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Introduction

Energy markets and, in particular, electricity markets, exhibit very peculiar features.
Electricity can be considered a commodity, just as oil and grain are; however, electricity
markets are particularly di�erent from other commodity markets.
Firstly, electricity cannot be stored economically (the problem is essentially due to the
physical di�culty in storing large amount of energy and also to the fact that this proce-
dure is extremely expensive); this implies that it is purchased primarily for consumption
and then a relatively small change in demand or capacity can cause an immediate jump
in price. Although producers can adjust their supply, there is always a time delay and
therefore it is quite common to observe spikes (a comparatively large upward or downward
movement of a price in a short period of time) in electricity prices.
Secondly, electricity consumption exhibits strong seasonality and sometimes also the ca-
pacity is a�ected by seasonality like hydro power generation which varies with seasons.
Due to the non-storability and seasonality electricity prices are highly volatile and exhibit
jumps and spikes from time to time.
Due to this properties and also to the fact that empirical evidence suggests that in many
asset prices often jumps appear in cluster, to model the dynamics describing the spot
price (or the future price) we need to introduce jump processes exhibiting a clustering
or self-exciting behavior. There is a wide class of works in the literature with several
di�erent approaches to describe power prices evolution and a comprehensive literature
review until 2008 is presented in [2].
In this work we aim to investigate if self exciting features arise in power forward prices
evolution and we will focus our attention on two classes of stochastic processes: contin-
uous branching processes with immigration (CBI) and Hawkes processes. CBI processes
are commonly used in modeling population dynamics and their self exciting features de-
scribe the growth of the population due to the reproduction of the previous generations.
Hawkes processes, instead, are particular extension of Poisson processes with self exciting
properties, where points shows clustering e�ects; they have been introduced by Hawkes
(1979) and the fact that they are extremely versatile makes them interesting both from a
theoretical and from a practical point of view.
This work is organized in the following way: in the �rst chapter we set up the theoretical
framework and we de�ne and give the main properties of CBI and Hawkes processes, in
the second chapter we recall some stochastic analysis notions (Girsanov Theorem) and
we set up the modeling framework for forward prices based on Hawkes and CBI processes
and, �nally, in the third chapter we describe the algorithm to determine forward curves
and then we give the parameter estimation for the model proposed. We also implement
the algorithm for jump detection in forward curves and we apply it to detect jumps in
historical series of data of future prices of other commodities (gold and crude oil).
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Chapter 1

Properties of CBI and Hawkes

processes

The �rst section of this chapter is devoted to some important de�nitions about random
measures that will be used in the construction of the model given in Chapter 2. The
references for this part are [5], [6] and [16]. The second section is devoted to the construc-
tion and the presentation of some important properties of Continuous state Branching
processes (CB processes) and of Continuous state Branching processes with Immigration
(CBI processes); here the main references are [20], [21] and [22]. The last section is dedi-
cated to a review of Point processes and Poisson processes that are used to de�ne Hawkes
processes. The references for this part are [7], [19], and [26].

1.1 Introductory de�nitions

We by start describing the model which is based on stochastic di�erential equations
(SDEs) driven by Levy random �elds. First of all we set some important de�nitions:

De�nition 1.1 (Random Measure with transition kernels). Let (Ω,F , P ) be a probability
space and (E, E) a measurable space. A Random Measure X is a function:

X : Ω× E → [0,∞)

such that:

� ∀ω ∈ Ω the map:

X(ω, ·) : E → [0,∞)

is a measure;

� For every B ∈ E the map:

X(·, B) : Ω → [0,∞)

is F−measurable random variable.

An alternative de�nition is the following:

7
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De�nition 1.2 (Random Measure as random element). Let (Ω,F , P ) be a probability
space and (E, E) a measurable space. A Random Measure X is a measure valued element
from (Ω,F , P ) to (M,M) where M is the space of all measures on (E, E) and M is its
σ-algebra.

De�nition 1.3. A stochastic process {Xt}t∈R is said to be a Lévy process if:

� X0 = 0 almost surely.

� for all t0 < t1 < ... < tn the random variables Xt0 , Xt1 − Xt0 , ..., Xtn − Xtn−1 are
mutually independent.

