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Introduction

In this thesis we face from a mathematical point of view the ecology is-
sues of stability and complexity of ecosystems and underline the relevance of
discussing their relation when studying living networks, where interactions
between species are of fundamental importance in the evolution of the sys-
tem.
Chapter 1: in the first chapter we will hark back to Robert May’s work,
which was an analytical investigation of complex systems using the mathe-
matical tool of random matrices in the limit when the number of species n is
large, and we will see that his studies led to a well defined result: any large
complex ecosystem, as the number of species gets large or for increasing
values of connectance, tends to be unstable.
The question is that this result is in stark contrast with the empirical evi-
dence because, in reality, many biodiversity-rich ecosystems exist. Hence we
will find that we cannot model natural networks assuming random variables
but we have to use stochastic methods or add some extra hypothesis over
the model.
Chapter 2: This last solution will be our approach in the second chapter
of this thesis, where, as shown in [1], we will focus on large sparse ecosys-
tems, so networks with a large number of species where the interactions
between them are few, and we will model this ecology problem mathemati-
cally using the random matrix theory: we will describe the system using a
Lotka-Volterra system of coupled differential equations and face the ques-
tion of feasibility, i.e. the problem of finding a solution with no vanishing
species.
We will see that, working under the extra block-structure assumption over
the matrix of interactions under study, there exists an explicit threshold,
depending on the considered parameters and reflecting the strength of the
interactions, which guarantees the existence of a positive equilibrium as the
number of species gets large.
Chapter 3: Finally in the third chapter we will focus on the issue of stabil-
ity: we will investigate the conditions that guarantee the global stability of
the equilibrium solutions and see that feasibility and global stability occur
simultaneously.
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Chapter 1

Stability vs. complexity of
ecosystems

In this chapter we introduce the concept of complex systems, that are sys-
tems composed of many elements that interact with each other: first we
show that if we want to model them we have to analyze the interactions be-
tween species, and this idea leads us to consider a Lotka-Volterra system of
coupled differential equations; then we introduce Robert May’s work, that
is regarded as one of the most relevant in the development of theoretical
ecology since it was one of the first attempts to investigate the stability of
large ecosystems.

1.1 Complex ecosystems

The relation between complexity and stability of ecosystems is an issue of
scientific and mathematical interest since long time and it has often been
questioned in the investigation of the behavior of living systems.
Theoretical models evolved in order to account the interactions occurring
within individuals of the same species or of different ones: early studies
argued that increased complexity enhanced ecosystems stability, but these
results were then judged incomplete and heterogeneous by later studies,
which came to opposite conclusions, suggesting that simple ecosystems were
more stable than complex ones, as highlighted in [2].
Nowadays there are still many open questions because, in the attempt to
model living systems, we go towards various sets of problems, starting from
the possible different meanings of complexity and stability.
These two concepts can be analyzed from many points of view: when we will
consider a system, we will call it stable if all variables return to the initial
equilibrium after they’ve been perturbed from it; considering the complex-
ity of an ecosystem we could evaluate the species richness (the number of
species), the connectance (which can be defined as the ratio of the number
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of actual interactions and the number of all possible interactions), the in-
teraction strength (the mean magnitude of the interaction: the size of the
effect of the density of one species on the growth rate of another one) or
evenness (a measure of biodiversity which quantifies how equal the commu-
nity is numerically).
General living systems are affected by different degrees of complexity be-
cause they’re made up of many components interacting: the approach, when
we try to shed light on this type of problems, is not to follow the behavior of
each small constituent of the system, but to give a description of the global
phenomenon. This because a huge number of degrees of freedom would be
required to describe all the single individuals and because to understand the
system in its wholeness it is not enough to frame it as a sum of elements.
The central idea of this thesis is that to analyze dynamics of a complex
system, which is a system whose components are correlated to other ones
through networks, we have to investigate interactions, that are strongly
present and crucially shape the system’s evolution.

In living systems many species coexist together so interactions between dif-
ferent ones must be considered if we want to model them: this idea naturally
leads to the formulation of coupled and non linear dynamical systems and
this is why we will examine a Lotka-Volterra system of coupled differential
equations.
The Lotka-Volterra equations, also known as the predator–prey equations,
are a pair of first-order non linear differential equations, frequently used to
describe the dynamics of biological systems in which two species interact,
one as a predator and the other as prey. The populations change through
time according to the pair of equations:{

ẋ = (a− by)x

ẏ = (cx− d)y

with a, b, c, d ≥ 0.
The idea is that the two populations have growth rates that depend linearly
on the other one: when predators are too abundant preys will have a nega-
tive growth because of the intense predation, when preys are few, predators
will decay in number.
The Lotka-Volterra system was the archetypal model which pushed the idea
of studying ecosystems by the investigation of the network dynamics and it
was used by Robert May, who played a key role in the development of the-
oretical ecology through the 1970s and 1980s, in the attempt to understand
what makes an ecosystem stable.
In the following section we will hark back to these studies and will try to
investigate May’s paradox.



1.2. MAY’S WORK AND PARADOX 5

1.2 May’s work and paradox

The first attempt to investigate the stability of large ecosystems came from
Robert May, whose work is considered one of the most influential in theo-
retical ecology.
As we can see in [3], he analyzed the relation between stability and complex-
ity studying dynamics in the neighborhood of the equilibrium point and, by
Taylor expansion, he obtained the equation:

ẋ = Ax (1.1)

where x is the n × 1 column vector of the disturbed populations xj and
A = (ajk) is the n × n interaction matrix where the element ajk describes
the effect of species k on species j near equilibrium.
In this model he made some assumptions:

� he took the diagonal elements of A as aii = −1 for all i ∈ [n] =
{1, . . . , n}, meaning that, if disturbed from the equilibrium, each species
would return at it with a characteristic damping time equal to −1: so
when the species are isolated from the others the system would not
diverge;

� he assumed that A, instead of being computed from concrete data, is a
random matrix with connectance C, which is defined as the probability
that any pair of species would interact, probability which is measured
as the percentage of non zero elements in the matrix. So he postulated
that the non-diagonal elements of A are zero with probability 1 −
C, while with probability C they are drawn from a random number
distribution P, which is chosen to be of mean value 0 and mean square
value α, where α expresses the average interactions “strength”.

Therefore to study the stability of System (1.1), May searched for the eigen-
values of A with negative real part and found that the system is almost
certain stable (with P(n, α,C) → 1) if

α < (nC)−1/2

and almost certain unstable (with P(n, α,C) → 0) if

α > (nC)−1/2.

This result can be interpreted in two ways:

� for every fixed level of connectance C, if n is sufficiently large, we have
instability, and the transition form stability to instability is very sharp
for n ≫ 1;
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� for a fixed number of species n, the system is stable up to a certain
critical level of connectance C and then, as this increases, suddenly
becomes unstable.

This is what generates May’s paradox: he proved that any large complex
ecosystem, no matter the form of the random variables used, tends to be
unstable as the number of species gets large or for increasing values of con-
nectance, but this result disagrees with the empirical evidence because it is
unquestionable the existence of many biodiversity-rich ecosystems.
The critical point of his work is that natural ecosystems are not exactly
randomly selected ones. For simple systems, up to a certain degree, we can
see that stability and complexity are almost directly proportional: for exam-
ple, in the prey/predator model described by the Lotka-Volterra equations,
there are few species interacting with each other and in general this kind of
system tends to be unstable.
However, in reality, population dynamics are much more complex: they can
show fluctuations due to immigration and emigration of the population as
well as external forcing factors that can change from year to year including
the weather, the abundance of competitors and predators or the amount of
food available. Furthermore all natural ecosystems passed through millions
of years of natural selection, so they are characterized by the self-emergence
on very large scale of non trivial spatial structures, known as spatial patterns.
Therefore, since living systems are too large and complex to be approached
in a deterministic way, to give a more realistic description we should use
stochastic models and regard species interactions as the result of a long opti-
mization process. Hence, to model this problem, we will focus on the spatial
pattern of sparsity, which recent studies has highlighted to be widespread in
living systems, and we will see that for System (1.1), under the assumptions
of a sparse matrix A and with the extra hypothesis of being a block matrix,
properties of stability will be present only above a certain critical level of
connectance.



