
Università degli Studi di Padova

Dipartimento di Matematica “Tullio Levi-Civita”

Master Degree in Mathematics

A mathematical programming model for air traffic
flow management with dynamic selection of the

airspace configuration

Supervisor

Prof. Luigi De Giovanni

Candidate

Luca Zanardelli

Matriculation number 1203113

11 December 2020
Academic Year 2019/2020

2

Abstract

In this thesis we present a new integer linear programming model for air traffic flow

management. The goal of the model is to minimize the cost of flight delays. The intro-

duction provides an overview of the air traffic flow management problem. The problem

is addressed through a combination of actions such as ground-holding, airborne-holding,

speed control and choice of the most appropriate configuration of the airspace. The con-

figuration may be changed over time, so that the last action implies dynamism of the

airspace configuration and allows controllers to monitor the flow of traffic more effectively.

Nevertheless, to the best of our knowledge, the model we present in this thesis is the first

one that exploits the use of dynamic airspace configurations. The new model is based

on Integer Linear Programming formulation and it is compared to one state-of-the-art

formulation using a single fixed configuration. Different model parameter settings are

analysed, showing significant improvement in terms of reduced delays and related costs.

Furthermore, theoretical considerations regarding the study of the linear relaxation of

the new model are described. Finally, implementation details are provided.

3

4

Contents

1 Introduction 7

1.1 Motivations . 7

1.2 Structure of the thesis and main contributions 8

2 The air traffic flow management problem 11

2.1 Operations management in air traffic control 11

2.2 The problem and some solution approaches 12

2.2.1 Cost of delay . 12

2.2.2 Capacity and airspace configurations 12

2.2.3 Control strategies . 14

3 Linear programming and computational tools 15

3.1 Integer linear programming . 15

3.1.1 The branch-and-bound method . 16

3.1.2 The cutting plane method . 18

3.2 Optimization software . 20

3.2.1 IBM ILOG CPLEX Optimization Studio 20

3.2.2 AMPL . 21

3.2.3 MATLAB . 21

4 State of the art 23

4.1 Historical notes . 23

4.2 Bertsimas and Stock Patterson’s model . 25

5 A model for ATFM with dynamic configurations 29

5.1 An overview of the ATFM problem . 29

5.1.1 Collapsed sectors and airspace configurations 29

5.1.2 Time representation . 30

5.1.3 Flights . 30

5.1.4 Capacity . 30

5

6 CONTENTS

5.1.5 Airports . 30

5.1.6 Delays . 30

5.2 Problem data . 31

5.3 Decision variables . 33

5.4 Objective function . 33

5.5 Mathematical formulation . 34

5.5.1 Airport capacity constraints . 35

5.5.2 Collapsed sector capacity constraints 35

5.5.3 Connectivity constraints . 36

5.5.4 Configuration constraints . 37

5.6 A class of valid inequalities . 37

5.7 Size of the formulation . 39

6 Model implementation and instance generation 43

6.1 Model implementation . 43

6.2 Generation of flight trajectories . 43

6.3 Data for the airspace elements . 44

7 Computational results 47

7.1 Instance 1: nominal case . 47

7.2 Instance 2: weather disturbance from north to south 54

7.3 Instance 3: weather disturbance from west to east 58

7.4 Linear programming relaxation . 62

8 Conclusions 65

Appendix 67

atfm.dat . 67

atfm.mod . 76

atfm.run . 79

References 83

Chapter 1

Introduction

1.1 Motivations

Aviation is one of the most global industries because it connects people, cultures and

businesses across continents. In fact it provides the only rapid worldwide transportation

network, making it essential for global business. Aviation generates economic growth,

creates jobs and is decisive for international trade and tourism. According to recent

estimates by the Air Transport Action Group (ATAG) [6], the total economic impact

(direct, indirect, induced and tourism catalytic) of the European aviation industry has

reached USD 823 billion. The aviation industry also supported a total of 12.2 million

jobs in Europe. It provided 2.6 million direct jobs. According to the estimate of the

ACI-Europe study, European airports contributed directly to the employment of 1.7

million people, earning a total of e 68.5 billion in 2013. In addition to jobs and income,

these airports directly contributed a total of e 101.6 billion to national GDP. This is

approximately 0.6% of the total GDP of Europe in 2013. In addition, indirect, induced

and catalytic economic impacts (including tourism, trade, investments, etc.) are taken

into account, which supported approximately 4.1% (e 647.5 billion) of the total European

GDP and 12.3 million jobs, with an annual income of e 356 billion. According to

long-term traffic forecasts of the International Civil Aviation Organization (ICAO) [6],

dating back to before the COVID-19 pandemic, passenger and freight traffic in Europe

is expected to grow by 3.3% and 2.5% per year respectively until 2045.

As reported in [13], in 2019, traffic growth was 0.9%, with a total of over 11.1 million

flights. The punctuality of airline arrivals improved over the previous year to 78%. All-

causes delay decreased by 11% with a reduction in both primary and reactionary delays

[13]. Airlines were better prepared with spare planes and crews, and there were fewer

interruptions to the network. There were over 1.4 million flights delayed by ATFM

regulation in 2019, a 5% increase compared to 2018. About 40% of these flights were

delayed by more than 15 minutes, a decrease of 4% compared to 2018. Average daily

7

8 CHAPTER 1. INTRODUCTION

ATFM delay in 2019 decreased by 6% compared to 2018. The en-route ATFM delay

decreased by 8% and the airport ATFM delay increased by about 2% compared to 2018.

The main reasons for en-route ATFM delay in 2019 were en-route ATC capacity (32%),

en-route ATC staffing (17%) and en-route weather (15%). Airport weather conditions

(12%) and airport capacity (8%) were the main causes of delays attributed to airports.

Direct emissions from aviation account for around 3% of the EU’s total greenhouse gas

emissions and over 2% of global emissions. If global aviation were a country, it would

rank in the top 10 emitters. Someone flying from Paris to New York and back generates

approximately the same level of emissions as an average person in the EU by heating their

home for a full year [13]. In 2020, annual global emissions from international aviation are

about 70% higher than in 2005. The International Civil Aviation Organization (ICAO)

predicts that, in the absence of additional measures by 2050, they could grow by over

300% [13]. Air traffic flow management is essential. It allows to ensure and maintain

optimal air traffic management, limiting delays, improving the punctuality and efficiency

of aircraft carriers, keeping the management of airports and airspace sectors always within

the limits of declared capacity. An intervention to regularize the amount of air traffic

will be implemented when necessary to ensure that this amount of traffic never exceeds

the structural capacity of an airport or sector, furthermore it allows to exploit these

capabilities in the most efficient way.

1.2 Structure of the thesis and main contributions

Chapter 1: Introduction In the first chapter we will give an overview of European

air traffic, and its impact on economic and environmental aspects. We will also

provide the description of the contents of each chapter of the thesis.

Chapter 2: The ATFM problem In the first part of this chapter we will illustrate

how operations are conducted to manage the flow of air traffic. In the second part

we will more formally introduce the Air Traffic Flow Management (ATFM) problem

within the Air Traffic Management (ATM) scope. In particular, we will introduce

ground holding, airborne holding, speed control and re-rounting policies, as well as

the opportunity of dynamically changing the capacity configuration of the airspace,

which has been recently implemented in some control centres as a strategy to adapt

control resources to air traffic and obtain improved air traffic flow.

Chapter 3: Linear programming and computational tools In the first part of this

chapter we will present the fundamental mathematical tool in carrying out this

work: Integer Linear Programming (ILP). We will describe two methods for solv-

ing linear integer programming problems. In the second part of the chapter, we will

describe the software we used to implement mathematical model and solve them

1.2. STRUCTURE OF THE THESIS AND MAIN CONTRIBUTIONS 9

on test instances.

Chapter 4: State of the art In the first part of this chapter we will illustrate some

existing ILP formulations for ATFM, starting from approaches dating back to 1992

up to more recent years. In the second part, we will describe in detail the model

from literature that underlies our work.

Chapter 5: A model for ATFM with dynamic configurations This chapter de-

scribes the main original contribution of the thesis. We will present a new approach

to the air traffic flow management problem, using integer linear programming, to

include dynamic airspace configuration as a policy to improve network efficiency.

In particular, we will describe in detail new capacity and configuration constraints.

Chapter 6: Model implementation and instance generation The thesis presents

a computational study and, in this chapter, we will illustrate the procedure we used

to generate the instances to be tested using optimization software to implement and

solve ILP models.

Chapter 7: Computational results In this chapter we report the results on three

different classes of instances of the air traffic flow management problem. We will

provide an analysis of the improvement that can be obtained with different param-

eter settings and some results on computational efficiency.

Chapter 8: Conclusions In this last chapter we will comment on the results both from

a computational and theoretical point of view, underlining the improvements that

can be made through this new approach to ATFM.

Appendix: In the appendix we report the AMPL code of the model and the data related

to a sample instance.

10 CHAPTER 1. INTRODUCTION

Chapter 2

The air traffic flow management

problem

In this chapter we will describe the planning of operations in the context of air traffic flow

management. We will also illustrate the problem in detail, highlighting the operational

contest and the most common strategies for solving it.

2.1 Operations management in air traffic control

Air Traffic Flow Management (ATFM) is a service established with the aim of con-

tributing to a safe, orderly and rapid flow of air traffic by ensuring that the Air Traffic

Controllers (ATC) capacity is used to the maximum extent possible and that the traffic

volume is compatible with the declared capacities by the appropriate Air Traffic Services

(ATS) authority. Its purpose is therefore to optimize the flow of air traffic based on

air traffic control capability, allowing airlines to operate safe and efficient flights. The

Network Manager Operations Center (NMOC) constantly checks the balance between

airspace capacity and traffic load. The Air Traffic Flow and Capacity Management (AT-

FCM) activities are divided into three phases [10]:

Strategic phase It starts about one year before the flight takes place and it ends one

week before real time operations. During this phase, the NMOC helps the Air

Navigation Service Providers (ANSPs) to predict what capacity they will need

to provide in each of their air traffic control centres. This also includes avoiding

imbalances between capacity and demand for events taking place a week or more

in the future;

Pre-tactical phase It starts few days before real time operations. The task of the

NMOC staff is to coordinate the definition of a daily plan aimed at optimising

the overall ATM network performance and minimising delay and cost, and inform

11

12 CHAPTER 2. THE AIR TRAFFIC FLOW MANAGEMENT PROBLEM

operational partners about the ATFCM measures that will be in force in European

airspace on the following day via the publication of the agreed plan for the day of

operations;

Tactical phase It takes place on the day of operations. The staff checks and updates

the daily plan made the day before based on current reality. The staff continues

working on capacity optimisation according to real time traffic demand, and where

aircraft are affected by a regulation, offers alternative solutions to minimise delays.

Flights taking place on that day receive the benefit of the flow management service,

which includes, among other things, the allocation of individual aircraft departure

slots, re-routings to avoid bottlenecks and alternative flight profiles in an attempt

to maximise flight efficiency and make the best use of the available capacity.

2.2 The problem and some solution approaches

ATM manages the flight paths and the relations between them. The flight path provides

information about the airport of departure, the airport of arrival, the sectors crossed, the

time of departure, arrival and entry in each sector. We must specify that the flight path

is defined by a 4D space-time trajectory. We will model, for simplicity, the trajectories of

our problem as 3D space-time trajectories (we don’t consider the flight level dimension).

2.2.1 Cost of delay

The main objective of ATM is to avoid delays, which can be seen as deviations from the

temporal component of “ideal” trajectory. The most relevant time deviations are those

related to the scheduled departure and arrival, as they are those that involve the main

costs of delay. Summing up, regarding the relevant of delays, it is not important whether

or not there is a delay in the intermediate phases between take-off and landing, but only

if the flight leaves or arrives on time. Hence, the delay costs are mainly related to the

delays on the ground at the departure and flight delays upon arrival. The second type

of delay is usually more expensive, as it implies extra fuel consumption.

2.2.2 Capacity and airspace configurations

One of the main problems causing delays is the limited capacity of the airports and

sectors. The term capacity means the ability to provide Air Navigation Services (ANS)

with a certain volume of air traffic, while maintaining a high level of safety. This term is

related to the concept of sector. For the purpose of our study, we consider the airspace

model based on the concepts of elementary sector and collapsed sector. An elementary

sector is a 3D portion of the airspace. Figure 2.1 shows three elementary sectors in

the area north-east of Italy. A collapsed sector is the union of one or more elementary

2.2. THE PROBLEM AND SOME SOLUTION APPROACHES 13

Figure 2.1: Three elementary sectors [4].

Figure 2.2: A collapsed sector [4].

sectors that form a 3D connected portion of the airspace. Figure 2.2 shows an example

of a collapsed sector. An airspace configuration is a partition of elementary sectors

into subsets corresponding to collapsed sectors. Based on the same elementary sectors,

different configurations can be achieved.

The idea is that there are generally not enough controllers to monitor traffic on every

elementary sector. We will therefore consider that the controllers monitor the traffic on

the collapsed sectors and therefore that the term capacity will be linked to that of the

collapsed sector. The capacity of a collapsed sector is the maximum number of flights

that the collapsed sector controllers can monitor without exceeding a default maximum

workload. The same definition can be given for airports capacity. The capacity of a sector

depends, among other things, on its size and geometry but the capacity is dynamic and

changes over time to allow ATC to operate in safe conditions.

14 CHAPTER 2. THE AIR TRAFFIC FLOW MANAGEMENT PROBLEM

2.2.3 Control strategies

In general, two main strategies are used to avoid air traffic congestion. The first is

commonly known as ground holding. The idea of ground holding is to anticipate the

delay on the ground at the departure airport. The second strategy is known as airborne

holding. It consists in allowing a flight to hold on airborne before landing at its arrival

airport. Proceeding in this way implies additional fuel consumption, with both economic

and environmental consequences. An optimal balance between ground and air holding

is a key element in ATFM. Another strategy is known as re-routing. The idea of the

change of route is to divert a flight on a different route from the one planned, keeping the

departure and arrival airports, in order to possibly improve the general state of air traffic

flows. For instance, a flight that is scheduled to pass through a congested sector may

be re-routed to not occupy this sector. Speed control is a strategy that allows a flight

to arrive at a specified point before or after expected congestion. In this thesis we will

propose a mathematical model to describe the problem just presented. In this model we

will consider the possibility of avoiding congestion by means of ground holding, airborne

holding, speed control and the use of dynamic airspace configurations.

Chapter 3

Linear programming and

computational tools

The problem of air traffic flow management has been addressed with various approaches.

One of them, which is where we are going to tackle it, is integer linear programming.

In the first section of this chapter we will provide the main ideas on the subject and

illustrate two methods for solving integer linear programs. In the second section we will

describe the optimization software that will make possible the practical development of

our work.