� for any s < t the distribution of (Xt −Xs) is the same of Xt−s.

� for any ε > 0 and h ≥ 0 it holds that:

lim
h→0

P (|Xt+h −Xt| > ε) = 0

Finally a Lévy random �eld is a multi-dimensional generalization of a Lévy process

In particular we have that:

De�nition 1.4 (Gaussian random measure). A Gaussian random measure is a random
measure such that ∀ω ∈ Ω the function:

X(ω, ·) : E → [0,∞)

is a Gaussian measure, i.e., it is either the Dirac delta at a point a ∈ R or it has density:

p(·, a, σ2) : x 7→ 1√
2πσ2

exp

(
− (x− a)2

2σ2

)
with respect to the Lebesgue measure where the parameters a and σ are called mean and
variance of the measure.

We consider now the case of a Gaussian random measure and we introduce the concept
of white noise:

De�nition 1.5. A Gaussian random measure W : Ω × B(R2
+) → [0,∞) is said to be a

white Noise on R2
+ if:

� ∀A ∈ B(R2
+) for which λ2(A) < ∞ (λ2 denotes the Lebesgue measure on R2) we

have that W (·, A) is a Gaussian random variable with zero mean and variance equal
to λ2(A).

� Given A1, ..., An disjoint Borel set with �nite Lebesgue measure, then the random
variables

W (·, A1), . . . ,W (·, An)

are mutually independent.

We also need the following:
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De�nition 1.6. We say that N : Ω×B(R3
+) → [0,∞) is a Poisson random measure with

intensity λ (with λ Borel measure on R3
+) if it is the product measure of the Lebesgue

measure on R+ × R+ with a Borel measure µ on R+ such that:∫ ∞

0

(z ∧ z2)µ(dz) <∞

In particular the Borel measure µ in De�nition (1.6) is a Levy measure since:

1 ∧ z2 ≤ (z ∧ z2)1(0,1](z) + (z ∧ z2)1(1,∞)(z) = z ∧ z2

This implies that: ∫ ∞

0

(1 ∧ z2)µ(dz) ≤
∫ ∞

0

(z ∧ z2)µ(dz) <∞

We also introduce:

De�nition 1.7. Let N be a Poisson random measure, we de�ne the compensated Poisson
random measure of intensity λ as Ñ = N − λ.

At this point we introduce the �ltration F = {Ft}t≥0 as the natural �ltration generated
by Lévy's random �eld, namely for any Borel subset A ∈ B(R+) and B ∈ B(R2) of �nite
Lebesgue measure the processes: (W ([0, t] × A), t ≥ 0) and (Ñ([0, t] × B), t ≥ 0) are
P -Martingales.
At this point we are ready to set up the stochastic di�erential equation that we are going
to use: we set a, b, σ, γ ∈ R+ positive constants and:

� W (ds, du) a white noise on R2 with unit covariance matrix.

� Ñ(ds, du, dz) an independent compensated Poisson random measure on R3 with
intensity dsduµ(dz), with µ Lévy measure on R+ satisfying

∫∞
0
(z ∧ z2)µ(dz) <∞.

1.2 Laplace transform of a measure

We start recalling some basic properties of the Laplace transform of a measure and then
we continue de�ning the continuous state branching process (CB) and continuous state
branching process with immigration (CBI). Let B([0,∞)) be the Borel σ-algebra on the
positive half line and let Bb([0,∞)) the set of bounded measurable functions on [0,∞).
Given a �nite measure µ on [0,∞) we de�ne the Laplace transform Lµ of µ by:

Lµ(λ) =

∫
[0,∞)

e−λxµ(dx) λ ≥ 0 (1.1)

Theorem 1.1. A �nite measure on [0,∞) is uniquely determined by its Laplace transform.

Proof. Suppose that µ1 and µ2 are �nite measures on [0,∞) and that Lµ1(λ) = Lµ2(λ)
for all λ ≥ 0. Then set H = {x 7→ e−λx : λ ≥ 0} and L the set of functions in Bb([0,∞))
such that: ∫

[0,∞)

F (x)µ1(dx) =

∫
[0,∞)

F (x)µ2(dx)
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Then H is closed under multiplication and L is a monotone vector space containing H.
Moreover we have that σ(H) = B([0,∞)) and hence we have that by the monotone class
theorem:

L ⊃ σb(H) = Bb([0,∞))

which proves the result.

