, as a function of t in
[30, 1000]4. The model subject of the inspection is the random forest trained with
the previously tuned hyperparameters: m= 6, s= 100% and l= 2. The curve ex-
hibits the same trend observed for the generalisation mse by Probst and Boulesteix
(2017), with a lower convergence rate: a large performance gain accomplished within
the first 200 trees, followed by a slight descent.

Speaking of numbers, in Table 4.2 we can find a numerical summary of how
the out-of-bag score improves as t grows from 30 to 1000. The performance gain for
1000 trees compared to 30 trees is 0.0278. The biggest performance gain is evidently
achieved after only 100 trees, i.e., 0.019874 (71.49% of the overall gain), though, the
addition of further 200 trees leads to a total gain of 0.026229 (94.35% of the overall
gain). Thereafter, the gain improvement dramatically slows down.

4With a little abuse of notation, the interval [t0, t1] represents the set of integers {t0, t0+2, . . . , t1}
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[t0, t1] R̂(t0) R̂(t1)
Gain

R̂(t0)−R̂(t1)
Gain % wrt
[30,1000]

[30, 1000] 0.217128 0.189328 0.027800 100.00%

[30, 100] 0.217128 0.197253 0.019874 71.49%

[100, 200] 0.197253 0.191948 0.005306 19.09%

[200, 300] 0.191948 0.190898 0.001049 3.77%

[300, 400] 0.190898 0.190507 0.000391 1.41%

[400, 500] 0.190507 0.190197 0.000310 1.12%

[500, 600] 0.190197 0.189942 0.000256 0.92%

[600, 700] 0.189942 0.189776 0.000166 0.60%

[700, 800] 0.189776 0.189613 0.000163 0.59%

[800, 900] 0.189613 0.189536 0.000077 0.28%

[900, 1000] 0.189536 0.189328 0.000208 0.75%

R̂(t) here stands for the oob 1−R2 of the random forest composed of t trees.

Table 4.2: Numerical summary of the generalisation performance gain estimates of the
random forest (m=6, s=100%, l=2) as the number of trees t grows from 30 to 1000.

Assuming that the generalisation score of the random forest composed of 1000
trees is close to the limit score, we have found that a random forest with only 300
trees should be able to have comparable performances with less computational effort.

In view of the results obtained so far, we have decided to solve the regression
problem (2.1) using a random forest composed of 300 trees, with the significant
hyperparameters previously tuned (m=6, s=100%, l=2). From now on, we refer
to this model with the label F and we denote f̂1,F the associated regression function.
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Regression tree
T1

Random Forest
F

Hyperparameters
d=27, l=15,

α=1.13655·10−5
t=300, m=6,
s=100%, l=2

Test scores
estimates

cv*mse 0.015288 -

cv*1−R2 0.344193 -

oob 1−R2 - 0.190898

Test scores

mse 0.014919 0.008458

1−R2 0.359000 0.203534

mse (y>0) 0.038134 0.021776

1−R2 (y>0) 0.445343 0.254307

mse (y=0) 0.000966 0.000454

* Estimates obtained via 10-fold cross-validation.

Table 4.3: Comparison of the generalisation performance of the random forest F and the
regression tree T .

4.3 Evaluation of the random forest

There was nothing left to do but evaluate the performance of the random forest
F over our test set. In Table 4.3 we can see the generalisation scores of F compared
with that of the regression tree T obtained in Chapter 3.

Evidently, there is a large advancement in the descriptive and predictive capa-
bilities when using a random forest in place of a regression tree. According to each
metric evaluated on the test set, F outdoes T , approximately halving each score.
In terms of R2, the random forest F can explain 80% of the variability in the test
response and, when we isolate the positive fractions, the percentage drops to 75%.
Thus, what is surprising is that not only F enhance the overall R2 of T by 16%, but
it improves, even more, the ability in predicting positive fractions, that is by 19%.

Nevertheless, despite this improvement toward positive fractions, the F , as well
as T , better predicts null fractions. Indeed, the mse on the positive fractions is still
higher than that on the null fractions. The same conclusion can be drawn by the
map of the model residuals in Figure 4.2.
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Figure 4.2: Geographic map of the residuals of the random forest F computed on the
whole dataset (training set + test set). Red shades denote under estimation, while blue
shades indicate over estimation of the true response values. Every white point represents
a correctly predicted response value.