3.1 Integer linear programming

For the development of this section we mainly referred to [11] and [17]. A Linear Program

(LP) is a problem of the form

max c⊤x

subject to Ax ≤ b

x ≥ 0

(3.1)

where c, x ∈ R
n, A ∈ R

m×n and b ∈ R
m. The problem consists in finding a point x

which maximizes c⊤x, which is called the objective function, and which belongs to the

set {x ∈ R
n : Ax ≤ b, x ≥ 0}, which is called feasible region. A point belonging to

this set is called an feasible point. Any point x which belongs to the feasible region and

maximizes the objective function is a solution of the LP problem (3.1). Geometrically,

the feasible region is a convex polyhedron. A linear function is a convex function, which

implies that every local minimum is a global minimum; similarly, a linear function is a

concave function, which implies that every local maximum is a global maximum. A linear

program does not necessarily admit a solution. In fact, two other cases are possible: if

15

16 CHAPTER 3. LINEAR PROGRAMMING AND COMPUTATIONAL TOOLS

the constraints of a linear program are mutually contradictory, there are no points that

satisfy all the constraints and thus the feasible region is the empty set. In this case

the problem has no solution and is said to be infeasible. In case the problem may

be improved indefinitely without violating the constraints and bounds, it is said to be

unbounded. The simplex algorithm is the classical method to solve the optimization

problem of linear programming. This algorithm works very well for problems of the form

(3.1), where variables can take any real value. Let us now consider the case in which

variables can only take integer values.

A pure Integer Linear Program (ILP) is a problem of the form

max c⊤x

subject to Ax ≤ b

x ≥ 0 integral

(3.2)

where, as before, c, x ∈ R
n, A ∈ R

m×n and b ∈ R
m. The feasible region in this case is

given by the set S = {x ∈ Z
n : Ax ≤ b, x ≥ 0}. The linear relaxation of S is the set

S′ = {x ∈ R
n : Ax ≤ b, x ≥ 0}. The linear programming relaxation of (3.2) is the linear

program max{c⊤x : x ∈ S′}. Problems in which only a subset of variables is bound to be

integral are called mixed integer linear programs (MILP). In our work, we will consider

particular pure integer linear programs, in which the variables are restricted to take the

value 0 or 1. There is a substantial difference in terms of computational complexity

between LP and ILP.

In this section, we will discuss two methods that have proved satisfactory for solving

integer programs. These two approaches are based on simple ideas but are the heart of

the software dedicated to the integer programming.

3.1.1 The branch-and-bound method

The branch-and-bound method is not a solution technique restricted to integer program-

ming problems. It is based on the concept that the total set of feasible solutions can be

divided into smaller subsets of solutions. These smaller subsets can then be evaluated

until the best solution is found. When this method is applied to an integer programming

problem, it is used in combination with the normal noninteger solution method.

3.1. INTEGER LINEAR PROGRAMMING 17

Let us take a simple example to illustrate this method. Consider the following problem:

max z = 5.5x1 + 2.1x2

subject to − x1 + x2 ≤ 2

8x1 + 2x2 ≤ 17

x1, x2 ≥ 0

x1, x2 integer.

The solution of the integer linear programming relaxation is x1 = 1.3, x2 = 3.3 with ob-

jective value 14.08. Thus 14.08 is an upper bound on the optimal solution of the problem.

Branching on variable x1, we create two integer programs. The linear programming re-

laxation of the one with the additional constraint x1 ≤ 1 has solution x1 = 1, x2 = 3 with

value 11.8, ad it is consequently pruned by integrality. Hence 11.8 is a lower bound on the

value of an optimal solution of the integer program. The linear programming relaxation

of the subproblem with the additional constraint x1 ≥ 2 has solution x1 = 2, x2 = 0.5

and objective value 12.05. These steps are summarized in the enumeration tree shown

in Figure 3.1.

x1 = 1.3, x2 = 3.3
z = 14.08

x1 = 1, x2 = 3
z = 11.8

x1 = 2, x2 = 0.5
z = 12.05

x1 ≤ 1 x1 ≥ 2

Prune by integrality

Figure 3.1: Branching on variable x1

Note that the value of x2 is not integer, so this solution is not feasible to the integer

program. Since its objective function is higher than 11.8 (the value of the best integer

solution found so far), we need to continue the search on the right branch of the tree.

Therefore we branch on variable x2. We create two new integer programs, the first with

the additional constraint x2 ≤ 0, the second with x2 ≥ 1. The linear programming

relaxation of the first one has solution x1 = 2.125, x2 = 0 with value 11.6875. Since

this value is smaller than the best lower bound 11.8, the corresponding node of the

enumeration tree is pruned by bound. The linear programming relaxation of the second

one is infeasible, so this problem is pruned by infeasibility. The enumeration is complete

and the optimal solution is x1 = 1, x2 = 3 with value 11.8. The complete enumeration

tree is shown in Figure 3.2.

18 CHAPTER 3. LINEAR PROGRAMMING AND COMPUTATIONAL TOOLS

x1 = 1.3, x2 = 3.3
z = 14.08

x1 = 1, x2 = 3
z = 11.8

x1 = 2, x2 = 0.5
z = 12.05

x1 = 2.125, x2 = 0
z = 11.8 Infeasible

x1 ≤ 1 x1 ≥ 2

x2 ≤ 0
x2 ≥ 1

Prune by integrality

Prune by bound Prune by infeasibility

Figure 3.2: Example of a branch-and-bound tree

In summary, the branch-and-bound method works by alternating two phases: in the

branching phase a feasible region is split into two feasible subregions, and in the bounding

phase a linear program is solved using the simplex method, thus finding an upper bound

for the region considered.

3.1.2 The cutting plane method

The basic concept of the cutting plane method is to cut off parts of the feasible region

of the linear programming relaxation, so that the optimal integer solution becomes an

extreme point and therefore can be found by the simplex method or by other methods

for solving linear programs. Many types of cuts have been developed. We now briefly

present Gomory’s cuts. In general, if nonnegative integer variables x1, . . . , xn satisfy the

equation
n
∑

j=1

ajxj = a0

where a0 /∈ Z, the Gomory fractional cut is

n
∑

j=1

(aj − ⌊aj⌋)xj ≥ a0 − ⌊a0⌋. (3.3)

This inequality is satisfied by any x ∈ Z
n
+ satisfying the equation

∑n
j=1 ajxj = a0 because

∑n
j=1 ajxj = a0 implies

∑n
j=1(aj −⌊aj⌋)xj = a0−⌊a0⌋+k for some integer k, also k ≥ 0

since the the left-hand side is nonnegative.

We illustrate the method with an example. Let us consider the same linear program,

3.1. INTEGER LINEAR PROGRAMMING 19

which is:
max z = 5.5x1 + 2.1x2

subject to − x1 + x2 ≤ 2

8x1 + 2x2 ≤ 17

x1, x2 ≥ 0

x1, x2 integer.

(3.4)

We first introduce slack variables x3 and x4 to turn inequality constraints into equali-

ties. The problem becomes to maximize z subject to

z −5.5x1 −2.1x2 = 0

−x1 +x2 +x3 = 2

8x1 +2x2 x4 = 17

x1, x2, x3, x4 ≥ 0 integer.

Note that x3 and x4 can be constrained to be integer since the data in the constraints

of the problem are all integers.

Solving the linear programming relaxation using, for example, the simplex method, we

obtain the optimal tableau:

z +0.58x3 +0.76x4 = 14.08

x2 +0.8x3 +0.1x4 = 3.3

x1 −0.2x3 +0.1x4 = 1.3

x1, x2, x3, x4 ≥ 0.

Its basic solution is x1 = 1.3, x2 = 3.3, x3 = x4 = 0 with objective value z = 14.08.

Since the values of x1 and x2 are fractional, this is not a solution of (3.4). We can generate

a cut from the constraint x2 + 0.8x3 + 0.1x4 = 3.3 in the above tableau according to

(3.3). We get:

0.8x3 + 0.1x4 ≥ 0.3,

but since x3 = 2+x1−x2 and x4 = 17−8x1−2x2, we can express the Gomory fractional

cut we just found in terms of x1 and x2. This yields x2 ≤ 3.

Adding this cut to the linear programming relaxation, we get:

max z = 5.5x1 + 2.1x2

subject to − x1 + x2 ≤ 2

8x1 + 2x2 ≤ 17

x2 ≤ 3

x1, x2 ≥ 0.

20 CHAPTER 3. LINEAR PROGRAMMING AND COMPUTATIONAL TOOLS

We introduce a slack variable x5 to turn the constraint x3 ≤ 2 into equality. By the

same reasoning as before, x5 can also be constrained to be integer. Solving this linear

program, we find the optimal tableau:

z +0.6875x4 +0.725x5 = 13.8625

x3 +0.125x4 −1.25x5 = 0.375

x1 +0.125x4 −0.25x5 = 1.375

x2 x5 = 3

x1, x2, x3, x4, x5 ≥ 0.

Its basic solution in the (x1, x2)-space is x1 = 1.375, x2 = 3 with objective value

z = 13.8625. Since x1 is not integer, we need to generate another cut. From the

constraint x1+0.125x4− 0.25x5 = 1.375, we generate the new fractional cut using (3.3),

which is 0.125x4 + 0.75x5 ≥ 0.375. Replacing x4 = 17 − 8x1 − 2x2 and x5 = 3 − x2 we

get:

x1 + x2 ≤ 4.

Adding this cut and solving again the new linear program, we find a new optimal solution

x1 = 1.5, x2 = 2.5 with objective value z = 13.5. This solution is again not integer. Two

more iterations are needed to obtain the optimal solution x1 = 1, x2 = 3 with objective

value z = 11.8.

3.2 Optimization software

In this section we describe the optimization software we use both from a historical and

technical point of view. For our purposes, we used the software ILOG CPLEX Opti-

mization Studio (version 11.1.1) through its AMPL (version 20080701) interface. We

also used MATLAB (version R2020b).

3.2.1 IBM ILOG CPLEX Optimization Studio

IBM ILOG CPLEX Optimization Studio (often informally referred to simply as CPLEX)

is an optimization software package. The CPLEX Optimizer was named for the simplex

method as implemented in the C programming language, although today it also sup-

ports other types of mathematical optimization and offers interfaces different from C.

Originally developed by Robert E. Bixby, it has been marketed since 1988 by CPLEX

Optimization Inc., acquired by ILOG in 1997, which was itself acquired by IBM in Jan-

uary 2009. CPLEX is actively maintained and developed within IBM. The IBM ILOG

CPLEX Optimizer solves integer programming problems, very large linear programming

problems using either primal or dual variants of the simplex method or the barrier inte-

rior point method, convex and non-convex quadratic programming problems, and convex

3.2. OPTIMIZATION SOFTWARE 21

quadratically constrained problems [12].

3.2.2 AMPL

AMPL, acronym for A Mathematical Programming Language, is a high-level language

developed by the Bell laboratories to describe and solve large and complicated math-

ematical programming problems (for example, optimization and scheduling problems).

AMPL does not solve problems by itself, but instead writes files with full details of the

problem instances to be solved and invokes separate solvers (such as CPLEX, Gurobi and

MINOS). One advantage of AMPL is the similarity of its syntax to the mathematical

notation of optimization problems. This allows for a very concise and readable defini-

tion of problems in the domain of optimization. AMPL was created by Robert Fourer,

David Gay and Brian Kernighan. AMPL is available for many popular operating sys-

tems including Linux, macOS, Solaris, AIX, and Windows. The translator is proprietary

software maintained by AMPL Optimization LLC [3].

3.2.3 MATLAB

MATLAB (short for Matrix Laboratory) is an environment for numerical computation

and statistical analysis written in C, which also includes the programming language of

the same name created by MathWorks. MATLAB allows you to manipulate matrices,

visualize functions and data, implement algorithms, create user interfaces, and interface

with other programs. MATLAB is used by millions of people in industry and universities

due to its many tools to support the most diverse applied fields of study and runs on

various operating systems, including Windows, macOS, Linux and Unix [16].

22 CHAPTER 3. LINEAR PROGRAMMING AND COMPUTATIONAL TOOLS

Chapter 4

State of the art

The problem of air traffic flow management has been addressed and solved over the years

through different approaches. One of these is operations research and in particular integer

linear programming. In the first part of this chapter, we will give a quick overview on the

evolution of linear integer programming models for solving the air traffic flow management

problem. Then, we will see in detail one of these models, namely the one by Bertsimas

and Stock Patterson, which will be the basis of our work. In particular, we will provide

additional details with respect to [8], as deduced from the implementation of the model.

4.1 Historical notes

The following chronological list shows some of the most important integer linear pro-

gramming models for air traffic flow management.

Helme (1992) [15]: This article proposes a linear program in order to minimize delays

through ground holding and airborne delay. The trajectories are predetermined

and cannot be changed during the flight. Furthermore, the speed control during

the flight is not allowed. The decision variables of the model establish whether or

not a flight is to be held on the ground at the time of departure and, if so, for how

long and whether or not a flight is to be held over the destination airport and, if

so, for how long.

Andreatta, Odoni and Richetta (1993) [5]: This work proposes solutions to the

problem of air traffic flow through ground-holding models, avoiding to consider

the possibility of airborne delays as they are generally more expensive.

Bertsimas and Stock Patterson (1998) [8]: This paper introduces the possibility of

speed control during the flight. Also in this case, the flight paths are fixed. This

model determines, for each flight, the optimal departure time and transit time in

23

24 CHAPTER 4. STATE OF THE ART

the sectors of the route. Furthermore, the decision variables used in this model

capture the three types of connectivity: connectivity between sectors, connectivity

between airports, and connectivity in time. Finally, the formulation of the problem

is particularly strong. This paper is the basis of our work and we will study it in

detail in the next section.

Bertsimas and Stock Patterson (2000) [9]: This paper introduces the possibility

for a flight to re-route, that is, deciding which of the possible flight paths min-

imizes the total cost of the delay. Speed control during the flight is allowed.

Bertsimas, Lulli and Odoni (2011) [7]: This work is basically an extension of the

previous one and was able to solve bigger instances. The model covers all the

phases of each flight and solves for an optimal combination of flow management

actions, including ground holding, re-routing, speed control, and airborne delay. A

distinguishing feature of the model is that it allows for rerouting decisions. This

is achieved through the imposition of sets of local conditions that make it possible

to represent rerouting options in a compact way by only introducing some new

constraints.

Agustín, Alonso-Ayuso and Escudero (2012) [1, 2]: The model allows for flight

cancelation and re-routing, if necessary. It considers several types of objective

functions to minimize, namely, the number of flights exceeding a given time delay

(that can be zero), separable and nonseparable ground holding and air delay costs,

penalization of alternative routes to the scheduled one for each flight, time unit de-

lay cost to arrive to the nodes (that are, air sectors and airports) and penalization

for advancing arrival to the nodes over the schedule.

Fomeni, Lulli and Zografos (2017) [14]: This article presents a model that contributes

to the optimization and optimal configuration of the trajectory based operations

(TBO). TBO is the concept of improving productivity, flight efficiency, flight times

through better prediction and coordination of aircraft trajectories. A 0-1 inte-

ger programming model is developed with the aim of assigning a 4D-trajectory

to each flight with the aim of optimizing the efficiency of the ATM system. The

model considers the preferred 4D-trajectory of all pre-tactical flights and exits an

optimal 4D-trajectory for each flight. The TBO concept implies that these 4D-

trajectories need to be discussed with other stakeholders and handled accordingly

during the flight. The novelty of this model is that it considers both the com-

plete 4D-trajectories for each flight, and the preferences and priorities of the ATM

stakeholders.

