

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA MAGISTRALE IN

Control Systems Engineering

“Deep Reinforcement Learning Approaches for the Game of Briscola”

 Relatore: Prof. Gian Antonio Susto

Laureando: Amanpreet Singh

ANNO ACCADEMICO 2022 – 2023

Data di laurea 13/04/2023

DIPARTIMENTO

DI INGEGNERIA

DELL’INFORMAZIONE

To my family

and friends

Abstract

Reinforcement learning is increasingly becoming one of the most interesting

areas of research in recent years. It is a machine learning approach that aims to

design autonomous agents capable of learning from interaction with the envi-

ronment, similar to how a human does. This peculiarity makes it particularly

suitable for sequential decision making problems such as games. Indeed games

are a perfect testing ground for reinforcement learning agents, due to a con-

trolled environment, challenging tasks and a clear objective. Recent advances in

deep learning allowed reinforcement learning algorithms to exceed human level

performance in multiple games, the most notorious example being AlphaGo. In

this thesis work we will apply deep reinforcement learning methods to Briscola,

one of the most popular card games in Italy. After formalizing the two-player

Briscola as a RL problem, we will apply two algorithms: Deep Q-learning and

Proximal Policy Optimization. The agents will be trained against a random

agent and an agent with predefined moves. The win rate will be used as a

performance measure to compare the final results.

Sommario

Il reinforcement learning sta diventando sempre di più una delle aree di ricerca

più interessanti negli ultimi anni. Si tratta di un approccio di machine learn-

ing che mira alla progettazione di agenti autonomi in grado di apprendere

dall’interazione con l’ambiente, in modo simile ad un essere umano. Questa

peculiarità lo rende particolarmente adatto a problemi che richiedono decisioni

sequenziali, come i giochi. Infatti i giochi sono un terreno di prova perfetto

per algoritmi di reinforcement learning, grazie all’ambiente controllato, com-

piti impegnativi e un obiettivo chiaro. I recenti progressi nel deep learning

hanno permesso agli algoritmi di reinforcement learning di superare il livello di

prestazione umano in diversi giochi, l’esempio più noto è AlphaGo. In questo

lavoro di tesi applicheremo metodi di reinforcement learning alla Briscola, uno

dei giochi di carte più popolari in Italia. Dopo aver formalizzato la Briscola a

due giocatori come un problema di RL, applicheremo due algoritmi: il Deep Q-

learning e il Proximal Policy Optimization. Gli agenti saranno addestrati contro

un agente casuale e un agente con mosse predefinite. La percentuale di vittorie

sarà usata come misura delle prestazioni per confrontare i risultati finali.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xv

List of Acronyms xvii

1 Introduction 1

1.1 Thesis Outline . 1

2 The Game of Briscola 3

2.1 The Cards . 3

2.2 Rules . 4

3 Introduction to Reinforcement Learning 7

3.1 The Reinforcement Learning Framework 8

3.2 Finite Markov Decision Processes 9

3.3 Tabular Methods . 13

3.4 Function Approximation . 17

3.5 Reinforcement Learning Algorithms 18

4 Deep Q-learning 21

4.1 The Algorithm . 21

5 Proximal Policy Optimization 25

5.1 Reinforce . 26

5.2 Trust Region Policy Optimization 27

5.3 PPO with Clipped Objective . 28

ix

CONTENTS

6 Problem Formalization 31

6.1 State of the Agent . 31

6.2 Actions . 34

6.3 Reward Function . 35

7 Experiments and Results 37

7.1 Random Agent and Rules Based Agent 37

7.2 Deep Q-Network Agent . 38

7.3 Deep Recurrent Q-Network Agent 40

7.4 PPO Agent . 42

7.5 Comparison . 43

8 Conclusions and Future Works 47

References 49

Acknowledgments 51

x

List of Figures

2.1 Example of cards of the four different suits 5

3.1 Agent-environment interaction . 8

3.2 Graphical representation of a MP with two states, the arrows are

labeled with the transition probabilities. 10

3.3 Diagram of the MDP of a recycling robot, example from Sutton

and Barto. 11

3.4 RL algorithms, picture from OpenAI Spinning Up website 19

4.1 Representation of a Q-network . 22

6.1 State vector . 33

6.2 State-2 . 34

7.1 DQN results . 39

7.2 Learned Q-values . 40

7.3 DRQN results . 41

7.4 PPO results . 43

7.5 DQN after further training . 45

xi

List of Tables

2.1 Four suits . 3

2.2 Point values of the cards . 4

6.1 An example of labeling . 32

6.2 One-hot encoding of the four suits 32

7.1 DQN training hyperparameters . 39

7.2 DRQN training hyperparameters 41

7.3 PPO training hyperparameters . 42

7.4 Win rates comparison . 43

7.5 Win rates after 100k episodes of training (on 10k games) 44

xiii

List of Algorithms

1 On policy first-visit MC control (for 𝜖-soft policies), estimates𝜋 ≈ 𝜋∗ 14

2 Sarsa (on-policy TD control) for estimating 𝑄 ≈ 𝑞∗ 15

3 Q-learning (off-policy TD control) for estimating 𝜋 ≈ 𝜋∗ 16

4 Deep Q-learning with Experience Replay 23

5 REINFORCE (episodic), for estimating 𝜋𝜽 ≈ 𝜋∗ 27

6 PPO-Clip . 29

xv

List of Acronyms

RL Reinforcement Learning

MP Markov Process

MRP Markov Reward Process

MDP Markov Decision Process

DP Dynamic Programming

MC Monte Carlo

TD Temporal Difference

DQN Deep Q-Network

DRQN Deep Recurrent Q-Network

PPO Proximal Policy Optimization

xvii

1
Introduction

Reinforcement learning (RL) is a machine learning approach to learning from

interactions. It has a variety of applications in problems that require sequen-

tial decision making. Games are often the ideal domain to test different RL

algorithms since they provide a controlled environment with challenging tasks

and a clear objective. Recent advances in deep learning allowed reinforcement

learning algorithms to exceed human level performance in multiple games. The

most famous example of this is the game of Go, considered to be one of the most

challenging games for AI. In fact for years most AI approaches were only able

to compete against amateur human players. Then the team at DeepMind devel-

oped AlphaGo which combined tree search, deep learning and reinforcement

leaning. Their algorithm in 2016 was able to win against Lee Sedol (winner of 18

world titles). This was a major breakthrough in the field of artificial intelligence

and showed the huge potential of deep reinforcement learning.

1.1 Thesis Outline

The remaining part of this thesis is structured as follows:

• Chapter 2 briefly presents the game of Briscola and its rules.

• Chapter 3 introduces the key concept in reinforcement learning.

• Chapter 4 describes the Deep Q-learning algorithm.

• Chapter 5 covers the Proximal Policy Optimization algorithm.

1

1.1. THESIS OUTLINE

• Chapter 6 describes the state representation and the reward function used.