4.4 Interpretation of the results

Once again, in this section, we try to answer the question: are there relationships
between the climatic conditions and the percentage of lands dedicated to crops in a
given geographic area?

The regression tree T provided some responses when importance measures of pre-
dictors and partial dependence plots have been computed (Section 3.4). Therefore,
we have repeated the same techniques on our random forest F to obtain comparable,
and possibly more reliable, answers.

Impurity-based variable importance measure

Figure B.10 shows the ranking of the bioclimatic predictors according to the
impurity-based importance computed on the random forest F as explained in
Section 1.2.2. We can notice that the leading predictors are the same observed
in the regression tree T by means of the permutation importance measure, even
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though in a different order:

1. bio10: mean temperature of warmest quarter
2. bio12: annual precipitation
3. bio03: isothermality
4. bio08: mean temperature of wettest quarter
5. bio01: annual mean temperature

Differently from the ranking of T based on the same measure (Figure B.6), we can
see that the importance is much more distributed among the 19 predictors. This fact
is due to the diversification of the regression trees within F , mainly caused, in turn,
by the reduction of the number of split candidates from 19 (as in T ) to 6 (as in F ).

Moreover, only the first three variables (bio10, bio12 and bio03) stand out from
the others, since there is a drop in the importance values just after bio03, followed
by a roughly linear decrease. Therefore, it seems inappropriate to talk about the
top-5 predictors when we should talk about the top-3 instead. However, we maintain
this structure for cohesion with the results in Chapter 3.

Finally, we must notice that the predictor bio11, which was on the 1st place for
T , has lost many positions in this new ranking, dropping to the 13th. A reasonable
motivation is that the large correlation between it and other significant predictors,
such as bio01, bio10, bio08, combined with the small number of split candidates,
diminished its effect on the mse reduction.

Permutation importance measure

Following the same procedure described for regression trees, we have computed
the permutation importance of the bioclimatic predictors for data description and
generalisation capability of the random forest F . The rankings so obtained are in
Figure B.11. The leading predictors for data description (Figure B.11a) are:

1. bio12: annual precipitation
2. bio10: mean temperature of warmest quarter
3. bio03: isothermality
4. bio01: annual mean temperature
5. bio08: mean temperature of wettest quarter
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When analysing the generalisation capability of the random forest (Figure B.11b),
the set of the most important predictors remains unchanged, but bio01 and bio03
are inverted. Other small differences between the two rankings can be observed for
middle/low-ranked variables, but none of them is worth mentioning.

Once again, we are seeing these five bioclimatic predictors on the podium, con-
firming the outcomes obtained with the impurity-based measure on F . Furthermore,
a larger distribution of importance between predictors can be observed also with this
measure, but less evidently than in the impurity-based importance ranking.

Partial dependence plot

The influence that each bioclimatic predictor has on the regression function f̂1,F
can be perceived thanks to the 19 partial dependence plots in Figure B.12. For every
plot, the marginal average of f̂1,F (blue line) has been estimated onto 100 equally-
spaced values of the predictor, just like it has been done for the regression tree T .

Comparing these partial dependence plots with those of T (Figure B.8), at first
sight, the smoothness that characterises the curves in those of the random forest
leaps out. Inspecting more carefully the plots, one can see that most of the partial
dependences that were roughly constant for T appear to be so also for F (bio06,
bio14, bio17, bio18), though, others revealed small features, such as, weak depres-
sions (bio02 and bio09), increases or decreases relegated toward extreme values
(bio05, bio08, bio15, bio16 and bio19) and, still, linear dependence with tiny
slopes (bio07 and bio13). On the contrary, the harsh drop that was present in the
partial dependence plot of bio11 is now almost totally levelled off.

