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Abstract

We review some attempts to solve the Naturalness problem - namely
the the lightness of the Higgs mass in relation to the scale of new physics
- and the strong CP problem, that is the measured CP-invariance in the
strong sector despite the presence of the so-called θ term. In particular, in
the first part we study the so-called composite Higgs models as a solution
to the Naturalness problem, focussing our attention on a particular model,
the minimal linear sigma model. In the second part we review one of the
most convincing explanation to the strong CP problem, the so-called axions.
There are essentially three ways to introduce axions in a beyond Standard
Model Lagrangian; after a short summary, we focus on the so-called KSVZ
model and verify why it is safe from possible fine-tuning problems. Finally,
we investigate the possibility to solve both the problems in an unique frame-
work, the so-called axion minimal linear sigma model. These models, unlike
the KSVZ model, suffers fine-tuning problems that suggest to associate the
arising Nambu-Goldstone boson to a more massive axion-like particle, rather
than an axion.
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Introduction

The Higgs boson was the last unverified part of the Standard Model (SM) of
particle physics and its discovery in 2012 has completed the particle content
predicted by the SM decades ago. In particular, it has confirmed the simplest
possible picture of electroweak symmetry breaking (EWSB). Shortly, the so-
called Higgs mechanism splits an elementary doublet of scalar particles into
an unphysical sector, providing the longitudinal polarization to the vector
bosons W and Z, and a single physical spin zero particle, the Higgs particle.
Moreover, thanks to this mechanism, it has also been possible to understand
how the SM fermions get a mass without violating the SM gauge symmetry,
providing in this way a unified picture of mass generation.

However, there are several hints that seem to tell us that this is not
the end of the story. To start with, the SM does not contain (a complete
description of) gravity. Putting aside gravity, we can glimpse signals of
physics beyond Standard Model (BSM) in the SM itself. Ironically, the main
reason that has driven physicists in searching BSM physics at TeV scale has
been precisely the particle that has ultimately confirmed the SM picture, the
Higgs boson, and in particular the lightness of the Higgs mass. Its value has
been questioned in relation to the so-called Naturalness problem, namely the
reason of the large separation of scales between the electroweak scale and the
scale of new physics. The interest towards the Naturalness problem starts in
1976 thanks to two works of Gildener [1] and Weinberg [2]. They revealed
a conceptual difficulty in the context of grand unified theories (GUT): one-
loop quantum corrections were found to give contributions to the Higgs mass
proportional to the mass of the superheavy states, of the order of MGUT =
1014 GeV. They noticed that keeping a large separation of scales between
the electroweak scale and MGUT required fine-tuning the parameters of the
theory of more than 10−24. This is nothing but a one specific realization
of the Naturalness problem. However, the question did not get relevance
until the 1980, when Veltman published an influential paper [3] emphasizing
the problem. In 1981 Witten pointed out how supersymmetry, formerly
introduced but not to achieve this goal, could solve the Naturalness problem.
Since then, this has become one of the most studied puzzles in particle
physics and one of the driving motivations to explore physics BSM.

Related to the problem of lightness of the Higgs mass, there is another
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fact which could signal the presence of physics BSM: it is the so-called
Yukawa hierarchy. We have said that the Higgs mechanism has provided
an explanation of the generation of SM fermion masses in a unique language
but this is not exactly fair. Looking at the Yukawa couplings more carefully,
we can notice that there is a (very) large hierarchy between the Yukawa
couplings: precisely, there are more than 9 order of magnitude between the
masses of the lightest fermions (the neutrinos) and the heaviest one(the top
quark). In principle this is not a problem, as the Yukawa couplings are
free parameters in the SM. However, such a hierarchy would seem to indi-
cate a not so common origin for the fermion masses. These considerations
have led many physicists to believe that the Higgs scheme is nothing but
"a convenient parametrization of our ignorance concerning the dynamics of
spontaneous symmetry breaking" [4]. This belief is supported by the fact
that Higgs would represent the unique example of elementary spin zero par-
ticle in nature, while in other known phenomena of spontaneous symmetry
breaking (SSB) its role is played by composite excitations1. Supersymmetry
would justify elementary scalars but no direct or indirect hints of them have
been found so far. This suggested decades ago [5], [6] a dynamical nature
for the Higgs particle as a pseudo-Nambu-Goldstone boson (pNGB) which
would explain in this way the lightness of the Higgs mass. This class of mod-
els is known as composite Higgs models (CHMs), because the Higgs arises
as a bound state of a new strong force. The important point is that, de-
spite its composite nature, the Higgs can behave as an elementary particle,
matching in this way what we experimentally see, through the mechanism
of vacuum misalignment, firstly introduced by Georgi [5]. The idea under-
lying these models is that the complex Higgs doublet arises as a pNGB of
a spontaneous symmetry breaking (SSB) of a group G to a group H, where
G and H are specified by the model. H is supposed to contain the full EW
symmetry or, more precisely, the SM custodial symmetry, namely the SO(4)
symmetry of SM scalar sector. The reason is that the custodial symmetry
is able to protect the SM relation ρ = 1 at tree-level. Experimentally, ρ = 1
is valid at percent level and the deviations are well described by SM loop
effects. Furthermore, the coset G/H has to be as large as to contain the four
degrees of freedom of the Higgs multiplet. These models offer also a natural
explanation for the Yukawa hierarchy: the SM fermion masses are generated
at tree-level through the so-called partial fermion compositeness hypothesis,
introduced by Kaplan [6].

The fine-tuning problems in the SM do not finish here. The strong sector,
described by the quantum chromo-dynamics (QCD), seems to be experimen-
tally invariant under the CP symmetry. However, as pointed out by t’Hooft
in the 80’s, the QCD Lagrangian, because of its non-abelian nature, con-
tains a CP-violating term, the so-called θ term. The trouble is that this

1It is the case of pions in QCD.
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term produces a neutron magnetic dipole moment and, as we do not see it
experimentally, we are forced to set θ ∼ 10−9 without any apparent reason
and this, again, seems to be too artificial. The problem has been known as
strong CP problem. There were made several proposes to solve the strong
CP problem. Kaplan [7] understood that a massless up quark could allow
to rotate away the θ term. However, this possibility was soon excluded by
experimental data. Forty years ago, inspired by the massless up quark so-
lution, Helen Quinn and Roberto Peccei suggested a dynamical solution to
the strong CP problem [8], [9]. They postulated that the full Lagrangian of
the SM was invariant under an additional global chiral U(1) symmetry that
became known as U(1)PQ symmetry. They demonstrated that the SSB of
this symmetry drives dynamically the θ parameter to zero. Because of the
SSB, there is an associated pseudo-NGB (pNGB) in the theory, the so-called
axion [10], [11]. However, the PQWW model proposed by Peccei, Quinn,
Weinberg and Wilczek was soon ruled out by experimental data. The main
trouble was that the PQ axion arises as a linear combination of neutral
phases of the two Higgses present in the model and this forces the SSB scale
fa to be equal to the electroweak scale v but there were found no axions
at that scale. However, the underlying idea of the PQ model, that is the
dynamical adjustment of the θ angle, works for any scale. This suggested to
consider models in which the PQ breaking scale was independent of the EW
scale v. The first to introduce these models were Kim, Shifman, Vainshtein
and Zakharov (KSVZ model) [12], [13]. They enlarged the SM particle spec-
trum with an extra heavy fermion sector, needed to have a further U(1)PQ
symmetry in the Lagrangian, and an extra complex singlet (under the whole
SM group) σ in which phase is contained the axion. Another attempt to in-
troduce axions in a BSM Lagrangian was done by Dine, Fischler, Srednicki
and Zhitnitsky (DFSZ model) [14], [15]. This model is a mixture between
the PQWW model and the KSVZ model. In fact, here the axion arises as
a linear combination of the phases of two Higgses and one (singlet) complex
scalar field, that is essential to push the axion scale fa over v. The main
difference between these two models is that, because of the two Higgses, the
DFSZ axion possesses tree-level couplings with the ordinary quarks and lep-
tons while the KSVZ model does not. In both these models fa � v and the
resulting axions are very light (ma ∼ 1/fa), very weakly coupled (coupling
∼ 1/fa) and very long lived (τ(a → 2γ) ∼ f5

a ), and for this they are called
invisible axions.

Putting aside the Naturalness problems - to which the cosmological con-
stant problem should be added - other troubles related to incontrovertible
experimental facts such as dark matter, dark energy, baryon asymmetry, neu-
trino masses and neutrino oscillations hard testing the SM. However, none
of these, strong CP problem included, prevents the new physics scale to be
at very high energies. The only argument able to do this is the hierarchy
problem, as it predicts the scale of new physics to be at TeV scale.
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The aim of this thesis is to explain in more detail the Naturalness and
the strong CP problem and to analyse composite Higgs models and axions
as respective ways out to them. We will start (chapter 1) showing why the
SM cannot be considered the ultimate theory of Nature, focusing on the
Naturalness problem and one of its possible solutions, the CHMs. Then, in
the chapter 2, we will analyse the effective field theories (EFTs) method,
which is the educated language for the BSM physics. The chapter 3 will be
devoted to the study of the composite Higgs scenario and its main features;
in the chapter 4 we will study in more detail a particular CHM, the minimal
linear sigma model with a SO(5)/SO(4) SSB pattern [16]. We will show the
predictions given by the pNGB nature of the Higgs, and one of the possible
realizations of the partial fermion compositeness hypothesis. The second
part of the thesis will be devoted to the study of the strong CP problem;
in particular we will explain why this is considered a problem (chapter 5)
and we will study the axions as its possible solution (chapter 6), focusing
our attention on the main axion models: the (ruled-out) PQWW model,
the KSVZ model and the DFSZ model. Finally, in the chapter 7 we will
investigate the possibility to solve both the Naturalness and the strong CP
problems, studying a possible extension of the minimal linear sigma model
[17], adding a new complex scalar field in order to mimic the KSVZ solution
to the strong CP problem. However, we will see that, if we want to keep in the
low TeV range the SO(5)/SO(4) breaking scale in order to not invalidate the
solution of the Naturalness problem, the identification of the scalar particle
as a KSVZ axion creates naturalness problems: these models are highly fine-
tuned. This leads to consider the possibility to associate the (angular part
of the) scalar field to a more massive axion-like particle (ALP) such as a
1 GeV axion with an associated scale of ∼ 200 TeV, that may show up in
collider searches. However, the ALP hypothesis could not help in addressing
the strong CP problem. Instead, the ALPs appear in many models of BSM
physics, such as string theory, as pNGBs associated to the breaking of U(1)
symmetries.



Chapter 1

The SM is Not the End of the
Story

A complete description of gravity is missing in the SM and this requires the
latter to be extended. Actually, the SM contains a partial description of
gravity but this description, based on the perturbation theory, is valid up
to around the Planck mass, because the effective gravity coupling grows like
gG ' E/MP . Therefore some new physics must emerge much below MP to
stop the growth of the coupling strength [18]. This means that the SM, given
that it has a finite cut-off, i.e. its validity is limited up to a finite energy
scale, is for sure an effective field theory. Since the SM is an effective field
theory, there is no reason to require the renormalizability of the Lagrangian.
The most general Lagrangian will be then a sum of infinite local operators
Oi invariant under the gauged SU(3)c × SU(2)L × U(1)Y (and, obviously,
the Lorentz) symmetry:

Leff =
∑
i

ciOi. (1.1)

Since the Lagrangian has mass dimension 4, if an operator Oi has dimension
di the respective coefficient ci must have dimension 4 − di. We can rewrite
the SM Lagrangian at the Λ scale as

Leff = LSM +
∑
i

1

Λdi−4
ĉiOi (1.2)

where LSM is the usual SM d ≤ 4 Lagrangian, we have made the coefficients
dimensionless and di > 4. This way of proceeding is peculiar of effective
field theories; we will return on this topic in the next chapter. However,
we can already understand at this level why the Nature is approximately
well described by a renormalizable theory, without renormalizability being a
principle: all the operators with a dimension larger than 4 have a suppression
factor that hides their phenomenological impact, at least up to the Λ scale.

1



2 The SM is Not the End of the Story

Just to make an example, the unique d = 5 term that can be constructed by
imposing the SM gauge symmetry is the Weinberg operator [19]

c

Λ

(
l̄LH

c
)

(lcLH
c) (1.3)

where lL denotes the lepton doublet, lcL its charge conjugate, H is the Higgs
doublet and Hc = iσ2H∗. The important point is that this term violates the
lepton number, an accidental symmetry of the SM, and, for Λ ' 1014 GeV
and c = O(1), it generates neutrino masses of correct magnitude. This sim-
ple argument could explain why, for instance, the lepton number-violating
processes are suppressed with respect to the lepton number-conserving, with-
out having an underlying (accidental) symmetry. However, and this is the
point, following this line of reasoning, we expect the Higgs mass term, the
only SM operator with a dimension less than 4, to be of order

cΛ2H†H ≡ 1

2
m2
hH
†H. (1.4)

But if we take Λ ' 1014, we are forced to set c ∼ 10−28 in order to reproduce
the correct value of the Higgs mass (mh = 125 GeV). The question is:
why is this number so small? Or, in other words, what is the reason of
the enormous hierarchy between the electroweak scale and the scale of new
physics? This is the essence of the Naturalness problem, that we are going
to develop in more detail in the next section. However, we can already
appreciate the contradiction: the problem is based on the same logic by which
its phenomenological virtues, that is the suppression of d > 4 operators,
were established. In order to keep c of order one, we are forced to conclude
that Λ is low, in the TeV range, such that a light enough Higgs is obtained
"Naturally". This implies that the new physics at the cut-off must be now
non-generic, since we cannot rely on a large Λ.

1.1 The Naturalness Problem

Since the problem we are going to describe is based on what we mean with
"Natural", it is important to define the meaning of Naturalness of a theory.
The definition of Naturalness is due to ’t Hooft [20]:

Let us consider a theory valid up to a maximum energy Λ and make all its
parameters dimensionless by measuring them in units of Λ. The theory is
said to be Natural if all its parameters are of order one. A parameter is

allowed to be much smaller than one only if setting it to zero increases the
symmetry of the theory.

In the second statement is contained the point of the argument. A small
parameter is not necessarily problematic because, thanks to a theorem of



The Naturalness Problem 3

Figure 1.1: The figure shows the one-loop contribution to the electron mass.
In principle the amplitude is quadratically divergent but, because of the
underlying axial symmetry, the divergence that shows up is logarithmic.

QFT, the symmetries of the classical action must be symmetries of the full
quantum action, as well1. This means that if a parameter of a theory is
protected by a symmetry, in the sense that by setting it to zero the symme-
try increase, it will not receive large quantum corrections from the quantum
theory because the symmetry has to be restored in the limit when the pa-
rameter goes to 0. It is instructive to give an example of the idea underlying
the principle. The QED Lagrangian with one fermion is

L = −1

4
FµνFµν + ψ̄

(
i /D −m

)
ψ. (1.5)

In the limit m → 0 the symmetry group is enlarged by a further U(1)A
symmetry, where A stays for axial, that acts on left and right spinors as

ψL → eiαψL ψR → e−iαψR. (1.6)

Because of this symmetry, all the contributions to the fermion mass arising
at loop level, just like the one depicted in figure 1.1, must be necessarily pro-
portional to the fermion mass so that in the limit m→ 0 they can disappear,
preserving the chiral symmetry. A priori we could have two contributions to
the fermion mass: m ∼ a1m log Λ + a2Λ but, as we know that in the limit
m→ 0 they have to disappear, a2 must be necessarily zero and, in fact, per-
forming the calculation we find m ∼ m log Λ. Depending on the logarithm
of the upper cut-off scale, the fermion mass is therefore protected by large
quantum corrections.

This is precisely what does not happen in the SM with the Higgs. Since
the Higgs mass term is not protected by any symmetries, it receives large
quantum corrections that push mH close to Λ. The absence of a symmetry
is linked to the spin-zero nature of the Higgs boson. In fact, all the other
particles with spin 1/2 or higher have a symmetry able to protect their masses
(the chiral symmetry for spin 1/2, the gauge symmetry for spin 1 gauge

1Actually, there is a exception due to the so-called anomalies but this is not the case
of interest to us.



4 The SM is Not the End of the Story

bosons). This makes particularly sense if we notice that the symmetries
arising in a massless theory allow us to eliminate degrees of freedom from
the classical theory and any quantum correction to these masses necessarily
would restore them, leading to an inconsistency (the degrees of freedom
would change in the transition from the classical to the quantum theory).
Instead, a spin 0 particle, massive or massless, possesses the same degrees of
freedom, so it is not needed to protect them by quantum corrections [21].

Returning to the Higgs mass, the idea is that some physics should appear
at the TeV scale in order to stop the growth of the Higgs mass due to (1.4).
We do not know if the Nature respects the Naturalness criterion, but there
are several examples in physics where the Nature has chosen to be "Natural".
For instance, the electromagnetic contribution to the difference between the
charged and the neutral pion mass is

M2
π+ −M2

π0 =
3α

4π
Λ2 (1.7)

where Λ here is the ultraviolet cut-off scale of the effective theory of pions.
The request that the difference calculated with (1.7) does not exceed the
experimental observed value of (M2

π+ −M2
π0)exp ∼ 1225MeV implies that

Λ must be smaller than 850 MeV. In fact, before that scale, there exists
a particle, the ρ meson, so the effective description of the pions has to be
changed in order to reproduce the correct value of M2

π+ −M2
π0 .

Another example historically relevant it is the discovery of the charm
quark by Glashow, Iliopoulos and Maiani [22]. At the energies of the kaon
mass we can calculate, with the effective theory valid at this scale, the mass
difference between the K0

L and K0
S states2. The result is:

MK0
L
−MK0

S

MK0
L

=
G2
F f

2
K

6π2
sin2 θcΛ

2 (1.8)

where fK = 114MeV is the decay constant and sin θc = 0.22 is the Cabibbo
angle. If we require that the theoretical prevision does not exceed the experi-
mental value of (MK0

L
−MK0

S
)/MK0

L
∼ 7×10−15, we find Λ < 2 GeV. In fact,

before reaching this energy, a new particle - the charm quark - modifies the
high energy behaviour of the theory, through the so-called GIM mechanism.

The idea with the Higgs mass is exactly the same: in order to keep the
theoretical prediction of the Higgs mass lower than its experimental value
without violate the Naturalness principle, we find that the scale at which
should appear the new physics, as anticipated above, is around the TeV.
We can reformulate the problem in the same fashion as the K − K̄ system
by estimating the leading order contributions to the Higgs mass due to the
one-loop diagrams shown in Fig. 1.2, containing the top quark, the W,Z

2The subscripts stay for long and short and they refers to the the lifetime of the two
states.
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Figure 1.2: The figure shows the highest contributions to the Higgs mass
coming from top (upper left), gauge bosons (upper right) and Higgs boson
(bottom) loop diagrams.

bosons and the Higgs boson. The calculation of the four diagrams depicted
in Fig. 1.2 reads

δm2
H ∼

3GF

4
√

2π2

(
4m2

t − 2m2
W −m2

Z −m2
H

)
Λ2. (1.9)

We find, comparing the prediction given by (1.9) with the experimental value,
Λ ∼ TeV. Therefore, the expected scale of new physics, provided that the
Naturalness principle is really a principle, is around the TeV.

1.2 A Possible Solution to the Naturalness Problem

The Naturalness problem was not fully considered until 1980, when Witten
pointed out how supersymmetry could solve the problem. However, no direct
or indirect hint of supersymmetry have been found so far. This led physicists
to consider other kind of solutions. In this work we will explore one of
the most cogent solution to it, the so-called composite Higgs models. The
Higgs boson is viewed in this picture as a bound state of a new strong
force. Since the basic idea underlying the model is to mimic what does
happen in QCD with the pions, we briefly recall how, starting by the QCD
Lagrangian at high energies, the effective theory of pions shows up. The
QCD can be viewed at high energies as a free theory near its conformal fixed
point. This means that the QCD at high energies does not have dimensional
couplings. To be more precise, there are dimensional couplings, which are
the quark masses, but they are protected by chiral symmetry, as we have
seen before, so their dependence from the ultraviolet (UV) scale is the same
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as if they were dimensionless. Let ΛUV be the scale where the QCD can
be viewed as a free theory (we can take, for instance, ΛUV = mZ where
mZ is the mass of the Z boson). Under the renormalization group, the
coupling constants run and, thanks to the fact that there are no dimensional
couplings, the theory develops an exponentially suppressed (with respect to
ΛUV) scale ΛQCD which is not present in the UV theory3. The appearance
of a scale without any dimensional couplings in the theory (and, therefore,
without any scales) is called dimensional transmutation. It turns out that
this scale is insensitive to the ΛUV scale. Now, at ΛQCD a large number
of bound states appears, the hadrons. Looking at the hadrons’ spectrum
we notice that the pion masses are lower than those of other hadrons: the
reason is that, in the limit mu = md → 0, the pions are the NGBs of the
spontaneous symmetry breaking (SU(2)L×SU(2)R)/SU(2)V . However, the
SU(2)L × SU(2)R symmetry is softly broken by the gauging of the U(1)em
generator. This soft breaking is responsible of a (small) mass for the pions
that become in this way pNGBs.

Returning to the Higgs, the idea of the composite Higgs models is pre-
cisely this: in this picture the Higgs is a pNGB of a spontaneously broken
symmetry (with a soft breaking term given by the gauging of the EW group),
in such a way that its mass is naturally lower than other resonances’ masses.
However, as pointed out by [18], the Goldstone symmetry is in itself of no
help in addressing the Naturalness problem. What is important to solve the
Naturalness problem is the strongly coupled nature of the underlying UV
theory by which the Higgs mass is stabilized through dimensional transmu-
tation.

3It is often referred to it as the confinement scale



Chapter 2

Effective Field Theories

In composite Higgs models there are no attempts to formulate an underlying
UV theory of the EW mechanism. Instead, through an effective field theory
(EFT) approach, they try to make predictions about the low energy effects
of some UV completion of the theory, without worrying about what this
theory is. In this sentence there is the essence of the EFT approach and the
reason why it is so powerful: it means that we can forget about details of
the UV theory because the quantum fluctuations associated with the high
energy physics will affect the low energy theory only through the values of a
few of its parameters. The explanation of this unusual and counterintuitive
simplification is due to Kennet Wilson [23]. He has given in particular a
new point of view about the meaning of renormalization. The construction
is based on the functional integral approach to the field theory. Suppose we
have a quantum field theory of a scalar field φ valid up to a scale Λ and we
are interested in the physics at some lower scale E � Λ. The generating
functional can be formally written as

Z[J ] =

∫
Dφ ei

∫
[L+Jφ] =

∫ ∏
k

dφ(k) ei
∫

[L+Jφ] (2.1)

where in the second equality we have written the field φ in terms of its Fourier
components. To impose a sharp ultraviolet cut-off Λ we restrict the number
of the integration variables displayed in (2.1). That is, we integrate only over
φ(k) with |k| < Λ and set φ(k) = 0 for k > Λ. We now divide the remaining
fields φ(k) into two groups by choosing a cut-off bΛ with b < 1 [24], [25]

φ = φH + φL (2.2)

with

φH =

{
φ(k) for bΛ ≤ |k| < Λ

0 |k| < bΛ
(2.3)

φL =

{
0 for bΛ ≤ |k| < Λ

φ(k) |k| < bΛ
. (2.4)

7



8 Effective Field Theories

The functional integral now reads∫
DφLDφH ei

∫
[L(φL,φH)+J(φL+φH)] ≡

∫
DφL ei

∫
[Leff+JφL] (2.5)

where we have defined the effective action

ei
∫
Leff ≡

∫
DφH ei

∫
[L(φL,φH)+JφH ]. (2.6)

In this way the heavy degrees of freedom disappear and we remain with
the only low fields. This process is called integrating out a field. Taking the
parameter b close to 1 and iterating this procedure one can describe the result
of integrating over the high momentum degrees of freedom of a field theory as
a trajectory or a flow in the space of all possible Lagrangians. For historical
reasons, these continuously generated transformations of Lagrangians are
referred to as the renormalization group. Actually, they do form a semi-
group, rather than a group, because the operation of integrating out degrees
of freedom is not invertible. If we perform the integral (in most cases this can
be done only perturbatively) in (2.6) the resulting Lagrangian is an infinite
sum of local interactions described by operators Oi that depend only on the
fields φL and that respect the symmetries of the full theory:

LbΛ [φL] =
∑
i

giOi [φL] (2.7)

where di is the mass dimension of the operator O and the couplings gi as
we have anticipated depend only the couplings of the full theory and on the
scale Λ. We can extract the scale dependence of the couplings gi by defining
the dimensionless couplings

λi = Λdi−4gi. (2.8)

Since bΛ is the only characteristic scale of the process we expect the gi’s
to be of order 1. Now, for a process at the scale bΛ we can estimate1 the
modulus of the operator O as:∫

d4xO = (bΛ)di−4 (2.9)

so that the i’th term is of order(
bΛ

Λ

)di−4

= bdi−4. (2.10)

Now comes the point. In the low energy regime, that is when b → 0, the
importance of the terms depend on the dimension di of the operator. In
particular:

1This estimate of the integral is valid as long as the coupling is sufficiently weak so
that the energy of the operator can be estimated starting by its kinetic term and it is bΛ.
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• if di > 4 the respective term flows to zero and for this it is termed
irrelevant;

• if di < 4 the respective term flows to infinity and it is called relevant;

• if di = 4 the operator is equally important at all scales and it is termed
marginal; for the marginal operators it is needed a more detailed anal-
ysis in order to establish their flow.