Chapter 2

Large sparse ecosystems

2.1 Preliminary notions

In this section we are going to introduce some definitions and to state some
propositions from matrix theory that will be crucial in the development of
our analysis.
We first recall two different operations between matrices: we will use them
in the following chapter to define the matrix that describes the interactions
between species.

Definition 2.1. (Hadamard product). For two matrices A and B of the
same dimension m×n, the Hadamard product A◦B is a matrix of the same
dimension as the operands, with elements given by: (A ◦B)ij = (A)ij(B)ij.

For example the Hadamard product for a 3×3 matrix A with a 3×3 matrix
B is: a11 a12 a13

a21 a22 a23
a31 a32 a33

 ◦

b11 b12 b13
b21 b22 b23
b31 b32 b33

 =

a11 b11 a12 b12 a13 b13
a21 b21 a22 b22 a23 b23
a31 b31 a32 b32 a33 b33


Definition 2.2. (Kronecker product). If A is an m× n matrix and B is a
p× q matrix, then the Kronecker product A⊗B is the pm× qn block matrix:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


In the following chapter we are going to analyze a Lotka-Volterra system
assuming some extra hypothesis over the matrix under study, so to explain
the characterization of the model we give two definitions and recall some
results from matrix theory that we will need.

Definition 2.3. (Adjacency matrix). An adjacency matrix is a square ma-
trix used to represent a finite graph. The elements of the matrix indicate
whether pairs of vertices are adjacent or not in the graph.
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Definition 2.4. (Hermitization matrix). The Hermitization matrix associ-

ated to a n× n matrix A is H(A) =

[
0 A
AT 0

]
.

Observation 2.1. H(A) has a symmetric spectrum; the singular values
of A, with associated left and right singular vectors u and v, are the non-

negative eigenvalues of H(A), with associated eigenvector w =

(
u
v

)
.

Moreover, since ∥A∥ is the largest singular value of A, it is the largest eigen-
value of H(A).

Observation 2.2. If v is a vector, then ∥v∥ is its Euclidean norm; if A

is a matrix then ∥A∥ stands for its spectral norm and ∥A∥F =
√∑

ij |Aij |2

is its Frobenius norm; if φ is a function from some space Σ to R, then
∥φ∥ = sup

x∈Σ
|φ(x)|.

We state a proposition that we are going to use in the development of our
analysis: we give an estimate of the spectral norm of ∆◦A√

d
.

Proposition 2.1. Assume that A is a n × n matrix with i.i.d. N (0, 1)
entries, that ∆ is a n × n adjacency matrix of a d-regular graph, that d ≥
log(n). Then there exists a constant κ > 0 independent from n (one can
take for instance κ = 22) such that

P
(wwww∆ ◦A√

d

wwww ≥ κ

)
−−−→
n→∞

0.

In particular, let δ ∈ (0, 1) be fixed and α = α(n) −−−→
n→∞

∞. Then

P
(wwww∆ ◦A

α
√
d

wwww ≤ 1− δ

)
−−−→
n→∞

1.

This result, which proof can be found in [4] and is crucially based on the
fact that dn ≥ log(n) and that the entries of A are N (0, 1), will be useful in
the following analysis because, under the hypothesis of the main theorem of
this thesis, this estimate will hold.

2.2 Feasibility of large sparse ecosystems

In this section we will first present the question of feasibility of the foodweb,
then we will state the main result of this thesis and we will give its proof.

We consider a large ecosystem (foodweb) with n species, where the abun-
dances follow a Lotka-Volterra system of coupled differential equations and
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we examine the question of feasibility of the foodweb, that is the existence
of an equilibrium solution of the system where no species disappears.
We assume that each species interacts with d = dn other species and that
their interaction coefficients are independent random variables.
We establish that for a given range of d there exists an explicit threshold,
depending on n and d and reflecting the strength of the interactions, which
guarantees the existence of a positive equilibrium as the number of species
n gets large and we use a Lotka-Volterra (LV) system to model a given food-
web with n species.
Let xn = (xk(t))k∈[n] be the vector of the abundances of the various species
at time t ≥ 0 and suppose that its components are connected by the coupled
equations:

dxk(t)

dt
= xk(t)

(
rk − xk(t) +

n∑
l=1

Mklxl(t)

)
for k ∈ [n],

where rk is the intrinsic growth of species k and M = (Mkl) is a large sparse
(mostly composed of zeros) random matrix, accounting for the interactions
between species.

At the equilibrium we have dxn
dt = 0 , so xn is solution of the system

xk(t)

(
rk − xk(t) +

n∑
l=1

Mklxl(t)

)
= 0 for xk ≥ 0 and k ∈ [n]. (2.1)

Our aim is to determine the existence of a feasible solution xn where all the
components of the vector of abundances are xk > 0 for all k ∈ [n] (that is a
scenario with no vanishing species). In this latter case System (2.1) becomes:

xk = rk +

n∑
l=1

Mklxl for xk > 0 and k ∈ [n].

Harking back to May’s work we consider intrinsic growths rk = 1 for all
k ∈ [n] so that the system under study will be:

dxk(t)

dt
= xk(t)

(
1− xk(t) +

n∑
l=1

Mklxl(t)

)
for k ∈ [n] (2.2)

and since we look for the equilibrium solution, by imposing dxk(t)
dt = 0 and

considering the positive solutions, we have that the system becomes:

xn = 1n +Mnxn,

where 1n is the n× 1 vector with components 1.
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As said before, we consider the parameter of connectance as the percent-
age of non-zero entries in the interaction matrix Mn and, supposing the
nature of interactions as random, we will see that, as claimed by May’s
complexity/stability theory, sparse ecosystems lead to stable equilibrium:
as highlighted by recent studies [5] foodwebs can be very sparse.
Living systems are composed of interacting entities, such as genes, individu-
als and species with the ability to rearrange and tune their own interactions
in order to achieve a desired output: several studies indicate that interaction
networks in living systems possess a non-random architecture characterised
by the emergence of recurrent patterns and regularities and, from the anal-
ysis of different biological networks, emerged that a widespread pattern is
sparsity, i.e. the percentage of the active interactions (connectivity) scales
inversely proportional to the system size.

Motivated by these studies we are going to focus on sparse ecosystems and
to encode this sparsity we consider a dn-regular graph with n vertices and
its associated n× n adjacency matrix ∆n = (∆ij):

∆ij :=

{
1 if there is an edge pointing from i to j,

0 otherwise.

In this graph each vertex has dn edges pointing from a vertex k ∈ [n] to
i, and has dn other edges pointing from i to a vertex l ∈ [n] therefore ∆n

has dn non-zero entries per row and per column and n× dn non-zero entries
overall.
We assume that the interaction matrix Mn is in the form:

Mn =
∆n ◦An

αn

√
dn

(2.3)

where An is a n × n matrix with independent Gaussian N (0, 1) entries,
∆ ◦ An = (∆ijAij) is the Hadamard Product between ∆n and An, (αn)n≥1

is a positive sequence.