Anyway, the most peculiar relationships are exhibited again by bio01, bio03,
bio10, bio12. Jumps and drops that characterised their partial dependence curves
according to T are now replaced by smooth traits, but the substance of the plots
has not change:

bio01 The average predicted fraction of cropland starts rising when the annual
mean temperature crosses 0 degrees, yet, even though the trend of the curve
is increasing, it is not monotonous: there is a weak depression around 20-25
degrees.

bio03 The relationship between isothermality values and the model predictions of
cropland fraction can still be approximated by an inverse linear function with
a weak slope.
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bio10 The association with the average predicted fraction of croplands is constant
as long as the mean temperature of the warmest quarter is lower than 15
degrees. Then, a monotonously increasing trend begins, characterised by two
consecutive smooth jumps, around 15 and 29 degrees.

bio12 The partial dependence curve appears more flatten than that of T . Still, a
smooth jump around the value of 300 millilitres breaks the constant relation-
ship between the average predicted fractions and the annual precipitation val-
ues. Hereafter, a constant relationship reestablishes and, crossed the threshold
of 1200 millilitres, the curve starts declining again.

To these significant partial dependence plots, we must add that of bio04, which
exhibits an approximately direct linear relationship with the predicted cropland
fractions. A relationship that was totally absent in the partial dependence plot
of T , but that the random forest F has made emerge. As a matter of fact, the
increased relevance of the predictor bio04 can also be deduced by the three previous
importance rankings, in which it always figures at the 6th place.
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Conclusion

Throughout the study reported in this thesis we globally analysed the rela-
tionships between climatic conditions and three human-modified land cover classes:
(large-scale) croplands (igbp12), mosaics of small-scale croplands and natural veg-
etation (igbp14) and urban areas (igbp13). We aimed at the construction of three
suitable regression models for a dual goal:

1. Correctly predict the percentage of the given human-modified land cover ac-
cording to specific climatic features.

2. Find information on the true connections that exist between climate and the
human activities considered.

With the results of the exploratory analysis of the dataset, a complex regression
setting emerged. It was characterised by multiple predictors with many outliers,
response variables with strongly positive skewed distribution and, the apparent ab-
sence of significant correlations between climatic features and land cover fraction
variables. In this context, tree-based methods have been able to return a regression
model that, by far, outperforms the naive regressor5 only for one of the three land
cover classes.

The distribution of urban areas completely escaped from the modelisation based
on climatic data. It has already been conjectured in the introduction and further
commented in Section 3.5, but let us remark the following idea: it is our opinion
that, if any relationship between climate and the development of urban areas did
exist, then, in the modern era, it has been masked by other factors, such as the
ability of humans to adapt to the environment, the progress in terms of knowledge
and technology, socio-cultural transformations and historical events.

5With naive regressor we mean the regression model that always predicts the mean response,
independently of the bioclimatic predictors.
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Concerning the two land cover classes linked to agriculture, igbp12 and igbp14,
in principle, one would expect them to have similar climatic requirements to guar-
antee optimal harvests, independently of the extent of lands destined for cultivation.
Still, completely contrasting outcomes have emerged during the regression analysis.
Out of the two, only the distribution of croplands has shown good responsiveness
to the learning techniques. The same methods could not identify effective patterns
for the distribution of small-scale croplands.

In this case, the reason behind the failure of tree-based methods is likely to be the
globally reduced presence of land cover class igbp14. Indeed, as it has been observed
in Section 2.2.5, in approximately 80% of the lands, there is no sign of mosaics of
small-scale cultivation and natural vegetation. In other words, 80% of the response
values are zero and, there is not sufficient variability of positive fractions to allow
these methods to learn any real pattern.

Anyway, when taking into consideration only the distribution of (large-scale)
croplands, tree-based methods turned out to be a valid learning option. A single
regression tree, after optimisation of pruning techniques, showed sensible predictive
accuracy and good potential for patterns description. However, despite pruning, so
simple models exhibited little robustness: changes in the training data distribution
due to different random sampling in the splitting procedure of the dataset caused
the obtaining of distinct optimal regression trees. As a consequence, the resulting
model interpretation was not very reliable.

The employment of random forests let us obtain more accurate predictions and,
it solved the instability problem of single regression trees. Hyperparameter tuning
and a careful selection of the number of trees inside the ensemble allowed us to
identify a reasonably informative model. Yet, it is still worth mentioning that, as
long as it is computationally feasible, increasing the number of trees in the forest
allows to obtain further modest performance improvement.