• Chapter 7 presents the training setup and the results.

• Chapter 8 concludes the thesis with some considerations about future
work.

2

2
The Game of Briscola

Briscola is one of the most popular card games in Italy. It can have two to

six players and can be played either individually or in teams. It is a trick-taking

game, meaning that a player leads by throwing down a card and the other

players take turns and try to beat it with a higher card in that suit or a card from

the same suit of the "briscola". Whoever wins the trick leads the next one. To

win the game a player, or a team, have to accumulate more points than the other

players, or teams.

2.1 The Cards

The deck used to play the game is a forty card Italian style deck. The cards

are divided into four suits. These suits and their corresponding Italian names

are shown in Table 2.1 while point value is shown in Table 2.2 where the cards

are ranked from low to high. The total number of points in the deck is equal to

120.

Italian name Suit

Denari Coins

Spade Swords

Coppe Cups

Bastoni Batons

Table 2.1: Four suits

3

2.2. RULES

In Figure 2.1 we show some examples of cards: Three of Coins, King of Swords,

Jack of Cups and Ace of Batons. These cards are from the "trevigiane" or

"trevisane" deck, and several other regional decks exist.

Italian name Card Points

Due Two 0

Quattro Four 0

Cinque Five 0

Sei Six 0

Sette Seven 0

Fante Jack 2

Cavallo Knight 3

Re King 4

Tre Three 10

Asso Ace 11

Table 2.2: Point values of the cards

2.2 Rules

Here we describes more in detail how the game is played. At the beginning

the deck is shuffled and each player is given three cards. Then another card is

taken out from the deck and put face up underneath it. This card establishes

which is the trump suit (the highest suit) for the current game. A card from this

suit is called briscola. The first hand starts with the player on the right of the

dealer who plays a card by putting it face up on the table. The suit of this card

becomes the lead suit for the current hand. Then, following an anti-clockwise

order, all the other players take turns and play their chosen card. Players are not

required to play cards in the lead suit. If no briscola was played then the player

who played the highest card in the lead suit wins the trick, otherwise the player

who played the highest briscola wins. The winner collects all the played cards

and puts them in its own pile or the team’s pile. Then every player draws one

card from the deck starting from the winner and going anti-clockwise. Before

the last hand, teammates can look at each other cards once. The game ends

when all the cards have been played. After the end the players or the teams

calculates their points by summing all the points from the cards in their pile.

4

CHAPTER 2. THE GAME OF BRISCOLA

Whichever player or team accumulates more points than the others wins.

Figure 2.1: Example of cards of the four different suits

5

3
Introduction to Reinforcement

Learning

Reinforcement learning is a computational approach to learning from in-

teractions. It is an interdisciplinary field, situated at an intersection between

Artificial Intelligence and Control Theory. It encompasses a variety of concepts

drawn from other fields such as Optimization, Neuroscience and Mathematics.

It differs from the traditional supervised and unsupervised learning frameworks

because data is not available in advance but it is collected by the learner, the

agent, by interacting with the environment. This aspect of reinforcement learn-

ing makes it particularly suitable for problems that require sequential decision

making, such as games. By gathering experience from the environment the

agent optimizes its actions over time to solve the specified task and achieve

the desired goal. The fundamental concept on which reinforcement learning is

based on is the reward hypothesis: "That all of what we mean by goals and purposes

can be well thought of as the maximization of the expected value of the cumulative sum

of a received scalar signal (called reward)" [11].

Some of the applications of reinforcement learning are in:

• Games

• Autonomous agents, such as self-driving cars, robots, drones...

• Heat, Ventilating and Air Conditioning (HVAC) energy optimization.

• Recommendation systems and online advertising.

7

3.1. THE REINFORCEMENT LEARNING FRAMEWORK

3.1 The Reinforcement Learning Framework

The two entities that interact with each other in a reinforcement learning

problem are the agent and the environment. At each time step 𝑡 the agent

receives a reward signal 𝑅𝑡 from the environment and its state is updated to

𝑆𝑡 . The state 𝑆𝑡 is an exhaustive description of the system (the agent and the

environment) at time step 𝑡. Based on the state the agent chooses an action 𝐴𝑡

according to its policy 𝜋. The policy defines the behavior of the agent. It is a

mapping from states to actions. The mapping could either be deterministic, in

that case it is a function 𝑎 = 𝜋(𝑠), or stochastic, i.e. 𝑎 ∼ 𝜋 (𝑎 | 𝑠). The state 𝑆𝑡 and

the action 𝐴𝑡 chosen by agent determine the reward and state at the next time

step 𝑅𝑡+1, 𝑆𝑡+1 respectively. This interaction is depicted in Figure 3.1

Figure 3.1: Agent-environment interaction

Since past actions influence future rewards, a good policy should not only choose

actions that maximize the immediate reward 𝑅𝑡+1 but also all the future rewards

𝑅𝑡+2, 𝑅𝑡+3, 𝑅𝑡+4, ... What we are looking for is to maximize the cumulative re-

ward. For some tasks, called episodic tasks, we assume that the interaction

between the agent and the environment is divided in episodes, where each

episode is independent from another. We define the return 𝐺𝑡 as the cumulative

reward starting at time step 𝑡 as follows

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + 𝑅𝑡+4 + ... + 𝑅𝑇

Where 𝑇 is the final time step of that episode, after that the agent is in a terminal

state and another independent episode can start. However this is not always

the case because some other tasks cannot easily be divided in episodes, these

are called continuing tasks. A discount factor 𝛾 ∈ [0, 1] is introduced in the

return to make it mathematically more tractable and also because depending on

8

CHAPTER 3. INTRODUCTION TO REINFORCEMENT LEARNING

the problem in consideration it could be better for the agent to focus more on

immediate or long term rewards.

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑅𝑡+4 + ... =

∞∑

𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 (3.1)

If 𝛾 = 0 then the agent only gives value to the present reward ("myopic").

If 𝛾 = 1 then the agent gives the same importance to all rewards, even if they

are far in the future ("far-sighted"). If the task is an episodic task, meaning that

it terminates after a finite number of steps 𝑇, which could be different for each

episode, then the sum is truncated. Since the reward at each step is stochastic,

the return is also a stochastic quantity. It is possible to decompose the return as

the immediate reward plus the discounted return of the successor state as

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑅𝑡+4 + ...

= 𝑅𝑡+1 + 𝛾(𝑅𝑡+2 + 𝛾𝑅𝑡+3 + 𝛾2𝑅𝑡+4 + ...)

= 𝑅𝑡+1 + 𝛾𝐺𝑡+1

(3.2)

3.2 Finite Markov Decision Processes

Markov decision processes (MDPs) are the mathematical formalism that is

used in reinforcement learning. These are an extension of the Markov pro-

cesses (MPs) and Markov reward processes (MRPs). An MDP is an idealized

abstraction of the sequential decision making problem. A Markov process is a

memoryless random process, i.e. a sequence of random states 𝑆1, 𝑆2, 𝑆3... with

the Markov property. A state 𝑆𝑡 is Markov if and only if

P [𝑆𝑡+1 | 𝑆𝑡] = P [𝑆𝑡+1 | 𝑆1, ..., 𝑆𝑡]

Formally a Markov process is a tuple ⟨𝒮 ,𝒫⟩ where:

• 𝒮 is a finite set of states.