Block permutation matrix model (BPMM)
To develop our analysis we want to give an extra structure to the system un-
der investigation: we assume that d ≥ log(n) (that is a necessary condition
if we want to work under the hypothesis of Proposition 2.1) and we suppose
that the matrix which describes the interactions between species is given by
(2.3) with the extra hypothesis that the matrix ∆n is a block-permutation
adjacency matrix defined as:

∆n = Pσ ⊗ Jd = (PijJd)i,j∈[m] (2.4)

where ⊗ is the Kronecker matrix product, Jd = 1d1
T
d is the d × d matrix

of ones and Pσ = (Pij)i,j∈[m] is the permutation matrix associated to a
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permutation σ ∈ Sm:

Pi,j =

{
1 if j = σ(i),

0 else.

Under these assumptions we are ready to state the main result of this thesis:

Theorem 2.1. Let An be a n×n matrix with i.i.d. N (0, 1) entries and ∆n

given by BPMM model; assume that αn −−−→
n→∞

∞ and denote by

α∗
n =

√
2 log n.

Let xn = (xk)k∈[n] be the solution of

xn = 1n +
1

αn

√
dn

(∆n ◦An)xn. (2.5)

Then

1. If there exists ε > 0 such that eventually αn ≤ (1− ε)α∗
n, then

P
{

min
k∈[n]

xk > 0

}
−−−→
n→∞

0,

2. If there exists ε > 0 such that eventually αn ≥ (1 + ε)α∗
n, then

P
{

min
k∈[n]

xk > 0

}
−−−→
n→∞

1.

Observation 2.3. We will assume αn → ∞ since, as highlighted in [6], a
feasible solution is unlikely to exist if αn ≡ α is a constant.

Observation 2.4. We are requiring dn ≥ log(n) and, since A’s entries are
N (0, 1), we are under the hypothesis of Proposition (2.1) which provides an
estimate of

∥∥∆◦A√
d

∥∥: it holds that for α = αn −−−→
n→∞

∞ and for fixed δ ∈ (0, 1)

P
(∥∥∥∥∆ ◦A

α
√
d

∥∥∥∥ ≤ 1− δ

)
−−−→
n→∞

1,

so the matrix In − ∆n◦An

αn
√
dn

is invertible.
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2.3 Proof of Theorem 2.1

In this section our aim is to prove Theorem 2.1.
The Equation under study is (2.5) and it can be rewritten it as(

I − ∆ ◦A
α
√
d

)
x = 1.

In the previous observation we showed that I − ∆◦A
α
√
d
is invertible so, calling

Q =
(
I − ∆◦A

α
√
d

)−1
, the equation becomes x = Q1.

We now recall the following property of the Neumann series: if T is a
bounded linear operator and the Neumann series converges in the opera-
tor norm, then I − T is invertible and its inverse is (I − T )−1 =

∑∞
l=0 T

l.

We know that, thanks to the normalization term 1√
d
, the term ∆◦A

α
√
d
has a

bounded norm, so the property of the Neumann series does hold, hence:

∞∑
l=0

(
∆ ◦A
α
√
d

)l

=

(
I − ∆ ◦A

α
√
d

)−1

= Q,

so Equation (2.5) becomes

xk = eTkQ1 =

∞∑
l=0

eTk

(
∆ ◦A
α
√
d

)l

1.

.
We define

Zk = eTk

(
∆ ◦A√

d

)
1 and Rk = eTk

∞∑
l=2

1

αl−2

(
∆ ◦A√

d

)l

1,

.
so we have

xk = 1 +
Zk

α
+

Rk

α2
. (2.6)

We observe that Zk are i.i.d. N (0, 1) and define M̂ = min
k∈[n]

Zk; so from

Equation (2.6) we get

1 +
1

α
M̂ +

1

α2
min
k∈[n]

Rk ≤ min
k∈[n]

xk ≤ 1 +
1

α
M̂ +

1

α2
max
k∈[n]

Rk. (2.7)

Now recall that α∗ =
√
2 log(n) and denote by β∗

n = α∗
n− 1

2α∗
n
log(4π log(n))

and G(x) = e−e−x
a Gumble distributed random variable.

Then, as shown in [6], it holds that

P(α∗
n(M̂n + β∗

n) ≥ x) −−−→
n→∞

G(x)
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and so M̂+β∗

α∗ = oP (1), namely P
(

M̂+β∗

α∗ ≪ 1

)
= 1.

We observe that

β∗
n

α∗
n

= 1 +
1

2α∗2
n

log(4π log(n)) = 1 +
1

4 log(n)
log(4π log(n)) −−−→

n→∞
1

and if we focus on the first inequality of System (2.7), we have that it holds
if and only if

1 +
α∗
n

αn

(
M̂

α∗
n

+
1

αnα∗
n

min
k∈[n]

Rk

)
= 1 +

α∗
n

αn

(
M̂ + β∗

n

α∗
n

− β∗
n

α∗
n

+
1

αnα∗
n

min
k∈[n]

Rk

)
and the same relation holds for the second inequality.
Thus in the limit when n → ∞, System (2.7) is

1 +
α∗
n

αn

(
oP (1)− 1 +

1

αnα∗
n

min
k∈[n]

Rk

)
≤ min

k∈[n]
xk (2.8)

≤ 1 +
α∗
n

αn

(
oP (1)− 1 +

1

αnα∗
n

max
k∈[n]

Rk

)
We now state the following:

Lemma 2.1. Under the assumptions of Theorem 2.1, the following conver-
gence holds:

maxk∈[n]Rk

αn

√
2 log(n)

P−−−→
n→∞

0 and
mink∈[n]Rk

αn

√
2 log(n)

P−−−→
n→∞

0.

Then, using this last Lemma and that oP (1) → 0 for n → ∞, from System

(2.8) we get min
k∈[n]

xk = 1− α∗
n

αn
.

Thus, searching for a feasible solution, we have that min
k∈[n]

xk > 0 if and only

if αn > α∗
n, that is equivalent to αn ≥ (1+ε)α∗

n for ε > 0, which is the thesis
of the theorem.

Our aim then will be proving Lemma 2.1. To do that we proceed by steps:

1. we prove the validity of replacing Rk with a truncated version R̃k:
here we will use the property of Sub-Gaussianity which follows from
Lipschitzianity and, since Rk(A) fails to be Lipschitz (it has quadratic
higher order terms), we provide a truncated version;

2. we prove that A 7→ R̃k(A) is Lipschitz, so that there exists a real
constant K such that

R̃k(A)− R̃k(B)
 ≤ K∥A−B∥F ;
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3. we give a uniform estimate for ER̃k(A), so we find a constant C > 0
such that sup

k∈[n]

ER̃k(A)
 ≤ C for all n ≥ n1;

and then we will have the tools to conclude the proof of Lemma 2.1.

1) Truncation

Consider Rk = eTk
∑∞

l=2
1

αl−2

(
∆◦A√

d

)l
1 and take η ∈ (0, 1) and κ as in Propo-

sition 2.1; we define the smooth function φ : R+ −→ [0, 1] such that

φ(x) :=

{
1 if x ∈ [0, κ+ 1− η],

0 if x ≥ κ+ 1.

Denote by

φd(A) := φ

(wwww∆ ◦A√
d

wwww)
then, according to Proposition 2.1, it holds that

P
(
φd(A) = 1

)
= P

(wwww∆ ◦A√
d

wwww ≤ κ

)
= 1− P

(wwww∆ ◦A√
d

wwww > κ

)
−−−→
n→∞

1.

