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Chapter 1

Introduction

Fields play a very important role in sciences, they describes the spatial variation of a quantity, like
the air temperature, as a function of position. Knowing the configuration of a field can be very
helpful. Measurements of fields, however, can never provide the precise field configuration with
certainty. Physical fields have an infinite number of degrees of freedom, but the data generated
by any measurement device is always finite, providing only a finite number of constraints on the
field. Probabilistic inference is used to make statements about physical fields exploiting that
they follow known physical laws end exhibit correlations. Such information is hold into the field
inference in order to overcome the mismatch of field degrees of freedom to measurement points.

To handle this, an information theory for fields is needed, and that is what information field
theory is.

Information field theory is a Bayesian statistical field theory, it uses mathematical physics con-
cepts embedded in statistical mechanics formalism and functional calculus to deal with fields.

The specialty of IFT is to deal with continuous fields, and the associated computational problem
should be formulated in a way that the resolution of the field becomes irrelevant, as soon a
sufficient high resolution is used in numerical applications.

IFT is not a method, but a language to discuss and derive statistical methods, which are used
to get information on fields. How can this information be best retrieved? Is there a generic
and simple principle from which optimal data analysis strategies derive? Can an information
energy be constructed which – if minimized – provides us with the correct knowledge state given
the data and prior information? And if this exists, how can this information ground state be
found at least approximatively? Which is the inference solution. An information energy, to be
minimized, would be very useful to have, since many of the existing minimization techniques,
analytical and numerical, can then be applied to it. A number of such functions to be extremized
to solve inference problems were proposed in the literature, like the likelihood, the posterior, the
Hamiltonian, and the entropy.

The likelihood is the probability that the data has resulted from some signal. The posterior is
the reverse, it is the probability that given the data some signal was the origin of it. Extremizing
either of them certainly makes sense, but often ignores the presence of slightly less probable, but
much more numerous possibilities in the signal phase space. Those have a much larger entropy
and are therefore favored by maximum entropy methods. However, maximum entropy alone can
not be the inference determining criterion, since it favors states of complete lack of knowledge,
irrespective of the data. Thus some counteracting energy is required. In [13] is argued that the

1



2 CHAPTER 1. INTRODUCTION

ideal information energy is provided by the Gibbs free energy, which combines both maximum
entropy and maximum a posteriori (MAP) principles.

The versatility of IFT to deal with various measurement problems, to take uncertainties on
covariances and responses into account and to provide implementable algorithms have let to a
number of concrete IFT applications in astronomy and astrophysics. IFT is already applied
to a number of areas which deal with the cosmic microwave background, the cosmic large-
scale structure, galactic magnetism, interferometric radio astronomy and Gamma-ray and X-ray
astronomy.

In chapter 2 functional calculus is introduced in order to know mathematical tools necessary to
deal with statistical field theories. In chapter 3 the inference problem is explained implemented
with mathematical physics formalism and in chapter 4 an IFT application is presented, discussing
on which is called the fnl model, a simple model concerning a sensitive topic such CMB non-
Gaussianity. Here also an experimental result of fnl measurement is shown.



Chapter 2

Functional Calculus

In order to tackle field inference problems, it is necessary to introduce calculus on quantities
present in field theory formalsm. These quantities are functionals, and our mathematical tool
will be functional calculus, which is an extension of the usual differential calculus and could be
seen as a calculus about function that depends on an infinite number of degree of freedom.

2.1 Introduction to Functionals

Let’s consider D as the space of square integrable functions defined at each point of space-time1,
and assume that it is equipped with an orthonormal basis [φn]:

i)

∫
D

dxφn(x)φm(x) = δnm orthonormality

ii)
∑
n

φn(x)φn(y) = δ(x− y) completeness

so that we can expand any q as q(x) =
∑

n qn φn(x), with qn ≡
∫
D
dx q(x)φn(x) the expansion

coefficients.
A functional2 is a mapping from a space of functions into real or complex numbers:

F : D → R

q → F[ q ]

We will use linear and bilinear functionals, here an example:3

F1 [ q ] ≡
∫
D

dx f(x) q(x) ≡ (f, q)

F2 [ q ] ≡
∫
Dx

∫
Dy

dx dy q(x)K(x, y) q(y) ≡ (q,K, q)

where f(x) and K(x, y) are given functions.
1E.g. L2(R4) with x ≡ (x0, x1, x2, x3), q(x).
2We shall say that a quantity z is a functional of the function x(t) in the interval (a, b) when it depends on

all the values taken by x(t) when t varies in the interval (a, b); or, alternatively, when a law is given by which to
every function x(t) defined within (a, b) (the independent variable within a certain functional field) there can be
made to correspond one and only one quantity z, perfectly determined, and we shall write z = F[x(t)ba].

3(·, ·) is the scalar product refered to the domain space of his input functions, e.g. if a,b ∈ Cn (a, b) =
∑n
i=1 a

∗
i bi.

If a,b ∈ L2(R) then (a, b) ≡
∫
D
a(x) b(x) dx. For this part we assuming function to be real in order to semplify the

notation.

3



4 CHAPTER 2. FUNCTIONAL CALCULUS

Functional Representations

For many purpose it could be useful to represent functionals as functions of an infinite number
of variables. Let’s consider the following two ways:
i) replace the argument of F(q) with its expansion in an orthonormal basis

F [ q ] → F [
∑
n

qn φn ] = F̂( q1, q2, ...)

Thus, for a given set of [φn], F [ q ] is uniquely determinated by the infinite set of expansion
coefficient [qn]. For example

F1 [ q ] → F̂1( q1, q2, ...) =
∑
n

qn fn , fn ≡
∫
dxφn(x) f(x) = (φn, f)

F2 [ q ] → F̂2( q1, q2, ...) =
∑
n,m

qn qmKnm , Knm ≡
∫ ∫

dx dy φn(x)φm(y)K(x, y) = (φn,K, φm)

ii) divide the domain of variation of q [e.g. R4] into infitely many small cubes [or "hypercubes"]
of volume τ , in each cube choose an internal point x(i). The function q(x) will be specified
approximately by giving the value of it at each x(i) as follow: q(x(i)) ≡ qi. This procedure
is called the "pixelization" of space domain. In the limit τ → 0 this specification becomes
exact. When the argument of F [ q ] is replaced by the infinite dimentional array (..., qi, qi+1, ...)
it becomes an ordinary function of the infinite set of variables { qi }:

F [ q ] → F̂ (..., qi, qi+1, ...)

For example, for τ → 0:

F1 [ q ] → F̂1(..., qi, qi+1, ...) =
∑
i

qi fi , fi ≡ f(x(i)) τ

F2 [ q ] → F̂2(..., qi, qi+1, ...) =
∑
i,j

qi qjKi,j , Kij ≡ K(x(i), y(i)) τ2

A functional F [ q ] may sometimes be represented by a series of functionals having the general
form:

F [ q ] =
∞∑
n=0

1

n!

∫
dx1

∫
dx2 · · ·

∫
dxnf(x1, . . . , xn) q(x1) · · · q(xn)

Examples (exponential and gaussian):

F [ q ] = e(f,q) ≡ exp

(∫
dx f(x) q(x)

)
=
∞∑
n=0

1

n!

[ ∫
dx f(x) q(x)

]n
F [ q ] = e(q,K,q) ≡ exp

(∫
dx dy q(x)K(x, y) q(y)

)
=
∞∑
n=0

1

n!

[ ∫ ∫
dx dy q(x)K(x, y) q(y)

]n
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2.2 Functional Calculus

Functional Differentiation

Many of the functions which appear in physics can be differentiated with respect to their ar-
guments. It would be useful to extend the idea of differentiation to functionals as well.