Our random forest model can predict the absence of croplands with very low
error. On the contrary, it has more difficulty in estimating the true fraction of land
cover. The geographic map of residuals and the evaluation of scoring metrics on
positive and null subsets of the response variable have been fundamental tools for
the identification of this behaviour.
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As regards the interpretation of the random forest model, predictor importance
measures and partial dependence plots have been able to capture characteristic
patterns between climate and croplands distribution. Even though we cannot say
whether they are right or wrong, they are in line with expectations based on a basic
understanding of agriculture.

Looking at the results as a whole, what emerged is that the distribution of
cropland cover is mostly driven by the annual trends of precipitation (bio12) and
temperature (bio01), by extreme environmental factors connected with the life cy-
cle of plants, such as the mean temperature of the warmest (bio10) and wettest
(bio08) quarters and, by temperature-related variability measures, like isothermal-
ity (bio03) and temperature seasonality (bio04). In particular, partial dependence
plots emphasised some aspects:

• A sufficient quantity of annual mean precipitation is required for the presence
of croplands (between 400 and 1000 ml), but too copious precipitation (over
1000 ml) does not favour cultivated lands. Clearly, copious precipitation is
better than too scarce (less than 300 ml).

• A high average annual temperature is very important for agriculture, but it
seems that having a temperature larger than 29 degrees during the warmest
quarter of the year is the factor that, by itself, has more effect on the presence
of croplands.

In the end, we want to point out a couple of observations of a more general
nature that emerged during the study. Firstly, decision trees are an excellent way
to approach a regression problem when the relationships between predictors and
response are confusing and hard to characterise. Indeed, they can often catch im-
portant aspects of such relationships, even though they are simple models, easy to
understand and interpret (conceptually and practically).

Nonetheless, when the underlying data distribution is particularly elaborate, as
in ecological settings (many outliers, skewed distributions, etc.), regression trees
have to become very large and intricate to accurately describe the data. Despite
that, they cannot learn every significant aspect of the complex distribution and, even
small variations in the data, affect the entire structure of the tree. Furthermore, even
if pruning is applied, their size remains excessive, so that they lose in interpretability
because their 2D representation is hardly comprehensible.
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In the so described case, an ensemble of trees, like a random forest, is definitely
preferable, because it joins together many models, each one of them can describe a
different aspect of the distribution. And, as already mentioned, the accuracy and
stability of the regression model drastically improve.

Secondly, in addition to the already emphasised advantages, a random forest
owns an effective strategy of estimating the generalisation performance: the out-of-
bag error. This is a huge benefit when hyperparameter tuning must be performed via
an exhaustive grid search. Indeed, this strategy has a reduced running time of the
error estimation per hyperparameter combination. Therefore, the inspection for the
optimal combination may go through a larger grid, which would be computationally
prohibitive with other estimation techniques, such as cross-validation. Then, this
compensates for the weak response of a random forest to tuning.

Future research

Some aspects of this research might be better treated and further explored in
future work. A first example might be finding a different strategy to model the
distribution of the land cover class igbp14, mosaics of small-scale croplands and
natural vegetation. One would require a model that is capable of considering that
the probability of having a zero fraction is way higher than that of a positive fraction,
such as a zero-inflated model.

Alternatively, some updating of the set of predictors may be profitable in mod-
elling this land cover class and possibly, also the other two. For instance, one could
consider the additional climatic variables proposed by Title and Bemmels (2018)
or the environmental and topographic predictors from Amatulli et al. (2018). In-
deed, as for the latter, it is reasonable to think that mosaics of small-scale croplands
and natural vegetation might be more spread over territories with alternation of
plains and high grounds, with the presence of gullies or steep hillsides. On the other
hand, for large-scale croplands to be present, a flatter territory should be preferable.
Therefore, including variables describing characteristics such as elevation, slope or
terrain roughness might be helpful.

