

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Aerospaziale

Relazione per la prova finale «UAV in ambiente marziano: analisi dinamica e ricadute progettuali»

Tutor universitario: Prof. Colombatti Giacomo

Laureando: Salvato Marco

Padova, 13/03/2024

Corso di Laurea in Ingegneria Aerospaziale

Mars Helicopter e il volo marziano

Credit: https://cosmosmagazine.com/space/nasas-ingenuity-mars-helicopter-is-alive/

mmunications Anten

insulated box for Power, Electronics & Sensors

Fuselage – Warm

Propulsion Motors & Control Linkages

Landing Legs

- Sintetica descrizione del velivolo
- Studio della dinamica del mezzo
- Analisi dinamica del rotore
- Ambiente operativo marziano e ricadute progettuali
- Futuri sviluppi e confronto con un drone terrestre

- → Dimostrazione tecnologica
- 1. Rotori coassiali controrotanti (D=1.21 m)
- 2. Piatti oscillanti indipendenti
- 3. Batteria 35 Wh e pannello solare
- 4. Fusoliera e massa totale (md=1.8 kg)

Velocità (Vc=2 m/s) e autonomia di volo (90 s)

Ipotesi:

- Struttura del drone come corpo rigido $I_G = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}_{BF}$
- Inertial frame (IF) e Body frame (BF)
- Assenza di vento
- Piccoli angoli di pitch e roll $\rightarrow \vec{\omega}_B = \begin{cases} p \\ q \\ r \end{cases}_{BF} \approx \begin{cases} \phi \\ \dot{\theta} \\ \dot{\phi} \end{cases}_{IF}$

Siano:

$$\vec{x} = \begin{cases} x \\ y \\ z \end{cases}_{IF} \qquad \vec{\theta} = \begin{cases} \phi \\ \theta \\ \psi \\ IF \end{cases} \quad \vec{\omega}_B = \begin{cases} p \\ q \\ r \\ BF \end{cases} = \begin{bmatrix} 1 & 0 & -S\theta \\ 0 & C\phi & S\phi C\theta \\ 0 & -S\phi & C\phi C\theta \end{bmatrix}_{IF \to BF} \begin{cases} \dot{\phi} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{\theta} \\ J_{IF} \end{cases}$$

$$\vec{T}_i = \begin{cases} 0 \\ 0 \\ T_i \\ BF \end{cases} \qquad \vec{D} = \begin{cases} \frac{1}{2}\rho K_{Dx_{IF}} \dot{x}^2 \\ \frac{1}{2}\rho K_{Dy_{IF}} \dot{y}^2 \\ \frac{1}{2}\rho K_{Dz_{IF}} \dot{z}^2 \\ IF \end{cases} \qquad \vec{P} = \begin{cases} 0 \\ 0 \\ -m_d g \\ IF \end{cases}$$

$$\vec{\tau}_{Ri} = \begin{cases} \tau_{Ri\phi} \\ \tau_{Ri\theta} \\ \tau_{Ri\psi} \\ BF \end{cases} \qquad \vec{\tau}_D = \begin{cases} \frac{1}{2}\rho K_{\tau_{D\phi}} p^2 \\ BF \end{cases}$$

Corso di Laurea in Ingegneria Aerospaziale

Matrici di rotazione:

$$R_{IF \to BF} = R_{\phi}R_{\theta}R_{\psi} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\phi & S\phi \\ 0 & -S\phi & C\phi \end{bmatrix} \begin{bmatrix} C\theta & 0 & -S\theta \\ 0 & 1 & 0 \\ S\theta & 0 & C\theta \end{bmatrix} \begin{bmatrix} C\psi & S\psi & 0 \\ -S\psi & C\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$R_{IF \to BF} = \begin{bmatrix} C\theta C\psi & C\theta S\psi & -S\theta \\ (-C\phi S\psi + S\phi S\theta C\psi) & (-C\phi S\psi + S\phi S\theta C\psi) & S\phi C\theta \\ (S\phi S\psi + C\phi S\theta C\psi) & (-S\phi C\psi + C\phi S\theta S\psi) & C\phi C\theta \end{bmatrix}$$

 $R_{BF \to IF} = R_{IF \to BF}^{-1} = R_{IF \to BF}^{T}$

Università degli Studi di Padova

• Dinamica traslazionale: (equazione scritta rispetto a IF) $\frac{\mathrm{d}\vec{P}}{\mathrm{d}t} = m_d \vec{\ddot{x}} = R_{BF \to IF} (\sum_i^n \vec{T_i}) + \vec{D} + m_d \vec{g}$