• 𝒫 is transition probabilities matrix with entries

𝒫𝑠𝑠′ = P [𝑆𝑡+1 = 𝑠′ | 𝑆𝑡 = 𝑠]

9

3.2. FINITE MARKOV DECISION PROCESSES

𝑞𝜋(𝑠, 𝑎) = E𝜋 [𝐺𝑡 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (3.4)

We can decompose them as done for the return in 3.2

𝑣𝜋(𝑠) = E𝜋 [𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1) | 𝑆𝑡 = 𝑠] (3.5)

𝑞𝜋(𝑠, 𝑎) = E𝜋
[
𝑅𝑡+1 + 𝛾𝑞𝜋(𝑆𝑡+1, 𝐴𝑡+1) | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]
(3.6)

These two are fundamental quantities in reinforcement learning. For instance

if the agent has an estimate of the action-value function, it is possible to derive

the following policy (called greedy policy): from a state 𝑠𝑡 the agent takes the

action 𝑎𝑡 = arg max𝑎 𝑄(𝑠𝑡 , 𝑎), that is the action which maximize the expected

return from state 𝑠𝑡 . Since the agent can only have an estimate of the action-

value function, should it exploit its knowledge and select the greedy action or

explore another action that might lead to a higher return? This is known as

the exploration-exploitation dilemma. One possible trade-off is an 𝜖-greedy

policy defined as follows:

𝑎𝑡 =




arg max𝑎 𝑄(𝑠𝑡 , 𝑎) with probability 1 − 𝜖

random action with probability 𝜖
(3.7)

Where 𝜖 ∈ [0, 1] is the hyper-parameter that manages this trade-off: with 𝜖 = 0

it becomes a greedy policy while with 𝜖 = 1 it becomes the random policy that

selects all actions with equal probability. Many reinforcement algorithms rely

on estimating the action-value function and then derive an implicit policy (e.g.

𝜖-greedy policy) or learn the policy directly while maintaining an estimate of

the value function.

12

CHAPTER 3. INTRODUCTION TO REINFORCEMENT LEARNING

3.3 Tabular Methods

When the state and action spaces of a problem are small enough it is possible

to represent the approximate value function as a lookup table. In this scenario

for each state or state action pairs there is an entry corresponding to its estimated

value or action-value respectively. There are three main methods to solve finite

Markov decision problems. The first one is dynamic programming (DP) which

relies on the knowledge of an accurate model of the environment. It works

well for small MDPs but it is computationally expensive and the assumption

of the knowledge of an accurate model is not often feasible in real problems.

On the other hand Monte Carlo methods and temporal-difference learning es-

timate the value function with only experience. The main idea behind Monte

Carlo (MC) methods is to approximate the value function by averaging sam-

ple returns from each episode. This can be done both for estimating the value

function given the policy (prediction) and also for improving the current policy

(control). The algorithm starts with the policy and the 𝑄 function initialized

arbitrarily. It runs for a certain number of episodes and the agent acts according

to its policy until the end of the episode. Then the return for each state is com-

puted (backwards computation is used for efficiency) and 𝑄(𝑠, 𝑎) is updated to

average(Returns(𝑠, 𝑎)). Finally the policy is updated based on the new 𝑄. There

are slight variations of the algorithm based on the specific implementation de-

tails (first-visit, every-visit, exploring starts...). Here we show the pseudo-code

for the on-policy first-visit MC control for 𝜖-soft policies. An 𝜖-soft policy is a

policy where all actions has probability of selection at least 𝜖/|𝒜(𝑆𝑡)| and it is

used to ensure enough exploration.

13

3.3. TABULAR METHODS

Algorithm 1 On policy first-visit MC control (for 𝜖-soft policies), estimates
𝜋 ≈ 𝜋∗

1: Algorithm parameter: small 𝜖 > 0

2: Initialize:

𝜋(𝑠) ← an arbitrary 𝜖-soft policy

𝑄(𝑠, 𝑎) ∈ R (arbitrarily), for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜(𝑠)

Returns(𝑠, 𝑎) ← empty list, for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜(𝑠)

3: for each episode do

4: Choose 𝑆0 ∈ 𝒮 , 𝐴0 ∈ 𝒜(𝑆0) randomly such that all pairs have probability > 0

5: Generate an episode from 𝑆0, 𝐴0 following 𝜋: 𝑆0, 𝐴0, 𝑅1, ..., 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇

6: 𝐺← 0

7: for each step of the episode, 𝑡 = 𝑇 − 1, 𝑇 − 2, ..., 0 do

8: 𝐺← 𝛾𝐺 + 𝑅𝑡+1

9: if the pair 𝑆𝑡 , 𝐴𝑡 does not appear in 𝑆0, 𝐴0, 𝑆1, 𝐴1, ..., 𝑆𝑡−1, 𝐴𝑡−1 then

10: Append G to Returns(𝑆𝑡 , 𝐴𝑡)

11: 𝑄(𝑆𝑡 , 𝐴𝑡) ← average(Returns(𝑆𝑡 , 𝐴𝑡))

12: 𝐴∗← arg max𝑎 𝑄(𝑆𝑡 , 𝑎)

13: for all 𝑎 ∈ 𝒜(𝑆𝑡) do

𝜋(𝑎 | 𝑆𝑡) ←




1 − 𝜖 + 𝜖
|𝒜(𝑆𝑡)|

if 𝑎 = 𝐴∗

𝜖
|𝒜(𝑆𝑡)|

if 𝑎 ≠ 𝐴∗

14: end for

15: end if

16: end for

17: end for

The main drawback of this approach is that it needs to wait until the end

of the episode to perform the updates. This problem is solved by temporal-

difference (TD) learning which combines ideas from MC and DP. TD methods,

like MC methods, do not require a model of the environment but learn from raw

experience. They are similar to DP since they update estimates based on other

estimates without waiting until the end of the episode. This idea of updating

estimates based on estimates is called bootstrapping. Incremental updates

of estimates are often used in reinforcement learning, these updates take the

14

CHAPTER 3. INTRODUCTION TO REINFORCEMENT LEARNING

following form:

𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑛𝑡𝑒 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒[𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒]

In Monte Carlo methods we are estimating value and action-value functions, the

algorithms wait until the end of the episode and use the return 𝐺𝑡 as the target.

On the other hand TD methods need only to wait certain amount of timesteps

to perform the update. For example the one-step TD waits until the next step

and uses as a target 𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1). This is the best estimate of the return

at the next time step. The update rule is

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) −𝑄(𝑆𝑡 , 𝐴𝑡)] (3.8)

It is called one-step TD or TD(0) because it is a special case of the 𝑛-step TD

and TD(𝜆). Two algorithms for TD control are shown. The first, Sarsa, is an

on-policy algorithm, meaning that it uses experience from the current policy to

perform the update.