In the language of the renormalization group we are following the evolution
of coefficients near the free-field fixed point2. We now understand why the
only operators needed to describe the low energy physics are the relevant
ones, for which di < 4 (and some di = 4 operator) that are nothing but
the renormalizable terms in the language of the old-fashioned perturbation
theory. This simple argument explains why a renormalizable theory, such as
the QED, is a good (almost perfect) approximation of the Nature: whatever
the Lagrangian of QED was at its fundamental scale, as long as its couplings
are sufficiently weak, it must be described at the energies of our experiments
by a renormalizable effective Lagrangian. To conclude, in this new picture
the situation is reversed with respect to the old-fashioned renormalizability:
we always expect the non-renormalizable terms to appear at some level so
they are not a problem anymore. But now there is a new type of problem:
the superrenormalizable terms. For instance, a mass term of dimension 2 is
expected to appear with a coefficient of order λΛ2. Without a fine-tuning
or some symmetry that would forbid this term, the field would have a mass
of order Λ. But this is a contradiction: the field, that is by definition a
low energy degree of freedom, should disappear since its mass is near to the
cut-off [25]. This is precisely the Naturalness problem in the language of the
renormalization group.

2.1 The Sigma Model

The sigma model provides a simple introduction to effective Lagrangians
because all the relevant manipulations can be explicitly demonstrated. In
fact here the Goldstone boson fields, the pions, which are the only relevant
fields in the low energy limit, are present at all stages of the calculation.
The sigma model was originally introduced by Gell-Mann and Levy (1960)
to derive in a convincing manner the formula of Goldberger and Treiman.
However, it is useful to regard it as a "toy model" in order to show the main
features of the effective field theories. Shortly, it is based on a Lagrangian
invariant under SO(4) spontaneously broken to the SO(3) group, leading

2The Lagrangian with all the couplings put to zero is a fixed-point of the renormal-
ization group, in the sense that it remains unchanged under the renormalization group’s
flow.
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to 3 Goldstone bosons in the coset SO(4)/SO(3). By integrating out the
remaining heavy field,3 we obtain an effective field theory describing the
Goldstone’s dynamics. The resulting Lagrangian is non-linear (because the
kinetic term is not linear in the fields, as we will see) and it is made of infinite
terms. In fact, the theory is not renormalizable, but this is not problem since
we know that it is an effective one, the sigma model (that is, with the heavy
field reintroduced) being the UV completion.

The sigma model Lagrangian is [26]

L = ψ̄ /∂ψ+
1

2
∂µπ∂

µπ+
1

2
∂µσ∂

µσ−gψ̄(σ+iτ ·πγ5)ψ+
µ2

2
(σ2+π2)−λ

4
(σ2+π2)2

(2.11)
where π = (π1, π2, π3) is the pion triplet, the τ ’s are the Pauli matrices and ψ
is a fermion field. For µ2 > 0, the SO(4) symmetry is spontaneously broken
to SO(3), leading to three Goldstone bosons in the coset SO(4)/SO(3) (the
three pions); this leads σ and ψ to acquire a mass. In order to show the
salient features of the effective Lagrangians, let us rewrite the sigma model
Lagrangian in a more convenient form defining

Σ = σ1 + iτ · π. (2.12)

The Lagrangian (2.11) is rewritten in terms of the Σ fields, as

L =
1

4
Tr
(
∂µΣ∂µΣ†

)
+
µ2

4
Tr
(

Σ†Σ
)
− λ

16

[
Tr
(

Σ†Σ
)]2

+

+ iψ̄ /∂ψ − g
(
ψ̄LΣψR + ψ̄RΣ†ψL

)
(2.13)

The model is invariant under the SU(2)L × SU(2)R transformations4:

ψL → LψL, ψR → RψR, Σ→ LΣR† (2.14)

for L,R ∈ SU(2). This is the so called linear representation because the
kinetic term 1

4 Tr
(
∂µΣ∂µΣ†

)
is linear in the fields. From now, we will forget

the fermionic terms as they do not really add anything to our discussion
on the effective Lagrangians. However, there are other ways to display the
content of the sigma model besides the above linear representation. For
instance, the so-called exponential representation is defined via 5

Σ = σ + iτ · π = ρU ≡ ρeiτ ·
π′
v . (2.15)

3Originally, it corresponded to a spinless meson called σ, from which the name of the
model.

4SU(2)L × SU(2)R and SO(4) are isomorphic at the level of their algebra, therefore
the symmetry remains the same of (2.11), as one expects.

5This ansatz is suggested by the CCWZ (Coleman, Callan, Wess, Zumino) formalism,
as we will see later.
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Using this form, the Lagrangian is rewritten as

L =
1

2
∂µρ∂

µρ+
ρ2

4
Tr
[
∂µU∂

µU †
]

+
µ2

2
ρ2 − λ

4
ρ4 (2.16)

where we have used the fact that the Maurer-Cartan form U †∂µU (and
clearly U∂µU † too) belongs to su(2), so it is traceless. We can read from
(2.15) the transformation properties of U under SU(2)L × SU(2)R:

U → LUR†. (2.17)

We notice that in this form - and this is a general feature of the NGBs - the
relevant degrees of freedom (the π′’s) transform in a non-linear way under
SU(2)L × SU(2)R. Furthermore we can easily read that the radial field ρ
picks out a VEV, while the angular fields π′ have no-potential: they are the
NGBs of the theory.

Before entering in more general questions about the effective Lagrangians,
we just stop one moment on the redefinition (2.15). There is nothing, a priori,
which says us that such a redefinition will not change the theory (amplitudes,
etc.): in fact, it can be easily checked that the Feynman diagrams of the
same process are different for each representation. However, the amplitudes
remain the same: this is essentially the content of a powerful field theoretic
theorem, proved first by Haag [27] and then reviewed by Callan, Coleman,
Wess, Zumino [28], [29]. It states that if two fields are related non-linearly, for
example φ = χF (χ) with F (0) = 1, then the same experimental observables
result if one calculates with the field φ using L(φ) or instead with χ using
L(χF (χ)). Since we do not need to worry about this redefinition, we are
ready to show what the low energy limit of the sigma model is, by integrating
out the heavy field ρ, which is the topic of the next section.

2.2 Integrating Out Heavy Fields

In order to show the main consequences of integrating out a field and to read
the low energy regime of the sigma model, we need to integrate out the heavy
field ρ, in the sense explained at the beginning of the chapter. This time
we do not integrate the Fourier components of the field but the entire field
with a mass M larger than the scale E of the process. As we have already
outlined, the crucial point is that all the effects of heavy particles can be
incorporated into a few constants that depends on the mass of the heavy
particle. This is essentially the content of the so-called decoupling theorem,
firstly proved by Appelquist and Carazzone [30]. The theorem states that

all effects of the heavy particles appear either as a renormalization of the
coupling constants in the theory or else are suppressed by powers of the
heavy particle mass, provided that the remaining low energy theory is

renormalizable.
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The most famous example is the Fermi interaction L ∼ GF /
√

2(ψ̄ψ)(ψ̄ψ)
postulated by Enrico Fermi in order to explain the β decay. We now know
that it is a low energy description of electroweak interactions and indeed it
derives from the electroweak Lagrangian by integrating out the heavy bosons
W±, Z. By comparing the Fermi Lagrangian with the Glashow-Weinberg-
Salam model we find GF /

√
2 = g2/8m2

W ; as we can see the constant is
renormalized by an inverse power of the W boson mass.

We now apply these ideas to the sigma model. Firstly, in order to explicit
the SSB, we rewrite the Lagrangian (2.16) as

L =
1

2
∂µρ∂

µρ+
ρ2

4
Tr
[
∂µU∂

µU †
]
− λ

4

(
ρ2 − v2

)2 (2.18)

where v2 = µ2/λ. There are two ways to perform the integration of the field
ρ. The first method consists in integrating out the field by following the
original definition, that is performing the integration of the heavy field in the
path integral formalism as explained in the introduction of the chapter. The
second method consists in solving the equation of motion for ρ order by order
in the coupling λ and then put the resulting field in the Lagrangian6. We
will perform the calculation with the second method, as it is more immediate
than the path integral one and it will be useful in most of the calculations
of this thesis. The equation of motion for ρ reads

�ρ+ λρ
(
ρ2 − v2

)
− ρ

2
t = 0 (2.19)

where we have defined t ≡ Tr
[
∂µU∂

µU †
]
. Now we expand ρ in powers of

1/λn

ρ = ρ0 +
ρ1

λ
+ · · · (2.20)

and we solve the equation order by order in λ putting this expansion in the
equation of motion for ρ:

λ1 :
(
ρ3

0 − v2ρ0

)
= 0 =⇒ ρ2

0 = v2,

λ0 : �ρ0 + 2ρ2
0ρ1 + ρ1

(
ρ2

0 − v2
)
− ρ0

t

2
= 0 =⇒ ρ1 =

t

4v

(2.21)

and so on. In conclusion the ρ field, at the order 1/λ, is

ρ = v +
1

λ

t

4v
+ o

(
1

λ

)
. (2.22)

The effective Lagrangian at the order 1/λ finally reads

L =
v2

4
Tr
[
∂µU∂

µU †
]

+
1

16λ

[
Tr
(
∂µU∂

µU †
)]2

+ o

(
1

λ

)
=

=
v2

4
Tr
[
∂µU∂

µU †
]

+
v2

8m2
ρ

[
Tr
(
∂µU∂

µU †
)]2

+ o

(
1

λ

) (2.23)

6However, one should be careful about this second method, because it is not always
applicable.
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where we have introduced the mass of the ρ particle m2
ρ = 2λv2. It is

now clear that the net result of integrating out the field ρ is a low energy
effective Lagrangian written as expansion in powers of Tr

(
∂µU∂

µU †
)
. We

notice that the effective Lagrangian preserves the original SU(2)L×SU(2)R:
this is true at all orders. However, this is not an interesting case since
we know what the UV completion of the theory is, i.e. the sigma model.
The effective Lagrangian technique is instead extremely useful when we do
not know the full theory but we know that the theory is invariant under
some symmetry group G spontaneously broken to H. Suppose, for example,
we are dealing with an unknown theory with the same SU(2)L × SU(2)R
symmetry spontaneously broken to SU(2)V . What we have to do is to write
the most general effective Lagrangian in the relevant degrees of freedom
at low energy, i.e. the NGBs, consistent with this symmetry, in terms of
unknown coefficients that have to be determined phenomenologically. In our
case we have

L = L2 + L4 + · · · =F 2

4
Tr
(
∂µU∂

µU †
)

+ α1

[
Tr
(
∂µU∂

µU †
)]2

+

+ α2 Tr
(
∂µU∂νU

†
)

Tr
(
∂µU∂νU †

)
+ · · ·

(2.24)

where F is the typical energy scale of the theory7. We remark that we just
needed to specify the symmetry group in order to write the most general
effective Lagrangian describing the low energy physics. This is essentially the
content of the CCWZ formalism that we are going to show in the next section,
that generalizes this method to a generic group G spontaneously broken to
H. As explained in the introduction, the important point is that, since the
coefficient of an operator of dimension d (which carries d derivatives, since U
has no dimension) is 1/Λ(d−4) where Λ is an upper scale that depends on the
theory, at sufficiently low energies the matrix elements of most of these terms
are very small because proportional to qd/Md, so we can neglect them leaving
us with a very few terms. This last way of proceeding, that is to parametrize
how the new physics can shows up by writing the most general Lagrangian
consistent with the symmetries of the underlying UV theory, is the so-called
bottom-up approach, in contrast with the previous one, where, starting by
a well known UV complete theory (the linear σ model) we calculate its low
energy regime by integrating out the heavy field, which is called top-down
approach.

2.3 CCWZ Formalism

At the end of the previous section we have shown the effective Lagrangian of
a theory with a SSB SO(4)/SO(3). However, as we have outlined, the whole

7For instance, in the case of pions it is the pion decay constant.
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discussion is general and it does not depend on the symmetry group of the
Lagrangian. In fact, in 1960 Coleman, Callan, Wess, Zumino [28], [29] devel-
oped a formalism that allows to write, in a completely model-independent
fashion, general low energy effective Lagrangians for strongly - or weakly cou-
pled - theories characterised by a generic G/H symmetry breaking pattern,
describing the Goldstone bosons associated with the symmetry breaking and
the heavy resonances. We briefly recall, following [18], [28], [29], the content
and the main ideas of the so-called CCWZ formalism.

Let G be the global symmetry group of the theory. We assume that the
vacuum state is only invariant under a subgroup H ∈ G leading to a G→ H
spontaneous symmetry breaking and thus to the appearance of massless
NGB’s in the coset G/H. We will refer to TA, with A = (1, · · · dim[G]),
as the generators of the Lie algebra of G. Once we choose a reference
vacuum F , we can split the generators (with respect to F ) into unbroken
(a = 1, · · · ,dim[H]) and broken (â = 1̂, · · · ,dim[G/H]):

TA = {T a, T̂ â}. (2.25)

By definition, F is invariant only under H:

(T a)ijF j = 0 (T̂ â)ijF j 6= 0 (2.26)

where the i, j indices run over the representation space of the fields of the
theory. The starting point is to identify the correct degrees of freedom that
describe the massless NGBs. Since the NGBs have no mass and no potential,
this suggests that they are related to the representative vacuum F i by a local
G transformation. Following this idea, it makes particularly sense to perform
the ansatz

Φi =
[
eiθA(x)TA

]ij
F j (2.27)

where we have denoted with Φi the fields of the theory living in a multiplet
of G. The θA(x) are suitable candidates to be the NGBs; in fact, for θA
constant, eiθATA belongs to G, and, as G is the symmetry group of the La-
grangian, these degrees disappear from the potential part of the Lagrangian,
so they have no potential and consequently zero mass. Their appearance in
the Lagrangian is completely due to the kinetic term. However, because of
(2.26), not all these fields are physical. In order to explain why, we remind
that a generic g ∈ G element can be decomposed uniquely into a product of
the form:

g = eiξ
âT̂ âeiu

aTa (2.28)

with eiuaTa ∈ H. Applying this decomposition to (2.27) we find

Φi =
[
eiθA(x)TA

]ij
F j =

[
eiξ

â(x)T̂ â
]ik [

eiu
a(x)Ta

]kj
F j =

[
eiξ

â(x)T̂ â
]ij

F j

(2.29)
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where in the last equality we have used (2.26). This is consistent with what
we already know: the NGBs are as many as the broken generators of the
group G and indeed â = 1, · · · , dim[G/H]. In order to get canonically nor-
malized (and dimensionals) NGB fields it is useful to make the definition

ξâ(x) ≡
√

2

f
πâ(x) (2.30)

where f is the scale of the spontaneous symmetry breaking and the π’s
are the canonically normalized NGB fields. The so-called Goldstone matrix
eiξ

â(x)T̂ â is the basic object on which the CCWZ construction is based:

U [π] ≡ exp

[
i

√
2

f
πâ(x)T̂ â

]
. (2.31)

Let us now see how the group G acts on the Goldstone bosons. Following
the original paper of Coleman, Wess and Zumino, we notice that, for any
element g0 ∈ G, we have

g0e
iξâ(x)T̂ â = eiξ

′â(x)T̂ âeiu
′a(x)Ta (2.32)

where
ξ′ = ξ′(ξ; g0), u′ = u′(ξ; g0). (2.33)

Because of (2.32), the action of an element g ∈ G on the Goldstone matrix
U [π] reads:

g · U [π] = U [π(g)] · h[π; g] (2.34)

with U [π(g)] and h[π; g] specified by the structure of the group. The trans-
formation of the Goldstone bosons π is then defined implicitly by

U [π(g)] = g · U [π] · h−1[π; g]. (2.35)

We notice that this is consistent with the transformation law of Φ:

Φ′ = U [π(g)]
ij
F j =

(
g · U [π] · h−1[π; g]

)ij
F j = (g · U [π])ij F j = gijΦj

(2.36)
where in the second equality we have used the fact that, by definition,
hijF j = F i. Looking at (2.35), it is important to notice that the trans-
formation acting on the fields π is local, since h−1[π; g] depends on fields π.
Furthermore the πâ’s belong to a non-linear representation of the group G,
in the sense that the transformation cannot be written as:

π′â = Aâb̂πb̂

for some linear matrix A independent from π. However, (2.35) provides a
representation of G, and in fact it respects the group multiplication rule. In
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order to verify it, we just need to observe that

U

[(
π(g2)

)(g1)
]

= g1 · U [π(g2)] · h−1[π(g2); g1] =

= g1 · g2 · U [π] · h−1[π; g2] · h−1[π(g2); g1] =

= g1 · g2 · U [π] · h−1[π; g1 · g2] = U
[
π(g1g2)

] (2.37)

where in the third equality we have used the fact that h is itself a group
representation, so h−1(g1g2) = h−1(g2) · h−1(g1).

However, there is a case in which the NGBs transform linearly, that is
when g ∈ H. To see this, we notice that the G algebra decomposes as

[T a, T b] = ifabc T
c + ifabĉ T̂

ĉ = ifabc T
c ≡ (taAd)bc T

c

[T a, T̂ b̂] = ifab̂c T
c + ifab̂ĉ T̂

ĉ = ifab̂ĉ T̂
ĉ ≡ (taπ)b̂ĉ T̂

ĉ

[T̂ â, T̂ b̂] = if âb̂c T
c + if âb̂ĉ T̂

ĉ

(2.38)

where in the first line we have used the fact that the T a’s are the generators of
the subgroup H, so their commutator cannot contain generators that do not
belong to H, so fabĉ = 0. From this and from the antisymmetric properties of
the structure constants it follows that 0 = fabĉ = −fab̂c , thanks to which the
right side of the second line can be written as depending only on the broken
generators. In the second line we have defined taπ because, as we now show,
it is the representation in which the NGBs πâ transform under H. Firstly,
it can be easily seen that taπ satisfies the commutation relations of the H
algebra so it is at least a representation of H. Now, in order to show that
the NGBs transform under H with (the exponential of) taπ, we notice that
for g = eiα

aTa ∈ H we have

g · U [π] = g · U [π] · g−1 · g = exp

[
i

√
2

f
πâ(x)gT̂ âg−1

]
· g =

= exp

[
i

√
2

f
πâ(x)

(
eiα

ataπ
)âb̂

T̂ b̂

]
· g = U

[(
eiα

ataπ
)b̂â

πb̂
]
· g

(2.39)

where we have used the exponentiated version of (2.38). Comparing (2.39)
with (2.35), as g ∈ H, we find

π
(g)
â = (eiα

ataπ)b̂âπb̂. (2.40)

On the other hand, the transformations along the broken generators cannot
be written explicitly on the πâ’s. Their action is relatively simple only on
the Goldstone matrix, as we can see from (2.35). In fact, what Coleman-
Callan-Wess-Zumino did was to find objects that could transform in a more
controlled way than U [π]. The fundamental objects employed in the CCWZ
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construction are the pâµ, vaµ symbols. They are defined by decomposing on
the G algebra the Maurer-Cartan form:

iU [π]−1 · ∂µU [π] = pâµT̂
â + vaµT

a ≡ pµ + vµ. (2.41)

Now and in what follows, we will forget about the π dependence of h but
we remember that g is a global transformation, conversely h depends on x
because of (2.34). Under G, the Maurer-Cartan form transforms as

iU [π(g)]−1 · ∂µU [π(g)] = ih · U [π]−1 · g−1
[
g · ∂µU [π] · h−1 + g · U [π] · ∂µh−1

]
= ih · U [π]−1 · ∂µU [π] · h−1 + ih · ∂µh−1 =

= h · pµ · h−1 + h · vµ · h−1 + h · ∂µh−1.

(2.42)

Since ih · ∂µh−1 is itself a Maurer-Cartan form associated to the subgroup
H, it contains only the T a generators. It follows that pµ, vµ transform as

pµ → h · pµ · h−1

vµ → h · vµ · h−1 + ih · ∂µh−1.
(2.43)

We see from (2.43) that pâµ transforms exactly like π:

pâµ → p(g),â
µ = (eiα

ataπ)b̂âpb̂µ. (2.44)

However, and this is the point, pµ, differently from π, transforms with taπ
under the whole G, not just under the subgroup H. For what concerns the
vaµ symbols, they transform as if they were gauge fields associated with a local
H invariance. So they can be employed to construct covariant derivatives
and field strength but they cannot be inserted directly in the operators.

The CCWZ prescription is to construct G-invariant operators by com-
bining pµ and vµ symbols and their derivatives. The remarkable fact is that
all the operators can be constructed in this way 8. Since, as we see from
(2.43), pµ and vµ transform under G with local H transformations, we need
to worry about building H invariants with the standard group theory tools
and the full G invariance will follow automatically. So, for example the two
derivatives operators can be obtained by contracting p symbols with H in-
variant tensors. The most general combination of such operators defines the
so called 2-derivative non-linear σ-model Lagrangian. In general there can
be more H invariant tensors. However, for H compact one always exists (the
δâb̂) and the corresponding term is given by

L(2) =
f2

4
pâµδ

âb̂pµ,b̂. (2.45)

8With the exception of the Wess-Zumino-Witten term which signals the presence of an
anomaly in G.
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It provides the Goldstone bosons kinetic terms (f2/4 has been added in
order to have the correct normalization) plus an infinite set of two derivative
interactions, which are controlled by the unique parameter f . If δâb̂ is the
only invariant, and this is the case for the SO(N)/SO(N − 1) symmetry
breaking pattern, then all the 2-derivative interactions can be predicted in
terms of the unique constant f . This means that, whatever the UV theory
is, provided it is based on the symmetry breaking pattern SO(N)/SO(N −
1), it leads, at the 2-derivative level, to the same Lagrangian and physical
predictions. So the results obtained in the linear sigma model example are
completely general, in spite of the fact that the linear sigma model is just
one possible UV realization of the low energy theory.

Now, before continuing with the CCWZ construction, we just stop one
moment on the calculation of the pâµ. In general, they depend hardly on
the specific group G and H but sometimes (actually very often in physics)
we can simplify the kinetic term. It is the case when G/H is a so-called
symmetric coset, i.e. the G algebra has an automorphism (an example is the
chiral group SU(N)L × SU(N)R)

T a → T a,

T̂ â → −T̂ â.
(2.46)

Firstly, we notice that the automorphism (2.46) implies, from (2.38), that
f âb̂ĉ = 0. Furthermore, under the automorphism, U → U † and viceversa.
This implies that

U∂µU
† = −pâµT̂ â + vaµT

a ≡ −pµ + vµ (2.47)

where the dependence on π is made implicit. Taking the difference between
(2.41) and (2.47) we find

pµ =
1

2

(
U †∂µU − U∂µU †

)
. (2.48)

The kinetic term is therefore

Tr[pµp
µ†] = 2 Tr

[
∂µU∂µU

†
]
− 2 Tr

[
U †U †∂µU∂µU

]
= 2 Tr

[
∂µΣ∂µΣ†

]
(2.49)

where we have defined
Σ = UŨ † = U2 (2.50)

where Ũ is the image of U under the automorphism and, as we have said,
Ũ = U †. From the U transformation we can deduce the Σ transformation:

Σ = UŨ † → gUh−1hŨ †g̃† = gΣg̃†. (2.51)

Thus, for symmetric spaces we can construct a Goldstone matrix U trans-
forming linearly under G (in general, because of the π dependence in h, only
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pµ enters in the kinetic term). This is precisely what we made explicitly
with the sigma model in the previous section. In fact, in the case of the
chiral group broken to his vectorial part: (SU(N)L × SU(N)R)/SU(N)V ,
the broken generators are the axial one Aâ ≡ Lâ −Râ so the automorphism
sends

A = L−R→ −A = R− L (2.52)

i.e., the automorphism interchanges R with L. We can read from (2.51) the
Σ transformation (g = gLgR = gRgL):

Σ→ gLgRΣg†Lg
†
R (2.53)

that is equivalent to say that Σ transform as9

Σ→ gLΣg†R, (2.54)

which is the U transformation law in the sigma model.
Until now we have been considering a global G group. However, the

discussion can be easily generalized to a local G group and this is the case
we are interested in, as the SM symmetry group is local. Denoting with
AµA with A = 1, · · · ,dim[G] the gauge fields (there is one for each genera-
tor), then the basic object to construct invariant operators is the generalized
Maurer-Cartan form

U [π]−1 (Aµ + i∂µ)U [π] ≡ pµ [π,A] + vµ [π,A] (2.55)

where, as usual, Aµ = AAµT
A, pµ = pâµT

â, vµ = vaµT
a. We can make this

decomposition because, as Aµ belongs to the G algebra, the action of U [π]−1

and U [π] on Aµ will always produce terms belonging to the G algebra. It
can be easily demonstrated that it all works as in the global case with the
substitution of the standard derivative with the covariant one. For instance,
the generalized p and v symbols transform as

pµ [π,A]→ h · pµ [π,A] · h−1

vµ [π,A]→ h · vµ [π,A] · h−1 + ih · ∂µh−1
(2.56)

and the two-derivative term in the case of a symmetric coset reads

L(2) =
f2

4
Tr
[
DµΣDµΣ†

]
. (2.57)

It is also possible - and it will be the case of interest to us - to gauge a
subgroup of the whole G. Formally this is achieved by gauging all the fields
AAµ and decoupling the unwanted ones sending the coupling strength to zero.