So if we introduce the truncated value

R̃k(A) = φd(A)Rk(A)

then

P
(
max
k

Rk(A) ̸= max
k

R̃k(A)

)
≤ P

(
∃k ∈ [n], Rk(A) ̸= R̃k(A)

)
≤ P(φd(A) < 1)

≤ P
(wwww∆ ◦A√

d

wwww ≥ κ

)
−−−→
n→∞

0,

so we deduce that

maxk∈[n]Rk(A)−maxk∈[n] R̃k(A)

αnα∗
n

P−−−→
n→∞

0,

consequently to prove Lemma 2.1 it will be enough to prove that

maxk∈[n] R̃k(A)

αnα∗
n

P−−−→
n→∞

0. (2.9)

Analogous for the minimum.
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2) Lipschitz property
Denote by Rk(A) =

∑∞
l=2 ρk,l(A) and R̃k(A) =

∑∞
l=2 ρ̃k,l(A), where

ρk,l(A) = eTk
1

αl−2

(
∆ ◦A√

d

)l

1 and ρ̃k,l(A) = φd(A)ρk,l(A). (2.10)

We now state and give the proof of the following:

Lemma 2.2. Let κ > 0 as in Proposition 2.1, δ ∈ (0, 1) and n0 such that
∀n ≥ n0,

κ+ 1

αn
≤ 1− δ.

For l ≥ 2 and n ≥ n0, the function ρ̃k,l : Mn(R) → R is Kl-Lipschitz, i.e.ρ̃k,l(A)− ρ̃k,l(B)
 ≤ Kl∥A−B∥F ,

where Kl = Kl(κ, n0, δ) > 0 is a constant independent from k, d and n ≥ n0.
Moreover, K :=

∑
l≥2Kl < ∞. In particular, the function R̃k is K-

Lipschitz: R̃k(A)− R̃k(B)
 ≤ K∥A−B∥F .

Proof. The proof proceeds in three steps:

Step 1
First we consider the hermitization matrix of ∆◦A in the case whenH(∆ ◦A)
has a simple spectrum, i.e. each eigenvalue appears with multiplicity 1, so for
Observation 2.1 we know that ∥∆◦A∥ is the largest eigenvalue of H(∆ ◦A).

We compute : ww∇ρ̃k,l(A)
ww =

√√√√ n∑
i,j=1

∂ij ρ̃k,l(A)2

and

∂ij ρ̃k,l(A) = ∂ij
(
φd(A)ρk,l(A)

)
=

(
∂ijφd(A)

)
ρk,l(A) + φd(A)∂ijρk,l(A).

Therefore, defining S1,ij =
(
∂ijφd(A)

)
ρk,l(A) and S2,ij = φd(A)∂ijρk,l(A),

we have

n∑
i,j=1

∂ij ρ̃k,l(A)
2 ≤ 2

n∑
i,j=1

S1,ij

2
+ 2

n∑
i,j=1

S2,ij

2
.
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We first focus on the term S1,ij .

We compute

∂ijφd(A) =
1√
d
φ′
(wwww∆ ◦A√

d

wwww)
∂ij∥∆ ◦A∥.

Then if u and v are respectively the left and right normalized singular vectors
associated to the largest singular value ∥∆ ◦ A∥ of ∆ ◦ A, we know that

H(∆ ◦A)w = ∥∆ ◦A∥w, with w =

(
u
v

)
and ∥w∥ = 2.

Now we consider the following theorem, which proof can be found in [7]:

Theorem 2.2. Let B ∈ Mk and E = (eij) ∈ Mk and suppose that λ is a
simple eigenvalue of B. Let x and y be, respectively, right and left eigenvec-
tors of B corresponding to λ. Then λ(t) is differentiable at t = 0 and

dλ(t)

dt


t=0

=
yTEx

yTx
.

From this Theorem, denoting by ∂ij = ∂
∂Aij

, we deduce that ∥∆ ◦ A∥ is

differentiable and

∂ij∥∆ ◦A∥ =

{
1

∥w∥(u
Teie

T
j v + vTeje

T
i u) = uTeie

T
j v if ∆ij ̸= 0,

0 else.

Therefore

S1,ij =
(
∂ijφd(A)

)
ρk,l(A) =

uTeie
T
j v φ′

(
∥∆◦A∥√

d

)
1√
d
ρk,l(A) if ∆ij ̸= 0,

0 else.

Then, for i ∈ [n], we denote by

Ii = {j ∈ [n], ∆ij = 1}.

Note that card(I) = d (in our hypothesis each species interacts exactly
with d other species) and, remembering that u,v are unit vectors and the
definition of ρk,l(A), we have∑

i,j∈[n]

S1,ij

2
=

∑
i∈[n]

∑
j∈Ii

uTeieTj v φ′
(wwww∆ ◦A√

d

wwww)
1√
d
ρk,l(A)

2

≤
φ′

(wwww∆ ◦A√
d

wwww)
1√
d
ρk,l(A)

2 ∑
i∈[n]

|uTei|
∑
j∈[n]

|eTj v|

=

φ′
(wwww∆ ◦A√

d

wwww)
1√
d
ρk,l(A)

2

=

φ′
(wwww∆ ◦A√

d

wwww)
eTk

1

αl−2

(
∆ ◦A√

d

)l 1√
d

2

. (2.11)
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We observe that, since we are modeling the problem with ∆◦A block matrix
with only d non zero entries per row, then (∆ ◦A)l remains a block matrix
with only d non zero entries per row. We denote by

Jk,l =

{
p ∈ [n],

[
(∆ ◦A)l

]
kp

̸= 0

}
and by 1Jk,l the n × 1 vector with all zero entries except the ones corre-
sponding to Jk,l that are set to 1. It holds then that ∥Jk,l∥ =

√
d and that

eTk (∆ ◦A)l1 = eTk (∆ ◦A)l1Jk,l .
Then we observe that φ′(ww∆◦A√

d

ww)
= 0 if

ww∆◦A√
d

ww ≥ κ+ 1, soφ′
(wwww∆ ◦A√

d

wwww)2

≤ ∥φ′∥2∞.

.

Proceeding with (2.11), we haveφ′
(wwww∆ ◦A√

d

wwww)
eTk

(
∆ ◦A
α
√
d

)l−2(∆ ◦A√
d

)21Jk,l

√
d

2

≤
φ′

(wwww∆ ◦A√
d

wwww)2wweTk
ww2

wwww(
∆ ◦A
α
√
d

)l−2wwww2wwww∆ ◦A√
d

wwww4wwww1Jk,l

√
d

wwww2

≤ ∥φ′∥2∞
wwww∆ ◦A

α
√
d

wwww2(l−2)wwww∆ ◦A√
d

wwww4

≤ ∥φ′∥2∞(1− δ)2(l−2)(1 + κ)4, (2.12)

where in the final inequality we used that κ is taken as in Proposition 2.1
so, with probability tending to 1, it holds thatwwww∆ ◦A√

d

wwww ≤ κ and

wwww∆ ◦A
α
√
d

wwww ≤ 1− δ.