4.2. BERTSIMAS AND STOCK PATTERSON’S MODEL 25

4.2 Bertsimas and Stock Patterson’s model

As mentioned in the previous section, this model is the basis of our work and can be

found in [8]. The precise form of the air traffic flow management problem addressed by

this model is as follows: given a configuration of departures, arrivals and flight paths

(which in this case are a sequence of sectors along with a departure airport and one of

arrival), find a trajectory configuration that minimizes flight delays, both on the ground

and on airborne, subject to airspace capacity limitations. Allowed strategies are: ground

maintenance, flight maintenance, speed control. In other words, the goal of the problem

is to decide how much time each flight will spend on the ground and in the air to minimize

the total cost of delay. Let us formally present the data of the problem:

F = {1, . . . , F} is a set of flights,

K = {1, . . . ,K} is a set of airports,

J = {1, . . . , J} is a set of sectors,

T = {1, . . . , T} is a set of time periods,

C = {(f ′, f) : f ′ is continued by flight f} is a set of pairs of flights that are continued,

Nf = number of sectors in flight f ’s path,

P (f, i) =















the departure airport, if i = 1,

the (i− 1)st in flight f ’s path, if 1 < i < Nf ,

the arrival airport, if i = Nf ,

Pf = {P (f, i) : 1 ≤ i ≤ Nf},

Dk(t) = departure capacity of airport k at time t,

Ak(t) = arrival capacity of airport k at time t,

Sj(t) = capacity of sector j at time t,

df = scheduled departure time of flight f,

rf = scheduled arrival time of flight f,

sf = turnaround time of an airplane after flight f,

cgf = cost of holding flight f on the ground for one unit of time,

caf = cost of holding flight f in the air for one unit of time,

lfj = number of time units that flight f must spend in sector j,

T j
f = set of feasible times for flight f to arrive to sector j = [T j

f , T
j

f],

T j
f = first time period in the set T j

f , and

T
j

f = last time period in the set T j
f .

26 CHAPTER 4. STATE OF THE ART

We define a decision variable as follows. For every f ∈ F , j ∈ Pf and t ∈ T j
f :

wj
ft =

{

1 if flight f arrives at sector j by time t,

0 otherwise.

This definition using by and not at is fundamental for understanding the formulation.

Also recall that we have also defined for each flight a list Pf including the departure

airport, the appropriate sectors and the arrival airport, so that the variable wj
ft will only

be defined for those elements j in the list Pf . Furthermore, we have defined T j
f as the

set of feasible times for flight f to arrive to sector j, so that the variable wj
ft will only be

defined for those times within T j
f . Thus, in the formulation whenever the variable wj

ft is

used, it is assumed that (f, j, t) is a feasible combination. Since flight f has to arrive at

sector j by the last possible time in its time window, we can impose wj

fT
j
f

= 1.

The objective of the formulation is to minimize total delay cost. We will now show

how to derive it. Noticing that the first sector for every flight is the departure airport,

the total number of time units that flight f is held on the ground can be expressed as

the actual departure time minus the scheduled departure time, that is,

gf =
∑

t∈Tk
f
, k=P (f,1)

t(wk
ft − wk

f,t−1)− df .

Noticing that the last sector for every flight is the arrival airport, the total number of

time units that flight f is held on airborne can be expressed as the actual arrival time

minus the scheduled arrival time minus the amount of time that the flight has been held

on the ground, that is,

af =
∑

t∈Tk
f
, k=P (f,Nf)

t(wk
ft − wk

f,t−1)− rf − gf .

We define our objective function as follows:

min
∑

f∈F

[cgfgf + cafaf].

Finally, by replacing the expressions of gf and af in the latter expression and rearranging

the terms, we can present the objective function along with the complete formulation of

the problem.

4.2. BERTSIMAS AND STOCK PATTERSON’S MODEL 27

min
∑

f∈F

[(cgf − caf)
∑

t∈Tk
f
, k=P (f,1)

t(wk
ft − wk

f,t−1)

+ caf
∑

t∈Tk
f
, k=P (f,Nf)

t(wk
ft − wk

f,t−1)

+ (cgf − caf)df − cafrf]

subject to

∑

f∈F :P (f,1)=k

(wk
ft − wk

f,t−1) ≤ Dk(t) k ∈ K, t ∈ T , (4.1)

∑

f∈F :P (f,Nf)=k

(wk
ft − wk

f,t−1) ≤ Ak(t) k ∈ K, t ∈ T , (4.2)

∑

f∈F :P (f,i)=j, P (f,i+1)=j′, i<Nf

(wj
ft − wj′

ft) ≤ Sj(t) j ∈ J , t ∈ T , (4.3)

wj′

f,t+lfj
− wj

ft ≤ 0

{

f ∈ F , t ∈ T j
f , j = P (f, i),

j′ = P (f, i+ 1), i < Nf ,
(4.4)

wk
ft − wk

f ′,t−sf ′
≤ 0

{

(f ′, f) ∈ C, t ∈ T k
f ,

k = P (f, 1) = P (f ′, Nf ′),
(4.5)

wj
ft − wj

f,t−1 ≥ 0 f ∈ F , j ∈ Pf , t ∈ T j
f , (4.6)

wj
ft ∈ {0, 1} f ∈ F , j ∈ Pf , t ∈ T j

f . (4.7)

The first three sets of constraints take into account the capacities of various elements

considered.

Constraints (4.1) guarantee that the number of flights which may take off from airport

k at time t, will not exceed the departure capacity of airport k at time t.

Similarly, constraints (4.2) ensure that the number of flights which may arrive at

airport k at time t, will not exceed the arrival capacity of airport k at time t.

Constraints (4.3) guarantee that the sum of all flights which may feasibly be in sector

j at time t will not exceed the capacity of sector j at time t. A peculiarity of this model

that we noticed during the implementation is that the system allows an aircraft to delay

on airborne by stationing above the departure airport. In fact, due to this artifice, the

aircraft occupies neither a sector nor a runway for take-off. In other words, it may happen

that an aircraft sees the airport as a normal sector in which no capacity is defined and

which therefore gives the possibility to stay on airborne above it without entering the

next sector and consequently avoiding the congestion of the runways for take-off and of

28 CHAPTER 4. STATE OF THE ART

the real sectors. Staying on airborne above the departure airport is however considered

as an airborne delay.

Constraints (4.4) represent connectivity between sectors. They stipulate that if a flight

arrives at sector j′ by time t+ lfj , then it must have arrived at sector j by time t where

j and j′ are contiguous sectors in flight f ’s path. These are the constraints that allow

speed control. Note that lf,P (f,1) = 0, which means that as soon as a flight takes off

it is considered immediately inside the first sector. Another peculiarity of this model is

that these last constraints allow an aircraft to manage the flight delay even using the

intermediate sectors even if, in general, it is preferred to manage it all in the last sector,

the one in which the arrival airport is located.

Constraints (4.5) ensure that if flight f departs from airport k by time t, then flight

f ′ must have arrived at airport k by time t− sf ′ .

Constraints (4.6) represent connectivity in time. Hence, if a flight has arrived by time

t, then wj
ft′ has to have a value of 1 for all later time periods, t′ ≥ t.

Chapter 5

A model for ATFM with dynamic

configurations

In this chapter we will formalize our approach to the ATFM problem, enriching the model

of Bertsimas and Stock Patterson [8] and highlighting the differences with respect to it.

5.1 An overview of the ATFM problem

5.1.1 Collapsed sectors and airspace configurations

As introduced in Subsection 2.2.2, the airspace is divided into elementary sectors, which

can be seen as the pieces of a puzzle. Each airport is contained entirely in an elementary

sector. A configuration is a way to merge elementary sectors in order to create larger

sectors. In general, if the airspace is divided into J elementary sectors, we do not have

as many controllers to control each elementary sector.

In mathematical terms, if J is the set containing the elementary sectors then a con-

figuration is a partition of J . The subsets of J that form the partition are the collapsed

sectors. Suppose, for example, that J = {a, b, c, d}.

Let H be the set containing the collapsed sectors, for example, H = {C1, C2, C3, C4},

where C1 = {a, b}, C2 = {c, d}, C3 = {a, c} and C4 = {b, d}. It is necessary that, for each

collapsed sector, the union of the elementary sectors that compose it is connected.

A configuration is given, for example, by C1 = {a, b} and C2 = {c, d}. Another example

of configuration is given by C3 = {a, c} and C4 = {b, d}. No other configurations can

exist with the elements thus defined.

As said before, in general, the controllers are less than the elementary sectors to be

controlled, so we need to merge the elementary sectors into collapsed sectors, in order

to better control them. We will define a list of configurations M (with reference to the

example, given by M = {M1,M2} where M1 = {C1, C2} and M2 = {C3, C4}), in order

29

30 CHAPTER 5. A MODEL FOR ATFM WITH DYNAMIC CONFIGURATIONS

to be able to choose the best one, that is the one that minimizes the total cost of delays.

5.1.2 Time representation

We divide a long time period into smaller time periods, for example a 3 hour period into

36 time periods of 5 minutes each. So, remaining in the example, since 3 hours equals

180 minutes, by t = 1 we mean the interval [0, 5), by t = 2 we mean the interval [5, 10),

and so on. Time discretization is fundamental for modeling the problem through an ILP.

Obviously some details of the ATFM are not fully captured, but we are only interested

in the macroscopic aspects.

A time-related aspect to consider is that it is not realistic to be able to choose the most

appropriate configuration each time period. In order to manage this criticality we define

the parameter τ , which indicates the minimum number of consecutive time periods in

which the chosen configuration must remain active before it can be changed.

5.1.3 Flights

The trajectory of each flight can be described using the sequence ABC, a, b, c, d,XY Z,

where ABC is the departure airport, a, b, c and d are, in order, the elementary sectors

that the flight will cross and XY Z is the destination airport. We will see that it is more

convenient to continue describing the trajectory of a flight through a list of elementary

sectors and not by a list of collapsed sectors.

5.1.4 Capacity

The concept of capacity is associated with that of the collapsed sector. The capacity of a

collapsed sector at the t time period represents the number of flights that can be within

that collapsed sector at the t period. The capacity of collapsed sectors depends on time,

in fact in general it is not constant.

5.1.5 Airports

An airport is, of course, always the beginning or the end of a flight path. We will associate

two parameters with each airport. The first is the departure capacity in a t time period,

that is how many flights can take off from a given airport in the t time period. The

second is the arrival capacity in a t time period, that is how many flights can land at a

given airport in the t time period.

5.1.6 Delays

Each flight has a scheduled departure time and a scheduled arrival time. For each flight,

we know how long it takes to cross a certain sector. So, knowing the departure time, we

5.2. PROBLEM DATA 31

can calculate the minimum time a flight will arrive in a certain sector. At this point,

it is natural to introduce the possibility that a flight may be delayed. For each f flight

we define a ∆f time period which indicates how long that flight may be delayed upon

arrival.

As in the Bertsimas and Stock Patterson model, each flight f has a window of time

to reach a certain elementary sector j. The lower bound of this interval is given by the

departure time plus the sum of all the time periods that the flight must spend in the

sectors preceding j. The upper bound is given by the lower bound plus the delay ∆f : in

this way, we guarantee the maximum flexibility on how a flight can spread the allowed

delay.

5.2 Problem data

We are ready to present the data of our formulation and related notation. Although

some notation has already been introduced in the formulation of Bertsimas and Stock

Patterson, we rewrite them for the sake of clarity:

F = {1, . . . , F} is the set of flights,

K = {1, . . . ,K} is the set of airports,

H = {1, . . . , H} is the set of collapsed sectors,

J = {1, . . . , J} is the set of elementary sectors,

M = {1, . . . ,M} is the set of configurations,

T = {1, . . . , T} is the set of time periods,

Pm = {h ∈ H : their union is the configuration m ∈ M} are the collapsed

which form the configuration m ∈ M,

Bh = {j ∈ J : their union is the collapsed h ∈ H} are the elementary sectors

which form the collapsed h ∈ H,

Nf = number of sectors in flight f ’s path,

32 CHAPTER 5. A MODEL FOR ATFM WITH DYNAMIC CONFIGURATIONS

P (f, i) =















the departure airport, if i = 1,

the (i− 1)st in flight f ’s path, if 1 < i < Nf ,

the arrival airport, if i = Nf ,

Pf = {P (f, i) : 1 ≤ i ≤ Nf},

Dk(t) = departure capacity of airport k at time t,

Ak(t) = arrival capacity of airport k at time t,

Sh(t) = capacity of collapsed sector h at time t,

df = scheduled departure time of flight f,

rf = scheduled arrival time of flight f,

∆f = maximum delay allowed for the flight f,

cgf = cost of holding flight f on the ground for one unit of time,

caf = cost of holding flight f in the air for one unit of time,

lfj = number of time units that flight f must spend in elementary sector j,

T j
f = set of feasible times for flight f to arrive to sector j = [T j

f , T
j

f],

T j
f = first time period in the set T j

f ,

T
j

f = T j
f +∆f = last time period in the set T j

f ,

τ = minimum number of consecutive time periods a configuration must

remain active, and

Ch(t) =





∑

j∈Bh

∑

f∈F :P (f,i)=j, P (f,i+1)=j′, i<Nf

1



− Sh(t) = constant used to make

capacity constraints redundant when related to a non-active configuration.

5.3. DECISION VARIABLES 33

5.3 Decision variables

We now present the decision variables. The first is the same used in the Bertsimas and

Stock Patterson model and we recall its definition for clarity. For every f ∈ F , j ∈ Pf

and t ∈ T j
f we define

wj
ft =

{

1 if flight f arrives at sector j by time t,

0 otherwise.

Let us now define a new decision variable to manage the choice of configuration over

time. For every m ∈ M and t ∈ T we define

ymt =

{

1 if configuration m is active at time t,

0 otherwise.

We decided to use variables ymt because they easily capture the fact that one and only

one configuration must be active in a certain period of time. Moreover, these variables

allow to manage the stability of a configuration over time, because, as mentioned in

Subsection 5.1.2, it is not realistic to allow to choose the best one at each time period.

5.4 Objective function

As for the objective function, we use the same proposal in the work of Bertsimas and

Stock Patterson. We recall it, remembering that it is the weighted sum of the two types

of delay of each single flight f , which must be minimized:

min
∑

f∈F

[cgfgf + cafaf].

In the next section we will report the extended form of this objective function, as dis-

cussed in Section 4.2, along with the rest of the formulation.

34 CHAPTER 5. A MODEL FOR ATFM WITH DYNAMIC CONFIGURATIONS

5.5 Mathematical formulation

We are ready to present the model:

min
∑

f∈F

[(cgf − caf)
∑

t∈Tk
f
, k=P (f,1)

t(wk
ft − wk

f,t−1)

+ caf
∑

t∈Tk
f
, k=P (f,Nf)

t(wk
ft − wk

f,t−1)

+ (cgf − caf)df − cafrf]

subject to

∑

f∈F :P (f,1)=k

(wk
ft − wk

f,t−1) ≤ Dk(t) k ∈ K, t ∈ T , (5.1)

∑

f∈F :P (f,Nf)=k

(wk
ft − wk

f,t−1) ≤ Ak(t) k ∈ K, t ∈ T , (5.2)

∑

j∈Bh

∑

f∈F :P (f,i)=j, P (f,i+1)=j′, i<Nf

(wj
ft − wj′

ft)

≤ Sh(t) + Ch(t)(1− ymt) m ∈ M, h ∈ Pm, t ∈ T ,

(5.3)

wj′

f,t+lfj
− wj

ft ≤ 0

{

f ∈ F , t ∈ T j
f , j = P (f, i),

j′ = P (f, i+ 1), i < Nf ,
(5.4)

wj
ft − wj

f,t−1 ≥ 0 f ∈ F , j ∈ Pf , t ∈ T j
f , (5.5)

wj
ft ∈ {0, 1} f ∈ F , j ∈ Pf , t ∈ T j

f , (5.6)

∑

m∈M

ymt = 1 t ∈ T , (5.7)

ymt − ym,t−1 ≤ ymu m ∈ M, t ∈ T , u ∈ {t+ 1, . . . ,min(t+ τ − 1, T)}, (5.8)

ymt ∈ {0, 1} m ∈ M, t ∈ T . (5.9)

5.5. MATHEMATICAL FORMULATION 35

5.5.1 Airport capacity constraints

Constraints (5.1) and (5.2) limit the capacity of departure and arrival airports:

∑

f∈F :P (f,1)=k

(wk
ft − wk

f,t−1) ≤ Dk(t) k ∈ K, t ∈ T , (5.1)

∑

f∈F :P (f,Nf)=k

(wk
ft − wk

f,t−1) ≤ Ak(t) k ∈ K, t ∈ T . (5.2)

They are the same as those considered in the Bertsimas and Stock Patterson model.