9In the sense that objects invariant under (2.53) are also invariant under (2.54) and
vice versa.
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Chapter 3

The Composite Higgs Scenario

Until now we have been describing the motivations that led to the develop of
the composite Higgs idea. Instead, this chapter will be devoted to the study
of the main features of the composite Higgs scenario, shared by almost all
composite Higgs models.

In analogy with QCD, we have a global group G spontaneously broken
to a subgroup H at the confinement scale f (the analogue of the ΛQCD
scale), leading to NGBs in the coset G/H; the Higgs is one of these NGBs.
The subgroup H is assumed to contain the EW group and G is assumed
to be large enough to contain at least one Higgs doublet. However, if the
symmetry was exact the Higgs would be exactly massless, it would have no
potential and its VEV would be unobservable. In fact, it is essential that G
be explicitly broken. In composite Higgs models this is achieved by relying
on two different sources of (small) G breaking:

• a G breaking comes from the gauging of GEW contained in the un-
broken H group, just like the gauging of the electromagnetic group
U(1)em provides a small mass to pions;

• another source of small G breaking is induced by the coupling with
the fermions of the theory that are the SM fermions plus an extra
sector of heavy fermions. In fact, in general the SM fermions live in
multiplets only of the EW group, so they cannot be coupled to the
Higgs without breaking the G symmetry. These Yukawa-like couplings
are indispensable also to give a mass to SM fermions.

The Higgs mass is therefore controlled by the explicit breaking of the
symmetry. However, as we have previously outlined, the explicit breaking
has to be small, in order to keep the Higgs lighter than other resonances and
to not destabilize the hierarchy among f and the ΛUV scale. The situation
is pictorially represented in Fig. 3.1. In the case of an exact G symmetry
the VEV can be rotated on the reference vacuum ~F , with |F | = f , by a
G transformation, therefore its projection (that corresponds to the NGBs’

21



22 The Composite Higgs Scenario

Figure 3.1: A geometrical illustration of the EWSB through vacuum mis-
alignment in the case G/H = SO(3)/SO(2) [18].

.

VEV) is zero. On the other hand, taking the G breaking into account means
that the Goldstone fields now develop a potential and their VEV 〈θ〉 is
not arbitrary anymore. This causes the breaking of GEW contained in the
unbroken H giving rise to the EWSB [18]. Summarizing, in the theory there
are two scales:

• the scale f of SSB of G;

• the scale v of the EWSB that breaks GEW to U(1)em.

Now comes the point. If the so called misalignment angle 〈θ〉 is small,
then the composite Higgs boson can behave as an elementary one. This
condition is usually expressed in the study of composite Higgs models by
defining the parameter ξ as

ξ ≡ v2

f2
= sin2 〈θ〉 � 1. (3.1)

The limit ξ → 0, at fixed v, corresponds to send the scale f to infinity, i.e. to
decouple the composite sector from the low energy physics. The parameter
ξ regulates the deviations of the CHM predictions from the SM ones. In
fact, as we will see, the theory systematically reduces to the SM for ξ → 0
and the composite Higgs behaves effectively as an elementary particle. This
mechanism depicted is called vacuum misalignment and it has been described
for the first time by Kaplan and Georgi [5], [31].
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3.1 Partial Fermion Compositeness

We have already outlined in the previous chapters that, beyond the reasons
related to the Naturalness and triviality problems of the Higgs, another trou-
ble of the SM that has driven physicists to find an extension of the latter
is the Yukawa hierarchy: the Weinberg-Salam model does not explain the
patterns seen in masses and mixing of fermions. We remind that there is
nothing that forbids us to adjust ad hoc the Yukawa couplings in order to
obtain the measured fermion masses, as they are free parameters in the SM.
However, in the same spirit as the Higgs mass, one would like to obtain an un-
derstanding from some underlying physics. There have been many attempt
to address this problem during the last decades. In composite Higgs mod-
els the Yukawa hierarchy is explained by the partial fermion compositeness
hypothesis, firstly introduced by Kaplan [6]. Let us see how the mechanism
works.

At the scale f , where f in the notation above is the confinement scale
of the new strong force, the strong sector confine, develops the Higgs boson
and, on top of it, generates a set of resonances with typical mass f1 [18].
These (heavy) fermionic resonances mix with SM fermions, through bilinear
operators, generating a seesaw-like mechanism. This is why the mechanism
is called "partial fermion compositeness": the SM fermions are linear su-
perimpositions of elementary (the light fermions) and composite (the heavy
resonances) degrees of freedom. However, it is important to remind that in
all the CHMs there are no attempts to construct a microscopical descrip-
tion of the EW mechanism. These models try to understand which are the
low energy implications of some UV theory, regardless of what the theory
is. Therefore the bilinear couplings should be regarded as effective couplings
emerging at the infrared (IR) scale f after their evolution under the renor-
malization group down to the IR region. Moreover, as the bilinear operators
must be invariant under SU(3)c×SU(2)L×U(1)Y , the heavy fermions must
carry the same SU(2)L × U(1)Y quantum numbers of the SM fermions and
transform in the fundamental of SU(3)c. It is useful to give an example, in
order to see how the mechanism works. Denoting with Q and T the heavy
partners of the quark (here the top), doublet with hypercharge 1/6 and sin-
glet with hypercharge 2/3 respectively, the mass term of the SM quark-heavy
quark system reads

Lmass = −fQ̄uQu−fQ̄dQd−fT̄T−ΛQ (q̄LQ+ h.c.)−ΛT (t̄RT + h.c.) (3.2)

where the subscripts u and d stand for up and down components of the
heavy-quark doublet. We notice that the masses of the Q and T heavy
fermions are the same: this is because they are part of a larger multiplet of
a larger group which contains the unbroken SM group. In order to read the

1This is exactly what happens in QCD with baryons.
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fermion masses we write Lmass in matrix notation (we consider only the top
sector, the bottom being the same)

Lmass,t =
(
t̄L Q̄uL T̄L

) 0 ΛQ 0
0 f 0

ΛT 0 f

 tR
QuR
TR

+ h.c. (3.3)

The eigenvalues are {f, f, 0}: from this mechanism arise two heavy fermions
and one massless fermion that can be identified with the top quark. However,
the above discussion needs to be extended. The limitations are essentially
two: firstly, the SM fermions arise exactly massless, and we know that they
have a small, but non zero mass. This can be easily solved by changing
the bilinear couplings, as we will see in more detail in the composite Higgs
model discussed in the next chapter. Secondly, in most the group used in
CHMs there is no space to contain the SM quark representations 21/6, 12/3,
1−1/3, so we cannot couple all the heavy fermions with the SM fermions. In
particular, the problem arises because of the hypercharge. We show how the
problem is solved performing the calculation for a specific SSB SO(5)/SO(4)
because it is the case we are interested in. In the SO(5)/SO(4) model it is
possible to identify the hypercharge with the diagonal generator of SU(2)R
embedded in SO(4) ∼ SU(2)L × SU(2)R but it turns out that with this
choice not all the SM quark representation are contained in SO(5). An
extension of the global symmetry group of the composite sector is required
in order to implement the partial compositeness. The simplest possibility is
to add a new unbroken U(1)x, extending the breaking pattern to

SO(5)× U(1)x → SO(4)× U(1)x. (3.4)

In this way we can identify the hypercharge as

Y = Σ3
R + x. (3.5)

This is enough to have correct hypercharge assignments. In fact, since the
heavy fermion SO(5) fiveplet ψ(2/3), which contains the two SU(2)L doublets
Q and X and the singlet T , decomposes under SO(4) representations as

ψ(2/3) = (X,Q, T ) (3.6)

where X,Q, T possess Σ3
R = {1/2,−1/2, 0} charge respectively and the su-

perscript 2/3 indicates the x charge, then, under GEW ≡ SU(2)L × U(1)Y ,
the SO(5) fiveplet decomposes as

5 2
3
→ 4 2

3
⊕ 1 2

3
→ 2 7

6
⊕ 2 1

6
⊕ 1 2

3
. (3.7)

Here the subscript stays for the hypercharge, the first arrow indicates the
decomposition of the fundamental of SO(5) in SO(4) representations, the
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second indicates the decomposition of the fundamental of SO(4) in SU(2)L×
U(1)Y representations. We immediately recognize that the two last terms
have the correct quantum numbers in order to be coupled to qL and tR
respectively. In the next chapter we will see a specific realization of the
partial compositeness hypothesis in a more realistic CHM.

3.2 The Abelian Composite Higgs Model

In order to see how the composite Higgs model works, we will develop the
ideas of the previous sections in a simple SO(3)/SO(2) sigma model that
provides an abelian composite Higgs [18].

Let φ be a triplet of real scalar fields with the Lagrangian:

L =
1

2
∂µφ

T∂µφ− λ
(
φTφ− f2

)2
. (3.8)

The Lagrangian is invariant under the SO(3) transformation:

φ→ Oφ, O = eiα
ATA ∈ SO(3) (3.9)

where the TA = (T, T â) generators are taken to be

T =
1√
2

0 −i 0
i 0 0
0 0 0

 , T â =

 1√
2

0 0 −i
0 0 0
i 0 0

 , 1√
2

0 0 0
0 0 −i
0 i 0


(3.10)

where, in the notation of the previous chapter, the "hat" index runs over the
broken generators. In fact, the potential is minimized by φTφ = f2, so the
field φ acquires a VEV that in our convention is taken to be

F =

0
0
f

 . (3.11)

As explained in the CCWZ construction, the NGBs can be associated to the
fluctuations along the broken generators, so we can redefine the field φ, by
performing the ansatz

φ = e
i
√

2
f
πâT â

 0
0

f + σ(x)

 ≡ U [π]

 0
0

f + σ(x)

 (3.12)

where U [π] is the Goldstone matrix. In this simple case we can calculate
explicitly it. The result reads

U [π] =

δâb̂ − (1− cos πf

)
πâπb̂

Π2 sin π
f
πâ

π

− sin π
f
πâ

π cos πf

 (3.13)
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where π =
√
π2

1 + π2
2.

Actually, it turns out that the expression (3.13) holds for any SO(N)→
SO(N − 1) breaking, provided that we choose the broken generators have
non vanishing entries in the last line and column [18]. Definitely, with this
redefinition, φ reads

φ = (v + σ(x))

sin π
f
π1

π

sin π
f
π2

π

cos πf

 . (3.14)

Putting (3.2) into the Lagrangian we obtain

L =
1

2
∂µσ∂

µσ − λ
(
σ2 + 2fσ

)2
+

+
1

2

(
1 +

σ

f

)2 [f2

π2
sin2 π

f
∂µπ

â∂µπâ +
f2

4π4

(
π2

f2
− sin2 π

f

)
∂µπ

2∂µπ2

]
=

=
1

2
∂µσ∂

µσ − 4λf2σ2 − 4λf2σ3 − λσ4+

+
1

2

(
1 +

σ

f

)2 [f2

π2
sin2 π

f
∂µπ

â∂µπâ +
f2

4π4

(
π2

f2
− sin2 π

f

)
∂µπ

2∂µπ2

]
.

(3.15)

A few comments are in order:

• as we see, since φiφi = (σ+f)2, the Goldstone bosons have no potential,
all their dependence in the Lagrangian comes from the kinetic term,
which is non linear, as we mentioned before;

• the σ field acquires, as expected, a mass: m2 = 8λf2;

• since the symmetry group of the Lagrangian has three generators, three
symmetries are expected. However, after the redefinition of the field
φ by exploiting its radial and angular parts, and after that the σ field
takes the VEV f , the symmetries associated with the broken genera-
tors act in a non-linear way on the NGBs, as we saw in the CCWZ
construction; in general they can not be explicitly written in a finite
form. Conversely, the symmetry associated with the unbroken genera-
tor remains linear when acting on the πâ:

πâ =
[
eiασ2

]âb̂
πb̂ ⇐⇒ Φi =

[
ei
√

2αT
]ij

Φj (3.16)

where σ2 is the generator of rotations in two dimensions.

In order to make our toy model more similar to the Higgs model, we
define the complex field H = (π1 + iπ2)/

√
2. Integrating out the heavy field,
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the Lagrangian at the leading order reads

LH =
1

2

[
f2

|H|2
sin2

√
2|H|
f

∂µH
†∂µH+

+
f2

4|H|4

(
2|H|2

f2
− sin2

√
2|H|
f

)
∂µ|H|2∂µ|H|2

]
.

(3.17)

The last step to make the model more similar to the physical Higgs is to
gauge the unbroken U(1) symmetry, in order to implement the usual Higgs
mechanism. The gauging of the unbroken U(1) is made by replacing the
usual derivative with the covariant one:

∂µφ→ Dµφ =
(
∂µ −

√
2ieAµT

)
φ. (3.18)

The gauging, since it selects one generator among three, breaks SO(3) ex-
plicitly to SO(2). Using (3.16), the covariant derivative acting on the NGBs
reads

Dµπ
â =

(
∂µ −

√
2ieAµσ2

)âb̂
πb̂. (3.19)

If we switch to the complex notation by introducing the field H = (π1 −
iπ2)/

√
2, it is easy to show that the covariant derivative reads

DµH = ∂µH − ieAµH. (3.20)

By substituting ∂µ with Dµ in the Lagrangian (3.17) we obtain

LH, gauged =
1

2

[
f2

|H|2
sin2

√
2|H|
f

DµH
†DµH+

+
f2

4|H|4

(
2|H|2

f2
− sin2

√
2|H|
f

)
∂µ|H|2∂µ|H|2

] (3.21)

where we have used the fact that

Dµ|H|2 = Dµ

(
H†H

)
=
(
∂µH

† + ieAµH
†
)
H +H† (∂µH − ieAµH) =

=
(
∂µH

†
)
H +H† (∂µH) = ∂µ|H|2.

(3.22)

Breaking explicitly SO(3) to SO(2) implies that the symmetries associated
with the broken generators are not symmetries anymore. The main conse-
quence is that terms that in principle were not permitted as they violated
the symmetries, now can appear. In our case, it can be shown that the
symmetry associated with the broken generators is, at infinitesimal level

πâ → πâ + π cot
π

f
αâ +

(
f

π
− cot

π

f

)
αb̂πb̂

πâ

π
. (3.23)
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By expanding around 0 cot πf ∼
f
π we see that the vacuum configuration 0 is

transformed into a constant field:

πâ → πâ + fαâ +

(
f

π
− f

π

)
αb̂πb̂

πâ

π
= πâ + fαâ ⇒ 0â → 0â + fαâ.

(3.24)
This is the famous shift symmetry that characterizes the Goldstone bosons.
As a consequence, a potential term is forbidden - as it would not allow a shift
symmetry. But if the symmetry is explicitly broken the quantum Lagrangian
is no longer forced to preserve the symmetry - as it is no longer a symmetry
- and a potential can be generated. It turns out that in our case at one-loop
level a potential is generated, and this implies that the Higgs picks a VEV:

|H| = V√
2
. (3.25)

After picking out the VEV, the Higgs mechanism can start its work:
one component becomes massive, the other is the would-be Goldstone boson
eaten by the Aµ field. We can read from the Lagrangian (3.17) the term that
gives mass to the Aµ field

Lmass,A =
1

2

e2f2

|H|2
sin2

√
2|H|
f

AµA
µ|H|2; (3.26)

evaluating H on its VEV, we obtain a mass term for Aµ:

mA = ef sin
V

f
≡ ev (3.27)

where we have defined the scale v of the U(1) symmetry breaking. As we
see, in this case the scale v is not "elementary": it derives from an another
scale, and this is expressed by the formula

v = f sin
V

f
(3.28)

from which we find

ξ ≡ v2

f2
= sin2 V

f
. (3.29)



Chapter 4

The Minimal Linear σ Model
for the Goldstone Higgs

In the last chapter we showed the consequences of the composite Higgs sce-
nario in a model that did not contain the EW gauge group. Now we want
to extend the procedure to a more realistic model, where the unbroken sub-
group H contains the full electroweak group GEW. The minimal possibil-
ity is to consider a sigma model with a spontaneous symmetry breaking
SO(5)/SO(4). It is the minimal because the broken generators are 4, and
the emerging NGBs can be associated to the four real components of the
usual Higgs doublet. To be more precise, this is the minimal model that
respects the so-called custodial symmetry, namely the SO(4) symmetry of
the scalar sector, broken only by the gauging of the GEW group. The im-
portance of the custodial symmetry relies on the fact that it ensures the
ρ = 1 relation at tree-level. In fact, an even more minimal model would be
the SU(3) → SU(2) × U(1) breaking, but, as it does not respect the cus-
todial symmetry, the ρ = 1 relation is not protected. The mechanism that
generates the light Higgs works essentially as in the SO(3)/SO(2) model.

In this chapter we will study a linear sigma model, following the paper
[16]. The idea underlying the model is to construct a renormalizable model
which in its scalar part is a linear sigma model in which it is included a
new scalar particle σ. The main difference with traditional composite Higgs
models is that, as the theory is renormalizable, this model keeps open two
possibilities: it can be considered either as an ultimate model made out of
elementary fields, or as a renormalizable version of a deeper dynamics, much
as the linear σ model is to QCD. The model contains also heavy fermions
coupled to SM fermions, in order to give a natural light mass to the latter.
As we said, this is provided by the partial compositeness hypothesis. The
heavy fermions will be coupled to the fiveplet φ, through SO(5) preserving
interactions, and to SM fermions, through SO(5) breaking terms.

The Lagrangian can be written as the sum of three terms describing

29
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respectively the pure gauge, scalar and fermionic sectors

L = Lg + Ls + Lf . (4.1)

Lg does not need any discussion, as it contains the kinetic terms of the SM
gauge bosons and it has the same form as the SM gauge boson Lagrangian.
The aim of the remaining sections is to study the fermionic and scalar sectors.

4.1 The Scalar Sector

The analysis will be performed following the paper [16]. In this section we
will concentrate on the scalar sector. The scalar Lagrangian describing the
scalar-gauge and the scalar-scalar interaction is

Ls =
1

2
(Dµφ)T (Dµφ)− V (φ) (4.2)

where the covariant derivative acting on φ reads

Dµφ =
(
∂µ + igΣi

LW
i
µ + ig′Σ3

RW
3
µ

)
(4.3)

and Σi
L,Σ

3
R are the generators of SU(2)L and SU(2)R subgroups of SO(4)

group embedded in SO(5) [18]. We already know that three among five
components of φ will be associated to the longitudinal components of the
SM gauge bosons - denoted below with πi, i = 1, 2, 3 - while the other two
will correspond to the Higgs h, the other NGB, and to the heavy resonance
σ. For simplicity, we will present the results in the unitary gauge, in which
πi = 0:

φ = (π1, π2, π3, h, σ)→ (0, 0, 0, h, σ). (4.4)

The potential V (φ) is made of two parts: a part of spontaneous symmetry
breaking SO(5)/SO(4) and a part of explicit breaking of SO(5) but SO(4)
preserving. In the unitary gauge1 the potential reads

V (h, σ) = VSSB + VEB,

VSSB = λ(σ2 + h2 − f2)2,

VEB = a1f
2σ2 + a2fσh

2 − βf2h2 − αf3σ + a3σ
2h2 + a4fσ

3 + a5h
4 + a6σ

4.

(4.5)

The first part depends, as usual, from the two parameters controlling the
SSB. The second part contains a priori eight terms so, at a first sight, the
total number of parameters needed to describe the theory seems to be ten.

1To go in a general gauge it suffices to replace h2 with the SO(4) invariant combination
h2 + πiπi.
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Actually, two of them can be reabsorbed via a redefinition of the remaining
eight2. It can be easily shown that, performing the substitutions

λ→ λ+ λ′ f2 → f2 + f ′2 (4.6)

with
λ′ = −a6 f ′2 =

a1 + 2a6

2(λ− a6)
f2, (4.7)

the σ2, σ4 terms go away from the Lagrangian. For completeness we show
below how the other parameters change under these transformations

α→ α

(
a1 + 2a6

2(λ− a6)

) 3
2

≡ α′,

β → β + β
a1 + 2a6

2(λ− a6)
+ 2λ

a1 + 2a6

2(λ− a6)
− 2a6 − 2a6

a1 + 2a6

2(λ− a6)
≡ β′,

a2 → a2

√
1 +

a1 + 2a6

2(λ− a6)
≡ a′2,

a3 → a3 − 2a6 ≡ a′3,

a4 → a4

√
1 +

a1 + 2a6

2(λ− a6)
≡ a′2,

a5 → a5 − a6 ≡ a′5.

(4.8)

Under the redefinitions (4.6), (4.7) the potential changes as

V (h, σ) = λ(σ2+h2−f2)2−α′f3σ−β′f2h2+a′2fσh
2+a′3σ

2h2+a′4fσ
3+a′5h

4.
(4.9)

From now on, following a procedure already adopted in [32], we will continue
the analysis keeping only the α′ and β′ terms, as these are the only strictly
necessary soft breaking terms in order to absorb the divergences generated
by one-loop Coleman-Weinberg potential, as we will see later. Renaming α′

and β′ with α and β respectively, the potential finally reads

V (h, σ) = λ(σ2 + h2 − f2)2 − αf3σ − βf2h2. (4.10)

For an appropriate region of parameters both the h and σ fields acquire a
non-vanishing VEV:
∂V

∂h
= 4λ(v2

σ + v2 − f2)v − 2βf2v = 0

∂V

∂σ
= 4λ(v2

σ + v2 − f2)vσ − αf3 = 0

=⇒


vσ = f

α

2β

v2 = f2

(
1− α2

4β2
+

β

2λ

)
.

(4.11)
2The minus sign in −βf2h2 is to have β > 0, inequality that will be clear later, whereas

the minus sign in front of αf3σ serves to have a positive vσ.



32 The Minimal Linear σ Model for the Goldstone Higgs

The SO(5) VEV is therefore corrected by the β term in the potential:

v2 + v2
σ = f2

(
1 +

β

2λ

)
. (4.12)

From (4.11), (4.12) it follows that both f2 > 0 and f2 < 0 are in principle
allowed, but if we want to interpret the Higgs h as a NGB in the limit
α, β → 0 it is needed that f2 > 0. According to (4.11), the positivity of v2

and the |v| < |vσ| constraint lead respectively to

α2 < 4β2

(
1 +

β

2λ

)
,

α2 > 2β2

(
1 +

β

2λ

)
.

(4.13)

We notice that, for β � λ, in order to get v2 � f2, (4.11) requires a fine-
tuning such that α/2β is very close to unity. Now we want to expand the
σ and h fields around their minima in order to find mass eigenstates and
eigenvalues. Performing the substitutions h ≡ ĥ + v, σ ≡ σ̂ + vσ the scalar
potential reads

V = Vmass + Vint (4.14)

with

Vint = λĥ4 +λσ̂4 + 4vλĥ3 + 4λvσσ̂
3 + +4vσλσ̂ĥ

2 + 2λσ̂2h2 + 4vλĥσ̂2 (4.15)

and

Vmass = 4λv2ĥ2 + (4λv2
σ + βf2)σ̂2 + 8λvvσĥσ̂ =

=
(
ĥ σ̂

)( 4λv2 4λvvσ
4λvvσ 4λv2

σ + βf2

)(
ĥ
σ̂

)
.

(4.16)

In order to diagonalize the mass matrix we recall that, given a symmetric
matrix

S =

(
a b
b c

)
(4.17)

the angle of the corresponding rotation matrix R that diagonalizes S

R =

(
cos γ − sin γ
sin γ cos γ

)
(4.18)

is such that
tan 2γ =

2b

c− a
. (4.19)

In our case we obtain, using (4.12),

tan 2γ =
4vvσ

3v2
σ − v2 − f2

. (4.20)
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The (physical) mass eigenstates are therefore

hphys = ĥ cos γ − σ̂ sin γ

σphys = σ̂ cos γ + ĥ sin γ.
(4.21)

From now on, for simplicity, the notation hphys, σphys will be traded by h and
σ, respectively, unless otherwise specified. The mass eigenvalues are given
by

m2
heavy, light = 4λf2

[(
1 +

3

4

β

λ

)
±
(

1 +
β

2λ

(
1 +

α2

2β2
+

β

8λ

)) 1
2
]
. (4.22)

The positivity of mass square eigenvalues implies some constraints on the
parameters. For f2 > 0, m2

heavy is positive if

1 +
3

4

β

λ
> 0 =⇒ 3β + 4λ > 0; (4.23)

m2
light is positive if

1 +
3

4

β

λ
>

√
1 +

β

2λ

(
1 +

α2

2β2
+

β

8λ

)
=⇒ 2β2 + 4βλ− λα

2

β
> 0

=⇒ 1

4βλ

(
4β2 + 2

β3

λ
− α2

)
> 0 =⇒ β > 0

(4.24)

where in the last implication we have used (4.13). We can now understand
the overall minus sign of the term −βf2σ2 in (4.10): if it was overall positive
(as for instance for f2 < 0 and β > 0) we would have had v = 0, i.e. no
spontaneous symmetry breaking. It is instructive to get the masses of the
heavy and light eigenstates in the limit when the SO(5) symmetry breaking
is small, i.e. β/4λ� 1. Defining x ≡ β/4λ and expanding for x� 1:

m2
heavy, light =4λf2

[
1 + 3x±

(
1 + 2x

(
1 +

α2

2β2
+
x

2

)) 1
2

]
'

' 4λf2

[
1 + 3x±

(
1 + x

(
1 +

α2

2β2

))]
'

' 4λf2

[
1 + 3x±

(
1 + x

(
3− 2

v2

f2

))] (4.25)

where we have used
α2

4β2
= 1− v2

f2
+ 2x ' 1− v2

f2
. (4.26)

Therefore in this limit the mass eigenstates are
m2

heavy = 8λf2 + 2β(3f2 − v2) +O

(
β

4λ

)
m2

light = 2βv2 +O

(
β

4λ

)
.