Finally, in Section 2.2.4 it has been highlighted that multicollinearity can have
a side effect on the importance that each predictor has in the model, attributing
more value to some of them just because they are correlated with other significant
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predictors. Then, it could be a good idea to employ a different variable importance
measure that could be less affected by this problem. For instance, (Strobl et al.,
2008) suggests an available choice for random forests.
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Appendix A

Data analysis - Plots and tables

A.1 Bioclimatic predictors

A.1.1 Description of the variables

Table A.1: Bioclimatic predictors description. (O’Donnel and Ignizio, 2012)

Code Name Calculation Unit

bio01 Annual mean temperature 1
12

12∑
i=1

T i Degrees Celsius

The annual mean temperature.

bio02 Annual mean diurnal range 1
12

12∑
i=1

(Tmax,i − Tmin,i) Degrees Celsius

The mean of monthly temperature ranges (monthly maximum minus monthly minimum).

bio03 Isothermality
bio02
bio07

· 100 Percentage

The quantification of how large the day-to-night temperatures oscillate relative to the summer-
to-winter (annual) oscillations.

bio04 Temperature seasonality sd(T 1, . . . , T 12) · 100 Degrees Celsius

The amount of temperature variation over a given year, based on the standard deviation of
monthly temperature averages.

bio05 Max temperature of the warmest month max
i=1,...,12

Tmax,i Degrees Celsius

The maximum monthly temperature occurrence over a given year.

bio06 Min temperature of the coldest month min
i=1,...,12

Tmin,i Degrees Celsius

The minimum monthly temperature occurrence over a given year.

Continue on next page
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Code Name Calculation Unit

bio07 Temperature annual range bio05− bio06 Degrees Celsius

The measure of temperature variation over a given year.

bio08 Mean temperature of the wettest quarter q = argmax
j=1,...,12

j+2∑
i=j

Pi
a

bio08 = 1
3

q+2∑
i=q

T i

Degrees Celsius

The quarterly index that approximates mean temperatures that prevail during the wettest season.

bio09 Mean temperature of the driest quarter q = argmin
j=1,...,12

j+2∑
i=j

Pi
a

bio09 = 1
3

q+2∑
i=q

T i

Degrees Celsius

The quarterly index that approximates mean temperatures that prevail during the driest season.

bio10 Mean temperature of the warmest quarter q = argmax
j=1,...,12

j+2∑
i=j

T i
a

bio10 = 1
3

q+2∑
i=q

T i

Degrees Celsius

The quarterly index that approximates mean temperatures that prevail during the warmest season.

bio11 Mean temperature of the coldest quarter q = argmin
j=1,...,12

j+2∑
i=j

T i
a

bio11 = 1
3

q+2∑
i=q

T i

Degrees Celsius

The quarterly index that approximates mean temperatures that prevail during the coldest season.

bio12 Annual precipitation
12∑
i=1

Pi Millimetres

The sum of monthly precipitation totals.

bio13 Precipitation of the wettest month max
i=1,...,12

Pi Millimetres

The total precipitation during the wettest month.

bio14 Precipitation of the driest month min
i=1,...,12

Pi Millimetres

The total precipitation during the driest month.

bio15 Precipitation seasonality
sd(P1, . . . , P12)

1 + bio12/12
100 Percentage

The measure of the variation in the monthly precipitation totals over the course of the year.

Continue on next page
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Code Name Calculation Unit

bio16 Precipitation of the wettest quarter max
j=1,...,12

j+2∑
i=j

Pi
a Millimetres

The quarterly index that approximates total precipitation that prevails during the wettest season.

bio17 Precipitation of the driest quarter min
j=1,...,12

j+2∑
i=j

Pi
a Millimetres

The quarterly index that approximates total precipitation that prevails during the driest season.

bio18 Precipitation of the warmest quarter q = argmax
j=1,...,12

j+2∑
i=j

T i
a

bio18 =
q+2∑
i=q

Pi

Millimetres

The quarterly index that approximates total precipitation that prevails during the warmest season.

bio19 Precipitation of the coldest quarter q = argmin
j=1,...,12

j+2∑
i=j

T i
a

bio19 =
q+2∑
i=q

Pi

Millimetres

The quarterly index that approximates total precipitation that prevails during the coldest season.

Notation :

i identifies a specific month of the year, e.g. i=1 means January, etc.

Tmax,i denotes the mean of daily maximum temperature for month i.

Tmin,i denotes the mean of daily minimum temperature for month i.

T i denotes the average temperature for month i, i.e. T i = (Tmax,i − Tmin,i)/2.

Pi denotes the total precipitation for month i.