We recall that constraints (5.1) guarantee that the number of flights which may take off

from airport k at time t, will not exceed the departure capacity of airport k at time t.

Similarly, constraints (5.2) ensure that the number of flights which may arrive at airport

k at time t, will not exceed the arrival capacity of airport k at time t.

5.5.2 Collapsed sector capacity constraints

Constraints (5.3) limit the capacity of collapsed sectors, and they are specific of the

formulation proposed in this thesis:

∑

j∈Bh

∑

f∈F :P (f,i)=j, P (f,i+1)=j′, i<Nf

(wj
ft − wj′

ft)

≤ Sh(t) + Ch(t)(1− ymt) m ∈ M, h ∈ Pm, t ∈ T .

(5.3)

Constraints (5.3) ensure that, for each collapsed sector h, the total number of flights

that may feasibly cross it will not exceed the capacity of h at any time t, that is Sh(t).

This number is expressed by the left-hand side of (5.3), since it counts the number of

flights that has entered collapsed sector h (from any elementary sector not contained in

the collapsed sector) by time t and has not yet entered in the successive collapsed sector

(in any elementary sector not contained in the collapsed sector). The right-hand side of

(5.3) indicates the capacity of the collapsed sector h at time t in the active configuration

m which is active at time t.

Moreover, the right-hand side of (5.3) shows the relationship between these constraints

and the constraints (5.7), which manage the choice of configuration and will be illustrated

in Subsection 5.5.4. Let us see them in detail through an example. Suppose that M =

36 CHAPTER 5. A MODEL FOR ATFM WITH DYNAMIC CONFIGURATIONS

{1, 2}. Constraints (5.3) can be rewritten as:

∑

j∈Bh

∑

f∈F :P (f,i)=j, P (f,i+1)=j′, i<Nf

(wj
ft − wj′

ft)

≤ Sh(t) + Ch(t)(1− y1,t) h ∈ P1, t ∈ T ,

∑

j∈Bh

∑

f∈F :P (f,i)=j, P (f,i+1)=j′, i<Nf

(wj
ft − wj′

ft)

≤ Sh(t) + Ch(t)(1− y2,t) h ∈ P2, t ∈ T .

Now suppose that for a certain period of time t̄ we have y1,t̄ = 1 and y2,t̄ = 0. Remem-

bering that

Ch(t) =





∑

j∈Bh

∑

f∈F :P (f,i)=j, P (f,i+1)=j′, i<Nf

1



− Sh(t),

we can rewrite the latest constraints as:

∑

j∈Bh

∑

f∈F :P (f,i)=j, P (f,i+1)=j′,i<Nf

(wj

f,t̄
− wj′

f,t̄
) ≤ Sh(t̄) h ∈ P1, (5.10)

∑

j∈Bh

∑

f∈F :P (f,i)=j, P (f,i+1)=j′, i<Nf

(wj

f,t̄
− wj′

f,t̄
)

≤
∑

j∈Bh

∑

f∈F :P (f,i)=j, P (f,i+1)=j′, i<Nf

(1− 0) h ∈ P2.

(5.11)

Since the right-hand side of (5.11) is an upper bound of the left-hand side, constraints

(5.11) are irrelevant and therefore constraints (5.10) are the only ones that are considered.

In fact, they are the constraints related to configuration 1, which is the one active at

time t̄ because y1,t̄ = 1 and y2,t̄ = 0.

5.5.3 Connectivity constraints

These two groups of constraints are borrowed from the formulation of Bertsimas and

Stock Patterson.

Constraints (5.4) represent connectivity between elementary sectors:

wj′

f,t+lfj
− wj

ft ≤ 0

{

f ∈ F , t ∈ T j
f , j = P (f, i),

j′ = P (f, i+ 1), i < Nf .
(5.4)

5.6. A CLASS OF VALID INEQUALITIES 37

They ensure that a flight cannot enter the next elementary sector on its path until it has

spent lfj time units (the minimum possible) traveling through elementary sector j, the

current elementary sector in its path.

Constraints (5.5) represent connectivity in time:

wj
ft − wj

f,t−1 ≥ 0 f ∈ F , j ∈ Pf , t ∈ T j
f . (5.5)

Thus, if a flight has arrived by time t, then wj
ft has to have a value of 1 for all later time

periods, t′ ≥ t.

5.5.4 Configuration constraints

Constraints (5.7) and (5.8) manage the choice of the configuration and its maintenance

over time:

∑

m∈M

ymt = 1 t ∈ T , (5.7)

ymt − ym,t−1 ≤ ymu m ∈ M, t ∈ T , u ∈ {t+ 1, . . . ,min(t+ τ − 1, T)}. (5.8)

Constraints (5.7) ensure that, for any time t, one and only one configuration m can be

active (notice that ymt ∈ {0, 1}). Constraints (5.8) stipulate that once a configuration

is chosen, it must be maintained for at least τ periods of time before it can be changed.

We must consider ymt = 0 if t < 1 or t > T . For clarity, let us give some examples of se-

quences of admissible configurations. If T = 10, M = {1, 2, 3} and τ = 4 we could have

(1, 1, 1, 1, 2, 2, 2, 2, 3, 3), (2, 2, 2, 2, 2, 1, 1, 1, 1, 3) or (3, 3, 3, 3, 3, 3, 1, 1, 1, 1) but of course

we couldn’t have (1, 1, 1, 1, 2, 2, 2, 3, 3, 3), (2, 2, 2, 3, 3, 3, 3, 1, 1, 1) or (1, 2, 2, 2, 2, 2, 2, 2, 2, 2).

5.6 A class of valid inequalities

We wonder if the formulation can have similar characteristics to that of Berstimas and

Stock Patterson, from the point of view of the quality of linear relaxation. Recall that

the linear relaxation of the Bertsimas and Stock Patterson model is consistently strong,

in fact the optimal solution of the relaxed linear problem is almost always the same as for

the relaxed linear program. We note that the constraints (5.3) have changed with respect

to the Bertsimas and Stock Patterson formulation. In fact, from a structural point of

view, given a configuration m ∈ M and a time period t ∈ T , the variables are linked

to the elementary sectors. Conversely, in the Bertsimas and Stock Patterson model, the

variables are linked to the collapsed sectors (in this case the sectors to be considered

are the collapsed sectors). This generates structural differences, as demonstrated by

the following example. Let us consider the situation of the Figure 5.1. The red arrows

38 CHAPTER 5. A MODEL FOR ATFM WITH DYNAMIC CONFIGURATIONS

represent the path of flight f . It takes off from airport k1, located in the elementary

sector c, then passes through the elementary sectors d and b, and finally lands at airport

k2, located in the elementary sector a. We write, for a fixed period of time t ∈ T , the

constraints related to the capacity of the sectors α, β and γ, which we assume to be

constant and equal to 1, in both cases. Under these assumptions, in our model, these

constraints are:

wa
ft − wk2

ft ≤ 1 for sector α,

wc
ft − wd

ft + wb
ft − wa

ft ≤ 1 for sector β,

wd
ft − wb

ft ≤ 1 for sector γ.

In the Bertsimas and Stock Patterson model the only sectors to consider are α, β and γ

(we ignore the elementary sectors a, b, c and d) and therefore we have:

wα
ft − wk2

ft ≤ 1 for sector α,

wβ
ft − wγ

ft + wβ
ft − wα

ft = 2wβ
ft − wγ

ft − wα
ft ≤ 1 for sector β,

wγ
ft − wβ

ft ≤ 1 for sector γ.

We note that in the first case we have 3 constraints and 5 variables but in the second we

have 3 constraints and 4 variables, showing that the new model cannot be obtained from

the Bertsimas and Stock Patterson one by simply renaming variables. This prompted us

to look for new valid inequalities to improve the formulation.

Let us consider a new category of variables, defined in [8]. For every f ∈ F , j ∈ Pf

and t ∈ T j
f we define

ujft =

{

1 if flight f arrives at sector j at time t,

0 otherwise.

These variables can be expressed as follows:

ujft = wj
ft − wj

f,t−1

and vice versa,

wj
ft =

∑

t′≤t

ujft′ .

5.7. SIZE OF THE FORMULATION 39

Figure 5.1: Comparison of the capacity constraints in the two formulations.

We state that

∑

j∈Bh:P (f,i)=j,1<i<Nf

ujft ≤ 1 m ∈ M, h ∈ Pm, f ∈ F , t ∈ T ,

which can be rewritten as:

∑

j∈Bh:P (f,i)=j,1<i<Nf

(wj
ft − wj

f,t−1) ≤ 1 m ∈ M, h ∈ Pm, f ∈ F , t ∈ T . (5.12)

The group of inequalities (5.12) states that, given a configuration m, if a flight f enters

a collapsed sector h at time t then it can enter it through one and only one of the

elementary sectors j that form the collapsed sector.

5.7 Size of the formulation

Let D be the maximum cardinality of the set of feasible times for flight f to be in sector

j taken over all f and j, that is,

D = max
f∈F ,j∈Pf

|T j
f |.

Let

X = max
f∈F

Nf ,

be the maximum number of sectors that a flight passes through along its path, taken

over all flights. Let Z be the maximum number of collapsed sectors contained in all

40 CHAPTER 5. A MODEL FOR ATFM WITH DYNAMIC CONFIGURATIONS

configurations, that is,

Y = max
m∈M

|Pm|.

Let |F| be the total number of flights, |T | be the total number of time periods, |K| be

the total number of airports, |J | be the total number of elementary sectors, |H| be the

total number of collapsed sectors and |M| be the total number of configurations.

The exact number of variables wj
ft is

∑

f

∑

j∈Pf
|T j

f | since each flight has a different

number of elementary sectors and number of feasible time intervals associated with it.

An upper bound on the number of variables wj
ft will be |F|DX. The exact number of

variables ymt is |M||T |. Hence, an upper bound on the number of total variables is given

by

|F|DX + |M||T |.

The exact number of constraints is

|K||T |+ |K||T |+ |T |
∑

m

Pm +
∑

f∈F

∑

j∈Pf

|T j
f |+

∑

f∈F

∑

j∈Pf

|T j
f |

+|T |+ |M|
∑

t∈T

min(t+ τ − 1− (t+ 1) + 1, T − (t+ 1) + 1),

which can be rewritten as

2|K||T |+ |T |
∑

m

Pm + 2
∑

f∈F

∑

j∈Pf

|T j
f |+ |T |+ |M|

∑

t∈T

min(τ − 1, T − t).

An upper bound on the number of constraints can then be calculated as

2|K||T |+ |T |Y + 2|F|DX + |T |+ |M||T |,

which can be rewritten as

2|F|DX + (2|K|+ |M|+ Y + 1)|T |.

In order to get a feeling of the size of the formulation for one of the instances considered

in this thesis, let us consider the following example:

1. |K| = 8, representing 8 of the most important European airports.

2. |F| = 256, representing 256 flights.

3. |J | = 16, representing 16 elementary sectors.

4. |H| = 16, representing 16 collapsed sectors.

5. |T | = 36 = 6× 6, representing a 6 hour day with ten minute intervals.

5.7. SIZE OF THE FORMULATION 41

6. |M| = 3, representing 3 possible configurations.

7. D = 2, representing an upper bound of ten minutes that a flight can be late to any

given sector.

8. X = 8, representing an upper bound of at most eight elementary sectors in a flight’s

path.

9. Y = 8, an upper bound on the number of eight collapsed sectors that can be found

in each configuration.

For this example the number of variables is at most 4204 and the number of constraints

is at most 9200.

To get an idea of the size of the formulation for a realistic instance, let us consider the

following example:

1. |K| = 20, representing 20 of the most important European airports.

2. |F| = 10000, representing 10000 flights.

3. |J | = 200, representing 200 elementary sectors.

4. |H| = 100, representing 100 collapsed sectors.

5. |T | = 144 = 12× 12, representing a 12 hour day with five-minute intervals.

6. |M| = 4, representing 4 possible configurations.

7. D = 6, representing an upper bound of half an hour that a flight can be late to

any given sector.

8. X = 8, representing an upper bound of at most eight elementary sectors in a flight’s

path.

9. Y = 40, an upper bound on the number of 40 collapsed sectors that can be found

in each configuration.

For this example the number of variables is at most 485776 and the number of constraints

is at most 972240. The critical quantities that significantly affect the number of variables

and constraints are D, |F| and X. If for example any of these parameters doubles, both

the number of variables and the number of constraints approximately double.

42 CHAPTER 5. A MODEL FOR ATFM WITH DYNAMIC CONFIGURATIONS

Chapter 6

Model implementation and instance

generation

6.1 Model implementation

For the implementation of our model, we have used ILOG CPLEX Optimization Studio

[12] using its AMPL interface [3] as the modelling language. Each instance of the problem

is described by a common .mod file, where we define sets, parameters, variables, objective

function and constraints, and by a .dat file, which lists the actual elements of the sets

and assigns values to the parameters. These two files are then readable by the AMPL

code through which we interface with the CPLEX solver. AMPL processes the specific

model arising from these data and, then, calls CPLEX to solve it. MATLAB has been

used to support the automatic generation of .dat file for different instances. Examples of

.dat and .mod are reported in the Appendix.

6.2 Generation of flight trajectories

Regarding the definition of flight paths Pf , where f ∈ F , we use the following approach,

which we implemented in MATLAB. We can see the airspace as a weighted undirected

graph, where each node represents an elementary sector or an airport. In particular, each

node representing an airport has degree 1, as it is connected only to the elementary sector

that contain it. If two elementary sectors are adjacent, then there is an arc that connects

the two nodes that represent them. A weight is randomly assigned to each arc, which

changes each time we generate a new instance. The weight assigned to the arc connecting

two nodes represents how convenient it can be to move from one node to another through

that arc. If this number is close to 0, then it is convenient to choose this arc. Conversely,

if this number is close to 1 then it is not convenient. In MATLAB, we can build such

a graph using the function graph(), which has as parameters the list of source nodes,

43

44 CHAPTER 6. MODEL IMPLEMENTATION AND INSTANCE GENERATION

Figure 6.1: An example of airspace and its associated graph.

the list of corresponding termination nodes and the list of weights associated with the

arcs. An example of a graph associated with an airspace is shown in Figure 6.1. For

the generation of flight paths, we proceed in the following way. We randomly choose

a node that represents the departure airport, then we randomly choose another node

that represents the arrival airport and, with the function shortestpath() (which has

as parameters the graph, the departure node and the arrival node), we calculate the

shortest path between these two nodes. The result is the flight path. We note that, since

the weights are randomly assigned each time the function shortestpath() is called, we

potentially allow to have, for a fixed pair of airports, paths through different sectors.

