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Adesso avete capito: se io amo l’ordine, non è come per
tanti altri il segno d’un carattere sottomesso a una
disciplina interiore, a una repressione degli istinti. In me
l’idea d’un mondo assolutamente regolare, simmetrico,
metodico, s’associa a questo primo impeto e rigoglio della
natura.

— Italo Calvino, “I cristalli” in Ti con zero (1967)





Abstract

In recent years, theoretical ecology has developed a growing interest in spatial models for population
dynamics, led by the empirical evidence that spatial effects have a considerable influence on the distri-
bution of species and on the structure of communities, affecting for instance their biodiversity levels.
In such perspective, this work aims at providing a spatial extension of the MacArthur resource-
consumer model - which describes the dynamical evolution of species and resource abundances - in
order to account for the emergence of spatially heterogeneous steady-state patterns from a homoge-
neous equilibrium solution.
Following the approach adopted by Turing in his famous paper “The chemical basis of morphogen-
esis” (1952), a mechanism for pattern formation is investigated by adding some diffusion-like terms
to the dynamical equations: the conditions for pattern initiation can then be analytically derived by
studying the linearised system’s instability to spatially dependent infinitesimal perturbations. Lastly,
a numerical integration is performed to gain insight into the out of equilibrium behavior of the system
in the nonlinear regime, thus determining the outcome of instability and the resulting patterns in the
distribution of abundances.
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Introduction and motivation

Spatial self-organization is a process in which large-scale ordered spatial patterns emerge from dis-
ordered initial conditions through local interactions. Recently, this phenomenon is raising growing
interest among theoretical ecologists, due to its centrality for the understanding of ecological stability
and diversity and its utility to predict the dynamics of natural systems in response to global environ-
mental change.
Indeed, many examples of pattern formation in natural ecosystems have been discovered in the last
years, revealing striking cross-system similarities. Such observations suggest to search for a unifying
mechanism, able to explain the rising of regular patterns independently of the details of the system.

Ecological patterns are often observed in systems having little underlying heterogeneity, i.e. lack-
ing strong environmental gradients. This is an evidence supporting the idea that the observed spatial
structures probably form spontaneously, rather than being the result of preexisting environmental
heterogeneity. However, the explanation of the origin of regular patterns in ecosystem is still a de-
bated issue. The main alternative hypotheses include pre-determined regularity, related for instance
to geophysical processes, or other mechanisms ascribable to noise, although growing evidence seems
to favour self-organized structure formation.

Besides, spatial patterns are more commonly observed in habitats characterized by adverse environ-
mental conditions, where the competition for resources is particularly strong: for example, in highly
arid regions (see Fig. 0.1), where plants would become extinct if homogeneously distributed. The
spontaneous spatial organization of vegetation can be seen in this context as a mechanism for sur-
vival [2, 3], fueled by competitive dynamics. Other examples include wetland ecosystems, savanna
ecosystems, mussel beds, coral reefs, ribbon forests, inter-tidal mudflats and marsh tussocks (Fig. 0.2).
From the ecological point of view, all these systems seem to share a common underlying mechanism:
a scale-dependent feedback, similar to Turing’s principle of local activation with lateral inhibition [4],
which suits many diverse systems in different ways, depending on their distinctive details [1].

Much theoretical work has been developed around this topic, proving that spatially heterogeneous
population distributions have a very positive impact on the ecosystem’s functioning: several models

FIG. 0.1. Example of a natural ecosystem pattern from [2]. Aerial photographs from patterned vegetation in
Niger: a) labyrinths with spots; b) gap pattern. Scale is 400 x 400 m.
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FIG. 0.2. Other examples of ecosystem patterns from [1]. a) Labyrinth pattern of marine benthic diatoms in
the Netherlands (scale = 1m); b) regular maze patterns of shrubs and trees in West Siberia (scale = 100m);
c) regular spaced tussocks of the sedge Carex stricta (scale = 2m); d) patterned mussel bank in the Wadden
Sea, the Netherlands (scale = 50m).

predict that the systems displaying ordered patterns are more resilient to disturbances, thanks to their
improved resource optimization, which also enhances productivity and diversity inside the ecological
community.

This thesis aims at finding a physical model able to account for the spontaneous formation of spatially
periodic patterns, based on an exploitative competition interaction dynamics.
The theoretical framework is represented by the MacArthur’s consumer resource model, introduced
in Chapter 1. Chapter 2 provides a brief outline of the theory and analytical methods used to study
pattern formation, focusing in particular on the linear stability analysis and on the classification of
the instabilities according to Hohenberg [5]. These methods are finally applied to the MacArthur’s
reaction dynamics in Chapter 3, by proposing a spatial extension of the model which accounts for
the dispersal behavior of the populations. The conditions for the rising of a spatially heterogeneous
pattern in the species abundances are then derived in terms of the system parameters. The possibility
for an alternative perspective, based on non-local resource consumption, is outlined in Section 3.6.
Finally, the resulting model is integrated and the numerical results are presented in Chapter 4.
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Chapter 1

MacArthur’s consumer-resource model

In this chapter I present the model which will be used as the theoretical foundation of this work: the
resource-consumer model by Robert MacArthur.
I start by outlining the basic approach for ecosystem modeling in Section 1.1, and later introduce the
most relevant equations used to describe the ecological communities based on exploitative competition:
the competitive Lotka-Volterra’s (Section 1.2) and the MacArthur’s (Section 1.3), which have the
advantage of overcoming the main limitations of the former. A remarkable result concerning resource-
competing communities, the competitive exclusion principle, is briefly discussed, together with the
main strategies proposed to solve its apparent irreconcilability with observations: in particular, the
spontaneous formation of spatial structure will be the focus of this work. Hence, in Section 1.4 I give
a brief overview on spatial models in theoretical ecology, which provides an introduction to the spatial
extension of the MacArthur equations treated in Chapter 3.

1.1 Modeling interactions in an ecosystem

Ecosystems are extremely complex systems, made up of several species’ populations that can interact
with each other in multiple ways, as well as evolve and migrate to other territories. Populations
themselves are characterized by a variety of parameters and ecological descriptors, such as distribu-
tion, number and spacing of individuals, age distributions, birth and death rates, immigration and
emigration rates, rates of growth, etc.
When studying the dynamical evolution of a population, we are mainly interested in two characteris-
tics: its distribution in space and its abundance, which is defined as the total number of individuals,
or biomass, of a species in a specified area. The easiest way to achieve an analytical description is to
coarse-grain the discrete population into a real, continuous field ni(x⃗, t) representing the population
abundance of species i at time t in an infinitesimal area of the territory, as a function of a spatial
variable x⃗, belonging to a plane.
If we want to adopt a physical approach, we must then define the interactions between the compo-
nents of the ecosystem. In ecology, the variety of interactions observed in natural system are classified
according to the positive, negative, or neutral impact that the interaction has over two interacting
species [3] :

• Competition: (−,−) the interaction has negative effect on both the interacting species;
• Mutualism: (+,+) both the species benefit from the interaction;
• Predation/Parasitism: (+,−) one species benefits from the interaction, while the other is
harmed;

• Commensalism: (+, 0) one species is advantaged and the other is not influenced by the interac-
tion;

• Amensalism: (−, 0) one species is is penalized and the other is not influenced by the interaction;
• Neutralism: (0, 0) the two species have no effect on each other.

If the impact is negative, it means that energy is expended or injury incurred, leading to a decrease
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Chapter 1. MacArthur’s consumer-resource model

in the population. A positive impact favors instead the growth of the population. Moreover, beyond
inter-specific interactions above described, one should also consider what intra-specific effects may be
present in an ecosystem, which will be formally represented as auto-interaction terms.

1.1.1 Resource competition

Amongst the many possible interactions between species forming an ecosystem, we will focus on
exploitative competition, i.e. competition for the same common resources. According to the above
classification of species interactions, competition is simply a mutually negative interaction between
species’ populations, that arises, in this case, from the exploitation of common resources. When
modeling competitive communities, one must be particularly careful in defining what a resource is,
since the distinction with species is not always limpid. According to Grover [6] resources are “entities
which contribute positively to population growth, and are consumed in the process”. Two main classes
of resources can be distinguished: biotic resources, that can reproduce and therefore follow some growth
law, and abiotic resources, which cannot reproduce and must be supplied to the ecosystem from the
outside.

1.2 Competitive Lotka-Volterra equations

The competitive Lotka-Volterra equations are a modified version of the famous predator-prey equa-
tions, which represent the first mathematical model of population dynamics. Similarly to the latter
equations, competitive Lotka Volterra is based on the law of mass actions, i.e. it assumes that the
rate of change of a species abundance due to the interaction with another species is proportional to
the product of the two species’ abundances.
Differently from the predator-prey model, however, the population growth in absence of other species
is assumed to follow a logistic curve:

ṅ = rn
(︂
1− n

K

)︂
where n(t) is the abundance at time t, r is the intrinsic growth rate and K is called the carrying
capacity of the species, which represents value at which n(t) saturates for t → ∞. According to these
two assumptions, the equations for a system of species interacting via competitive exclusion takes the
form:

ni̇ = rini

⎛⎝1− ni

Ki
−
∑︂
i ̸=j

αijnj

⎞⎠ = rini

⎛⎝1−
∑︂
i,j

αijnj

⎞⎠ i = 1, ..., N

where αij > 0 are the competition coefficients, and the minus sign is in agreement with the definition
of competitive interaction given in Section 1.1. In the second equality, we have rewritten the logistic
saturation term as an auto-interaction term, defining αii = 1/Ki.

We observe that this model represents competition for common resources by means of a direct in-
teraction between species’ populations, without an explicit description of the resource dynamics, but
rather representing their effect through the parameters ri and αij only.
This has clear advantages in what concerns the mathematical tractability of the system. The draw-
back, however, lies in the predictive power of the model. First of all, the fact that only pairwise
interactions are represented is a very strong, unrealistic assumption. Furthermore, the values of the
interaction parameters αi ̸=j cannot be measured from species growing in isolation, nor estimated a
priori, thus making it impossible to test the theory against real experimental data.

The limitations of the competitive Lotka-Volterra equations have lead the scientific community to
look for alternative ways of modeling exploitative competition, such as the consumer resource model
proposed by Robert MacArthur [7].
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1.3. MacArthur’s consumer-resource model

1.3 MacArthur’s consumer-resource model

Differently from the competitive Lotka-Volterra, MacArthur model describes explicitly the dynamics
of the resource population, in addition to the one of the species. Indeed, it consists of two coupled
sets of differential equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ṅσ = nσ

(︄
NR∑︂
i=1

ασi µi(ci)− δσ

)︄
σ = 1, ..., NS

ċi = si −
NS∑︂
σ=1

nσ ασi µi(ci) i = 1, ..., NR

(1.1)

where nσ(x⃗, t) is the σ-th species population field, ci(x⃗, t) is the i-th resource population field, δσ > 0
is the death rate of species σ, si > 0 is the supply rate of resource i, which is a constant in the case
of abiotic resources, and ασi > 0 are the metabolic strategies, which measure how much species σ
relies on resource i for growth. The growth function µi(ci) is usually required to satisfy the following
properties:

• µi(ci) ∼ ci for ci ≪ 1;

• µi(ci) → const. for ci → ∞;

• µi(ci) is monotonically increasing in ci.

Often a Monod function is chosen, particularly when modeling microbial populations:

µi(ci) =
ci

ci +Ki
(1.2)

where Ki is called half-saturation constant.

We observe that in MacArthur the growth rate of species is no more a constant as it was in Lotka-
Volterra, but it depends instead on resource availability ci=1,...,NR

:

rσ = rσ(c1, ..., cNR
) =

NR∑︂
i=1

ασi µi(ci) (1.3)

which is affected in turn by the consumption by the species.

In this sense, the resources are what mediates the interactions between the species in the ecosys-
tem: thus one of the advantages of MacArthur model is that the growth rates, instead of being linear
in the species populations as in Lotka-Volterra, are highly non linear. For instance, it is immediate to
see that if any species’ population grows, all other species are affected through the term (1.3).
The other major advantage is represented by the predictive capability of the resource-consumer model:
indeed, the knowledge of the resource-dependent consumption and growth rates of each competitor
population studied in isolation is sufficient to determine all system parameters, and thus the compet-
itive dynamics. Therefore, predictions can be made and tested against real data.

To conclude, we show that the competitive Lotka-Volterra can be derived from MacArthur model
under specific hypotheses, by exploiting a separation of species and resources evolution timescales.
We consider a MacArthur system with biotic resources (then a predator-prey system), and we make
the following assumptions:

• logistic resource growth rate: si(ci) = ci

(︂
1− ci

Qi

)︂
• species growth function: µi(ci) = ci

• resources evolution occurs on much shorter timescales than species evolution ⇒ ci̇ ≈ 0
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Chapter 1. MacArthur’s consumer-resource model

Then, ci(t) can be obtained from the resource equations:

c2i
Qi

+

(︄∑︂
σ

nσασi − 1

)︄
ci = 0 → ci =

(︄
1−

∑︂
σ

nσασi

)︄
Qi

and it can be substituted in the species equations, yieldng:

ṅσ = nσrσ

⎛⎝1−
NS∑︂
ρ=1

α̂σρnρ

⎞⎠ where: rσ =

NR∑︂
i=1

ασiQi − δσ , α̂σρ =
1

rσ

NR∑︂
i=1

ασiαρiQi

In this perspective, MacArthur consumer-resource model can be considered as a generalisation of
the competitive Lotka-Volterra equations. Notice also that, in this case, the interaction between the
species encoded in the term rσ α̂σρ is symmetric.

1.3.1 Competitive Exclusion Principle

An important result of the consumer-resource model concerns the levels of biodiversity admitted in a
competitive community. According to the MacArthur equations (1.1), an arbitrary number of species
cannot coexist given a fixed number of resources: as we are going to show, the number of species is
bounded by the number of resources. To get an understanding of how this principle arises, we firstly
illustrate a simple result, known as the R* rule, for a system of NS species and 1 resource. In this
case the equations read:⎧⎪⎪⎨⎪⎪⎩

ṅσ = nσ (ασ µ(c)− δσ) σ = 1, ..., NS

ċ = s−
NS∑︂
σ=1

ασ µ(c)

We define for each species σ:

R∗
σ :=

δσ
ασ

which can be interpreted as the value of µ(c) at which the species σ is at equilibrium (i.e. it holds
nσ̇ = 0, ċ = 0). It is immediate to realise that if µ(c) > R∗

σ, the population of species σ will increase,
while if µ(c) < R∗

σ the population of species σ will decrease. Therefore, the species that has the smallest
R∗

σ will survive and reach equilibrium, but all the other species will go extinct: species coexistence is
allowed only in the eventuality that different species of the system are fine-tuned to have the same
value of R∗

σ, which is obviously an unrealistic supposition. Indeed coexistence of all species can be
expressed by the following condition:{︄

nσ̇ = 0 ∀σ
ċ = 0 → c = c∗

⇔ µ(c∗) = δσ/ασ ∀σ

which is a system of NS equations in one unknown c∗, that admit no solution in the case of generic
δσ, ασ. By considering now a system with NR resources (1.1), the coexistence condition becomes:{︄

nσ̇ = 0 ∀σ
ci̇ = 0 ∀ i → ci = c∗i

⇔
NR∑︂
i=1

ασi µi(c
∗
i ) = δσ ∀σ (1.4)

which is a system of NS equations in NR unknowns {c∗i }i=1,...,NR
. It admits:

• unique solution if NS = NR;
• infinite solutions if NS < NR;
• no solution if NS > NR;
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1.3. MacArthur’s consumer-resource model

by reasoning in a similar way as in the previous case, we conclude that if a system starts with a
number of species NS > NR, its evolution will lead to at least NS − NR extinctions until the c∗i
solutions of the system (1.4) are reached and equilibrium is achieved. Therefore, at equilibrium, only
a number of species NS ≤ NR can coexist: this result is known as Competitive Exclusion Principle
(CEP), and it states that “complete competitors cannot coexist” [8], because the species having even
a slight advantage on the others will necessarily outcompete them. The mathematical validity of this
principle, under proper hypotheses, is unquestionable. However, comparison with real life ecosystems
shows that such behavior is not actually encountered in nature, where we find extremely high levels
of biodiversity with respect to those predicted by the theory.

An emblematic example is the so-called paradox of the plankton [9], which provides an extreme viola-
tion of the competitive exclusion principle. Indeed, a very high number of species of phytoplankton
have been shown to coexist in an essentially isotropic and unstructured environment, despite feeding
on the same limited number of resources (i.e. sunlight and some chemical compounds), which in
certain periods of the year are also very scarce: the number of species can remarkably exceed that of
resources, even up to an order of magnitude [10,11].

1.3.2 Main hypotheses for a solution to the paradox

The Competitive Exclusion Principle is a pillar in ecology and natural sciences, and its origin can
be conceptually traced back to “The Origin of Species” (1859) by Charles Darwin. It was rigorously
formulated at the beginning of the 20th century, but it did not reach the majority of the scientific
community until Gause’s work (1934) [12]. Ever since, countless hypotheses have been formulated to
explain the sharp contrast between theoretical expectation and the extremely high levels of biodiver-
sity observed in natural communities [13, 14]. Most of them exploit the fact that real system may
not satisfy the strict physical hypotheses over which the principle is grounded: indeed the consumer-
resource model is obviously highly theoretical and it represents extreme simplification of an actual
ecosystem.

Most likely, exploitative competition is not the only interaction taking place in a real ecosystem:
predation is also possible, as well as parasitism and mutualism, and there might be a combination
of such effects influencing the community structure. For instance, for what concerns phytoplankton,
predation by zooplankton and viruses could be suppressing dominant competitors [15], while beneficial
or mutualistic interactions may promote inferior competitors.
Another possibility could be that not all the actual resources present in the ecosystem have been con-
sidered. For instance, one could refer again to a mutualistic interaction such as cross-feeding, which
is very common in microbial communities: this mechanism would produce additional resources that
are typically difficult to detect and identify [16].
Lastly, without entering into detail, we mention that other mechanisms have been proposed, based
mainly on behavioral effects altering the interactions between the species, which are able to regulate
the overall dynamics of the system. In the literature, they are conventionally referred to as additional
limiting factors.

Nevertheless, in strongly competitive systems we can admit that competition plays a major role,
the other interactions being safely neglected. In such cases one could conjecture that the reason why
CEP finds no confirmation in real systems must be searched elsewhere. Another line of thought for
the resolution of this paradox is based on the fact that real ecosystem are not necessarily settled at
dynamical equilibrium: rather, most biological system are far from it. Thus, our assumption is broken
and the derivation proposed in (1.4) is not valid. As a consequence, if there is any spatial or temporal
effect maintaining the system out of equilibrium, the CEP is not expected to hold.
In particular, the out of equilibrium behavior of the system might be forced by some external driving,
such as temporal environmental fluctuations (e.g. weather driven) or spatial environmental hetero-
geneity. Indeed, no real habitat is truly spatially uniform: even the open ocean has a spatial structure
which breaks, even only slightly, the homogeneity hypothesis. Otherwise, the out of equilibrium be-
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Chapter 1. MacArthur’s consumer-resource model

havior may be the result of a self organized dynamics, which can induce oscillations and chaos, or
lead to self-organized spatial segregation. There is indeed increasing evidence suggesting that spatial
models are able to reproduce the higher biodiversity levels observed in natural communities without
the need of invoking an underlying environmental heterogeneity [17,18].

1.4 Spatial models: a brief overview

So far, we have briefly presented two models for exploitative competition which assume that the
abundances have no spatial dependence, implying that the distributions can be essentially considered
uniform: this mean-field approach represents however a drastic simplification.
There are, indeed, many reasons to believe that spatial effects cannot be simply discarded, and have
instead a crucial influence on the dynamics of the system and on the structure of communities.

Intuitively, the interactions of an each individual with with other organisms or with the physical
environment are necessarily constrained to its neighborhood, and therefore intrinsically spatial in
nature. This consideration, however, would not be very relevant without empirical evidence or the-
oretical arguments revealing the fundamental role that spatial effects have on population dynamics.
The laboratory experiments of Gause (1935) and Huffaker (1958), consisting in simple realizations of
a two species predator-prey system, represent the earliest pieces of evidence supporting the idea that
spatial effects are fundamental in determining the persistence of species, and suggesting that there
may be some spatially-dependent mechanisms favoring biodiversity in natural ecosystems.
Clearly, this argument is strictly related to the previously discussed paradox, concerning the CEP
and its sharp contrast with the high biodiversity levels observed in nature. This line of research was
mainly developed by Tilman1, both experimentally and theoretically [20].
Lastly, ecological spatial models are obviously necessary to describe migration and invasions, and are
recently gaining growing interest in the context of conservation. Indeed, they can be used as means to
study how habitat destruction and fragmentation, due to the human impact on natural environments,
is affecting the diversity and persistence of populations [21], which is clearly a goal of the uttermost
importance.

There exist many ways to introduce space into an ecological model. The first distinction that can
be made is weather we describe space implicitly or explicitly. In the former case we can introduce
spatial effects indirectly, for instance by means of some parameters correlated to spatial scales – e.g.
in the MacArthur-Wilson model for island biogeography (1967) – or by specifying what fraction of the
environment is occupied by each species, without defining how such patches are arranged in space –
e.g. in the multispecies extensions of Levins metapopulation model (1969). Treating space explicitly
obviously leads to more realistic and comprehensive results. In such case, we have the option of repre-
senting space as a continuum or as a discrete collection of sites. Besides, we can choose to keep track
of each individual, making a distinction for every single organism, or we can consider individuals to be
equivalent and only represent the population through its total abundance or density. The first class
of methods is used in practice only in computer simulations, because they are essentially analytically
intractable. Finally, the movement/migration in space can be represented as stochastic as a purely
deterministic process.

The choice of the model depends on the specific objective of the study, besides the nature of the
system to be described. For instance, interacting particle systems and cellular automata2 are two
examples of spatially explicit models that treat space as a discrete grid: the state of the system is in
this case represented by the value of the population abundance at each point in space, and transition

1Tilman devoted much of his work to study the role of resource competition in community structure, and is also well
known for his study concerning the diversity-stability hypothesis: thanks to a 20 years long experiment [19] he showed
that the stability of a community is positively influenced by higher levels of biodiversity.

2Cellular automata models are usually set in discrete time, while interacting particle systems typically represent time
as a continuous. See [22–24] for some early examples on the application of these well known physical models in theoretical
ecology.
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1.4. Spatial models: a brief overview

between states typically follows logic or stochastic rules, which can provide highly detailed predictions,
with a downside concerning the mathematical tractability of the model – and difficulty in extracting
the underlying mechanisms and principles.
Another class of models which is broadly used in ecology is represented by reaction-diffusion models
– and their extensions to more general PDEs. Such models are based on an explicit representation
of space by means of a continuous variable, and the evolution of the species abundances in time is
determined by a set of differential equations.

1.4.1 Reaction-diffusion models in ecology

Reaction diffusion models were first introduced in theoretical ecology by Skellam, in the landmark
paper “Random dispersal in theoretical populations” (1951) [25], which had a remarkable impact in
the study of spatial ecology. He was the first to exploit the concept of random walk as a description of
dispersal at the level of individual organisms, and to make the link to a diffusion equation description
at the scale of the population abundances. In the cited paper, he proved the effectiveness of this
approach by using empirical data related to the spread of the muskrat, a non-native species which
was introduced in central Europe in the early 1900s. Moreover, he combined the diffusive representa-
tion of dispersal with the differential equation description of population dynamics, thus introducing
reaction-diffusion equations into theoretical ecology3.