We state now a theorem about converging result of Laplace transform of a measure.

Theorem 1.2. Let {µn}n∈N be a sequence of �nite measures on [0,∞) and λ 7→ L(λ) be
a continuous function on [0,∞). If limn→∞ Lµn(λ) = L(λ) for every λ ≥ 0 then there is
a �nite measure µ such that Lµ = L and limn→∞ µn = µ by weak convergence.

Corollary 1.1. Let µ1, ..., µn be �nite measures on [0,∞). Then µn → µ weakly if and
only if Lµn(λ) → L(λ).

Proof. If µn → µ weakly we have that limn→∞ Lµn(λ) = Lµ(λ) for every λ ≥ 0, indeed
being x 7→ e−λx continuous and bounded for every λ ≥ 0 we have that:

lim
n→∞

Lµn(λ) = lim
n→∞

∫ ∞

0

e−λxµn(dx) =

∫ ∞

0

e−λxµ(dx) = Lµ(λ)

The converse is a consequence of the Theorem 1.2.

We conclude this section adding some additional results:

� given two probability measures µ1, µ2 we de�ne µ1 × µ2 their product measure on
[0,∞)2.

� The image of µ1 × µ2 under the mapping (x1, x2) 7→ x1 + x2 is called convolution of
µ1 and µ2 and it is denoted by µ1 ∗ µ2 and it is a probability measure on [0,∞)

For any F ∈b B([0,∞)) we have that:∫
[0,∞)

F (x)(µ1 ∗ µ2)(dx) =

∫
[0,∞)

µ1(dx)

∫
[0,∞)

F (x1 + x2)µ2(dx) (1.2)

If X1 and X2 are random variables with distributions µ1 and µ2 then X1+X2 is a random
variable with distribution µ1 ∗ µ2. Finally we have that:

Lµ1∗µ2(λ) = Lµ1(λ)Lµ2(λ) λ ≥ 0 (1.3)

Let now:

µ∗0 = δ0

µ∗n = µ∗(n−1) ∗ µ for n ≥ 1

We say that a probability distribution µ on [0,∞) is in�nitely divisible if for each integer
n ≥ 1 there is a probability µn such that µ = µ∗n

n ; in this case µn is called the n-th root
of µ.
A positive random variableX is said to be in�nitely divisible if it admits in�nitely divisible
distribution on [0,∞).
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1.3 Construction of a CB process

CB and CBI processes are a particular class of stochastic processes commonly used in
modelling population dynamics. The self-exciting features describe the growth of the
population due to the reproduction of the previous generations. Our aim is to use them
to describe jumps generated by previous jumps. In this section we present a possible
construction of a CB-Process.

1.3.1 Galton Watson Branching process

Let {p(j) : j ∈ N} be a probability distribution of a r.v. X on the space of positive
integers N. It is well known that {p(j) : j ∈ N} is uniquely determined by its generating
function g : N → R de�ned by:

g(z) = E(zX) =
∞∑
j=0

p(j)zj |z| ≤ 1

At this point we suppose to have {ξn,i : n, i = 1, 2, ...} a family of N-valued random vari-
ables with distribution {p(j) : j ∈ N}. Given an N-valued random variable Z0 independent
on {ξi,n} we de�ne inductively for n = 1, 2, ...:

Zn =

Zn−1∑
i=1

ξn,i Z0 = 0 (1.4)

Of course we set
∑0

i=1 = 0. For each i ∈ N we denote with {Q(i, j) : j ∈ N} the i-fold
convolution of {p(j) : j ∈ N}, that is, Q(i, j) = p∗i(j) for i, j ∈ N. For any n ≥ 1 and
{i0, i1, i2, ..., in−1 = i, j} ⊂ N we have that:

P (Zn = j|Z0 = i0, ..., Zn−1 = i) = P

( Zn−1∑
i=1

ξn,i = j

∣∣∣∣ Zn−2∑
i=0

ξn−1,i = in−1, ..., Z0 = i0

)

= P

( Zn−1∑
i=1

ξn,i = j

∣∣∣∣ Zn−2∑
i=0

ξn−1,i = in−1

)

= P

( i∑
k=1

ξn,k = j

)
= p∗i(j) = Q(i, j).