Finally we obtained

n∑
i,j=1

S1,ij

2 ≤ ∥φ′∥2∞(1− δ)2(l−2)(1 + κ)4. (2.13)

Now we focus on the term S2,ij .
It holds that if j ̸∈ Ii then ∂ijρk,l(A) = 0, while if j ∈ Ii:

∂ijρk,l(A) =
1

αl−2(
√
d)l

l−1∑
p=0

eTk (∆ ◦A)peie
T
j (∆ ◦A)l−1−p1

so we compute
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∑
i∈[n]

∑
j∈Ii

∂ijρk,l(A)
2

≤ l

α2(l−2)dl

( ∑
i∈[n]

∑
j∈Ii

eTk (∆ ◦A)l−1eie
T
j 1

2

+

l−2∑
p=0

∑
i∈[n]

∑
j∈Ii

|eTk (∆ ◦A)peie
T
j (∆ ◦A)l−1−p1|2

)

=
l

α2(l−2)dl

(
d
∑
i∈[n]

[(∆ ◦A)l−1
]
k,i

2

+ d
l−2∑
p=0

∑
i∈[n]

∑
j∈Ii

[(∆ ◦A)p
]
k,i
eTj (∆ ◦A)l−1−p 1√

d

2)

≤ l

α2(l−2)dl−1

([
(∆ ◦A)l−1

(
(∆ ◦A)l−1

)T]
k,k

+
l−2∑
p=0

∑
i∈[n]

[(∆ ◦A)p
]
k,i

2
∑
j∈Ii

eTj (∆ ◦A)l−1−p 1√
d

2)
. (2.14)

We define T :=
∑

j∈Ii

eTj (∆ ◦A)l−1−p 1√
d

2

and show that

T ≤
ww∆ ◦A

ww2(l−1−p)
. (2.15)

Let 1Ii be the n × 1 vector with 0 entries everywhere except the ones be-
longing to Ii that are set to 1, and define IIi = diag

(
1Ii(k), k ∈ [n]

)
so

that

T =
1T√
d

[
(∆ ◦A)l−1−p

]T
IIi(∆ ◦A)l−1−p 1√

d
.

Notice that, since we are modeling with block matrices, (∆ ◦ A)l−1−p =
(Pτ ⊗ 1d1

T
d ) ◦B for some τ ∈ Sm and some n×n matrix B and there exists

a d×d block Bi of (∆ ◦A)l−1−p such that
[
(∆ ◦A)l−1−p

]T
IIi(∆ ◦A)l−1−p is

a matrix with zero everywhere except a d× d block BT
i Bi on the diagonal;

so we have

T =
1Td√
d
BT

i Bi
1d√
d
≤ ∥BT

i Bi∥ ≤ ∥Bi∥2 ≤ ∥(∆◦A)l−1−p∥2 ≤ ∥(∆◦A)∥2(l−p−1).

Therefore Equation (2.15) is proved and we can go back to (2.14) and have
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∑
i∈[n]

∑
j∈Ii

∂ijρk,l(A)
2

(2.16)

≤ l

α2(l−2)dl−1

(ww(∆ ◦A)l−1
ww2

+
l−2∑
p=0

[(
(∆ ◦A)p

)T
(∆ ◦A)p

]
kk
∥∆ ◦A∥2(l−p−1)

)

≤ l

α2(l−2)dl−1

(
∥∆ ◦A∥2(l−1) +

l−2∑
p=0

∥∆ ◦A∥2p∥∆ ◦A∥2(l−p−1)

)

=
l2

α2(l−2)dl−1
∥∆ ◦A∥2(l−1)

=l2
wwww∆ ◦A

α
√
d

wwww2(l−2)wwww∆ ◦A√
d

wwww2

. (2.17)

Hence we get

n∑
i,j=1

|S2,ij |2 =
∑
i∈[n]

∑
j∈Ii

φd(A)∂ijρk,l(A)
2

≤ l2|φd(A)|2
wwww∆ ◦A

α
√
d

wwww2(l−2)wwww∆ ◦A√
d

wwww2

≤ l2(1− δ)2(l−2)(1 + κ)2. (2.18)

Therefore combining (2.13) and (2.18) we have:

n∑
i,j=1

∇ρ̃k,l(A)
 ≤

√√√√2

n∑
i,j=1

S1,ij

2
+ 2

n∑
i,j=1

S2,ij

2

≤
√
2∥φ′∥2∞(1− δ)2(l−2)(1 + κ)4 + 2l2(1− δ)2(l−2)(1 + κ)2

≤ 2(1− δ)l−2(1 + κ)2
(
∥φ′∥2∞ + l

)
=: Kl.

So we obtained the local estimation |∇ρ̃k,l(A)
 ≤ Kl, where Kl is indepen-

dent from k, d, n, that is the Lipschitz property for the single matrix in the
case when H(∆ ◦A) has a simple spectrum.

Step 2
Next step we want to prove is is that the Lipschitz property holds along the
segment [A,B], with A and B matrices such that H(∆ ◦ A) and H(∆ ◦ B)
have a simple spectrum.
We consider the interpolation matrix for t ∈ [0, 1]

At = (1− t)A+ tB.
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Since the eigenvalues are continuous, then there exists ε > 0 such that
H(∆ ◦ At) has a simple spectrum for t ∈ [0, ε) ∪ (1 − ε, 1] and the number
of eigenvalues of H(∆ ◦A) remains constant for t ∈ [0, 1] except for a finite
number of points {tl : 1 ≤ l ≤ L}.
Now if we consider the interval (tl−1, tl) we have:

ρ̃k,l(Atl)− ρ̃k,l(Atl−1
)
 =

 lim
τ↗tl

∫ τ

tl−1

d

dt
ρ̃k,l(At) dt


=

 lim
τ↗tl

∫ τ

tl−1

∇ρ̃k,l(At) ◦
d

dt
(At) dt


≤ lim

τ↗tl

∫ τ

tl−1

∥∇ρ̃k,l(At)∥ × ∥B −A∥F dt

≤ Kl(tl − tl−1)∥B −A∥F

and iterating this process for all the intervals we get

ρ̃k,l(B)− ρ̃k,l(A)
 ≤

L+1∑
l=1

ρ̃k,l(Atl)− ρ̃k,l(Atl−1
)


≤
L+1∑
l=1

Kl(tl − tl−1)∥B −A∥F

= Kl∥B −A∥F .

Thus we proved the Lipschitz property of the segment [A,B].

Step 3
Finally we want to prove that, under the hypothesis over the model BPMM,
the set of matrices (∆ ◦ A) such that H(∆ ◦ A) has a simple spectrum is
dense in the set of matrices (∆ ◦A,A ∈ Rn×n).
We define

Π = Pσ ⊗ Id

where Id is the d× d identity matrix, Pσ is the permutation matrix used to
define the model BPMM and ⊗ is the Kronecker product, so Π is a n × n
permutation matrix and it holds that ΠΠT = ΠTΠ = In.
We also define

DA = (∆ ◦A)ΠT

that is a block diagonal matrix with m d × d blocks
(
A(µ)

)
µ∈[m]

on the

diagonal. We observe that DAΠ = ∆ ◦A and that, since

DAD
T
A = (∆ ◦A)ΠTΠ(∆ ◦A)T = (∆ ◦A)(∆ ◦A)T,

then DA and ∆ ◦ A have the same singular values; therefore H(∆ ◦ A) and
DA have the same eigenvalues and, if they have simple spectrum, they have
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it simultaneously simple.
Now let

A(µ) = U(µ)Λ(µ)V(µ)

be the singular value decomposition (SVD) of the blocks of matrix DA, with
U(µ) and V(µ) unitary matrix and Λ(µ) diagonal matrix.
We consider a small ε-perturbation of Λ(µ) into Λε

(µ) such that all the Λε
(µ)’s

have distinct diagonal elements, ε-close to the Λε
(µ)’s.

Denote by
Aε

(µ) = U(µ)Λ
ε
(µ)V(µ)

and let Dε
A be the block diagonal matrix with blocks

(
Aε

(µ)

)
µ∈[m]

: then

H(Dε
A) is arbitrarily close to H(DA) and has a simple spectrum.