6.3 Data for the airspace elements

We list in AMPL the set of configurations M, the set of flights F , the set of airports K,

the set of elementary sectors J , the set of collapsed sectors H, the set Pm of collapsed

sectors which form the map m ∈ M, the set Bh of elementary sectors which form the

collapsed h ∈ H and the set of times T .

For the remaining data, we assume that airport capacities are constant over time.

Regarding the capacity of the collapsed sectors, we will test the model both in the case

of constant and variable capacities over time.

We will also assume that the costs of ground delay and airborne delay are constant,

taking into account that, generally, the second delay is more expensive than the first.

We recall that the parameter τ represents the minimum number of consecutive time

periods a configuration must remain active.

The time periods each flight has to spend in each of the elementary sectors included

6.3. DATA FOR THE AIRSPACE ELEMENTS 45

in its path are randomly generated. For each flight and for each elementary sector, we

choose between two numbers that are set at the beginning.

Moreover, we randomly generate the maximum delay time of each flight, calculate the

flight duration based on how much time each flight spends in each sector, and finally

randomly generate the take-off and landing times of each flight.

Finally, on the basis of the parameters already described, we calculate the feasible

time window for each flight to arrive in each elementary sector included in its path. In

particular, the lower bound of this interval is given by the departure time plus the sum

of all the time periods that the flight must spend in the in the previous sectors. The

upper bound is given by the lower bound plus the delay.

For any further information, we refer to the Appendix (in particular the .dat file),

where we will report a complete example written in AMPL.

46 CHAPTER 6. MODEL IMPLEMENTATION AND INSTANCE GENERATION

Chapter 7

Computational results

The aim to the computational test is to understand if the model proposed in Chapter 5

actually improves tha air traffic flow management. For the implementation we used ILOG

CPLEX Optimization Studio (version 11.1.1) [12] using its AMPL interface (version

20080701) [3] as the modeling language. The AMPL code we have implemented is shown

in the Appendix. First of all, we solve each instance of the ATFM problem using dynamic

configurations and, then, we compare the results to those obtained by using a fixed

configuration. We are looking for evidence to demonstrate that it is convenient to give

the possibility to take advantage from multiple configuration at the pre-tactical stage.

Furthermore, we will also study the linear relaxation of both in the model with dynamic

configurations and in the one where the configuration is fixed, which corresponds to the

original formulation of Bertsimas and Stock Patterson. For simplicity, we will assume

that the capacities (airports and collapsed sectors) are constant over time.

7.1 Instance 1: nominal case

In this instance we consider a squared airspace composed of 16 elementary sectors (a,

b, c, d, e, f, g, h, i, j, k, l, m, n, o and p) and containing 8 airports (DUB, CPH, LHR,

AMS, CDG, FRA, ZRH and VIE). In Figure 7.1 we can see the graph associated with this

airspace, as described in Section 6.2.

We consider 16 collapsed sectors (C01, C02, C03, C04, C05, C06, C07, C08, C09, C10,

C11, C12, C13, C14, C15 and C16). This airspace is shown in Figure 7.2. We also

consider three possible configurations (M01, M02 and M03), each formed by 8 collapsed

sectors (some of these collapsed sectors are used in two configurations), as we can see

in Figure 7.3. Each collapsed sector consists of two elementary sectors. Suppose the

capacity of the collapsed sectors is equal to each other and is constant over time. We

consider 36 time periods lasting 10 minutes each, for a total of 6 hours. We tested the

model on five random instances, each with 256 flights. At least half of them have one

47

48 CHAPTER 7. COMPUTATIONAL RESULTS

Figure 7.1: Graph associated with the airspace.

between DUB, LHR, AMS, CDG and FRA as their departure and arrival airports. For

each of these five instances, we collected the optimal value of the objective function (if

it exists) and the solving time, varying τ , which is the minimum number of consecutive

time periods a configuration must remain active, in the set {6, 12, 36} and the capacity

of the collapsed sectors in the set {15, 16, . . . , 35}. Note that if τ = 36 it means that the

configuration must remain fixed for all time. Hence, for each of the five instances we ran

3× (35− 15 + 1) = 63 tests. Now, by setting the capacity value of each collapsed sector

and that of τ , we can read the following tables as follows. For a given τ and capacity

configuration:

• # represents the number of times (out of 5) in which we have found an optimal

solution;

• min. represents the minimum value of the objective function (if it exists) on the 5

tests carried out;

• max. represents the maximum value of the objective function (if it exists) on the

5 tests carried out;

• avg. represents the average of the value of the optimal functions found (the average

is carried out on the number of optimal solutions found);

• avg. savings represents the average of the individual savings (expressed as a per-

centage) calculated with respect to the case with τ = 36;

• avg. solving times represents the average time (in seconds) to solve the instance.

7.1. INSTANCE 1: NOMINAL CASE 49

Figure 7.2: The airspace considered.

We note that giving the possibility to change the configuration saves on the total cost.

In particular, by setting τ = 36, the model returns the cost that we would get by fixing

the best configuration, assuming we know what it is in advance.

Table 7.1 indicates that the five instances considered are very different from each other.

In fact, there are some where the cost of delay is very low and others where it is very

high. This is due to a high degree of randomness in the generation of flights and related

parameters.

In Table 7.2, we can see that in the first significant cases (with capacities 20 and 21)

we obtain a saving of about 20% in the case τ = 6 and of about 10% in the case τ = 12.

Furthermore, we observe that when the capacity increases, the choice of configuration

becomes irrelevant, in particular if the capacity is at least 27 there is no difference between

setting τ = 6 or τ = 12.

Finally, in Table 7.3 we can see that the running times are almost always less than one

second.

50 CHAPTER 7. COMPUTATIONAL RESULTS

(a)

(b)

(c)

Figure 7.3: The three configurations

7.1. INSTANCE 1: NOMINAL CASE 51

τ = 6 τ = 12 τ = 36

capacity # min. max. avg. # min. max. avg. # min. max. avg.

15 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

16 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

17 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

18 1 64 64 64.0 1 64 64 64.0 1 73 73 73.0

19 1 33 33 33.0 1 33 33 33.0 1 35 35 35.0

20 3 20 46 29.7 3 20 57 35.3 2 21 34 27.5

21 3 10 19 13.7 3 12 22 15.3 3 12 30 18.0

22 3 4 10 6.7 3 4 11 7.0 3 4 13 7.7

23 4 1 38 11.8 4 1 48 14.5 3 1 8 3.7

24 5 0 50 14.4 5 0 52 15.0 5 0 56 17.0

25 5 0 28 8.0 5 0 30 8.4 5 0 34 9.6

26 5 0 19 5.2 5 0 20 5.4 5 0 23 6.2

27 5 0 13 3.4 5 0 13 3.4 5 0 15 3.8

28 5 0 7 2.0 5 0 7 2.0 5 0 8 2.2

29 5 0 3 1.0 5 0 3 1.0 5 0 4 1.2

30 5 0 1 0.4 5 0 1 0.4 5 0 2 0.6

31 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

32 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

33 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

34 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

35 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

Table 7.1: General results for Instance 1.

52 CHAPTER 7. COMPUTATIONAL RESULTS

avg. savings (%)

capacity # τ = 6 τ = 12

15 0 N/A N/A

16 0 N/A N/A

17 0 N/A N/A

18 1 12.3 12.3

19 1 5.7 5.7

20 2 18.6 9.7

21 3 17.8 8.9

22 3 7.7 5.1

23 3 8.3 4.2

24 5 7.5 6.0

25 5 6.6 5.4

26 5 6.0 5.1

27 5 2.7 2.7

28 5 2.5 2.5

29 5 5.0 5.0

30 5 10.0 10.0

31 5 0.0 0.0

32 5 0.0 0.0

33 5 0.0 0.0

34 5 0.0 0.0

35 5 0.0 0.0

Table 7.2: Average savings (in %) compared to the fixed configuration test in the case of
Instance 1.

7.1. INSTANCE 1: NOMINAL CASE 53

avg. solving times (s)

capacity τ = 6 τ = 12 τ = 36

15 0.010 0.015 0.015

16 0.016 0.015 0.016

17 0.016 0.016 0.016

18 0.872 0.113 0.045

19 0.242 0.443 0.038

20 0.386 0.235 0.040

21 0.132 0.165 0.038

22 0.406 0.340 0.085

23 1.007 0.791 0.095

24 0.429 0.756 0.420

25 0.294 0.566 0.466

26 0.203 0.429 0.381

27 0.100 0.217 0.333

28 0.083 0.211 0.176

29 0.060 0.063 0.062

30 0.041 0.039 0.055

31 0.032 0.036 0.045

32 0.030 0.033 0.041

33 0.028 0.031 0.040

34 0.028 0.031 0.039

35 0.028 0.032 0.041

Table 7.3: Average solving times (in seconds) in the case of Instance 1.

54 CHAPTER 7. COMPUTATIONAL RESULTS

7.2 Instance 2: weather disturbance from north to south

Let us consider the situation seen in the first instance and keep all the parameters, except

the capacity of the collapsed sectors, which we assume they vary over time, simulating

a weather disturbance that affects the airspace from North to South. Again, for each of

these five instances, we collected the optimal value of the objective function (if it exists)

and the solving time, varying τ in the set {6, 12, 36} and the capacity of the nominal

collapsed sectors in the set {20, 21, . . . , 50}. In particular, with reference to Figure 7.2:

• t ∈ {1, . . . , 9}: the weather disturbance affects the elementary sectors a, b, c and

d. The respective collapsed sectors involved are C01, C02, C03, C04, C09 and C10.

These sectors, while affected by the disturbance, have reduced capacity by 1/3

compared to the nominal capacity. Then, for example, if the nominal capacity of

the collapsed sector C02 at time 4 is 25, its actual capacity is ⌊2325⌋ = 16;

• t ∈ {10, . . . , 18}: the weather disturbance affects the elementary sectors e, f, g

and h. The respective collapsed sectors involved are C01, C02, C03, C04, C11 and

C12. These sectors, while affected by the disturbance, have reduced capacity by

1/3 compared to the nominal capacity;

• t ∈ {19, . . . , 27}: the weather disturbance affects the elementary sectors i, j, k and

l. The respective collapsed sectors involved are C05, C06, C07, C08, C13 and C14.

These sectors, while affected by the disturbance, have reduced capacity by 1/3

compared to the nominal capacity;

• t ∈ {28, . . . , 36}: the weather disturbance affects the elementary sectors m, n, o

and p. The respective collapsed sectors involved are C05, C06, C07, C08, C15 and

C16. These sectors, while affected by the disturbance, have reduced capacity by

1/3 compared to the nominal capacity.

As for Table 7.4, compared to the previous situation, in order to obtain feasible problems,

we need, on average, larger nominal values of the capacity of the collapsed sectors.

Also, we can see in Table 7.4 that there is a strong variability between the five instances.

From Table 7.5, we observe that it is possible to save even more than 50% (both with

τ = 6 and with τ = 12) if the capacity is between 29 and 31. The dynamic configuration

of the airspace proves to be very efficient in this case of capacities varying over time.

In the next section, we will try to understand if, assuming the direction of the weather

disturbance changes we will obtain similar results.

Finally, also in this case we can observe in Table 7.6 that the running times are almost

always less than one second.

7.2. INSTANCE 2: WEATHER DISTURBANCE FROM NORTH TO SOUTH 55

τ = 6 τ = 12 τ = 36

capacity # min max avg # min max avg # min max avg

20 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

21 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

22 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

23 1 36 36 36.0 1 46 46 46.0 1 46 46 46.0

24 1 18 18 18.0 1 24 24 24.0 1 24 24 24.0

25 1 18 18 18.0 1 23 23 23.0 1 23 23 23.0

26 2 10 50 30.0 2 11 52 31.5 1 11 11 11.0

27 2 5 28 16.5 2 6 28 17.0 2 6 59 32.5

28 2 5 28 16.5 2 6 28 17.0 2 6 59 32.5

29 3 1 47 21.3 3 1 59 25.3 2 3 28 15.5

30 3 0 27 12.0 3 0 27 12.0 3 1 33 16.7

31 3 0 27 12.0 3 0 27 12.0 3 1 33 16.7

32 3 0 16 6.3 3 0 18 7.0 3 0 19 9.0

33 4 0 25 8.8 4 0 25 9.0 4 0 28 10.5

34 4 0 25 8.8 4 0 25 9.0 4 0 28 10.5

35 4 0 12 4.5 4 0 12 4.8 4 0 15 5.8

36 5 0 44 10.4 5 0 44 10.4 5 0 45 11.4

37 5 0 44 10.4 5 0 44 10.4 5 0 45 11.4

38 5 0 28 6.0 5 0 28 6.0 5 0 30 7.2

39 5 0 19 3.8 5 0 19 3.8 5 0 20 4.4

40 5 0 19 3.8 5 0 19 3.8 5 0 20 4.4

41 5 0 13 2.6 5 0 13 2.6 5 0 13 2.6

42 5 0 7 1.4 5 0 7 1.4 5 0 8 1.6

43 5 0 7 1.4 5 0 7 1.4 5 0 8 1.6

44 5 0 3 0.6 5 0 3 0.6 5 0 4 0.8

45 5 0 1 0.2 5 0 1 0.2 5 0 2 0.4

46 5 0 1 0.2 5 0 1 0.2 5 0 2 0.4

47 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

48 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

49 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

50 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

Table 7.4: General results for Instance 2.

56 CHAPTER 7. COMPUTATIONAL RESULTS

avg. savings (%)

capacity # τ = 6 τ = 12

20 0 N/A N/A

21 0 N/A N/A

22 0 N/A N/A

23 1 21.7 0.0

24 1 25.0 0.0

25 1 21.7 0.0

26 1 9.1 0.0

27 2 34.6 26.3

28 2 34.6 26.3

29 2 54.8 54.8

30 3 54.0 54.0

31 3 54.0 54.0

32 3 26.1 22.6

33 4 30.0 27.7

34 4 30.0 27.7

35 4 33.6 30.0

36 5 9.3 9.3

37 5 9.3 9.3

38 5 17.3 17.3

39 5 21.0 21.0

40 5 21.0 21.0

41 5 0.0 0.0

42 5 2.5 2.5

43 5 2.5 2.5

44 5 5.0 5.0

45 5 10.0 10.0

46 5 10.0 10.0

47 5 0.0 0.0

48 5 0.0 0.0

49 5 0.0 0.0

50 5 0.0 0.0

Table 7.5: Average savings (in %) compared to the fixed configuration test in the case of
Instance 2.

7.2. INSTANCE 2: WEATHER DISTURBANCE FROM NORTH TO SOUTH 57

avg. solving times (s)

capacity τ = 6 τ = 12 τ = 36

20 0.014 0.023 0.024

21 0.782 0.241 0.052

22 0.744 0.301 0.109

23 0.399 0.362 0.060

24 0.164 0.426 0.257

25 0.136 0.326 0.274

26 0.319 0.464 0.171

27 0.233 0.244 0.146

28 0.242 0.304 0.122

29 0.277 0.300 0.110

30 0.210 0.324 0.083

31 0.197 0.351 0.074

32 0.212 0.331 0.186

33 0.171 0.237 0.231

34 0.149 0.240 0.205

35 0.416 0.445 0.100

36 0.268 0.442 0.485

37 0.187 0.349 0.469

38 0.160 0.253 0.268

39 0.185 0.243 0.237

40 0.182 0.214 0.232

41 0.214 0.190 0.201

42 0.103 0.146 0.162

43 0.081 0.135 0.107

44 0.052 0.111 0.093

45 0.049 0.055 0.070

46 0.047 0.052 0.069

47 0.046 0.050 0.067

48 0.045 0.048 0.060

49 0.044 0.049 0.060

50 0.043 0.047 0.058

Table 7.6: Average solving times (in seconds) in the case of Instance 2.