In componenti:
$$\begin{cases} m_d \ddot{x} = (\cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi) \sum_i^n T_i + \frac{1}{2}\rho K_{Dx_{IF}} \dot{x}^2 \\ m_d \ddot{y} = (\cos\phi \sin\theta \sin\psi - \sin\phi \cos\psi) \sum_i^n T_i + \frac{1}{2}\rho K_{Dy_{IF}} \dot{y}^2 \\ m_d \ddot{z} = (\cos\phi \cos\theta) \sum_i^n T_i + \frac{1}{2}\rho K_{Dz_{IF}} \dot{z}^2 - m_d g \end{cases}$$

• Dinamica rotazionale: (equazione scritta rispetto a BF)

$$\frac{\mathrm{d}\vec{L}_G}{\mathrm{d}t} = \vec{M}_G \quad \text{dove:} \quad \vec{L}_G = I_G \vec{\omega}_B + \sum_i^n (I_R \vec{\omega}_{Ri} + m_R l^2) \; ; \quad \vec{M}_G = \sum_i^n \vec{l}_i \times \vec{T}_i + \sum_i^n \vec{\tau}_{Ri} + \vec{\tau}_D$$

$$I_G \dot{\vec{\omega}}_B = -\vec{\omega}_B imes I_G \vec{\omega}_B - \sum_i^n (\vec{\omega}_{Ri} imes I_R \vec{\omega}_B) + \vec{M}_G$$

$$\begin{array}{ll} \text{In componenti:} & \begin{cases} I_{xx}\dot{p} = rq(I_{yy} - I_{zz}) + \sum_{i}^{n}((-1)^{i}w_{Ri}I_{Ryy}q) + \tau_{R_{1\phi}} + \tau_{R_{2\phi}} + \frac{1}{2}\rho K_{\tau_{D\phi}}p^{2} \\ I_{yy}\dot{q} = rp(I_{zz} - I_{xx}) - \sum_{i}^{n}((-1)^{i}w_{Ri}I_{Rxx}p) + \overline{\tau_{R_{1\theta}} + \tau_{R_{2\theta}}} + \frac{1}{2}\rho K_{\tau_{D\theta}}q^{2} \\ I_{zz}\dot{r} = pq(I_{xx} - I_{yy}) + \overline{\tau_{R_{1\psi}} - \tau_{R_{2\psi}}} + \frac{1}{2}\rho K_{\tau_{D\psi}}r^{2} \end{cases}$$

L'elica, ruotando, accelera una portata d'aria (scia) e

riceve una spinta per reazione. → Ipotesi verosimile:

rotore in condizione di hover (flusso in arrivo con V=0)

Momentum Theory

- Obiettivo: modello della scia e stima della **potenza indotta**.
- Ipotesi: flusso ideale, disco attuatore, swirl nella scia trascurato.
- → Fornisce la potenza indotta del rotore ideale

$$T = 2\dot{m}v = 2
ho Av^2$$
 $v = \sqrt{rac{T}{2
ho A}}$

psimile:
con V=0)
potenza indotta.
I nella scia trascurato.

$$P_{i_{id}} = Tv = T\sqrt{\frac{T}{2\rho A}}$$

Corso di Laurea in Ingegneria Aerospaziale

La potenza richiesta dai rotori reali è maggiore di quella ideale:

Blade Element Theory

Considera la geometria delle pale → Forze risultanti

dall'integrale delle forze agenti sulle sezioni.

→ Espressione della potenza richiesta più accurata: (V=0)

$$P = P_i + \underline{P_o} = \underline{kT}\sqrt{\frac{T}{2\rho A}} + \rho A(\omega R)^3 \sigma \frac{C_d}{8} \quad \text{dove} \ \sigma = \frac{A_b}{A} = \frac{N\bar{c}}{\pi R}$$

Parametri di prestazione:

- Disk Loading: $DL = \frac{T}{A}$
- Power Loading: $\underline{PL} = \frac{T}{P}$

Power component	%
Ideal induced power	65 to 75 %
Profile power	15 to 25%
Nonuniform inflow	6%
Swirl in the wake	less than 1%
Tip losses	3%

Credit: https://en.wikipedia.org/wiki/File:Propeller_blade_BET.svg

r 🛶 🔫 - dr

L'atmosfera marziana impone condizioni operative totalmente nuove e molto

complesse per il volo, radicalmente differenti da quelle terrestri.