(4.27)
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4.2 Scalar-Gauge Bosons Couplings and Tree-Level
Decays

In the unitary gauge, the kinetic scalar Lagrangian written in terms of the
unrotated fields ĥ, σ̂ reads

Ls,kin =
1

2
∂µσ̂∂

µσ̂+
1

2
∂µĥ∂

µĥ+
g2

4
(ĥ+v)2W+

µ W
µ,−+

g2 + g′2

8
(ĥ+v)2ZµZ

µ

(4.28)
that fixes the VEV v to be the electroweak scale defined from the W mass:

v = 246GeV. (4.29)

The kinetic term (4.28) and the scalar potential (4.14) provide the scalar
Lagrangian

Ls =
1

2
∂µσ∂

µσ +
1

2
∂µh∂

µh− 1

2
m2
σσ

2 − 1

2
m2
hh

2−

− λ(h2 + σ2)(h2 + σ2 + 4(vh+ vσσ) cos γ + 4(vσ − vσh) sin γ)+

+
g2

4
(h cos γ + σ sin γ + v)2W+

µ W
µ−+

+
g2 + g′2

8
(h cos γ + σ sin γ + v)2ZµZ

µ

(4.30)

where h and σ are written in the mass basis. Rearranging the terms in
parenthesis and introducing the gauge boson masses m2

W = g2v2/4, m2
Z =

(g2 + g′2)v2/4 the Lagrangian reads

Ls =
1

2
∂µσ∂

µσ +
1

2
∂µh∂

µh− 1

2
m2
σσ

2 − 1

2
m2
hh

2 − λ(h2 + σ2)4

− 4λ(v cos γ − vσ sin γ)(h3 + hσ2)− 4λ(v sin γ + vσ cos γ)(σ3 + h2σ)+

+

(
1 +

h

v
cos γ +

σ

v
sin γ

)2(
m2
WW

+
µ W

µ− +
1

2
m2
ZZµZ

µ

)
.

(4.31)

Now, in order to calculate the scalar tree-level decays, it is useful rewrite the
Lagrangian in terms of observables quantities. The Lagrangian possesses four
independent parameters that can be expressed in terms of four observables
which we choose to be

GF ≡
1√
2v2

, mh, mσ, sin γ. (4.32)

The system of equations can be solved analytically; firstly, v and vσ in terms
of the four physical parameters (4.32) read

v2 =
1√

2GF
,

vσ =
v sin(2γ)(m2

σ −m2
h)

2(m2
σ sin2 γ +m2

h cos2 γ)

(4.33)
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and the four parameters of the scalar potential are found to be

λ =
sin2 γm2

σ

8v2

(
1 +

m2
h

m2
σ

cot2 γ

)
,

β

4λ
=

m2
hm

2
σ

m4
σ sin2 γ +m4

h cos2 γ − 2m2
hm

2
σ

,

α2

4β2
=

(m2
σ −m2

h)2 sin2(2γ)

4
(
m4
σ sin2 γ +m4

h cos2 γ − 2m2
hm

2
σ

) ,
f2 =

v2(m4
σ sin2 γ +m4

h cos2 γ − 2m2
hm

2
σ)

(m2
σ sin2 γ +m2

h cos2 γ)2
.

(4.34)

From the equation for f we can extract the parameter ξ that expresses the
vacuum misalignment

ξ ≡ v2

f2
=

(m2
σ sin2 γ +m2

h cos2 γ)2

(m4
σ sin2 γ +m4

h cos2 γ − 2m2
hm

2
σ)
. (4.35)

In the limit when m2
h � m2

σ (which derives from β/4λ � 1, v2/f2 � 1) it
reads

ξ =
(m2

σ sin2 γ +m2
h cos2 γ)2

(m4
σ sin2 γ +m4

h cos2 γ − 2m2
hm

2
σ)

'
(

sin2 γ + 2 cos2 γ
m2
h

m2
σ

)(
1 + 2

m2
h

m2
σ sin2 γ

)
'
[
sin2 γ + 2

m2
h

m2
σ

(2− sin2 γ)

] (4.36)

that inverted gives

sin2 γ ' v2

f2
− 4

m2
h

m2
σ

. (4.37)

We see that in the limit mh/mσ � 1 the mixing angle γ coincides and the
parameter ξ

sin γ =
v

f
≡
√
ξ. (4.38)

We now turn to the tree-level decay rate of h and σ into SM bosons. The
relevant couplings are

gh→W+W− =

(
2 cos γ

v

)
m2
W ,

gh→ZZ =
(cos γ

v

)
m2
Z ,

gσ→W+W− =

(
2 sin γ

v

)
m2
W ,

gσ→ZZ =

(
sin γ

v

)
m2
Z ,

gσ→hh = 4λ (v sin γ + vσ cos γ) .

(4.39)
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We see that the couplings of h to gauge bosons differ from the SM by cos γ,
so the decay rate, that is proportional to the square of the couplings, is the
SM decay rate times a cos2 γ:

Γ(h→W+W−) = ΓSM(h→W+W−) cos2 γ,

Γ(h→ ZZ) = ΓSM(h→ ZZ) cos2 γ
(4.40)

where

ΓSM(h→W+W−) =
1

4π

m4
W

mhv2

√
1− 4

m2
W

m2
h

(
3 +

1

4

m4
h

m4
W

−
m2
h

m2
W

)
,

ΓSM(h→ ZZ) =
1

8π

m4
Z

mhv2

√
1− 4

m2
Z

m2
h

(
3 +

1

4

m4
h

m4
Z

−
m2
h

m2
Z

)
.

(4.41)

The σ decay rate into SM bosons is the same as (4.40) with the re-
placement mh ↔ mσ because h and σ are both scalars and have the same
couplings so phase space and amplitudes are the same:

Γ(σ →W+W−) =
1

4π

m4
W

mσv2
cos2 γ

√
1− 4

m2
W

m2
σ

(
3 +

1

4

m4
σ

m4
W

− m2
σ

m2
W

)
,

Γ(σ → ZZ) =
1

8π

m4
Z

mσv2
cos2 γ

√
1− 4

m2
Z

m2
σ

(
3 +

1

4

m4
σ

m4
Z

− m2
σ

m2
Z

)
.

(4.42)

In the limit
m2
W,Z

m2
σ
� 1 the mass dependent part reads

m4
W,Z

mσ

√
1− 4

m2
W,Z

m2
σ

(
3 +

1

4

m4
σ

m4
W,Z

− m2
σ

m2
W,Z

)
=

=
m4
W,Z

mσ

(
1− 2

m2
W,Z

m2
σ

)(
3 +

1

4

m4
σ

m4
W,Z

− m2
σ

m2
W,Z

)
' 1

4
m3
σ +O

(
m2
W,Z

m2
σ

)
(4.43)

therefore

Γ(σ →W+W−) =

√
2GF
16π

m3
σ sin2 γ

[
1 +O

(
m2
W

m2
σ

)]
,

Γ(σ → ZZ) =

√
2GF
32π

m3
σ sin2 γ

[
1 +O

(
m2
Z

m2
σ

)] (4.44)

where we have substituted 1/v2 =
√

2GF .
For the decay σ → hh the calculation is similar. The phase space is the

same as the decay into gauge bosons, the only difference is the amplitude

M = 4λ(v sin γ + vσ cos γ). (4.45)
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In the end, Γσ→hh reads

Γ =
|M|2

8π

|~p|
m2
σ

=
2λ2mσ

π

√
1− 4

m2
h

m2
σ

(
v

mσ
sin γ +

vσ
mσ

cos γ

)2

. (4.46)

Since, when m2
h/m

2
σ � 1

λ =
sin2 γm2

σ

8v2

[
1 +O

(
m2
h

m2
σ

)]
,

vσ = v cot γ

[
1 +O

(
m2
h

m2
σ

)]
,

(v sin γ + vσ cos γ)2 =
v2

sin2 γ

[
1 +O

(
m2
h

m2
σ

)]
,√

1− 4
m2
h

m2
σ

= 1 +O

(
m2
h

m2
σ

)
,

(4.47)

Γσ→hh, in this limit, reads

Γσ→hh =

√
2GF
32π

m3
σ sin2 γ

[
1 +O

(
m2
h

m2
σ

)]
. (4.48)

The experimental values of the couplings between the physical Higgs and
the SM gauge bosons, which are modified by a factor of cos2 γ with respect
to the SM ones, restrict the parameter space of the theory. In particular,
they translate on a bound on γ:

sin2 γ < 0.18 for mh < mσ,

sin2 γ > 0.82 for mh > mσ.
(4.49)

Moreover, the interpretation of the Higgs as pNGB also narrows the allowed
region in the parameter space. The Fig. 4.1 shows the region of allowed
values in the (mσ, sin

2 γ) plane. In fact, once we fix mh and v, the pair
mσ, sin

2 γ define completely the scalar sector so each point of the graphic
corresponds to a distinct physical situation. In particular:

• the red region corresponds to f2 < 0, i.e. no SO(5) breaking;

• the orange region corresponds to |v| > |vσ|, that is when the roles of h
and σ have switched and σ becomes the pNGB;

• the white regions are excluded by Higgs data on the couplings with
SM gauge bosons;

• the physical regions, that is when the Higgs arises as a pNGB, are
depicted in light blue (where mσ > mh) and blue (where mσ < mh).
Nevertheless, we will restrict the discussion below only on the light
blue region because in the blue region the interpretation of the Higgs
as a pNGB requires a fine-tuning of the parameters.
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Figure 4.1: The figure shows the parameter space as a function of
(mσ, sin

2 γ). These are the only parameters needed to completely specify
the scalar potential, as we have fixed v and mh to their observed values.
The red region corresponds to f2 < 0, the orange region corresponds to
when σ becomes the pNGB. The white regions are excluded by Higgs data
on the Higgs decay into gauge bosons (that allow the region below the hori-
zontal line at sin2 γ = 0.18 and sin2 γ = 0.82). Thus there remain available
the light blue region and the blue region. Nevertheless, this last region, in
which mσ < mh ∼ 0.125TeV, requires a fine-tuning of the parameters in
order to allow an interpretation of the Higgs as pNGB, so we will focus our
discussion on the light blue region. In the figure are also shown some curves
for fixed values of β/λ and α/β [16]
.
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4.3 The Fermionic Sector

The fermionic sector, as we already pointed out, is important for two different
reasons:

• it transmits, together with the gauge bosons, the explicit breaking of
SO(5) to the composite sector, inducing a potential at one-loop level for
the h field with a non-trivial minimum, breaking the SM electroweak
symmetry at a scale v 6= f and providing a mass for h.

• it provides a mass for the SM quarks, through the mechanism of the
partial compositeness.

However, the fermionic Lagrangian is strictly model-dependent, as there
are several ways to introduce exotic fermions. The set-up considered here
follows the paper [16]. Summarising, the particle content of the model is the
following:

• four different types of heavy (exotic) fermions3 either in the funda-
mental representation of SO(5), which we denote as ψ, or singlets
denoted by χ; there are two for each one, corresponding to the two
U(1)x charges needed to have correct hypercharge assignments;

• SM fermions; for simplicity we will restrict our discussion to the third
generation of quarks, however the generalization to the real case of
three families is trivial;

• the scalar field φ, which contains the Higgs field h, the three longi-
tudinal components of SM gauge bosons and the heavy field σ. By
construction φ couples only to heavy exotic fermions in an SO(5) in-
variant way. The sources of SO(5) breaking lie instead in the elec-
troweak gauge interactions and in the mixing terms between heavy
exotic fermions and SM fermions.

The first step to construct the fermionic Lagrangian is to enlarge the
SO(5) symmetry group with a further (exact) U(1)x symmetry. In fact,
as we outlined in the previous chapter, this is essential if want to rely on
the partial fermion compositeness to give a mass to SM fermions. The SSB
pattern therefore reduces to

SO(5)× U(1)x → SO(4)× U(1)x ∼ SU(2)L × SU(2)R × U(1)x. (4.50)

The hypercharge is then defined via

Y = Σ3
R + x. (4.51)

3These fermions are the heavy resonances in the case of strongly coupled regime.
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Two different U(1)x charges are compatible with SM hypercharge assign-
ments: 2/3 and −1/3. For this we will consider two different copies of heavy
fermions for each representation, differentiated by U(1)x, as they are neces-
sary to induce mass terms for both the top and bottom quarks. Summarising,
the four heavy fermions considered are

ψ(2/3) ∼ (X,Q, T (5)), ψ(−1/3) ∼ (Q
′
, X

′
, B(5)),

χ(2/3) ∼ T (1), χ(−1/3) ∼ B(1)
(4.52)

where the superscripts (2/3), (−1/3) indicate the U(1)x charges and we have
decomposed the SO(5) representations in terms of SU(2) representations. In
particular, X(′), Q(′) denote the two different SU(2)L doublets contained in
the fundamental of SO(5), T (5), B(5) are SU(2) singlets while T (1), B(1)

are SO(5) singlets (and, consequently, SU(2) singlets). We remind that,
in our decomposition of SO(5) in SU(2) representations, the first doublet
has Σ3

R = 1/2 while the second one has Σ3
R = −1/2. In this way the heavy

fermions have the right quantum numbers to be coupled to the SM fermions4.
For example X, Q are SU(2)L doublets and possess, respectively

Y (X) = Σ3
R + x =

1

2
+

2

3
=

7

6
,

qem(Xu) = Σ3
L + Y (X) = Σ3

L + Σ3
R + x =

1

2
+

1

2
+

2

3
=

5

3
,

qem(Xd) = Σ3
L + Y (X) = Σ3

L + +Σ3
R + x = −1

2
+

1

2
+

2

3
=

2

3
,

(4.53)

Y (Q) = Σ3
R + x = −1

2
+

2

3
=

1

6
,

qem(Qu) = Σ3
L + Y (Q) = Σ3

L + Σ3
R + x =

1

2
− 1

2
+

2

3
=

2

3
,

qem(Qd) = Σ3
L + Y (Q) = Σ3

L + +Σ3
R + x = −1

2
− 1

2
+

2

3
= −1

3
.

(4.54)

T(1,5) are SO(4) (therefore SU(2)L too) singlets so:

Y (T(1,5)) = Σ3
R + x =

2

3
,

qem(T(1,5)) = Σ3
L + Y (T(1,5)) =

2

3
.

(4.55)

For ψ(−1/3) and χ(−1/3) the calculations are the same except for the x charge:
x(ψ(−1/3)) = x(χ(−1/3)) = −1/3. The tables 4.3 show the quantum numbers
of the particles in the model.

4The SM fermions are taken to be U(1)x singlets so that some of them have the same
quantum numbers than the SM ones.
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Charge/Field X Q T1,5

Σ3
R 1/2 -1/2 0

SU(2)L × U(1)Y (2, 7/6) (2, 1/6) (1, 2/3)
x 2/3 2/3 2/3

qEM
Xu = 5/3 Qu = 2/3 2/3
Xd = 2/3 Qd = −1/3

Charge/Field Q′ X ′ B1,5

Σ3
R 1/2 - 1/2 0

SU(2)L × U(1)Y (2, 1/6) (2, -5/6) (1, -1/3)
x -1/3 -1/3 -1/3

qEM
Q′u = 2/3 X ′u = −1/3 -1/3
Q′d = −1/3 X ′d = −4/3

Charge/Field H H̃

Σ3
R 1/2 -1/2

SU(2)L × U(1)Y (2, 1/2) (2, -1/2)
x 0 0

qEM
Hu = 1 H̃u = 0

Hd = 0 H̃d = 1

Charge/Field qL tR bR

Σ3
R 1/6 2/3 -1/3

SU(2)L × U(1)Y (2, 1/6) (1, 2/3) (1, -1/3)
x 0 0 0

qEM
uL = 2/3 2/3 −1/3
dL = −1/3

Table 4.1: The tables show the quantum numbers of the particles in the
model; qL is the usual SM quark doublel and tR, bR are the singlets of
SM top and bottom quarks, respectively. We notice that Q(′),B(1,5),T (1,5)

have the correct hypercharge and electric charge assignments in order to be
coupled to the SM fermions.
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With this choice of charges, the most general fermionic Lagrangian in-
variant under SU(2)L × U(1)Y is given by

LF = q̄Li /DqL + t̄Ri /DtR + b̄Ri /DbR

+ ψ̄(2/3)
(
i /D −M5

)
ψ(2/3) + ψ̄(−1/3)

(
i /D −M ′5

)
ψ(−1/3)

+ χ̄(2/3)
(
i /D −M1

)
χ(2/3) + χ̄(−1/3)

(
i /D −M ′1

)
χ(−1/3)

−
[
y1ψ̄

(2/3)
L φχ

(2/3)
R + y2ψ̄

(2/3)
R φχ

(2/3)
L +

+ y′1ψ̄
(−1/3)
L φχ

(−1/3)
R + y′2ψ̄

(−1/3)
R φχ

(−1/3)
L +

+ Λ1

(
q̄L∆

(2/3)
2×5

)
ψ

(2/3)
R + Λ2ψ̄

2/3
L

(
∆

(2/3)
5×1 tR

)
+ Λ3χ̄

(2/3)
L tR+

+ Λ′1

(
q̄L∆

(−1/3)
2×5

)
ψ

(−1/3)
R + Λ′2ψ̄

(−1/3)
L

(
∆

(−1/3)
5×1 bR

)
+

+Λ′3χ̄
(−1/3)
L bR + h.c.

]
.

(4.56)

The couplings Λ
(′)
(1,2) can be regarded, in the case of strongly interacting

regime, as effective couplings arising at the confinement scale after their
evolution under the renormalization group. On the other hand, the ∆’s
denote matrices connecting SO(5) and SU(2)L×U(1)Y representations; for
instance, the Λ1 coupling explicitly reads

(
t̄L b̄L

)(0 0 1 0 0
0 0 0 1 0

)
Xu
R

Xd
R

QuR
QdR
T 5
R

 = q̄LQR. (4.57)

It is useful rewrite the Lagrangian (4.56) in SU(2)L components. To this
purpose we remind that the complex Higgs doublet is related to the real
fourplet representation by [18]

φ =

HH̃
σ

 . (4.58)
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Then, the Lagrangian reads

LF =q̄Li /DqL + t̄Ri /DtR + b̄Ri /DbR + Q̄
(
i /D −M5

)
Q+ X̄

(
i /D −M5

)
X+

+ T̄ (5)
(
i /D −M5

)
T (5) + T̄ (1)

(
i /D −M1

)
T (1) + Q̄′

(
i /D −M ′5

)
Q′+

+ X̄ ′
(
i /D −M ′5

)
X ′ + B̄(5)

(
i /D −M ′5

)
B(5) + B̄(1)

(
i /D −M ′1

)
B(1)−

−
[
y1

(
X̄LHT

(1)
R + Q̄LH

cT
(1)
R + T̄

(5)
L σT

(1)
R

)
+

+ y2

(
T̄

(1)
L H†XR + T̄

(1)
L Hc,†QR + T̄

(1)
L σT

(5)
R

)
+ y′1

(
X̄ ′LH

cB
(1)
R + Q̄′LHB

(1)
R + B̄

(5)
L σB

(1)
R

)
+

+ y′2

(
B̄

(1)
L Hc,†X ′R + B̄

(1)
L H†Q′R + B̄

(1)
L σB

(5)
R

)
+ Λ1q̄LQR + Λ2T̄

(5)
L tR + Λ3T̄

(1)
L tR+

+ Λ′1q̄LQ
′
R + Λ′2B̄

(5)
L bR + Λ′3B̄

(1)
L bR + h.c.

]
.

(4.59)

We can also rewrite the mass part of (4.59) in a more compact form
defining a fermionic vector whose components are ordered by their electrical
charge:

Ψ = (Xu, T ,B, Xd′) (4.60)

where T and B are the six components, respectively top-like and bottom-like,
fermions:

T =
(
t, Qu, Xd, T (5), T (1), Qu

′
)

B =
(
b,Qd

′
, Xu′ , B(5), B(1), Qd

)
.

(4.61)

The fermionic mass terms can then be written as

Lmass = −Ψ̄LM(h, σ)ΨR (4.62)

whereM(h, σ) is the block diagonal 14× 14 matrix

M(h, σ) = diag
(
M5,MT (h, σ),MB(h, σ)M

′
5

)
, (4.63)

MT =



0 Λ1 0 0 0 Λ
′
1

0 M5 0 0 y1
h√
2

0

0 0 M5 0 y1
h√
2

0

Λ2 0 0 M5 y1σ 0

Λ3 y2
h√
2

y2
h√
2

y2σ M1 0

0 0 0 0 0 M
′
5


(4.64)
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andMB(h, σ) =MT (h, σ) with the substitutions (yiΛi,Mi)↔ (y
′
iΛ
′
i,M

′
i ).

We notice that the mass matrix (4.63) is block diagonal. This is consis-
tent with the fact that the Lagrangian (4.62) must preserve, by construction,
the U(1)em symmetry. The mixing of the fermions with the same charge does
not violate charge conservation so it can occur and indeed it is what happens
because of (4.64). Also, we notice that, even in the limit of vanishing Yukawa
couplings, the exotic fermions get mixed via the SO(5) breaking couplings.

The matrices can be diagonalized analytically in some interesting limit, in
general they have to be diagonalized numerically. However, we can estimate
the top and bottom masses by integrating out the heavy fields and retaining
only the highest order contribution. In the calculation we will neglect all the
covariant derivatives as they are responsible of next-to-leading-order correc-
tions. Since the matrix is a block diagonal matrix, the equations of motion
will be decoupled for each block. We will perform the calculation for the top
mass, the calculation of the bottom mass being the same. As we have to
integrate all the heavy fields, it is convenient define an "heavy vector" T

T ≡


Qu

Xd

T (5)

T (1)

Q′u

 (4.65)

and write the equation of motion for T . The Lagrangian for t and T is

Lmass,tT = −
(
t̄L T̄L

)(0 αT

β γ(h, σ)

)(
tR
TR

)
+ h.c. (4.66)

with

α =


Λ1

0
0
0

Λ′1

 , β =


0
0

Λ2

Λ3

0

 , γ =


M5 0 0 y1

h√
2

0

0 M5 0 y1
h√
2

0

0 0 M5 y1σ 0

y2
h√
2

y2
h√
2

y2σ M1 0

0 0 0 0 M ′5

 .

(4.67)
The equations of motion for T are

γTR + βtR = 0

γ†TL + α∗tL = 0

T̄Rγ
† + t̄Rβ

† = 0

T̄Lγ + t̄Lα
T = 0.

(4.68)
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Substituting (4.68) in (4.66) we find

−Lmass,tT = t̄Lα
TTR + T̄LβtR + T̄LγTR + h.c. =

= −t̄LαTγ−1βtR + t̄Lα
Tγ−1βtR − t̄LαTγ−1βtR + h.c. =

= t̄L
(
−αTγ−1β

)
tR + h.c.

(4.69)

from which we can read the leading order (LO) contribution to the top mass

mt = αTγ−1β =
y1Λ1Λ3 − y1y2Λ1Λ2σ/M5

M1M5 − y1y2(h2 + σ2)

h√
2
. (4.70)

As expected, the bottom mass can be inferred from (4.70) by performing the
substitutions

{y1, y2,Λ1,Λ2,Λ3,M1,M5} → {y′1, y′2,Λ′1,Λ′2,Λ′3,M ′1,M ′5}. (4.71)

4.4 The Coleman-Weinberg One-Loop Potential

As we have introduced an explicit breaking of the SO(5) symmetry by gaug-
ing the EW group and by coupling the SO(5) scalar fiveplet with the heavy
fermions, the SO(5) breaking terms are not forbidden and this provides an
Higgs mass term at one-loop level. In order to show it, we recall that the
divergent part of the Coleman-Weinberg (CW) one-loop potential is given
by [33]

V CW = − 1

64π2

(
Tr
[
MM†

]
Λ2 − Tr

[(
MM†

)2
]

log
Λ2

µ2

)
(4.72)

where Λ is the ultraviolet cut-off, µ a generic renormalization scale andM
is the mass matrix of the theory. The CW potential exhibits a quadratic
and a logarithmic divergence. This means that the divergent terms arising
from the fermionic sector and the gauge sector have to be renormalized by
introducing the respective counterterms in the tree-level Lagrangian. We
start from the contribution due to fermions. By using (4.63), (4.64) we find

Tr
[
MM†

]
= M2

5 + Tr
[
MTMT †

]
+ Tr

[
MBMB†

]
+M ′25 ,

Tr

[(
MM†

)2
]

= M4
5 + Tr

[(
MTMT †

)2
]

+ Tr

[(
MBMB†

)2
]

+M ′45

(4.73)

The contributions due to top and bottom quarks do not mix since the mass
matrix is block diagonal because of the underlying electric charge symmetry.
Moreover, since the mass matrixMT differs fromMB by the substitution of
the parameters with the respective primed, we can perform the calculation
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only for the top sector, and the bottom sector will come automatically. We
start from the quadratically divergent contribution that reads

Tr
[
MTMT †

]
=

= M2
1 + 3M2

5 +M ′25 + Λ2
1 + Λ′21 + Λ2

2 + Λ2
3 + (y2

1 + y2
2)(h2 + σ2) =

= M2
1 + 3M2

5 +M ′25 + Λ2
1 + Λ′21 + Λ2

2 + Λ2
3 + (y2

1 + y2
2)φTφ

(4.74)

where in the last equality we have reintroduced the fields πi. Consequently

Tr
[
MM†

]
= M2

1 + 5M2
5 + 2Λ2

1 + Λ2
2 + Λ2

3 + (y2
1 + y2

2)φTφ+ {} ↔ {}′

(4.75)

where with {} ↔ {}′ we mean that the same contributions arise from the
bottom sector substituting the unprimed couplings with the primed ones.
We see that the quadratically divergent term is SO(5) invariant and we do
not need to add counterterms to the tree level potential.