The key idea is that, if one interprets the random dispersal of individuals in the environment as
random walks, at a large enough spatial scale the population will exhibit a diffusive behavior which
can be easily mathematically encoded by adding a Laplacian term to the equations ruling the popu-
lation dynamics. A population with abundance n evolving and dispersing in a one-dimensional space
can be therefore described by an equation of the kind:

∂ n

∂t
= f(x, t, n) +D∇2n

where the function f(x, t, n) encodes the population dynamics, which typically includes characteristic
parameters such as growth and death rates, while D is the diffusion coefficient. The system can be
straightforwardly extended to higher dimensional spaces and to many interacting populations.
This method has both the advantages of a fair mathematical tractability – thanks to the deterministic
evolution equations – and of including anyways a description of random processes. Moreover, it is
sufficiently flexible, in the sense that it can be easily modified to account for more complex dispersal
behaviors, that can be modeled e.g. by a density dependent diffusion coefficient.

Today, reaction-diffusion models are applied with three main purposes in ecology:

• the study of ecological invasions;

• the effect of size, shape and heterogeneity of the spatial domain on the persistence of species
and on coexistence;

• the spontaneous formation of patterns in homogeneous space.

The latter phenomenon will be the topic of the next chapter: in particular, reaction-diffusion models
will be treated in some detail in Section 2.3.1. A similar approach will be lastly adopted in Chapter 3,
where a spatial version of the MacArthur model will be obtained by means of a reaction-diffusion-like
extension of the MacArthur equations, and it will be used to study pattern initiation in a competitive
ecosystem.

3See Chapter 2, Section 2.3.1 for an introduction to reaction-diffusion equations.

9



Chapter 2

Pattern formation

In this chapter I briefly introduce the topic of pattern formation. Given the broadness of the subject,
only the most relevant methods pertaining to the purpose of this thesis are mentioned.
Pattern initiation is presented in Section 2.2, in which the classification of linear instabilities given by
Hohenberg [5] is outlined, and in in Section 2.3 two types of models whose pattern-forming properties
are frequently studied are shortly described. Lastly, in Section 2.4, the weakly nonlinear dynamics is
considered, and the phenomenological amplitude equations are derived for a specific class of pattern
forming systems.

2.1 Introduction

Patterns are widespread in nature. They consist in fairly regular spatially periodic structures that
can be observed in inanimate systems, such as sand dunes, convection rolls, reacting and diffusing
chemicals and even snowflakes to name but a few, and in living systems as well. They can be found
at the level of single organisms, such as spots and stripes on animal coats, or they can appear in the
distribution of plants or other living species at the ecosystem scale, which is the topic of this thesis.
Recently, much research activity has focused on modeling the processes responsible for their initiation
and evolution, seeking to grasp a mechanism that could explain the appearance of very similar pat-
terns in so many diverse systems.

From a physical point of view, pattern formation can be regarded as the process in which an out
of equilibrium system passes from a homogeneous to a non-homogeneous state while tuning a suitable
control parameter - or a set of parameters. This transition, which is referred to as bifurcation1, usu-
ally occurs because the spatially homogeneous solution loses its stability, therefore any infinitesimal
perturbation is able to drive the system far from it.
Calling rc the critical value of the order parameter r of the system, suppose that the homogeneous
solution is stable for r < rc and unstable for r > rc. Being fluctuations unavoidable in any real system,
the stable solution is never observed in practice for r > rc, and we will see that this mechanism is able
to explain the rising of spatially modulated solutions in physical systems.

The starting point when studying pattern formation consists in performing a linear stability anal-
ysis of the homogeneous solution (Section 2.2), which provides the following results:

• it determines the critical value of the control parameter;
• it gives some information about the expected emerging in-homogeneous state, identifying the
relevant space and time scales of the pattern.

1A bifurcation is a qualitative change in the behavior of some dynamical system as a function of one or more
parameters. It can refer, for example, to a change in the number or in the stability of the solutions of the system. It has
a broader meaning with respect to the term “phase transition”, which has a precise quantitative definition and pertains
to infinite systems in thermodynamic equilibrium.
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2.2. Linear stability analysis

The fate of the instability is determined by the ensuing nonlinear dynamics, which can be studied
by means of perturbative techniques (Section 2.4), and it depends on the type of bifurcation: in
particular, on the stationary or oscillatory nature of the instability, on the range of unstable wave
vectors and on the presence of conservation laws. If the control parameter r > rc is close enough to
the critical value rc, the dynamics typically terminates in a spatially periodic stationary state.

2.2 Linear stability analysis

More formally, let us consider a continuous-time and continuous-space dynamical model2. Such a
system is defined by its evolution equation, which consists in a set of partial differential equations of
the kind:

∂t u(x, t) = A[u, ∂xu, ∂
2
xu, ...; r]

where:

• the field u(x, t) depends on the temporal and spatial variables. It defines the state vector
of the system, and it represents some physically relevant quantity through which the pattern
can be observed. In general, the state field can have multiple components u = (u1, u2...um),
representing for instance the abundances of different species in an ecosystem.

• A = (A1, ...Am) are generic smooth functionals of the fields and of their spatial derivatives, and
they are also dependent on the set of control parameters r = r1, ...rp.

Since we are describing physical systems in which a spatial structure spontaneously arises without
being imposed by external constraints, we ask that the equations should satisfy some symmetries,
such as isotropicity and homogeneity in space. Indeed, observed physical patterns typically occur
in systems that have approximate Euclidean symmetry. We expect that some pattern with defined
spatial periodicity may eventually emerge, breaking the underlying symmetry.
For this consideration to hold, we must also impose that the spatial domain is infinitely extended:
as we will see, this has the consequence of providing continuous values for the wavenumbers k of the
emerging pattern. Moreover, adopting an infinite domain allows us to avoid the complications arising
from the shape of the boundaries influencing the nature of the emerging pattern.
In the following, we will consider the spatial dimension to be d = 1 for simplicity.

To start, we assume that there exists a time-independent solution to the PDEs for any r, and that it is
invariant under all the spatial symmetries of the system. It consists thus of a stationary homogeneous
state u∗ = u∗1, ...u

∗
m such that, for any equation labeled by i, it holds:

∂t u
∗
i = 0 ⇔ Ai[u

∗, 0, ...0; r] = 0 ∀ r

We weakly perturb such solution and linearise the dynamical equations around u∗:

u(x, t) = u∗ + δu(x, t)

∂t δu(x, t) ≈ L[u∗ + δu, ∂xδu, ...; r]
(2.1)

where L = (L1, ...Lm) are linear functionals of the fields u1, ...um and of their spatial derivatives,
corresponding to the linear part of A:

A[u, ∂xu, ...; r] = L[u, ∂xu, ...; r] +N[u, ∂xu, ...; r]

Thanks to its linearity, Eq. (2.1) can be easily solved with the help of Fourier analysis. The evolution
of the single Fourier modes δuk can be studied:

δuk,j(x, t) ∼ eλt+ikx ∀ j = 1, ...m

2As we have seen, an ecosystem can be modeled in such way. In this chapter, however, we discuss pattern formation
adopting a general approach, which applies to any kind of pattern forming system.
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Chapter 2. Pattern formation

where k is the wavenumber of the mode and j labels the field. Substituting ∂t → λ , ∂x → ik, the
linearised equations turn into an eigenvalue problem:

λ δuk = M(k; r) δuk where M(k; r) is a m×m matrix whose entries depend on k and r.

which yields a set of eigenvalues as a function of the wavenumber k and of the parameters r.
Let us focus on the eigenvalue with the largest real part, which we denote by λ+(k).
To have stability of the homogeneous solution for r < rc and instability for r > rc, the leading growth
rate of the Fourier modes must change as follows:

• Re[λ+(k)] < 0∀ k for r < rc

• Re[λ+(kc)] = 0 at some critical wavenumber kc for r = rc

• Re[λ+(k)] > 0 in a band of wavenumbers k1 < k < k2 for r > rc

where kc is the wavenumber corresponding to the maximum of Re[λ+(k)] at the edge of the bifurcation
(i.e. for r → r+c ) and we denote by k̄ = k̄(r) the most unstable wave vector when r > rc. The temporal
frequency is given by wc := Im[λ+(kc)].

The type of instability is conventionally classified according to the behavior of the Fourier modes
at the bifurcation [5], as illustrated in Fig. 2.1.
If kc = k̄ ̸= 0 the instability is spatially periodic, the unstable band being k1 < k < k2 (k1, k2 ̸= 0):
this is called a type I instability. If instead kc = k̄ = 0, the instability is named of type III: it is
spatially uniform, in the sense that no defined lengthscale can emerge, and the unstable band is given
by 0 < k < k2. The intermediate case is represented by type II instability, in which kc ̸= 0 but k̄ ̸= kc
and Re[λ+(k = 0)] = 0∀ r, which is typically due to some conservation law. The unstable band is
again 0 < k < k2, but the most unstable wave vector is now different from zero (k̄ ̸= 0).

Type kc k̄

I kc ̸= 0 k̄ = kc
II 0 k̄ ̸= 0
III 0 0

TAB. 2.1. Classification of linear instabilities according to Hohenberg [5].

Additionally, temporal instability must be taken into consideration: the pattern is stationary if wc = 0
and oscillatory in time if wc ̸= 0.

2.2.1 Instability length and time scales

The above classification, based on the linear analysis of the system, allows to gain some preliminary
information about the pattern that will emerge by setting r > rc.

Firstly, since Fourier modes have a time dependence of the kind eRe[λ(k)]t, the mode growing faster
will be the one corresponding to the maximum of λ+(k), that is k̄. In this sense, a clear difference
between type III and type I-II instabilities can be noticed.
If k̄ = 0 there is no well-defined wavelength dominating over the others: therefore, we expect that
many different lengthscales may appear, producing an initially confused pattern. If k̄ ̸= 0, instead,
there is a clear lengthscale λ̄ = 2π/k̄ dominating the spatial pattern in the linear regime: such scale
is equal to kc for type I instabilities, while it depends on r for type II instabilities.
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2.3. Examples of pattern forming models

Similarly, another distinction can be made depending on the value of kc. Indeed, if kc ̸= 0, the insta-
bility band is centered around kc and it does not contain k = 0: this implies that, for r− rc → 0+, all
the unstable modes are vanishingly close to kc, thus all unstable lengthscales are approximately equal
to 2π/kc. If kc = 0, instead, the instability band contains 0, therefore all modes with a wavelength
larger than a certain threshold are unstable and contribute to the dynamics. This has important
consequences on the nonlinear behavior of the system.

In all cases, the timescale for instability initiation is given by τ ∼ 1/Re[λ+(kc)]: when t ≪ τ the
behavior of the system can be considered linear with good approximation, while for t ≳ τ nonlinear
terms become non negligible and the behavior of the system is determined by the non-linear dynamics.

2.3 Examples of pattern forming models

In this section I provide some relevant examples of pattern-forming models. The first one I briefly
discuss is reaction-diffusion models, by reason of their analogy to the system which will be presented
in this thesis: indeed they rely on the addition of diffusion terms to the dynamical equations governing
the interaction of different chemical species. Secondly, I introduce the Swift-Hohenberg model, because
it represents the simplest model producing type I stationary instabilities and thus it can be used as a
starting point for the derivation of the amplitude equations governing such class of systems.

2.3.1 Reaction-diffusion models

In his famous 1952 paper “The Chemical Basis of Morphogenesis” [4], Alan Turing proposed a simple
model to account for the formation of natural patterns. In his work, he showed that a steady state spa-
tially heterogeneous pattern of chemical concentration with well-defined wavelength can spontaneously
arise from a small perturbation of the homogeneous equilibrium state of a system of two reacting and
diffusing chemicals. Even though Turing invoked this mechanism as a basis for the development of
shape and structure in living organisms, biologists strongly disputed this theory. Many years later, in
1990, the first convincing evidence of an experimental Turing pattern was found (Castets et al.) and
such mechanism eventually proved to be very effective in describing the formation of patterns in a
variety of different contexts.

A famous class of pattern forming systems is indeed represented by reaction-diffusion models, which
are mainly used - as the name states - to study the dynamics of reacting and diffusing chemicals.
In such models, each chemical species is described by means of its concentration field ui(x, t).
The evolution equations for n species read:

∂tui = Ri(u1, ...un) +Di∇2ui i = 1, ...n

and are determined by the reaction kinetics Ri, a nonlinear function of the concentrations which
describes the interaction between species, and by the diffusive terms, characterized by the diffusion
coefficients Di. This model can exhibit all the types of linear instabilities we have previously outlined,
by suitable choice of R1, ...Rn and D1, ...Dn. Because we are interested in the formation of a spatially
periodic pattern, our aim is to investigate the simplest conditions giving rise to a type I instability
spectrum.
It is straightforward to notice that systems formed by one chemical alone cannot display the desired
instability, since

∂tu = f(u) +D∇2u

and its linearisation yields:

∂tδu =
(︁
f ′(u∗) +D∇2

)︁
δu → λ = f ′(u∗)− k2D
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Chapter 2. Pattern formation

which is a type III spectrum, having the maximum of λ in kc = 0. We will then focus on a system of
two chemicals, which is typically studied as the prototype for Turing patterns:{︄

∂tu = f(u, v) +Du∇2u

∂tv = g(u, v) +Dv∇2v

where u(x, t) and v(x, t) are the concentrations of the two chemicals, andDu, Dv > 0 are their diffusion
coefficients. Being the diffusion isotropic, no preferred spatial direction can emerge in the analysis of
the system, and all the relevant quantities will depend on the modulus of the wavenumber k = |k|.
For this reason, we can perform the linear stability analysis in one spatial dimension and rely on the
generalisation to higher spatial dimensions to be straightforward. Through a redefinition of the spatial
variable x → x/Du we can get rid of a parameter:{︄

∂tu = f(u, v) +∇2u

∂tv = g(u, v) + d∇2v
(2.2)

and d = Dv/Du is now the control parameter of the system. We assume the existence of a homogeneous
steady state (u∗, v∗), such that f(u∗, v∗) = 0 = g(u∗, v∗) linearise the system around it, by applying
the following spatial disturbances:{︄

u(x, t) = u∗ + δu(x, t) = u∗ + δu e
λt+ikx

v(x, t) = v∗ + δv(x, t) = v∗ + δv e
λt+ikx

(2.3)

which we have already expressed as single harmonic modes, since the problem that we are going to
study is linear. Eq. (2.2) becomes, at first order:⎧⎪⎨⎪⎩

∂t δu =
df

du

⃓⃓
u∗,v∗

δu +
df

dv

⃓⃓
u∗,v∗

δv +∇2δu

∂t δv =
dg

du

⃓⃓
u∗,v∗

δu +
dg

dv

⃓⃓
u∗,v∗

δv + d∇2δv

which corresponds to the eigenvalue problem:

λ δ⃗ = (J− k2D) δ⃗ ≡ M(k) δ⃗

where δ⃗ = (δu, δv), J is the Jacobian of the reaction kinetics and D =

(︃
1 0
0 d

)︃
is the diffusion matrix.

Solving in λ:

det
(︁
M(k)− λI

)︁
= 0 ⇔ λ2 − λTr(M) + det(M) = 0

⇔ λ±(k) =
Tr(M)±

√︂(︁
Tr(M)

)︁2 − 4 det(M)

2

At this point, one must introduce some constraints on stability. Asking that u∗ is an actual stable
equilibrium of the spatially independent system is equivalent to imposing its stability under spatially
uniform perturbations, which are obtained by setting k = 0 in (2.3). This occurs if the real part of
both eigenvalues is strictly negative, in such a way that the perturbation decays exponentially fast to
zero.

Pattern formation arises if, in addition to the previous condition, that ensures the stability of the
underlying equilibrium, u∗ is also linearly unstable under heterogeneous perturbations ((2.3) with
k > 0), in such a way that the spatial perturbations will grow in time - more precisely, the modes
corresponding to unstable wavenumbers k will grow and produce a pattern in space, as explained in
the previous sections. This holds if at least one eigenvalue has positive real part for some k > 0.

Re[λ+(k > 0)] > 0 ⇒ u∗ is unstable under heterogeneous perturbations

14



2.3. Examples of pattern forming models

The above inequalities imply that the cross terms df
dv

⃓⃓
u∗,v∗

and dg
du

⃓⃓
u∗,v∗

must be non-vanishing and
have opposit sign, and additionally:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

df

du

⃓⃓
u∗,v∗

> 0

dg

dv

⃓⃓
u∗,v∗

< 0

d > 1 ⇔ Dv > Du

∨

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
df

du

⃓⃓
u∗,v∗

< 0

dg

dv

⃓⃓
u∗,v∗

> 0

d < 1 ⇔ Du > Dv

Referring to the activator as the species that promotes growth and as the inhibitor as the one that
leads to a concentration decay, this result can be summarised by stating that the inhibitor must diffuse
faster than the activator in order for the pattern to form. This property is known as local activation
with long-range inhibition, and it is an example of a scale-dependent feedback mechanism.

2.3.2 Swift-Hohenberg model

The Swift-Hohenberg model (SH) represents the simplest nonlinear model displaying type Is linear
instability. It is defined by the following PDE in the field u(x, t):

∂tu =
(︁
r − (∂2

x + k2c )
2
)︁
u− u3 ≡ Lu+N[u] , kc ̸= 0 (2.4)

where r is the bifurcation parameter, N[u] = u3 is the nonlinear part and L =
(︁
r − (∂2

x + k2c )
2
)︁
is

indeed a linear operator producing type-Is instabilities.
To prove it, let us study the linear behavior of the system around the homogeneous solution u∗ = 0,
by applying a perturbation of the form δu(x, t) = Aeλt+ikx, with A constant. Since u = u∗ + δu = δu,
at linear order:

λu ≈
(︁
r − ∂4

x − k4c − 2k2c∂
2
x

)︁
u =

(︁
r − k4 − k4c + 2k2ck

2
)︁
u =

(︁
r − (k2 − k2c )

2
)︁
u

⇒ λ(k) = r − (k2 − k2c )
2

(2.5)

which is real and has global maximum in k = kc ̸= 0, therefore the linear instability is spatially
periodic and stationary in time.

Besides, it can be noticed that the additional cubic term in the SH equation (2.4) is the lowest-
order nonlinear term preserving the invariance of L with respect to the field inversion u → −u.
A quadratic term breaking the u → −u symmetry can otherwise be added, leading to the generalised
Swift-Hohenberg equation:

∂tu =
[︁
r − (∂2

x + k2c )
2
]︁
u+ ρu2 − u3 (2.6)

We observe, however, that the quadratic term alone cannot guarantee the saturation of the unstable
amplitude, because it contributes to ∂tu with a constant sign, independent of the sign of u. Therefore,
the cubic term must be also kept. This can be seen more rigorously from the amplitude equations
that will be presented in the next section.
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Chapter 2. Pattern formation

2.4 Amplitude equations

The linear analysis presented in Section 2.2 provides a classification of linear instabilities whose va-
lidity is limited to short timescales t < τ , beyond which the effect of the nonlinear terms become
no longer negligible. An analytical approach for the solution of the full equations is however mostly
unfeasible.

Near the threshold, though, the behavior of the system can be described by means of phenomeno-
logical equations, thanks to the fact that the nonlinearities are weak and the spatial and temporal
modulations of the amplitude are slow.
It turns out that these model equations have - broadly speaking - universal forms, meaning that they
depend only on general properties of the system, such as the linear instability type, the symmetries
and conservation laws: hence, they can both provide an explanation for the fact that similar patterns
are observed in systems of completely different nature, and they can be used as a mean to get insight
into the outcome of instability in a given physical system.
The notion of universality, which is rigorous and quantitatively defined for critical points in equilib-
rium statistical mechanics, is however highly qualitative in this context, and it is yet unclear how far
this analogy can be pushed for what concerns pattern formation.

Exploiting this generality, in Section 2.4.1 we shall derive the the Ginzburg-Landau envelope equation,
that describes systems with type-I linear instability and with symmetries x → −x, x → x + x̄, by
starting from the simplest model that displays such features: the SH model discussed in Section 2.3.2.
A symmetry-based approach for their derivation, which brings out their universal character, will be
instead presented in Section 2.4.2.

2.4.1 Amplitude equations derivation from the SH model

Let us determine the scalings for a type-I instability. Firstly, we want to understand what is the order
of magnitude of the unstable k interval given by (2.5) very close to the bifurcation, i.e. for 0 < r ≪ 1
(having rescaled r in such a way that rc = 0). The unstable wavenumber values will be very close to
kc if r is very small, therefore we can express k as k = kc + kx with |kx| ≪ kc and expand:

λ(k) = r −
(︁
(kc + kx)

2 − k2c
)︁2

= r − (k2x + 2kckx)
2 = r − k4x − 4k2ck

2
x − 4kck

3
x ≈

≈ r − 4k2ck
2
x +O(k3x)

(2.7)

Thus if kc ∼ O(1) we see that λ(k) = 0 for kx ∼
√
r and we have found the scaling of the unstable

wavenumber band. As for the temporal scale, λ(k) is clearly of order λ(kc) = r for r → 0+.
A type-I bifurcation is therefore characterized by a k instability range of order ∼

√
r and a growth

rate of order r.

The effect of such an unstable wavenumber interval can be interpreted as the introduction of a mod-
ulation in the amplitude of the carrier wave eikcx, varying slowly in time and space:

u(x, t) = A(x, t)eikcx + c.c. with A depending weakly on x and t. (2.8)

The modulation is weak because the wavenumbers corresponding to positive λ+ have a small variability
for r → 0. To get an intuition of this fact, we can consider a simple example. Suppose we have two
unstable wavenumber modes falling in the instability region around kc (Fig. 2.1).

u(x) = a1 cos(k1x) + a2 cos(k2x) = (a1 + a2) cos(δk x) cos(k0x) + (a1 − a2) sin(δk x) sin(k0x)

Then, having defined k0 = (k1 + k2)/2 and δk = (k2 − k1)/2. Since k0 ∼ kc and δk ∼ |kx| ≪ kc, the
above solution represents an oscillation of wavenumber k0 modulated by a weakly varying amplitude.
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FIG. 2.1. Schematic illustration of a system displaying two unstable wavenumber modes k1, k2 in the instability
region.

Therefore, due to the scaling we found above, we expect that the spatial variable appears in the car-
rier wave as kcx and in the amplitude according to the scaling

√
r x, while the time variable can be

enclosed the slowly varying amplitude as λ(kc) t ≈ rt.

In order to formally treat this problem, a multiscale expansion can be performed. Using the more
convenient notation r = ϵ2 r̂ with ϵ2 ≪ 1 , r̂ = const > 0, we can define the slow variables as follows:{︄

X = ϵ x

T = ϵ2t

in contrast with the fast variables:{︄
x̃ = x

t̃ = t

Therefore (2.8) becomes:

u(X,T, x̃, t̃) = A(X,T ) eikcx̃ + c.c. (2.9)

which naturally encodes the different temporal and spatial scales. Applying the chain rule to the
temporal and spatial derivatives in (2.4) and using the fact that u(X,T, x̃, t̃) is independent of t̃, the
equation becomes:

ϵ2 ∂Tu = ϵ2r̂ u−
(︁
∂2
x̃ + ϵ2 ∂2

X + 2ϵ ∂x̃∂X + k2c
)︁2

u− u3

If the solution is expanded in powers of ϵ:

u = u1ϵ+ u2ϵ
2 + u3ϵ

3 + ...