The derivative of a functional F [ q ] ought to tell us how much F [ q ] changes for a given change
in q by a small function η(x): q → q + η. To first order in η the change of F will be some
linear functional of η:

∫
dy f(y) η(y). f(y) will be called the functional derivative of F [ q ] due

to a variation of q at a generic point y:

δF = F [ q + η ]− F [ q ] ≡
∫

δF

δq(y)
η(y) dy + O(η2) f(y) ≡ δF

δq(y)
(2.1)

We see the analogy with the expression for the change of a function of n variables, by ordinary
calculus:

δF (x1, . . . , xn) =
n∑
j=1

[
∂F

∂xj
δxj + O(x2

j )

]
So the variable y can see as a continuous index, which is integrated instead of summed. Note
that the dimensions of the functional derivative are not those of the functional divided by the
function, as the notation would suggest, but those of the functional divided by the product of
the function and its argument. An alternative definition of δFδq come from the definition of F [ q ]

as an ordinary function F̂ (..., qi, qi+1, ...). If the argument is varied as qi → qi + ηi therefore:

δF = F̂ (..., qi + ηi, qi+1 + ηi+1, ...)− F̂ (..., qi, qi+1, ...) =
∑
i

∂F̂

∂qi
ηi

=
∑
i

(
1

τ

∂F̂

∂qi

)
ηi τ =

∑
i

fi ηi τ

in the limit τ → 0, the sum becomes an integral, and the functional derivatives is defined starting
from partial derivatives, if the limit exists:∫

dy f(y) η(y) = lim
τ→0

lim
x(i)→y

∑
i

fi ηi τ ;
δF

δq(y)
= lim

τ→0
lim

x(i)→y

1

τ

∂F̂

∂qi
(xi)

Chain Rule

A very important rule, which we shall now derive, is the chain rule for functional differentiation.
Suppose that F is a functional of a function g, and that this function g is itself a functional of
a function f . 4 Now suppose that f(x) changes, to f(x) + η(x) where η(x) is small. Then g(y)
will also change, let us say to g(y)+χ(y), and F will change to F+δF. From (2.1) these changes
are related by

δF =

∫
dy

δF

δg(y)
χ(y)

χ(y) =

∫
dz
δg(y)

δf(z)
η(z)

4Indeed, we have seen that the functional derivative δF/δf(x0) is both a functional of f and a function of x0.
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Combining these two equations and reversing the order of the y− and z− integrations gives

δF =

∫
dz

[∫
dy

δF

δg(y)

δg(y)

δf(z)

]
η(z) (2.2)

Comparing (2.1) with (2.2), it follows that the functional derivative of F with respect to f is

δF

δf(z)
=

∫
dy

δF

δg(y)

δg(y)

δf(z)
(2.3)

This is the chain rule for functional differentiation.

Taylor Series Expansion

If F[ q ] has derivative of all orders then it can be Taylor expanded as

F[ q + δq ] = F[ q ] +
∞∑
n=1

1

n!

∫
· · ·
∫
dx1 · · · dxn

δnF

δq(x1) · · · δq(xn)
δq(x1) · · · δq(xn)

Linear Transformation

Consider a mapping q(x) → q′(x) of the linear form: q(x) =
∫
dyK(x, y) q′(y), if this transforma-

tion posseses an inverse : q′(x) =
∫
dyK−1(x, y) q′(y), using these two expressions toghether we

get:

q(x) =

∫ ∫
dy dzK(x, y)K−1(y, z) q(z)

q′(x) =

∫ ∫
dy dzK−1(x, y)K(y, z) q′(z).

These equations imply:∫
dyK(x, y)K−1(y, z) =

∫
dyK−1(x, y)K(y, z) = δ(x− z).

Legendre Transformation

Let be F [ q ] a functional, we define the conjugate momentum such that:

p(y) =
δF [ q ]

δq(y)

then define the functional G [ p ] such that:

G [ p ] = F [ q ] − (q, p)

this functional G [ p ] is called the "Legendre transform of F [ q ]". This transformation eliminates
q(x) in favour of p(x) by the use of its definition, so that G is a functional of p alone.
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Functional Integration

The term "functional integration" refers to the following operation: we consider a set {q}n of
functions, (which may be required to satisfy boundary conditions or some other restriction, e.g.
qn ∈ L2(R)∀n)5, work out the value of some functional F for every function in the set, and add
up all these values. The result is called the functional integral of F over the set {q}n
This idea is analogous to ordinary integration; the ordinary integral

∫
f(x, y) dx dy is the sum

of the values taken by f as its argument moves over a grid of points, times the size dx dy of
each cell of the grid; a functional integral is the sum of the values taken by a functional as its
argument moves over some set of functions, times some measure of the ’volume’ of function space
associated with each function.
Now it is easy in principle to integrate over a single real variable, or a finite number of such
variables. But integrating over a set of functions is another matter altogether. In general such
a set will be infinite-dimensional, in that an infinite number of real numbers are needed to
parameterize its elements. Then this infinite number of parameters must be integrated over,
which will involve an infinite number of integrals. This is not obviously well defined, so some
care is needed.
Accordingly functional integration may be defined as an integration over infinitely many variables:∫

Dq F [ q ] ≡
∫
· · ·
∫

F̂(q1, q2, . . . , qn, . . . )

∞∏
i=1

dqi.

Assuming that the integral on the right hand side exists. The notation "
∫
Dq" means "integrate

over all possible values of q(x).6

Change of Integration Variable

Suppose we replace the function q(x) in a functional integral with a new function q′(x) which is
the result of a linear and symmetric transformation:

q(x) =

∫
dyK(x, y) q′(y) , K(x, y) = K(y, x).

We get the new integral ∫
Dq F[ q ]→

∫
D(K, q′)F[ (K, q′) ]

and you can demonstrate that the relation is the following:7∫
Dq F[ q ] = (DetK)

∫
D(K, q′)F[ (K, q′) ].

5Integrating over all possible functions does not have any obvious physical meaning, and it is not (in general)
mathematically defined, the concept of integrating over a restricted set {q}n of functions, compatible with the
physics of the particular problem, is well-defined and useful.

6What possible use can functional integration have? In physical terms, the smallest length scales which have
been explored are of the order of 10−19m. This is very short, but still a lot bigger than nothing at all. The idea of
a continuous function of position can only ever be an approximation to what is known about the physical world.

7DetK is a functional determinant. Something to explain the functional determinant
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2.3 Gaussian Functional integral

We want to calculate a Gaussian functional integrals by analogy(CON UN LIMITE) with ordina-
ry integrals. For a single variable we have the well known result:

1√
2π

∫ +∞

−∞
e−

1
2
λx2

dx =
1√
λ

λ > 0 (2.4)

In n dimensions we have

(2π)−n/2
∫ +∞

−∞
· · ·
∫ +∞

−∞
dx1 dx2 · · · dxn exp

(
− 1

2

n∑
i,j=1

Aijx
ixj
)

= (detA)−1/2

where Aij are the elemet of a real and symmetric matrix K which is required to be positive
definite.
To prove this result we consider a more general integral:

Z [ b ] = N

∫ +∞

−∞
· · ·
∫ +∞

−∞
dx1 dx2 · · · dxnexp

(
− 1

2

n∑
i,j=1

Aijx
ixj + i

n∑
j=1

bjx
j

)

with N a costant to be specified and bj real. Using a vector notation and defining y and z as

y ≡ iA−1b x = y + z.