On the other hand, the logarithmic contribution arising from the top
sector is

Tr

[(
MTMT †

)2
]

= d1 + d2σ + d3h
2 + d4

(
φTφ

)
+ d5

(
φTφ

)2 (4.76)

where5

d2 = 4 (y1M1 + y2M5) Λ2Λ3,

d3 = +y2
2Λ2

1 − 2y2
1Λ2

2,

d4 = 4y1y2M1M5 + 2
(
y2

1Λ2
2 + y2

2Λ2
3

)
+ 2

(
y2

1 + y2
2

) (
M2

1 +M2
5

)
,

d5 = y4
1 + y4

2

(4.77)

where we have used the fact a σ2 divergence can be transformed in an h2

divergence. In fact, calling d′3 the coefficient of the σ2 term we have

d′3σ
2 + d3h

2 + d4

(
φTφ

)
= (d3 − d′3)h2 + (d′3 + d4)

(
φTφ

)
. (4.78)

A similar analysis should be done for the gauge bosons loops. However,
following the paper [32], we have neglected the SO(5) breaking terms arising
from the gauge bosons loops because we are interested to modifications of the
potential due to the fermionic sector because the potential arising from the
gauge sector is negligible with respect to it. In the end, since the divergences
arising from the bottom sector are the same, the appropriate terms needed
to absorb the divergences arising at one-loop level are the α and β terms in
(4.10).

5We do not show d1 as it is a constant term.
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The last remark is about the choice to introduce counterterms related
only to the one-loop potential. In fact, as the full renormalizability of the
theory requires the presence of all gauge invariant operators of dimension
equal to or smaller than four, there is nothing that forbids the appearance of
other SO(5) breaking terms at two or more loops, the renormalization pro-
cedure may thus require to include further symmetry breaking counterterms
beyond those considered; however, as they arise at more than one-loop, their
finite contributions are weighted by comparatively negligible coefficients and
therefore they can be omitted in this analysis [16].

4.5 Higgs and σ Coupling to Gluons

Other two observables that we can calculate related to the strong sector are
the scalar decays into gauge bosons h → gg, σ → gg. We start recalling
what the SM predicts. In the SM the Higgs decay into two gluons arises at
one-loop level, through fermions loops. The Feynman diagram of the process
is depicted in Fig. 4.2 and the corresponding amplitude is given by

Ah = −iαs
π
gSMh εaµε

b
ν(p · k gµν − pµkν)δab (4.79)

where gSMh is a scale dependent function that characterize the amplitude
strength. We notice that the shape of the amplitude is consistent with the
fact that all the effective interactions arising from a gauge-invariant theory
have to be gauge-invariant. In fact, it allows to reconstruct the effective
interaction hGaµνGµνa, which is the only gauge invariant way to couple the
Higgs with two gluons. A straightforward calculation shows that

gSM
h =

∑
i

yi√
2

1

mi
I

(
m2
h

m2
i

)
(4.80)

where mi is the quark mass, yi ≡
√

2mi/v is the corresponding Yukawa
coupling and

I

(
q2

m2

)
=

∫ 1

0
dx

∫ 1−x

0
dz

1− 4xz

1− xz q2
m2

∼


1

3
for m2 � q2

0 for m2 � q2

 . (4.81)

Because of (4.81) the amplitude is dominated by the top quark; for instance,
the most relevant contribution after the top quark comes from the bottom
quark, whose integral is I

(
q2/m2

)
∼ 10−2, so it can be neglected. In con-

clusion, in the SM we have

gSMh =
yt√

2

1

mt
I

(
m2
h

m2
t

)
∼ 1

3v
. (4.82)
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Figure 4.2: The Higgs decay into two gluons, mediated by the top quark.
There are two topological independent diagrams: one is depicted in the
figure, the other one is the same with the fermionic arrows inverted.

Now we turn to the MLσM. Here the h→ gg coupling arises via fermions
loops as well with the difference that now the fermions running in the loop are
the top quark plus all the heavy fermions6 because for them I

(
m2
h/M

2
)
∼

1/3. In order to make explicit the Yukawa-like coupling it is useful rewrite
the Lagrangian (4.62) as

−Lmass = Ψ̄LM̄ΨR + ĥΨ̄L
∂M̄
∂h

ΨR + σ̂Ψ̄L
∂M̄
∂σ

ΨR + h.c. (4.83)

where we have defined

M̄ ≡M(v, vσ),
∂M̄
∂h
≡ ∂M(h, σ)

∂h

∣∣∣∣h=v
σ=vσ

,
∂M̄
∂σ
≡ ∂M(h, σ)

∂h

∣∣∣∣h=v
σ=vσ
(4.84)

and we have used the fact that the mass matrixM(h, σ) is linear in ĥ and σ̂7.
In the form (4.83) we immediately recognize that the matrices ∂M/∂h and
∂M/∂σ are the Yukawa-like couplings. However, neither fermions nor scalars
are in their mass eigenstates, so we have to perform both the rotations.
Starting by the fermions, the rotation leads to

−Lmass = M iΨ̄i
LΨi

R + ĥΨ̄i
L(Yh)ijΨj

R + σ̂Ψ̄i
L(Yσ)ijΨj

R + h.c. (4.85)

where Yh,σ are the Yukawa couplings arising after the rotation in the fermion
mass basis. On the other hand, the rotation of the scalar fields leads to

LYuk = hΨ̄L [Yh cos γ − Yσ sin γ] ΨR + σΨ̄L [Yh sin γ + Yσ cos γ] ΨR + h.c.
(4.86)

Therefore in this model the effective couplings gCHh,σ (in the scalar mass basis)
are given by

gCHh (m2
h) ≡ gĥ(m2

h) cos γ − gσ̂(m2
h) sin γ =

=
∑
i

1

mi
I

(
m2
h

m2
i

)
[(Yh)ii cos γ − (Yσ)ii sin γ] ,

(4.87)

6They carry color charge and live in the fundamental of SU(3)c, so they are coupled
to gluons as the SM fermions.

7We recall that ĥ and σ̂ are the (unphysical) unrotated scalar fields.
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gCHσ (m2
σ) ≡ gĥ(m2

σ) sin γ + gσ̂(m2
σ) cos γ =

=
∑
i

1

mi
I

(
m2
σ

m2
i

)
[(Yh)ii sin γ + (Yσ)ii cos γ]

(4.88)

where the i index, as we have said, runs over all the fermions for which
the integral I

(
q2/m2

i

)
is considerably different from zero and mi’s are their

masses. In order to perform the calculation we notice that

∂

∂h
log (detM)

∣∣∣∣h=v
σ=vσ

=
∂

∂h
log

(∏
i

mi(h, σ)

)∣∣∣∣∣
h=v
σ=vσ

=

=
∑
i

∂

∂h
log (mi(h, σ))

∣∣∣∣h=v
σ=vσ

=
∑
i

(Yh)ii
mi

(4.89)

and the same for Yσ. In the first equivalence we have used the fact that the
determinant is invariant under a change of basis. This is useful because in
this way we do not need to go in the fermion mass basis. Now, gCH

ĥ
(m2

h) is
given by

gCH
ĥ

(m2
h) =

∑
i

(Yh)ii
1

mi
I

(
m2
h

m2
i

)
∼ 1

3

∂

∂h

[
log (detM)− logmb

]∣∣∣∣h=v
σ=vσ

=

=
1

6

∂

∂h

[
log
(

detMM†
)
− logmbm

∗
b

]∣∣∣∣h=v
σ=vσ

(4.90)

where we have used (4.81) and subtracted the contribution arising from the
bottom quark, as for it the integral (4.81) is almost zero. On the other hand
gCHσ̂ (m2

h) is given by8

gCHσ̂ (m2
h) =

∑
i

(Yσ)ii
1

mi
I

(
m2
σ

m2
i

)
∼ 1

3

∂

∂σ

[
log (detM)− logmb

]∣∣∣∣h=v
σ=vσ

=

=
1

6

∂

∂σ

[
log
(

detMM†
)
− logmbm

∗
b

]∣∣∣∣h=v
σ=vσ

.

(4.91)

Now, as
∂

∂h
log
(

detMM†
)

=
4

v
, (4.92)

∂

∂σ
log

(
detMM†

)
=

2y2Λ2

y2Λ2vσ −M5Λ3
+

2y′2Λ′2
y′2Λ′2vσ −M ′5Λ′3

, (4.93)

8We notice that we are calculating gσ̂ valued at m2
h.
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∂

∂h

(
logmbm

∗
b

)∣∣∣∣h=v
σ=vσ

=
2

v
− 4vy′1y

′
2

y′1y
′
2(v2 + v2

σ)−M ′1M ′5
, (4.94)

∂

∂σ

(
logmbm

∗
b

)∣∣∣∣h=v
σ=vσ

=
2y′2Λ′2

y′2Λ′2vσ −M ′5Λ′3
− 4vσy

′
1y
′
2

y′1y
′
2(v2 + v2

σ)−M ′1M ′5
,

(4.95)

gCH
ĥ

(m2
h) and gCHσ̂ (m2

h) read

gCH
ĥ

(m2
h) =

1

3v
+

2vy′1y
′
2

3y′1y
′
2(v2 + v2

σ)− 3M ′1M
′
5

=
1

3v
− 2vy′1y

′
2

3M ′1M
′
5

+O

(
1

(M ′1M
′
5)2

)
,

(4.96)

gCHσ̂ (m2
h) =

y2Λ2

3y2Λ2vσ − 3M5Λ3
+

2vσy
′
1y
′
2

3y′1y
′
2(v2 + v2

σ)− 3M ′1M
′
5

=

= −1

3

y2Λ2

M5Λ3
+O

(
vσ

M ′1M
′
5

,
vσ
M2

5

)
.

(4.97)

In the end, the effective coupling in the scalar mass basis is given by

gh = gĥ(m2
h) cos γ − gσ̂(m2

h) sin γ ∼ 1

3v
cos γ − 1

3

y2Λ2

M5Λ3
sin γ. (4.98)

The important point is that in the limit mt � mh the hgg effective coupling
is exactly as in the SM. The contribution arising from the heavy fermions
tends to cancel out for masses larger than v.

With analogous procedure, we can obtain the σgg amplitude. The differ-
ence with the previous case is that now the top quark is lighter or comparable
in mass to σ and this means that that the integral (4.81) cannot be approx-
imated to 1/3. What we have to do is to subtract the "false" top quark
contribution from the total contribution and then add it without approxi-
mating the integral:

gCH
ĥ

(m2
σ) =

1

6

∂

∂h

[
log
(

detMM†
)
− logmtm

∗
t − logmbm

∗
b

]∣∣∣∣h=v
σ=vσ

+

+
1

2
I

(
m2
σ

m2
t

)
∂

∂h

[
logmtm

∗
t

]∣∣∣∣h=v
σ=vσ

=

= −2

3
v

(
y1y2

M1M5
+

y′1y
′
2

M ′1M
′
5

)
+

1

v
I

(
m2
σ

m2
t

)
+O

(
vv2
σ

M2
1M

2
5

,
vv2
σ

M ′21 M
′2
5

)
(4.99)
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where the derivative of the top mass logarithm can be read as usual from
(4.94) by substituting the unprimed couplings with the primed ones. Anal-
ogously gCHσ̂ (m2

σ) reads

gCHσ̂ (m2
σ) =

1

6

∂

∂σ

[
log
(

detMM†
)
− logmtm

∗
t )− logmbm

∗
b

]∣∣∣∣h=v
σ=vσ

+

+
1

2
I

(
m2
σ

m2
t

)
∂

∂σ

[
logmtm

∗
t

]∣∣∣∣
h=v
σ=vσ

=

= −2

3
vσ

(
y1y2

M1M5
+

y′1y
′
2

M ′1M
′
5

)
− y2Λ2

M5Λ3
I

(
m2
σ

m2
t

)
+

+O

(
vv2
σ

M2
1M

2
5

,
vv2
σ

M ′21 M
′2
5

)
(4.100)

Finally the σgg effective coupling is given by

gCHσ (m2
σ) ≡ gĥ(m2

σ) sin γ + gσ̂(m2
σ) cos γ ∼

∼
[

1

v
I

(
m2
σ

m2
t

)
− 2

3
v

(
y1y2

M1M5
+

y′1y
′
2

M ′1M
′
5

)]
sin γ+

+

[
− y2Λ2

M5Λ3
I

(
m2
σ

m2
t

)
− 2

3
vσ

(
y1y2

M1M5
+

y′1y
′
2

M ′1M
′
5

)]
cos γ.

(4.101)

Summarising, the hgg decay is dominated by the top quark for very heavy
fermions, while the heavy sector has a more significant impact on σgg tran-
sitions.
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Chapter 5

The Strong CP Problem

In the 1970’s the strong interactions had a puzzling problem, which became
particularly clear with the development of the QCD. The QCD Lagrangian
is:

LQCD =
6∑
i=1

ψ̄i
(
i /D −mi

)
ψi −

1

4
GaµνG

µνa (5.1)

with Dµ = ∂µ − igsG
a
µT

a where the T a’s are the SU(3) generators, the
sum over the color indices is understood and the i index runs over the six
quarks. It is immediate to see that in the limit when mi → 0 the Lagrangian
(5.1) is invariant under U(6)L × U(6)R where the subscripts stay for left
and right. Actually, since the only up and down quark masses are smaller
than the typical scale of the formation of hadrons, that is mu,md � ΛQCD,
only a chiral U(2)L×U(2)R is a very good approximate global symmetry of
strong interactions. This symmetry, however, is not manifest in the hadrons’
spectrum. In order to explain why, we need to decompose the symmetry
group in his vectorial and axial parts:

U(2)L × U(2)R = SU(2)V × SU(2)A × U(1)V × U(1)A (5.2)

where the V and A are the vector and axial respectively. The U(1)V sub-
group corresponds to the conservation of baryon number and it is an exact
symmetry of QCD, as also the mass term is invariant under U(1)V . On the
other hand, one would expect the remaining SU(2)V × SU(2)A × U(1)A to
be a good approximate symmetry of QCD, because of the smallness mu,md

compared to the ΛQCD scale. However, this is true only with the vectorial
part of symmetry, while the axial part SU(2)A×U(1)A is not seen in the spec-
trum. Indeed, there are several reasons (both theoretical and experimental)
that lead us to believe that the QCD global symmetry group U(2)L×U(2)R
is spontaneously broken by the vacuum condensate 〈ūu〉 = 〈d̄d〉 6= 0. Most
of all is the fact that it is present, in the hadron spectrum, an approximate
multiplet of light particles - the pions - whose mass vanishes in the limit
mu,md → 0 so they are suitable candidates to be the NGBs of the broken
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SU(2)A symmetry. Remarkably, however, there is no corresponding pseu-
doscalar state with vanishing mass, in the same limit, associated with the
broken U(1)A symmetry. Weinberg [34] first understood that the problem is
related to the anomalous nature of the U(1)A symmetry. Shortly, the rea-
son why there are no approximate NGBs associated with this abelian chiral
symmetry is that, as a consequence of the anomaly, this is really not a sym-
metry of the full quantum theory. The important point is that, because of
the anomaly, at one-loop level the QCD Lagrangian has a further term:

Leff = θ
αs
8π
GaµνG̃

aµν . (5.3)

However, although this feature of chiral symmetry was pointed out before
the advent of QCD as a theory of strong interactions, the resolution of
U(1)A problem required a better understanding of QCD vacuum [35], [36].
In fact,the right-hand side of the equation is a total divergence

GµνaG̃aµν = ∂µK
µ,

Kµ = εµνρσAaν

[
Gaρσ −

2

3
gsf

abcAbρA
c
σ

] (5.4)

so it would seem that, since a total divergence does not affect the equations
of motion, this could give no help in addressing the U(1)A problem. But, as
pointed out by ’t Hooft, the QCD vacuum is richer than expected. In fact, as
the QCD is a non abelian gauge theory, the different vacuum configurations
of the gauge field Aaµ cannot be mapped into the trivial vacuum Aaµ = 0,
i.e. they belong to different topological classes1. Taking into account (as
we should) all the topological different QCD vacua2, the total divergence is
not irrelevant anymore. The point is that this term - also called the θ term
- leads to an enormous neutron electric dipole moment (dn = eθmq/m

2
N ),

unless we set the parameter θ to be less than 10−9 [38].
The problem is actually made worse because it is fomented by the EW

sector. In principle the Yukawa matrix is neither hermitian nor diagonal
and, in order to go in the physical mass basis, we need to perform a rotation
of quarks that leads in general to a complex diagonal matrix:

Lmass = −mie
−iβi q̄iLq

i
R + h.c. (5.5)

In order to make the masses real we need to absorb the phases by redefining

1Shortly, in non abelian groups we can always extract an SU(2) subgroup and the
gauge field restricted to the SU(2) subgroup Aiµ(x) can be viewed as a map from the
contour of the spacetime to the SU(2) group; this map is nothing but the third homotopy
group of the three sphere and its different topological classes are labelled by an integer
number: π3(S3) = Z [37].

2It is essential in order to have a gauge invariant vacuum.
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the quark fields with a chiral rotation

qiL → e−i
βi
2 qiL

qiR → e+i
βi
2 qiR.

(5.6)

In the next section we will show that this redefinition shifts the vacuum angle
θ by

θ → θ̄ = θ +
∑
i

βi = θ + Arg detY (5.7)

where Y is the Yukawa matrix still not diagonalized and the second equality
comes from the fact that trace and determinant are invariant under a change
of basis. The strong CP problem is then:

why the combination of QCD and EW parameters which make up θ̄ is so
small?

We notice that, putting the QCD θ parameter to zero does not provide CP
conservation since it is already broken in the EW sector, so the symmetry
does not increase and, following the definition of Naturalness, the theory is
not natural. We stress again that, as θ̄ is a free parameter of the theory, in
principle any value of θ̄ is equally likely. Anyway, in the same spirit as the
Higgs mass, one would like to obtain an understanding from some underlying
physics of why this number is so small.

5.1 Chiral Transformations and U(1)A Anomaly

We have said that the resolution of the U(1)A problem starts recognizing
that the U(1)A symmetry is anomalous. In order to explain why, we briefly
review the main features of the classical axial symmetry. Firstly it is useful
to derive the Noether’s theorem in a more convenient way. Let us consider
a Lagrangian L[φ] depending from a set of field φ and a transformation of
fields φ→ φ′ = φ+ ε(x)f [φ]. Now, expanding L[φ′] to the first order in ε we
find

L′ ≡ L[φ′, ∂φ′] = L[φ, ∂φ] +
∂L′

∂ε
ε+

∂L′

∂(∂µε)
∂µε. (5.8)

If φ → φ + εf [φ] with ε = const is a symmetry of the Lagrangian then
∂L
∂ε(x) = 0, and we are left with

L[φ′, ∂φ′] = L[φ, ∂φ] +
∂L′

∂(∂µε)
∂µε. (5.9)

As
Jµ ≡ ∂L′

∂(∂µε)
=

∂L′

∂(∂µφ)
φf [φ], (5.10)
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we immediately recognize from the second equality that Jµ is exactly the
Noether’s current of the symmetry transformation. Now, the QCD La-
grangian for one quark is

L = −1

4
GµνaGaµν + ψ̄

(
i /D −m

)
ψ. (5.11)

Performing a chiral rotation of the fermion field

ψ → e−iα(x)γ5ψ or

{
ψL → e+iα(x)ψL,

ψR → e−iα(x)ψR
(5.12)

the Lagrangian transform consequently as

L′ = L+ 2imα ψ̄γ5ψ +
(
ψ̄γµγ5ψ

)
∂µα(x). (5.13)

We see that the Lagrangian is invariant if m = 0, and, in this case, the
associated (conserved) Noether current is the axial current:

Jµ5 =
∂L′

∂(∂µα)
= ψ̄γµγ5ψ. (5.14)

This is true at a classical level. Anyway, in the first chapter we have said that,
thanks to a theorem of QFT, the symmetries of the classical action must
be also symmetries of the full quantum action, but this is not completely
exact. In fact, the demonstration of this theorem relies on the fact that the
functional measure of the path integral is invariant under the transformation,
but this does not always happen. As pointed out by Fujikawa [39], under
a chiral transformation the functional measure changes, leading to the non-
conservation of the quantum chiral current. It turns out that, because of
this non-invariance, the divergence of the axial current reads

∂µJ
µ
5 = 2im ψ̄γ5ψ −

g2

16π2
GµνaG̃aµν . (5.15)

This is the anomaly associated with the transformation (5.12). It is also
useful to derive the anomaly associated with the more general chiral trans-
formation

ψL → e−iαnLψL,

ψR → e−iαnRψR.
(5.16)

For this purpose, we notice that the left-handed and right-handed currents
are related to the chiral current (5.14) by

1

nL
∂µJ

µ
L = ∂µ

(
ψ̄Lγ

µψL
)

=
1

2
∂µ
(
ψ̄γµψ

)
− 1

2
∂µ
(
ψ̄γµγ5ψ

)
= −1

2
∂µJ

µ
5 ,

1

nR
∂µJ

µ
R = ∂µ

(
ψ̄Rγ

µψR
)

=
1

2
∂µ
(
ψ̄γµψ

)
+

1

2
∂µ
(
ψ̄γµγ5ψ

)
= +

1

2
∂µJ

µ
5

(5.17)
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Figure 5.1: The triangle diagram responsible of the anomaly. Here f is the
fermion coupled to the gluons g. It can be shown that all the contribution to
the anomaly is given by this diagram, so the anomaly is one-loop exact [40].

where in the last equality we have used the fact that the vector current ψ̄γµψ
is conserved. Since the anomaly associated with the chiral current (5.14) is
(5.15), the divergence of the chiral current associated to (5.16), using (5.17),
is

∂µJ
µ
5 = 2im ψ̄γ5ψ −

g2

32π2
(−nL + nR)GµνaG̃aµν . (5.18)

Setting nL = −nR = −1, we recover (5.15).
Now, because of the anomaly, the Lagrangian (5.11) (taking m = 0 for

simplicity) at one-loop level contains extra anomalous term

L = −1

4
GµνaG̃aµν + ψ̄i /Dψ − g2

32π2
(−nL + nR)GµνaG̃aµν (5.19)

provided that the fields transform as in (5.16). From this last equation we
can understand why (5.6), needed to ensure real quark masses, leads to a
shift in the θ parameter by

∑
i βi. In fact, taking niL = −niR = βi/2 the

term in parenthesis is
∑

i βi = Arg detY .
It is important to remark for the sequent discussion that the same result

can be derived with the perturbative approach. In fact, it can be shown
that the anomaly arises because of the so-called triangle diagram, depicted
in Fig. 5.1.

The last part of this section is devoted to particularize the previous dis-
cussion to SM gauge bosons. The SM gauge group is SU(3)c × SU(2)L ×
U(1)Y so we have to consider all the couplings of the chiral current with all
the gauge fields. The SM quarks transform under different representations
of the SM group:

qL = (uL, dL) ∈ (3,2)1/6,

uR ∈ (3,1)2/3,

dR ∈ (3,1)-1/3

(5.20)

where we have considered for simplicity only one family. A chiral transfor-
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mation of the quarks

q′L = e−iαnqqL,

u′R = e−iαnuuR,

d′R = e−iαnddR

(5.21)

leads, because of (5.18), to an anomaly associated with the gluon field Gaµν

Lanomaly,G = − g2

32π2
(−2nq + nu + nd)G

µνaG̃aµν (5.22)

where the 2 is due to the fact that SU(3)c "sees" qL as made by two fields
(uL and dL). In the same way, the anomaly associated to Wµi reads

Lanomaly,W = − g2

32π2
(−3nq)W

µνiW̃ i
µν (5.23)

where the 3 is due to the fact that there are three copies of qL (it belongs
to the 3 of SU(3)c) and uR and dR are not present here because they are
singlets under SU(2)L so the chiral transformation does not produce anoma-
lous couplings with W i

µ. Finally, the anomaly associated to the U(1)Y field
Bµ reads

Lanomaly,B = − g2

16π2

(
−6nqY

2
q + 3nuY

2
u + 3ndY

2
d

)
B̃µνBµν (5.24)

where 6 and 3 are the degeneracies of qL and uR, dR fields respectively,
that is U(1)Y sees qL as 6 copies of fermions with the same charge. The
1/16 differs from 1/32 because in the chiral current (5.18) we have implicitly
assumed that the generators of SU(3)c are normalized as

Tr[GµνGµν ] =
1

2
GµνaGµνa (5.25)

and the same for Wµν . On the other hand Tr[BµνBµν ] = BµνBµν since the
group is abelian, so the 1

2 factor is not present.
We conclude this section with a remark: the gauge group of the SM is

chiral, therefore there could be anomalies in the associated conserved chiral
currents. This would be a disaster, since it can be shown that if the gauge
group of the SM were broken at a quantum level this would bring to the
non-unitarity of the theory. However, it turns out that all the anomalies
cancel: the SM is anomaly-free. With the previous discussion we can easily
show how this happens for the anomaly associated to the interaction between
three U(1)Y chiral currents, that is through the triangle diagram in Fig. 5.1
with three U(1)Y currents on the three vertices. Introducing the leptons
lL = (νL, eL) and eR and transforming the fields in (5.21) and the leptons



Chiral Transformations and U(1)A Anomaly 59

with nj ≡ Yj , where Yj is the hypercharge and j runs over all the fields of
the one family-SM, the parenthesis in (5.24) is zero:

−6Y 3
q + 3Y 3

u + 3Y 3
d − 2Y 3

l + Y 3
e = − 1

36
+

8

9
− 1

9
+

1

4
− 1 = 0. (5.26)

The discussion can be easily generalized to the real case of three families of
quarks and leptons.
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Chapter 6

A Chiral Solution to the
Strong CP Problem: Axions

There have been made several attempts to solve the strong CP problem. Be-
fore going in the details of the axion solution, perhaps one of the most cogent
solutions to it, it is instructive to analyse the different solutions proposed
during the second half of 900’. We start from the simplest possibility: spon-
taneously broken CP. If CP is a symmetry of nature which is spontaneously
broken, then one can set θ = 0 at the Lagrangian level [41]. However, if CP
is spontaneously broken θ gets induced back at loop level, so one needs, in
general, to ensure that θ vanishes also at one-loop level. Although models ex-
ist where this is accomplished, experimental data are in excellent agreement
with the CKM model - a model where CP is explicitly, not spontaneously
broken.