Notes :

a Quarterly indices are based on 3 months intervals. So, fixed a month i, the next two months i + 1 and i + 2 are
evaluated. In order to evaluate the last two months of the year, the quarters are defined by using the months at
the beginning of the same year. Therefore, with a little abuse of notation, when i = 12, then i+1 and i+2 should
be interpreted as 1 and 2 respectively.

Remark: Even though predictors in the table has been defined with respect to a specific year, the corresponding values
in the dataset have been obtained by averaging their values over the 30 years interval 1971-2000.
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A.1.2 Outliers

BP
code

N. lower
outliers

N. upper
outliers

N.
outliers

Outliers
%

BP
code

N. lower
outliers

N. upper
outliers

N.
outliers

Outliers
%

bio01 1562 - 1562 2.80% bio11 - - - -
bio02 2 48 50 0.09% bio12 - 2939 2939 5.26%
bio03 - - - - bio13 - 1479 1479 2.65%
bio04 - 70 70 0.13% bio14 - 5268 5268 9.43%
bio05 4934 - 4934 8.83% bio15 - 498 498 0.89%
bio06 - - - - bio16 - 1689 1689 3.02%
bio07 - 77 77 0.14% bio17 - 5050 5050 9.04%
bio08 5046 - 5046 9.03% bio18 - 2256 2256 4.04%
bio09 - - - - bio19 - 6973 6973 12.48%
bio10 4834 - 4834 8.65%

- N. lower/upper outliers column contains the count of outliers lower/larger than the minimum/maximum whisker.
- N. outliers column contains the total count of outliers.
- Outliers % column contains the percentage of observations in the dataset that is an outlier for that bioclimatic predictor.

Table A.2: Count of outliers for every bioclimatic predictor.

N. outliers Outliers %

Climatic
zone

Frigid Temperate Torrid Frigid Temperate Torrid

BP code

bio01 1562 - - 100.00% - -
bio02 1 21 28 2.00% 42.00% 56.00%
bio03 - - - - - -
bio04 17 53 - 24.29% 75.71% -
bio05 4930 4 - 99.92% 0.08% -
bio06 - - - - - -
bio07 13 64 - 16.88% 83.12% -
bio08 4994 52 - 98.97% 1.03% -
bio09 - - - - - -
bio10 4831 3 - 99.94% 0.06% -
bio11 - - - - - -
bio12 - 220 2719 - 7.49% 92.51%
bio13 - 261 1218 - 17.65% 82.35%
bio14 69 2337 2862 1.31% 44.36% 54.33%
bio15 413 - 85 82.93% - 17.07%
bio16 - 262 1427 - 15.51% 84.49%
bio17 51 2039 2960 1.01% 40.38% 58.61%
bio18 - 512 1744 - 22.70% 77.30%
bio19 120 1588 5265 1.72% 22.77% 75.51%

- N. outliers columns contain the count of outliers that falls into every specific climatic zone.
- Outliers % columns contain the percentage of outliers that falls into every specific climatic zone.

Table A.3: Count of outliers for every bioclimatic predictor, divided among the three climatic zones.
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Figure A.1: Geographic map of outliers for each bioclimatic predictors. Only predictors with a positive count of
outliers are displayed.
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A.1.3 Empirical distributions

(a) Empirical distribution. (b) Geographic map.

Figure A.2: bio01 - Annual mean temperature.

(a) Empirical distribution. (b) Geographic map.

Figure A.3: bio02 - Annual mean diurnal range.

(a) Empirical distribution. (b) Geographic map.

Figure A.4: bio03 - Isothermality.
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(a) Empirical distribution. (b) Geographic map.

Figure A.5: bio04 - Temperature seasonality.

(a) Empirical distribution. (b) Geographic map.

Figure A.6: bio05 - Max temperature of the warmest month.

(a) Empirical distribution. (b) Geographic map.

Figure A.7: bio06 - Min temperature of the coldest month.

(a) Empirical distribution. (b) Geographic map.

Figure A.8: bio07 - Temperature annual range.
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(a) Empirical distribution. (b) Geographic map.

Figure A.9: bio08 - Mean temperature of the wettest quarter.

(a) Empirical distribution. (b) Geographic map.

Figure A.10: bio09 - Mean temperature of the driest quarter.

(a) Empirical distribution. (b) Geographic map.