Algorithm 2 Sarsa (on-policy TD control) for estimating 𝑄 ≈ 𝑞∗

1: Algorithm parameters: step size 𝛼 ∈ (0, 1], small 𝜖 > 0

2: Initialize 𝑄(𝑠, 𝑎) ∈ R, for all 𝑠 ∈ 𝒮+, 𝑎 ∈ 𝒜(𝑠) arbitrarily except that

𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙, ·) = 0

3: for each episode do

4: Initialize 𝑆

5: Choose 𝐴 from 𝑆 using policy derived from 𝑄 (e.g. 𝜖-greedy)

6: while 𝑆 is not terminal do

7: Take action 𝐴 and observe 𝑅, 𝑆′

8: Choose 𝐴′ from 𝑆′ using policy derived from 𝑄 (e.g. 𝜖-greedy)

9: 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑄(𝑆′, 𝐴′) −𝑄(𝑆, 𝐴)]

10: 𝑆← 𝑆′

11: 𝐴← 𝐴′

12: end while

13: end for

The second, Q-learning, is an off-policy algorithm, meaning that it directly

approximate 𝑞∗ independent of the policy followed. In fact in Q-learning

the estimate is not updated with action-value of the next state and the next

15

3.3. TABULAR METHODS

action taken according to the current policy, but the maximum action-value.

Algorithm 3 Q-learning (off-policy TD control) for estimating 𝜋 ≈ 𝜋∗

1: Algorithm parameters: step size 𝛼 ∈ (0, 1], small 𝜖 > 0

2: Initialize 𝑄(𝑠, 𝑎) ∈ R, for all 𝑠 ∈ 𝒮+, 𝑎 ∈ 𝒜(𝑠) arbitrarily except that

𝑄(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙, ·) = 0

3: for each episode do

4: Initialize 𝑆

5: while 𝑆 is not terminal do

6: Choose 𝐴 from 𝑆 using policy derived from 𝑄 (e.g. 𝜖-greedy)

7: Take action 𝐴 and observe 𝑅, 𝑆′

8: 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾 max𝑎 𝑄(𝑆
′, 𝑎) −𝑄(𝑆, 𝐴)]

9: 𝑆← 𝑆′

10: end while

11: end for

Both Monte Carlo and temporal-difference learning methods have their own

advantages and disadvantages. Monte Carlo methods are easy to understand,

have good convergence properties even with function approximation and the

estimates are unbiased, however can have high variance and need to wait until

the end of the episode to compute the returns. On the other hand TD methods

do not need to wait the end of the episode and are usually more efficient, have

low variance estimates but are biased. An intuitive reason why this is the case

is that

• the return 𝐺𝑡 depends on many transitions (states, actions, rewards)

• the one step TD target depends on one transition (state, action, reward).

There are a class of algorithms that can trade-off the benefits and issues of MC

and TD, these are the 𝑛-step TD methods. This approach lies in between one-

step TD and MC. Instead of just considering one-step TD target it is possible to

use 𝑛-step return as target:

𝐺𝑡:𝑡+𝑛 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ... + 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑄𝑡+𝑛−1(𝑆𝑡+1, 𝐴𝑡+1) (3.9)

It is possible to generalize even further by combining the 𝑛-steps returns from all

time-steps and obtain TD(𝜆). We define the 𝜆-return which combines all 𝑛-step

16

CHAPTER 3. INTRODUCTION TO REINFORCEMENT LEARNING

returns in a convex combination.

𝐺𝜆
𝑡 = (1 − 𝜆)

∞∑

𝑛=1

𝜆𝑛−1𝐺𝑡:𝑡+𝑛 (3.10)

If 𝜆 = 0 the TD(0) algorithm is obtained, while if 𝜆 = 1 MC is obtained.

3.4 Function Approximation

Tabular methods do not scale up well with the size of the state and action

spaces and for some problems these spaces may even be continuous. Other than

the memory required for storing such a large lookup table, it is possible that

almost every state will never have been visited before by the agent. In this context

it is not possible to find the optimal policy and the objective becomes to find

good approximate solutions. Differentiable models such as linear models and

neural networks are used as function approximators. In particular what we try

to approximate are the value and action-value functions with a parameterized

function.

𝑣̂(𝑠,𝒘) ≈ 𝑣𝜋(𝑠)

𝑞̂(𝑠, 𝑎,𝒘) ≈ 𝑞𝜋(𝑠, 𝑎)
(3.11)

Where 𝒘 ∈ R𝑑 is the parameters or weight vector. Since typically 𝑑 << |𝒮|,

updating one weight will affect the value of multiple states or state-action pairs.

This was not the case for tabular methods where updating the value for a

particular state would not affect the other states. Since what we want is to

model input-output relationships supervised learning techniques are involved

when solving reinforcement learning problems with function approximation.

However these methods often assume a static training set and i.i.d. samples,

which is not the case for RL algorithms since the data generated by following

the policy is highly correlated and the target function changes over time as the

policy is updated. Furthermore sometimes learning has to be done on-line while

the agent is interacting with the environment. Let us consider the approximate

value function 𝑣̂(𝑠,𝒘) and the true value function 𝑣𝜋(𝑠). We would like to find

the vector of parameters 𝒘 such that the approximation is good enough. It

is possible to do that by minimizing the mean-squared error with stochastic

17

3.5. REINFORCEMENT LEARNING ALGORITHMS

gradient descent, the update rule is:

𝒘𝑡+1 = 𝒘𝑡 −
1

2
𝛼∇ [𝑣𝜋(𝑠) − 𝑣̂(𝑠,𝒘𝑡)]

2

= 𝒘𝑡 −
1

2
𝛼∇ [𝑣𝜋(𝑠) − 𝑣̂(𝑠,𝒘𝑡)] ∇𝑣̂(𝑠,𝒘𝑡)

(3.12)

Since the true value function is unknown, a target is used instead. The target,

depending on the algorithm, could be the return 𝐺𝑡 (MC), the TD(0) target

or the 𝜆-return 𝐺𝜆
𝑡 . It is important to notice that divergence and instability

problems may arise if function approximation is combined with bootstrapping

and off-policy training.

3.5 Reinforcement Learning Algorithms

Reinforcement learning algorithms can be divided two groups: model-based

and model-free. The main advantage of model-based reinforcement learning is

that the agent can plan-ahead. The main disadvantage is that an accurate model

of the environment is not usually available and learning it from experience

can be challenging. Model-free algorithms can be classified based on what

they are learning. Value-based methods learn an approximate Q-value function

and use it to derive an implicit policy (e.g. 𝜖-greedy). On the other hand

policy-based methods try to learn the policy directly. The policy is represented

explicitly and depends on parameters 𝜃. The policy is optimized with gradient

ascent to maximize an objective function 𝐽(𝜃). The main advantage of policy-

based methods is that they directly optimize the policy which is the goal of

reinforcement learning. Value-based methods, such as Q-learning, are less

stable but tends to be more data efficient when they work. Then there are

actor-critic methods that lies at the intersection of value-based and policy-based

methods and can combine them.