58 CHAPTER 7. COMPUTATIONAL RESULTS

7.3 Instance 3: weather disturbance from west to east

Let us consider the situation seen in the first instance and keep all the parameters, except

the capacity of the collapsed sectors, which we assume they vary over time, simulating a

weather disturbance that affects our airspace from West to East. Again, for each of these

five instances, we collected the same results as before, varying τ in the set {6, 12, 36} and

the capacity of the collapsed sectors in the set {20, 21, . . . , 50}. Let us see the situation

in detail, again with reference to Figure 7.2:

• t ∈ {1, . . . , 9}: the weather disturbance affects the elementary sectors a, e, i and

m. The respective collapsed sectors involved are C01, C05, C09, C11, C13 and C15.

These sectors, while affected by the disturbance, have reduced capacity by 1/3

compared to the nominal capacity;

• t ∈ {10, . . . , 18}: the weather disturbance affects the elementary sectors b, f, j and

n. The respective collapsed sectors involved are C02, C06, C09, C11, C13 and C15.

These sectors, while affected by the disturbance, have reduced capacity by 1/3

compared to the nominal capacity;

• t ∈ {19, . . . , 27}: the weather disturbance affects the elementary sectors c, g, k

and o. The respective collapsed sectors involved are C03, C07, C10, C12, C14 and

C16. These sectors, while affected by the disturbance, have reduced capacity by

1/3 compared to the nominal capacity;

• t ∈ {28, . . . , 36}: the weather disturbance affects the elementary sectors d, h, l

and p. The respective collapsed sectors involved are C04, C08, C10, C12, C14 and

C16. These sectors, while affected by the disturbance, have reduced capacity by

1/3 compared to the nominal capacity.

Regarding Tables 7.7 and 7.9, the same considerations made for the previous examples

apply.

Instead, as regards Table 7.8, we notice that we get better results than the first exam-

ple, but worse than the case in which the perturbation moved from West to East. This is

due to the randomness in the generation of flight routes and related data, so we cannot

assume that the two cases in which there is a weather disturbance are symmetrical.

7.3. INSTANCE 3: WEATHER DISTURBANCE FROM WEST TO EAST 59

τ = 6 τ = 12 τ = 36

capacity # min max avg # min max avg # min max avg

20 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

21 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

22 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

23 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

24 0 N/A N/A N/A 0 N/A N/A N/A 0 N/A N/A N/A

25 1 33 33 33.0 1 33 33 33.0 0 N/A N/A N/A

26 2 17 36 26.5 2 17 49 33.0 1 27 27 27.0

27 3 10 29 19.3 3 10 29 21.0 3 14 37 26.7

28 3 7 29 18.3 3 7 29 20.0 3 9 37 25.0

29 4 5 46 19.3 4 5 46 19.8 3 5 20 13.3

30 4 3 27 10.3 4 3 27 10.5 4 3 33 13.3

31 4 2 27 10.0 4 2 27 10.3 4 2 33 13.0

32 5 1 63 16.8 5 1 63 17.2 5 1 63 18.4

33 5 0 36 9.2 5 0 36 9.4 5 0 36 10.0

34 5 0 36 9.2 5 0 36 9.4 5 0 36 10.0

35 5 0 22 5.6 5 0 22 5.8 5 0 22 6.0

36 5 0 15 3.6 5 0 15 3.6 5 0 15 3.6

37 5 0 15 3.6 5 0 15 3.6 5 0 15 3.6

38 5 0 10 2.2 5 0 10 2.2 5 0 10 2.2

39 5 0 7 1.4 5 0 7 1.4 5 0 7 1.4

40 5 0 7 1.4 5 0 7 1.4 5 0 7 1.4

41 5 0 4 0.8 5 0 4 0.8 5 0 5 1.0

42 5 0 2 0.4 5 0 2 0.4 5 0 3 0.6

43 5 0 2 0.4 5 0 2 0.4 5 0 3 0.6

44 5 0 1 0.2 5 0 1 0.2 5 0 2 0.4

45 5 0 0 0.0 5 0 0 0.0 5 0 1 0.2

46 5 0 0 0.0 5 0 0 0.0 5 0 1 0.2

47 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

48 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

49 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

50 5 0 0 0.0 5 0 0 0.0 5 0 0 0.0

Table 7.7: General results for Instance 3.

60 CHAPTER 7. COMPUTATIONAL RESULTS

avg. savings (%)

capacity # τ = 6 τ = 12

20 0 N/A N/A

21 0 N/A N/A

22 0 N/A N/A

23 0 N/A N/A

24 0 N/A N/A

25 0 N/A N/A

26 1 37.0 37.0

27 3 25.7 21.2

28 3 23.6 19.1

29 3 15.0 11.7

30 4 17.0 15.0

31 4 17.0 15.0

32 5 17.4 15.3

33 5 21.8 20.0

34 5 21.8 20.0

35 5 22.9 20.0

36 5 0.0 0.0

37 5 0.0 0.0

38 5 0.0 0.0

39 5 0.0 0.0

40 5 0.0 0.0

41 5 4.0 4.0

42 5 6.7 6.7

43 5 6.7 6.7

44 5 10.0 10.0

45 5 20.0 20.0

46 5 20.0 20.0

47 5 0.0 0.0

48 5 0.0 0.0

49 5 0.0 0.0

50 5 0.0 0.0

Table 7.8: Average savings (in %) compared to the fixed configuration test in the case of
Instance 3.

7.3. INSTANCE 3: WEATHER DISTURBANCE FROM WEST TO EAST 61

avg. solving times (s)

capacity τ = 6 τ = 12 τ = 36

20 0.009 0.015 0.017

21 0.018 0.017 0.016

22 0.016 0.018 0.016

23 0.069 0.096 0.020

24 0.266 0.375 0.213

25 0.201 0.348 0.112

26 0.328 0.345 0.219

27 0.364 0.236 0.141

28 0.122 0.218 0.152

29 0.309 0.356 0.214

30 0.353 0.593 0.122

31 0.401 0.577 0.148

32 0.422 0.304 0.191

33 0.199 0.267 0.168

34 0.143 0.229 0.164

35 0.091 0.236 0.181

36 0.061 0.115 0.202

37 0.068 0.101 0.142

38 0.044 0.071 0.188

39 0.042 0.069 0.079

40 0.035 0.064 0.079

41 0.033 0.054 0.064

42 0.032 0.035 0.060

43 0.030 0.035 0.048

44 0.031 0.034 0.053

45 0.029 0.034 0.050

46 0.027 0.032 0.046

47 0.026 0.034 0.049

48 0.027 0.030 0.044

49 0.028 0.030 0.045

50 0.029 0.030 0.045

Table 7.9: Average solving times (in seconds) in the case of Instance 3.

62 CHAPTER 7. COMPUTATIONAL RESULTS

7.4 Linear programming relaxation

In order to compare the quality of the formulation, from a polyhedral point of view,

to the one of Bertsimas and Stock Patterson, we have studied the linear relaxation of

the problem, fixing a configuration among the three available, eliminating the variables

y and the constraints connected to them. We tried to understand if, as for Bertsimas

and Stock Patterson model, the formulation is almost always integral, and in fact the

answer is negative. This seems to confirm the results in Section 5.6. Let us consider

the situation in Instance 1, where we tested five random instances. Let us examine the

first of these instances and fix the three configurations one at a time. In Table 7.10, we

note that, by fixing the configuration M01, all the values of the objective function in the

relaxed problem correspond to those of the integer problem, except for two cases, where

we find 28.5 instead of 29 and 8.5 instead of 9. In brackets we report the percentage of

fractional w variables with respect to the total. In general the new capacity constraint

can remove the integrality of continuous relaxation. In Table 7.11, related to the fifth

instance considered in Instance 1, we observe that, by fixing the configuration M02, all

the values of the objective function in the relaxed problem correspond to those of the

integer problem, except for one case, where we find 25.5 instead of 26. The same applies

if we fix the configuration M03. In both cases the percentage of fractional variables w

remains around 1%.

7.4. LINEAR PROGRAMMING RELAXATION 63

M01 M02 M03

capacity IP LR IP LR IP LR

≤ 20 N/A N/A N/A N/A N/A N/A

21 N/A N/A 30 30 N/A N/A

22 N/A N/A 13 13 N/A N/A

23 29 28.5 (1.4%) 8 8 21 21

24 15 15 3 3 12 12

25 9 8.5 (0.6%) 1 1 7 7

26 5 5 0 0 5 5

27 4 4 0 0 4 4

28 3 3 0 0 3 3

29 2 2 0 0 2 2

30 1 1 0 0 1 1

≥ 31 0 0 0 0 0 0

Table 7.10: A first example of comparison between optimal solutions of the integer and
relaxed problems, in the case of fixed configuration. In parentheses, the percentage of
fractional variables, if other than zero.

M01 M02 M03

capacity IP LR IP LR IP LR

≤ 23 N/A N/A N/A N/A N/A N/A

24 N/A N/A 26 25.5 (1.4%) 26 25.5 (1.2%)

25 47 47 13 13 13 13

26 25 25 8 8 8 8

27 12 12 4 4 4 4

28 7 7 3 3 3 3

29 3 3 2 2 2 2

30 2 2 1 1 1 1

31 1 1 0 0 0 0

≥ 32 0 0 0 0 0 0

Table 7.11: A second example of comparison between optimal solutions of the integer
and relaxed problems, in the case of fixed configuration. In parentheses, the percentage
of fractional variables, if other than zero.

64 CHAPTER 7. COMPUTATIONAL RESULTS

Chapter 8

Conclusions

The problem of air traffic flow management is very important and it has been addressed in

several literature works. We focus on an approach based on Integer Linear Programming,

and we have seen that, over the years, there has been an evolution in the way the problem

has been treated. In fact, starting from just including ground holding in the models,

airborne holding, speed control and the possibility of re-routing have been introduced.

In this thesis we have explored a further strategy. In fact, in addition to ground holding,

airborne holding and speed control, we have introduced the possibility of choosing the

most appropriate airspace configuration over time, favoring the one that allows a less

expensive management of the flow of air traffic. This idea arises from the fact that in

general, since there are fewer controllers than the number of elementary sectors to be

controlled, it may be convenient to merge groups of adjacent elementary sectors in order

to consider larger sectors, known as collapsed sectors. There is no single way to merge

elementary sectors. In our tests, we give some possible airspace configurations, giving

the solver the possibility to choose the most appropriate ones over time. In this sense,

starting from a well-known work by Bertsimas and Stock Patterson, we have provided a

new Integer Linear Programming model and implemented it in AMPL. We have tested

it on various random instances and we have seen that the results actually reassure us

that we are getting improvements. We have seen that the dynamism of the configuration

allows us to save up to more than 50% compared to the case in which the configuration

of the airspace is fixed. Moreover, the results suggest that the model is more performing

in the case where the capacity of the collapsed sectors is variable over time, for example

because of weather disturbances. Finally, through the study of linear relaxation, we have

shown that our formulation is not as strong as that of the Bertsimas and Stock Patterson

model, from which we started. We have seen in particular that in some cases the number

of fractional variables is different from zero and therefore a possible future development is

to try to deepen the study of linear relaxation, towards the definition of valid inequalities

to strengthen linear relaxation.

65

66 CHAPTER 8. CONCLUSIONS

Appendix

In the following, we report the .dat AMPL file of an instance related to the case in which

the presence of a weather disturbance insisting on the airspace is introduced. Then, we

will report the .mod AMPL file implementing the model presented in Chapter 5 and

a .run AMPL file including a script to test the instance on different combinations of

capacity and parameter τ values.

atfm.dat

set MAPS := M01 M02 M03 ;

set FLIGHTS := f001 f002 f003 f004 f005 f006 f007 f008 f009 f010 f011 f012 f013 f014 f015

f016 f017 f018 f019 f020 f021 f022 f023 f024 f025 f026 f027 f028 f029 f030 f031 f032 f033

f034 f035 f036 f037 f038 f039 f040 f041 f042 f043 f044 f045 f046 f047 f048 f049 f050 f051

f052 f053 f054 f055 f056 f057 f058 f059 f060 f061 f062 f063 f064 f065 f066 f067 f068 f069

f070 f071 f072 f073 f074 f075 f076 f077 f078 f079 f080 f081 f082 f083 f084 f085 f086 f087

f088 f089 f090 f091 f092 f093 f094 f095 f096 f097 f098 f099 f100 f101 f102 f103 f104 f105

f106 f107 f108 f109 f110 f111 f112 f113 f114 f115 f116 f117 f118 f119 f120 f121 f122 f123

f124 f125 f126 f127 f128 f129 f130 f131 f132 f133 f134 f135 f136 f137 f138 f139 f140 f141

f142 f143 f144 f145 f146 f147 f148 f149 f150 f151 f152 f153 f154 f155 f156 f157 f158 f159

f160 f161 f162 f163 f164 f165 f166 f167 f168 f169 f170 f171 f172 f173 f174 f175 f176 f177

f178 f179 f180 f181 f182 f183 f184 f185 f186 f187 f188 f189 f190 f191 f192 f193 f194 f195

f196 f197 f198 f199 f200 f201 f202 f203 f204 f205 f206 f207 f208 f209 f210 f211 f212 f213

f214 f215 f216 f217 f218 f219 f220 f221 f222 f223 f224 f225 f226 f227 f228 f229 f230 f231

f232 f233 f234 f235 f236 f237 f238 f239 f240 f241 f242 f243 f244 f245 f246 f247 f248 f249

f250 f251 f252 f253 f254 f255 f256 ;

set AIRPORTS := DUB CPH LHR AMS CDG FRA ZRH VIE ;

set ELEMENTARY := a b c d e f g h i j k l m n o p ;

67

68

set COLLAPSED := C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C16 ;

set PARTITIONS[M01] := C01 C02 C03 C04 C05 C06 C07 C08 ;

set PARTITIONS[M02] := C09 C10 C11 C12 C13 C14 C15 C16 ;

set PARTITIONS[M03] := C01 C02 C07 C08 C10 C12 C13 C15 ;

set BELONGING[C01] := a e ;

set BELONGING[C02] := b f ;

set BELONGING[C03] := c g ;

set BELONGING[C04] := d h ;

set BELONGING[C05] := i m ;

set BELONGING[C06] := j n ;

set BELONGING[C07] := k o ;

set BELONGING[C08] := l p ;

set BELONGING[C09] := a b ;

set BELONGING[C10] := c d ;

set BELONGING[C11] := e f ;

set BELONGING[C12] := g h ;

set BELONGING[C13] := i j ;

set BELONGING[C14] := k l ;

set BELONGING[C15] := m n ;

set BELONGING[C16] := o p ;

set TIMES := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 ;

set PATHS[f001] = LHR e i f a DUB ;

set PATHS[f002] = LHR e i j CDG ;

set PATHS[f003] = FRA k g d c b e LHR ;

set PATHS[f004] = LHR e i j CDG ;

set PATHS[f005] = FRA k n o j CDG ;

set PATHS[f006] = CDG j i e LHR ;

set PATHS[f007] = FRA k g f a DUB ;

set PATHS[f008] = AMS g f a DUB ;

set PATHS[f009] = CDG j i e LHR ;

set PATHS[f010] = FRA k g f a DUB ;

set PATHS[f011] = DUB a f g k FRA ;

set PATHS[f012] = LHR e i f a DUB ;

set PATHS[f013] = AMS g d c b e LHR ;