ϵ2 (∂Tu1ϵ+ ...) = ϵ2r̂ (u1ϵ+ ...)−
(︁
∂2
x̃ + ϵ2 ∂2

X + 2ϵ ∂x̃∂X + k2c
)︁2

(u1ϵ+ u2ϵ
2 + u3ϵ

3 + ...)− (u1ϵ+ ...)3

= ϵ2r̂ (u1ϵ+ ...)−
[︁
(∂2

x̃ + k2c )
2 + 4ϵ(∂2

x̃ + k2c )∂x̃∂X +

+ 2ϵ2(3∂2
x̃ + k2c )∂

2
X + 4ϵ3∂x̃∂

3
X + ϵ4∂4

X

]︁
(u1ϵ+ u2ϵ

2 + u3ϵ
3 + ...)+

− (u1ϵ+ ...)3

The equation is then analysed order by order:

at O(ϵ) (∂2
x̃ + k2c )

2u1 = 0 → u1 = A1(X,T )eikcx̃ + c.c.

at O(ϵ2) (∂2
x̃ + k2c )

2u2 = −4(∂2
x̃ + k2c )∂x̃∂Xu1 − (∂2

x̃ + k2c )
2u1 = 0

→ u2 = A2(X,T )eikcx̃ + c.c.

where, in the last equality of the O(ϵ2) equation, the solution for u1 was substituted. Proceeding
similarly, one finds the following equation for the third order:

at O(ϵ3) (∂2
x̃ + k2c )

2u3 = r̂u1 − ∂Tu12(3∂
2
x̃ + k2c )∂

2
Xu1 − u31 =

=
(︁
r̂ − ∂T + 4 k2c ∂

2
X

)︁
u1 − u31
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Chapter 2. Pattern formation

Using u1 = A1(X,T )eikcx̃ + c.c. and calling A1 → A for simplicity.

u31 = (A(X,T )e+ikcx̃ +A(X,T ) e−ikcx̃)3 = A3e3ikcx̃ + 3|A|2Aeikcx̃ + c.c.

The equation at O(ϵ3) becomes:

(∂2
x̃ + k2c )

2u3 =
(︁
r̂A− ∂TA+ 4 k2c ∂

2
XA− 3|A|2A

)︁
eikcx̃ −A3e3ikcx̃ + c.c.

therefore it contains a term which is proportional to the solution of the homogeneous equation, and
would introduce secular terms in the solution, i.e. terms which grow without bound, that would break
down the perturbative approach we have adopted. Thanks to the separation of scales, however, the
vanishing of such term can be imposed by putting to zero its coefficient:

r̂A− ∂TA+ 4 k2c ∂
2
XA− 3|A|2A ≡ 0 ⇒ ∂TA = r̂A+ 4 k2c ∂

2
XA− 3|A|2A

This is the Ginzburg-Landau equation (GL) at lowest order in the amplitude. The values of the
coefficients here are specific of the SH model, whereas in general the coefficients are not fixed and
depend on the microscopic details of the system. For instance, if we considered the generalised SH
equations, we would find:

∂TA = r̂A+ 4 k2c ∂
2
XA−

(︃
3σ − 38

9

ρ2

k4c

)︃
|A|2A

labeling with σ the coefficient of the u3 term in the generalised SH equations. From the above equation
it is clear that if the cubic term is absent from Eq. (2.6), the nonlinearity will not be able to saturate
the linear instability and the amplitude of the pattern will continue to grow. For the nonlinearity to

counteract the linear behavior, it is necessary that 3σ − 38
9

ρ2

k4c
> 0.

2.4.2 Symmetry based derivation of the amplitude equations

To better grasp the universality of SH equations, we outline a symmetry-based derivation.
Starting from the basic assumption (2.8), of which we justified the validity, we want to obtain the
envelope equations of a system displaying type Is instability and satisfying the spatial homogeneity
and isotropicity symmetries.

The linear part of the envelope equations can be derived quite simply from the basic requirements on
the linear growth rate of type Is instabilities.
Indeed, considering a mode u(x, t) = A0 e

λt+ikx with wavenumber close to kc, k = kc + kx, we can
expand the growth rate λ(k) in terms of |kx| ≪ kc. The requirement that k = kc (i.e. kx = 0)
corresponds to the maximum growth rate sets the first order term of the expansion to zero. More-
over, remembering that we can always rescale the control parameter r in such a way that kc becomes
unstable at r = 0, the growth rate near the bifurcation can be written in full generality as:

λ(k) = τ−1
0 (r − ξ20k

2
x) +O(k3x) (2.10)

at lowest order in kx, where the real constants τ0 and ξ0 represent some typical temporal and spatial
scales of the individual system under consideration, and depend on its microscopic details.
We notice indeed that this result is perfectly consistent with the one derived by expanding the linear
growth rate predicted by the SH model (2.7). Therefore, the same scalings can be exploited, allowing
to interpret the above considered Fourier as follows:

u(x, t) = A0 e
λt+ikxx+ikcx = A0 e

λ̂ϵ2t+ikx̂ϵx+ikcx = A0 e
λ̂T+ikx̂Xeikcx ≡ A(X,T ) eikcx

where A is a complex amplitude depending on the slow variables X, T .
Thus, we see that Eq. (2.10) could have been derived from a partial differential equation in u, which
can be recovered by making the substitutions λ → ϵ2∂T , kx → −iϵ∂X that bring us back from Fourier
space to real space.

ϵ2 τ0 ∂Tu = ru+ ϵ2 ξ20 ∂
2
Xu (2.11)
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We can also rewrite r = ϵ2r̂ according to the consistent scaling for r. Since there is no explicit
dependence on x, the carrier wave factor eikcx can be simplified and the equation holds for the complex
amplitude alone:

τ0 ∂TA = r̂A+ ξ20 ∂
2
XA (2.12)

which is the linear part of the GL equations. To look for the nonlinear terms, we consider the sym-
metries of our system.

Translation in space
Exploiting the separation of scales, invariance under translation in x corresponds to the invariance
under two symmetries: translation in X and phase shift in A.

x → x+ ϕ ⇒
X → X + ϵϕ

A → Aeiϕ

Reflection in space
Similarly:

x → −x ⇒
X → −X

A → A

Translation in time
Time translational symmetry must also hold, for the obvious freedom to choose the temporal origin.

t → t+ τ ⇒ T → T + ϵ2τ

Since both A and its spatial derivatives are expected to be small close to the bifurcation, we must
look for the lowest order nonlinear terms preserving the symmetries listed above. Starting from phase

shift, the quadratic terms A2, A
2
and |A|2 all transform in a different way from ∂TA. Among the

cubic terms A3, A
3
, |A|2A and |A|2A, the only one transforming in the appropriate way is the latter,

indeed:

r̂Aeiϕ + ξ20 ∂
2
XAeiϕ − g0|A|2eiϕe−iϕAeiϕ = eiϕ

(︁
r̂A+ ξ20 ∂

2
XA− g0|A|2A

)︁
≡ τ0 ∂TAe

iϕ

Invariance under complex conjugation fixes its coefficient g0 to be real:

r̂ A+ ξ20 ∂
2
XA− g0|A|2A ≡ τ0 ∂TA

= r̂A+ ξ20 ∂
2
XA− g0|A|2A

⇔ g0 ≡ g0 ⇔ g0 ∈ R

Invariance under translation inX and T trivially implies that g0 must be independent of both variables,
i.e. it is a constant. If the nonlinearity has to saturate the linear instability, we must further require
that g0 > 0. The amplitude equations therefore read:

τ0 ∂TA = r̂A+ ξ20 ∂
2
XA− g0|A|2A (2.13)

which can be written in universal form by rescaling:

X → X/ξ0

T → T/τ0

A → Ag
1/3
0

⇒ ∂TA = (r̂ + ∂2
X)A− |A|2A

Which is the GL equation at lowest order.
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Chapter 3

Spatially-extended MacArthur’s model

In this chapter, I try to derive a spatial extension of the MacArthur consumer-resource model by
adopting an approach similar to reaction diffusion models: diffusion-like terms are added to the
equations of the system, with the aim of achieving a type I linear instability.
Many attempts are outlined, until the desired result is obtained and presented in Section 3.5.
An alternative approach based on non-local resource optimization is discussed in Section 3.6.

3.1 Introductory trivial model

To begin to investigate the effect of diffusion terms on MacArthur equations, I will start with a truly
basic model: I consider a 1-dimensional spatial domain, and I study the dynamics of one species alone,
characterized by some rate r:

ṅ = r n− ∂xJ (3.1)

where n = n(x, t) is the population density field. As for the diffusion term ∂xJ , I am considering a
density dependent diffusion coefficient D(n) = D − ˜︁Dn with D, ˜︁D positive constants:

− ∂xJ = ∂x [D(n) ∂xn] = ∂x [(D − ˜︁Dn ) ∂xn] = D∂2
xn− ˜︁D [︂(∂xn)2 + n∂2

xn
]︂

(3.2)

Such term represents a simple dispersal motion, characterized by the diffusion coefficient D, with the
addition of an overcrowding effect, modeled by a negative diffusion coefficient − ˜︁Dn which is linearly
proportional to the population density n. In such a way, for high enough population densities, the
overall diffusion coefficient D(n) becomes more and more negative as n grows, thus producing a further
increase in the concentration of the population.
As we shall see in the following, indeed, this assumption allows for a richer dynamics with respect to
simple diffusion alone, thanks to the fact that D(n) can change sign.

Let us perform the linear stability analysis for this simple equation, to discover if it can give rise
to a spatial instability.

Uniform equilibrium

Firstly, the equilibrium solution n∗ must be determined. In the following, we adopt an asterisk as
notation for the equilibrium states.{︄

n∗̇ = 0

∂xn∗ = 0
⇒ r n∗ = 0 ⇔ n∗ = 0
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3.1. Introductory trivial model

Stability under uniform perturbation

I perturb the equilibrium as follows:

n(t) = n∗ + δn(t) with δn(t) = δ eλt (3.3)

Substituting such perturbation in Eq. (3.1):

δṅ = r(n∗ + δn) = r δn

λ δn = r δn

Therefore the equilibrium is stable ⇔ λ = r < 0, and r actually plays the role of a death rate.

Non-uniform perturbation

Now I look for instability under non-uniform perturbations, which are expressed as Fourier modes:

n(x, t) = n∗ + δn(x, t) with δn(x, t) = δ eλt+ikx (3.4)

Substituting in Eq. (3.1):

δṅ = r(n∗ + δn) +D∂2
xδn− ˜︁D [︁(∂xδn)2 + (n∗ + δn) ∂2

xδn
]︁

Neglecting (δn)2:

δṅ = r(n∗ + δn) +D∂2
xδn− ˜︁D [︁n∗ ∂

2
xn
]︁

I observe that, by substituting the equilibrium value n∗ = 0, the overcrowding contribution disappears,
hence the system does not show instability under spatial perturbations, since the perturbations decay
with rate:

λ = r − k2D < 0 ∀ k

We can attempt to modify this model in such a way that the equilibrium value becomes different from
zero.

3.1.1 Basic one-species model

The simplest way to allow for a positive equilibrium value is to add a constant growth supply µ > 0.
Calling d the death rate, the equation becomes:

ṅ = µ− dn+ ∂x

[︂(︂
D − ˜︁Dn

)︂
∂xn

]︂
(3.5)

We underline that the opposite possibility, i.e writing ṅ = µn − d + ∂xJ , would lead to finding
d < 0, µ < 0 which is equivalent to the considered case.

Uniform equilibrium

In this case the equilibrium of the system is:{︄
ṅ = 0

∂xn = 0
⇒ µ− dn∗ = 0 ⇔ n∗ = µ/d

Stability under uniform perturbation

By substituting the uniform perturbation (3.3) into Eq. (3.5):

δṅ = µ− d(n∗ + δn) = −d δn

λ δn = −d δn

Therefore the equilibrium is stable if λ = −d < 0 ⇔ d > 0.
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Chapter 3. Spatially-extended MacArthur’s model

Non-uniform perturbation

Substituting the perturbation (3.4) in Eq. (3.5) and linearising around n∗ yields:

δṅ = µ− d (n∗ + δn) +D∂2
xδn− ˜︁D [︁(∂xδn)2 + (n∗ + δn) ∂2

xδn
]︁
=

= µ− d (n∗ + δn) +D∂2
xδn− ˜︁Dn∗ ∂

2
xδn =

= −d δn+ (D − ˜︁Dµ/d) ∂2
xδn

where in the last line I substituted the equilibrium value. Taking the derivatives of the perturbation
I find:

λ δn = −d δn− k2
(︂
D − ˜︁Dµ/d

)︂
δn

The system is therefore unstable if:

λ = −d+ k2
(︂ ˜︁Dµ/d−D

)︂
> 0 (3.6)

Being −d < 0 as required by the stability of the uniform equilibrium, ˜︁Dµ/d−D must necessarily be
> 0 for instability to hold.

λ > 0 ⇔

⎧⎪⎨⎪⎩
˜︁Dµ/d−D > 0

k2 >
d˜︁Dµ/d−D

(3.7)

In conclusion, thanks to the presence of the overcrowding term, a spatial instability is allowed for:

wavenunmbers k >

√︄
d˜︁Dµ/d−D

→ wavelengths < 2π

√︄ ˜︁Dµ/d−D

d

However, this is not the desired outcome, since it is not a type I instability. On the contrary, this
result is somewhat pathological, because it leads to the instability of all the microscopic wavelengths,
which is clearly physically meaningless. Indeed, it would lead to the formation of patterns with a
strong dependence on initial conditions, and therefore not robust.
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3.2. MacArthur 1s 1r

3.2 MacArthur 1s 1r

At this point, I move on to the analysis of the simplest case of an actual MacArthur model. I consider
the evolution equations for one species and one resource, with the addition of a diffusion-like term to
the species dynamics, equal to the one presented in the previous section.
In the following, I will always consider an infinitely extended spatial domain: I perform the linear
stability analysis in one spatial dimension and, thanks to isotropicity, the generalisation to a two
dimensional space will be straightforward1.
The considered evolution equations read:{︄

ṅ = [µ(c)− d]n+ ∂x [(D − ˜︁Dn ) ∂xn]

ċ = s− µ(c)n
(3.8)

where n(x, t) is the field representing the abundance of the species, c(x, t) is the one for the resource,
d > 0 is the death rate, s > 0 is the resource supply rate, and the growth rate is represented by a
positive and monotonically increasing function of the resource abundance: µ(c) > 0 , dµ

dc > 0 ∀ c .

Uniform equilibrium

In this case the equilibrium of the system is the pair (n∗, c∗) such that:⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∗̇ = 0

c∗̇ = 0

∂xn∗ = 0

∂xc∗ = 0

⇔

{︄
µ(c∗) = d, → c∗ = µ−1(d)

n∗ = s/µ(c∗) = s/d
(3.9)

Stability under uniform perturbation

We introduce the uniform perturbation:(︃
n(t)
c(t)

)︃
=

(︃
n∗
c∗

)︃
+

(︃
δn(t)
δc(t)

)︃
with

(︃
δn(t)
δc(t)

)︃
= δ⃗ eλt (3.10)

By substituting such uniform perturbation into Eq. (3.8):{︄
δṅ = [µ(c∗ + δc)− d] (n∗ + δn)

δċ = s− µ(c∗ + δc) (n∗ + δn)

We can expand in a Taylor series the growth function around the equilibrium value:

µ(c∗ + δc) = µ(c∗) +
dµ

dc

⃓⃓
c∗
δc+ ...

and neglect δ2 terms:⎧⎪⎨⎪⎩
δṅ = [µ(c∗)− d] (n∗ + δn) +

dµ

dc

⃓⃓
c∗
n∗ δc

δċ = s− µ(c∗) (n∗ + δn)− dµ

dc

⃓⃓
c∗
n∗ δc

⎧⎪⎨⎪⎩
δṅ =

s

d

dµ

dc

⃓⃓
c∗
δc

δċ = −d δn− s

d

dµ

dc

⃓⃓
c∗
δc

Where in the second step the the equilibrium values (3.9) were substituted. Making explicit the
perturbation form:⎧⎪⎨⎪⎩

λ δn =
s

d

dµ

dc

⃓⃓
c∗
δc

λ δc = −d δn− s

d

dµ

dc

⃓⃓
c∗
δc

1As already underlined, being the diffusion isotropic, no preferred spatial direction can emerge in the analysis of
the system and, regardless of the dimension of space, all the relevant quantities will depend on the modulus of the
wavenumber k = |k|.
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Chapter 3. Spatially-extended MacArthur’s model

This is an eigenvalue problem in λ:

λ δ⃗ = J δ⃗ with J =

(︄
0 s

d
dµ
dc

⃓⃓
c∗

−d − s
d
dµ
dc

⃓⃓
c∗

)︄
=

(︃
0 A

−d −A

)︃
(3.11)

where I defined for shortness of notation A = s
d
dµ
dc

⃓⃓
c∗
, which is a positive quantity since s, d, dµ

dc

⃓⃓
c∗

> 0
for definition.

det (J− λI) = λ (A+ λ) + dA = λ2 + λA+ dA = 0 ⇔ λ± =
−A±

√
A2 − 4A d

2

Let us consider the stability of the equilibrium. Being:

A > 0, −4Ad < 0 and
√︁

A2 − 4A d < A

⇒
Re[λ−] < 0

Re[λ+] < 0

the homogeneous solution is stable to uniform perturbations for all values of the system parameters.

Non-uniform perturbation

If we consider now a non-uniform perturbation of the kind:(︃
n(x, t)
c(x, t)

)︃
=

(︃
n∗
c∗

)︃
+

(︃
δn(x, t)
δc(x, t)

)︃
with

(︃
δn(x, t)
δc(x, t)

)︃
= δ⃗ eλt+ikx (3.12)

and we substitute it into the linearised system, we obtain:⎧⎪⎨⎪⎩
δṅ = [µ(c∗)− d] (n∗ + δn) +

dµ

dc

⃓⃓
c∗
n∗ δc+ (D − ˜︁Dn∗) ∂

2
xδn

δċ = s− µ(c∗) (n∗ + δn)− dµ

dc

⃓⃓
c∗
n∗ δc

Using the equilibrium solution (3.9) yields:⎧⎪⎨⎪⎩
δṅ =

s

d

dµ

dc

⃓⃓
c∗
δc+

(︂
D − ˜︁D s

d

)︂
∂2
xδn

δċ = −d δn− s

d

dµ

dc

⃓⃓
c∗
δc

⎧⎪⎨⎪⎩
λ δn =

s

d

dµ

dc

⃓⃓
c∗
δc− k2

(︂
D − ˜︁D s

d

)︂
δn

λ δc = −d δn− s

d

dµ

dc

⃓⃓
c∗
δc

where in the second step the perturbation form was explicitely used. This corresponds to the eigenvalue
problem:

λ δ⃗ = (J− k2D) δ⃗ with D =

(︃
D − ˜︁D s

d 0
0 0

)︃
and J defined in (3.24)

det (J− k2D− λI) =
[︂
λ+ k2

(︂
D − ˜︁Ds

d

)︂]︂
(A+ λ) + dA =

= λ2 + λ
[︂
A+ k2

(︂
D − ˜︁Ds

d

)︂]︂
+A

[︂
d+ k2

(︂
D − ˜︁Ds

d

)︂]︂
=

= λ2 + λ
(︁
A+ k2D

)︁
+A

(︁
d+ k2D

)︁
where I have renamed the parameters, for shortness:

A :=
s

d

dµ

dc

⃓⃓⃓⃓
c∗

> 0

D := D − ˜︁Ds

d

(3.13)
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3.2. MacArthur 1s 1r

Therefore:

det (J− k2D− λI) = 0

⇔ λ± =
1

2

(︂
A±

√︁
A2 +B

)︂
=

1

2

(︃
−A− k2D±

√︂
(−A− k2D)2 − 4A (d+ k2D)

)︃
(3.14)

where I further defined the following functions of k2:

A(k2) := −A− k2D

h(k2) := −4A
(︁
d+ k2D

)︁

Spatial instability

Instability occurs when at lest one of the two eigenvalues has positive real part Re[λ±] > 0.
Calling the argument of the square root ∆(k2) := g2 − 4h = (−A− k2D)2 − 4A(d+ k2D), I observe
that there are three possible instability cases:

if ∆ < 0 : Re[λ+] = Re[λ−] =
1

2
A > 0 ⇔ A > 0

if ∆ > 0 : Re[λ−] = λ− =
1

2
(A−

√︁
(A2 +B)) > 0 ⇔ A > 0 ∧B < 0

(indeed B < 0 ⇒
√︁
(A2 +B)) < A)

if ∆ > 0 : Re[λ+] = λ+ =
1

2
(A+

√︁
(A2 +B)) > 0 ⇔ A > 0 ∨ (A < 0 ∧B > 0)

(indeed B > 0 ⇒
√︁

(A2 +B)) > |A|)

Now I study the sign of A(k2) and B(k2):

A > 0 ⇔ −A− k2D > 0 ⇔

{︄
D < 0

k2 > −A/D

A < 0 ⇔ −A− k2D < 0 ⇔ D > 0 ∨

{︄
D < 0

k2 < −A/D

B > 0 ⇔ d+ k2D < 0 ⇔

{︄
D < 0

k2 > −d/D

B < 0 ⇔ d+ k2D > 0 ⇔ D > 0 ∨

{︄
D < 0

k2 < −d/D

Therefore:

if ∆ < 0 : Re[λ+] = Re[λ−] > 0 ⇔

{︄
D < 0

k2 > −A/D

if ∆ > 0 : Re[λ−] = λ− > 0 ⇔

⎧⎪⎨⎪⎩
D < 0

A− d < 0

−A/D < k2 < −d/D

if ∆ > 0 : Re[λ+] = λ+ > 0 ⇔

⎧⎪⎨⎪⎩
D < 0

A− d > 0

k2 > −d/D

∨

⎧⎪⎨⎪⎩
D < 0

A− d < 0

k2 > −A/D

(3.15)
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Chapter 3. Spatially-extended MacArthur’s model

In conclusion, D < 0 is a necessary condition for instability (indeed if D > 0 we easily realize that
Re[λ±] < 0), and the regions of instability in k also depend on the sign of A− d.
Obviously the sign of ∆ itself depends on k2, therefore I should solve also ∆(k2) > 0 or < 0 and
substitute it in (3.15), however these inequalities depend on the existence of roots and give rise to
many other conditions on parameters, therefore I just calculate the zeros to get an idea, and then rely
on plots:

∆(k2) = (−A−k2D)2−4A(d+k2D) = D2k4−2ADk2+A(A−4d) = 0 ⇔ k2± = −−A±
√
Ad

D

If D < 0 (that holds when we have instability), k2− is negative and therefore we expect ∆(k2) to have
at most one root (k+).

As a check, I plot Re[λ±] in the different instability cases listed in (3.15):

• Fig. 3.1: case D < 0, A− d > 0 so we expect only λ+ instability for k >
√︁
−d/D

• Fig. 3.2: case D < 0, A− d < 0 so we expect: λ+ instability for k >
√︁
−A/D

λ− instability for
√︁
−A/D < k <

√︁
−d/D

• Fig. 3.3: case D > 0 so we expect no instability.