Using the symmetries of scalar product (·, ·) and our definitions we have

(y,A, z) + (z,A, y) = 2(z,A, y) = −2(z, b)

(y,A, y) = (A−1b, A,A−1b) = (A−1b, b) = (b, A−1b) = (b, A−1, b)

(b, y) = −(b, A−1b) = −(b, A−1, b).

We can rewrite the exponent in

−1

2
(x,A, x) + i(b, x) =

1

2
[(z,A, z) + (y,A, z) + (z,A, y) + (y,A, y)] + (b, z) + (b, y)

=− 1

2
[(z,A, z) + (b, A, b)].

Then the change of variables from x to z transform Z [ b ] to

Z [ b ] = N e−
1
2

(b, A−1, b)

∫ +∞

−∞
· · ·
∫ +∞

−∞
dz1 dz2 · · · dzne−

1
2

(z,A,z).

By an appropriate orthogonal transformation zi =
∑

k likξk it is possible to transform the quadra-
tic form

∑
j,k Ajkz

jzk to a diagonal form
∑

j λjξ
2
j , with λj the eigenvalue of A. Since the Jacobian

of an orthogonal transformation is 1 we have
∏n
j=1 dzj =

∏n
j=1 dξj , and using the exp() properties

the n-dimentional integral factorize, so we can use the 1-dimentional integral result (2.4). Z [ b ]
becomes

Z [ b ] = N e−(b, A−1, b)
n∏
j=1

∫ +∞

−∞
e−

1
2
λjξ

2
j dξj = N e−(b,A−1,b)

n∏
j=1

(
2π

λi

)(1/2)
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Since
∏n
j=1 λi ≡ det(A) and if we fix N such that Z [ 0 ] = 1, therefore N = (2π)−n/2(detA1/2).

So we obtain the "generating functional"

Z [ b ] = exp
[
− 1

2
(b, A−1, b)

]
.

In the n → ∞ limit we get from detK → DetK, a functional determinant and Z [ b ] gets the
same form. But the limit of the previous formula can be just a representation of a functional
integral where limn→∞

∏n
j=1 dxj → [D q ]. We have8

lim
n→∞

(x,K, x)→
∫
dx dy q(x)K(x, y) q(y).

So in this limit the coordinates’ vector becomes the function xi → q(x) while the index i becomes
a continuous index i→ x, and

lim
n→∞

i(b, x)→ i

∫
dx J(x) q(x)

lim
n→∞

(b,K−1, b)→
∫
dx dy J(x)K−1(x, y) J(y)

the vector b becomes the function J : bi → J(x), which is usually called the "external source",
it is a generic (real) functional of x, which is said to be "linearly coupled" with the "field" q(x).
K−1 is defined by ∫

dyK(x, y)K−1(y, z) = δ(x− z).

If we choose N to be such that Z [ J ] = 1 we can write

Z [ J ] =

∫
Dq exp

[
− 1

2

∫
dx dy q(x)K(x, y) q(y) + i

∫
dx J(x) q(x)

]
= exp

[
− 1

2

∫
dx dy J(x)K−1(x, y) J(y)

]
= e−

1
2

(J,K−1,J) ≡ e−
1
2
J†K−1J .

(2.5)

The functional integral
∫
Dq F[ q ] can be called, in a somewhat imprecise way, a path integral.

8Bad notation: On the left x is the configuration vector, summed over his index α = 1, . . . , N ; on the
right q is the field configuration which is integrated over x, the coordinate vector. xi → qi ≡ q(xi). And
(x,K, x) =

∑N
α=0

∑N
β=0 xαK

αβxβ ,
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2.4 Probability Density Functional

The quantity [Dq] exp
(
− 1

2(q, k, q)
)
which appears in the Gaussian functional integral, if integra-

ted gives Z [ 0 ], has all the relevant properties to be a probability (density) functional:

i) it is semi-positive definite.
ii) it can be normalized, since Z [0] = 1.
iii) it goes to zero as q → ±∞.

We can then formally write:

dP[ q ] = Dq P[ q ] = Dq e

(
− 1

2
(q,k,q)

)
.

This is actually a multivariate Gaussian for an infinite and continuous number of variables. We
can then make the following ansatz: the statistical (ensemble) average of a generic functional
F[ q ] can be obtained as

<F[ q ]> ≡
∫

Dq e

(
− 1

2
(q,K,q)

)
F[ q ] =

∫
dP[ q ]F[ q ].

If q is gaussian distribuited.9 We can generalize considering a generic probability density func-
tional P[ q ] which satisfy i),ii) and iii) such that q(x) is distribuited according to it. We define
the expectation value of F[ q ] as:

<F[ q ]> ≡
∫

Dq P[ q ]F[ q ].

We can also calculate the n-point disconnected correlation functions by repeated functional
differentiations of Z [ J ]

C(n)(x1, ..., xn) ≡< q(x1), ..., q(xn) >=
(−i)n

Z

δnZ [ J ]

δJ(x1) · · · δJ(xn)

∣∣∣
J=0

. (2.6)

We can also define a set of reduced correlation functions for a random field q(x) by functional
differentiation of log Z [ J ] :

C(n)
c (x1, . . . , xn) = (−i)n δn log Z [ J ]

δJ(x1) · · · δJ(xn)

∣∣∣
J=0

. (2.7)

Another case in which is useful the introduction of the external source and functional differenti-
ation is the expectation value of some functional: let F[ q ] be expanded in a functional Taylor
series

F[ q ] =

∞∑
n=1

1

n!

∫
· · ·
∫
dx1 · · · dxn

δnF

δq(x1) · · · δq(xn)

∣∣∣
q=0

δq(x1) · · · δq(xn).

Therefore, using (2.6)

< F[ q ] > =
∞∑
n=1

1

n!

∫
· · ·
∫
dx1 · · · dxn

δnF

δq(x1) · · · δq(xn)

∣∣∣
q=0

C(n)(x1, . . . , xn)

=

∞∑
n=1

(−i)n

n!

∫
· · ·
∫
dx1 · · · dxn

δnF

δq(x1) · · · δq(xn)

∣∣∣
q=0

( δ

δJ(x1)
· · · δ

δJ(xn)

)
Z [ J ].

9Gaussian distribuited means that the probability distribution of different configurations of the field q is a
gaussian ditribuited around the most probable configuration.
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Then we can formally write10

< F[ q ] >= F
[
(−i) δ

δJ

]
Z [ J ]

∣∣∣
J=0

. (2.8)

In Appendix A there is an example of moments calculation for a Gaussian random field.

10This expression has meaning only watching at his Taylor expansion.





Chapter 3

Information Field Theory

3.1 Information Theory

The approach we are going to discuss tells about how we can
extract knowledge about physical reality starting from a set of
data.

Data are the result of a measurement of some physical quantity
and now, in our approach, statistical inference process, the caus-
ality between the physical world and the data should be inverted.

Some name convention: the physical state, our system config-
uration, ψ; the signal, the specific aspect of the system that is
measured, s; the set of data we collect, d.

The measurement process maps the real state into the data space,
ψ → d[ψ]. We just have a model to describe reality and measure-
ment process, a model that has unknown parameters, the signal
s, which shall be determined by the data d.

3.2 Bayesian Inference

We are going to use Bayesian inference that is a statistical inference method based on the Bayesian
interpretation of probability.