69

set PATHS[f014] = LHR e b c d g AMS ;

set PATHS[f015] = LHR e b c d g k FRA ;

set PATHS[f016] = AMS g k FRA ;

set PATHS[f017] = DUB a f j CDG ;

set PATHS[f018] = LHR e b c d g AMS ;

set PATHS[f019] = AMS g f j CDG ;

set PATHS[f020] = CDG j f g AMS ;

set PATHS[f021] = AMS g f j CDG ;

set PATHS[f022] = CDG j o n k FRA ;

set PATHS[f023] = LHR e b c d g AMS ;

set PATHS[f024] = FRA k g d c b e LHR ;

set PATHS[f025] = AMS g f a DUB ;

set PATHS[f026] = AMS g f a DUB ;

set PATHS[f027] = AMS g f a DUB ;

set PATHS[f028] = AMS g k FRA ;

set PATHS[f029] = CDG j f a DUB ;

set PATHS[f030] = FRA k n o j CDG ;

set PATHS[f031] = CDG j f a DUB ;

set PATHS[f032] = LHR e b c d g k FRA ;

set PATHS[f033] = FRA k g AMS ;

set PATHS[f034] = AMS g d c b e LHR ;

set PATHS[f035] = AMS g f j CDG ;

set PATHS[f036] = FRA k n o j CDG ;

set PATHS[f037] = DUB a f g k FRA ;

set PATHS[f038] = FRA k g f a DUB ;

set PATHS[f039] = LHR e b c d g k FRA ;

set PATHS[f040] = LHR e b c d g AMS ;

set PATHS[f041] = DUB a f g k FRA ;

set PATHS[f042] = DUB a f g k FRA ;

set PATHS[f043] = DUB a f i e LHR ;

set PATHS[f044] = AMS g f j CDG ;

set PATHS[f045] = LHR e i j CDG ;

set PATHS[f046] = LHR e i j CDG ;

set PATHS[f047] = DUB a f g k FRA ;

set PATHS[f048] = AMS g f j CDG ;

set PATHS[f049] = AMS g k FRA ;

set PATHS[f050] = DUB a f i e LHR ;

set PATHS[f051] = CDG j f a DUB ;

set PATHS[f052] = DUB a f g AMS ;

70

set PATHS[f053] = AMS g f j CDG ;

set PATHS[f054] = DUB a f i e LHR ;

set PATHS[f055] = DUB a f g AMS ;

set PATHS[f056] = CDG j i e LHR ;

set PATHS[f057] = AMS g f a DUB ;

set PATHS[f058] = AMS g f j CDG ;

set PATHS[f059] = LHR e i j CDG ;

set PATHS[f060] = FRA k g AMS ;

set PATHS[f061] = AMS g k FRA ;

set PATHS[f062] = CDG j f a DUB ;

set PATHS[f063] = FRA k n o j CDG ;

set PATHS[f064] = FRA k g d c b e LHR ;

set PATHS[f065] = LHR e i f a DUB ;

set PATHS[f066] = AMS g f j CDG ;

set PATHS[f067] = LHR e b c d g k FRA ;

set PATHS[f068] = LHR e i j CDG ;

set PATHS[f069] = LHR e i j CDG ;

set PATHS[f070] = CDG j f a DUB ;

set PATHS[f071] = CDG j f a DUB ;

set PATHS[f072] = AMS g k FRA ;

set PATHS[f073] = DUB a f g k FRA ;

set PATHS[f074] = CDG j i e LHR ;

set PATHS[f075] = DUB a f j CDG ;

set PATHS[f076] = DUB a f i e LHR ;

set PATHS[f077] = AMS g d c b e LHR ;

set PATHS[f078] = CDG j o n k FRA ;

set PATHS[f079] = FRA k n o j CDG ;

set PATHS[f080] = AMS g d c b e LHR ;

set PATHS[f081] = AMS g f a DUB ;

set PATHS[f082] = DUB a f g k FRA ;

set PATHS[f083] = FRA k g f a DUB ;

set PATHS[f084] = FRA k g f a DUB ;

set PATHS[f085] = AMS g f a DUB ;

set PATHS[f086] = AMS g d c b e LHR ;

set PATHS[f087] = CDG j f a DUB ;

set PATHS[f088] = DUB a f g k FRA ;

set PATHS[f089] = AMS g f a DUB ;

set PATHS[f090] = CDG j o n k FRA ;

set PATHS[f091] = AMS g f j CDG ;

71

set PATHS[f092] = DUB a f i e LHR ;

set PATHS[f093] = CDG j f a DUB ;

set PATHS[f094] = AMS g f a DUB ;

set PATHS[f095] = FRA k g f a DUB ;

set PATHS[f096] = AMS g f j CDG ;

set PATHS[f097] = LHR e i f a DUB ;

set PATHS[f098] = CDG j i e LHR ;

set PATHS[f099] = CDG j f g AMS ;

set PATHS[f100] = AMS g f j CDG ;

set PATHS[f101] = AMS g f j CDG ;

set PATHS[f102] = LHR e b c d g AMS ;

set PATHS[f103] = CDG j f a DUB ;

set PATHS[f104] = DUB a f g k FRA ;

set PATHS[f105] = LHR e i f a DUB ;

set PATHS[f106] = AMS g d c b e LHR ;

set PATHS[f107] = LHR e i j CDG ;

set PATHS[f108] = FRA k n o j CDG ;

set PATHS[f109] = CDG j f g AMS ;

set PATHS[f110] = CDG j f g AMS ;

set PATHS[f111] = FRA k g f a DUB ;

set PATHS[f112] = LHR e b c d g AMS ;

set PATHS[f113] = CDG j i e LHR ;

set PATHS[f114] = LHR e i j CDG ;

set PATHS[f115] = LHR e i j CDG ;

set PATHS[f116] = AMS g d c b e LHR ;

set PATHS[f117] = FRA k g AMS ;

set PATHS[f118] = CDG j f a DUB ;

set PATHS[f119] = AMS g d c b e LHR ;

set PATHS[f120] = AMS g f a DUB ;

set PATHS[f121] = LHR e i f a DUB ;

set PATHS[f122] = LHR e i f a DUB ;

set PATHS[f123] = DUB a f i e LHR ;

set PATHS[f124] = FRA k g f a DUB ;

set PATHS[f125] = CDG j f a DUB ;

set PATHS[f126] = DUB a f i e LHR ;

set PATHS[f127] = AMS g f a DUB ;

set PATHS[f128] = CDG j f g AMS ;

set PATHS[f129] = FRA k g d c b e LHR ;

set PATHS[f130] = ZRH o n k g d CPH ;

72

set PATHS[f131] = VIE p l g AMS ;

set PATHS[f132] = CDG j f g AMS ;

set PATHS[f133] = ZRH o n k g AMS ;

set PATHS[f134] = LHR e i j o ZRH ;

set PATHS[f135] = VIE p o ZRH ;

set PATHS[f136] = ZRH o n k FRA ;

set PATHS[f137] = AMS g f a DUB ;

set PATHS[f138] = CPH d g k FRA ;

set PATHS[f139] = DUB a f g AMS ;

set PATHS[f140] = DUB a f g AMS ;

set PATHS[f141] = LHR e i j o ZRH ;

set PATHS[f142] = FRA k g f a DUB ;

set PATHS[f143] = CPH d g AMS ;

set PATHS[f144] = AMS g k FRA ;

set PATHS[f145] = CDG j o n k FRA ;

set PATHS[f146] = FRA k n o j CDG ;

set PATHS[f147] = DUB a f g l p VIE ;

set PATHS[f148] = LHR e b c d CPH ;

set PATHS[f149] = FRA k n o ZRH ;

set PATHS[f150] = LHR e i j o ZRH ;

set PATHS[f151] = DUB a f g l p VIE ;

set PATHS[f152] = CPH d g AMS ;

set PATHS[f153] = CDG j i e LHR ;

set PATHS[f154] = FRA k n o ZRH ;

set PATHS[f155] = FRA k g d c b e LHR ;

set PATHS[f156] = VIE p l g AMS ;

set PATHS[f157] = CPH d g AMS ;

set PATHS[f158] = LHR e b c d g k FRA ;

set PATHS[f159] = AMS g k FRA ;

set PATHS[f160] = FRA k g l p VIE ;

set PATHS[f161] = AMS g f j CDG ;

set PATHS[f162] = CDG j f a DUB ;

set PATHS[f163] = CPH d g k FRA ;

set PATHS[f164] = LHR e i f a DUB ;

set PATHS[f165] = ZRH o n k FRA ;

set PATHS[f166] = CPH d g k n o ZRH ;

set PATHS[f167] = AMS g d CPH ;

set PATHS[f168] = FRA k n o j CDG ;

set PATHS[f169] = AMS g k n o ZRH ;

73

set PATHS[f170] = CPH d g AMS ;

set PATHS[f171] = ZRH o j CDG ;

set PATHS[f172] = CDG j i e LHR ;

set PATHS[f173] = VIE p l g d CPH ;

set PATHS[f174] = LHR e b c d g k FRA ;

set PATHS[f175] = DUB a f g l p VIE ;

set PATHS[f176] = CPH d c b e LHR ;

set PATHS[f177] = VIE p l g f a DUB ;

set PATHS[f178] = CDG j i e LHR ;

set PATHS[f179] = ZRH o j i e LHR ;

set PATHS[f180] = AMS g k FRA ;

set PATHS[f181] = ZRH o j CDG ;

set PATHS[f182] = DUB a f j CDG ;

set PATHS[f183] = VIE p l g d c b e LHR ;

set PATHS[f184] = DUB a f g AMS ;

set PATHS[f185] = CDG j o ZRH ;

set PATHS[f186] = FRA k g f a DUB ;

set PATHS[f187] = CDG j f g d CPH ;

set PATHS[f188] = CDG j o p VIE ;

set PATHS[f189] = LHR e b c d g AMS ;

set PATHS[f190] = FRA k n o ZRH ;

set PATHS[f191] = DUB a f i e LHR ;

set PATHS[f192] = AMS g f j CDG ;

set PATHS[f193] = DUB a f g AMS ;

set PATHS[f194] = DUB a f j o ZRH ;

set PATHS[f195] = ZRH o n k g AMS ;

set PATHS[f196] = AMS g f j CDG ;

set PATHS[f197] = CDG j o p VIE ;

set PATHS[f198] = CPH d g k n o ZRH ;

set PATHS[f199] = DUB a f i e LHR ;

set PATHS[f200] = FRA k g l p VIE ;

set PATHS[f201] = ZRH o p VIE ;

set PATHS[f202] = ZRH o n k g AMS ;

set PATHS[f203] = CPH d g l p VIE ;

set PATHS[f204] = CPH d g k n o ZRH ;

set PATHS[f205] = AMS g d c b e LHR ;

set PATHS[f206] = AMS g k FRA ;

set PATHS[f207] = VIE p l g k FRA ;

set PATHS[f208] = DUB a f i e LHR ;

74

set PATHS[f209] = CDG j o ZRH ;

set PATHS[f210] = CDG j f a DUB ;

set PATHS[f211] = DUB a f j o ZRH ;

set PATHS[f212] = CPH d g f a DUB ;

set PATHS[f213] = AMS g f a DUB ;

set PATHS[f214] = DUB a f g d CPH ;

set PATHS[f215] = DUB a f i e LHR ;

set PATHS[f216] = DUB a f i e LHR ;

set PATHS[f217] = LHR e b c d CPH ;

set PATHS[f218] = LHR e b c d g k FRA ;

set PATHS[f219] = DUB a f g d CPH ;

set PATHS[f220] = DUB a f i e LHR ;

set PATHS[f221] = ZRH o j CDG ;

set PATHS[f222] = ZRH o n k g AMS ;

set PATHS[f223] = ZRH o j f a DUB ;

set PATHS[f224] = FRA k g AMS ;

set PATHS[f225] = ZRH o j i e LHR ;

set PATHS[f226] = VIE p l g f a DUB ;

set PATHS[f227] = AMS g f j CDG ;

set PATHS[f228] = CDG j o p VIE ;

set PATHS[f229] = CPH d g k n o ZRH ;

set PATHS[f230] = VIE p l g d c b e LHR ;

set PATHS[f231] = ZRH o p VIE ;

set PATHS[f232] = DUB a f j CDG ;

set PATHS[f233] = LHR e b c d g AMS ;

set PATHS[f234] = CPH d g l p VIE ;

set PATHS[f235] = CDG j o p VIE ;

set PATHS[f236] = DUB a f g k FRA ;

set PATHS[f237] = ZRH o n k FRA ;

set PATHS[f238] = CDG j f g AMS ;

set PATHS[f239] = AMS g f j CDG ;

set PATHS[f240] = ZRH o p VIE ;

set PATHS[f241] = CPH d c b e LHR ;

set PATHS[f242] = VIE p l g k FRA ;

set PATHS[f243] = CPH d g k FRA ;

set PATHS[f244] = CDG j f g d CPH ;

set PATHS[f245] = FRA k g d c b e LHR ;

set PATHS[f246] = AMS g f j CDG ;

set PATHS[f247] = VIE p l g d CPH ;

75

set PATHS[f248] = CDG j f g d CPH ;

set PATHS[f249] = VIE p l g d c b e LHR ;

set PATHS[f250] = CDG j o p VIE ;

set PATHS[f251] = CPH d g l p VIE ;

set PATHS[f252] = LHR e b c d g k FRA ;

set PATHS[f253] = CPH d g AMS ;

set PATHS[f254] = ZRH o n k g AMS ;

set PATHS[f255] = AMS g d CPH ;

set PATHS[f256] = ZRH o n k FRA ;

param D default 8 ;

param A default 8 ;

param cg default 1 ;

param ca default 3 ;

* We define the minimum time each flight must spend in each elementary sector included in

its path. Obviously it will spend 0 periods of time in the departure airport, since once

it has taken off, the flight is immediately considered in the first elementary sector (the

one in which the departure airport is contained). In other cases, we randomly generate these

times. In particular, we will ensure that if a flight has to cross an entire sector it will

take longer than if the flight lands at an airport in the sector */

for {f in FLIGHTS} {

let l[f,first(PATHS[f])] := 0;

for {j in PATHS[f]: ord0(j,PATHS[f]) > 1 and ord0(j,PATHS[f]) < card(PATHS[f])} {

if (prev(j,PATHS[f]) in ELEMENTARY and next(j,PATHS[f]) in ELEMENTARY) then {

let l[f,j] := floor(Uniform(3, 5));

}

else {

let l[f,j] := floor(Uniform(1, 3));