The second possibility, explored by ’t Hooft, is a massless up quark. We
can easily read from the discussion in section 5.1 how a massless fermion
can allow to rotate the θ-vacua away. In fact, transforming the massless up
quark as

u→ u′ = e−i
θ
2
γ5u (6.1)

the QCD Lagrangian is invariant but, because of the chiral nature of the
rotation, an anomaly shows up:

L = −1

4
GµνaG

µνa + ū /Du+ θ
g2

32π2
GaµνG̃

µνa →

L = −1

4
GµνaG

µνa + ū /Du+
g2

32π2
(θ − θ)GaµνG̃µνa

(6.2)

and the θ term goes away. For some time the massless up quark possibility
was taken seriously. The reason is that, even if the Lagrangian mass for
the up quark is zero, the ’t Hooft determinental interaction may generate a
useful up quark mass for chiral perturbation [42]. Now it is clear that this
possibility is ruled out.
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The most attractive solution has been proposed by Peccei and Quinn
[8], [9]. Inspired by the massless up quark case, they extended the scalar
sector of the SM by adding an other Higgs doublet. As we will see later,
the potential for two Higgs doublets can be chosen in such a way that the
symmetry group of the Lagrangian is enlarged by an additional global chi-
ral U(1) symmetry with respect to the SM symmetry group, the so-called
U(1)PQ symmetry. Obviously, the existence of an exact U(1)PQ symmetry
would solve the strong CP problem because it all would work as in the mass-
less up quark case. However, this symmetry cannot be exact, since we do
not see it in the particle spectrum. What Peccei and Quinn showed is that,
even if U(1)PQ is spontaneously broken (with a soft breaking term given
by the anomaly), the parameter θ is dynamically driven to zero. However,
there is a price to pay: a spontaneously broken U(1)PQ symmetry leads to
the appearance, in the particle spectrum, of a pNGB - pseudo because the
anomaly softly breaks U(1)PQ the symmetry. The axion1 - this is the name
that has been given to the pNGB - provides, with its VEV, to clean up the
θ term.

In the original paper, Peccei and Quinn start showing how the mechanism
works in a toy model and then they generalize the discussion to a more
realistic two-Higgs doublet model (2HDM), formerly introduced by Weinberg
[43]. The idea is that we can rotate away the θ term even if the quark
masses are included in the Lagrangian, provided that at least one fermion
gets its entire mass from a Yukawa coupling to a scalar field, so that the
full Lagrangian can possess a single chiral U(1) invariance. The Lagrangian
of the toy model contains one fermion field ψ belonging to some non trivial
representation of the color group and one complex scalar field φ:

L = −1

4
GaµνG

µνa + iψ̄γµD
µψ + gψ̄

[
φ

(
1 + γ5

2

)
+ φ∗

(
1− γ5

2

)]
ψ

+ θ
g2

32π2
GaµνG̃

µνa + ∂µφ
∗∂µφ− µ2(φ∗φ)− h(φ∗φ)2

(6.3)

with µ2 < 0 and h > 0. The Lagrangian is invariant under the chiral
symmetry U(1)PQ: {

ψ → e−iγ5σψ,

φ→ e+2iσφ.
(6.4)

Under the transformations (6.4) the classical Lagrangian remains unchanged
but, as we have seen, the quantum Lagrangian contains an anomalous term:

Leff = −2σ
g2

32π2
GaµνG̃

µνa. (6.5)

1The name derives from a detergent brand, because it "cleans" the θ term.
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Therefore the net result of the chiral rotation is a shift of the θ parameter
by

θ → θ − 2σ. (6.6)

However, the transformation (6.4) leads, in general, to a complex fermion
mass. In order to understand the solution proposed by Peccei and Quinn we
need to write the scalar field in radial-angular notation:

φ =
ρ√
2
e
i a
fa (6.7)

where a is the NGB associated to the broken U(1)PQ generator and fa is the
scale of the spontaneous symmetry breaking. Now, the Haag theorem allows
us to rotate away the axion field a from the Yukawa coupling by performing
the transformations

ψR → e
−i a

2fa ψR,

ψL → e
+i a

2fa ψL.
(6.8)

With these transformations the Lagrangian (6.3) becomes

L = −1

4
GaµνG

µνa + iψ̄γµD
µψ +

∂µa

2fa

[
ψ̄Rγ

µψR − ψ̄LγµψL
]

+

+
g√
2
ρψ̄ψ +

(
θ − a

fa

)
g2

32π2
GaµνG̃

µνa +
1

2
∂µρ∂

µρ− µ2

2
ρ2 − h

4
ρ4.

(6.9)

If there were not an anomaly in the chiral current, the ρ field would acquire a
VEV (providing a mass for ψ) while the axion would be exactly massless and
his vev would be unobservable. However, the anomaly breaks explicitly the
U(1)PQ symmetry. As a consequence, the shift symmetry is not a symmetry
anymore and it cannot protect the axion from taking a VEV and a mass.
What Peccei and Quinn showed is that the periodicity of the pseudoscalar
density expectation value 〈GG̃〉 in the relevant theta parameter (θ − a/fa)
forces the axion to pick out the VEV

〈a〉 = θfa. (6.10)

This is enough to solve the strong CP problem since, when expressing the
Lagrangian in terms of the physical field aphys = a− 〈a〉, the θ parameter is
dynamically driven to zero. Furthermore, the softly breaking term, that is
the only term providing an effective potential for the axion, gives it a mass
as well:

m2
a ≡ 〈

∂2Veff
∂a2

〉 =
1

fa

g2

32π2

∂

∂a
〈GaµνG̃µνa〉|〈a〉=faθ

. (6.11)

The calculation of the axion mass was first done explicitly by current algebra
techniques by Bardeen and Tye [44]. This formula states that the axion
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mass arises because of the soft breaking due to the anomaly: it comes from
instantonic contributions. The above discussion can be generalized to the
case in which the transformation of the fermions is more general than (6.8).
In this case the axion coupling with gauge bosons can be written generically
as

−ζ a
fa

g2

32π2
GaµνG̃

µνa (6.12)

where ζ is a model-dependent parameter. It all works as in the previous
case: the axion now picks the VEV

〈a〉 =
fa
ζ
θ (6.13)

and the θ term goes away from the Lagrangian when we write the Lagrangian
in terms of the physical axion aphys = a− 〈a〉.

Now that the mechanism is clear we can start introducing axions in more
realistic models. Basically, there have been studied three types of axion
models, depending on the way they enter into the Lagrangian:

• the Peccei-Quinn-Weinberg-Wilczek (PQWW) model, where the axion
is introduced as a linear combination of the phases in a 2HDB [8], [9];

• the Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [12], [13], where
the axion is the phase of a complex scalar field, just like the toy model
described above;

• the Dine-Fishler-Srednicki-Zhithnitsky (DFSZ) model [14], [15], where
the axion is introduced as a linear combination of the phase of the SM
Higgs and a complex scalar field.

We will describe briefly all these models in the next sections.

6.1 PQWW Model

As we have anticipated, the first model proposed by Peccei and Quinn relies
on a 2HDB first introduced by Weinberg [43]. The most general renormaliz-
able potential for two Higgs doublets with the reflection symmetry Φi → −Φi

(and, obviously, the SM custodial SO(4) symmetry) is

V (Φ1,Φ2) = −
∑
i

µ2
iΦ
†
iΦi +

∑
i,j

aij(Φ
†
iΦi)(Φ

†
jΦj)+

+
∑
i,j

bij(Φ
†
iτ
aΦi)(Φ

†
jτ
aΦj) +

∑
i,j

cij(Φ
†
iΦj)(Φ

†
iΦj)

(6.14)

where i = 1, 2. Hermiticity requires that µ2
i be real, aij and bij be real

and symmetric, while cij needs only be hermitian. Actually this potential,
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because of the cij term, does allow just a U(1) symmetry and we are forced
to associate it to the SM U(1)Y . But if we set cij = 0 - and this is what
Peccei and Quinn did - we can easily see that the symmetry group enlarges
by an extra U(1) symmetry that we can associate to the U(1)PQ. We can
write the two independent U(1) transformations as

U(1)Y : Φ1 → e
iα
2 Φ1, Φ2 → e−

iα
2 Φ2 (6.15)

U(1)PQ : Φ1 → eiβΓ1Φ1, Φ2 → eiβΓ2Φ2 (6.16)

where Γ1 and Γ2 are the PQ charges of Φ1 and Φ2. We will see in a moment
that their ratio is fixed by the model, if we require the latter to be consistent
with the SM. The last ingredient is the choice of the Yukawa couplings,
needed to give a mass to fermions. The Yukawa couplings are needed also
to "transform" the U(1)PQ symmetry in a chiral symmetry, just like the toy
model in the previous section. Therefore they have to be written so that
the global U(1)PQ symmetry and, obviously, the custodial SU(2)L × U(1)Y
symmetry are preserved. This is achieved by coupling Φ1 to dR and eR and
Φ2 to uR:

LYukawa = ΓuQ̄LΦ1dR + ΓdQ̄LΦ2uR + Γl l̄LΦ1eR + h.c. (6.17)

that is invariant under the U(1)PQ symmetry if the fermions transform as

QL → QL, uR → e−iβΓ2uR, dR → e−iβΓ1dR. (6.18)

The next step is to identify the axion component in the phases of Φ1 and Φ2.
For this purpose we remind that the axion is the NGB of the spontaneously
broken U(1)PQ, hence it must shift under U(1)PQ:

a→ a+ βλ. (6.19)

where λ is a generic constant. The neutral part of the Higgs doublets can
be parametrized as

Φ0
1 =

1√
2

(v1 + ρ1)e
i
P1
v1 , Φ0

2 =
1√
2

(v2 + ρ2)e
i
P2
v2 . (6.20)

One linear combination of P1 and P2 is absorbed by the Z boson and becomes
the longitudinal component of it, the other one is the axion. To find this
linear combination let us apply a rotation in the (P1, P2) space:{

z = −P1 sin θ + P2 cos θ

a = P1 cos θ + P2 sin θ
, (6.21)

{
P1 = −z sin θ + a cos θ

P2 = z cos θ + a sin θ
. (6.22)
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Substituting (6.22) in (6.20) and imposing (6.16) we find

e
ia cos θ

v1 → e
i(βΓ1+a cos θ

v1
)
,

e
ia sin θ

v2 → e
i(βΓ2+a sin θ

v2
)

(6.23)

where we have written only the part containing the axion field a. Comparing
(6.23) with (6.19)

v1

cos θ
Γ1 = λ,

v2

sin θ
Γ2 = λ

(6.24)

or, equivalently

cos θ =
v1Γ1√

v2
1Γ2

1 + v2
2Γ2

2

,

sin θ =
v2Γ2√

v2
1Γ2

1 + v2
2Γ2

2

.

(6.25)

The condition that the NGB z is absorbed into the Z boson determines Γ1

and Γ2. Since the Z boson charge QZ can be taken as (I3 − Y ) we have
QZ(Φ0

1) = −1/2 − 1/2 = −1, QZ(Φ0
2) = 1/2 + 1/2 = 1. Under the U(1)Z

transformation z → z + γλ′. Repeating the argument given above for the
axion and substituting the U(1)PQ with the U(1)Z transformation

e
−i z sin θ

v1 → e
i(γQZ(Φ0

1)− z sin θ
v1

)
,

e
i z cos θ

v2 → e
i(γQZ(Φ0

2)+ z cos θ
v2

)
(6.26)

we find

cos θ =
v2QZ(Φ0

2)√
v2

1[QZ(Φ0
1)]2 + v2

2[QZ(Φ0
2)]2

=
v2√
v2

1 + v2
2

,

sin θ = − v1QZ(Φ0
1)√

v2
1[QZ(Φ0

1)]2 + v2
2[QZ(Φ0

2)]2
=

v1√
v2

1 + v2
2

(6.27)

that implies
tan θ =

v1

v2
. (6.28)

Finally, comparing (6.28) with (6.25),

Γ1

Γ2
=
v2

2

v2
1

. (6.29)

As we have anticipated, we do not have the freedom of choosing both Γ1 and
Γ2. Defining x = v2

v1
and choosing Γ1 = x, Γ2 = 1

x , we can finally read the
axion content of the two Higgs doublets:

Φ1 =
v1√

2

[
1
0

]
eix

a
v , Φ2 =

v2√
2

[
0
1

]
ei

a
xv (6.30)
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where v =
√
v2

1 + v2
2. We can rewrite the U(1)PQ transformations (6.18)

(6.19) as

a→ a+ βv,

uR → e−i
β
xuR,

dR → e−iβxdR.

(6.31)

The Noether current associated to this symmetry reads

JµPQ = fa∂
µa+

1

x
ūRγ

µuR + xd̄Riγ
µdR + +xl̄Rγ

µlR (6.32)

from which we can read the ζ parameter

ζ =

(
x+

1

x

)
. (6.33)

However, as we outlined, the PQWW axion is ruled out. The main
phenomenological trouble is that its physics is tied with the electroweak
symmetry breaking scale, and the experimental data do not agree with the
prediction of the model. Just to make an example, Bardeen [45] estimated
the branching ratio

BR
(
K+ → π+ + a

)
' 3× 10−5

(
x+

1

x

)2

(6.34)

which is well above the bound

BR
(
K+ → π+ + nothing

)
< 3.8× 10−8 (6.35)

found by [46].

6.2 Invisible Axion Models

Despite it is a sensible assumption to suppose that the U(1)PQ breaking scale
fa is the same as the electroweak scale v = 246 GeV, this is not necessary.
The dynamical adjustment of the strong CP angle, as previously seen, is
independent from the scale fa. The difference is that, if fa � v, the axion
becomes very light, very weakly coupled and very long lived. Thus, these
axions are, apparently, invisible. Because fa � v in the invisible axion
models, the U(1)PQ symmetry must be broken by an SU(2)×U(1)Y singlet
complex scalar field σ. The axion is then, essentially, the phase of σ. That
is, the scalar field can be written as:

σ =
1√
2

(f + ρ)e
i a
fa
g(vi,fa) (6.36)
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where g(vi, fa) is a function that describes how much axion content is present
into the phase of the σ field and it depends on the scales present in the model.
For instance, in the toy model described in the previous section g(vi) = 1,
in the PQWW model we have g(vi, fa) = v2/(vv1). The important point is
that in these models, because of fa � v, |g(vi, fa)| ' 1, that is the axion
is primarily composed of the σ field. The invisible axions are classified into
two types depending on whether or not they have a tree-level coupling to
ordinary SM fermions. The KSVZ axions are hadronic axions with only
induced coupling to SM fermions. The DFSZ axions arise in model where
axions naturally couples to SM fermions already at tree level. Now we are
going to see, in more detail, these models.

6.2.1 KSVZ Model

In the KSVZ model the ordinary quarks and leptons are PQ singlets. The
SU(2)×U(1)Y singlet field σ, however, interacts with new heavy quarks Xi

(which carry U(1)PQ charge) via Yukawa interaction. The minimal model
is achieved by adding, in the SM particle spectrum, one heavy fermion X
and one complex scalar field σ that do not couple with SM fermions, with
only a coupling between the Higgs and the σ. The Yukawa coupling for the
minimal KSVZ model then reads

LKSV Z = −yσσX̄LXR − y∗σσ†X̄RXL. (6.37)

The most general scalar potential containing the SM custodial SO(4) as well
as the U(1)PQ symmetry is

V(φ, σ) = λφ

[
φ†φ− v2

φ

]2
+ λσ

[
σ†σ − v2

σ

]2
+ λφσ(φ†φ)(σ†σ). (6.38)

The Yukawa coupling (6.37) allows for the presence of two independent U(1)
symmetries that we can choose to be:

U(1)PQ : X → eiγ5αX, σ → e−2iασ,

U(1)X : X → eiβX
(6.39)

The U(1)PQ is the chiral symmetry needed to rotate away the θ term, pro-
vided of course that Q belongs to a non trivial representation of SU(3)c,
while U(1)X gives the X-type baryon-number conservation. We notice that
these two symmetries are respected by the scalar potential (6.38) and, ob-
viously, by the SM Lagrangian. Also, for a finite range of parameters we
have 〈φ〉 6= 0, 〈σ〉 6= 0, so that the spontaneous symmetry breaking can take
place and give mass to heavy fermions - through the σ particle - and to SM
fermions, through the usual Higgs mechanism; furthermore the existence of
the spontaneously broken U(1)PQ implies the appearance of the axion a.
The interactions of KSVZ axion with the gauge bosons arises, as we have
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Figure 6.1: The first non-zero diagram contributing to the coupling
(φ†φ)(σ†σ) is the three-loop diagram depicted in figure.

anticipated, at a loop-level as a result of the chiral anomaly. The coupling
is induced, as usual, by transferring the axion dependence from the σ field
to the X field via

X → e
−i a

2fa
γ5X (6.40)

and the anomaly then reads

Leff = −a
f

[
α2
s

8π
GµνaG̃

µνa + 3
α2
em

4π
q2
XFµνF̃

µν

]
. (6.41)

Through the anomaly the axions couple with the quarks and leptons, as well.
We now open a parenthesis on the parameter λφσ. In the original paper

[12], [13], the authors decide to set λφσ = 0. This choice from the point
of view of the axion physics, as pointed out also by the authors, does not
change anything because the coupling λφσ involves the radial parts of the
scalar fields. However, as this term has dimension 4, there is nothing that
forbids his appearance at loop level, and, in fact, it is easy to show that it
shows up. The point is that this term, as we will see in the next chapter,
pushes the lower scale of the theory (the electroweak VEV v), near the
upper scale (the scale of the axion fa), unless we fine-tune the parameter
λφσ. However, it turns out that, at least in this case, λφσ = 0 is in a certain
sense protected by large quantum corrections because of the fact that the
heavy and the SM fermionic sectors are decoupled2. In fact, the first non-
zero diagram contributing to the λφσ = 0 coupling is the three-loop diagram
depicted in Fig. 6.1.

We can estimate the contribution given by the heavy fermions by looking
at the right part of the diagram, depicted in Fig. 6.2. Taking for simplicity
on shell gluons, yσ real and M � pi where pi are the external momenta,
the amplitude of the diagram 6.2 at the first order in the external momenta
reads

M =
5

48π2

g2
sy

2
σ

M2
[(p3 · p4)ηµν − pν3pν4 ] δabεaµ(p3)εbν(p4) (6.42)

2Independently from this discussion we remark that, as the λφσ term is renormalizable,
a full renormalizable Lagrangian should contain it.
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Figure 6.2: Three of the six topological independent diagrams that contribute
to λφσ. The other three graphs are the same with the fermion lines inverted.

where M is the heavy fermion mass arising after the SSB of the σ parti-
cle and we have set for simplicity p2 = 0. We see that, for large M , the
contribution to λφσ arising at quantum level is negligible. The Lorentz and
group structure of the amplitude (and therefore also the 1/M2 coefficient
for dimensional analysis) could be easily predicted by noticing that the only
dimension-6 gauge invariant operator containing the scalar field σ and the
gluons is

Leff = c1σ
†σGaµνG

µνa (6.43)

that is nothing but the configuration-space version of (6.42).

6.2.2 DFSZ model

In this class of models, the interactions of the axions with quarks and leptons
arises already at tree-level. To achieve this, they must carry U(1)PQ charge,
so one again needs two Higgs fields Φ1 and Φ2 that are coupled, via Yukawa
interaction, to down and up quarks, respectively. The model was originally
proposed by Dine, Fishler, Srednicky, Zhithnitsky [14], [15]. They added a
complex field σ, coupled only to Φ1 and Φ2, which carries the most part of
the axion field, in the sense explained at the beginning of the section. For
this, even if leptons and quarks are coupled via Yukawa interaction to the
axion, they feel the effects of the axions mainly through the interaction that
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the σ field has with Φ1 and Φ2. The Yukawa coupling is the same as the
PQWW model

LYukawa = ΓuQ̄LΦ1dR + ΓdQ̄LΦ2uR + Γl l̄LΦ1eR + h.c. (6.44)

The Lagrangian possesses four independent U(1) symmetries that can be
associated to the SM U(1)Y , the U(1)PQ chiral symmetry, the baryon number
U(1)B and the lepton number U(1)L. The scalar potential has to be chosen
so that it respects these symmetries, i.e. it has to be chosen in order to
have the U(1)PQ and, obviously, the custodial SO(4) symmetry. With these
requests, the most general scalar potential containing Φ1,Φ2, σ is

V(Φ1,Φ2, σ) = λ1(|Φ1|2 − v2
1)2 + λ2(|Φ2|2 − v2

2)2 + λ(|σ|2 − f2
a )2

+ (a|Φ1|2 + b|Φ2|2)|σ|2 + c(ΦT
1 τ2Φ2σ

2 + h.c.) + d|ΦT
1 τ2Φ2|2 + e|Φ†1Φ2|2

(6.45)

where the SU(2)L indices are understood. The only term not obviously
invariant under SU(2)L is ΦT

1 τ2Φ2. However,

ΦT
1 τ2Φ2 → ΦT

1 U
T τ2UΦ2 = ΦT

1 τ2τ2U
T τ2UΦ2 = ΦT

1 τ2U
†UΦ2 = ΦT

1 τ2Φ2

(6.46)
where we have used the fact that τ2Uτ2 = U∗. We notice that, setting
c = 0, we would have three independent U(1): the c-term serves to reduce
the number from three to two. The U(1)PQ on the scalar fields reads

Φ1 → eiαX1Φ1, Φ2 → eiαX2Φ2, σ → eiαXσσ. (6.47)

The interaction term ΦT
1 τ2Φ2σ

2 gives a condition on the U(1)PQ charges:

X1 +X2 + 2Xσ = 0. (6.48)

Now we want to find the axion content in the σ field. We will proceed as in
the PQWW model. Firstly, we need to explicit the neutral angular parts of
the Higgses and the angular part of the complex field σ:

Φ0
1 =

1√
2

(v1 + ρ1)e
i
P1
v1 ,

Φ0
2 =

1√
2

(v2 + ρ2)e
i
P2
v2 ,

σ =
1√
2

(f + ρ)e
iPσ
f .

(6.49)

Now, what we have to do is to apply a rotation in the field spaceP1

P2

Pσ

 =

cos θ cos γ − sin θ − sin γ cos θ
sin θ cos γ cos θ − sin θ sin γ

sin γ 0 cos γ

az
z′

 (6.50)
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where, in the same notation used for the PQWW model, z is the NGB
eaten by the Z boson, a is the axion and z′ is the remaining field that
will not partecipate in the subsequent discussion. The matrix in (6.50) is
a composition of two rotations: one in the (P1, P2) plane, the other in the
(P1, Pσ) plane. The reason is that the only fields coupled to the Z boson are
Φ1 and Φ2, so that a linear combination of them is eaten by the Z. On the
other hand, the axion will arise as a linear combination of the PQWW axion
and the phase of the σ field. Indeed θ is the same as the PQWW model so
z takes the same form too:

z = −v1P1 + v2P2

v
. (6.51)

This fixes3 the charges in (6.47)

X1 =
v2

2

v2

X2 =
v2

1

v2

Xσ = −1

2

(6.52)

where v =
√
v2

1 + v2
2. In order to determine the γ angle we need to impose

that a shifts under U(1)PQ, that is a is the NGB of the spontaneously broken
U(1)PQ: a→ a+ βλ. We find

sin γ = − vfa√
v2f2

a + 4v2
1v

2
2

cos γ =
2v1v2√

v2f2
a + 4v2

1v
2
2

.