The system has some background configuration "ψ", which gives information on signal s and on
measurement process producing data d: s = s[ψ] and d = d[ψ].
Bayes’ theorem states that the posterior probability density P (s|d), which summarizes our know-
ledge on the field after the data is taken, is proportional to the product of the data likelihood
P (d|s) for a given field configuration times its prior probability P (s), which summarizes our a
priori knowledge on the field, like that smooth configurations are more plausible than rough ones.
Bayes’ theorem reads1:

P (s|d) =
P (d, s)

P (d)
=
P (d|s)P (s)

P (d)
(3.1)

1In the following ψ is assumed to be implicitly included among the conditionals of any probability.

13
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P (s) means the probability of the variable s to have the value s given the implicit background
configuration information ψ, P (svar = sval|ψ) , with svar the unknown variable and sval a
concrete value. The joint probability P (d, s) is decomposed in likelihood and prior2. The prior
P (s) summarizes our knowledge on s before measuring. The likelihood P (d|s) describes the
measurement process. The evidence P (d) =

∑
s P (d, s) serves as normalization factor3:

∑
s

P (s|d) =
1

P (d)

∑
s

P (d, s) =

∑
s P (d, s)∑
s′ P (d, s′)

= 1

3.3 Signal Inference Problem

In general, a signal inference problem tries to invert a measurement equation

d = f(s, α) (3.2)

that describes how the obtained data d depends on the unknown signal s and further nuisance
parameter α. Actually, we want to know s and are not interested in α, but the latter also
influences the measurement outcome. The problem is that the function f is not necessarily
invertible in s, and that the nuisance parameters may not be known. This problem is particularly
severe when the signal is a field, a continuous function s(x) over a manifold Ω ∈ x.

3.4 Field Inference

A field is a function over some continuous space. The air temperature over Europe, the Earth’s
magnetic field, the galaxy distribution in the Milky Way, or the dark matter density in the
Universe are all fields we want to know as accurately as possible. A physical field has an infinite
number of degrees of freedom, as it has a value for each point in space. Knowing a field exactly
from a finite number of measurements alone is therefore impossible since it is impossible to
determine an inifinte number of unknowns from a finite number of constraints, an exact field
reconstruction from the data alone is impossible. Additional information is needed.

Additional information might be available from physical law, statistical symmetries, or smooth-
ness properties known to be obeyed by the field. A unique field reconstruction might still be
impossible, but the configuration space of possible field realization might be sufficiently con-
strained to single out a good guess for the field.

The combination of data and additional information is done in an information theoretically
correct way by using probabilistic logic. Information field theory (IFT) is therefore information
theory applied to fields, Bayesian reasoning with an infinite number of unkowns.

The main difference of IFT to the usual Bayesian inference is that the continuity of the physical
space plays a special role. The fact that many physical fields do not exhibit abritrary roughness
due to their causal origins implies that field values at nearby locations are similar, and typically
more so the closer the locations are. The consequent exploitation of any knowledge on the field
correlation structure permits us to overcome the ill-posedness of the field reconstruction problem.

2(d , s) means (d "and" s), so the joint probability P (d, s) = P (d|s)P (s)
3s e s’ span all possible states.
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3.5 Inference on Physical Fields

In out attemps to infer the properties of a system we are faced with the problem of how to in-
terpret incomplete, imperfect and noisy data, draw our conclusions based on them, and quantify
the uncertainties of our results.[ This is true, from astronomical observation, for using galaxy
surveys to map the cosmic Large Scale Structure or for the interpretation of the Cosmic Mi-
crowave Background, as well as for many experiments in physical laboratories and compilations
of geological, economical, sociological, and biological data about our planet.]
Information theory, which is based on probability theory and the Bayesian interpretation of
missing knowledge as a probabilistic uncertainty, provides a suitable framework to handle such
problems. Given a model for the Universe or the system under consideration IF permits to de-
scribe probabilisticaly all relevant processes involved in the measurement.4

The states of such model, denoted by the state variable ψ, are identified with the possible config-
urations of the system, the different physical realities. Each state has a probability P (ψ) assigned
to it, the so-called prior information. This prior contains our knowledge about the system as
we model it before any data are taken. For a given cosmological model, the prior may be the
probability distribution of the different initial conditions of the Universe. Since our Universe
is spatially extended, the state variable will in general contain one or several fields, which are
functions over some coordinates x.
Also the measurement process is described by a data model which defines the so-called likeli-
hood, the probability P (d|ψ) to obtain a specific data set d given the physical condition ψ. For
instance, in case the outcome d of the measurement is deterministic P (d|ψ) = δ(d−d[ψ]), where
d[ψ] is the functional dependence of the data on the state. In general the probability distribution
function of the data is given in terms of a phase space or path integral over all possible realization
of ψ:5

P (d) =

∫
Dψ P (d|ψ)P (ψ) (3.3)

We are usually not interested in the whole state of the system, but only in some specific aspects
of it, which we call signal s = s[ψ] .(parentesi descrittiva che eviterei: ) Since the signal does not
contain the full physical state, any physical degree of freedom which is not present in the signal
but influences the data will be received as probabilistic uncertainty, or what is called noise. The
probability distribution function of the signal, its prior P (s)

P (s) =

∫
Dψ δ(s− s[ψ])P (ψ) (3.4)

is related to the one of the data via the joint probability

P (d, s) =

∫
Dψ δ(s− s[ψ])P (d|ψ)P (ψ) (3.5)

We can derive signal likelihood P (d|s) and posterior P (s|d) from the joint probability:

P (d, s) = P (d|s)P (s) = P (s|d)P (d)

P (d|s) = P (d, s)/P (s)

P (s|d) = P (d, s)/P (d)

(3.6)

4The term Bayesian field theory was proposed originally by Lemm for field inference. This term, however, does
not follow the convention to name field theories after subjects and not people. We do not talk about Maxwell,
Einstein, or Feynman field theory, but about electromagnetic, gravitational, and quantum field theories.

5Path integral is defined in the previous chapter.
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Before the data are available, the phase space of interest is spanned by the direct product of all
possible signals s and data d, and all regions with nonzero P (d, s) are of potential relevance. Once
the actual data dobs have been taken, only a submanifold of this space, as fixed by the data, is of
further relevance. The probability function over this subspace is proportional to P (d = dobs, s),
and needs just to be renormalized by dividing by∫

Ds P (dobs, s) =

∫
Ds

∫
Dψ δ(s− s[ψ ])P (dobs|ψ)P (ψ)

=

∫
Dψ P (dobs|ψ)P (ψ) = P (dobs)

(3.7)

Figure 3.1: P (dobs)

P (dobs) is the unconditioned probability (or evidence) of that
data. Thus, we find the resulting information of the data to be
the posterior distribution

P (s|dobs) = P (dobs, s)/P (dobs) (3.8)

This posterior is the fundamental mathematical object from which
all our deductions have to be made. It is related via Bayes’ the-
orem (1) to the usually better accessible signal likelihood

P (s|d) = P (d|s)P (s)/P (d)

which follows from equations (3.6). The normalization term in
Bayes’s theorem, the evidence P (d), is now also fully expressed
in terms of the joint probability of data and signal, and (2) becomes

P (d) =

∫
Ds P (d, s)

and the underlying physical field ψ is hidden at this stage in the formalism. The evidence plays
a central role in Bayes inference, since it is the likelihood of all the assumed model parameters.

3.6 Signal and Noise

If signal and data depend on the same underlying physical properties, there may be correlations
between the two, which can be expressed in terms of signal response R and noise n of the data
as6

d[ s ] = R[ s ] + ns

where the notation denotes the different dependence of response and noise on the signal, in order
to highlight that the response should embrace most of the reaction of the data to the signal,
whereas the noise should be as independent as possible.