18

4
Deep Q-learning

Tabular reinforcement learning algorithms can be combined with function

approximation to make them effective for problems with large state and action

spaces. Several learning models can be used to achieve this but since the recent

advances in deep-learning (artificial) neural networks are often the choice. The

Deep Q-learning [5] algorithm was introduced in "Playing Atari with Deep

Reinforcement Learning" where a variant of Q-learning was combined with a

convolutional neural network. The algorithm was updated in a later paper

with the addition of several improvement such as a target network. The model

achieved impressive results and was able to surpass a human expert on three

games.

4.1 The Algorithm

At the beginning of the algorithm the network𝑄 and the target network 𝑄̂ are

initialized with the same weights. To the tabular Q-learning an experience replay

buffer is added, which contains a collection of past experiences of the agent.

These are transitions in the form of tuples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1). The agent follows an

𝜖-greedy policy and gathers experience and stores the transitions in the replay

buffer. Once the buffer contains enough samples a random batch of transitions is

sampled and used to update the network𝑄 with a variant of stochastic gradient

descent. The target values are computed using the target network 𝑄̂ instead

of 𝑄, this is done to avoid instability. The presence of the replay buffer should

21

CHAPTER 4. DEEP Q-LEARNING

Algorithm 4 Deep Q-learning with Experience Replay

1: Initialize network 𝑄 and target network 𝑄̂ with random weights.
2: Initialize replay memory 𝐷
3: while not converged do
4: 𝜖← setting new epsilon with 𝜖-decay
5: Choose an action 𝑎 from a state 𝑠 using policy 𝜖-greedy(𝑄)
6: Agent takes action 𝑎, observes reward 𝑟, and next state 𝑠′

7: Store transition (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑𝑜𝑛𝑒) in the experience replay memory 𝐷
8: if enough experiences in 𝐷 then
9: Sample a random minibatch of 𝑁 transitions from 𝐷

10: for each transition (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠
′
𝑖
, 𝑑𝑜𝑛𝑒𝑖) in the minibatch do

11: if 𝑑𝑜𝑛𝑒𝑖 then
12: 𝑦𝑖 = 𝑟𝑖
13: else
14: 𝑦𝑖 = 𝑟𝑖 + 𝛾 max𝑎′∈𝒜 𝑄̂(𝑠

′
𝑖
, 𝑎′)

15: end if
16: end for
17: Calculate the loss ℒ =

1
𝑁

∑𝑁−1
𝑖=0 (𝑄(𝑠𝑖 , 𝑎𝑖) − 𝑦𝑖)

2

18: Update 𝑄 using SGD by minimizing the loss ℒ

19: Every 𝐶 steps copy the weights from 𝑄 to 𝑄̂
20: end if
21: end while

23

5
Proximal Policy Optimization

Value-based reinforcement learning algorithms learn the action-value func-

tion and derive the policy based on it (e.g. 𝜖-greedy). Since the actual objective

is to find a good policy, why not learn it directly? This is what policy-based

reinforcement learning algorithms try to achieve. These methods have better

convergence properties and can learn truly stochastic policies while 𝜖-greedy

policies are near-deterministic, furthermore they are effective also in continuous

action spaces. The policy is parameterized and depends on parameters 𝜽

𝜋𝜃(𝑎 | 𝑠) = 𝜋(𝑎 | 𝑠, 𝜽) = P(𝐴𝑡 = 𝑎 | 𝑆𝑡 = 𝑠, 𝜽𝑡 = 𝜽) (5.1)

We would like to optimize 𝜽 such that good actions have higher probability

than bad actions. The parameters are optimized by maximizing a performance

measure 𝐽(𝜽). The update rule is

𝜽𝑡+1 = 𝜽𝑡 + 𝛼�∇𝐽(𝜽𝑡) (5.2)

�∇𝐽(𝜽𝑡) is a stochastic estimate whose expectation approximates the gradient of

𝐽(𝜽𝑡) with respect to 𝜽𝑡 . The choice of the performance measure is different

whether the task is continuing or episodic.

25

5.1. REINFORCE

5.1 Reinforce

Let us consider episodic tasks with discrete action space. A typical parametriza-

tion of the policy is the Exponential Softmax Distribution.

𝜋(𝑎 | 𝑠, 𝜽) =
𝑒 ℎ(𝑠,𝑎,𝜽)∑
𝑏 𝑒

ℎ(𝑠,𝑏,𝜽)
(5.3)

ℎ(𝑠, 𝑎, 𝜽) represents a parameterized numerical preference, the higher the pref-

erence the more often an action is selected. The action preferences can be the

output of a linear model or a neural network. Without loss of generality, we

can assume that each episode starts in a particular non random state 𝑠0. The

performance measure is defined as

𝐽(𝜽) = 𝑣𝜋𝜃(𝑠0) (5.4)

The policy gradient theorem for the episodic case states

∇𝐽(𝜽) ∝
∑

𝑠

𝜇(𝑠)
∑

𝑎

𝑞𝜋(𝑠, 𝑎)∇𝜋(𝑎 | 𝑠, 𝜽) (5.5)

𝜇(𝑠) denotes the on-policy state distribution under the policy 𝜋. It is implicit

that the gradient is with respect to 𝜽 and also that the policy depends on 𝜽. The

constant of proportionality is the average length of an episode for the episodic

case while for the continuing case it is equal to 1.

∇𝐽(𝜽) ∝
∑

𝑠

𝜇(𝑠)
∑

𝑎

𝑞𝜋(𝑠, 𝑎)∇𝜋(𝑎 | 𝑠, 𝜽)

= E𝜋

[∑

𝑎

𝑞𝜋(𝑆𝑡 , 𝑎)∇𝜋(𝑎 | 𝑆𝑡 , 𝜽)

]
(policy 𝜋 is followed)

= E𝜋

[∑

𝑎

𝜋(𝑎 | 𝑆𝑡 , 𝜽)𝑞𝜋(𝑆𝑡 , 𝑎)
∇𝜋(𝑎 | 𝑆𝑡 , 𝜽)

𝜋(𝑎 | 𝑆𝑡 , 𝜽)

]

= E𝜋

[
𝑞𝜋(𝑆𝑡 , 𝐴𝑡)

∇𝜋(𝐴𝑡 | 𝑆𝑡 , 𝜽)

𝜋(𝐴𝑡 | 𝑆𝑡 , 𝜽)

]
(replacing 𝑎 with 𝐴𝑡 ∼ 𝜋)

= E𝜋

[
𝐺𝑡
∇𝜋(𝐴𝑡 | 𝑆𝑡 , 𝜽)

𝜋(𝐴𝑡 | 𝑆𝑡 , 𝜽)

]
(since 𝑞𝜋(𝑆𝑡 , 𝐴𝑡) = E[𝐺𝑡 | 𝑆𝑡 , 𝐴𝑡])

(5.6)

26

CHAPTER 5. PROXIMAL POLICY OPTIMIZATION

The update rule is

𝜽𝑡+1 = 𝜽𝑡 + 𝛼𝐺𝑡
∇𝜽𝜋(𝐴𝑡 | 𝑆𝑡 , 𝜽)

𝜋(𝐴𝑡 | 𝑆𝑡 , 𝜽)

= 𝜽𝑡 + 𝛼𝐺𝑡∇𝜽 ln𝜋(𝐴𝑡 | 𝑆𝑡 , 𝜽𝑡)

(5.7)

This is the REINFORCE algorithm, it takes the Monte Carlo approach to estimate

the gradient.