(3.16)

The discontinuity in the plotted functions is due to the fact that the real part of the eigenvalues
is taken, therefore when ∆(k2) = 0 Re[λ±] is a quadratic function of k, but when ∆(k2) ̸= 0 there is
an additional square root of ∆ = −Dk4 − 2ADk2 + const that modifies the slope of the function.
I also plot the case in which the only zero of ∆(k2) is k+ = 0 (Fig. 3.4): in this case there is no
discontinuity in the domain k > 0.

FIG. 3.1. Plot of the real parts of the eigenvalues
λ+(k) and λ−(k) (in red and blue, respectively), in the
case of parameters D < 0, A − d > 0. Consistently
with the calculations, instability occurs for wavenum-
bers larger than a threshold value.

FIG. 3.2. Plot of the real parts of the eigenvalues
λ+(k) and λ−(k) (in red and blue, respectively),
in the case of parameters D < 0, A − d < 0. As
expected, Re[λ+(k)] is positive for all k larger than
a threshold value, while Re[λ−(k)] > 0 in a limited
interval of wavenumbers.
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3.2. MacArthur 1s 1r

FIG. 3.3. Plot of the real parts of the eigenvalues
λ+(k) and λ−(k) (in red and blue, respectively),
in the case of D > 0. In this case both eigenvalues
have negative real part ∀ k, thus no instability is
allowed. ∆(k) has two zeros.

FIG. 3.4. Plot of the real parts of the eigenvalues
λ+(k) and λ−(k) (in red and blue, respectively), in
the case in which A = 4d ⇒ k+ = 0 andD < 0 ⇒ k−
is not real.

Expansion for k ≫ 1

To better understand the behavior of λ± for large k, I Taylor expand the eigenvalues:

√
∆ =

√︂
(−A− k2D)2 − 4A (d+ k2D) =

√︁
k4D2 − 2ADk2 +A(A− 4 d) =

= |D|k2
√︄
1− 2

A

D

1

k2
+O

(︃
1

k4

)︃
= |D| k2

(︃
1− A

D

1

k2
+O

(︃
1

k4

)︃)︃
= |D| k2 −A sgn(D) +O

(︃
1

k2

)︃ (3.17)

λ± =
1

2

[︃
−A (1± sgn(D)) + k2|D| (−sgn(D)± 1) +O

(︃
1

k2

)︃]︃
Therefore, for D < 0 (when instability is allowed):

λ± =
1

2

[︃
A (−1± 1)− k2D (1± 1) +O

(︃
1

k2

)︃]︃
⇒ λ+ ≈ k2|D| , λ− ≈ −A for k ≫ 1

while for D > 0 (when instability is not allowed):

λ± =
1

2

[︃
−A (1± 1)− k2D (−1± 1) +O

(︃
1

k2

)︃]︃
⇒ λ+ ≈ −A , λ− ≈ −k2|D| for k ≫ 1

Again, we have found a nonphysical result which is analogue to the one obtained in Section 3.1.1: the
spatial instability is allowed for all wavelengths minor than a certain threshold value.
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Chapter 3. Spatially-extended MacArthur’s model

3.3 MacArthur 2s 1r

Let us see how the instability behavior changes if we allow two species into the model. The evolution
equations read:⎧⎪⎨⎪⎩

n1̇ = (α1µ(c)− d1)n1 + ∂xJ1

n2̇ = (α2µ(c)− d2)n2 + ∂xJ2

ċ = s− (α1 n1 + α2 n2)µ(c)

with ∂xJσ = ∂x [(Dσ −
∑︂
ρ

Dσρnρ ) ∂xnσ] for σ = 1, 2 (3.18)

where d1, d2 > 0 are the death rates, s > 0 is the resource supply rate, α1, α2 are positive constants
and the growth function is µ(c) > 0 with dµ

dc > 0 ∀c. The diffusion coefficients Dσ > 0 account for
simple diffusion, while Dσρ > 0 reproduce the overcrowding effect.

Analogue calculations, relative to the generalisation of MacArthur’s model in the case of three species
and one resource, are reported in Appendix A.

Uniform equilibrium

The equilibrium of the system is (n∗
1, n

∗
2, c

∗) such that:

{︄
n1̇

∗ = n2̇
∗ = ċ∗ = 0

∂xn
∗
1 = ∂xn

∗
2 = ∂xc

∗ = 0
⇔

⎧⎪⎨⎪⎩
µ(c∗) = d1/α1,

n∗
1 = s/d1,

n∗
2 = 0

∨

⎧⎪⎨⎪⎩
µ(c∗) = d2/α2,

n∗
2 = s/d2,

n∗
1 = 0

(3.19)

Stability under uniform perturbation

Let us choose the first equilibrium and linearize the system around it:⎛⎝n1(t)
n2(t)
c(t)

⎞⎠ =

⎛⎝n∗
1

n∗
2

c∗

⎞⎠+

⎛⎝δn1(t)
δn2(t)
δc(t)

⎞⎠ with

⎛⎝δn1(t)
δn2(t)
δc(t)

⎞⎠ = δ⃗ eλt ,

⎛⎝n∗
1

n∗
2

c∗

⎞⎠ =

⎛⎝ s/d1
0

µ−1(d1/α1)

⎞⎠ (3.20)

By substituting such perturbation into Eq. (3.18):⎧⎪⎨⎪⎩
δn1̇ = [α1 µ(c

∗ + δc)− d1] (n
∗
1 + δn1)

δn2̇ = [α2 µ(c
∗ + δc)− d2] (n

∗
2 + δn2)

δċ = s− [α1 (n
∗
1 + δn1) + α2 (n

∗
2 + δn2)]µ(c

∗ + δc)

Expanding µ(c∗ + δc) = µ(c∗) + dµ
dc

⃓⃓
c∗
δc+ ... and neglecting δ2 terms:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δn1̇ = [α1 µ(c
∗)− d1] (n

∗
1 + δn1) + α1

dµ

dc

⃓⃓
c∗
n∗
1 δc

δn2̇ = [α2 µ(c
∗)− d2] (n

∗
2 + δn2) + α2

dµ

dc

⃓⃓
c∗
n∗
2 δc

δċ = s− [α1 (n1∗+ δn1) + α2 (n2∗+ δn2)]µ(c
∗)− dµ

dc

⃓⃓
c∗
(α1 n

∗
1 + α2 n

∗
2) δc

Substituting the equilibrium values (3.20):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δn1̇ = λ δn1 =
α1s

d1

dµ

dc

⃓⃓⃓⃓
c∗
δc

δn2̇ = λ δn2 =

(︃
α2

α1
d1 − d2

)︃
δn2

δċ = λ δc = −d1 δn1 −
α2

α1
d1 δn2 −

α1s

d1

dµ

dc

⃓⃓⃓⃓
c∗
δc
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3.3. MacArthur 2s 1r

This corresponds to the eigenvalue problem:

λ δ⃗ = J δ⃗ with J =

⎛⎜⎝ 0 0 α1s
d1

dµ
dc

⃓⃓
c∗

0 α2
α1
d1 − d2 0

−d1 −α2
α1
d1 −α1s

d1
dµ
dc

⃓⃓
c∗

⎞⎟⎠ =

⎛⎝ 0 0 A

0 α2
α1
d1 − d2 0

−d1 −α2
α1
d1 −A

⎞⎠ (3.21)

where I defined A := α1s
d1

dµ
dc

⃓⃓
c∗

> 0 to simplify notation. Let us solve the system:

det (J− λI) =
(︃
α2

α1
d1 − d2 − λ

)︃
det

(︃
−λ A

−d1 −(A+ λ)

)︃
=

(︃
α2

α1
d1 − d2 − λ

)︃(︁
λ2 +Aλ+Ad1

)︁
= 0

⇔

⎧⎪⎨⎪⎩
λ0 =

α2

α1
d1 − d2

λ± =
−A±

√
A2 − 4Ad1
2

Then the equilibrium (n∗
1, n

∗
2, c

∗) is stable if:⎧⎨⎩Re[λ0] < 0 ⇔ α2

α1
d1 − d2 < 0

Re[λ±] < 0

Since the second inequality is always verified (being 4Ad1 > 0), the only stability constraint is that
the parameters of the system should satisfy:

α2

α1
d1 − d2 < 0 (3.22)

Non-uniform perturbation

I consider the following perturbation around the equilibrium values (n∗
1, n

∗
2, c

∗) reported in (3.20).⎛⎝n1(x, t)
n2(x, t)
c(x, t)

⎞⎠ =

⎛⎝n∗
1

n∗
2

c∗

⎞⎠+

⎛⎝δn1(x, t)
δn2(x, t)
δc(x, t)

⎞⎠ with

⎛⎝δn1(x, t)
δn2(x, t)
δc(x, t)

⎞⎠ = δ⃗ eλt+ikx

Substituting it in the linearized equations of the system yields:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δn1̇ =
α1s

d1

dµ

dc

⃓⃓⃓⃓
c∗
δc+ (∂xJ1)lin

δn2̇ =

(︃
α2

α1
d1 − d2

)︃
δn2 + (∂xJ2)lin

δċ = −d1 δn1 −
α2

α1
d1 δn2 −

α1s

d1

dµ

dc

⃓⃓⃓⃓
c∗
δc

where the linearised diffusion term reads:

(∂xJ1)lin =

(︃
D1 −D11

s

d1

)︃
∂2
x δn1

(∂xJ2)lin = (D2 −D22n
∗
2 −D21n

∗
1) ∂

2
x δn2 =

(︃
D2 −D21

s

d1

)︃
∂2
x δn2

(3.23)

Indeed:

∂xJ1 = D1∂
2
xn1 −D11

[︁
(∂xn1)

2 + n1∂
2
xn1

]︁
−D12

[︁
(∂xn1)(∂xn2) + n2∂

2
xn1

]︁
=

= D1∂
2
xδn1 −D11

[︁
(∂xδn1)

2 + (n∗
1 + δn1)∂

2
xδn1

]︁
−D12

[︁
(∂xδn1)(∂xδn2) + (n∗

2 + δn2)∂
2
xδn1

]︁
≈

≈ (D1 −D11n
∗
1 −D12n

∗
2) ∂

2
x δn1
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Chapter 3. Spatially-extended MacArthur’s model

and similarly:

∂xJ2 ≈ (D2 −D22n
∗
2 −D21n

∗
1) ∂

2
x δn2

Substituting the equilibrium values into the above expressions leads to the expression written above
(3.23). The corresponding eigenvalue problem reads:

λ δ⃗ = (J− k2D) δ⃗ with D =

⎛⎝ D1 −D11
s
d1

0 0

0 D2 −D21
s
d1

0

0 0 0

⎞⎠ , J defined in (3.21).

det (J− k2D− λI) =

=

[︃
α2

α1
d1 − d2 − k2

(︃
D2 −D21

s

d1

)︃
− λ

]︃
det

(︄
−
[︂
λ+ k2

(︂
D1 −D11

s
d1

)︂]︂
A

−d1 −(A+ λ)

)︄
=

=

[︃
α2

α1
d1 − d2 − k2

(︃
D2 −D21

s

d1

)︃
− λ

]︃{︁
λ2 + λ

[︁
A+ k2D

]︁
+A

[︁
d1 + k2D

]︁}︁
where I defined:

A :=
α1s

d1

dµ

dc

⃓⃓⃓⃓
c∗

> 0

D := D1 −D11
s

d1

det (J− k2D− λI) = 0 ⇔

⎧⎪⎪⎨⎪⎪⎩
λ0 =

α2

α1
d1 − d2 − k2

(︃
D2 −D21

s

d1

)︃
λ± =

1

2

(︃
−A− k2D±

√︂
[−A− k2D]2 − 4A [d1 + k2D]

)︃

Spatial instability

It can be easily noticed that λ0 is equivalent to the eigenvalue (3.6) obtained for the basic model in
Section 3.1.1: indeed both are quadratic functions where the constant is required to be negative by the
equilibrium stability condition, while the k2 coefficient depends on the difference between the simple
diffusion coefficient and the overcrowding diffusion coefficient times n∗.

Basic model: λ = −d+ k2 (D21 s/d1 −D2)

MA2s1r: λ0 =
α2

α1
d1 − d2 + k2

(︂ ˜︁Dµ/d−D
)︂

Likewise, with D accounting for the difference between a simple diffusion coefficient and an overcrowd-
ing term, λ± is equal to the eigenvalues (3.14) found in Section 3.2 for the MacArthur model with 1
species and 1 resource, with the only difference of having d1 → d and α1µ → µ.

MA1s1r: λ± =
1

2

⎡⎣−s

d

dµ

dc

⃓⃓
c∗
− k2D±

√︄(︃
−s

d

dµ

dc

⃓⃓
c∗
− k2D

)︃2

− 4
s

d

dµ

dc

⃓⃓
c∗
(d+ k2D)

⎤⎦
with D = D − ˜︁Ds/d

MA2s1r: λ± =
1

2

⎡⎣−α1s

d1

dµ

dc

⃓⃓
c∗
− k2D±

√︄(︃
−α1s

d1

dµ

dc

⃓⃓
c∗
− k2D

)︃2

− 4
α1s

d1

dµ

dc

⃓⃓
c∗
(d+ k2D)

⎤⎦
with D = D1 −D11s/d1
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3.4. General two-reactants model with overcrowding diffusion

Therefore the instability conditions for the MacArthur for 2 species and 1 resource (MA2s1r) are the
ones found for :

λ0 → Basic model (3.7)

λ± → MA1s1r (3.16)

and we have not yet obtained the desired result.

We then seek to modify the system in such a way that they follow the desired behavior, i.e. they
become positive in a limited interval of wavenumber values.
In the next section, we analyse a fully general two-reactants model, allowing both diffusion coeffi-
cients to become negative, trying to understand which feature of the MacArthur model generates the
unwanted result.

3.4 General two-reactants model with overcrowding diffusion

We want to study the instability of a system of two reactants, in the more general case in which over-
crowding diffusion is allowed for both: with respect to the previous cases, we are allowing the resource
to diffuse into the environment as well, and we admit that it might be subject to an overcrowding
effect too.
We leave the reaction dynamics unspecified to achieve a greater generality. This allows us both to see
if the pathological behavior of the MacArthur model can be cured by adding a more complex dispersal
behavior, and to elucidate the reasons of such undesired result.

We consider the following evolution equations:{︄
ṅ = f(n, c) + ∂x [(D0 −D1 n ) ∂xn]

ċ = g(n, c) + ∂x [(D0
¯ −D1

¯ c ) ∂xc]

where f is the reaction dynamics of the species, g is that of the resource, and the diffusion coefficients
D0, D1, D0

¯ , D1
¯ are all non-negative. The following notation is adopted:

• the subscript 0 labels the simple diffusion coefficients;

• the subscript 1 labels the overcrowding diffusion coefficients;

• an overline indicates the coefficients describing the dispersal behavior of the resource.

We denote the linearisation of the above system about the uniform equilibrium (n∗, c∗) as follows2:

λ δ⃗ = (J− k2D) δ⃗ with J =

(︃
fn fc
gn gc

)︃
, D =

(︃
D 0
0 D̄

)︃
(3.24)

having defined:

D = D0 − n∗D1, D̄ = D0
¯ − c∗D1

¯

Both the linearised diffusion coefficients can be either positive or negative, thanks to the effect of
overcrowding. The solution for the system is:

det (J− k2D− λI) = λ2 + λg(k2) + h(k2) = 0 ⇔ λ±(k
2) =

−g(k2)±
√︁

g2(k2)− 4h(k2)

2

with:

g(k2) = k2(D + D̄)− tr(J)
h(k2) = k4DD̄ − k2(D̄fn +Dgc) + det (J)

2The calculations are identical to the ones reported in the previous sections, therefore I skipped them for brevity. See
Section 3.2 for more details.
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Chapter 3. Spatially-extended MacArthur’s model

Therefore, the stability of the uniform equilibrium (n∗, c∗) requires that λ±(k
2 = 0) < 0, which implies

in turn:

tr(J) < 0 ∧ det (J) > 0

Spatial instability

As we have seen, instability under spatially heterogeneous perturbations arises if λ±(k
2) > 0 for some

value of the wavenumber k:

λ+ > 0 ⇔ g < 0 ∨

{︄
g > 0

h < 0

λ− > 0 ⇔

{︄
g < 0

h > 0

(3.25)

where:

g(k2) = k2(D + D̄)− tr(J)
h(k2) = k4DD̄ − k2(D̄fn +Dgc) + det (J)

(3.26)

with tr(J) < 0 and det (J) > 0 as required by the stability of the equilibrium (n∗, c∗).

We observe that the addition of a diffusion term to the equation for the resources has modified
the shape of the h function in (3.26) by introducing a k4 term. Therefore, h has become a quadratic
function of k2, which, for given signs of the coefficients, could become negative in a limited interval of
the wavenumber domain, and might therefore lead to the solution of our problem.

Study of g

Being tr(J) < 0, g(k2) = g1k
2 + g0 is a linear function of k2 with positive intercept g0, therefore:

if g1 > 0 : g > 0 ∀ k

if g1 < 0 :

{︄
g > 0 for k < k̄

g < 0 for k > k̄
where k̄ =

tr(J)
g1

=
tr(J)
D + D̄

Study of h

Being det(J) > 0, h(k2) = h2k
4 + h1k

2 + h0 is a quadratic function of k2 with positive intercept h0.
Depending on the signs of h2 and h1, different possibilities are found:

if h2 > 0 and h1 > 0 : h > 0 ∀ k
if h2 > 0, h1 < 0 and min(h) > 0 : h > 0 ∀ k

if h2 > 0, h1 < 0 and min(h) < 0 :

{︄
h < 0 for k− < k < k+

h > 0 for k > k+ ∨ k < k−

if h2 < 0 :

{︄
h < 0 for k < k+

h > 0 for k > k−

where the roots of h(k2) are:

k± =
−h1 ±

√︁
h21 − 4h2h0
2h2

(3.27)
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Expansion for k ≫ 1

So far we have not made any assumption about the signs of D, D̄ and the form of fn, fc, gn, gc.
Indeed, in full generality, before diving deeper into the study of the sign of Re[λ±], we ask ourselves
if there is some requirement that we can impose on this system, such that an instability appears in
some limited range [k1, k2] of wavenumbers. To do so, we perform an expansion for large k values and
we look at the sign of the leading k2 term.

∆(k2) = g2 − 4h = k4(D̄ −D)2 + 2k2(D̄ −D)(fn − gc) + (fn − gc)
2 + 4gnfc =

= k4(D̄ −D)2
[︃
1 +

2

k2
fn − gc
D̄ −D

+
1

k4
(fn − gc)

2 + 4gnfc
(D̄ −D)2

]︃

√︁
∆(k2) = k2|D̄ −D|

√︄
1 +

2

k2
fn − gc
D̄ −D

+
1

k4
(fn − gc)2 + 4gnfc

(D̄ −D)2
≈

≈ k2|D̄ −D|
[︃
1 +

1

k2
fn − gc
D̄ −D

+O

(︃
1

k4

)︃]︃
= k2|D̄ −D|+ sgn(D̄ −D) (fn − gc) +O

(︃
1

k2

)︃
Therefore:

λ± ≈ 1

2

[︁
k2
(︁
−(D̄ +D)± |D̄ −D|

)︁
+ fn + gc ± sgn(D̄ −D) (fn − gc)

]︁
+O

(︃
1

k2

)︃
Thus, for k ≫ 1, the eigenvalues at leading order behave like a quadratic function of k2, whose coeffi-
cient depends in particular on the sign of D̄ −D.

For D̄ −D > 0 :

λ+ ≈ −Dk2 + fn +O

(︃
1

k2

)︃
λ− ≈ −D̄ k2 + gc +O

(︃
1

k2

)︃ (3.28)

For D̄ −D < 0 :

λ+ ≈ −D̄ k2 + gc +O

(︃
1

k2

)︃
λ− ≈ −Dk2 + fn +O

(︃
1

k2

)︃

In conclusion:

• if D, D̄ < 0 we observe that both eigenvalues grow like λ± ∼ +k2, therefore surely instability is
not limited to a finite k interval.

• if D, D̄ > 0 we find the desired behavior λ± ∼ −k2.

• if D < 0, D̄ > 0 we are in the case D̄ −D > 0 therefore λ− ∼ −k2 but λ+ ∼ +k2.

• if D > 0, D̄ < 0 we are in the case D̄ −D < 0 therefore, again, λ− ∼ −k2 and λ+ ∼ +k2.

Then, the only case of interest to us is represented by D, D̄ > 0, and we can restrict our analysis to
this case.
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Chapter 3. Spatially-extended MacArthur’s model

Instability: case D, D̄ > 0

Let us consider the case of interest D, D̄ > 0, for which λ± follows the desired trend ∼ −k2 for k ≫ 1.
For such signs of D, D̄ :

g1 < 0 ⇒ g > 0 ∀ k

The behavior of h(k2), instead, depends also on the values of fn, fc, gn, gc :

h2 > 0

h1 = D̄fn +Dgc

Therefore Eq. (3.25) implies that:

Re[λ+] > 0 ⇔

⎧⎪⎨⎪⎩
D̄fn +Dgc < 0

(D̄fn +Dgc)
2 − 4DD̄ det(J) > 0

k− < k < k+

(3.29)

in which case instability is allowed in the limited range [k−, k+] (3.27).

3.4.1 Specification to the MacArthur reaction dynamics

Let us discuss this result in the case of the reaction dynamics of the MacArthur model. In such case:

J =

(︃
fn fc
gn gc

)︃
=

(︃
0 A

−d −A

)︃
⇒

det(J) = dA > 0

tr(J) = −A < 0
with A defined in (3.13)

and the conditions on stability are automatically met. Substituting the given expressions into (3.26):

g(k2) = k2(D + D̄) +A

h(k2) = k4DD̄ + k2DA+ dA

Recalling that the instability occurs in a limited interval ⇔ D, D̄ > 0, it is immediate to realise that
both functions are always positive, therefore instability to spatial perturbations cannot occur.
From another perspective, if one considers:

• D < 0, D̄ > 0 ⇒ D̄ −D > 0 and (3.28) yields λ+ ∼ +k2;

• D > 0, D̄ < 0 ⇒ D̄ −D < 0 and (3.28) gives the same trend λ+ ∼ +k2;

• D < 0, D̄ < 0 and in both cases D̄ −D ≶ 0 (3.28) yields λ+ ∼ +k2.

thus instability is allowed, in some cases, but it is not constrained to a limited interval in the wavenum-
bers, consistently with the results of Section 3.2.

In conclusion, the desired instability behavior is not encountered by using the MacArthur reaction dy-
namics and adding diffusion to both the species and the resource, neither by allowing both coefficients
to become negative. In order to solve the problem, a more effective modification of the diffusion-like
terms will be introduced in the next section.
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3.5 Adding stabilizing terms to the MacArthur’s model

In this section, the effects of adding other stabilizing terms to the dynamical equations presented in
Section 3.2 are analysed. Two modifications are made: one affecting once more the dispersal behavior,
and the other consisting in an additional density-dependent inhibition term.