The response is therefore the part of the data which correlates with the signal

R[ s ] ≡ <d>(d |s) ≡
∫

Dd dP (d|s)

6The response R maps the continuous field s onto a discrete data vector d. For individual entries of this data
vector the equation reads di =

∫
Ω
dxRi(x) s(x) + ni. Here i ∈ {1, ..., Ndata} with N data ∈ N is the index of the

data vector’s entries. Ω is the physical manifold the signal is defined on.
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and the noise is just defined as the remaining part which does not:

ns ≡ d−R[ s ] = d −<d>(d |s).

Although the noise might depend on the signal, it is per definition linearly uncorrelated to it7

<nss
†>(d |s) = (<d>(d |s) −R[ s ])s† = 0

whereas higher-order correlation might well exist.

These definitions were chosen to be close to the usual language in signal processing and data
analysis. They permit one to define signal response and noise for an arbitrary choice of the signal
s[ψ ]. No direct causal connection between signal and data is needed in order to have a nontrivial
response, since both variables just need to have some couplings to a common subaspect of ψ.

The above definition of response and noise is however not unique, even for a fixed signal definition,
since any data transformation d′ = T [ d ] can lead to different definitions, as seen from 8

R′[s] ≡ <d′>(d |s) = <T [d]>(d |s) 6= T [<d>(d |s)] = T [R[s]]

Thus, the concepts of signal response and therewith defined noise depend on the adopted
coordina-te system in the data space. This coordinate system can be changed via a data trans-
formation T , and the transformed data may exhibit a better or worse response to the signal.

Information theory aids in designing a suitable data transformation, so that the signal response
is maximal, and the signal noise is minimal, permitting the signal to be best recovered. Then
we may aim for an optimal T , which yields

T [d] = <s>(s|d) (3.9)

We define the posterior average of the signal, md = <s>(s|d) to be the map of the signal given
the data d and call T a map making algorithm if it fulfills (3.9) at least approximately. One may
require that the signal response of a map-making algorithm

RT [s] ≡ <T [d]>(d|s)

is positive definite with respect to signal variations as stated by

δRT [s]

δs
≥ 0

This ensures that a map-making algorithm will respond with a non-negative correlation of the
map to any signal feature, with respect to the noise ensemble.

The fidelty of a signal reconstruction can be characterized by the quadratic signal uncertainty

σ2
T,d = <(s− T [d])(s− T [d])†>(s|d)

averaged over typical realizations of signal and noise. Of special interest is the trace of this

Tr
(
σ2
T,d

)
=

∫
dx<|sx − Tx[d]|2)>(s|d) (3.10)

7 † means complex conjugation and transposing of a vector or matrix.
8Exceptions are some unique relations between signal and state, P (ψ|s) = δ(ψ−ψ[s]), and maybe a few other

very special cases. In general T will be a nonlinear operation on the data. For example data dependence of the
uncertainty is a common feature of nonlinear inference problems.
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since it is the expectation value of the squared distance, in Lebesgue L2 space, between a signal
reconstruction and the underlying signal.

Requesting a map making algorithm to be optimal with respect to eq (3.10) implies

T [d] = <s>(s|d)

and therefore to be optimal in an information theoretical sense according to eq (3.9).

The uncertainty σ2
T,d depends on d since in Bayesian inference one averages over the posterior,

which is conditional to the data.

The Frequentist uncertainty estimate,which is the expected uncertainty of any estimator before
the data are obtained, is given by an average over the joint probability function:

σ2
T,d = <(s− T [d])(s− T [d])†>(d,s) (3.11)

The latter is a good quantity to characterize the overall performance of an estimator, whereas
Tr
(
σ2
T,d

)
is a more precise indicator of the actual estimator performance for a given data set.
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3.7 Hamiltonian Formalism

We argued that the posterior P (s|d) (3.8) contains all available information on the signal, Al-
though the posterior might not be easily accessible mathematically, we assume in the following
that the prior P (s) of the signal before the data are taken as well as the likelihood of the data
given a signal P (d|s) are known or at least can be Taylor-Frèchet expanded around some refer-
ence field configuration. Introducing the language of statistical field theory, Bayes’s theorem
permits one to express the posterior as9

P (s|d) =
P (d, s)

P (d)
=
P (d|s)P (s)

P (d)
=
e−H[s]

Z
(3.12)

having defined the information Hamiltonian

H[ s ] ≡ Hd[ s ] ≡ − log[P (d, s) ] = − log[P (d|s)P (s) ]

and the evidence of the data, as

P (d) ≡
∫

Ds P (d|s)P (s) =

∫
Ds e−H[s] ≡ Z

and the partition function Z ≡ Zd. It is also convenient to include a moment generating function
into the definition of the partition function

Z [ J ] ≡
∫

Ds e−H[s] + i J†s (3.13)

This means that P (d) = Z = Z [0], but also permits to calculate any moment and cumulants
10 of the signal field s via Frèchet differentiation as (2.6), (2.7)

C(n)(x1, . . . , xn) ≡ <s(x1) · · · s(xn)>(s|d) =
(−i)n

Z

δnZ [ J ]

δJ(x1) · · · δJ(xn)

∣∣∣
J=0

C(n)
c (x1, . . . , xn) ≡ <s(x1) · · · s(xn)>c(s|d) = (−i)n δnZ [ J ]

δJ(x1) · · · δJ(xn)

∣∣∣
J=0

(3.14)

The assumption that H[ s ] can be expanded in a Taylor series permits one ti write

H[ s ] =
1

2
s†D−1 s− J† s+H0 +

∞∑
n=3

1

n!
Λ†(n) s

n (3.15)

the first tree Taylor coefficients have special roles. The constant H0 is fixed by the joint probabi-
lity density of signal and data normalization condition. J, the linear coefficient, is called in-
formation source. This term is usually directly and linearly related to the data. The quadratic
coefficient, D−1 , defines the information propagator D(x, y), which propagates information on
the signal at y to location x, and thereby, for example, permits one to partially reconstruct the
signal at locations where no data were taken. The anharmonic tensors Λ(n) create interactions
between the modes of the free, harmonic theory. Since this free theory will be the basis for the
full interaction theory, we first investigate the case Λ(n) = 0.

9The last term is just a renaming of the numerator and denominator of the first fraction, which highlights the
connection to statistical mechanics.

10Correlation functions are also called moments, and connected correlation functions are called cumulants.
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3.8 Free Theory

Gaussian Data Model

The simplest data model to be described assumes a signal with Gaussian prior P (s), linear
response on signal R[s], signal independent and Gaussian distributed noise P (n|s).

The signal Gaussian prior is

P (s) = G(s, S) ≡ 1

|2πS|1/2
exp

(
− 1

2
s†S−1s

)
(3.16)

where S = <ss†> is the signal covariance..

The signal is assumed to be provided by nature and our measurement device according to a
linear data model

d = Rs+ n (3.17)

here the response R[s] = Rs is linear, and the noise ns = n is signal independent 11. Typically,
the data space is discrete, whereas the signal space may be continuous. In that case each di data
point is given by

di =

∫
dxRi(x)s(x) + ni

In this simple model we assume, the noise to be signal independent and Gaussian, and therefore
distributed as

P (n|s) = G(n,N)

where N = <nn†> is the noise covariance matrix.