Algorithm 5 REINFORCE (episodic), for estimating 𝜋𝜽 ≈ 𝜋∗

1: Input: a differentiable policy parameterization 𝜋(𝑎 | 𝑠, 𝜽)
2: Algorithm parameter: step size 𝛼 > 0
3: Initialize policy parameters 𝜃
4: for each episode do
5: Generate an episode 𝑆0, 𝐴0, 𝑅1, ..., 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇 following 𝜋
6: for each step of the episode 𝑡 = 0, ..., 𝑇 − 1 do
7: 𝐺← return from step 𝑡 (𝐺𝑡)
8: 𝜽← 𝜽 + 𝛼𝐺𝑡∇𝜽 ln𝜋(𝐴𝑡 | 𝑆𝑡 , 𝜽)
9: end for

10: end for

Being a Monte Carlo algorithm it suffers from high variance since some episodes

could end well with very high returns while other could end with very low

returns. To reduce the variance a baseline is subtracted from the return. The

baseline 𝑏(𝑆𝑡) should only depend on the state and not on the action. If that is

the case the introduction of the baseline results in lower variance. A choice for

the baseline is a learned value function.

𝜽𝑡+1 = 𝜽𝑡 + 𝛼(𝐺𝑡 − 𝑏(𝑆𝑡))∇𝜽 ln𝜋(𝐴𝑡 | 𝑆𝑡 , 𝜽𝑡) (5.8)

5.2 Trust Region Policy Optimization

Policy gradient methods compute the steepest ascent direction for the per-

formance measure 𝐽(𝜽), and take a gradient step to update the policy. Finding

a good step size is challenging. If the step is too small learning becomes slow,

but if it is too large the updated policy can change too much. If a lot of large

"bad" steps are taken the policy can go too far in the parameters space. It could

become very hard to recover from these bad updates. The main idea of the Trust

Region Policy Optimization (TRPO) algorithm is to take the largest possible step

27

5.3. PPO WITH CLIPPED OBJECTIVE

which improves performance without going too far from the current policy. To

achieve this TRPO adds an additional constraint to the problem: the Kullback-

Leibler divergence between the updated and current policy should be less than a

threshold 𝛿. The KL-divergence is a measure of how different two probabilities

distributions are. If the policy is 𝜋𝜽 with parameters 𝜽, the theoretical update

for TRPO is

𝜃𝑘+1 = arg max
𝜃
ℒ(𝜃𝑘 , 𝜃)

subject to 𝐷𝐾𝐿(𝜃 | | 𝜃𝑘) ≤ 𝛿
(5.9)

Where 𝐷𝐾𝐿(𝜃 | | 𝜃𝑘) is the average KL-divergence between the new and old

policy on the state visited following the old policy. ℒ(𝜃𝑘 , 𝜃) measures how the

the policy 𝜋𝜃 performs relative to the old policy 𝜋𝜃𝑘

ℒ(𝜃𝑘 , 𝜃) = E𝑠,𝑎∼𝜋𝜃𝑘

[
𝜋𝜃(𝑎 | 𝑠)

𝜋𝜃𝑘 (𝑎 | 𝑠)
𝐴𝜋𝜃𝑘 (𝑠, 𝑎)

]
(5.10)

𝐴𝜋(𝑠, 𝑎) is the advantage function, it measures how good is to take action 𝑎

relative to all other actions from state 𝑠.

𝐴𝜋(𝑠, 𝑎) = 𝑞𝜋(𝑠, 𝑎) − 𝑣𝜋(𝑠) (5.11)

The advantage has to be estimated, for example using generalized advantage es-

timation (GAE) [6]. This is the theory behind TRPO. The actual implementation

of the algorithm makes approximations which we will not discuss.

5.3 PPO with Clipped Objective

The Proximal Policy Optimization (PPO) [7] algorithm tries to solve the same

problem as TRPO with a different approach. Instead of adding an optimization

constraint like TRPO, the PPO-Clip maximize a surrogate objective function.

𝐿(𝑠, 𝑎, 𝜃𝑘 , 𝜃) = min

(
𝜋𝜃(𝑎 | 𝑠)

𝜋𝜃𝑘 (𝑎 | 𝑠)
𝐴𝜋𝜃𝑘 (𝑠, 𝑎), clip

(
𝜋𝜃(𝑎 | 𝑠)

𝜋𝜃𝑘 (𝑎 | 𝑠)
, 1 − 𝜖, 1 + 𝜖

)
𝐴𝜋𝜃𝑘 (𝑠, 𝑎)

)

28

CHAPTER 5. PROXIMAL POLICY OPTIMIZATION

A simplified version is

𝐿(𝑠, 𝑎, 𝜃𝑘 , 𝜃) = min

(
𝜋𝜃(𝑎 | 𝑠)

𝜋𝜃𝑘 (𝑎 | 𝑠)
𝐴𝜋𝜃𝑘 (𝑠, 𝑎), 𝑔(𝜖, 𝐴𝜋𝜃𝑘 (𝑠, 𝑎))

)
(5.12)

where

𝑔(𝜖, 𝐴) =




(1 + 𝜖)𝐴 𝐴 ≥ 0

(1 − 𝜖)𝐴 𝐴 < 0

If the ratio 𝜋𝜃(𝑎 | 𝑠)/𝜋𝜃𝑘 (𝑎 | 𝑠) is > 1 then the action 𝑎 becomes more likely

in the updated policy with respect to the old policy. If the ratio is between 0

and 1 then the action becomes less likely. If the advantage of state-action pair

is positive the algorithm should increase the probability of taking that action.

On the other hand if the advantage is negative the algorithm should decrease

the probability of taking that action. However the presence of the clipping and

the min(·, ·) ensures that these updates do not change the policy dramatically.

The clipping parameter 𝜖 controls how conservative the algorithm is in the

updates.