3.5.1 The Janzen-Connell effect

The latter approach can be interpreted as resulting from the presence of host-specific pathogens in the
ecosystem, inducing the Janzen-Connell effect. This mechanism is held responsible for the maintenance
of high diversity levels in the tree communities of tropical forests, thanks to a negative feedback
mechanism supported by host-specific pathogens, that prevent seedlings from growing in proximity of
parent trees, thus diminishing the local crowding within each species. This effect acts as a regulator
which favors species coexistence. Let us briefly sketch how to incorporate the Janzen-Connell effect
into MacArthur’s model [18]. The starting point consists in writing three sets of differential equations,
describing the coupled evolution of the populations of species, resources and pathogens, the latter being
indicated by p and labeled by the index a:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṅσ = nσ

(︄
NR∑︂
i=1

ασi µi(ci)− δσ −
NP∑︂
a=1

Aσapa

)︄
σ = 1, ..., NS

ċi = si −
NS∑︂
σ=1

nσ ασi µi(ci) i = 1, ..., NR

ṗa = pa

NS∑︂
σ=1

Baσnσ − kap
2
a a = 1, ..., NP

where NP ≡ NS and the matrices Aσa, Baσ must be diagonal for the parasites to be host-specific.
The presence of pathogens counteracts the growth of species, as visible from the negative sign of the
species-pathogen interaction in the first set of equations. This interaction is encoded in the positive
degradation matrix Aσa. The pathogens, on the other hand, benefit from the host population, as visible
from the last set of equations, in which pathogens grow proportionally to the species population, with
growth rates encoded by the benefit matrix Baσ. Finally, the last term in the pathogen equations
serves as a limit to their population growth, 1/ka defining the carrying capacity of pathogen species a.
The above system can be greatly simplified by exploiting a separation of scales: indeed, the pathogens
naturally have a much faster growth scale with respect to the ones of species and resources, and thus
reach stationary much sooner. This allows to write:

pa

NS∑︂
σ=1

Baσnσ − kap
2
a = 0

and extract the stationary solution for the pathogen population. One can prove that, by substituting
it in the full evolution equations, the following effective model is obtained:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ṅσ = nσ

[︄
NR∑︂
i=1

ασi µi(ci)− δσ −
NS∑︂
ρ

(︄
NP∑︂
a=1

AσaBaρ

ka

)︄
nρ

]︄
σ = 1, ..., NS

ċi = si −
NS∑︂
σ=1

nσ ασi µi(ci) i = 1, ..., NR

and by renaming ϵσρ :=
∑︁NP

a=1
AσaBaρ

ka
, one finds:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ṅσ = nσ

[︄
NR∑︂
i=1

ασi µi(ci)− δσ −
NS∑︂
ρ

ϵσρnρ

]︄
σ = 1, ..., NS

ċi = si −
NS∑︂
σ=1

nσ ασi µi(ci) i = 1, ..., NR
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which is the classical MacArthur model with the addition of a negative-signed quadratic term in the
species populations, that has the effect of limiting their growth.
Notice also that, since the benefit and degradation matrices are assumed to be diagonal, ϵσρ is diagonal
as well.

3.5.2 Stabilizing squared laplacian term

The second modification which will be introduced follows the same line of reasoning proposed in Sec-
tion 3.4, i.e. the idea that the introduction of a quartic order term into the function h (3.26) could lead
to a finite instability interval. This can be achieved by directly inserting a squared laplacian term in
the dynamical equations, that clearly leads to the appearance of a k4 term when Fourier decomposing
the perturbation.
Finally, an overcrowding diffusion term for the resource population is also included, allowing for a
greater generality of analysis. It is indeed reasonable to expect that this term, coupled with the
squared laplacian one, will further introduce higher powers of k into the function h.

Since the system to be studied depends now on a large number of parameters, the analysis will
be carried out by switching them off progressively, aiming to determine the minimal set of parameters
that admit the wanted result.

3.5.3 Linear stability analysis

Limiting our analysis to the simple case of one species and one resource, the the modified MacArthur’s
dynamical equations read:{︄

ṅ = (αc− d− ϵn)n+ ∂x [(D0 −D1n) ∂xn]− β ∂4
xn

ċ = s− αcn+ D̄ ∂2
xc

(3.30)

where d > 0 is the death rate, α > 0 is the growth rate, s > 0 is the resource supply rate and ϵ ≥ 0 is
the coefficient of the n2 term related to pathogens. As for the diffusion coefficients, we have D0 ≥ 0
simple diffusion coefficient and D1 ≥ 0 overcrowding coefficient for species, while D̄ ≥ 0 accounts for
the the simple diffusion of resources.
Notice that we have restricted the growth rate function µ(c) to be a linear function of c, to simplify
the calculations:

µ(c) = α c , with α > 0

indeed, as clearly evident from the previous analyses, the form of µ does not affect the nature of the
instability, as long as it is monotonically increasing in c.

Uniform equilibrium

The equilibrium of the system is (n∗, c∗) such that:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∗̇ = 0

c∗̇ = 0

∂xn∗ = 0

∂xc∗ = 0

⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϵ ̸= 0

n∗ =
−d+

√
d2 + 4ϵs

2ϵ

c∗ =
s

α

1

n∗
=

d+
√
d2 + 4ϵs

2α

∨

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϵ = 0

n∗ = s/d

c∗ =
s

α

1

n∗
= d/α

(3.31)

Stability under uniform perturbation

Substituting the uniform perturbation (3.10) into Eq. (3.30) yields:

λ δ⃗ = J δ⃗ with J =

(︃
−n∗ϵ n∗α
−c∗α −n∗α

)︃
=

(︃
−n∗ϵ n∗α
−s/n∗ −n∗α

)︃
(3.32)
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Solving in λ:

det (J− λI) = λ2+n∗(ϵ+α)λ+α(s+ϵ n2
∗) = 0 ⇔ λ± =

1

2

[︂
−n∗(α+ ϵ)±

√︁
n2
∗(α+ ϵ)2 − 4α(s+ ϵ n2

∗)
]︂

Being n∗(α+ ϵ) > 0, λ− is clearly negative, while α(s+ ϵ n2
∗) > 0 implies that λ+ is negative as well.

Therefore the uniform equilibrium is stable for all values of the parameters: in particular, I stress that
ϵ = 0 does not break the stability.

Non-uniform perturbation

Substituting the non-uniform perturbation (3.12) into the system in Eq. (3.30), we linearise the diffu-
sion terms as follows:

∂x[(D0 −D1n) ∂xn]− β ∂4
xn = ∂x[(D0 −D1n∗ −D1δn) ∂xδn]− β ∂4

xδn ≈ (D0 −D1n∗) ∂
2
xδn− β ∂4

xδn

→ −k2(D0 −D1n∗) δn− k4β δn

D̄ ∂2
xc = D̄ ∂2

xδc → −k2D̄δc

where the arrows indicate the transition into Fourier space. Thus Eq. (3.30) becomes:

λ δ⃗ = (J−k2D1−k4D2) δ⃗ with D1 =

(︃
D0 −D1n∗ 0

0 D̄

)︃
, D2 =

(︃
β 0
0 0

)︃
, and J defined in (3.32)

(3.33)

Solving in λ:

det (J− ˜︁D− λI) = λ2 + g(k2)λ+ h(k2) = 0 ⇔ λ± =
1

2

[︂
−g(k2)±

√︁
g2(k2)− 4h(k2)

]︂
(3.34)

Where I adopted the same notation as in Section 3.4 for the coefficient functions of the characteristic
polynomial:

g(k2) = β k4 + (D̄ +D) k2 + n∗(α+ ϵ)

h(k2) = βD̄ k6 + (αβn∗ +DD̄) k4 + n∗(αD + ϵD̄) k2 + α(s+ ϵ n2
∗)

(3.35)

and I defined for shortness D := D0 −D1n∗.

3.5.4 Instability

To perform the linear instability analysis, as usual, we need to study the sign of the functions g(k2)
and h(k2) according to Eq. (3.25).

Study of g(k2)

g(k2) is a quadratic function of k2: g(k2) = g2k
4 + g1k

2 + g0, with

• g2 = β > 0
• g1 = D̄ +D can be ≷ 0
• g0 = α(s+ ϵ n2

∗) > 0

Then if g1 > 0 ⇒ g > 0 ∀k

if

{︄
g1 < 0

min(g) > 0
⇒ g > 0 ∀k

if

{︄
g1 < 0

min(g) < 0
⇒

g > 0 for k < k− and k > k+

g < 0 for k− < k < k+

Where k2−, k
2
+ are the positive roots of g(k2)
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FIG. 3.5. Visual sketch of the possible behaviors of the function g(k2).

Study of h(k2)

h(k2) is a cubic function of k2: h(k2) = h3k
6 + h2k

4 + h1k
2 + h0, with

• h3 = βD̄ > 0
• h2 = αβn∗ +DD̄ can be ≷ 0
• h1 = n∗(αD + ϵD̄) can be ≷ 0
• h0 = α(s+ ϵ n2

∗) > 0

Then if

{︄
h1 > 0

h2 > 0
⇒ h > 0 ∀k

if

{︄
h1 < 0 ∨ h2 < 0

min(h) > 0
⇒ h > 0 ∀k

if

{︄
h1 < 0 ∨ h2 < 0

min(h) < 0
⇒

h > 0 for k < k− and k > k+

h < 0 for k− < k < k+

Where k
2
−, k

2
+ are the positive roots of h(k2)

Then the general instability conditions follow from Eq. (3.25):

Re[λ+] > 0 ⇔

⎧⎪⎨⎪⎩
g1 < 0

min(g) < 0

k− < k < k+

∨

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 > 0 ∨

{︄
g1 < 0

min(g) > 0
∨

⎧⎪⎨⎪⎩
g1 < 0

min(g) < 0

k < k− ∨ k > k+

h1 < 0 ∨ h2 < 0

min(h) < 0

k− < k < k+

Re[λ−] > 0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 < 0

min(g) < 0

k− < k < k+{︄
h1 > 0

h2 > 0
∨

{︄
h1 < 0 ∨ h2 < 0

min(h) > 0
∨

⎧⎪⎨⎪⎩
h1 < 0 ∨ h2 < 0

min(h) < 0

k < k− ∨ k > k+

(3.36)

Let us try to understand the behavior of the model in simplified cases, by switching off some parameters
of the system.
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3.5. Adding stabilizing terms to the MacArthur’s model

Case D1 = 0

D1 = 0 ⇒ D = D0 > 0, therefore:

g(k2) = β k4 +D0 k
2 + n∗(α+ ϵ)

h(k2) = βD̄ k6 + (αβn∗ +D0D̄) k4 + n∗(αD0 + ϵD̄) k2 + α(s+ ϵ n2
∗)

Then all coefficients g2, g1, g0, h3, h2, h1, h0 are positive ⇒ g, h > 0 ∀k and consequently there is no
instability (Fig. 3.6). This also allows us to observe that D = D0 −D1n∗ < 0 is a necessary condition
for instability, while the specific value of D0 alone does not seem to be very influential.

D = D0 −D1n∗ > 0 ⇒ no spatial instability. (3.37)

FIG. 3.6. Plots of h, g and Re[λ±] for parameter values D1 = 0, D0 = 0.2, β = 0.2, D̄ = 0.4, α = 0.3, ϵ = 0.6,
d = 0.4, s = 0.5. In this case g1 = 0.6, h2 = 0.12, h1 = 0.19, therefore h(k2) and g(k2) have no minimum in the
domain k2 > 0.

Case β = 0

When β = 0 we fall back to the case studied in Section 3.4, with J given by (3.32) ⇒ fn, gc < 0.
We immediately conclude, from (3.29), that instability is never allowed in a limited wavenumber range
in this case.

Case ϵ = 0

In this case the uniform equilibrium solution takes the simplest form

n∗ = s/d

and the functions (3.35) become:

g(k2) = β k4 + (D̄ +D) k2 + αs/d

h(k2) = βD̄ k6 + (αβs/d+DD̄) k4 + αDs/d k2 + αs

Having clarified that D must necessarily be < 0, the signs of the coefficients are the following:

• g2 > 0, g1 ≷ 0 and g0 > 0;
• h3 > 0, h2 ≷ 0, h1 < 0 and h0 > 0.
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Therefore:

Re[λ+] > 0 ⇔

⎧⎪⎨⎪⎩
g1 < 0

min(g) < 0

k− < k < k+

∨

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
g1 > 0 ∨

{︄
g1 < 0

min(g) > 0
∨

⎧⎪⎨⎪⎩
g1 < 0

min(g) < 0

k < k− ∨ k > k+

min(h) < 0

k− < k < k+

Re[λ−] > 0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g1 < 0

min(g) < 0

k− < k < k+

min(h) > 0 ∨

{︄
min(h) < 0

k < k− ∨ k > k+

(3.38)

Some examples are plotted in the figures below.

In conclusion, instability is allowed with ϵ = 0, for suitable choices of the other system parameters.

FIG. 3.7. Plots of h, g and Re[λ±] for parameter values ϵ = 0, D1 = 0.7, D0 = 0.2 (⇒ D = −0.675), β = 0.2,
D̄ = 0.8, α = 0.3, d = 0.4, s = 0.5.
In this case g1 = 0.12, h2 = −0.46, h1 = −0.25, therefore g(k2) has no minimum in the domain k2 > 0, while

min(h) = −0.95 in k2 = 2.18 and h(k2) has two roots k
2

−, k
2

+ in the domain k2 > 0.

As expected, instability occurs in the range k− < k < k+, where Re[λ+] > 0.
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FIG. 3.8. Plots of h, g and Re[λ±] for parameter values ϵ = 0, D1 = 0.7, D0 = 0.2 (⇒ D = −0.675), β = 0.8,
D̄ = 0.6, α = 0.3, d = 0.4, s = 0.5.
In this case g1 = −0.08, h2 = −0.11, h1 = −0.25, therefore min(g) = 0.37 in k2 = 0.05 and min(h) = 0.06 in
k2 = 0.49: the two functions have no roots in the domain k2 > 0.
No instability is found, consistently with (3.38).

FIG. 3.9. Plots of h, g and Re[λ±] for parameter values ϵ = 0, D1 = 0.7, D0 = 0.2 (⇒ D = −0.675), β = 0.8,
D̄ = 0.2, α = 0.3, d = 0.1, s = 0.5.
In this case g1 = −3, h2 = 0.54, h1 = −5, therefore min(g) = −1.5 in k2 = 1.9 and min(h) = −6.4 in k2 = 2.28.

Therefore, consistently with (3.38), instability occurs for λ+ in the range k− < k < k+, since k
2

− < k2− < k2+ <

k
2

+.
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Case ϵ = 0 and D̄ = 0

Let us try to simplify even more the analysis by putting D̄ to zero as well. In this case (3.35) becomes:

g(k2) = β k4 +Dk2 + αs/d

h(k2) = αβs/d k4 + αDs/d k2 + αs
(3.39)

Both functions are quadratic functions of k2 with coefficients g2, h2 > 0, g1, h1 < 0, g0, h0 > 0
(assuming D < 0). Therefore their roots are always positive, when they exist. They can be studied
easily:

if min(g) =
αs

d
− D2

4β
< 0 → ∃ roots of g: k2± =

1

2β

(︂
−D ±

√︁
D2 − 4αβs/d

)︂
> 0

if min(h) =
αs

d

(︃
d− D2

4β

)︃
< 0 → ∃ roots of h: k

2
± =

1

2β

(︂
−D ±

√︁
D2 − 4βd

)︂
> 0

and both g and h have the minimum in k2min = − D
2β .

Moreover, the ordering of the roots depends on the values of parameters α, s and d:

if d >
αs

d
→ k2+ > k

2
+ and k2− < k

2
− → k− < k− < k+ < k+

if d <
αs

d
→ k2+ < k

2
+ and k2− > k

2
− → k− < k− < k+ < k+

The instability conditions (3.38) become:

Re[λ+] > 0 ⇔

⎧⎪⎨⎪⎩
αs

d
<

D2

4β

k− < k < k+

∨

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

αs

d
>

D2

4β
∨

⎧⎪⎨⎪⎩
αs

d
<

D2

4β

k < k− ∨ k > k+

d <
D2

4β

k− < k < k+

Re[λ−] > 0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

αs

d
<

D2

4β

k− < k < k+

d >
D2

4β
∨

⎧⎪⎨⎪⎩d <
D2

4β

k < k− ∨ k > k+

parameters instability instability range

a. αs
d > D2

4β ∧ d > D2

4β no

b. d < D2

4β < αs
d ∨ d < αs

d < D2

4β Re[λ+] k− < k < k+

c. αs
d < D2

4β < d Re[λ+], Re[λ−] k− < k < k+

d. αs
d < d < D2

4β Re[λ+] k− < k < k+
Re[λ−] k− < k < k−, k+ < k < k+

TAB. 3.1. Instability conditions for ϵ = 0, D̄ = 0.
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Let us study the different cases.

if
αs

d
>

D2

4β
, d >

D2

4β
: g, h > 0 ∀k ⇒ NO INSTABILITY

if
αs

d
>

D2

4β
> d: Re[λ+] > 0 in the range k− < k < k+

if
αs

d
<

D2

4β
< d: Re[λ+], Re[λ−] > 0 in the range k− < k < k+

if
αs

d
<

D2

4β
, d <

D2

4β
: Re[λ+] > 0 ⇔ k− < k < k+ ∨

{︄
k < k− ∨ k > k+

k− < k < k+

Re[λ−] > 0 ⇔

{︄
k− < k < k+

k < k− ∨ k > k+

Then if d >
αs

d
: Re[λ+] > 0 ⇔ k− < k < k+

Re[λ−] > 0 ⇔ k− < k < k− ∨ k+ < k < k+

if d <
αs

d
: Re[λ+] > 0 ⇔ k− < k < k+

The results are summarized in Tab. 3.1 and some examples are plotted for each possible case.

We remark that the obtained instabilities can be classified as stationary linear instabilities of type I
(labeled Is instabilities) in the cases b. and d. of Tab. 3.1, with the exception of case c.. In the latter
case, the instability is still of type I, however the eigenvalues are not real in proximity of kc, as visible
from Fig. 3.13, therefore the instability is oscillatory in time (Io).

FIG. 3.10. Plots of h, g and Re[λ±] for parameter values ϵ = 0, D̄ = 0, D1 = 0.7, D0 = 0.2 (⇒ D = −0.24),
β = 0.3, α = 0.3, d = 0.8, s = 0.5.
In this case min(g) = 0.14 and min(h) = 0.14, indeed g and h are positive ∀ k2.
d = 0.8 > αs

d = 0.19 > D2

4β = 0.05 therefore we are in case a. of Tab. 3.1: as expected, there is no instability.
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FIG. 3.11. Plots of h, g and Re[λ±] for parameter values ϵ = 0, D̄ = 0, D1 = 0.6, D0 = 0.2 (⇒ D = −0.8),
β = 0.1, α = 0.4, d = 0.3, s = 0.5.
In this case min(g) = −0.93 and min(h) = −0.86, indeed both functions have two zeros in the domain k2 > 0.

d = 0.3 < αs
d = 0.67 < D2

4β = 1.6 therefore we are in case b. of Tab. 3.1.

As expected, instability occurs for Re[λ+] in the range k− < k < k+.

FIG. 3.12. Plots of h, g and Re[λ±] for parameter values ϵ = 0, D̄ = 0, D1 = 0.7, D0 = 0.2 (⇒ D = −0.97),
β = 0.4, α = 0.6, d = 0.3, s = 0.5.
In this case min(g) = 0.4 and min(h) = −0.3, indeed only h has zeros in the domain k2 > 0.

d = 0.3 < D2

4β = 0.6 < αs
d = 1 therefore we are in case b. of Tab. 3.1.

Instability occurs for Re[λ+] in the range k− < k < k+.
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FIG. 3.13. Plots of h, g and Re[λ±] for parameter values ϵ = 0, D̄ = 0, D1 = 0.9, D0 = 0.2 (⇒ D = −0.36),
β = 0.1, α = 0.4, d = 0.8, s = 0.5. In this case min(g) = −0.08 and min(h) = 0.12, indeed only g has zeros in

the domain k2 > 0. αs
d = 0.25 < D2

4β = 0.33 < d = 0.8 therefore we are in case c. of Tab. 3.1.

As expected, instability occurs for Re[λ+] ≡ Re[λ−] in the range k− < k < k+: this means that both eigenvalues
have non-vanishing imaginary part for all wavenumbers k belonging to such interval, therefore the instability is
oscillatory in time.

FIG. 3.14. Plots of h, g and Re[λ±] for parameter values ϵ = 0, D̄ = 0, D1 = 0.7, D0 = 0.2 (⇒ D = −0.675),
β = 0.2, α = 0.2, d = 0.4, s = 0.5. In this case min(g) = −0.32 and min(h) = −0.04, indeed both functions

have two zeros in the domain k2 > 0. αs
d = 0.25 < d = 0.4 < D2

4β = 0.57 therefore we are in case d. of Tab. 3.1.

Instability occurs for Re[λ+] in the range k− < k < k+ and for λ− in the ranges k− < k < k−, k+ < k < k+.
Even though the eigenvalues have non-vanishing imaginary part in the disjoints intervals [k−, k−] and [k+, k+],
they are both real in the central interval containing kc: therefore λ+(kc) is real and the instability is stationary
in time.
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Case D̄ = 0

In the case D̄ = 0 and ϵ ̸= 0, (3.35) becomes:

g(k2) = β k4 +Dk2 + n∗(α+ ϵ)

h(k2) = αβn∗ k
4 + n∗αD k2 + α(s+ ϵ n2

∗)

where we must consider now the equilibrium value:

n∗ =
−d+

√
d2 + 4ϵs

2ϵ

The signs of coefficients do not change with respect to Section 3.5.4 (having assumed D < 0).
The minima of g and h are:

min(g) = (α+ ϵ)n∗ −
D2

4β

min(h) = α(s+ ϵ(n∗)
2)− D2αn∗

4β

and both are found in k2min = − D
2β .

if min(g) < 0 → ∃ roots of g: k2± =
1

2β

(︂
−D ±

√︁
D2 − 4βn∗(α+ ϵ)

)︂
> 0

if min(h) < 0 → ∃ roots of h: k
2
± =

1

2β

(︂
−D ±

√︁
D2 − 4β(ϵn∗ + s/n∗)

)︂
> 0

Therefore the behavior of the system does not qualitatively change if we switch on the ϵ parameter,
the major difference being the change in the equilibrium value.

The instability conditions of Eq. (3.25) read:

Re[λ+] > 0 ⇔

⎧⎪⎨⎪⎩(α+ ϵ)n∗ <
D2

4β

k2− < k2 < k2+

∨

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α+ ϵ)n∗ >
D2

4β
∨

⎧⎪⎨⎪⎩(α+ ϵ)n∗ <
D2

4β

k2 < k2− ∨ k2 > k2+

(s/n∗ + ϵ n∗) >
D2

4β

k21 < k2 < k22

Re[λ−] > 0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α+ ϵ)n∗ <
D2

4β

k2− < k2 < k2+

(s/n∗ + ϵ n∗) >
D2

4β
∨

⎧⎪⎨⎪⎩(s/n∗ + ϵ n∗) <
D2

4β

k2 < k21 ∨ k2 > k22

(3.40)

An example is plotted in Fig. 3.15.
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3.5. Adding stabilizing terms to the MacArthur’s model

FIG. 3.15. Plot of Re[λ±] for parameter values D̄ = 0, D1 = 0.9, D0 = 0.2 (⇒ D = −1.2), β = 0.2, α = 0.4,
ϵ = 0.2, d = 0.2, s = 0.8. In this case min(g) = −0.88 and min(h) = −0.62, indeed both functions have two
zeros in the domain k2 > 0. Instability is found for Re[λ+] in the range k− < k < k+.

FIG. 3.16. Left, center :Plots of and g and h relative to the parameter values reported in Fig. 3.15. Right: zoom
of Fig. 3.15 around k−̄.