(6.53)

The axion field is then

a = P1 cos θ cos γ + P2 sin θ sin γ + Pσ sin γ =
2v1v2(v1P2 + v2P1)− v2faPσ

v
√
v2f2

a + 4v2
1v

2
2

,

(6.54)
so in this case the g-factor reads

g(v1, v2, fa) = − v√
v2 + 4

v21v
2
2

f2a

. (6.55)

In the limit f � v1, v2

a = −Pσ +
2v1v2

fav2
(v1P2 + v2P1) (6.56)

and |g(vi, fa)| = 1 i.e. the axion is primarily composed of the σ field, as it
is appropriate for invisible axion models.

3Actually, as in the PQWW axion, the model fixes only the ratio, and we are free to
make a choice: here we make the same choice as the PQWW model, that is X1 +X2 = 1.



Chapter 7

The Minimal Axion Minimal
Linear σ Model

The MLσM studied in the fourth chapter can be considered an optimal
framework where to look for a solution to the strong CP problem. The im-
portant point is that we can rely on the heavy fermion sector, introduced in
the context of composite Higgs models in order to explain the Yukawa hierar-
chy, to rotate away the QCD θ term. Indeed, extending the scalar spectrum
with an additional complex scalar field, singlet under the global SO(5), the
symmetry content of the model is supplemented by an extra U(1)PQ sym-
metry, that is, in a certain region of the parameter space, spontaneously
broken, leading to a further Nambu-Goldstone boson. Depending on the
scale of the spontaneous symmetry breaking, the NGB can be associated to
a KSVZ axion, or a more massive ALP. The particle content of the model is
therefore the same as the MLσM plus a scalar complex field s that we will
write in the usual exponential form:

s ≡ r√
2
eia/fa (7.1)

where fa is the scale of the SSB of the axion. We will follow the paper [17]
for the analysis of scalar and fermionic sector. The complete renormalizable
Lagrangian for the axion minimal linear σ model (AMLσM) can be written
as the sum of three terms describing respectively the pure gauge, fermionic
and scalar sector:

L = Lg + Lf + Ls. (7.2)

The gauge Lagrangian is the same as the SM:

Lg = −1

4
GµνaGaµν −

1

4
WµνiW i

µν −
1

4
BµνBµν +

αs
8π
θGµνaG̃aµν (7.3)

with the sum over SU(3)c and SU(2)L indices is understood. We postpone
the discussion on the fermionic and scalar Lagrangian in the next sections.

73
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7.1 The Fermionic Lagrangian

Assuming no couplings of s with the SM fermions, the most general fermion
Lagrangian coupled to the scalar particle s is

LF = q̄Li /DqL + t̄Ri /DtR + b̄Ri /DbR

+ ψ̄(2/3)
(
i /D −M5

)
ψ(2/3) + ψ̄(−1/3)

(
i /D −M ′

5

)
ψ(−1/3)

+ χ̄(2/3)
(
i /D −M1

)
χ(2/3) + χ̄(−1/3)

(
i /D −M ′

1

)
χ(−1/3)

−
[
y1ψ̄

(2/3)
L φχ

(2/3)
R + y2ψ̄

(2/3)
R φχ

(2/3)
L +

+ y
′
1ψ̄

(−1/3)
L φχ

(−1/3)
R + y

′
2ψ̄

(−1/3)
R φχ

(−1/3)
L

+ Λ1

(
q̄L∆

(2/3)
2×5

)
ψ

(2/3)
R + Λ2ψ̄

2/3
L

(
∆

(2/3)
5×1 tR

)
+ Λ3χ̄

(2/3)
L tR

+ Λ
′
1

(
q̄L∆

(−1/3)
2×5

)
ψ

(−1/3)
R + Λ

′
2ψ̄

(−1/3)
L

(
∆

(−1/3)
5×1 bR

)
+

+ Λ
′
3χ̄

(−1/3)
L bR + h.c.

]
+ LFs

(7.4)

with

LFs =−
[
z1χ̄

(2/3)
R χ

(2/3)
L s+ z̃1χ̄

(2/3)
R χ

(2/3)
L s∗ + z5ψ̄

(2/3)
R ψ

(2/3)
L s+

+ z̃5ψ̄
(2/3)
R ψ

(2/3)
L s∗ + z′1χ̄

(−1/3)
R χ

(−1/3)
L s+ z̃′1χ̄

(−1/3)
R χ

(−1/3)
L s∗+

+z′5ψ̄
(−1/3)
R ψ

(−1/3)
L s+ z̃′5ψ̄

(−1/3)
R ψ

(−1/3)
L s∗

]
.

(7.5)

As we have outlined, this is the most general Lagrangian invariant under
SO(5) × U(1)x

1. However, as it will be clear after the discussion on the
Coleman-Weinberg potential, the Lagrangian (7.4) does not allow a further
U(1)PQ symmetry, so, if we want to insist in the interpretation of (the angu-
lar part of) s as an axion we have to restore the U(1)PQ symmetry by setting
the U(1)PQ breaking terms to zero, after making a choice of PQ charges.

In complete analogy with the MLσM, we can rewrite the fermionic mass
term as

Lmass = −Ψ̄LM(h, σ, s)ΨR (7.6)

where Ψ is the fermionic multiplet defined in the MLσM and M(h, σ, s) is
the block diagonal 14× 14 matrix:

M(h, σ, s) = diag
(
M5(s),MT (h, σ, s),MB(h, σ, s)M ′5(s)

)
,

MB(h, σ, s) =MT (h, σ, s) with (yi,Λi,Mi)↔ (y′i,Λ
′
i,M

′
i),

(7.7)

1As the scalar field s is an SO(5) × U(1)x singlet, we can define the U(1)x charges in
the same way as the MLσM
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MT =



0 Λ1 0 0 0 Λ′1
0 M5(s) 0 0 y1

h√
2

0

0 0 M5(s) 0 y1
h√
2

0

Λ2 0 0 M5(s) y1σ 0

Λ3 y2
h√
2

y2
h√
2

y2σ M1(s) 0

0 0 0 0 0 M ′5(s)


(7.8)

with
M1(s) = M1 + z1s+ z̃1s

∗, M5(s) = M5 + z5s+ z̃5s
∗ (7.9)

We notice that the mass matrix (7.8) is in form identical to the mass matrix
(4.64), with the difference that now the mass term of the heavy fermions
receives a contribution from the coupling with the complex field s. Exactly
as in the MLσM, the mixing between the various species will provide a
natural explanation for the lightness of the SM quark masses.

7.2 The Scalar Lagrangian and the CW Potential

The scalar part of the Lagrangian contained in (7.2) describing scalar-gauge
and scalar-scalar interactions reads

Ls = (Dµφ)T (Dµφ) + ∂µs
∗∂µs− V (φ, s) (7.10)

with
V (φ, s) = V SSB(φ, s) + V CW(φ, s) (7.11)

where V CW is the Coleman-Weinberg potential, that we are going to calcu-
late in a moment, and V SSB is the most general potential with the symmetry
breaking pattern (SO(5)× U(1)PQ) /SO(4):

V SSB = λ
(
φTφ− f2

)2
+ λs

(
2s∗s− f2

s

)2 − 2λsφ (s∗s)
(
φTφ

)
. (7.12)

In the unitary gauge, with the same notation as the MLσM, the Lagrangian
reads

Ls =
1

2
∂µh∂

µh+
1

2
∂µσ∂

µσ +
h2

4

[
g2W+

µ W
µ,− +

g2 + g′2

2
ZµZ

µ

]
+

1

2
∂µr∂

µr

+
r2

2f2
a

∂µa∂
µa− λ

(
h2 + σ2 − f2

)2 − λs (r2 − f2
s

)2
+ λsφr

2
(
h2 + σ2

)
.

(7.13)

The Coleman-Weinberg potential has the same form as the MLσM, the
only difference being the fermion masses. We insist on the fact that, as the
full Lagrangian (7.4) does not allow an U(1)PQ symmetry, we expect that the
CW potential breaks it explicitly - since it is not a symmetry. However, the
idea is to keep all the terms in order to make the discussion as much general
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as possible and only in the end to set some of them to zero in order to restore
the U(1)PQ symmetry. We will only show the results, as the calculation is
the same as (4.75) with the difference that nowM1,5 are complex and depend
on the field s. The quadratic divergence reads

Tr
[
MM†

]
=M1(s)M∗1 (s) + 5M5(s)M∗5 (s) + 2Λ2

1 + Λ2
2 + Λ2

3+

+
(
y2

1 + y2
2

)
φTφ+ {} ↔ {}′

(7.14)

where {} ↔ {}′ means that the same contributions arise from the bottom
sector and they are obtained as usual by substituting the unprimed coupling
with the corresponding primed ones. Now, in general Mi(s)M

∗
i (s) produces

U(1)PQ breaking terms but, as we have said, once we choose specific U(1)PQ
charges, they disappear. This is true for all the U(1)PQ breaking terms that
arise at a quantum level so we will forget about them, as we already know
that they will cancel out. On the other hand, the logarithmic divergence
reads

Tr

[(
MM†

)2
]

= d0 + d1(s∗s) + d2

(
φTφ

)
+ d3(s∗s)2 + d4

(
φTφ

)2
+

+ d5

(
φTφ

)
(s∗s) + d̃1σ + d̃2h

2.

(7.15)

This calculation will serve to understand the counterterms needed to absorb
the divergences so we show below the only divergent terms:

d̃1 = 4 (y1M1 + y5M5) + {} ↔ {}′

d̃2 = y2
2Λ2

1 − 2y2
1Λ2

2 + {} ↔ {}′.
(7.16)

We can now understand the reason why we have taken all the terms: for a
certain choice of parameters2 the sigma tadpole cancels out and we remain
with a minimal (in terms of numbers of parameters) model.

Now we turn to the CW potential generated by gauge bosons loops. In
fact in this theory, differently from the MLσM, we cannot neglect the soft
breaking terms arising from them. The reason is that, in order to give a
consistent mass to the Higgs, we need at least two soft breaking terms and
the fermionic sector provides only one term. The gauge boson mass term, in
matrix notation, reads

(
W+
µ W−µ Zµ

)
M2

g

Wµ+

Wµ−

Zµ

 ≡
≡
(
W+
µ W−µ Zµ

) 0 h2g2

8 0
h2g2

8 0 0

0 0 h2(g2+g′2)
8


Wµ+

Wµ−

Zµ

 ,

(7.17)

2For instance taking M1 = M5 = M ′1 = M ′5 = 0.
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therefore

Tr[M2
g] =

(g2 + g′2)

8
h2

Tr[
(
M2

g

)2
] =

1

64

[
2g4 +

(
g2 + g′2

)2]
h4

(7.18)

and both break explicitly the SO(5) symmetry.
Summarising, once a specific PQ charge assignment is assumed, provided

of course that it respects the U(1)PQ symmetry, all the Coleman-Weinberg
U(1)PQ breaking coefficients cancel and the only terms that we have to in-
troduce in order to ensure the renormalizability of the model are σ, h2, h4.
In particular we can choose the charges in such a way that d̃1 disappear and
only h2, h4 have to be added.

7.3 The U(1)PQ Invariant Lagrangian and the Min-
imal Model

The Lagrangian (7.4) describes the most general couplings between heavy
fermions and the complex scalar field s. However, as we have said, such a
Lagrangian does not allow a U(1)PQ symmetry. For instance, the terms3

M5ψ̄Rψ
(2/3)
L , z5ψ̄

(2/3)
R ψ

(2/3)
L s, z̃5ψ̄

(2/3)
R ψ

(2/3)
L s∗ (7.19)

are not simultaneously invariant under U(1)PQ. In fact, if the fields trans-
form under U(1)PQ as

ψ
(2/3)′

R = eiαnRψ
(2/3)
R , ψ

(2/3)′

L = eiαnLψ
(2/3)
L , s′ = eiαnss, (7.20)

then, in order (7.19) to be invariant under (7.20), the following conditions
should be satisfied

− nψR + nψL = 0,

− nψR + nψL + ns = 0,

− nψR + nψL − ns = 0.

(7.21)

Assuming a non vanishing charge ns, that is essential in order to solve the
strong CP problem4, these conditions cannot be simultaneously satisfied, in
particular we cannot have a bare mass term for all the heavy fermions. In
general there are a lot of charge assignments that allow a U(1)PQ symme-
try. However, these different possible choices can be restricted by relying on

3We will forget the superscripts 2/3 or -1/3 unless otherwise indicated. Moreover, we
will show the calculation for ψ(2/3) but the above discussion clearly holds for all the species
ψ(−1/3) χ(2/3), χ(−1/3)

4ns is nothing but the difference between the left and right charges of the heavy
fermions; if ns = 0, left and right fermions would transform with the same charge and
there would not be any anomalies.
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strongly physical conditions. Firstly, a U(1)PQ symmetry requires that the
following conditions must be simultaneously satisfied5:

−nψL + nχR = 0 or y1 = 0,

−nψR + nχL = 0 or y2 = 0,

−nχR + nχL = 0 or M1 = 0,

−nχR + nχL + ns = 0 or z1 = 0,

−nχR + nχL − ns = 0 or z̃1 = 0,

−nψR + nψL = 0 or M5 = 0,

−nψR + nψL + ns = 0 or z5 = 0,

−nψR + nψL − ns = 0 or z̃5 = 0,

nψR = 0 or Λ1 = 0,

nψL = 0 or Λ2 = 0,

nχL = 0 or Λ3 = 0

(7.22)

where we have chosen the charge of the SM fermions (the reason is explained
below) and the φ field containing the Higgs field to be zero and the "or"
means that either the interaction conserve the U(1)PQ symmetry or the
corresponding parameter must be put to zero. We can rely on the following
physical conditions to restrict the possible choices of charges:

• the partial fermion compositeness states that the mass terms for the
SM quarks have to originate at tree level. Since, generalizing to this
model the result obtained in the MLσM, the top mass reads

mt = y1Λ1
Λ3 − y2Λ2σ/M5(s)

M1(s)M5(s)− y1y2(h2 + σ2)

h√
2
, (7.23)

this condition implies that we must have y1 6= 0, Λ1 6= 0 and either
Λ3 6= 0 or y2 6= 0 ∧ Λ2 6= 0;

• the axion has to be coupled to at least one of the heavy fermions in
order to solve the strong CP problem, and this translates in the fact
that at least one among M1 and M5 must be zero;

• if we want to forbid the axion coupling to the SM fermions then they
have to be necessarily PQ singlets.

By fixing6 ns = 1, the minimal (in terms of number of parameters) sce-
nario with the requirements above is with the choice of charges shown in
the table 7.3. The table shows two equivalent choices of U(1)PQ charges
that deliver the same physics. Definitely in this specific set up the terms

5We show the calculations only for the top sector, being the calculation for the bottom
the same.

6the model leaves the freedom to fix one the the charges.
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nqL ntR nψL nψR nχL nχR

0 0 +1 0 0 +1
0 0 −1 0 0 −1

Table 7.1: U(1)PQ charge assignment used in the model that minimizes the
number of parameters. The assignment can be trivially extended to the
bottom sector.

not allowed by symmetries (and therefore required to be set to zero) are Λ2,
M1, M5 and, depending on which choice between nψL = nχR = ±1, either
z̃1, z5 or z1, z̃5 are not allowed, respectively. As expected, all the divergent
terms that provide an explicit breaking of the U(1)PQ symmetry are now
zero. Moreover, with this specific choice we have

d̃1 = 0,

d̃2 = y2
2Λ2

1.
(7.24)

We see that no sigma tadpole contribution is generated and the only diver-
gent terms are h2 and h4: these are all the only terms that we need to add
in the tree-level Lagrangian in order to absorb the divergences generated by
the one-loop CW potential. We conclude this section with two comments:

• in calculating the charge of heavy fermions we assigned charge ns = 1
to the complex scalar field. However, from the point of view of the
scalar and fermionic sector, it does not matter what the value of ns
is. Instead ns becomes relevant in the coupling of the axion with the
heavy fermions. The explicit calculation is shown in the next section.

• as we have said, this is the charge assignment that minimizes the num-
ber of parameters. In fact, if we take for instance the SM fermions
charged under U(1)PQ then it is possible to redefine the charges so
that M1 (or M5) and Λ2 are now allowed. This would bring to the
appearance of the d̃1 in the one-loop CW potential, so it would be
needed a further σ tadpole term in the tree-level Lagrangian.

7.4 Axion Coupling to Gauge Bosons and Fermions

The aim of this section is to calculate the axion coupling to gauge bosons,
through the chiral anomaly, and to heavy fermions, through the chiral cur-
rent. We will use the results of the section 5.1. As already done for the
PQWW model, we can make a redefinition of the fields by inserting the
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axion in the phase of the PQ charged fields:

s→ einsa/fas,

ψ
(2/3)
L → einψLa/faψ

(2/3)
L ,

χ
(2/3)
R → einχRa/faχ

(2/3)
R ,

ψ
(−1/3)
L → e

inψ′
L
a/fa

ψ
(−1/3)
L ,

χ
(−1/3)
R → e

inχ′
R
a/fa

χ
(−1/3)
R .

(7.25)

In order to calculate the couplings, we have to remember that the fields live
in multiplets of SO(5)×SU(3)c. So, for instance in the case of the coupling
of the fermions to Gaµν we have to take into account that there are 5 copies
of ψL, ψ′L, 1 copy of χR, χ′R, etc. Generalizing the results of (5.19), (5.22),
(5.23), (5.24) the coupling of the axion to gauge bosons reads

La,gb = −αs
8π

a

fa
caggG

a
µνG̃

µνa − α2

8π

a

fa
caW iW iW i

µνW̃
µνi − α1

8π

a

fa
caBBBµνB̃

µν

(7.26)

where

cagg = 5
(
nψL + nψ′L

)
−
(
nχR + nχ′R

)
,

caW iW i = 6
(
nψL + nψ′L

)
,

caBB = 2
[
3nψL

(
2Y 2

X + 2Y 2
Q + Y 2

T5

)
+ 3nψ′L

(
2Y 2

X′ + 2Y 2
Q′ + Y 2

B5

)
+

−3nχRY
2
T1 − 3nχ′RY

2
B1

]
.

. (7.27)

The 5 factor in cagg arises because, as we have said, there are 5 copies of ψL,
ψ′L; the 6 factor in caW iW i arises because there are 3 copies (SU(3)c triplet)
times 2 copies (ψL contains two different SU(2)L doublets); the 3 factors in
caBB are due to the fact that we have to consider the 3 copies of the SU(3)c
triplet ψL, and (Y,X, T5) is the usual decomposition of SO(5) fiveplet under
SU(2)L×U(1)Y , so there are 2 copies of YX , two of YQ, etc. In order to read
the axion coupling to the physical gauge field bosons we have to perform the
Weinberg rotation

(
W 3
µ

Bµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
Zµ
Aµ

)
. (7.28)
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cagg caγγ caZZ caWW caγZ

8 112/3 49.3 108.1 17.8

Table 7.2: Numerical coefficients caii.

Now, for every a1, a2 we have7

a1g
2W 3

µνW̃
µν3 + a2g

′2BµνB̃
µν =

= a1g
2
(

cos2 θwZµνZ̃
µν + sin2 θwFµνF̃

µν + 2 cos θw sin θwAµνZ̃
µν
)

+

+ a2g
′2
(

cos2 θwFµνF̃
µν + sin2 θwZµνZ̃

µν − 2 cos θw sin θwAµνZ̃
µν
)
.

(7.29)

By using the relation e = g sin θw = g′ cos θw, (7.29) reads

a1g
2W 3

µνW̃
µν3 + a2g

′2BµνB̃
µν =

= e2

(
a1

tan2 θw
+ a2 tan2 θw

)
ZµνZ̃

µν + e2 (a1 + a2)FµνF̃
µν+

+ 2e2

(
a1

tan θw
− a2 tan θw

)
AµνZ̃

µν .

(7.30)

Using this result, the axion couplings to gauge bosons are given by

La,gb =− αs
8π

a

fa
caggG

a
µνG̃

µνa − αem
8π

a

fa
caWWW

+
µνW̃

µν−−

− αem
8π

a

fa
caγγFµνF̃

µν − αem
8π

a

fa
caZZZµνZ̃

µν − αem
8π

a

fa
caγZFµνZ̃

µν

(7.31)

where

caW+W− = 2caW iW i ,

caγγ = caW 3W 3 + caBB,

caZZ =
1

tan2 θw
caW 3W 3 + tan2 θw caBB,

caγZ = 2
1

tan θw
caW 3W 3 − tan θw caBB.

(7.32)

The table 7.2 shows the numerical results of the couplings caii considering
the charge assignments of the previous section.

7we are considering here only the pure kinetic part of W 3
µνW

µν3 because we are inter-
ested to the coupling of the axion with two gauge bosons and the self-interaction between
gauge bosons would give rise to a coupling of the axion with more than two gauge bosons
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We now turn to the coupling with the heavy fermions. We show the
calculation for one fermion species, as the generalization to the others is
trivial8:

LψL = +ψ̄
(
i /D −M5

)
ψ − y1ψ̄LφχR − z5ψ̄RψLs− z̃5ψ̄RψLs

∗ + h.c. (7.33)

Under (7.25) the Lagrangian gets modified as follows

LψL →LψL + nψL
∂µa

2fa
ψ̄γµγ5ψ + inψL

a

fa
M5ψ̄LψR+

+ iy1 (nψL − nχR)
a

fa
ψ̄LφχR − iz5 (nψL + ns)

a

fa
ψ̄RψLs

− iz̃5 (nψL − ns)
a

fa
ψ̄RψLs

∗ + h.c.

(7.34)

where we have used the fact that

− nψL
∂µa

fa
ψ̄Lγ

µψL = nψL
a

fa
∂µ
(
ψ̄Lγ

µψL
)

=

= −nψL
a

2fa
∂µ
(
ψ̄γµγ5ψ

)
= nψL

∂µa

2fa
∂µ
(
ψ̄γµγ5ψ

)
.

(7.35)

7.5 The Scalar Potential

The full scalar potential, as stated in the previous chapter, is given by

V (h, σ, r) = λ
(
h2 + σ2 − f2

)2
+λs

(
r2 − f2

s

)2−λsφr2
(
h2 + σ2

)
−βf2h2+γh4

(7.36)
where −βf2h2 +γh4 are introduced to absorb the divergences arising from
the one loop CW potential. The VEVs are found by solving the equations

∂V

∂h
= 4λh

(
h2 + σ2 − f2

)
− 2βf2h+ 4γh3 − 2λsφr

2h = 0

∂V

∂σ
= 4λσ

(
h2 + σ2 − f2

)
− 2λsφr

2σ = 0

∂V

∂r
= 4λsr

(
r2 − f2

s

)
− 2λsφr

(
h2 + σ2

)
= 0.

(7.37)

The result reads

v2
h =

β

2γ
f2

v2
σ =

(
1−

λ2
sφ

4λλs

)−1 [
f2

(
1− β

2γ
+

β

2γ

λ2
sφ

4λλs

)
+
f2
s

2

λsφ
λ

]

v2
r =

(
1−

λ2
sφ

4λλs

)−1 [
f2
s +

f2

2

λsφ
λs

]
≡ f2

a

(7.38)

8We will omit the superscript (2/3).
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where with the last equation we mean that the scale fa defined in (7.1) is
exactly the VEV vr. In this way the kinetic term arising after the SSB from
the coupling

r2

2f2
a

∂µa∂
µa (7.39)

is canonically normalized. Assuming all parameters non vanishing we need to
take into account some physical constraints on the parameters. In particular:

• it is needed that λ > 0 and λs > 0, as it is appropriate for all the spon-
taneously symmetry breaking potentials, in order to have a potential
bounded from below;

• the positivity of v2
h, v

2
σ, v

2
r implies that β and γ have to have the same

sign and
λ2
sφ < 4λλs; (7.40)

• by fixing the Higgs VEV vh = 246GeV, we can extract, from the
experimental bound on the ξ parameter ξ = v2/f2 < 0.18, a bound on
the ratio β/γ:

β

γ
= 2ξ < 0.36. (7.41)

We can now write the Lagrangian in terms of the physical fields
h = ĥ+ vh

σ = σ̂ + vσ

r = r̂ + vr

(7.42)

in order to read the mass eigenvalues and eigenstates. The general solution
can be studied only numerically; on the other hand simple analytic expres-
sions can be obtained in two specific frameworks:

• integrating out the heaviest scalar degree of freedom, that is the radial
scalar field r̂, and studying the LO terms of the Lagrangian;

• assuming fs ∼ f , expanding perturbatively in the small β, λsφ param-
eters.

We start from the integration of the heavy field r. For this purpose we
notice that the mass of the heaviest scalar receives a leading order (LO)
contribution proportional to:

m3 ∝
√

8λsfs. (7.43)

We see that there are two ways to integrate out the r̂ field that represent
two physically different scenarios:
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• we can integrate out by expanding r̂ in powers of 1
λs

assuming λs >> 1,
that corresponds to assume an UV strong interacting regime. Moreover
in this regime, as the Yukawa couplings with the exotic fermions do not
depend on λs, the decoupling of the field r̂ does not have any impact
on the spectrum of the exotic fermions, that are still present in the low
energy spectrum;

• we can also integrate out the field r̂ by assuming fs � f . In this
second scenario, as the mass of the heavy fermions depends on fs, the
exotic fermion sector decouples at the same time as the heaviest scalar
field.