}

}

}

* We randomly generate the maximum delay time of each flight, calculate the flight duration

based on how much time each flight spends in each sector, and finally randomly generate the

take-off and landing times of each flight */

76

for {f in FLIGHTS} {

let delay[f] := floor(Uniform(0, 3));

let duration[f] := 0;

for {j in PATHS[f]: ord0(j,PATHS[f]) > 1 and ord0(j,PATHS[f]) < card(PATHS[f])} {

let duration[f] := duration[f] + l[f,j];

}

let d[f] := floor(Uniform(first(TIMES), last(TIMES) - delay[f] - duration[f] + 1));

let r[f] := d[f] + duration[f];

}

* We calculate the set of feasible times for each flight to arrive in a given elementary

sector */

for {f in FLIGHTS} {

let tmin[f,first(PATHS[f])] := d[f];

let tmax[f,first(PATHS[f])] := tmin[f,first(PATHS[f])] + delay[f];

for {j in PATHS[f] : ord0(j,PATHS[f]) > 1} {

let tmin[f,j] := tmin[f,prev(j,PATHS[f])] + l[f,prev(j,PATHS[f])];

let tmax[f,j] := tmin[f,j] + delay[f];

}

}

atfm.mod

set of configurations

set MAPS;

set of flights

set FLIGHTS;

set of airports

set AIRPORTS;

set of elementary sectors

set ELEMENTARY;

set of collapsed sectors

set COLLAPSED;

set of collapsed sectors whose union forms a certain configuration

set PARTITIONS {MAPS};

set of elementary sectors whose union forms a certain collapsed sector

77

set BELONGING {COLLAPSED};

set of time periods

set TIMES ordered;

path of a certain flight

set PATHS {FLIGHTS} ordered;

D[k,t] = departure capacity of airport k at time t

param D {AIRPORTS, TIMES};

A[k,t] = arrival capacity of airport k at time t

param A {AIRPORTS, TIMES};

S[c,t] = capacity of collapsed sector h at time t

param S {COLLAPSED, TIMES};

l[f,j] = number of time units that flight f must spend in elementary sector j

param l {f in FLIGHTS, j in PATHS[f]: ord0(j,PATHS[f]) < card(PATHS[f])};

delay[f] = maximum delay allowed for the flight f

param delay {FLIGHTS};

d[f] = scheduled departure time of flight f

param d {FLIGHTS};

r[f] = scheduled arrival time of flight f

param r {FLIGHTS};

duration[f] = r[f] - d[f] param duration {FLIGHTS};

cg[f] = cost of holding flight f on the ground for one unit of time

param cg {FLIGHTS};

ca[f] = cost of holding flight f in the air for one unit of time

param ca {FLIGHTS};

tmin[f,j] = first period of time for flight f to enter to elementary sector j

param tmin {f in FLIGHTS, PATHS[f]};

tmax[f,j] = last period of time for flight f to enter to elementary sector j

param tmax {f in FLIGHTS, PATHS[f]};

theoretical maximum number of flights that could be in the collapsed sector h at time t

param C {COLLAPSED, TIMES};

minimum number of consecutive time periods a configuration must remain active

param tau > 0 integer;

counter of variables w

78

param counter_w;

counter of variables y

param counter_y;

counter of variables w that are integer

param counter_w_int;

counter of variables w that are fractional

param counter_w_frac;

counter of variables y that are integer

param counter_y_int;

counter of variables y that are fractional

param counter_y_frac;

variables w

var w {f in FLIGHTS, j in PATHS[f],t in TIMES:t >= tmin[f,j] and t <= tmax[f,j]} binary;

variables y

var y {m in MAPS, t in TIMES} binary;

number of time periods of ground delay

var g {f in FLIGHTS};

number of time periods of airborne delay

var a {f in FLIGHTS};

objective function

minimize fun : sum{f in FLIGHTS} ((cg[f]-ca[f])*(sum{t in TIMES : t >= tmin[f,first(PATHS[f])]

and t <= tmax[f,first(PATHS[f])]} (t*(w[f,first(PATHS[f]),t]-(if t-1 >= tmin[f,first(PATHS[f])]

and t-1 <= tmax[f,first(PATHS[f])] then w[f,first(PATHS[f]),t-1] else if t-1

<= tmin[f,first(PATHS[f])]-1 then 0 else 1))))+ca[f]*(sumt in TIMES : t >= tmin[f,last(PATHS[f])]

and t <= tmax[f,last(PATHS[f])] (t*(w[f,last(PATHS[f]),t]-(if t-1 >= tmin[f,last(PATHS[f])]

and t-1 <= tmax[f,last(PATHS[f])] then w[f,last(PATHS[f]),t-1] else if t-1

<= tmin[f,last(PATHS[f])]-1 then 0 else 1))))+(ca[f]-cg[f])*d[f]-ca[f]*r[f]);

basic constraints

s.t. v0 {f in FLIGHTS, j in PATHS[f], t in TIMES: t = tmax[f,j]}:

w[f,j,t] = 1;

Constraints on airport departure capacity

s.t. v1 {k in AIRPORTS, t in TIMES}:

sum {f in FLIGHTS: k = first(PATHS[f])} ((if t >= tmin[f,k] and t <= tmax[f,k] then w[f,k,t]

else if t <= tmin[f,k]-1 then 0 else 1)-(if t-1 >= tmin[f,k] and t-1 <= tmax[f,k] then w[f,k,t-1]

else if t-1 <= tmin[f,k]-1 then 0 else 1)) <= D[k,t];

79

Constraints on airport arrival capacity

s.t. v2 {k in AIRPORTS, t in TIMES}:

sum {f in FLIGHTS: k = last(PATHS[f])} ((if t >= tmin[f,k] and t <= tmax[f,k] then w[f,k,t]

else if t <= tmin[f,k]-1 then 0 else 1)-(if t-1 >= tmin[f,k] and t-1 <= tmax[f,k] then w[f,k,t-1]

else if t-1 <= tmin[f,k]-1 then 0 else 1)) <= A[k,t];

Constraints on the capacity of collapsed sectors

s.t. v3 {m in MAPS, h in PARTITIONS[m], t in TIMES}:

sum {j in BELONGING[h]} sum {f in FLIGHTS: ord0(j,PATHS[f]) > 1 and ord0(j,PATHS[f])

< card(PATHS[f])} ((if t >= tmin[f,j] and t <= tmax[f,j] then w[f,j,t] else if t <= tmin[f,j]-1

then 0 else 1)-(if t >= tmin[f,next(j,PATHS[f])] and t <= tmax[f,next(j,PATHS[f])] then

w[f,next(j,PATHS[f]),t] else if t <= tmin[f,next(j,PATHS[f])]-1 then 0 else 1))

<= S[h,t]+C[h,t]*(1-y[m,t]);

Constraints on connectivity between elementary sectors

s.t. v4 {f in FLIGHTS, j in PATHS[f], t in TIMES: ord0(j,PATHS[f]) >= 1 and ord0(j,PATHS[f])

< card(PATHS[f]) and t >= tmin[f,j] and t <= tmax[f,j]}:

((if t+l[f,j] >= tmin[f,next(j,PATHS[f])] and t+l[f,j] <= tmax[f,next(j,PATHS[f])] then

w[f,next(j,PATHS[f]),t+l[f,j]] else if t+l[f,j] <= tmin[f,next(j,PATHS[f])]-1 then 0 else

1)-w[f,j,t]) <= 0;

Constraints on connectivity in time (5)

s.t. v5 {f in FLIGHTS, j in PATHS[f], t in TIMES: t >= tmin[f,j] and t <= tmax[f,j]}:

(w[f,j,t]-(if t-1 >= tmin[f,j] and t-1 <= tmax[f,j] then w[f,j,t-1] else if t-1 <= tmin[f,j]-1

then 0 else 1)) >= 0;

Constraints on the choice of configuration (7)

s.t. v7 {t in TIMES}:

sum{m in MAPS} y[m,t] = 1;

Constraints on maintaining a configuration (8)

s.t. v8 {m in MAPS, t in TIMES, u in t+1..min(t+tau-1,last(TIMES))}:

(y[m,t]-(if t-1 < first(TIMES) then 0 else y[m,t-1])) <= (if u > last(TIMES) then 0 else y[m,u]);

atfm.run

reset;

model atfm.mod;

data atfm.dat;

option presolve 0;

option solver cplexamp;

80

option relax_integrality 0;

for {periods in {6, 12, 36}} {

printf "\n********************************\n" >atfm.txt;

let tau := periods;

for {capacity in 20..50} {

let counter_w := 0;

let counter_y := 0;

let counter_w_int := 0;

let counter_w_frac := 0;

let counter_y_int := 0;

let counter_y_frac := 0;

for {h in COLLAPSED} {

for {t in TIMES} {

let S[h,t] := capacity;

}

}

let {h in COLLAPSED, t in TIMES: (h = ’C01’ or h = ’C02’ or h = ’C03’ or h = ’C04’ or

h = ’C09’ or h = ’C10’) and t >= 1 and t <= 9} S[h,t] := floor(2/3 * S[h,t]);

let {h in COLLAPSED, t in TIMES: (h = ’C01’ or h = ’C02’ or h = ’C03’ or h = ’C04’ or

h = ’C11’ or h = ’C12’) and t >= 10 and t <= 18} S[h,t] := floor(2/3 * S[h,t]);

let {h in COLLAPSED, t in TIMES: (h = ’C05’ or h = ’C06’ or h = ’C07’ or h = ’C08’ or

h = ’C13’ or h = ’C14’) and t >= 19 and t <= 27} S[h,t] := floor(2/3 * S[h,t]);

let {h in COLLAPSED, t in TIMES: (h = ’C05’ or h = ’C06’ or h = ’C07’ or h = ’C08’ or

h = ’C15’ or h = ’C16’) and t >= 28 and t <= 36} S[h,t] := floor(2/3 * S[h,t]);

for {h in COLLAPSED} {

for {t in TIMES} {

let C[h,t] := (sum {j in BELONGING[h]} sum {f in FLIGHTS: ord0(j,PATHS[f]) > 1 and

ord0(j,PATHS[f]) < card(PATHS[f])} 1) - S[h,t];

}

}

solve;

for {f in FLIGHTS, j in PATHS[f], t in TIMES: t >= tmin[f,j] and t <= tmax[f,j]} {

let counter_w := counter_w + 1;

if (abs(w[f,j,t]-round(w[f,j,t])) > 1e-6) then {

let counter_w_frac := counter_w_frac + 1;

}

else {

let counter_w_int := counter_w_int + 1;

}

81

}

for {m in MAPS, t in TIMES} {

let counter_y := counter_y + 1;

if (abs(y[m,t]-round(y[m,t])) > 1e-6) then {

let counter_y_frac := counter_y_frac + 1;

}

else {

let counter_y_int := counter_y_int + 1;

}

}

let {f in FLIGHTS} g[f] := sum{t in TIMES: t >= tmin[f,first(PATHS[f])] and t

<= tmax[f,first(PATHS[f])]} (t*(w[f,first(PATHS[f]),t]-(if t-1 >= tmin[f,first(PATHS[f])]

and t-1 <= tmax[f,first(PATHS[f])] then w[f,first(PATHS[f]),t-1] else if t-1

<= tmin[f,first(PATHS[f])]-1 then 0 else 1)))-d[f];

let {f in FLIGHTS} a[f] := sum{t in TIMES: t >= tmin[f,last(PATHS[f])] and t

<= tmax[f,last(PATHS[f])]} (t*(w[f,last(PATHS[f]),t]-(if t-1 >= tmin[f,last(PATHS[f])] and

t-1 <= tmax[f,last(PATHS[f])] then w[f,last(PATHS[f]),t-1] else if t-1

<= tmin[f,last(PATHS[f])]-1 then 0 else 1)))-r[f]-g[f];

printf "\ntau = %d, ", tau >atfm.txt;

printf "capacity = %d, ", capacity >atfm.txt;

printf "fun = %f, ", fun >atfm.txt;

printf "ground = %f, ", sum{f in FLIGHTS} g[f] >atfm.txt;

printf "air = %f, ", sum{f in FLIGHTS} a[f] >atfm.txt;

printf "counter_w = %d, ", counter_w >atfm.txt;

printf "counter_w_int = %d, ", counter_w_int >atfm.txt;

printf "counter_w_frac = %d, ", counter_w_frac >atfm.txt;

printf "counter_y = %d, ", counter_y >atfm.txt;

printf "counter_y_int = %d, ", counter_y_int >atfm.txt;

printf "counter_y_frac = %d, ", counter_y_frac >atfm.txt;

printf "BB_nodes = %d, ", num0(substr(solve_message,match(solve_message,"s\n")+2)) >atfm.txt;

printf "time_solve = %f. \n", _total_solve_time >atfm.txt;

}

}

82

References

[1] A. Agustín, A. Alonso-Ayuso, L. F. Escudero, C. Pizarro, et al. On air traffic flow

management with rerouting. Part I: Deterministic case. European Journal of Opera-

tional Research, 219(1):156–166, 2012.

[2] A. Agusín, A. Alonso-Ayuso, L. F. Escudero, C. Pizarro, et al. On air traffic flow

management with rerouting. Part II: Stochastic case. European Journal of Operational

Research, 219(1):167–177, 2012.

[3] AMPL. https://ampl.com/products/ampl/

[4] G. Andreatta, L. Capanna, L. De Giovanni e L. Righi. Rapporto sul progetto di

ricerca Follow-up di Optiframe. Rapporto Interno Consorzio Futuro in Ricerca, 2018.

[5] G. Andreatta, A. R. Odoni and O. Richetta. Models for the Ground-Holding Problem.

Large-Scale Computation and Information Processing in Air Traffic Control. Springer-

Verlag, 1993.

[6] ATAG. https://www.icao.int/sustainability/Documents/AVIATION-BENEFITS-2019-web.pdf,

2019.

[7] D. Bertsimas, G. Lulli, and A. Odoni. An integer optimization approach to large-scale

air traffic flow management. Operations Research, 59(1):211–227, 2011.

[8] D. Bertsimas and S. Stock Patterson. The air traffic flow management problem with

enroute capacities. Operations research, 46(3):406–422, 1998.

[9] D. Bertsimas and S. Stock Patterson. The traffic flow management rerouting problem

in air traffic control: A dynamic network flow approach. Transportation Science,

34(3):239–255, 2000.

[10] Y. Chynchenko, V. Kharchenko. Concept of air traffic flow and capacity management

in European region. Proceedings of National Aviation University, (56): 7–12, 2013

[11] M. Conforti, G. Cornuejols, and G. Zambelli. Integer Programming. Springer Inter-

national Publishing, 2014.

83

84 REFERENCES

[12] CPLEX. https://www.ibm.com/it-it/products/ilog-cplex-optimization-studio/details

[13] EUROCONTROL. Performance Review Report (PRR) 2019

https://www.eurocontrol.int/sites/default/files/2020-06/eurocontrol-prr-2019.pdf,

2020.

[14] F. D. Fomeni, G. Lulli, and K. Zografos. An optimization model for assigning 4d-

trajectories to flights under the tbo concept. Twelfth USA/Europe Air Traffic Man-

agement Research and Development Seminar (ATM2017), pages 26–30, 2017.

[15] M. P. Helme. Reducing air traffic delay in a space-time network. 1992 IEEE Inter-

national Conference on Systems, Man, and Cybernetics, pages 236–242. IEEE, 1992.

[16] MATLAB. https://it.mathworks.com/products/matlab.html

[17] Pan Li. https://www.math.cuhk.edu.hk/course_builder/1415/math3220/L5.pdf,

2015.