Algorithm 6 PPO-Clip

1: Input: intial policy parameters 𝜃0, initial value function parameters 𝜙0

2: for 𝑘 = 0, 1, 2, ... do
3: Collect a set of trajectories 𝒟𝑘 = {𝜏𝑖} by running the policy 𝜋𝑘 = 𝜋(𝜃𝑘) in the

environment.
4: Compute rewards-to-go 𝑅̂𝑡 .

5: Compute advantage estimates, 𝐴̂𝑡 (Using any method of advantage estima-
tion) based on the current value function 𝑉𝜙𝑘 .

6: Update the policy by maximizing the PPO-Clip objective:

𝜃𝑘+1 = arg max
𝜃

1

|𝒟𝑘 |𝑇

∑

𝜏∈𝒟𝑘

𝑇∑

𝑡=0

min

(
𝜋𝜃(𝑎𝑡 | 𝑠𝑡)

𝜋𝜃𝑘 (𝑎𝑡 | 𝑠𝑡)
𝐴𝜋𝜃𝑘 (𝑠𝑡 , 𝑎𝑡), 𝑔(𝜖, 𝐴

𝜋𝜃𝑘 (𝑠𝑡 , 𝑎𝑡))

)

typically via stochastic gradient ascent with Adam.
7: Fit value function by regression on mean-squared error:

𝜙𝑘+1 = arg min
𝜙

1

|𝒟𝑘 |𝑇

∑

𝜏∈𝒟𝑘

𝑇∑

𝑡=0

(
𝑉𝜙(𝑠𝑡) − 𝑅̂𝑡

)2

typically via some gradient descent algorithm.
8: end for

29

5.3. PPO WITH CLIPPED OBJECTIVE

Since the policy is stochastic it should be able to achieve a good level of explo-

ration by itself. Usually during the training process the policy progressively

becomes less random since some actions start to be preferred over others. The

level of "randomness" of the policy is measured by its entropy. The entropy

starts high and decreases over time until it reaches a stable value. If this process

happens too quickly then the agent has not done enough exploration. To avoid

this an entropy bonus can be added to the algorithm.

30

6
Problem Formalization

In this chapter we will formalize the two-player Briscola game as a reinforce-

ment learning problem. Our primary objective is to find an appropriate repre-

sentation of the state and a suitable reward function. This is a very important

step since the reward function determines the goal of the agent and ultimately

its behavior. A state that is a good description of the agent-environment system

is also necessary to learn an effective policy.

6.1 State of the Agent

To derive the state we can start by considering what a human player "sees"

and "thinks" during the game. At each step of the game the human player sees

its own cards, the played card on the table, if there is any, and knows which

card is the briscola. It is reasonable to think that this information should be

contained also in the state of the agent. The human player also knows how

many points he has so far and has an idea of what cards have already been

played and cannot be in the remaining deck or in the opponent’s hand. The

human player knows at which step the game is, and depending on how many

hands are left, can play more or less aggressively. To summarize the agent state

must contain information about

• its own cards

• the played card on the table, if there is any

• which is the briscola card (or just the briscola suit) for that episode

31

6.1. STATE OF THE AGENT

• how many points has the agent so far

• at which step the game is

And for each card (its own or played on the table)

• the name of the card (whether it is Two, King, Ace...)

• the suit of the card (whether it is Coins, Swords, Cups or Batons)

The choice of the state vector embedding this information is not unique. Let

us start by considering a single card. We can label the card names with ten

numbers from 0 to 9 and label the four seeds with number from 0 to 3 or use a

one-hot encoding. One possible labeling could be

name label

Ace 0

Two 1

Three 2

Four 3

Five 4

Six 5

Seven 6

Jack 7

Knight 8

King 9

Table 6.1: An example of labeling

We can then use a vector of six features to represent a single card:

• a number from 0 to 9 (the name of the card)

• a boolean: 1 if is a briscola, 0 otherwise

• one-hot encoding of the suit

suit one-hot encoding

Batons [1, 0, 0, 0]

Cups [0, 1, 0, 0]

Coins [0, 0, 1, 0]

Swords [0, 0, 0, 1]

Table 6.2: One-hot encoding of the four suits

32

CHAPTER 6. PROBLEM FORMALIZATION

6.3 Reward Function

There are several different ways that we can design the reward function

depending on what is the desired agent’s behavior. One approach could be to

give a reward only at the end of the episode: a positive reward of +1 for winning

and a negative reward of −1 for losing. This is a reasonable starting point and

the policy will be optimized to win. The main problem of this kind of sparse

rewards is that if winning is rare the training becomes very slow. This could be

especially problematic for on-policy algorithms. We can try to design a more

dense reward function giving a +1 reward at each step if the agent wins the

hand or −1 if the agent loses the hand. This could lead to a policy where the

agent tries to win the most amount of hands as possible, no matter how many

points he wins. The learned policy is not ideal. A better approach would be to to

give a reward equal to the points, positive if the agent wins the points, negative

otherwise. This is a good choice and the agent will try to maximize its points in

each episode. Sometimes the agent will lose a hand for potentially more points

in the future, even if winning the present hand means winning the game. To

mitigate this problem instead of giving the reward for winning at the end of the

episode we could give a positive reward of 𝑟𝑤 = 100 if winning those points will

lead to win the game or give a −𝑟𝑤 if losing those points will make the opponent

win the game. To summarize the final reward function works as follows:

• at each step the reward 𝑟 = 𝑝𝑜𝑖𝑛𝑡𝑠 if the agent wins the hand, 𝑟 = −𝑝𝑜𝑖𝑛𝑡𝑠
otherwise.

• additional reward 𝑟𝑤 = 100 is added or subtracted to 𝑟 depending on
whether winning or losing those points leads the agent or the opponent
to win the game.

35

7
Experiments and Results

In this chapter we will present the training setup and comment the results

of the experiments. The agents are trained against a random agent and an

"intelligent" agent with predefined moves. Periodically during training the

agent performance is evaluated by simulating a thousand games and its win

rate is saved. A text-based environment with the random and rules based

agents was available along with a TensorFlow implementation of the DQN and

DRQN agents. However, these two were reimplemented in PyTorch along with

the PPO agent. The implemented agents were tested on well known OpenAI

gym environments.

7.1 Random Agent and Rules Based Agent

The random agent at each step of the episode chooses a random action with

equal probability. Since this agent does not have a real strategy a simple policy

should be able to win against it most of the time. This is not the case for the

"intelligent" agent who has hard coded moves or rules (in the form of if-else

statements) that it follows depending on the situation. We will now give a brief

overview of the general strategy followed by the rules agent without going into

all the details. The first thing that the rules agent looks is whether or not there

are points to win. If there are no points to win or no cards have been played yet,

the agent tries to play the weakest non briscola card. The reason is that if there

is no card the agent does not know what the opponent is going play, therefore

it cannot play a card with many points and risking losing them. On the other

37

7.2. DEEP Q-NETWORK AGENT

hand if there are no points to win it does not make sense to play a strong card

or a briscola since they can be useful to win more points in future hands. In

the scenario where the agent can win some points there are several different

possibilities. If winning the hand leads to winning the game then the agent does

that, otherwise the best action depends on the amount of points and whether

or not it is worth to play the winning card or to use it later. As it is possible to

see the agent tries to minimize the points that it can loose while maximizing the

points it can win. After 10000 simulated games the rules agent wins against the

random agent 79.47% of the time. Designing this kind of agents is far from easy

since it requires good knowledge of the game and for some problems it may be

very challenging to analyze all the possible outcomes of a decision due to the

complexity of the environment.