We have that Dε
AΠ is ε-close to ∆ ◦ A and it holds that if ∆ij = 0 then

(Dε
AΠ)ij = 0. If we define the matrix Aε such that

[Aε]ij =

{
[Dε

AΠ]ij if ∆ij = 1,

Aij else,

then we have

[Aε −A]ij =

{
[Dε

AΠ]ij −Aij if ∆ij = 1,

0 else,

so that
∥∆ ◦Aε −∆ ◦A∥F = ∥Aε −A∥F −−−→

ε→0
0.

That is the proof of the density of the set of matrices (∆ ◦ A) such that
H(∆ ◦A) has a simple spectrum in the set of matrices (∆ ◦A,A ∈ Rn×n).

Finally we can conclude: if we consider the two matrices ∆ ◦ A and ∆ ◦ B
given by our model BPMM and Dε

A = ∆ ◦ Aε and Dε
B = ∆ ◦ Bε then, for

the continuity of C 7→ ˜ρk,l(C), we have:

|ρ̃(Bε)− ρ̃(B)| ≤ ρ̃(∥Bε −B∥) −−−→
ε→0

0

|ρ̃(Aε)− ρ̃(A)| ≤ ρ̃(∥Aε −A∥) −−−→
ε→0

0

thus

|ρ̃k,l(B)− ρ̃k,l(A)| ≤ |ρ̃k,l(Bε)− ρ̃k,l(B)|+ |ρ̃k,l(Aε)− ρ̃k,l(A)|+ |ρ̃k,l(Bε)− ρ̃k,l(A
ε)|

≤ Kl∥Bε −Aε∥F −−−→
ε→0

0.

This concludes the proof of the Lipschitz property of A 7→ R̃k(A).
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3) Uniform estimate for ER̃k(A)
We now state and prove two propositions that we will need to find a uniform
estimate for ER̃k(A).

Proposition 2.2. Under the assumptions of Lemma 2.2, the following es-
timate holds true:

E max
k∈[n]

(
R̃k − ER̃k

)
≤ K

√
2 log(n).

Proof. By applying Tsirelson-Ibragimov-Sudakov inequality to R̃k(A), as we
can see in [8], we obtain the following exponential estimate:

Eeλ(R̃k(A)−ER̃k(A)) ≤ e
λ2K2

2 ∀λ ∈ R.

Now using this estimate and the Jensen inequality we obtain:

exp

(
λ E max

k∈[n]

(
R̃k − ER̃k

))
≤ E exp

(
λ max

k∈[n]

(
R̃k − ER̃k

))
≤

n∑
k=1

Eeλ(R̃k(A)−ER̃k(A))

≤
n∑

k=1

e
λ2K2

2

= n e
λ2K2

2 . (2.19)

Hence for λ > 0,

E max
k∈[n]

(
R̃k − ER̃k

)
≤ 1

λ
log

(
n e

λ2K2

2
)
=

1

λ

[
log n+

λ2K2

2

]
=: Φ(λ).

Now we optimize in λ: we compute

Φ′(λ) =
− log n

λ2
+

K2

2
= 0 ⇐⇒ λ∗ =

√
2 log n

K
,

so we get Φ(λ∗) = K
√
2 log n, that is the desired estimate.

Proposition 2.3. Under the assumptions of Theorem 2.1, there exists n1 ∈
N and a constant C > 0 such that for all n > n1

sup
k∈[n]

ER̃k(A)
 ≤ C.
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Proof. We recall that ∆ ◦ A is a n × n block permutation matrix with m
blocks (A(µ))µ∈[m] of size d× d.

For a given block A(µ) we denote by µ1, . . . , µd the d indices corresponding
to the rows of the block A(µ) in ∆ ◦ A. We denote by 1(µ) the n× 1 vector
with ones for the indices (µi)i∈[d] and zeros elsewhere and by exchangeability
we have

ER̃µk
(A) = ER̃µ1(A)

for all k ∈ [d].

Therefore we haveER̃µk
(A)

 =

1

d

d∑
i=1

ER̃µi(A)


=

1

d

d∑
i=1

E
(
φd(A)eTµi

∞∑
l=2

1

αl−2

(
∆ ◦A√

d

)l

1

)
=

1

d
E
(
φd(A)1(µ)T

∞∑
l=2

1

αl−2

(
∆ ◦A√

d

)l

1

)
≤ E

φd(A)

∞∑
l=2

1(µ)T

αl−2
√
d

(
∆ ◦A√

d

)l 1√
d

. (2.20)

We observe that (∆ ◦A)l is a block matrix composed of m blocks d× d and
among the d row ([

(∆ ◦A)l
])

i∈{µ1,...,µd},j∈[n]

there exist ν1, . . . νd (consecutive) indices such that the only non-zero entries
are ([

(∆ ◦A)l
])

i∈{µ1,...,µd},j∈{ν1,...,νd}

thus, denoting by 1(ν) the n × 1 vector of ones for the indices (νi)i∈[d] and
zero elsewhere, we have

1(µ)T(∆ ◦A)l1 = 1(µ)T(∆ ◦A)l1(ν).

So we have that

1

αl−2

1(µ)T√
d

(
∆ ◦A√

d

)l 1√
d

 =
1

αl−2

1(µ)T√
d

(
∆ ◦A√

d

)l1(ν)√
d


≤ 1

αl−2

wwww1(µ)T√
d

wwwwwwww∆ ◦A√
d

wwwwlwwww1(ν)√
d

wwww
≤

wwww∆ ◦A
α
√
d

wwwwl−2wwww∆ ◦A√
d

wwww2

.
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Then, taking κ > 0 as in Proposition 2.1, δ ∈ (0, 1), n0 ∈ N as in Lemma
2.2, it holds that

∞∑
l=2

1

αl−2

φd(A)
1(µ)T√

d

(
∆ ◦A√

d

)l 1√
d


≤ φd(A)

∞∑
l=2

wwww∆ ◦A
α
√
d

wwwwl−2wwww∆ ◦A√
d

wwww2

= φd(A)

wwww∆ ◦A√
d

wwww2 ∞∑
l=0

wwww∆ ◦A
α
√
d

wwwwl

≤ (1 + κ)2
∞∑
l=0

(1− δ)l

=
(1 + κ)2

δ
.

Now we plug this estimate into (2.20) and getER̃µk
(A)

 ≤ (1 + κ)2

δ
.

Since this estimate is uniform over µ1, . . . , µd and over all the blocks
(
A(µ)

)
,

then the proposition is proved with C = (1+κ)2

δ .

Finally we are ready to prove Lemma 2.1 and, as shown previously, it is
sufficient to prove the convergence of the term in (2.9):

Proof. Since R̃i(A)’s are exchangeable, ER̃k(A) = ER̃1(A). Notice that
max
k∈[n]

R̃k(A)− R̃1(A) ≥ 0, hence using the Markov inequality we have

P
{
maxk∈[n] R̃k(A)− R̃1(A)

α
√
2 log n

≥ ε

}
≤

E
(
maxk∈[n] R̃k(A)− R̃1(A)

)
εα

√
2 log n

=
E
(
maxk∈[n](R̃k(A)− ER̃k(A) + ER̃k(A))− R̃1(A)

)
εα

√
2 log n

=
E
(
maxk∈[n](R̃k(A)− ER̃k(A))

)
εα

√
2 log n

≤ K
√
2 log n

εα
√
2 log n

=
K

εα
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by Proposition 2.2. Therefore we have that

maxk∈[n] R̃k(A)− R̃1(A)

α
√
2 log n

P−−−→
n→∞

0. (2.21)

Now we show that
R̃1(A)

α
√
2 log n

P−−−→
n→∞

0. (2.22)

By Proposition 2.3 we have the uniform estimate sup
k∈[n]

ER̃k(A)
 ≤ C, so

we have ER̃1(A) = O(1) and then

ER̃1(A)

α
√
2 log n

P−−−→
n→∞

0.