Figure A.11: bio10 - Mean temperature of the warmest quarter.

(a) Empirical distribution. (b) Geographic map.

Figure A.12: bio11 - Mean temperature of the coldest quarter.
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(a) Empirical distribution. (b) Geographic map.

Figure A.13: bio12 - Annual precipitation.

(a) Empirical distribution. (b) Geographic map.

Figure A.14: bio13 - Precipitation of the wettest month.

(a) Empirical distribution. (b) Geographic map.

Figure A.15: bio14 - Precipitation of the driest month.

(a) Empirical distribution. (b) Geographic map.

Figure A.16: bio15 - Precipitation seasonality.
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(a) Empirical distribution. (b) Geographic map.

Figure A.17: bio16 - Precipitation of the wettest quarter.

(a) Empirical distribution. (b) Geographic map.

Figure A.18: bio17 - Precipitation of the driest quarter.

(a) Empirical distribution. (b) Geographic map.

Figure A.19: bio18 - Precipitation of the warmest quarter.

(a) Empirical distribution. (b) Geographic map.

Figure A.20: bio19 - Precipitation of the coldest quarter.
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A.2 Land cover fraction variables

A.2.1 Description of the variables

Code Name Description

igbp00 Water Bodies At least 60% of area is covered by permanent water bodies.

igbp01 Evergreen Needleleaf Forests Dominated by evergreen conifer trees. canopy> 2m, tree

cover> 60%.

igbp02 Evergreen Broadleaf Forests Dominated by evergreen broadleaf and palmate trees.
canopy> 2m, tree cover> 60%.

igbp03 Deciduous Needleleaf Forests Dominated by deciduous needleleaf (larch) trees. canopy> 2m,
tree cover> 60%.

igbp04 Deciduous Broadleaf Forests Dominated by deciduous broadleaf trees. canopy> 2m, tree
cover> 60%.

igbp05 Mixed Forests Dominated by neither deciduous nor evergreen (40-60% of each)
tree type. canopy> 2m, tree cover> 60%.

igbp06 Closed Shrublands Dominated by woody perennials (1-2m height) > 60% cover.

igbp07 Open Shrublands Dominated by woody perennials (1-2m height) 10-60% cover.

igbp08 Woody Savannas tree cover 30-60%, canopy> 2m.

igbp09 Savannas tree cover 10-30%, canopy> 2m.

igbp10 Grasslands Dominated by herbaceous annuals (< 2m).

igbp11 Permanent Wetlands Permanently inundated lands with 30-60% water cover and
> 10% vegetated cover.

igbp12 Croplands At least 60% of area is cultivated cropland.

igbp13 Urban and built-up lands At least 30% impervious surface area including building mate-
rials, asphalt and vehicles.

igbp14 Croplands/Natural vegetation
mosaics

Mosaics of small-scale cultivation 40-60%, with natural tree,
shrub or herbaceous vegetation.

igbp15 Permanent Snow and Ice At least 60% of area is covered by snow and ice for at least 10
months of the year.

igbp16 Barren At least 60% of area is non-vegetated barren (sand, rock, soil)
areas with less than 10% vegetation.

Table A.4: Description of land cover classes in MCD12Q1 (Friedl and Sulla-Menashe, 2019) - IGBP legend.

89



A.2.2 Empirical distributions

(a) Empirical distribution. (b) Geographic map.

(c) Empirical distribution of positive fractions. (d) Geographic map of positive fractions.

Figure A.21: igbp12 - Croplands.

Figure A.22: Geographic map of the distribution of croplands fractions. Enlargement of Figure A.21b.
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(a) Empirical distribution. (b) Geographic map.

(c) Empirical distribution of positive fractions. (d) Geographic map of positive fractions.

Figure A.23: igbp13 - Urban and built-up lands.

(a) Empirical distribution. (b) Geographic map.

(c) Empirical distribution of positive fractions. (d) Geographic map of positive fractions.

Figure A.24: igbp14 - Croplands/Natural vegetation mosaics.
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A.2.3 Pairwise relationships between responses and bioclimatic predictors

(a) Spearman coefficients. (b) Pearson coefficients.

Figure A.25: Correlation coefficients between the response variable igbp12 and the bioclimatic predictors.