7.2 Deep Q-Network Agent

The results of training are shown in Figure 7.1. In order to see which state

representation, state-1 or state-2, suits better for the task two versions of the

DQN agent has been trained. The agents have been trained for 25000 episodes

against the random and the rules agent. At each step 𝜖 is decayed exponentially

from a starting value of 1.0. Every thousand episodes 1000 games are simulated

and the agents’ performance is evaluated and the win rate is saved. Only during

evaluation the agents act greedily, i.e. 𝜖 is set to 0.0 and then restored to its

value before the evaluation. The Q network is a fully connected neural network

with two hidden layers having 256 neurons each. The network is optimized

with the RMSProp optimizer since it was the choice in the original paper but

the Huber loss is used instead of the Mean Squared Error loss because of its

robustness to outliers. The remaining hyperparameters and their values are

shown in Table 7.1.

38

7.4. PPO AGENT

As it is possible to see from Figure 7.3 although training is slower for the recurrent

agent eventually it reaches the same win rate as the non-recurrent agent.

7.4 PPO Agent

The separate networks version of the PPO algorithm has been used. Given

the state vector the policy network, or the actor, outputs the actions probabilities

while the value network, or the critic, outputs an estimate of the state’s value.

The two networks have the same architecture: two fully connected layers having

128 neurons each. The experience is collected (on-policy) for 64 episodes then

the policy and value function parameters are updated separately for PPO steps

epochs. The Adam optimizer is used with the same step-size 𝛼 for each network,

and an entropy bonus is added to ensure exploration.

Hyperparameter Value

learning rate (𝛼) 10−3

discount factor (𝛾) 0.90

GAE parameter (𝜆) 1.0

entropy coefficient 0.03

PPO clip factor (𝜖) 0.2

PPO steps 10

Table 7.3: PPO training hyperparameters

The results of training are show in Figure 7.4, a win rate of 76% against the

random agent and of 44% against the rules agent has been achieved by the

agent after 250k episodes. This approach required more training than DQN and

DRQN and was not able to surpass the 50% win rate threshold against the rules

agent.

42

7.5. COMPARISON

outperforming the rules agent by 8%. The DQN (Rules) only gets to 76%, this

seems reasonable since the agent interacted with a different environment and

could not have learned to exploit the vulnerabilities of the random agent as

well as the algorithm trained directly against it. DQN also obtains the highest

win rate against the rules agent followed by DRQN. The PPO agent performed

worse compared to both DQN and DRQN. There could be several reasons why

this is the case. One possibility is that the presence of a replay buffer allows

the Q-learning based agents to learn efficiently from past experience. Another

possibility is that the PPO hyperparameters used are sub-optimal for this specific

environment.

Random Agent Rules Agent

DQN (Random) 90.13% 40.39%

DQN (Rules) 85.00% 64.49%

Table 7.5: Win rates after 100k episodes of training (on 10k games)

Since DQN gave the best results it was further trained for another 75k episodes

for a total of 100k episodes with a minimum 𝜖 set to 0.1. As it is possible to

see from Figure 7.5 the additional training did not improved significantly the

results against the random agent since the win rate plateaued at 90%. On the

other hand against the rules agent DQN was able to touch a 67% win rate during

training, resulting in a 10% increase. The results of 10000 simulated games are

shown in Table 7.5

44

8
Conclusions and Future Works

In this thesis we investigated the effectiveness of model-free reinforcement

learning approaches for the game of Briscola. After an introduction to the

game and the main concepts in reinforcement learning, the algorithms used for

training were described: Deep Q-learning and Proximal Policy Iteration. Next

we formalized the two-player Briscola as a reinforcement learning problem.

This meant defining a state and reward function. In particular, we derived

two possible representations, state-1 and state-2. While both were effective in

learning a good policy over time, state-1 was faster and achieved a higher win

rate when tested with DQN. Because of this, state-1 was used for training also

DRQN and PPO agents. To make a more accurate comparison all the agents

were evaluated after training on 10k simulated games in which the DQN and

the DRQN agents acted greedily while the PPO agent followed its stochastic

policy. The results showed that Deep Q-learning appears to be more effective for

this task since it obtains better results against both the random and rules based

agent. DRQN achieved similar results while PPO showed slower progress and

reached a lower win rates. Since hand-crafted features were used to to build

the state it could be interesting to test the algorithms with features learned by

a convolutional neural network on a GUI version of the environment. A future

challenge could be to derive a better stochastic policy by optimizing the PPO

hyperparameters or applying a different algorithm. The next step could be to

extend this approach to multiplayer Briscola. It would be interesting to see in a

teams based setting how the agents cooperate to achieve a common goal.

47

References

[1] Marcin Andrychowicz et al. What Matters In On-Policy Reinforcement Learn-

ing? A Large-Scale Empirical Study. 2020. arXiv: 2006.05990 [cs.LG].

[2] William Fedus et al. Revisiting Fundamentals of Experience Replay. 2020.

arXiv: 2007.06700 [cs.LG].

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

http://www.deeplearningbook.org. MIT Press, 2016.

[4] Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Par-

tially Observable MDPs. 2017. arXiv: 1507.06527 [cs.LG].

[5] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013.

arXiv: 1312.5602 [cs.LG].

[6] John Schulman et al. High-Dimensional Continuous Control Using Generalized

Advantage Estimation. 2018. arXiv: 1506.02438 [cs.LG].

[7] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv:

1707.06347 [cs.LG].

[8] John Schulman et al. Trust Region Policy Optimization. 2017. arXiv: 1502.

05477 [cs.LG].

[9] David Silver. Lectures on Reinforcement Learning.https://www.davidsilver.

uk/teaching/. 2015.

[10] Spinning Up OpenAI website. https://spinningup.openai.com/.

[11] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An intro-

duction. MIT press, 2018.

49

https://arxiv.org/abs/2006.05990
https://arxiv.org/abs/2007.06700
http://www.deeplearningbook.org
https://arxiv.org/abs/1507.06527
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/
https://spinningup.openai.com/

Acknowledgments

I would first like to thank my supervisor, Prof. Gian Antonio Susto, for his avail-

ability and for helping me throughout the duration of this thesis by providing

constant feedback.

I would also like to thank Alessio Arcudi for providing interesting suggestions

for me to test.

Special thanks to Michelangelo Conserva and Alberto Soragna, developers of

the Briscola environment that was the starting point for this project.

51