Then Zn : n ∈ N is an N-valued Markov chain with one step transition matrix Q =
Q(i, j) : i, j ∈ N; in particular the random variable Zn can be tought as the number of
individuals in the generation n of an evolving population system. After one time unit each
individual of the population splits independently on the others into a random number of
o�spring according to the distribution {p(j) : j ∈ N}. Clearly we have for i ∈ N and for
|z| ≤ 1:

∞∑
j=0

Q(i, j)zj =
∞∑
j=0

p∗i(j)zj = g(z)i. (1.5)

Moreover the transition matrix Q satis�es the branching property:

Q(i1 + i2, ·) = Q(i1, ·) ∗Q(i2, ·). (1.6)
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Namely, that di�erent individuals of the population propagate independently on each
other. A Markov chain with state space N with one step transition matrix de�ned by
(1.5) is called a Galton Watson branching process (GW-process) or a Bienaymé-Galton-
Watson branching process with branching distribution given by g.
By a general result on the theory of Markov chains we have that for n ≥ 1 the n-step
transition matrix of the GW -process is just the n-fold product matrix Qn = {Qn(i, j) :
i, j ∈ N}.

Proposition 1.1. For n ≥ 1 and i ∈ N we have:

∞∑
j=0

Qn(i, j)zj = g◦n(z)i (1.7)

where g◦n(z) is de�ned iteratively by: g◦0(z) = z and:

g◦n = g ◦ g◦(n−1)(z) = g(g◦(n−1)(z)).

Proof. We know that the previous property holds for n = 1. Suppose now that it holds
for some n ≥ 1, then we have that:

∞∑
j=0

Qn+1(i, j)zj =
∞∑
j=0

∞∑
k=0

Q(i, k)Qn(k, j)zj

=
∞∑
k=0

Q(i, k)g◦n(z)i

And this proves inductively the thesis.

It is easy to see that 0 is a trap for the GW -process; indeed if at some n ≥ 1 we have
that Zn = 0, then:

Zn+1 =
Zn∑
i=1

ξn,i = 0

And therefore by induction on n we conclude that Zk = 0 ∀k ≥ n.
If g′(−1) < ∞ by di�erentiating both sides of (1.7) we see that the �rst moment of the
distribution {Qn(i, j) : j ∈ N} is given by:

∞∑
j=1

jQn(i, j) = ig′(1−)n (1.8)

1.3.2 Continuous extension of a Galton-Watson process

Suppose now to have a sequence of GW-processes {Xk(n) : n ≥ 0}k≥1 with branching
distribution given by the probability generating function gk, for k = 1, 2, .... Consider
now:

Zk(n) =
1

k
Xk(n) n ≥ 0 (1.9)
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the process de�ned by(1.9) is a Markov chain with state space Ek = {0, k−1, 2k−1, ...} and
n-step transition probability given by Qn

k(x, dy) determined by:∫
Ek

eλyQn
k(x, dy) = g◦nk (e−λ/k)kx. (1.10)

Suppose now that {γk}k is a positive sequence γk → ∞ as k → ∞ and let ⌊γkt⌋ denote
the integer part of γkt. Given Zk(0) = x we know that the random variable Zk(⌊γkt⌋) =
k−1Xk(⌊γkt⌋) has distribution Q⌊γkt⌋

k (x, ·) on Ek determined by:∫
Ek

e−λyQ
⌊γkt⌋
k (x, dy) = exp{−xvk(t, λ)} (1.11)

where:
vk(t, λ) = −k log

(
g
◦⌊γkt⌋
k (e−λ/k)

)
(1.12)

We are interested in the asymptotic behavior of the sequence of continuous time processes:
{Zk(⌊γkt⌋) : t ≥ 0} as k → ∞. By (1.12) for γ−1

k (i− 1) ≤ t ≤ γ−1
k i we have:

vk(t, λ) = vk(γ
−1
k ⌊γkt⌋, λ) = vk(γ

−1
k (i− 1), λ)