3.5.5 Expansion for k ≫ 1

∆ = g2 − 4h = k8β2 + 2k6β(D − D̄) + k4 [︁(D − D̄)2 − 2β(fn − gc)
]︁
− 2k2(D − D̄)(fn − gc) + (fn − gc)

2 + 4gnfc =

= k8β2

[︃
1 +

2

k2β
(D − D̄) +

1

k4β2

(︁
(D − D̄)2 − 2β(fn − gc)

)︁
− 2

k6β2
(D − D̄)(fn − gc) +

1

k8β2

(︁
(fn − gc)

2 + 4gnfc
)︁]︃

√
∆ ≈ k4β

[︃
1 +

1

k2β
(D − D̄)− 1

k4β
(fn − gc)−

1

k6β2
(D − D̄)(fn − gc) +O

(︃
1

k6

)︃]︃
=

= k4β + k2(D − D̄)− (fn − gc) +O

(︃
1

k2

)︃

λ± ≈ 1

2

[︁
k4β(−1± 1) + k2

(︁
−(D + D̄)± (D − D̄)

)︁
+ fn + gc ± (gc − fn)

]︁
+O

(︃
1

k2

)︃
Therefore:

λ+ ≈ −D̄k2 + gc +O

(︃
1

k2

)︃
λ− ≈ −k4β −Dk2 + fn +O

(︃
1

k2

)︃
We notice that the introduction of the −β ∂4

xn term has succesfully stabilized the system, ensuring
that the instability, when allowed, occurs for a limited range of wavenumbers.
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Chapter 3. Spatially-extended MacArthur’s model

In conclusion, the desired instability behavior is obtained through the spatial extension of MacArthur’s
model here proposed: the minimal additional parameters required in order to observe a type I insta-
bility starting from the MacArthur’s one species and one resource dynamics are β, relative to the
stabilizing squared laplacian term, and the overcrowding diffusion coefficient D1.

The other dispersal parameters D̄ and D0, accounting for the simple diffusion of consumer and re-
source, as well as the parameter ϵ related to the Janzen-Connel effect, are instead superfluous.
D0, in particular, influences the stability of the system only through the combination D = D0+n∗D1,
which is required to be negative for spatial instability to be allowed.

The instability conditions valid for the above mentioned minimal set of parameters are summarized
in Tab. 3.1: specifically, a stationary instability appears in the cases classified as b. and d., while the
instability is oscillatory in time in the case c..

3.6 Non-local MacArthur’s model

Up to now we have assumed that resource utilization by a consumer occurs only at the exact point in
which the consumer is located. If we relax this assumption, we can model non-local consumption of
resources as follows:

α c(x, t) →
∫︂ +∞

−∞
ϕ(x− y) c(y, t) dy = (c ∗ ϕ) (x, t) (3.41)

where ϕ(x − y) is the kernel function, and (c ∗ ϕ) (x, t) is the convolution of the resource population
field with the kernel. In this case, ϕ(x− y) it is a bell-shaped distribution function in the variable y,
peaked in y = x. The hypotheses on such function are the following:

• ϕ : R → R+ the distribution function is a real, non negative function;

• ϕ(x) = ϕ(−x) the distribution function is even;

It is immediate to observe that by setting ϕ(x− y) → α δ(x− y) the local model is recovered.

FIG. 3.17. Example of a resource utilization distribution.

The equations for this model are obtained by substituting (3.41) into the MacArthur equations studied
in Section 3.5, without the squared laplacian term (β = 0) :

{︄
ṅ(x, t) = [(c ∗ ϕ) (x, t)− d− ϵ n(x, t)]n(x, t) + ∂x [(D0 −D1 n(x, t) ) ∂xn(x, t)]

ċ(x, t) = s− n(x, t) (c ∗ ϕ) (x, t) + D̄ ∂2
xc(x, t)

(3.42)
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3.6. Non-local MacArthur’s model

Uniform equilibrium

The uniform equilibrium of the system is (n0, c0) such that:{︄
(c0 ∗ ϕ) (x, t)− d− ϵ n0 = 0

s− n0 (c0 ∗ ϕ) (x, t) = 0

with: (c0 ∗ ϕ) (x, t) =
∫︂ +∞

−∞
ϕ(x− y) c0 dy = c0

∫︂ +∞

−∞
ϕ(−z) dz = c0

∫︂ +∞

−∞
ϕ(z) dz = c0 ˜︁ϕ(k = 0)

(3.43)

where a change of variables is performed in the second step, and then the parity of ϕ is exploited.
Being ϕ(z) > 0 ∀z, ˜︁ϕ(k = 0) is a positive constant. Therefore:{︄

c0 ˜︁ϕ(0)− d− ϵ n0 = 0

s− n0 c0 ˜︁ϕ(0) = 0

which yields the same solutions of (3.31) with the substitution α → ˜︁ϕ(0) :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϵ ̸= 0

n0 =
−d+

√
d2 + 4ϵs

2ϵ

c0 =
s

n0
˜︁ϕ(0) =

d+
√
d2 + 4ϵs

2˜︁ϕ(0)
∨

⎧⎪⎨⎪⎩
ϵ = 0

n0 = s/d

c0 = d/˜︁ϕ(0)
Stability under uniform perturbation

Substituting an uniform perturbation of the form (3.10) into Eq. (3.42) yields:{︄
δṅ(t) = (n0 + δn(t))

[︁(︁
(c0 + δc) ∗ ϕ

)︁
− d− ϵ (n0 + δn)

]︁
δċ(t) = s− (n0 + δn(t))

(︁
(c0 + δc) ∗ ϕ

)︁
where:

(︁
(c0 + δc) ∗ ϕ

)︁
(x, t) =

∫︂ +∞

−∞
ϕ(x− y)

(︁
c0 + δc(t)

)︁
dy =

(︁
c0 + δc

)︁ ∫︂ +∞

−∞
ϕ(z) dz =

(︁
c0 + δc

)︁ ˜︁ϕ(0)
⇒ λ δ⃗ = J δ⃗ with J =

(︄
−n0ϵ n0 ϕ̃(0)

−s/n0 −n0 ϕ̃(0)

)︄

The eigenvalues are:

λ± =
−n0

(︁˜︁ϕ(0) + ϵ
)︁
±
√︂
n2
0

(︁˜︁ϕ(0) + ϵ
)︁2 − 4 ˜︁ϕ(0) (︁s+ ϵn2

0

)︁
2

Being all the MacArthur parameters positive by definition, and ˜︁ϕ(0) > 0 :

if the eigenvalues are complex: Re[λ±] = −n0(˜︁ϕ(0) + ϵ)/2 < 0

if they are real: λ− = [−n0(˜︁ϕ(0) + ϵ)−
√
∆]/2 < 0 ,

λ+ = [−n0(˜︁ϕ(0) + ϵ) +
√
∆]/2 < 0 , being

√
∆ < n0(˜︁ϕ(0) + ϵ) .

Thus the uniform equilibrium is always stable.
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Chapter 3. Spatially-extended MacArthur’s model

Non-uniform perturbation

Substituting a spatially dependent perturbation with the form (3.12) into Eq. (3.42):{︄
δṅ = (n0 + δn) [(c ∗ ϕ)− d− ϵ (n0 + δn)] + ∂x [(D0 −D1(n0 + δn)) ∂xδn]

δċ = s− (n0 + δn) (c ∗ ϕ) + D̄ ∂2
xδc

the convolution becomes, by substituting c(x, t) = c0+ δ̄eλt+ikx and changing the integration variable:

(c ∗ ϕ) (x, y) =
∫︂

ϕ(x− y) [c0 + δc(y, t)] dy = c0 ˜︁ϕ(0) + δ̄eλt+ikx

∫︂
ϕ(z)eikz dz = c0 ˜︁ϕ(0) + δc ˜︁ϕ(k)

Then, at linear order:{︄
λ δn = −ϵ n0 δn+ n0

˜︁ϕ(k) δc− k2D δn

λ δc = −c0 ˜︁ϕ(k) δn− n0
˜︁ϕ(k) δc− k2D̄ δc

where I defined D := D0 −D1n0. The eigenvalues can be determined by solving:

λ δ⃗ = (J− k2D) δ⃗ with D =

(︃
D 0
0 D̄

)︃
, and J =

(︄
−n0ϵ n0 ϕ̃(k)

−s/n0 −n0 ϕ̃(k)

)︄

λ± =
−g ±

√︁
g2 − 4h

2

with: g(k) =
(︁
D + D̄

)︁
k2 + n0ϵ+ n0

˜︁ϕ(k)
h(k) = DD̄ k4 + n0ϵD̄ k2 + ˜︁ϕ(k) (︁n0Dk2 + s+ ϵ n2

0

)︁
(3.44)

Properties of ˜︁ϕ(k)
The hypothesis that ϕ(x) is an even function ensures that ˜︁ϕ is a real and even function of k:

˜︁ϕ(k) =∫︂ +∞

−∞
ϕ(x) eikx dx =

∫︂ +∞

0
ϕ(x) eikx dx+

∫︂ 0

−∞
ϕ(x) eikx dx =

=

∫︂ +∞

0
ϕ(x) eikx dx+

∫︂ +∞

0
ϕ(x) e−ikx dx =

∫︂ +∞

0
ϕ(x)

(︂
eikx + e−ikx

)︂
dx =

=2

∫︂ +∞

0
ϕ(x) cos(kx) dx

⇒ ˜︁ϕ(k) ∈ R, ˜︁ϕ(k) = ˜︁ϕ(−k)

(3.45)

3.6.1 Hypotheses on the Fourier transform of the kernel

Having analysed the linear stability of the model as a function of a generic kernel ϕ(x) in B, we can
now make some hypothesis on its form and see if it leads to the desired results.

The easiest case is represented by a Gaussian kernel function:

ϕ(x) = α exp

(︃
− x2

2σ2

)︃
→ ˜︁ϕ(k) = ασ exp

(︃
−σ2k2

2

)︃
≡ ϕ0 exp

(︃
−σ2k2

2

)︃
> 0 ∀ k

and the study of the sign of Re[λ±(k)] in terms of its Fourier transform is reported in ??. Let’s recall
the results of the linear instability analysis in this case.

Since ˜︁ϕ(k) > 0 ∀ k, when D > 0 the functions g(k), h(k) > 0 ∀ k, and instability is never allowed.
If D < 0, instead, considering for simplicity the case ϵ = 0, D̄ = 0 we obtain (B.7) :

˜︁ϕ(k) < −A(k) ∨

{︄˜︁ϕ(k) > −A(k)

k > k̄
where A(k) =

D

n0
k2, k̄ =

√︃
−sD

n0

and instability is found ∀ k > k̄, as plotted in figure Fig. 3.18. As already discussed in the previous
sections, this is not a desired behavior.
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3.6. Non-local MacArthur’s model

FIG. 3.18. The Fourier transform of the kernel function is positive ∀ k.

An attempt to cure this problem could be to select a slightly modified kernel function, having at least
one zero, in such a way that ˜︁ϕ(k) < 0 for some k and still ˜︁ϕ(k) → 0 like an exponential for k → ∞, so
that the expansion (B.12) still holds. Then, instability would be allowed for some k even when D > 0,
and in such case from (B.12) we would expect the eigenvalues to be negative for large wavenumber
values.

For example, if we considered a kernel function whose Fourier transform has the shape plotted in
Fig. 3.19, we would find instability for D > 0 in an interval k1 < k < k2.
In case ˜︁ϕ(k) had more than one zero, the behavior could be more complicated and more than one
instability interval could be found for the wavenumber k (Fig. 3.20).

FIG. 3.19. The Fourier transform of the kernel function has one zero.

FIG. 3.20. The Fourier transform of the kernel function has two zeros.
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Chapter 4

Numerical integration and results

In this chapter, I will describe the code developed for the numerical integration of the system (Section
4.1) and I will present the result that I have obtained by integrating the SH equation (Section 4.2)
and the spatial extension of the MacArthur model provided in Section 3.5 (Section 4.3).

4.1 Numerical implementation

The first aspect that must be taken into account when numerically implementing the integration of a
PDE concerns the discretization of the spatial domain. The one-dimensional spatially infinite domain
is approximated by a lattice of Nx discrete sites, each spaced by a distance dx, with periodic boundary
conditions. The total length of the domain is therefore:

L = Nx · dx

which must be large enough for such approximation to hold. This has important consequences on the
allowed wavenumbers k: in case of infinite domain they take continuous values, but if the domain is
finite, only a limited number of modes is allowed, which are the modes resonating in L:

kn =
2π

L
n n = 1, 2, ...∞

Therefore, the unstable wavenumber band determined by the linear stability analysis in Section 3.5
turns into a finite set of allowed wavenumbers, represented by the discrete kn that fall into the
instability interval:

[k−, k+] → k∗ni
∈ [k−, k+] ∀ni = n1, ...nM

In particular, we expect that the dominating mode will be the one whose kn is closer to the continuous
wavenumber at which λ+ is maximum. Recalling the notation adopted in Chapter 2, Re[λ+(k)] is
maximum at k = kc: then, the dominating discrete mode will be the k∗ni

closest to kc, which we label
simply as k∗n.

The fact that the domain has finite length L has also the consequence that, clearly, the smallest
visible wavenumber is kmin = 2π/L.
In the numerical implementation there is, however, another aspect that must be taken into account,
due to the discretization of space. If the resolution in space is determined by dx, then there is an upper
limit on the visible wavenumber too, given by kmax = 2π

dx . Therefore, when numerically integrating
a system with a given set of parameters determining the instability range, one must be particularly
careful to set Nx and dx in such a way that the unstable wavevectors k∗n1

, k∗n2
, ...k∗nM

fall well within
the visibility interval of the discretized domain:

kmin ≪ k∗n1
, k∗n2

, ...k∗nM
≪ kmax
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4.1. Numerical implementation

otherwise the emerging pattern would not be discernible.

In order for the outcoming pattern to be comparable with the analytical predictions, one must set the
system parameters in such a way that the system is only weakly unstable to the spatially-dependent
perturbations: this step is performed by plotting the shape of the real part of the eigenvalues and by
checking that the maximum of the larger eigenvalues does not exceed values of ∼, 1e− 6, 1e− 5.
Moreover, we place ourselves in the case in which there is only one allowed unstable wavenumber
falling into the instability interval [k−, k+], in such a way that we remove any ambiguity in the ex-
pected periodicity of the pattern, and the dynamics of the system is predictably simpler.

The time evolution of the system is obtained by means of a simple integration scheme. Given the
initial condition, which must respect the boundary condition, the values of each population at each site
in the lattice are recorded into an array, which is evolved according to the forward-time centered-space
Euler method. Nt steps of integration of size dt are performed, leading to a total integration time of:

T = Nt · dt

which is chosen in such a way that T > τ , where τ = 1/Re[λ(k∗n)] is the typical timescale of the
instability.
To check the evolution of the system through time in a way that is not too computationally demand-
ing, another variable Nout is introduced, representing the number of integration steps after which the
state of the system is saved and is made available for later plotting.
At each integration cycle, the periodic boundary conditions are enforced by attaching virtual copies of
the boundary sites to the population arrays. The spatial derivatives are then evaluated according to
the central finite difference method, and the time evolution of the system is predicted. If the integrated
model requires it1, a further check on the positivity of the populations is performed at each cycle: in
case a population becomes negative at some point in space, the negative value is set to zero to prevent
from potential numerical problems that could arise if a population accidentally becomes negative at
some point in space.

Indicating with u(x, t) the population field2, the integration has been tested by starting from the
following initial conditions:

a) homogeneous equilibrium solution u(x, t = 0) = u∗; in this case the system is expected to remain
in the initial state.

b) generic homogeneous state u(x, t = 0) = ū, different from the equilibrium solution u∗; in this
case the system is expected to uniformly reach the homogeneous equilibrium configuration u∗.

c) random fluctuations around the equilibrium solution: u(x, t = 0) = u∗+η(x) with η(x) Gaussian
noise and η(x) ≪ u∗ ∀x; in this situation the system is expected to evolve towards a regular
pattern configuration if Re[λ(k∗n)] > 0 or to go back to the equilibrium solution if Re[λ(k∗n)] < 0.

d) spatially periodic oscillations around the equilibrium solution: u(x, t = 0) = u∗+Acos(kx) with
A small compared to u∗; in this situation the system is expected to evolve towards a regular
pattern configuration if Re[λ(k∗n)] > 0 and k = k∗n, while it should return to the equilibrium
solution if Re[λ(k∗n)] < 0 or k ̸= k∗n.

e) a superposition of cosine oscillations around the equilibrium value: u(x, t = 0) = u∗+A
∑︁

k cos(kx)
with A small compared to u∗; in this situation the system is expected to select the unstable
modes, if they are present, and to evolve towards the homogeneous equilibrium solution other-
wise.

1This step was always included in the integration of the spatial extension of the MacArthur’s model, which requires
positive populations, but not in the integration of the Swift-Hohenberg’s, which allows negative values of the field.

2For brevity of description, I have considered a single population field, but in the case of the MacArthur’s model all
above the considerations must be trivially extended to include the resource population field as well.
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Chapter 4. Numerical integration and results

4.2 Swift-Hohenberg equation

The integration of the Swift-Hohenberg equation is performed by testing several combinations of the
model parameters, spatial parameters and integration parameters, and starting from all the previously
mentioned initial conditions. All the results are consistent with the theoretical expectations, and the
system behavior is very robust with respect to the variation in the integration and spatial discretiza-
tion parameters.

To present the results, we fix the spatial parameters dx = 1 and Nx = 250, the integration timestep
dt = 0.1, as well as the parameter kc = 0.2 of the SH model, which coincides with the wavenumber
at which the growth rate3 of the spatially-dependent perturbation is maximum. We underline that kc
falls well inside the visibility interval determined by the numerical implementation:

kmin ∼ 0.01 < kc < kmax ∼ 1.57 (indeed dx = 1 < 2π/kc < L)

We report below three cases, relative to three different instability scenarios obtained by varying the
control parameter r of the model (see (2.4)). The selected initial condition consists of random devia-
tions around the homogeneous state, which represents the most general spatially heterogeneous initial
condition, since it essentially contains all the possible perturbation modes.

Case 1: r < rc, no unstable modes

In this case, being the eigenvalue λ(k) < 0∀ k, the system rapidly recovers from the perturbation by
settling down to the homogeneous equilibrium state.

Case 2: r > rc, one unstable mode

In this scenario, the eigenvalue is positive in a very small interval, and only one discrete allowed
mode, k∗n=8 ≈ 0.201 ≡ k∗, falls into the instability band. Such wavenumber is very close to the one
corresponding to the maximum of λ(k), max(λ) = 5e− 05. The expected timescale of the instability
amounts to τ ∼ 1/λ(k∗) ∼ 2e4, therefore the system is integrated up to a final time of T = 5e5, which
is well beyond τ .

FIG. 4.1. Plot of the eigenvalue λ derived in the linear analysis of the SH model as a function of the
perturbation wavenumber k. The vertical lines correspond to the discrete wavenumbers allowed into the finite
domain of length L = 250. The only unstable mode is the one with wavenumber k∗ = 0.201.

By examining the spatial distributions collected along the temporal evolution of the system for a total
of 100 sample points, it can be deduced that the system reaches a stationary state around t ∼ 1e5: after
a short transient in which the random fluctuations are reshaped into an ordered sinusoidal pattern, the
amplitude of the distribution starts to grow, until it eventually reaches a steady state which remains
unchanged for all the rest of the integration time (Fig. 4.2).

3It is the λ(k) derived in the linear stability analysis of the model, in Section 2.3.2.
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4.2. Swift-Hohenberg equation

FIG. 4.2. Plot outlining the process of pattern formation in the SH model.

FIG. 4.3. Plot displaying the final, stationary
distribution of the field u(x, t): it clearly con-
sists of a spatially periodic pattern with definite
wavelength. The picture is taken at the integra-
tion time t = 1e5.

FIG. 4.4. Numerical Fourier transform of
the final distribution. Only one peak appears,
that coincides with the unstable wavenumber
k∗ = 0.201. The vertical colored lines represent
the discrete set of allowed wavenumbers.

Case 3: r > rc, multiple unstable modes

In this case the control parameter value is r = 0.001 and there exists a finite set of unstable modes
falling into the instability interval:

k∗ni
for ni ∈ {4, 5, 6, 7, 8, 9, 10}

The one closest to the maximum is obviously again k∗n=8 ≈ 0.201 ≡ k∗.
The timescale is set by λ(k∗) ∼ 1e− 3 → τ ∼ 1e3 and the system is integrated up to times T ∼ 1e5.

FIG. 4.5. Plot of the eigenvalue λ derived in
the linear analysis of the SH model as a function
of the perturbation wavenumber k. The vertical
lines correspond to the discrete wavenumbers al-
lowed into the finite domain of length L = 250.
There exist seven discrete modes falling in the
instability interval.

FIG. 4.6. Numerical Fourier transform of
the final distribution. There appears a broad
peak, with maximum at k∗ = 0.201 and essen-
tially containing all the unstable modes visible
in Fig. 4.5 with the only slight modifications at
the boundary wavenumbers.
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Chapter 4. Numerical integration and results

The stationary state is attained around t ∼ 1.5e4.

The final distribution is a regular pattern which does not differ by eye from Fig. 4.3, a part from
its reasonably larger amplitude. A comparison of the PSD spectra Fig. 4.4 and Fig. 4.6 actually shows
that the pattern obtained in this case is not truly monochromatic, since it essentially contains all the
unstable components visible in Fig. 4.5, However, the less unstable modes are suppressed with respect
to the dominating mode k∗ = 0.201, consistently with the theoretical expectations.

4.3 Spatial MacArthur’s model

The integration of the spatially extended MacArthur’s model (Section 3.5) proves to be a more com-
plicated task. Indeed, the numerical evolution does not yield in this case the desired results, since
the increase in the unstable mode pattern’s amplitude, which is expected in the linear regime, never
actually ceases, and the growing abundances eventually produce a numerical overflow.

This behavior seems to be very robust, being completely unaffected by the modifications that will
be listed in the following, and occurring despite setting the spatial parameters, the integration param-
eters and the model’s parameters in such a way that all the approximations assumed in the theoretical
analysis are safely met. In particular, a very large spatial domain is adopted, and an extremely low
value for the max(Re[λ+]) (3.34) is imposed, with the disadvantage of the integration time becoming
very long and the task very computationally demanding, but with the aim of setting the system very
close to the bifurcation point, where it is expected to be less unstable.

To test the system, the parameters of the model are set according to the conditions obtained in
Section 3.5: since the diffusion of the resources and the term related to pathogens are not necessary
for pattern initiation, the parameters D̄ and ϵ are initially set to zero for simplicity. Indeed, in such
case we have a clearer analytical picture on the allowed values for the other parameters4. In the chosen
configuration, the homogeneous equilibrium state is:

neq = 5.00, ceq = 0.17

The system domain length is L = dx ·Nx ∼ 3142. The diffusion coefficients D0, D1 and β are set in
such a way that a single wavenumber mode falls into the region where Re[λ+(k)] > 0:

k∗n=127 ≈ 0.254 ≡ k∗

that is very close to the value at which Re[λ+(k
∗)] reaches its maximum value, which amounts to

FIG. 4.7. Plot of the real part of the eigenvalue λ+ (derived in the linear analysis of the spatially extended
MacArthur’s model, Section 3.5) as a function of the perturbation wavenumber k. The vertical lines correspond
to the discrete wavenumbers allowed into the finite domain of length L. The only unstable mode is the one
with wavenumber k∗ = 0.254. The eigenvalue λ− has negative real part ∀ k with the chosen set of parameters.