Applying Poincare’s inequality in its extension to Lipschitz functionals as
shown in [9] to the Lipschitz functional A 7→ R̃1(A), that is Lipshitz by
the previous proof, we can bound R̃1(A)’s variance by K2 and using the
Chebyschev inequality, we obtain

P
(R̃1(A)− ER̃1(A)

α
√
2 log n

 > δ

)
= P

(R̃1(A)− ER̃1(A)
 > δα

√
2 log n

)
≤

V ar
(
R̃1(A)

)
2δ2α2 log n

≤ K2

2δ2α2 log n
−−−→
n→∞

0.

Hence by this convergence and since ER̃1(A) = O(1), Equation (2.22) holds
and combining it with (2.21) finally yields:

maxk∈[n] R̃k(A)

α
√
2 log n

P−−−→
n→∞

0.

Therefore, since we proved that the convergence of (2.9) holds, we have es-
tablished the first part of Lemma 2.1 and one can prove the second assertion
similarly.

Since we know that Theorem 2.1 follows from this Lemma, then the proof
is concluded.



Chapter 3

Stability of equilibria for
ecosystems

Aside from the question of feasibility, arises the question of stability for a
large complex system describing the time evolution of the abundances of
the various species of a foodweb: how likely a perturbation of the solution
will return to the equilibrium? In this chapter we investigate this problem
and obtain two main results: first we find the conditions for the existence
of a unique, globally stable and non-negative solution for the system under
study; then, restricting to the case of feasibility, we find that if a feasible
solution exists, then it is globally stable.

3.1 Preliminary notions

In this section we highlight some notions that will be necessary in the fol-
lowing analysis of stability. We first distinguish the concepts of stability,
asymptotic stability, global stability and Volterra-Lyapunov stability.
Given f : Λ ⊆ Rn → R, we consider the general ordinary differential equa-
tion:

ẋ = f(x)

and suppose that x∗ is an equilibrium, i.e. the point satisfies f(x∗) = 0.
Now we take an initial point x(0) in the neighborhood of x∗ and define:

Definition 3.1. (Stability). An equilibrium x∗ is said to be stable if for
any neighborhood U of x∗, there exists a neighborhood W of x∗ such that
any orbit initiating in W at time t = 0 remains in U for all t ≥ 0 (i.e.,
x(0) ∈ W implies x(t) ∈ U for all t ≥ 0). It is said to be asymptotically
stable if it is stable and the orbit converges to x∗ (i.e., x(t) → x∗ for all
x(0) ∈ W as t → ∞).

Observation 3.1. If x∗ is not stable, it is said to be unstable. Note that
x∗ is not stable if x(t) does not remain in U , even if x(t) → x∗ as t → ∞.

26
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We define the basin of attraction of x∗ as the set of points x(0) satisfying
x(t) → x∗ as t → ∞.

Definition 3.2. (Global stability). When the basin of attraction of x∗ is
the whole state space and x∗ is stable, x∗ is said to be globally stable.

In the following section we will focus on the analysis of the stability of Equa-
tion (2.2) and we will search for an equilibrium solution xn living in the state
place

(
R+ ∖ {0}

)n
, so we will say that xn is a globally stable equilibrium

if it is asymptotically stable and the neighborhood W can be taken as the
whole state place

(
R+ ∖ {0}

)n
.

Now we introduce a new concept of stability for matrices and state Takeuchi
and Adachi’s Theorem, that we will need in the proof of a theorem in the
next section:

Definition 3.3. (Volterra-Lyapunov stability). A n × n real matrix B is
Volterra-Lyapunov stable if there exists a n × n matrix D such that DB +
BTD is negative definite.

Theorem 3.1. (Takeuchi and Adachi). Let A = (aij) be a n×n real matrix.
If A is Volterra-Lyapunov stable, the LV system

ẋi = xi

(
bi +

n∑
j=1

aijxj

)
, i = 1, . . . , n

has a non-negative and globally stable equilibrium point x∗ for each b ∈ Rn.

The proof of this Theorem can be found in [11].

Now we state two theorems that we will need in the next section: first
we recall the Spectral method for Lyapunov stability, that we are going to
use as a condition to study the stability of our system by investigating the
eigenvalues of its Jacobian matrix; then we claim Bauer and Fike’s theorem,
that we will use in the next section to compare the spectra of the matrices
J (xn) = diag(xn) and of the Jacobian matrix of the system evaluated in
xn.

Theorem 3.2. (Spectral method for Lyapunov stability). Consider the non
linear vector field X ∈ C2(Rm,Rm) and the differential equation ẋ = X(x)
such that x = 0 is an equilibrium, then:

1. if Re(Spect(X ′(x))) < 0, then x∗ is an asymptotically stable equilib-
rium for ẋ = X(x);

2. if there exists j′ such that Re(j′) > 0, then x∗ is unstable;
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3. if Re(Spect(X ′(x))) ≤ 0 and there exists j′ such that Re(j′) = 0 we
can’t deduce if the equilibrium is stable or not.

Theorem 3.3. (Bauer and Fike). Let A ∈ Mn be diagonalizable, and sup-
pose that A = SΛS−1,in which S is non singular and Λ is diagonal. Let
E ∈ Mn and let ∥ · ∥ be a matrix norm on Mn that is induced by an absolute
norm on Cn. If λ is an eigenvalue of A+ E, there is an eigenvalue µ of A
such that

|λ− µ| ≤ ∥S∥∥S−1∥∥E∥ = κ(S)∥E∥

in which κ(·) is the condition number with respect to the matrix norm ∥ · ∥.

3.2 Stability results

We complement the result of Theorem 2.1 by addressing the question of
stability in the context of a Lotka-Volterra system and prove that under the
domain of positivity of xn, so under the condition αn ≥ (1+ε)α∗

n, feasibility
and global stability occur simultaneously.
We recall that for the Spectral method of Lyapunov stability the equilibrium
solution xn of the LV System (2.2) is stable if the Jacobian matrix of the
system evaluated in xn, that is

J (xn) = diag(xn)
(
− In +Mn

)
(3.1)

has all its eigenvalues with negative real part.

Now we state and give the proof of a theorem which gives the conditions
for the existence of a unique, globally stable and non-negative solution for
System (2.1):

Theorem 3.4. Let dn ≥ log(n), αn −−−→
n→∞

∞, and ∆n the adjacency matrix

of a dn-regular graph.
Then, with probability going to one as n → ∞, Equation (2.1) admits a
unique non-negative solution xn.
Moreover, this solution is a globally stable equilibrium.

Proof. We first prove that the matrix M −I is Volterra-Lyapunov stable, so
that there exists a positive definite diagonal matrix D such that DB+BTD
is negative definite: we take D = I and then I(M − I) + (M − I)TI =
M +MT − 2I. Since M +MT is hermitian, the condition that the matrix
M +MT − 2I has all negative eigenvalues is satisfied if the spectral radius
ρ(M +MT) < ρ(2I) = 2 ⇐⇒ ρ(M) < 1.
Since for every matrix norm ∥ · ∥ and for every matrix A it holds that
ρ(A) ≤ ∥A∥, then

P
(
ρ(M) < 1

)
≥ P

(
∥M∥ < 1

)
−−−→
n→∞

1
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for Proposition 2.1.
Therefore with probability tending to one matrix M +MT − 2I is negative
definite, so M − I is Lyapunov stable.
Hence, according to Takeuchi and Adachi’s theorem, with probability tend-
ing to one as n → ∞, this LV system has a unique non-negative and globally
stable equilibrium.