Since the noise is the difference of the data to the signal response, n = d−Rs, the likelihood of
the data is given by

P (d|s) = P (n = d−Rs) = G(d−Rs,N). (3.18)

Then the Hamiltonian of the Gaussian model is

HG[ s ] ≡ − logP (d, s) = − log
(
P (d|s)P (s)

)
= − log

(
G(d−Rs,N)G(s, S)

)
= H[d|s] +H[ s ]

then using log properties and collecting the terms with same order in s it becomes

HG[ s ] =
1

2

(
s†R†N−1 − s†j − j†s+ d†N−1d+ ln |2πN |

)
+

1

2

(
s†S−1s+ ln |2πS|

)
=

1

2
s†D−1s− j†s+HG

0

(3.19)

having defined D, propagator of the free theory,

D = [S−1 +R†N−1R ]−1 (3.20)

and j the information source as12

j = R†N−1d (3.21)
11The linear response matrix R of our instrument can contain window and selection functions, blurring effects,

and even a Fourier transformation of the signal space, if our instrument is an interferometer
12j reads: j(x) =

∑
i,k R

∗
i (x)N−1

ik dk. in case of discrete data but continuous signal spaces.
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depends linearly on the data in a response-over-noise weighted fashion. And the term

HG
0 =

1

2
d†N−1d+

1

2
log
(
|2πS||2πN |

)
contains all s-independent normalization constants.

Rewriting 3.19, reading j†s = 1
2(j†s + s†j) and inserting the identity 1 = DD−1 = D−1D,

exploting that D is invertible, we get

HG[ s ] =̂
1

2
, [s†D−1s− j†DD−1s− s†D−1Dj]

=̂
1

2
, [s†D−1s− (Dj)†D−1s− s†D−1Dj]

Defining m ≡ Dj and m† ≡ (Dj)†, using the fact that D is symmetric and real, and adding the
s-independent term m†D−1m, we obtain

HG[ s ] =̂
1

2
(s−m)†D−1(s−m). (3.22)

The partition function of the free theory

ZG[ J ] =

∫
Ds e−HG[s]+J†s

=

∫
Ds exp

(
− 1

2
s†D−1s+ (J + j)†s−HG

0

) (3.23)

is a Gaussian path integral, which can be calculated exactly, yielding

ZG[ J ] = |2πD|1/2 exp
(1

2
s†D−1s+ (J + j)†D(J + j)−HG

0

)
Then using the explicit partition function one can calculate the expectation of the signal given
the data <s>d, which we call the map md generated by the data

md ≡ <s>d =
δ log ZG[ J ]

δJ

∣∣∣
J=0

= D j

= [S−1 +R†N−1R ]−1R†N−1d

= (FWF ) d

(3.24)

Using (3.20) and (3.21). The last expression shows that the map is given by the data after
applying a generalized Wiener filter, md = (FWF ) d. The propagator D(x, y) describes how the
information on the density field contained in the data at location x propagates to position y:13

m(y) =

∫
dxD(x, y)j(x) (3.25)

The connected autocorrelation of the signal given the data is the propagator itself, according to
(A.1)

<ss†>cd = D = [S−1 +R†N−1R ]−1 (3.26)

13In practice, one will use an iterative linear algebra method like the conjugate gradient method to solve
numerically the equation D−1m = j for m on a computer.
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And all higher connected correlation functions are zero. Therefore, the signal given the data is a
Gaussian random field around the mean md and with a variance of the residual error r = s−md

provided by the propagator itself

<rr†> = <ss†>d −<s>d<s†>d = <ss†>cd = D

The posterior is therefor a Gaussian given by

P (s|d) = G(s−md, D) (3.27)

On the one hand it is the susceptibility of our mean field m to the force of the information
source j, since m = Dj, on the other hand it describes the remaining a posteriori uncertainty
D = <(s−m)(s−m)†>(s|d).

3.9 Interacting Theory

If any of the assumptions of our Wiener filter theory scenario is violated, in that the signal
response is non-linear, the field or the noise is non-Gaussian, the noise variance depends on the
signal, or the noise or signal covariances are unknown and have to be determined from the data
itself, the resulting information Hamiltonian will contain anharmonic terms. These terms couple
the different eigenmodes of the information propagator and lead to an interacting field theory.

Assuming that the Hamiltonian can be Taylor-Fréchet expanded in the signal fields, the Hamilto-
nian can be written as H = Hfree +Hint:14

H [ s ] =
1

2
s†D−1 s− J† s+H0 +

∞∑
n=3

1

n!
Λ†(n) s

n (3.28)

Let us assume that the interaction terms are small, usually this can be achieved by shifting the
field values to s′ = s− scl where scl is the minimum of the Hamiltonian, the classical field, or in
inference language, the maximum a posteriori estimator. Expanding H(d, s′) = H(d, s = scl+s

′)
around s′ = 0 then often ensures small interaction terms around the origin.

In this case, it is possible to expand the mean field value, or any other quantity of interest,
around its free theory value. Since the terms of such an expansion can become numerous and
complex, this is best done diagrammatically.

3.10 Extrema Principle and MAP

The Hamiltonian permits one to ask for classical equations derived from an extremal principle.
This is justified, on the one hand, as being just the result of a the saddle point approximation of
the exponential in the partition function. On the other hand, the extrema principle is equivalent
to the MAP estimator, which is quite commonly used for the construction of signal filters.15

The classical theory is expected to capture essential features of the field theory. However, if the
field fluctuations are able to probe phase-space regions away from the maximum in which the

14Where
∑∞
n=3

1
n!

Λ†(n) s
n reads

∑∞
n=3

1
n!

∫
· · ·
∫
dx1 · · · dxn Λ

(n)
x1···xn s(x1) · · · s(xn).

15An exhaustive introduction into and discussion of the MAP approximation to Gaussian and non-Gaussian
signal fields is provided by Lemm [10].
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Hamiltonian (or posterior) has a more complex structure, deviations between classical and field
theory should become apparent.

Extremizing the free theory Hamiltonian (3.19), respect the signal field s, around the configura-
tion s = m,

δHG[ s ]

δs

∣∣∣
s=m

= 0 =⇒ D−1m− j = 0

we get the classical mapping equation m = D j, which is the same result found using the field
theory result (3.24).

It is also possible to measure the sharpness of the maximum of the posterior by calculating the
Hessian curvature matrix

H [m ] =
δ2HG[ s ]

δs2

∣∣∣
s=m

= D−1.

In the Gaussian MAP approximation, the inverse of the Hessian is identical to the residual
covariance

<rr†> = H−1 [m ] = D

which for the pure Gaussian model is of course identical to the exact result, as given by the field
theory.





Chapter 4

IFT for Cosmological Perturbations

In the previous chapter Information Field Theory was presented as a field theory approach to
Bayesian inference, written in Statistical Mechanics formalism. In the Gaussian case achieved
results are exact, if we deal with non Gaussian fields we get to interactive terms in the Hamilto-
nian, this set out of question the possibility of an analytycal solutoin, so the way is to make a
perturbative expansion using Feynman rules and solve the problem iteratively. The following
chapter treats of an actual use of IFT.

4.1 Non-Gaussian CMB Fluctuations via fnl Theory

4.1.1 Data Model

We investigate the so-called fnl theory of local non-Gaussianities in the CMB temperature
fluctua-tions. This problem has currently a high scientific relevance due to the strongly increas-
ing availability of high fidelity CMB measurements, which permit one to constrain the physical
conditions at very early epochs of the Universe.

Over the very uniform CMB sky with a mean temperature TCMB = 2, 728K, small temperature
fluctuations on the level of

δ T
{I,E,B}
obs /TCMB ∼ 10−{5,6,7}

are observed in total intensity (I), in polarization E and B mode respectively. The weak B
modes are mainly due to the lensing of E modes and some unknown level of gravity waves. We
will disregard them in the following. These CMB temperature fluctuations are believed and
observed to follow mostly a Gaussian distribution. However, inflation predicts some level of
non-Gaussianity1.