4The precise values set for the parameters of the model in the above considered case are: α = 0.6, ϵ = 0, d = 0.1,
s = 0.5, β = 24.023, D̄ = 0, D0 = 0.4, D1 = 0.7 (⇒ D ≈ −3).
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4.3. Spatial MacArthur’s model

Re[λ+(k
∗)] ∼ 9e − 6, yielding a typical time of τ ∼ 1e5. Lastly, we underline that the numerical

implementation allows to observe patterns with wavenumbers included in the range:

kmin = 0.001 < k < 1.500 = kmax

therefore the unstable mode is expected to be well visible.
The integration timestep is set to dt = 1e− 3, and the system is integrated up to times T = 5e5 > τ .
The integration always yields the theoretically wanted results in the cases in which the system is
expected to return to the homogeneous equilibrium state. However, it does not display the desired
behavior when starting in a configuration which should lead to pattern formation.
Indeed, despite providing the emergence of a spatially periodic pattern consisting in an oscillation
with wavenumber remarkably coincident with the one predicted by the theory, the amplitude of the
sinusoidal pattern in the species and resource abundances never ceases to grow, and the system has a
tendency to produce a divergence which leads to a numerical overflow.
Several tests have been carried out to clarify this behavior, and the simplest initial condition d)
(i.e. oscillations with wavenumber k∗ around the homogeneous equilibrium values) has been usually
adopted for a better readability. Therefore, we report here the results relative to the evolution of
the model by starting from such an initial state. By setting the previously specified parameters, the
system is observed to diverge between t ∼ 3.5e5 and t ∼ 3.6e5.
The plot relative to the distribution of abundances attained at t ∼ 3.5e5, before overflow occurs, is
reported in Fig. 4.8.

FIG. 4.8. Left: plot of the distributions of consumer and resource abundances around their uniform equi-
librium values, at integration time t = 3.5e5. Divergence occurs soon after, at times t > τ = 1/Re[λ+(k

∗)].
Right: detail between x = 2300 and x = 2600, where the equilibrium values around which the abundances
oscillate have been rescaled to zero, for better visualization.

FIG. 4.9. PSD of the spatial oscillations of abundances around their uniform equilibrium values, at integration
time t = 3.5e5. The unstable modes are again highlighted by the colored vertical lines.
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Chapter 4. Numerical integration and results

The PSD extracted from such distribution clearly shows that the mode with k = k∗ is conserved in
the evolution of the system, and no other mode relevantly appears, a part from very low tails around
the dominant mode’s peak.

The system’s amplitude grows in a spatially-homogeneous way as the integration progresses. When
starting in a random initial condition c), instead, the amplitude initially assumes an uneven smooth
profile, which varies a little depending on the random initial state, and is progressively evened out
while the system evolves in time, as visible from Fig. 4.10. The PSD of the obtained distribution, for
large enough t, essentially contains only the leading mode k∗, similarly to that obtained by starting
in the initial condition d). Likewise, the system diverges at integration times t ≳ τ .

FIG. 4.10. Evolution of the amplitude of the emerging pattern starting from an initial condition consisting of
random Gaussian fluctuations around the homogeneous equilibrium values. The amplitude tends to flatten out
and grow in magnitude as the integration progresses, until it eventually leads to a numerical overflow at times
t > τ = 1/Re[λ+(k

∗)].

4.3.1 Tests and trials

To solve the above presented issue, relative to the numerical divergence occurring at t slightly larger
than the typical time τ , many strategies have been attempted. The main approaches are briefly
outlined below.

Changing the set of the model parameters

• More parameters of the model are switched on. In particular, the diffusion of the resources is
introduced by setting D̄ > 0, hoping to smooth out the distribution. The same attempt is tried
with the parameter related to pathogens ϵ. However, in none of the cases the behavior of the
system seems to change at all.

• The set of parameters is also varied in order to modify the position of the maximum of Re[λ+],
i.e. the value of kc and consequently of k∗, but this attempt does not lead to any solution.

• Another hypothesis that is explored is that such behavior has to do with the equilibrium value
ceq being too close to zero with respect to neq, and that the pattern might be affected by the
constraint on the positivity of population abundances. However, even with equilibrium values
such as (neq, ceq) = (1.11, 0.75), the divergences do not disappear.

• The spatial domain length is modified, but this does not affect the behavior of the system (a part
from obviously introducing a higher number of unstable modes, with fixed model parameters).

Changing the integration scheme and parameters

• The integration timestep is diminished; however, the time at which overflow occurs is not affected
by such modification at all, as long as dt remains smaller than 1e− 3.

• Other explicit integration schemes are implemented, such as the midpoint scheme and the 4-th
order Runge-Kutta method but, again, this does not influence the performance at all, and the
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4.3. Spatial MacArthur’s model

time at which overflow occurs remains unchanged.

• Some implicit integration schemes are shortly tested, by exploiting two pre-defined integration
schemes: the implicit solver implemented in py-pde [26] and the BDF method of the solve ivp

function of scipy.integrate [27]. The latter is especially used for the solution of stiff systems
of differential equations. Even adopting these integration schemes, however, seems to leave
the problem unaffected, even though more accurate and rigorous attempts should be made
before totally excluding the possibility of solving the issue by applying the appropriate implicit
integration scheme.

Further checks

• A test is performed on the numerical integration of the linearised differential equations: indeed,
although the behavior of the system in the nonlinear regime is less certain, the linearised system
must necessarily follow the analytical predictions. The linearised system’s equations (3.33) are
numerically integrated using the same scheme applied to the full nonlinear system, and the
numerical outcomes are compared to the ones predicted by the theoretical linear analysis.
In particular, a projection of the amplitudes of the resource and consumer fields on the v+⃗ and
v−⃗ eigenvectors relative to the eigenvalues λ+, λ− is exploited.
In general, indeed, a state of the linearised system can be decomposed into the basis of the
eigenvectors as follows:(︃

n(x, t)
c(x, t)

)︃
=

(︃
neq

ceq

)︃
+

(︃
An(t)
Ac(t)

)︃
cos(k∗ x) with

(︃
An(t)
Ac(t)

)︃
= A+(t) v⃗+ +A−(t) v⃗− (4.1)

and analytically:

A+(t) = A+,0 exp(Re[λ+(k
∗)] t)

A−(t) = A−,0 exp(Re[λ−(k
∗)] t)

The linearised system is then numerically evolved by starting in one of the following two initial
conditions:(︃

n0(x)
c0(x)

)︃
±
=

(︃
neq

ceq

)︃
+ δ⃗±(x) with: δ⃗±(x) ∝ v⃗± cos(k∗ x)

and the numerical evolution of the projections A+, A−, An, Ac is compared with the theoretical
one. When the real part of both eigenvalues λ+, λ− is negative, the amplitudes vanish for t → ∞
by starting in any of the above initial conditions. On the contrary, if Re[λ−(k)] < 0 < Re[λ+(k)]
for some k, the amplitudes vanish when starting from the initial condition (n0, c0)− and diverge
when starting from the initial condition (n0, c0)+. The timescales and amplitude values are in
good agreement with the theoretical expectations, even though the effects of the finite numerical
precision can be noticed when the order of magnitude of the amplitudes becomes particularly
small: this happens when starting from the initial condition in the direction of v⃗− (Fig. 4.11,

FIG. 4.11. Evolution of the amplitudes An and Ac starting from an initial condition in the direction of v⃗+, in
the case in which Re[λ+(k)] is positive in a limited interval of k.
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FIG. 4.12. Evolution of the amplitudes An and Ac starting from an initial condition in the direction of v⃗−, in
the case in which Re[λ+(k)] is positive in a limited interval of k.

Fig. 4.12). Overall, however, this test proves that the numerical solution of the linearised system
behaves as expected, and no striking criticalities are detected.

• Further checks are performed in order to exclude that the behavior of the system might be related
to more subtle problems, such as issues arising from discretization. Indeed, one can analytically
derive the expressions for the eigenvectors by starting from a discretized spatial domain and
by substituting the finite difference expressions for the spatial derivatives used in the numerical
integration into the model equations. The expressions obtained for the eigenvalues5 are functions
of the cosines of k and 2k, rather than being functions of k2 as in the continuous case (3.34): this
could produce sensible differences in the form of the eigenvalues and in the resulting qualitative
behavior of the system. As visible from the plot below, however, this is not the case, as the
discrete eigenvalues reproduce closely the continuous ones. Only one difference can be spotted,
consisting in the fact that the smallest discrete wavenumber falling into the instability band is
actually not unstable in the corresponding discrete case. This observation is not relevant to
our purposes, since it does not change the overall behavior of the system. It may be however
useful to explain a peculiarity of some of the PSD spectra obtained from the analysis of the
emerging patterns in the case of few multiple unstable modes: it was noticed that the smallest
unstable wavenumber k∗n1

is sometimes suppressed, while a further mode with wavenumber k∗nM+1

often appears to the right of the highest allowed wavenumber knM . This could be explained
by observing that the discretization produces a slight shift in the eigenvector towards higher
wavenumber values, that could contribute to the observed effect. It is not, however, the only
reason, since the nonlinear terms do also produce a modification in the observed pattern’s modes.

FIG. 4.13. Plot showing the comparison between the discrete eigenvalues, obtained by imposing the spatial
discretization of the system into the linear analysis, and the continuous eigenvalues obtained by performing the
usual continuous analysis. Left: the real parts of λ+ and λ− are reported both in their continuous and in their
discrete versions. Right: zoom on the area of interest, where Re[λ+(k)] is positive in some interval of k, yielding
instability. The vertical colored lines represent the discrete modes falling into the unstable wavenumbers band.

5The explicit expressions and their derivation are reported in Appendix C.
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4.3. Spatial MacArthur’s model

Modifying the model

• An exponentially decreasing supply rate is introduced:

s(t) = s0 e
−t r

and tested by varying the decay rate parameter r. However, this attempt is not successful
because the system rapidly enters the parameter region in which it becomes stable to spatially-
dependent perturbations and no pattern is produced, unless the temporal decay of the supply
rate is so slow that no difference can be detected with respect to the case in which s is constant.
Similarly, a Monod function (1.2) is substituted to the linear growth rate α c, with no substantial
results.

• By observing the structure of the reaction dynamics of equations (3.31), one immediately realises
that this behavior is counterintuitive: indeed, if the species population becomes very large, it
will lead to a decay of the resource abundance, which should lead to a decrease in the species
population in turn. However, by examining the diffusion-like terms, it can be noticed that the
negative diffusion coefficient required by the instability conditions (3.37) tends to produce a
concentration of the densities, and could therefore responsible contribute to the formation of
divergences. Therefore, I checked the behavior of the terms resulting from ∂x[(D0 − D1n)∂xn]
as a function of the integration time t, in order to understand if there is any term in particular
producing the divergences. To do so, I imposed an initial condition of the kind:

n(x, t = 0) = neq +Acos(k∗x)

c(x, t = 0) = ceq +B cos(k∗ x)
with k∗ = 0.254, A ∼ 8e− 3, B ∼ 2e− 4

and saved the mean values of the terms D0∂
2
xn, −D1n∂

2
xn, −D1(∂xn)

2, at an x value multiple
of 2π/k∗, where the cosine distribution of the emerging pattern is maximum.

As visible from Fig. 4.14, the terms D0∂
2
xn and β∂4

xn seem to have a stabilising effect, as
expected. Conversely, the overflow occurring around t ∼ 35000 seems to be led by the term
−D1n∂

2
xn, plotted in orange.

To solve this issue, one could think of modifying the diffusion term ∂x[(D0 − D1n)∂xn] in
Eq. (3.30) in such a way that it does not grow indefinitely with n. The simplest way to do
so is to replace the D1n with a sort of Monod function:

FIG. 4.14. Temporal evolution of the spatial mean value of the terms D0∂
2
xn, −D1n∂

2
xn, −D1(∂xn)

2, −β ∂4
xn

computed at x multiple of 2π/k∗, where the cosine distribution of the emerging pattern is maximum.
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∂x [(D0 −D1n) ∂xn] → ∂x

[︄(︄
D0 −D1

n

1 + n
n0

)︄
∂xn

]︄

which is bounded by the saturation value n0 > 0. Indeed, for n ≪ n0 the term n
1+ n

n0

grows like

∼ n, but for n ≫ n0 it tends to the saturation value n
1+ n

n0

∼ n0.

Let us analyse this modified term in the linear approximation, by applying as usual a small
perturbation δn around the equilibrium value n∗:

∂x

[︄(︄
D0 −D1

n

1 + n
n0

)︄
∂xn

]︄
= D0 ∂

2
xn−D1

n

1 + n
n0

∂2
xn−D1

1(︂
1 + n

n0

)︂2 (∂xn)2 =
= D0 ∂

2
xδn−D1

n∗ + δn

1 + n∗+δn
n0

∂2
xδn−D1

1(︂
1 + n∗+δn

n0

)︂2 (∂xδn)2 =
≈ D0 ∂

2
xδn−D1

n∗

1 + n∗+δn
n0

∂2
xδn ≈

≈ D0 ∂
2
xδn−D1

n∗

n0+n∗

n0

(︄
1− δn

1
n0

+ n∗ +O(δn2)

)︄
∂2
xδn ≈

≈

(︄
D0 −D1

n∗

1 + n∗

n0

)︄
∂2
xδn

Therefore, the results of the linear stability analysis remain the same, except exchanging:

D = D0 −D1n
∗ → D′ = D0 −D1

n∗

1 + n∗

n0

> D ∀n0

(︁
i.e. |D′| < |D|

)︁
Thus the linear effect of this term is to make the diffusion coefficient less negative, i.e. the
system less unstable. The smaller n0 is, the less unstable the system will be. For this reason,
we will consider very large values for n0, in such a way that the linear behavior of the system
remains almost unaffected, but this modification will hopefully cure the nonlinear saturation of
the unstable modes.
Without changing the values of the system parameters, one finds that for n0 ≲ 5e5 the real part
of λ+ is always negative; therefore, the integration is tested by setting the new parameter n0 to
values of ∼ 1e6 and larger, for instance ∼ 1e9, 1e12.
The numerical solution diverges nonetheless, at integration times t ≳ 1/max(Re[λ+(k)]).

In coclusion, none of these attempts managed to solve the problem, the behavior of the system seeming
very robust with respect to the above proposed modifications.

4.3.2 Multiple unstable modes

For the sake of completeness, I report in the following an exemplary numerical result relative to a case
in which the system displays multiple unstable modes. An analogue behavior is observed.

The system parameters are left unchanged with respect to the previous case, with the only exception
of β, which is lowered to β = 23.83. A a result, 12 unstable modes appear:

{k∗ni
}i=1,..12 with ni = 122, ... 133

The dominant mode is again k∗n=127 ≈ 0.254.
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4.3. Spatial MacArthur’s model

FIG. 4.15. Left: Plot of the eigenvalue λ+(k). Multiple modes fall into the instability region, and are
highlighted by the colored vertical lines. Right: PSD of the spatial oscillations of abundances around their
uniform equilibrium values, at integration time t = 7800. Divergence occurs soon after, at a time t > τ =
1/Re[λ+(k

∗)] ∼ 1e3. The unstable modes are again highlighted by the colored vertical lines.

The maximum value of λ+(k) increases to ∼ 1e− 3, yielding a typical time of τ ∼ 1e3. The system is
evolved up to an integration time of T = 1e4: the behavior of the amplitude of the pattern is plotted
Fig. 4.16. Divergence occurs between t ∼ 7.8e−3 and 8e−3, and the last distribution obtained before
the overflow is reported in Fig. 4.17.

By examining the PSD spectra obtained at various integration times, a correspondence with the
set of unstable modes is observed, with a small tail appearing at higher wavenumber values as the
integration progresses (Fig. 4.15). This is most likely due to the influence of the nonlinear terms in
the dynamical equation (3.31). The PSD is visibly peaked at the dominant mode k∗ = 0.254.

FIG. 4.16. Evolution of the amplitude of the emerging pattern at different integration times.

FIG. 4.17. Left: plot of the spatial oscillations of consumer and resource abundances around their uniform
equilibrium values (which are rescaled to zero for better visualization), at integration time t = 7800. Divergence
occurs soon after, at a time t > τ = 1/Re[λ+(k

∗)] ∼ 1e3. Right: detail between x = 2300 and x = 2600.
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Conclusions and future prospects

This work has shown that the one-dimensional spatial extension of the MacArthur’s consumer-resource
model, discussed in Section 3.5 in the case of one species and one resource, successfully provides a
mechanism for pattern initiation: indeed, the analysed model exhibits a linear instability of type Is
or Io for specific sets of parameter values (see Fig. 3.11, Fig. 3.13, Fig. 3.14).
In particular, the minimally required spatial extension of the model consists in the addition of a
density-dependent diffusion term to the consumer’s equation, accounting for an overcrowding disper-
sal behavior of the species, as well as a stabilising squared laplacian term in the consumer’s population.
Specifically, the overcrowding term is needed to provide a negative sign to the effective diffusion term,
which has proven to be necessary for spatial instability to be allowed, while the squared laplacian term
ensures that such instability occurs in a limited interval of wavenumbers.
Proper conditions have been derived in terms of the the model’s parameters (Tab. 3.1), yielding insta-
bility under spatially-heterogeneous perturbations: the expected lengthscale of the emerging pattern
can be, therefore, easily predicted.

However, despite accounting for the emergence of a pattern with wavelength corresponding precisely
to the one indicated by the theory, the numerical integration of the model does not produce a steady
state final configuration in the abundances of consumer and resource populations. Indeed, the growth
of the amplitude of the unstable spatial perturbation’s mode, which is expected to take place in the
linear regime, never actually ceases after the system enters the nonlinear regime, and leads to a diver-
gence in the population abundances.
After attempting several methods to cure this issue, we must conclude that the numerical integration
of the spatially extended MacArthur’s model, exploiting an explicit finite-difference Euler scheme,
cannot lead to the formation of a stationary spatially heterogeneous state, in the case of one species
and one resource and in a one-dimensional spatial domain.

Being the dynamics MacArthur’s equations intrinsically self-balancing for what concerns the abun-
dances of consumer and resource, however, a solution to this issue is likely to exist. The observed
undesired behavior might indeed be due to an extremely high requirement on the numerical precision,
or to some effect related to the destabilizing influence of the negative density-dependent diffusion co-
efficient. Further in-depth studies could be performed to explore these possibilities, both theoretically
and computationally.
Moreover, this same analysis could be generalized by extending it to more complex systems, contain-
ing multiple species and resource populations, as well as to higher spatial dimensions, which might
influence the outcome of instability.

Lastly, an alternative perspective was also proposed, by exploring the possibility of obtaining a linear
spatial instability by means of a non-local version of MacArthur’s model (Section 3.6). This approach
has proved to support the possibility of pattern initiation if an appropriate kernel function is chosen,
by constraining the properties of its Fourier transform. More research in this direction is desirable,
as it may open the way for the development of a further consumer-resource based pattern formation
mechanism.
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4.3. Spatial MacArthur’s model

In conclusion, this thesis shows that additional work is needed on the spatial extension of this model
to account for the spontaneous formation of stable spatially periodic patterns, and that such system
seems nonetheless worth further study.
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Appendix A

MacArthur 3s 1r

Merely to gain more confidence into the generalisation of the results obtained in Section 3.3, I report
here the linear analysis of the MacArthur extended model for three species and one resource. We will
see that the pathological nature of the instability cannot reasonably solved by adding populations to
the systems, but it needs to be dealt with in a different manner.

Consider the following equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
n1̇ = (α1µ(c)− d1)n1 + ∂xJ1

n2̇ = (α2µ(c)− d2)n2 + ∂xJ2

n3̇ = (α3µ(c)− d3)n3 + ∂xJ3

ċ = s− (α1 n1 + α2 n2 + α3 n3)µ(c)

with ∂xJσ = ∂x [(Dσ −
∑︂
ρ

Dσρnρ ) ∂xnσ] for σ = 1, 2, 3

with α1, α2, α3, 1, d1, d2, d3 > 0 population parameters, µ(c) > 0 growth function with dµ
dc > 0∀c, and

Dσ, Dσρ > 0 diffusion coefficients.

Uniform equilibrium

The uniform equilibria of the system are:⎧⎪⎪⎪⎨⎪⎪⎪⎩
µ(c∗) = d1/α1,

n∗
1 = s/d1,

n∗
2 = 0

n∗
3 = 0

∨

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µ(c∗) = d2/α2,

n∗
2 = s/d2,

n∗
1 = 0

n∗
3 = 0

∨

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µ(c∗) = d3/α3,

n∗
3 = s/d3,

n∗
1 = 0

n∗
2 = 0

Stability under uniform perturbation

Let us choose the first equilibrium:⎛⎜⎜⎝
n∗
1

n∗
2

n∗
3

c∗

⎞⎟⎟⎠ =

⎛⎜⎜⎝
s/d1
0
0

µ−1(d1/α1)

⎞⎟⎟⎠ (A.1)

We uniformly perturb the system around this equilibrium:⎛⎜⎜⎝
n1(t)
n2(t)
n3(t)
c(t)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
n∗
1

n∗
2

n∗
3

c∗

⎞⎟⎟⎠+

⎛⎜⎜⎝
δn1(t)
δn2(t)
δn3(t)
δc(t)

⎞⎟⎟⎠ with

⎛⎜⎜⎝
δn1(t)
δn2(t)
δn3(t)
δc(t)

⎞⎟⎟⎠ = δ⃗ eλt
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J =

⎛⎜⎜⎜⎝
0 0 0 α1s

d1
dµ
dc

⃓⃓
c∗

0 α2
α1
d1 − d2 0 0

0 0 α3
α1
d1 − d3 0

−d1 −α2
α1
d1 −α3

α1
d1 −α1s

d1
dµ
dc

⃓⃓
c∗

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎝
0 0 0 A

0 α2
α1
d1 − d2 0 0

0 0 α3
α1
d1 − d3 0

−d1 −α2
α1
d1 −α3

α1
d1 −A

⎞⎟⎟⎠ (A.2)

det (J− λI) =
(︃
α2

α1
d1 − d2 − λ

)︃(︃
α3

α1
d1 − d3 − λ

)︃(︁
λ2 +Aλ+Ad1

)︁
= 0

⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ2 =
α2

α1
d1 − d2 stable if

α2

α1
d1 − d2 < 0

λ3 =
α3

α1
d1 − d3 stable if

α3

α1
d1 − d3 < 0

λ± =
−A±

√
A2 − 4Ad1
2

always stable

having defined A := α1s
d1

dµ
dc

⃓⃓
c∗

> 0.