Caratteristiche dell'atmosfera: miscela di gas (95% CO₂, 2.7% N₂, 2% Ar)

		Marte ("m")	Terra ("e")	Rapporto
Densità, $ ho$	[kg/m³]	0.017	1.225	0.014
Temperatura, T	[K]	(-50°C) 223	(15°C) 288	0.77
Costante specifica del gas, R	[J/(kg K)]	188.9	287	0.66
Rapporto dei calori specifici, γ		1.289	1.4	0.92
Viscosità dinamica, μ	[N s/m²]	1.13*10^-5	1.75*10^-5	0.65
Pressione, P	[Pa]	716.60	1013250	7*10^-4
Accelerazione di gravità alla supe	3.71	9.81	0.38	

→ Quindi: bassissima densità, bassa temperatura, minore costante del gas

Università Degli Studi di Padova

Aumentare l'area del disco

(raggio). Dalla B.E.T.:

Bassa densità: a parità di spinta, dev'essere elaborata una portata volumetrica maggiore rispetto alla Terra → 2 possibilità:

 Accelerare maggiormente la portata d'aria. Dalla M.T.:

Bassa densità: → Numeri di Reynolds bassi e

ultra-bassi -> Dinamica del flusso differente

(regime laminare).

Bassa temperatura e minore costante specifica del gas R:

-> Velocità del suono minore: $a_m = \sqrt{\gamma_m R_m T_m} = 233 \ m/s = 68.5\% \ a_e$

Impone ulteriori ostacoli alla generazione di spinta, limitando $(U_{tip} = \omega R)$:

- Raggio del disco (area, già limitata dagli ingombri)
- Regime di rotazione

→ Scelta di progetto: $M_{tip} \le 0.7 \rightarrow U_{tip} = M_{tip}a_m \approx 163 \frac{m}{s} \rightarrow rpm_{lim} = \frac{U_{tip}2\pi}{R} \approx 2600 rpm$

Reynolds bassi e Mach elevati: mancanza di dati storici 1.0 e sperimentali. - Dai test sui profili alari è emerso:

- I profili convenzionali terrestri per regimi subsonici non sono adatti. Grosso spessore - alto drag e immediato distacco S.L. laminare.
- I profili più performanti sono molto sottili (simili a lastre piane) e con leggera curvatura.

0.07

MH radial stations

Condizioni operative

Φ

0

0 -000

œ

UAV reference

0.9

0.8

0.7

≥ ₩ 0.6

sono disponibili

high speed

sperimenta

DIPARTIMENTO **SVILUPPI FUTURI – ADVANCE MARS HELICOPTER DI INGEGNERIA** INDUSTRIALE

2.5

³13

2

1.5

m_{payload} [kg]

Obiettivi per il futuro: trasporto di un **payload**, maggiore autonomia di volo. - Strategie: ottimizzare i profili per $M_{tip} \sim 0.9$ e per aumentare l'efficienza.

[kg]

[kg]

[m]

hover [s]

Regime di

 $[N/m^2]$

Solidità

«totale»

(C_T/Solidità)

Interpolando i dati del MH e del $AMH \rightarrow massa a vuoto del drone$ in funzione della massa del payload e dell'autonomia di volo. Siano:

$$a := \frac{m_{a \ vuoto}}{t_{volo}} = \frac{(m_{totale} - m_{payload})}{t_{volo}}$$

$$b := \frac{a_{AMH} - a_{MH}}{m_{payload AMH} - m_{payload MH}} = 0.0577 \, s^{-1}$$

$$\implies m_{a \, vuoto} = \left(b \cdot m_{payload} + \frac{m_{totale \, MH}}{t_{volo \, MH}} \right) \cdot t_{volo}$$

m_{a vuoto} = f(m_{payload},t_{volo}) Fissato R=0.605 m 20 г Autonomia di volo 18 90 s 120 s 16 180 s 300 s 14 600 s 0 MH [kg] 12 O AMH vnoto 10 aa 8 **Conceptual Advanced** Mars Helicopter (AMH) Advanced Mars Helicopter Mars Helicopter Massa totale 1.8 4.6 0.5 1.5 2 2.5 0 m_{payload} [kg] Massa payload 0 1.3 P_i=P_i(m_{pavload},t_{volo}) Fissato R=0.605 m Autonomia in 90 120 2500 Autonomia di volo Raggio rotori 0.605 0.605 90 s - 120 s 2000 180 s Numero rotori 2 2 - 300 s - 600 s coassiali coassiali 0 MH Mach al tip (163 (186 1500 O AMH ₽ N (velocità al tip) m/s) 0.7 m/s) 0.8 2575 2900 1000 rotazione [rpm] **Disk loading** 7*10^-4 716.60 500 0.148 0.248 Blade loading 0.1 0.115

0

0.5

Corso di Laurea in Ingegneria Aerospaziale

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE CONFRONTO CON UN DRONE TERRESTRE