As a first step, we assume that the data d are given and we want to reconstruct ϕ from them. The
primordial, as well as some of the secondary CMB temperature fluctuations, are a response to
the gravitational potential initially seeded during inflation. Since we are interested in primordial
fluctuations, we write

d ≡ δ T {I,E}obs /TCMB = Rϕ+ n (4.1)

1Some of the secondary anisotropies imprinted by the LSS of the Universe via CMB lensing, the integrated
Sachs-Wolfe and the Rees-Sciama effects should also have imprinted non-Gaussian signatures.

25
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where ϕ is the three-dimensional, primordial gravitational potential, and R is the response on
it of a CMB instrument, observing the induced CMB temperature fluctuations in intensity and
E-mode polarization. These are imprinted by a number of effects, like gravitational redshifting,
the Doppler effect, and anisotropic Thomson scattering.

The precise form of the response does not matter for a development of these concepts and can
be inserted later2.

The noise n subsumes all deviation of the measurement from the signal response due to instru-
mental and physical effects, which are not linearly correlated with the primordial gravitational
potential, such as detector noise, remnants of foreground signals, but also primordial gravita-
tional wave contributions to the CMB fluctuations.

The small level of non-Gaussianity expected in the CMB temperature fluctuations is a con-
sequence of some non Gaussianity in the primordial gravitational potential. Despite the lack of
a generic non-Gaussian probability function, many of the inflationary non-Gaussianities seem to
be well described by a local process, which taints an initially Gaussian random field, φ→ P (φ) =
G(φ,Φ) 3 with some level of non-Gaussianity.

A well controllable realization of such a tarnishing operation is provided by a slightly nonlinear
transformation of φ into the primordial gravitational potential ϕ via

ϕ(x) = φ(x) + fnl
(
φ2(x)−<φ2(x)>(φ)

)
(4.2)

for any x. The parameter fnl controls the level and nature of non-Gaussianity via its absolute
value and sign, respectively.

The data model reads
d = R

(
φ+ fnl(φ

2 − Φ̂)
)

+ n (4.3)

In the following we assume the noise n to be Gaussian with covariance N = <nn†>(n).

4.1.2 Moments Calculation

The nonlinearity of the relation between the hidden Gaussian random field φ and the observable
gravitational potential ϕ (4.2) imprints non-Gaussianity into the latter. In order to be able to
extract the value of the non-Gaussianity parameter f from any data containing information on
ϕ, we need to know its statistic at least up to the four-point function, the kurtosis, which we
derive with IFT methods. In the following sometimes is used the letter f for convenience instead
of fnl.

In order to do that, it is convenient to define a ϕ-moment generating function Z [ J ]

Z [ J ] =

∫
DφP (φ) e J

†ϕ(φ)

=

∫
DφG(φ,Φ) e J

†ϕ(φ)

=
1

|2πΦ|1/2

∫
Dφ e−

1
2
φ†Φ−1φ e

(
J†(φ+f(φ2−Φ))

) (4.4)

2The response, which translates the 3D gravitational field into temperature maps, is well known from CMB
theory and can be calculated with publicly available codes.

3Φ is the φ covariance <φφ†>(φ).



4.1. NON-GAUSSIAN CMB FLUCTUATIONS VIA FNL THEORY 27

rewriting fφ2 as 1
2(2φ†fφ) and using the general result (2.5) one gets to4

Z [ J ] =
1

|2π(1− 2Φf̂J)|1/2
exp

(1

2
J†(Φ−1 − 2f̂J)−1J − (fJ)†Φ̂

)
(4.5)

Then log Z [ J ] function results5

log Z [ J ] =
1

2
J†[ Φ−1 − 2f̂J ]−1J − (fJ)†Φ̂− 1

2
tr[log(1− 2Φf̂J)] (4.6)

This permits one to calculate via J derivatives the mean6,

ϕ̄(x) ≡ <ϕ>(φ)

=
δ log Z [ J ]

δJx

∣∣∣
J=0

= J†[Φ−1 − 2f̂J ]−1
∣∣∣
J=0
− fΦ̂ − 1

2

δ

δJ

(
tr(log(1− 2Φf̂J)

)∣∣∣
J=0

= −fΦ̂ +
Φ̂f

(1− 2Φf̂J)

∣∣∣
J=0

= 0

(4.7)

the covariance,

C(ϕ)
xy ≡ <ϕxϕy>c(φ)

=
δ2 log Z [ J ]

δJxδJy

∣∣∣
J=0

=
δ

δJ

(
J†(Φ−1 − 2f̂J)−1

∣∣∣
J=0
− fΦ̂ +

Φ̂f

(1− 2Φf̂J)

)∣∣∣
J=0

= Φ−1 − 2fΦ2f

(4.8)

the 3-points correlation function, or skewness7,

B(ϕ)
xyz ≡ <ϕxϕyϕz>c(φ)

= 2
(

ΦxyfyΦyz + 2 Πxyz

)
+ 8 ΦxyfyΦyzfzΦzxfx

(4.9)

and the 4-points correlation function, or kurtosis

T (ϕ)
xyzu = ΦxyΦzuΦxzΦyuΦxuΦyz + <ϕxϕyϕzϕu>

c
(φ)

=
(1

8
ΦxyΦzu + 2ΦxyfyΦyzfzΦzu + ΦxyfyΦyzfzΦzufuΦuxfx

)
+ 23 Πxyzu

(4.10)

of the gravitational potential.

4where in the first term |1− 2Φf̂J | stays for that combination of functional determinant of 1, Φ̂ and f̂J .
5Using the following property: A is a non singular squared matrix log(detA) = tr(logA).
6Using the relation: ∂

∂B
tr(ABT ) = A.

7Πα1...,αn means n!− 1 index permutations (one term is just written).
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4.1.3 CMB Hamiltonian

Although we are not interested in the auxiliary field φ, it is nevertheless very useful for its
marginalization to define its Hamiltonian, which is

Hf [ d, φ ] = − log
(
G(φ,Φ)G(d−R(φ+ f(φ2 − Φ̂), N))

)
=

1

2
φ†D−1φ+H0 − j†φ+

4∑
n=0

1

n!
Λ†(n) φ

n
(4.11)

with89

D−1 = Φ−1 +R†N−1R ≡ Φ−1 +M

j = R†N−1 d

Λ(0) = j†(fΦ̂) +
1

2
(fΦ̂)†M(fΦ̂)

Λ(1) = −(fΦ̂)†M

j′ = j − Λ(1)†

Λ(2) = −2 f̂ j′

(4.12)

and H0 collects all terms independent of φ and f10.

If we consider large scales, dominated by the Sachs-Wolfe effect, a local approximation exists in
which the response and the noise covariance are diagonal in the position space, we have

Nxy = σ2
n(x) δ(x− y) (4.13)

and R = −3 for the total intensity fluctuations, thus

Mxy = 9σ−2
n (x) δ(x− y) (4.14)

if we restrict the signal space to the last-scattering surface, which is isomorphous to S2. This
permits one to simplify the Hamiltonian to

Hf [ d, φ ] =
1

2
φ†D−1φ+H0 − j†φ+

4∑
n=0

1

n!
λ†(n) φ

n (4.15)

with

D−1 = Φ−1 + 9 ˆ(σ−2
n )

λ(0) = 3(Φ̂/σ2
n)†
(3

2
f2Φ̂− f d

)
λ(1) = −3(Φ̂σ2

n)†f

j′ = j − λ(1) = 3(3Φ̂ f − d)/σ2
n

λ(2) = −2f̂ j′, λ(3) = 54 f/σ2
n, λ(4) = 108f2/σ2

n

(4.16)

8Λ(3) and Λ(4) are more complicated, the whole expressions are in [1].
9Here and in the following, the hat on the vector fj denotes a diagonal matrix, ˆfj′, whose entries are given

by ˆfj′xx = fxj
′
x.