This result holds under hypothesis that are less restrictive than the ones of
Theorem 2.1 and gives the conditions for the existence of a unique, globally
stable and non-negative solution: therefore the solution we are considering
may have zero components (corresponding to vanishing species).
If now we restrict our hypothesis assuming the BPMM and work under the
domain of positivity of the solutions, we have the following:

Proposition 3.1. Let dn ≥ log(n), αn −−−→
n→∞

∞, and assume that ∆n

is given by the model BPMM. Denote by Σn the spectrum of the Jacobian
matrix J (xn) given by (3.1).
Assume that there exists ε > 0 such that eventually αn ≥ (1 + ε)α∗

n. Then:

1. The probability that the equilibrium xn is feasible and globally stable
converges to one,

2. The spectrum Σn asymptotically coincides with −diag(xn) in the sense
that:

max
λ∈Σn

min
k∈[n]

|λ+ xk|
P−−−→

n→∞
0,

3. Moreover,

max
λ∈Σn

Re(λ) ≤ −(1−l+)+oP (1) where l+ := lim sup
n→∞

α∗
n

αn
< 1. (3.2)

Proof.

1. Under these hypothesis, Theorem 3.4 holds, so there exists a unique,
globally stable and non-negative equilibrium solution to Equation (2.2).
Moreover, since there exists ε > 0 such that αn > (1 + ε)α∗

n, then, by
Theorem 2.1, xn is a feasible solution with probability tending to one
for n → ∞.

2. We first establish the following estimates
min
k∈[n]

xk ≥ 1− l+ − oP (1)

max
k∈[n]

xk ≤ 1 + l+ + oP (1).
(3.3)
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The first inequality comes from Proposition 2.1, where we found that

min
k∈[n]

xk ≥ 1 +
α∗
n

αn

(
− 1 + oP (1) +

1

αnα∗
n

min
k∈[n]

Rk

)
and so, according to Lemma 2.1, we obtain the result.
In the same way from the decomposition of xn as

xk = 1 +
Zk

α
+

Rk

α2

we have

1 +
α∗
n

αn

(
oP (1)− 1 +

1

αnα∗
n

min
k∈[n]

Rk

)
≤ max

k∈[n]
xk

≤ 1 +
α∗
n

αn

(
oP (1)− 1 +

1

αnα∗
n

max
k∈[n]

Rk

)
.

Therefore, since for the previous proofs it holds that Mn−β∗
n

α∗
n

P−−−→
n→∞

0

and
maxk∈[n]Rk

α∗
nαn

P−−−→
n→∞

0 and we have that β∗
n

α∗
n
= oP (1) (where we recall

that in general α = oP (1) if and only if P(α ≪ 1) = 1), then we get

max
k∈[n]

xk ≤ 1 +
Mn

αn
+

maxk∈[n]Rk

α2
n

= 1 +
α∗
n

αn

(
Mn − β∗

n

α∗
n

+
β∗
n

α∗
n

+
maxk∈[n]Rk

α∗
nαn

)
= 1 + l+ + oP (1), (3.4)

so the second inequality is also established.
Now we recall the definition given in (3.1) of J(xn) and we use the
Bauer and Fike’s Theorem to compare the spectra of the matrices
D(xn) = diag(xn) and J (xn) = D(xn)+E(xn) with E(xn) = diag(xn)Mn.
Since diag(xn) is a diagonal matrix and the elements on the diagonal
are the components of vector xn, then the eigenvalues of D(xn) are
−xk for k ∈ [n]. So if λ is an eigenvalue of J (xn) = D(xn) + E(xn),
then for Bauer and Fike’s Theorem there exists an eigenvalue −xk of
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D(xn) such that

|λ+ xk| ≤ ||E(xn)||

=

wwwwdiag(xn)
∆n ◦An

αn

√
d

wwww
≤ 1

αn
||diag(xn)||

wwww∆n ◦An√
d

wwww
≤ 1

αn
(1 + l + oP (1))(2 + op(1))

= oP (1). (3.5)

3. we have Re(λ) + xk ≤ |λ + xk| = oP (1) so using the first estimate of
(3.3), we have Re(λ) ≤ −min

k∈[n]
xk + oP (1) ≤ −(1− l+) + oP (1).

As a consequence of (3.2), since l+ < 1, we have that max
λ∈Σn

Re(λ) < 0, so, for

the Spectral method for Lyapunov stability, xn is an asymptotically stable
equilibrium and for any xn(0) ∈ (R+∗)n, the orbit xn(t) converges to the
equilibrium xn at an exponential convergence rate.



Conclusions

The complexity vs. stability issue is a topic of major importance within
the mathematical modeling of large ecosystems. Sometimes referred to as
the complexity/stability paradox, this issue has been central in ecology at
least since the seminal work of Robert May. May’s approach starts from the
following consideration: the species interaction networks - which may be very
complex - is the key feature shaping the dynamics of the system, however,
due to the complexity of the network and the huge number of degrees of
freedom involved, the interaction strengths and the network itself cannot
be determined or measured. To overcome these difficulties, May proposed a
stochastic approach, and modeled the interaction network as random matrix
A whose entries are i.i.d. variables set as N (0, 1). The matrix A is meant
to describe the effect of each species on the others. Within this framework,
May studied the stability of the linearized system ẋ = Ax, and proved that
it tends to be unstable as the number of species gets large or for increasing
connectivity. Thus, according to May’s model, large/complex ecosystems
should be unstable. Such a conclusion collides with nature where complexity
and stability are proportionally linked. The contrast between (a simple and
with reasonable assumptions) model and empirical observations is known as
the complexity/stability paradox or May’s paradox. What generates May’s
paradox is that his analysis neglects the structure of the network, which
cannot be regarded as random but rather should be considered as the result
of a long optimization process due to evolutive pressure. Therefore when
we try to describe living systems we have to include some structure of the
interaction network, which is believed to be the feature driving the dynamics
of ecosystems and that ultimately brings to the emergence of time or spatial
patterns in ecosystems. Thus in the second chapter of the thesis we focused
on one of these, sparsity, and studied large sparse ecosystems. First of all we
presented some definitions and recollected some results from matrix theory;
then we analyzed the question of feasibility of a Lotka-Volterra ecosystem:
the equation under investigation is

xn = 1n +Mnxn

32
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where xn is the vector of the abundances of the species and Mn is a sparse
random matrix defined as

Mn =
∆n ◦An

αn

√
dn

,

where the sparsity is encoded by the block permutation matrix ∆n based
on an underlying dn-regular graph, and the randomness by i.i.d. random
variables for the non-null entries of the matrix of interactions An, αn is a
positive sequence and 1/

√
dn is a standard normalization term.

Our main conclusion is that a sharp phase transition occurs at α∗
n =

√
2 log(n):

above this threshold a feasible solution exists while below it it does not. Our
approach of proof crucially relies on the technical assumption over the ma-
trix ∆n given by BPMM, which somehow concentrates the non-null entries
of the sparse interaction matrix into localized blocks.
Finally in the third chapter we concentrated on the question of stability,
first recalling some notions useful in the subsequent analysis and then show-
ing that under the hypothesis of Theorem 2.1 feasibility and global stability
occur simultaneously.
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