Per comprendere quanto le condizioni operative marziane impattino sull'efficienza del velivolo, viene proposto il seguente confronto:

→ Come esempio di drone terrestre si considera un DJI Phantom 4

	c [m]	U [m/s]	Re				
ip (=0.9R)	0.012	76	6.4*10^4		Phantom 4 (Terra)	MH (Marte)	AMH (Marte)
oot (=0.1R)	0.025	7.6	1.3*10^4				
				Raggio [m]	0.12	0.605	0.605
	DJI			Area totale rotori [m2]	0.18096	2.2998	2.2998
	Phantom 4			RPM	6000	2575	2900
lassa totale	1.38			C_d medio	0.03	0.05	0.04
<g]< td=""><td></td><td></td><td></td><td>Solidità (singolo rotore)</td><td>0.1</td><td>0.074</td><td>0.124</td></g]<>				Solidità (singolo rotore)	0.1	0.074	0.124
lassa payload	0.2			Massa totale [kg]	1.38	1.8	4.6
<g]< td=""><td></td><td>→ II</td><td>«coefficiente (di prestazione)</td><td>Massa payload [kg]</td><td>0.2</td><td>0.05</td><td>1.3</td></g]<>		→ II	«coefficiente (di prestazione)	Massa payload [kg]	0.2	0.05	1.3
utonomia in	28	gener	ale» intende dare un auadro	Autonomia in hover [min]	28	1.5	2
over [min]		gener			0	0	0
aggio rotori	0.12	comp	lessivo dell'efficienza del	Disk Loading [N/m2]	74.813	2.9037	7.4206
nj umero rotori	1	mezz	o in relazione alla massa di	Velocità indotta [m/s]	5.5259	9.2414	14.773
annero rotori Iach al tin	(76 m/s)	paylo	ad e all'autonomia di volo.	Potenza indotta [W]	89.771	74.057	302.55
/elocità al tip)	0 22	Indico	a la potenza media da fornire	P_i [%]	71.587	48.559	65.838
eaime di	6000	affind	hé 1 kg di payload possa	Potenza di profilo [W]	35.631	78.454	156.99
otazione	0000	volare	e per 1 minuto:	P_0 [%]	28.413	51.441	34.162
pm]			P	Potenza totale [W]	125.4	152.51	459.54
olidità	0.1		$- \frac{P_{tot}}{P_{tot}}$	Power Loading [N/W]	0.10796	0.043787	0.037137
d medio	0.03	-	gen ⁻ $m{payload}$ t_{volo}	Coefficiente generale [W/(kg s)]	22.393		176.74
		1					

A Gennaio 2024 una pala del Mars Helicopter si è danneggiata durante un atterraggio. Report missione:

- 5 voli inizialmente programmati
- 72 voli compiuti, 130 minuti in volo, 17 km coperti

Credit: https://mars.nasa.gov/news/9540/after-three-years-on-mars-nasas-ingenuity-helicopter-mission-ends/

www.dii

- Wayne Johnson, Rotorcraft Aeromechanics
- NASA/TM—2020–220485, Mars Science Helicopter Conceptual Design. (2020)
- NASA Ames Research Center, Jet Propulsion Laboratory, An Advanced Mars Helicopter Design
- Witold J. F. Koning, Wayne Johnson, Brian G. Allan, Generation of Mars Helicopter Rotor Model for Comprehensive Analyses
- Colin P. Coleman, Ames Research Center, Moffett Field, California, A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research
- Jet Propulsion Laboratory, NASA Ames Research Center, Guidance and Control for a Mars Helicopter
- Jet Propulsion Laboratory, NASA Ames Research Center, Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses
- Veritasium, Mars helicopter, https://www.youtube.com/watch?v=GhsZUZmJvaM
- https://www.dji.com/it/phantom-4-pro-v2/specs
- M Islam et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 270 012007
- Hamel, T. & Mahony, Robert & Lozano, R. & Ostrowski, Jim. DYNAMIC MODELLING AND CONFIGURATION STABILIZATION FOR AN X4-FLYER. (2002)
- H. Bouadi, M. Bouchoucha, M. Tadjine, MODELLING AND STABILIZING CONTROL LAWS DESIGN BASED ON BACKSTEPPING FOR AN UAV TYPE-QUADROTOR. (2007)
- Rousseau, Gauthier. (2019). Optimal trajectory planning and predictive control for cinematographic flight plans with quadrotors.
- Mars Ingenuity Helicopter, 3D Model, https://mars.nasa.gov/resources/25043/mars-ingenuity-helicopter-3d-model/