Non-uniform perturbation

I consider the following perturbation around the equilibrium values (n∗
1, n

∗
2, n

∗
3, c

∗) reported in (A.1).⎛⎜⎜⎝
n1(x, t)
n2(x, t)
n3(x, t)
c(x, t)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
n∗
1

n∗
2

n∗
3

c∗

⎞⎟⎟⎠+

⎛⎜⎜⎝
δn1(x, t)
δn2(x, t)
δn3(x, t)
δc(x, t)

⎞⎟⎟⎠ with

⎛⎜⎜⎝
δn1(x, t)
δn2(x, t)
δn3(x, t)
δc(x, t)

⎞⎟⎟⎠ = δ⃗ eλt+ikx

The corresponding eigenvalue problem reads:

λ δ⃗ = (J−k2D) δ⃗ with D =

⎛⎜⎜⎝
D1 −D11

s
d1

0 0 0

0 D2 −D21
s
d1

0 0

0 0 D3 −D31
s
d1

0

0 0 0 0

⎞⎟⎟⎠ , J defined in (A.2).

det (J− k2D− λI) =
[︃
α2

α1
d1 − d2 − k2

(︃
D2 −D21

s

d1

)︃
− λ

]︃ [︃
α3

α1
d1 − d3 − k2

(︃
D3 −D31

s

d1

)︃
− λ

]︃
×

×
[︁
λ2 + λ

(︁
A+ k2D

)︁
+A

(︁
d1 + k2D

)︁]︁
where I defined D := D1 −D11

s
d1

.

det (J− k2D− λI) = 0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ2 =
α2

α1
d1 − d2 − k2

(︃
D2 −D21

s

d1

)︃
λ3 =

α3

α1
d1 − d3 − k2

(︃
D3 −D31

s

d1

)︃
λ± =

1

2

(︃
−A− k2D±

√︂
[−A− k2D]2 − 4A [d1 + k2D]

)︃
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Spatial instability

Again, a correspondence with previous results can be easily noticed:

λ2 → SM2 with instability conditions (3.7)

λ3 → SM2

λ± → MA1s1r with instability conditions (3.16)

From these calculations, we can better observe that the real eigenvalue λ2, λ3 refer to the species
that go extinct in the uniform equilibrium conditions (A.1): in correspondence of such species, the
Jacobian matrix (A.2) has diagonal entries, and as a result the form of such eigenvalues reflects the
one found for the single-species model described in Section 3.1.1.
The fact that these eigenvalues are unstable for all large enough wavevectors is due to the conditions
that must be imposed to guarantee the stability of the uniform equilibrium under spatially-independent
perturbations. A modification of their undesired behavior is therefore hardly feasible.
The remaining eigenvalues λ±, which can take complex values, correspond to the non-extinct species
and the resource. Indeed, they have exactly the same form as the eigenvalues of the MacArthur model
for one species and one resource studied in Section 3.2. The reason for their positivity for large k
values is not really dependent on the choice of parameters, but derives rather from their form as a
function of k, as can be seen in (3.17).
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Appendix B

Linear stability analysis for the
non-local MacArthur’s model

I report here the calculations relative to the non-local extension of MacArthur’s model in terms of a
generic function ˜︁ϕ(k). As usual, we need to study the sign of Re[λ±], and we start by analysing the
functions g(k) and h(k) in the simplest cases, by putting to zero some parameters.

Case ϵ=0, D̄=0, D = 0

g(k2) = n0
˜︁ϕ(k)

h(k2) = s ˜︁ϕ(k)
Re[λ+] > 0 ⇔ g(k) < 0 ∨

{︄
g(k) > 0

h(k) < 0
⇔ ˜︁ϕ(k) < 0

Even in this extremely simple case, if ˜︁ϕ is negative in a limited interval [k1, k2], we expect to find the
desired instability behavior.

Case ϵ=0, D = 0

g(k2) = D̄ k2 + n0
˜︁ϕ(k)

h(k2) = s ˜︁ϕ(k)
Re[λ+] > 0 ⇔ g(k) < 0 ∨

{︄
g(k) > 0

h(k) < 0

⇔ ˜︁ϕ(k) < − D̄

n0
k2 ∨

⎧⎪⎨⎪⎩
˜︁ϕ(k) > − D̄

n0
k2

˜︁ϕ(k) < 0

⇔ ˜︁ϕ(k) < − D̄

n0
k2 ∨ − D̄

n0
k2 < ˜︁ϕ(k) < 0

⇔ ˜︁ϕ(k) < 0
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Case ϵ=0, D̄ = 0

g(k2) = Dk2 + n0
˜︁ϕ(k)

h(k2) = ˜︁ϕ(k) (︁n0Dk2 + s
)︁

Sign of g(k)

g(k) > 0 ⇔ ˜︁ϕ(k) > −D

n0
k2

g(k) < 0 ⇔ ˜︁ϕ(k) < −D

n0
k2

Sign of h(k)

sgn
(︁
h(k)

)︁
= sgn

(︁˜︁ϕ(k))︁ · sgn(︁n0Dk2 + s
)︁

If D > 0 :

sgn
(︁
h(k)

)︁
= sgn

(︁˜︁ϕ(k))︁
If D < 0 :

h(k) > 0 ⇔

⎧⎨⎩
˜︁ϕ(k) > 0

k2 < −sD

n0

∨

⎧⎨⎩
˜︁ϕ(k) < 0

k2 > −sD

n0

h(k) < 0 ⇔

⎧⎨⎩
˜︁ϕ(k) < 0

k2 < −sD

n0

∨

⎧⎨⎩
˜︁ϕ(k) > 0

k2 > −sD

n0

Spatial instability

Re[λ+] > 0 ⇔ g < 0 ∨

{︄
g > 0

h < 0

If D > 0 :

Re[λ+] > 0 ⇔ ˜︁ϕ(k) < −D

n0
k2 ∨

⎧⎨⎩˜︁ϕ(k) > −D

n0
k2

˜︁ϕ(k) < 0

⇔ ˜︁ϕ(k) < −D

n0
k2 ∨ −D

n0
k2 < ˜︁ϕ(k) < 0

⇔ ˜︁ϕ(k) < 0

If D < 0 :

Re[λ+] > 0 ⇔ ˜︁ϕ(k) < −D

n0
k2 ∨

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
˜︁ϕ(k) > −D

n0
k2 (> 0)⎧⎨⎩

˜︁ϕ(k) < 0

k2 < −sD

n0

∨

⎧⎨⎩
˜︁ϕ(k) > 0

k2 > −sD

n0

⇔ ˜︁ϕ(k) < −D

n0
k2 ∨

⎧⎪⎪⎨⎪⎪⎩
˜︁ϕ(k) > −D

n0
k2

k >

√︃
−sD

n0

(B.1)

This corresponds to a ˜︁ϕ(k) belonging to the area highlighted in green in Fig. B.2.
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Appendix B. Linear stability analysis for the non-local MacArthur’s model

FIG. B.1. The region highlighted in green corresponds to the conditions (B.7), with k̄ =
√︂
− sD

n0
, A(k) = D

n0
k2

General case

Recalling the most general form of g and h :

g(k) =
(︁
D + D̄

)︁
k2 + n0 ϵ+ n0

˜︁ϕ(k) = n0

(︁
A(k) + ˜︁ϕ(k))︁

h(k) = DD̄ k4 + n0ϵD̄ k2 + ˜︁ϕ(k)(︁n0Dk2 + s+ ϵ n2
0

)︁
= B(k) + C(k) ˜︁ϕ(k)

Where:

A(k) :=
D + D̄

n0
k2 + ϵ

B(k) := DD̄ k4 + n0ϵD̄ k2

C(k) := n0Dk2 + s+ ϵ n2
0

(B.2)

And we also calculate, for later use:

n0 (AC −B)(k) = n0D
2 k4 + [(2ϵn2

0 + s)D + s D̄] k2 + ϵn0 (ϵn
2
0 + s) ≡ c2k

4 + c1k
2 + c0 (B.3)

Study of g(k) and h(k)

g(k) > 0 ⇔ ˜︁ϕ(k) > −A(k)

g(k) > 0 ⇔ ˜︁ϕ(k) < −A(k)

h(k) > 0 ⇔

⎧⎨⎩
C(k) > 0

˜︁ϕ(k) > −B(k)

C(k)

∨

⎧⎨⎩
C(k) < 0

˜︁ϕ(k) < −B(k)

C(k)

h(k) < 0 ⇔

⎧⎨⎩
C(k) > 0

˜︁ϕ(k) < −B(k)

C(k)

∨

⎧⎨⎩
C(k) < 0

˜︁ϕ(k) > −B(k)

C(k)
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Therefore Re[λ+] > 0 ⇔

⇔ g(k) < 0 ∨

{︄
g(k) > 0

h(k) < 0

⇔ ˜︁ϕ(k) < −A(k) ∨

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˜︁ϕ(k) > −A(k)⎧⎨⎩
C(k) > 0

˜︁ϕ(k) < −B(k)

C(k)

∨

⎧⎨⎩
C(k) < 0

˜︁ϕ(k) > −B(k)

C(k)

⇔ ˜︁ϕ(k) < −A(k) ∨

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C(k) > 0

−A(k) < −B(k)

C(k)

−A(k) < ˜︁ϕ(k) < −B(k)

C(k)

∨

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(k) < 0

−A(k) > −B(k)

C(k)˜︁ϕ(k) > −A(k)

∨

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C(k) < 0

−A(k) < −B(k)

C(k)˜︁ϕ(k) > −B(k)

C(k)

⇔ ˜︁ϕ(k) < −A(k) ∨

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(k) > 0

(AC −B)(k) > 0

−A(k) < ˜︁ϕ(k) < −B(k)

C(k)

∨

⎧⎪⎨⎪⎩
C(k) < 0

(AC −B)(k) > 0˜︁ϕ(k) > −A(k)

∨

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(k) < 0

(AC −B)(k) < 0

˜︁ϕ(k) > −B(k)

C(k)

(B.4)

If D > 0, from (B.2), (B.3) :

• C(k) > 0 ∀ k

• n0(AC −B)(k) > 0 ∀ k

⇒ Re[λ+] > 0 ⇔ ˜︁ϕ(k) < −A(k) ∨ −A(k) < ˜︁ϕ(k) < −B(k)

C(k)
⇔ ˜︁ϕ(k) < −B(k)

C(k)
(B.5)

If D < 0, from (B.2), (B.3) :

• C(k) > 0 ⇔ k < k̄

C(k) < 0 ⇔ k > k̄

• n0(AC −B)(k) > 0 ⇔ c1 > 0 ∨

⎧⎪⎨⎪⎩
c1 < 0

c21 − 4C − 2c0 < 0 ∨

{︄
c21 − 4C − 2c0 < 0

k < k− ∨ k > k+

n0(AC −B)(k) < 0 ⇔

⎧⎪⎨⎪⎩
c1 < 0

c21 − 4C − 2c0 > 0

k− < k < k+

And such further requirements must be substituted in (B.4).
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Appendix B. Linear stability analysis for the non-local MacArthur’s model

B.1 Gaussian kernel

In this section, I consider a simple Gaussian kernel function:

ϕ(x) = α exp

(︃
− x2

2σ2

)︃
→ ˜︁ϕ(k) = ασ exp

(︃
−σ2k2

2

)︃
≡ ϕ0 exp

(︃
−σ2k2

2

)︃
> 0 ∀ k (B.6)

We will study the sign of Re[λ±] in terms of the function ˜︁ϕ(k). As usual, we start by analysing the
functions g(k) and h(k) in the simplest cases, by putting to zero some parameters.
First of all, we notice that, since ˜︁ϕ(k) > 0 ∀ k, D > 0 ⇒ h(k), g(k) > 0 ∀ k therefore we will not find
instability in the case of positive D.

Case ϵ=0, D̄ = 0, D< 0

g(k2) = Dk2 + n0
˜︁ϕ(k)

h(k2) = ˜︁ϕ(k) (︁n0Dk2 + s
)︁

Then:

g(k) > 0 ⇔ ˜︁ϕ(k) > −D

n0
k2

g(k) < 0 ⇔ ˜︁ϕ(k) < −D

n0
k2

h(k) > 0 ⇔ k <

√︃
−sD

n0

h(k) < 0 ⇔ k >

√︃
−sD

n0

⇒ Re[λ+] > 0 ⇔ g < 0 ∨

{︄
g > 0

h < 0
⇔ ˜︁ϕ(k) < −D

n0
k2 ∨

⎧⎪⎪⎨⎪⎪⎩
˜︁ϕ(k) > −D

n0
k2

k >

√︃
−sD

n0

(B.7)

This means that instability occurs when ˜︁ϕ(k) belongs to the area highlighted in green in Fig. B.2. As
we can see, this corresponds to an instability for all k > k̄.

FIG. B.2. Case ϵ = 0, D̄ = 0, D < 0. The region highlighted in green corresponds to the conditions (B.7) for˜︁ϕ(k), with k̄ =
√︂
− sD

n0
, A(k) = D

n0
k2
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B.1. Gaussian kernel

Case ϵ=0, D< 0

g(k) =
(︁
D + D̄

)︁
k2 + n0

˜︁ϕ(k)
h(k) = DD̄ k4 + ˜︁ϕ(k) (︁n0Dk2 + s

)︁
We study the signs:

g(k) > 0 ⇔ ˜︁ϕ(k) > −D + D̄

n0
k2

g(k) < 0 ⇔ ˜︁ϕ(k) < −D + D̄

n0
k2

h(k) > 0 ⇔

⎧⎨⎩
Dn0k

2 + s > 0

˜︁ϕ(k) > − DD̄k4

Dn0k2 + s

h(k) < 0 ⇔

⎧⎨⎩
Dn0k

2 + s < 0

˜︁ϕ(k) < − DD̄k4

Dn0k2 + s

∨ Dn0k
2 + s < 0

where, for h > 0, we have neglected the case:⎧⎨⎩
Dn0k

2 + s < 0

˜︁ϕ(k) < − DD̄k4

Dn0k2 + s
< 0

because ˜︁ϕ(k) is positive for definition. For the same reason, ˜︁ϕ(k) < − DD̄k4

Dn0k2+s
> 0 is always satisfied

when Dn0k
2 + s < 0.

If D + D̄ > 0, then g(k) > 0∀ k :

Re[λ+] > 0 ⇔ h(k) < 0 ⇔

⎧⎪⎪⎨⎪⎪⎩
k <

√︃
− s

n0D˜︁ϕ(k) < − DD̄k4

Dn0k2 + s

∨ k >

√︃
− s

n0D
(B.8)

If D + D̄ < 0 :

Re[λ+] > 0 ⇔ g < 0 ∨

{︄
g > 0

h < 0

⇔ ˜︁ϕ(k) < −D + D̄

n0
k2 ∨

⎧⎪⎪⎨⎪⎪⎩
k <

√︃
− s

n0D

−D + D̄

n0
k2 < ˜︁ϕ(k) < − DD̄k4

Dn0k2 + s

∨

⎧⎪⎪⎨⎪⎪⎩
k >

√︃
− s

n0D˜︁ϕ(k) > −D + D̄

n0
k2

(B.9)
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Appendix B. Linear stability analysis for the non-local MacArthur’s model

FIG. B.3. Top: case ϵ = 0, D+ D̄ > 0. Bottom: case ϵ = 0, D+ D̄ <0. The highlighted regions correspond
to the instability conditions for ˜︁ϕ(k), i.e. (B.8) and (B.9), respectively.

The two cases are pictured in Fig. B.3. We notice that the situation is very similar to the one studied
in the previous section: in both cases instability is allowed for all k > k0, however now k0 < k̄.

General case, D < 0

Referring to the complete expressions for g(k) and h(k) (3.44), if D + D̄ > 0, then g(k) > 0 ∀ k :

Re[λ+] > 0 ⇔ h(k) < 0 ⇔

⎧⎪⎨⎪⎩
Dn0k

2 + ϵn2
0 + s > 0

˜︁ϕ(k) < −DD̄k4 + D̄ϵn0k
2

Dn0k2 + ϵn2
0 + s

∨

⎧⎪⎨⎪⎩
Dn0k

2 + ϵn2
0 + s < 0

˜︁ϕ(k) > −DD̄k4 + D̄ϵn0k
2

Dn0k2 + ϵn2
0 + s

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dn0k

2 + ϵn2
0 + s > 0

DD̄k4 + D̄ϵn0k
2 < 0

˜︁ϕ(k) < −DD̄k4 + D̄ϵn0k
2

Dn0k2 + ϵn2
0 + s

∨

⎧⎪⎨⎪⎩
Dn0k

2 + ϵn2
0 + s < 0

˜︁ϕ(k) > −DD̄k4 + D̄ϵn0k
2

Dn0k2 + ϵn2
0 + s

⇔

⎧⎪⎨⎪⎩
˜︁k < k < k̄

˜︁ϕ(k) < −DD̄k4 + D̄ϵn0k
2

Dn0k2 + ϵn2
0 + s

∨

⎧⎪⎨⎪⎩
k > k̄

˜︁ϕ(k) > −DD̄k4 + D̄ϵn0k
2

Dn0k2 + ϵn2
0 + s

(B.10)

where k̄ :=

√︄
−s+ ϵn2

0

n0D
> ˜︁k :=

√︃
−ϵn0

D

and
DD̄k4 + D̄ϵn0k

2

Dn0k2 + ϵn0k2 + s
is negative for k < ˜︁k ∨ k > k̄ and positive for ˜︁k < k < k̄
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B.1. Gaussian kernel

If D+D̄ < 0 :

Re[λ+] > 0 ⇔ g(k) < 0 ∨

{︄
g > 0

h < 0

⇔ ˜︁ϕ(k) < −D + D̄

n0
− ϵ ∨

⎧⎪⎨⎪⎩
˜︁k < k < k̄

−D + D̄

n0
− ϵ < ˜︁ϕ(k) < −DD̄k4 + D̄ϵn0k

2

Dn0k2 + ϵn2
0 + s

∨

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k > k̄

˜︁ϕ(k) > −D + D̄

n0
k2 − ϵ

˜︁ϕ(k) > − DD̄k4 + D̄ϵn0

Dn0k2 + ϵn2
0 + s

⇔ ˜︁ϕ(k) < −D + D̄

n0
− ϵ ∨

⎧⎪⎨⎪⎩
˜︁k < k < k̄

−D + D̄

n0
− ϵ < ˜︁ϕ(k) < −DD̄k4 + D̄ϵn0k

2

Dn0k2 + ϵn2
0 + s

∨

⎧⎪⎨⎪⎩
k > k̄

˜︁ϕ(k) > − DD̄k4 + D̄ϵn0

Dn0k2 + ϵn2
0 + s

(B.11)

being −D+D̄
n0

k2 − ϵ < − DD̄k4+D̄ϵn0

Dn0k2+ϵn2
0+s

∀ k > k̄

The instability conditions are plotted below. In this case, instability is allowed for all k > k1 with˜︁k < k1 < k̄.

FIG. B.4. Top: case D + D̄ > 0. Bottom: case D + D̄ < 0. The highlighted regions correspond to the
instability conditions for ˜︁ϕ(k), reported in (B.10) and (B.11), respectively.
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Appendix B. Linear stability analysis for the non-local MacArthur’s model

B.1.1 Expansion for k ≫ 1

We can try to get insight into the problem by performing an expansion of the eigenvalues for large k
in the general case ϵ ̸= 0, D ̸= 0, D̄ ̸= 0. Remembering our hypothesis on ˜︁ϕ (B.6) and substituting
the expressions for g and h, calling ∆ = g2 − 4h :

∆ = (D − D̄)2 k4 + 2n0ϵ(D − D̄) k2 + n2
0ϵ

2 − 2n0(D − D̄)k2˜︁ϕ− 2(n2
0ϵ+ 2s)˜︁ϕ+ n2

0
˜︁ϕ2 =

= k4 (D − D̄)2
[︃
1 +

2

k2
n0ϵ

D − D̄
+

1

k4
n2
0ϵ

2

(D − D̄)2
− 2

k2
n0

D − D̄
˜︁ϕ− 2

k4
n2
0ϵ+ 2s

(D − D̄)2
˜︁ϕ+

1

k4
n2
0

(D − D̄)2
˜︁ϕ2

]︃
Expanding for k → +∞:

√
∆ ≈ k2 |D − D̄|

[︃
1 +

1

k2
n0ϵ

D − D̄
− 1

k2
n0

D − D̄
˜︁ϕ+O

(︃
1

k4

)︃]︃
=

= k2 |D − D̄|+ n0ϵ sgn(D − D̄)− n0
˜︁ϕ(k) sgn(D − D̄) +O

(︃
1

k2

)︃
⇒ λ± ≈ k2[−(D + D̄)± (|D − D̄|)] + n0ϵ[−1± sgn(D − D̄)]− n0

˜︁ϕ(k)[1± sgn(D − D̄)]

2

Then we find that:

if D − D̄ < 0 : λ+ ≈ −Dk2 − n0 ϵ

λ− ≈ −D̄ k2 − n0
˜︁ϕ(k)

if D − D̄ > 0 : λ+ ≈ −D̄ k2 − n0
˜︁ϕ(k)

λ− ≈ −Dk2 − n0 ϵ

(B.12)

Therefore, λ+ is always positive for large k if D < 0: no desired instability behavior is found under
these hypotheses.
For visualisation, we report in Fig. B.5 the behavior of the eigenvalues relative to the case D < 0
reported in the right panel of Fig. B.4, where the same parameters were used. Two examples for the
case D > 0 are plotted as well.

FIG. B.5. Top left: case D>0, D< D̄. Top right: case D>0, D> D̄. Bottom: case D<0.
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Appendix C

Spatially discrete model

I report here the calculations relative to the spatially discrete version of the extension of MacArthur’s
model presented in Section 3.5.
Assuming that the spatial domain is a discrete lattice of Nx sites, separated by a distance dx, the
spatial variable becomes:

x → xj = j dx j ∈ [0, Nx]

and the length of the spatial domain is L = Nx dx.
Then, the consumer and resource population fields read:

n(x, t) → n(xi, t) =: ni(t)

c(x, t) → c(xi, t) =: ci(t)

Being the domain finite, a discrete set of wavenumbers is allowed, labeled by the index n:

kn =
2π

L
n

To perform the linear stability analysis, we consider the uniform equilibrium1:(︃
nj

cj

)︃
≡
(︃
neq

ceq

)︃
∀ j

and apply a perturbation of the kind:(︃
nj(t)
cj(t)

)︃
=

(︃
neq

ceq

)︃
+

(︃
δnj(t)
δcj(t)

)︃
with

(︃
δnj(t)
δcj(t)

)︃
= δ⃗ eλt+iknxj

where kn xj =
2π

Nx dx ndx j = 2π
Nx

n j.
The discretized model’s equations thus read, at linear order:{︄

δnj̇ = αneq δcj − ϵ neq δnj + (D0 −D1 neq) ∂
2
x δnj − β ∂4

x δnj

δċj = −α ceq δnj − αneq δcj + D̄ ∂2
x δcj

where the derivatives are calculated with the central finite difference method:

∂2
x δnj =

1

dx2
(δnj+1 +−2 δnj + δnj−1)

∂2
x δcj =

1

dx2
(δcj+1 +−2 δcj + δcj−1)

∂4
x δnj =

1

dx4
(δnj+2 − 4 δnj+1 + 6 δnj − 4 δnj−1 + δnj−2)

1The explicit equilibrium values as a function of the system parameters are the ones reported in (3.31)
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Appendix C. Spatially discrete model

Substituting the explicit expression for the perturbations, one obtains the following eigenvalue prob-
lem:

λ δ⃗ = (J+ D) δ⃗

with:

D =

(︃
γ(n) 0
0 η(n)

)︃
J =

(︃
fn fc
gn gc

)︃
=

(︃
−neq ϵ neq α
−s/neq −neq α

)︃

γ(n) = 2

{︃
D

dx2
[︁
cos(n)− 1

]︁
− β

dx4
[︁
cos(2n)− 4 cos(n) + 3

]︁}︃
η(n) = 2

D̄

dx2
[︁
cos(n)− 1

]︁

Therefore, the discrete eigenvalues expressions follow from:

det (J− λ I) = 0 ⇔ λ±(n) =
−g(n)±

√︁
g2(n)− 4h(n)

2

with:

g(n) = −(gc + fn)

h(n) = fn gc − gn fc
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