10Equation (4.12) permits us to consider values of fnl that vary from location to location. However, we want
to concentrate on a single value of fnl .
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The numerical coefficients of the last two terms may look large, however, these coefficients
stand in front of terms of typically φ3 ∼ 10−15, and φ4 ∼ 10−20 , which ensures their well
behavedness in any diagrammatic expansion series. We define the Wiener-filter reconstruction
of the gravitational potential as

m0 = D j. (4.17)

4.1.4 fnl Posterior

We aim to determine the PDF for the fnl parameter, and thus are interested in Since now we
are not interested in reconstructing the primordial fluctuations, but to determine the PDF for
the fnl parameter.

Thus are interested in

P (f |d) ∝ P (d|f)P (f)

∝
∫

DφP (d, φ|f)

=

∫
Dφ e−H[d,φ|f ]

(4.18)

where we have assumed that P (f) = const. for simplicity. However, we are not able to perform
the path integration, because the Hamiltonian is not quadratic in the field φ.

An expansion in Feynman diagrams had therefore been proposed in [ 1 ]. Where the approach
consist on marginalize the former by calculating the log evidence logP (d|f) up to quadratic
order in f :

log Z [ d|f ] = log

∫
DφP (d, φ|f)

= log

∫
Dφ e−H[d,φ|f ]

(4.19)

Although f is not known, the the terms in the diagrammatic expansion which are proportional
to f and f2 can be calculated separately, permitting one to write down the Hamiltonian of f

Hd[ f ] ≡ − logP (d|f)P (f)

= H̃0 +
1

2
f †D̃−1f + j̃†f + O(f3)

(4.20)

where we collected the linear and quadratic coefficients into j̃ and D̃−1. Then the optimal f
estimator to the lowest order is therefore

mf =< f >((φ,f |d))= D̃ j̃ (4.21)

and its uncertainty variance is just D̃.

Now, the central idea to circumvent this problem is to use a saddle-point approximation by per-
forming a Taylor expansion of the Hamiltonian up to the second order in φ around its minimum
[11]. This is possible because |φ| ∼ O(10−5) provides us with a small parameter and P (φ ≈ 1) is
negligibly small. To calculate this expansion, we need the first and second functional derivatives
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of H(d, φ|f) with respect to φ. The minimum m, in the large-scale approximation11, is given by,

0 =
δH[d, φ|f ]

δφ

∣∣∣
φ=m

= (D−1 + λ(2))m− j + λ(1) +
1

2
λ(3)m2 +

1

6
λ(4)m3

(4.22)

and the Hessian

D−1
d,f =

δ2H[d, φ|f ]

δφ2

∣∣∣
φ=m

= D−1 + λ(2) + λ̂(3)m+
1

2
λ̂(4)m2

(4.23)

In our saddle-point approximation, the Hamiltonian therefore has the form

H[d, φ|f ] = H[d,m|f ] +
1

2
(φ−m)†D−1

d,f (φ−m) + O
(
(φ−m)3

)
(4.24)

where we ignore third and fourth order terms in (φ−m).mNow we are able to compute analitically
the φ marginalization,

P (d|f) ∝
∫

Dφ e−H[d,φ|f ]

≈
∫

D(φ−m)
∣∣∣δ(φ−m)

δφ

∣∣∣−1
exp

(
−H[d,m|f ]− 1

2
(φ−m)†D−1

d,f (φ−m)
)

= |2πDd,f |1/2 exp
(
−H[d,m|f ]

) (4.25)

At this point we are able to calculate analytically the maximum a posteriori estimator for fnl ,
the fMAP , by setting

∂P (f |d)

∂f

∣∣∣
f=fMAP

= 0 (4.26)

This yields 12

0 =
1

2
tr
( ∂
∂f

ln
(
2πDd,f )−1

))
+
∂H[d,m|f ]

∂m

∂m

∂f
+
∂H[d,m|f ]

∂f

∣∣∣
f=fMAP

(4.27)

solving this equation we get fMAP .

4.1.5 Experimental Results

While standard single-field inflation theories predict small values of fnl << 1, multifield inflation
theories predict larger fnl values up to the order of O(102). Therefore, any detection or upper
limit of fnl rules out some inflation models and might enable us to select between the remaining
ones. Recent data from the Planck collaboration [12] satellite constrain the non-Gaussianity,
combining temperature and polarization data, to

fnl = 0.8± 5.0 (68%C.L.). (4.28)

Which is compatible with zero.
11Where the response and the noise covariance matrix are diagonal.
12Note that we have used the implicit function theorem to calculate the partial derivative of the implicitly

defined function m(f) with respect to f .



Appendix A

Gaussian Field Correlation Functions

We can see an example. Consider a Gaussian field q(x) with kernel K(x, y), it has the partition
function Z [ J ] = e−

1
2

(J,K−1, J). We can try to calculate the 1-point and 2-point correlation
functions, finding:

<q(x)> ≡ δZ [ J ]

δJ(x)

∣∣∣
J=0

= − (K−1, J) Z [ J ]
∣∣∣
J=0

= 0

<q(x), q(y)> ≡ δ2Z [ J ]

δJ(x)δJ(y)

∣∣∣
J=0

=
(
−K−1(x, y) + (K−1,K−1 J)

)
Z [ J ]

∣∣∣
J=0

= K−1(x, y)

(A.1)

therefore for a Gaussian variable the 2-point correlation function is the inverse of the kernel
K(x, y). If we want to calculate the C(n)(x1, · · · , xn) we get 1.

C(2n+1)(x1, · · · , x2n+1) = 0

C(2n)(x1, · · · , x2n) = (2n− 1)!!
(
K−1(xi, xi+1)

)sym
we see from this example that n-point correlation functions of a Gaussian field are all derivable
from the 2-point one, in the sense that correlation functions are decomposable as products of the
2-point function.

1sym means the total symmetrization operation of the term:
(
K−1(x1, x2)K−1(x3, x4) · · ·K−1(x2n−1, x2n)

)
.

In this case i goes from 0 to n− 1 so the symmetrization cosist in a sum over (2n− 1)!! terms.
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CMB fnl

Figure B.1: Normalized posterior distributions for f in a one-dimensional test case with data generated
from fgen = 3 [panels (a), and (c)] and fgen = 3000 [panels (b), and (d)]. The (a), (b) upper [(c),
(d) lower] panels show the numerically calculated posterior including a parabola (Gaussian) fit. For
fgen = 3000, the PDF is negatively skewed and thus significantly non-Gaussian. The fitting curves in
the upper panels arise from translating the Gaussian fit of the lower panels into a quadratic function.
[11]

33



34 APPENDIX B. CMB FNL



36 APPENDIX C. CMB RECONSTRUCTION

Appendix C

CMB Reconstruction

Figure C.1: Reconstruction of the primordial gravitational potential ϕ or the auxiliary Gaussian field φ
by using the maximum of the Hamiltonian and by applying a Wiener Filter, respectively. The upper four
panels [(a) – (d)] are showing the generation of the mock data d, whereas the last two panels [(e), (f)]
are showing the reconstructions of the original fields. Note the different color codes. [11]
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