Before analysing the two cases separately, it is useful to look at what happens
in general when we integrate out the heavy field r̂, and then to detail the
discussion to the two specific cases. Integrating out the heavy field r̂ leads,
in the scalar sector, to an effective potential that, at the leading order in the
appropriate expansion parameter, can be written as

V LO
R = λR

(
h2 + σ2 − f2

R

)2 − βRf2
Rh

2 + γh4 (7.44)

where
λR = kλλ, βR =

kλ
kf
β, f2

R =
kf
kλ
f2. (7.45)

We notice that βRf2
R = βf2, that is the h2 (and h4 as well) term is not

renormalized by the integration, as one expects since they do not depend on
the field r̂. The VEVs read

v2
h =

βR
2γ
f2
R, v2

σ = f2
R

(
1− βR

2γ

)
. (7.46)

Defining the physical fields

h = ĥ+ vh, σ = σ̂ + vσ (7.47)

we can extract from (7.44) the mass matrix

Vmass =
(
4λRv

2
h + 4γv2

h

)
ĥ2 +

(
4λRv

2
σ

)
σ̂2 + (8λRvhvσ) ĥσ̂ =

=
1

2

(
ĥ σ̂

) [
8λR

(
(1 + γ/λR) v2

h vhvσ
vhvσ v2

σ

)](
ĥ
σ̂

) (7.48)

where we have used βRf2
R = 2γv2

h. The mass eigenstates are therefore

m2
1,2 = 4λR

(1 +
γ

λR

)
v2
h + v2

σ ±

√(
1 +

γ

λR

)2

v4
h + 2

(
1− γ

λR

)
v2
hv

2
σ + v4

σ


(7.49)
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while the mixing angle is given by

tan 2θ =
2vhvσ

v2
σ − (1 + γ/λR) v2

h

. (7.50)

The positivity of the mass square eigenvalues is guaranteed by imposing that
trace and determinant of the mass matrix are both positive. This, together
with the fact that we must have v2

h > 0, leads to the conditions:

λR > 0 γ > 0 βR > 0. (7.51)

We can now explore in detail the two limits λs � 1 and fs � f separately.
Starting by λs � 1, the appropriate expansion of the r field in terms of λs
reads

r = r0 +
1

λs
r1 + o

(
1

λs

)
. (7.52)

where r0 and r1 are found by solving the equation of motion for r̂ order by
order in λs. The equation of motion is

�r +
r

f2
s

∂µa∂
µa− 4λsr

(
r2 − f2

s

)
+ 2λsφr

(
h2 + σ2

)
= 0. (7.53)

Putting (7.52) in (7.53) we find

λ1
s : r2

0 = f2
s ,

λ0
s :

1

fs
∂µa∂

µa− 8f2
s r1 + 2λsφfs

(
h2 + σ2

)
= 0 =⇒

r1 =
1

8f3
s

∂µa∂
µa+

λsφ
4fs

(
h2 + σ2

)
.

(7.54)

Using (7.52) and (7.54), we can see that the LO potential is of the form
(7.44) with

kλ = 1 kf =

(
1 +

1

2

λsφ
λ

f2
s

f2

)
. (7.55)

On the other hand, the next to leading order (NLO) Lagrangian reads

δLs =
1

λs

[
1

fs
r1∂µa∂

µa− 4f2
s r

2
1 + 2λsφfsr1

(
h2 + σ2

)]
=

1

λs
4f2
s r

2
1. (7.56)

The positivity of f2
R translates into a constraint on the coupling λsφ:

λsφ > −2λ
f2

f2
s

. (7.57)
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In the limit λs � 1 the masses the mixing angle are

m2
1,2 = 4λf2

[
kf +

β

2λ
±

√
k2
f −

β

λ
kf +

β2

γλ
+

β2

4λ2

]
,

tan 2θ =

√
2β
(
kf − β

2γ

)
√
γ
(
kf − β

γ −
β
2λ

)
(7.58)

with kf given by (7.55); in the limit for small β, these formulas reduce to

m2
1 = 4βf2

(
1− β

2γ

)
,

m2
2 = 8λf2

(
1 +

β2

4γλ

)
+ 4λsφf

2
s ,

tan 2θ =

√
2β

γ

(
1− β

2γ

)
.

(7.59)

We now turn to the other relevant limit, fs � f . In order to perform
the calculation, it is useful define the dimensionless variable r̃

r = fsr̃. (7.60)

In terms of r̃ the scalar Lagrangian reads

L ∼ f2
s

2
∂µr̃∂

µr̃ +
r̃2

2
∂µa∂

µa− V (h, σ, r) (7.61)

and

V (h, σ, r) ∼ λ
(
h2 + σ2 − f2

)2
+ λsf

4
s

(
r̃2 − 1

)2 − λsφf2
s r̃

2
(
h2 + σ2

)
(7.62)

where the ∼ symbols mean that we have neglected the kinetic terms of h and
σ, the h2 and h4 terms because they will not participate in the subsequent
discussion. The EOM (7.53) then becomes

f2
s�r̃ + r̃∂µa∂

µa− 4λsf
4
s r̃
(
r̃2 − 1

)
+ 2λsφf

2
s r̃
(
h2 + σ2

)
= 0. (7.63)

The appropriate expansion parameter is f/fs therefore the r̃ expansion in
this case reads

r̃ = r̃0 +
f

fs
r̃1 +

f2

f2
s

r̃2 + · · · (7.64)

Putting (7.64) in (7.63) we find:

r̃0 = 1,

r̃1 = 0,

r̃2 =
λsφ

4λf2
(h2 + σ2).

(7.65)
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Now we can return to the dimensionless r:

r ≡ fsr̃ = fsr̃0 +
f2

f2
s

r̃2 + · · · ≡ r0 +
f

fs
r1 + · · · (7.66)

where
r0 = fs,

r1 =
λsφ

4λsf
(h2 + σ2),

(7.67)

Therefore the first order contributions to kλ and kf in the limit fs � f are

kλ =

(
1− 1

4

λ2
sφ

λλs

)

kf =

(
1 +

1

2

λsφ
λ

f2
s

f2

) (7.68)

while the NLO Lagrangian reads

δLNLOs =
λsφ
4λs

h2 + σ2

f2
s

[
(∂µa)(∂µa) +

λsφ
4λs

(h2 + σ2)2

]
+

+
λ2
sφ

32λ2
sf

2
s

∂µ(h2 + σ2)∂µ(h2 + σ2).

(7.69)

In the limit fs � f (that is, kf � 1) the expressions for the two lightest
mass eigenvalues and for their mixing read

m2
1 = 4βf2

(
1− β

γ

λ

λsφ

f2

f2
s

)
, (7.70)

m2
2 = 4λsφf

2
s

(
1 + 2

λ

λsφ

f2

f2
s

)
, (7.71)

tan 2θ = 2

√
β

γ

λ

λsφ

f

fs
(7.72)

where we have assumed for simplicity λsφ � 4λλs.
It is also possible to study analytically the particle spectrum without

integrating the field r, by assuming fs ∼ f and β, λsφ � 1. A straightforward
calculation shows that in this limit the mass matrix reads

2f2


4(γ + λ) β2γ 4λ

√
β
2γ −

β2

4γ2
0

4λ
√

β
2γ −

β2

4γ2
4λ(1− β

2γ ) + 2λsφ
f2s
f2

−2λsφ
fs
f

0 −2λsφ
fs
f 4λs

f2s
f2

+ 2λsφ

+O(βλsφ, λ
2
sφ).

(7.73)
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Now, the eigenvalues equation for a symmetric matrix

S =

a d 0
d b e
0 e c

 (7.74)

is

x3 − Tr[S]x2 + (ab+ bc+ ac− d2 − e2)x+ cd2 + ae2 − abc = 0. (7.75)

In our case e2 ∝ λ2
sφ so we can neglect it and the eigenvalues are

m2
1 =

1

2

(
a+ b−

√
(a− b)2 + 4d2

)
= 4βf2

(
1− β

2γ

)
+O

(
β3, β2λsφ

)
m2

2 =
1

2

(
a+ b+

√
(a− b)2 + 4d2

)
= 8λf2

(
1 +

1

2

λsφ
λ

f2
s

f2

)
+O

(
β2, βλsφ, λ

2
sφ

)
m2

3 = c = 8λsf
2
s

(
1 +

1
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(7.76)

while the mixing angles are given by

tan 2θ12 ∼
2d

b− a
∼

√
2β

γ
(1 +O (β, λsφ)) ,

tan 2θ23 ∼
2e

c− b
= λsφ

ffs
λf2 − λsf2

s

(
1 +O

(
βλsφ, λ

2
sφ

))
.

(7.77)

The analytic results of these two limits will be compared with the numerical
results in the next section.

7.6 Numerical Analysis

The previous analysis has been done by integrating out the field r. If we
want to analyse the complete scalar particle spectrum, a numerical analysis
is needed. In general, the scalar mass matrix M2

s is real and it has to be
diagonalised by an orthogonal transformation

diag(m2
1,m

2
2,m

2
3) = U(θ12, θ13, θ23)TM2

s U(θ12, θ13, θ23) (7.78)

where θij is the rotation angle in the (i, j) sector. The corresponding scalar
mass eigenstates ϕ1, ϕ2, ϕ3 are defined byϕ1

ϕ2

ϕ3

 = U(θ12, θ13, θ23)T

ĥσ̂
r̂

 . (7.79)



Numerical Analysis 89

We can identify the eigenvector with the lowest mass, ϕ1, with the Higgs
particle; just like the MLσM, the coefficients of the mixing provide a mod-
ification of the SM Higgs couplings. In particular, the ϕ1 couplings to SM
gauge bosons can be deduced from the couplings of ĥ, as σ̂ and r̂ are singlets
under the SM gauge group. The composition of ĥ in terms of ϕi is given by:

ĥ = c12c13ϕ1 + c13s12ϕ2 + s13ϕ3 ≡ C1ϕ1 + C2ϕ2 + C3ϕ3 (7.80)

where cij ≡ cos θij , sij ≡ sin θij and we have defined the coefficients Ci for
shortness. In this way, the couplings with the SM gauge bosons in terms of
the physical fields read

g2

4
v2
h

(
ĥ

vh
+ 1

)2

W+
µ W

µ− = m2
W

(
C1
ϕ1

vh
+ C2

ϕ2

vh
+ C3

ϕ3

vh
+ 1

)2

W+
µ W

µ−,

(7.81)

g2 + g′2

8
v2
h

(
ĥ

vh
+ 1

)2

ZµZ
µ =

m2
Z

2

(
C1
ϕ1

vh
+ C2

ϕ2

vh
+ C3

ϕ3

vh
+ 1

)2

ZµZ
µ

(7.82)
therefore the couplings of the Higgs particle are modified by a factor of C1.
Clearly, when we integrate out the heaviest field r, we expect C1 ∼ 1+O(ε),
thanks to the mechanism of the vacuum misalignment.

We can now turn to analyse the scalar potential parameter space. The
scalar potential possesses 7 independent parameters: 5 dimensionless coeffi-
cient λ, λs, β, γ, λsφ and two scales f, fs. Actually, by fixing the Higgs VEV
and the Higgs mass to their experimental values, we can express the β and
γ parameters as functions of the remaining 5 parameters λ, λs, λsφ, f, fs.
In this numerical analysis we have taken f = 2TeV that corresponds to
ξ ∼ 0.015, well inside the experimental bound on ξ ≡ v2/f2 < 0.18. By
varying the values of the remaining 4 parameters we have studied the be-
haviour of the masses m2,m3 and of the coefficients C1, C2, C3. In Fig. 7.1
the masses m2,3 are shown as a function of λsφ (upper left), λ = λs (upper
right) or λ (lower). In all the plots we have considered three different val-
ues of fs, fs = 1TeV, fs = 103 TeV, fs = 106 TeV. In the upper left plot
we have taken λ = λs = 10, and the numerical results follow the analytic
expressions found in the previous section: in particular m3, represented by
the red dashed line, is independent from λsφ as expected from (7.43); m2,
represented by the blue continue line, shows an increasing behaviour with
a constant slope, according to (7.59). We notice that, for fs = 1TeV, the
roles of the eigenstates are exchanged: m2 becomes the highest eigenvalue.
In the upper right plot we have chosen λsφ = 0.1 and λ = λs. The brown
area is excluded from the constraint in (7.40). In the proximity of it, the
factor [1−λsφ/(4λλs)]−1 becomes wider and the analytic prediction given by
(7.59) deviates from the numerical result. Away from it, the red dashed line
well represents the linear behaviour given by (7.43), the blue continue one
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is constant, as expected from (7.59). Also here, for fs = 1TeV, m2 becomes
the highest eigenvalue. Finally, in the lower plot we have taken λsφ = 0.1
and λs = 10. We can see that, according to (7.43), m3 is independent from
λ; on the other hand m2, according to (7.59), is almost independent from λ
for large fs and has a linear dependence for fs ∼ f .

The behaviour of the mixing coefficients C2
1 , C

2
2 , C

2
3 is shown in Fig. 7.2

where two different plots are shown corresponding to the values of fs =
1TeV, fs = 3TeV. The green-dot-dashed line describes C2

1 , the blue-continue
line C2

2 and the red-dashed line C2
3 . As expected, in both the plots C1 ∼ 1,

i.e. the largest contribution to ĥ is given by ϕ1. The contributions to ĥ
given by ϕ2, ϕ3 are much smaller, at the level of 1% at most. This features
are shared throughout the parameter space. The only difference is that, for
fs > f , the largest contamination is given by φ2, while for fs < f is given
by ϕ3, as it is confirmed by (7.77).

7.7 QCD Axion or ALP? A Fine-Tuning Problem

In this section we will compare the prediction given by the MAMLσM with
the present axion data in order to investigate the possibility to associate the
angular part of s to a QCD axion or a more massive ALP. ALPs appear in
many models of BSM physics, such as string theory, as pNGBs associated to
the breaking of U(1) symmetries. The properties of these particles are similar
to that of axions, but their mass and coupling to photons are not related,
making the corresponding parameter space larger than the axion case. On
the other hand, QCD axions must satisfy more stringent conditions. In
particular, in the case of QCD axion, the axion mass ma and the SSB scale
fa are related by

mafa ≈ mπfπ (7.83)

where mπ ∼ 135MeV is the pion mass and fπ ∼ 94MeV is the pion decay
constant. The axion coupling to photons is bounded from both astrophysical
and terrestrial data and they depend on the axion mass. This upper bounds
can be summarized as

|gaγγ | . 7 · 10−11 GeV−1 for ma . 10meV,

|gaγγ | . ·10−10 GeV−1 for 10meV . ma . 10 eV,

|gaγγ | � ·10−12 GeV−1 for 10 eV . ma . 0.1GeV,

|gaγγ | . ·10−3 GeV−1 for 0.1GeV . ma . 1TeV.

(7.84)

In the MAMLσM model9

gaγγ =
αem
2π

caγγ
fa

(7.85)

9We have set the VEV fs
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Figure 7.1: In the graphics we have shown the profiles of the scalar masses
m2,3 as a function of λsφ (upper left) λ = λs (upper right) and λ (lower). The
red-dashed line represents the heaviest scalarm3, while the blue-continue line
the next-to-heaviest with mass m2. Three different values of fs are shown:
fs = 1TeV, fs = 103 TeV, fs = 106 TeV [17].
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Figure 7.2: The profiles of the coefficients squared C2
1 , C2

2 , C2
3 as a function

of λ = λs. The other parameters are chosen at fixed values: f = 2TeV,
λsφ = 0.1, fs = 1TeV on the left and f = 2TeV, λsφ = 0.1, fs = 3TeV on
the right. The green-dot-dashed line describes C2

1 the blue-continue line C2
2

and the red-dashed line C2
3 . The brown area is excluded from the constraint

in (7.40) [17].

where caγγ = 112/3, therefore the bounds in (7.84) are translated in bounds
on the scale fa:

fa & 2 · 107 GeV for ma . 10meV,

fa & 107 GeV for 10meV . ma . 10 eV,

fa � 109 GeV for 10 eV . ma . 0.1GeV,
fa & 1GeV for 0.1GeV . ma . 1TeV.

(7.86)

From astrophysical data we know that the axion mass has to belong to
the meV−eV window. It follows that, in this model, a consistent QCD axion
can only be generated if the scale fs10 associated to the SSB of the U(1)PQ
symmetry is

fs > 3.7× 108 GeV. (7.87)

The resulting axion is therefore an invisible axion, as such a large fs scale
strongly suppresses all the couplings with SM fermions and gauge bosons,
preventing any possible detection at colliders or at low-energy (flavour) ex-
periments. The difference between the traditional axion models resides par-
tially in the couplings caγγ and cagg for which the MAMLσM predicts a very

10We are confusing the axion scale fa with the VEV of the radial component r, as they
are related by (7.38), and are similar in first approximation.
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sharp value for the ratio:
caγγ
cagg

=
14

3
. (7.88)

For much lighter values of the fs scale, instead, the astrophysical bounds
on gaγγ can be satisfied only assuming that the axion mass and its charac-
teristic scale fs are not correlated. This corresponds to the ALP scenario:
differently from the QCD axion, an ALP has a mass that is independent from
its characteristic scale fs, because of the additional sources of soft symme-
try breaking. Therefore in this scenario, as the PQ symmetry is not exact,
the strong CP problem could not be solved. In this case, consistent val-
ues for the ALP mass and the fs scale that pass the astrophysical bounds
are ma ∼ 1GeV and fs ∼ 200TeV. Also, with these values the ALP can
evade detection at colliders, because of its decay into gauge bosons inside
the detector [17].

However, as we now show, we do not have the freedom to fix both
the scales f and fs, unless fine-tuning the parameter λsφ. We have seen,
eq. (7.38), that the scale f is renormalized by a factor

√
λsφfs. This means

that, unless of adjusting λsφ ad hoc, (and this seems to be too artificial) f is
pushed near the upper scale fs. Therefore if we want to keep f in the TeV
range in order to not invalidate our solution to the Naturalness problem,
we are forced to set fs at the same scale. But then, as this value does not
satisfies (7.87), the strong CP problem cannot be solved. In particular, the
σ particle has to be regarded as an ALP, rather than an axion so that it
has not to satisfy the bound (7.87). We notice that the problem cannot be
avoided: also taking λsφ = 0 at a Lagrangian level, the contributions arising
at one-loop level would give it back, with a value considerably different from
zero, differently from the analysis performed in the KSVZ model. This is
due to the fact that the couplings responsible of the mixing between heavy
fermions and SM fermions (the Λ’s) act as a portal between the s and φ sec-
tors. On the other hand, in the original KSVZ model the problem does not
arise because heavy and SM fermions are decoupled (at tree-level) and the
only way that have to interact is through gluons, as we have seen previously.

The previsions given by the model for the NGB nature of the Higgs
translate, just like in the MLσM, in a modification of the Higgs couplings
to gauge bosons by a factor of C1, the analogue of cos γ in the MLσM.
Moreover, as the mass of the exotic fermions, arising after the SSB of the s
particle, is controlled by fs, a large fs allows to rely on the partial fermion
compositeness in order to explain the Yukawa hierarchy.
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Conclusions: Coming Soon!

In this thesis we have analysed some attempts to extend the SM Lagrangian
in order to solve the Naturalness and the strong CP problem. In particular,
in the first part we have studied a MLσM [16] in which the Higgs arises a
pNGB of a SSB SO(5)/SO(4). This is enough to explain the lightness of
the Higgs mass, providing a solution to the hierarchy problem. The model
mimics a class of models, known as composite Higgs models, in which the
Higgs arises as a bound state of a new strong force. Nevertheless, unlike the
CHMs, the theory is renormalizable and UV complete. This keeps open two
possibilities: either the theory is weakly coupled or it is strongly coupled.
In the latter case, with the σ particle integrated out, the model falls in the
category of the non-linear realizations and the Higgs arises as a bound state.
On the other hand, even though the theory is UV complete, the weakly
coupled regime would necessitate further explanations, as the Naturalness
problem for the Higgs mass has replaced with that of the σ particle.

The scalar sector of the theory contains the fiveplet φ, whose components
can be associated to the three longitudinal polarization of the gauge bosons,
the Higgs particle and the σ particle. In particular, its potential depends
on four independent parameters, that can be parametrized by the Higgs
mass mh, the EWSB scale v, the σ particle mass mσ and the mixing angle
sin γ. Fixing mh and v to their experimental values the parameter space is
completely defined by the pair (mσ, sin γ). Following [16] we have identified
the area in the (mσ, sin γ) plane in which the Higgs can be interpreted as a
pNGB, taking into account also the experimental bounds on sin γ. In fact, we
have seen how the pNGB nature of the Higgs translates in a modification of
the Higgs couplings to gauge bosons with respect to the SM predicted values.
In particular, the Higgs couplings to W and Z are weighted down by cos γ.
Moreover, just like the CHMs, the model provides an explanation of the
Yukawa hierarchy, relying on the partial fermion compositeness mechanism.
This has been achieved by adding in the particle spectrum a set of new
vector-like heavy fermions that couple to the scalar fiveplet φ, through SO(5)
invariant interactions, and to (the third generation of) SM fermions, through
SO(5) breaking terms. Moreover, the soft breaking of the SO(5) symmetry
in the fermionic sector, through the α and β parameters, makes the Higgs a
pNGB, rather than a NGB, giving it a mass. In particular, we have chosen
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the parameters in order to absorb the divergences generated from the one-
loop Coleman-Weinberg potential. Finally, we have calculated the h and
σ decays into two gluons. The former is dominated by the top quark for
very heavy fermions, matching in this way the prediction given by the SM.
On the other hand, the heavy sector has a more significant impact on σgg
transitions.

In the second part we have dealt with some aspects of the strong CP
problem and discussed one of the most convincing solution to it, the axions.
In fact, after the SSB of the U(1)PQ symmetry, the axion VEV provides
a dynamical adjustment of the θ parameter. After a short review on the
different ways to introduce axions in a BSM Lagrangian, we have focussed
on the so-called KSVZ model. In particular, following the paper [17], we
have analysed the possibility to extend the MLσM for the Goldstone Higgs
by adding a scalar field s, singlet under the whole SO(5), and extending
the SSB pattern of the MLσM with a further U(1)PQ symmetry in order to
solve the strong CP problem. The possibility is suggested from the fact that
the heavy fermionic sector can allow to rotate away the QCD θ term, just
like in the KSVZ model. In this model the content of the fermionic sector
is the same as the MLσM, with the difference that now the heavy fermions
couple to s, as well. These interactions provide also a mass for the heavy
fermions, which arises after the SSB of the s particle. On the other hand,
the presence of the scalar particle s enlarges the scalar particle spectrum
and the potential now depends on 7 parameters: the two SSB scales f and
fs, the couplings λ, λs, λsφ and the two parameters β and γ arising from
the Coleman Weinberg mechanism through the fermionic sector. Moreover,
introducing few general requirements, we have seen that this is the potential
with the minimal number of parameters needed to absorb the divergences
generated by the CW potential. Following [17], we have obtained analytic
expressions for the scalar masses by integrating out the highest degree of
freedom in two limits: fs � f and λs � 1. The latter limit corresponds to
the strongly interacting regime. Furthermore, we have also calculated the
masses in the regime fs ∼ f in the limit of small parameters β, λsφ � 1.
These limits have served to compare them with the numerical analysis of
the parameter space. This latter analysis has been done by identifying 2
parameters with the physical Higgs mass and the Higgs VEV, just like in
the MLσM, and varying the remaining 5 [17].

The analytical and numerical analysis of the parameter space show that
for f, fs > 1TeV the heaviest scalar degrees of freedom are unlikely to give
signals at the present and future LHC run. On the other hand, the non-
linearity of the EWSB mechanism, as in the MLσM, leads to deviations
from the SM predictions in Higgs and gauge boson sectors that are more
experimentally viable in the future.

Finally, we have investigated the possibility to associate the (angular part
of the) scalar particle s either to an axion or to a more massive ALP. In the
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first case the axion mass is expected in the [meV, keV] range. This, together
with the strong bounds present on the axion coupling to two photons, prevent
the axion scale fa ∼ fs to be less than 108 GeV. The trouble is that, in this
case, unless fine-tuning λsφ, the scales f and fs, because of this parameter,
are unavoidably related and the lower scale f is pushed near the upper
scale fs. In particular, this is due to the tree-level couplings between SM
fermions and heavy fermions, which are not present in the original KSVZ
model. In the latter we saw how this prevents λsφ from taking large quantum
corrections. This means that, since the solution to the Naturalness problem is
valid only if f is in the low TeV range, the price to retain valid the MAMLσM
as possible explanation to it is to lower our claim on the solution of the strong
CP problem: we cannot rely on a large fs anymore and, as the present axion
data prevent fs from being less than ∼ 108 TeV, if we want to keep fs
lower than this value we are forced to regard (the angular part of) s as a
more massive ALP, rather than an axion. In fact, the ALPs are free from
cosmological bounds and a more massive 1 GeV ALP with an associate scale
of ∼ 200 TeV range is possible. However, as we have outlined, the ALP
hypothesis could be of no help in addressing the strong CP problem.

The Naturalness problem and the strong CP problem are without doubt
two of the most studied puzzles in particle physics and two of the most
strong motivations in searching physics BSM. These questions share the same
underlying guiding idea: nothing is by chance. However, we are not at all
sure if these problems are really problems. After all there could be anthropic
reasons explaining why these numbers are so small. Actually, the anthropic
hypothesis seems to be available for the Naturalness problem but not for the
strong CP problem. As discussed by Peccei and Wilczek, in fact, a Universe
where CP is violated strongly seems as viable as a Universe where it is not.

The history has often taught that behind some philosophical questions
there are physical answers. Beyond the personal opinions, one thing is cer-
tain: at least for the Naturalness problem, time has come for the question
to be settled by experimental data.
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