Figure A.26: Pairwise scatter plots between the response variable igbp12 and the bioclimatic predictors.
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Figure A.27: Pairwise 2D histograms between the response variable igbp12 and the bioclimatic predictors.

93



(a) Spearman coefficients. (b) Pearson coefficients.

Figure A.28: Correlation coefficients between the response variable igbp13 and the bioclimatic predictors.

Figure A.29: Pairwise scatter plots between the response variable igbp13 and the bioclimatic predictors.
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Figure A.30: Pairwise 2D histograms between the response variable igbp13 and the bioclimatic predictors.
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(a) Spearman coefficients. (b) Pearson coefficients.

Figure A.31: Correlation coefficients between the response variable igbp14 and the bioclimatic predictors.

Figure A.32: Pairwise scatter plots between the response variable igbp14 and the bioclimatic predictors.
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Figure A.33: Pairwise 2D histograms between the response variable igbp14 and the bioclimatic predictors.
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Appendix B

Regression analysis - Plots and tables

B.1 Decision trees

B.1.1 Tree growing and pruning

(a) mse. (b) 1−R2.

Figure B.1: Evolution of the scoring metrics as the maximum depth d of the tree increases. The generalisation
estimate is represented by the orange line and the confidence interval by the light orange area all around. The
training score is described by the blue line.
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(a) mse. (b) 1−R2.

Figure B.2: Evolution of the generalisation scoring metrics estimates as function of α when the solution of (1.5) is
computed over the randomly sampled complexity parameters during step 1.

(
α̃min, R̂(Tα̃min)

)
and

(
α̃1se, R̂(Tα̃1se)

)
are identified by, respectively, a red and a green dot. The confidence interval of the estimates is represented by the
blue area.

(a) mse. (b) 1−R2.

Figure B.3: Evolution of the generalisation scoring metrics estimates as function of α when the solution of (1.5) is
computed over the subset A∩ [9 ·10−6, 3 ·10−5] during step 2.

(
αmin, R̂(Tαmin)

)
and

(
α1se, R̂(Tα1se)

)
are identified

by, respectively, a red and a green dot. The confidence interval of the estimates is represented by the blue area.
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Figure B.4: Generalisation mse estimates of the regression trees explored when combining different pruning tech-
niques and splitting approaches of the predictor space. Red dots denote the minimum of each curve and, the green
dot identifies the score of the best-performing regression tree.
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Figure B.5: Generalisation 1−R2 estimates of the regression trees explored when combining different pruning
techniques and splitting approaches of the predictor space. Red dots denote the minimum of each curve and, the
green dot identifies the score of the best-performing regression tree.
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B.1.2 Interpretation of the results

Figure B.6: Ranking of the bioclimatic predictors according to the impurity-based variable importance measure
on the regression tree T .

(a) For data description (computed on the training set).

(b) For contribute in generalisation power (computed on the test set).

Figure B.7: Rankings of the bioclimatic predictors according to the permutation importance measure on the
regression tree T . Importance values have been averaged over 10 random shufflings. mse is the scoring metric
used. The confidence interval of each value is displayed.
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Figure B.8: Partial dependence plots of the regression tree T . Light blue areas represents the confidence intervals.
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B.2 Random forests

B.2.1 Forest growing and hyperparameters tuning

(a) oob 1−R2 as the number of split candidates m varies.

(b) oob 1−R2 as the bootstrap sample size s varies.

(c) oob 1−R2 as the minimum number of samples required to split an internal node l varies.

Figure B.9: Selected examples of the evolution of the out-of-bag 1−R2 of the random forest as a function of a
model hyperparameter when the remaining two are fixed.
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B.2.2 Interpretation of the results

Figure B.10: Ranking of the bioclimatic predictors according to the impurity-based variable importance measure
on the random forest F .

(a) For data description (computed on the training set).

(b) For contribute in generalisation power (computed on the test set).

Figure B.11: Rankings of the bioclimatic predictors according to the permutation importance measure on the
random forest F . Importance values have been averaged over 10 random shufflings. mse is the scoring metric
used. The confidence interval of each value is displayed.
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Figure B.12: Partial dependence plots of the random forest F . Light blue areas represents the confidence intervals.
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