It follows that (the following chain of calculations is taken from [20]):

vk(t, λ) = vk(0, λ) +

⌊γkt⌋∑
j=1

[vk(γ
−1
k j, λ)− vk(γ

−1
k (j − 1), λ)]

= λ− k

⌊γkt⌋∑
j=1

[log(g◦jk (e−λ/k))− log(g
◦(j−1)
k (e−λ/k))]

= λ− k

⌊γkt⌋∑
j=1

log[(gk(g
◦(j−1)
k (e−λ/k))(g

◦(j−1)
k (e−λ/k))−1]

= λ− γ−1
k

⌊γkt⌋∑
j=1

φk(−k log g◦(j−1)
k (e−λ/k))

= λ− γ−1
k

⌊γkt⌋∑
j=1

φk(vk(γ
−1
k (j − 1)))

= λ−
∫ γ−1

k ⌊γkt⌋

0

φk(vk(s, λ))ds

where:
φk(z) = kγk log[gk(e

−z/k)ez/k] (1.13)

We can rewrite the previous function as:

φk(z) = kγk log[1 + (kγk)
−1φ̃k(z)e

z/k] (1.14)

where:
φ̃k(z) = kγk[gk(e

−z/k)− e−z/k] (1.15)

We state now a lemma which shows that the two sequences (1.13) and (1.15) are not very
di�erent:
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Lemma 1.1. Suppose that the sequence {φk}k∈N is given by (1.13) and that {φ̃k}k∈N is
given by (1.15). Assume moreover that {φ̃k}k∈N is bounded on each bounded interval. an
Then we have:

� limk→∞ |φ̃k(z)− φk(z)| = 0 uniformly on each bounded interval.

� {φk}k is uniformly Lipschitz on each bounded interval if and only if so is {φ̃k}k

This lemma allow us to deduce that if either {φk}k or {φ̃k}k is uniformly Lipschitz on
each bounded interval then they converge or diverge simultaneously and in the convergent
case they have the same limit. For convenience we formulate the following condition:

Assumption 1.1. The sequence {φ̃k}k is uniformly Lipschitz on [0, a] for every a ≥ 0
and there is a function φ on [0,∞) so that φ̃k(z) → φ(z) uniformly on [0, a] as k → ∞.

Proposition 1.2. Suppose that Assumption 1.1 is satis�ed, then the limit function of the
limk→∞ φk = φ has representation:

φ(z) = bz + cz2 +

∫ ∞

0

(e−zu − 1 + zu)m(du), z ≥ 0 (1.16)

where c ≥ 0, b is a real constant and m(du) is a σ-�nite measure such that:∫
[0,∞)

(u ∧ u2)m(du) <∞.

Proof. For each k ≥ 1 we de�ne the function φk on [0, k] by:

φk(z) = kγk[gk(1− z/k)− (1− z/k)]. (1.17)

From (1.15) and (1.17) we have:

φ̃′
k(z) = γke

−z/k[1− g′k(e
−z/k)] z ≥ 0

and:
φ′
k(z) = γk[1− g′k(1− z/k)] 0 ≤ z ≤ k.

Since {φ̃k}k is uniformly Lipschitz on each bounded interval the sequence {φ̃k}k is uni-
formly bounded on each bounded interval too. Then also {φ′

k}k is uniformly bounded on
each bounded interval and so the sequence {φk}k is uniformly Lipschitz on each bounded
interval. Let now a ≥ 0, for k ≥ a and 0 ≤ z ≤ a, by the mean value theorem we have:

φ̃k(z)− φk(z) = kγk

[
gk(e

−z/k)− gk

(
1− z

k

)
− e−z/k +

(
1− z

k

)]
= kγk[g

′
k(ηk)− 1]

(
e−z/k − 1 +

z

k

)
where:

1− a

k
≤ 1− z

k
≤ ηk ≤ e−z/k ≤ 1
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Choose now k0 ≥ a so that e−2a/k0 ≤ 1 − a
k0
. Then e−2a/k ≤ 1 − a

k
for all k ≥ k0 and

hence:
γk|g′k(ηk)− 1| ≤ sup

0≤z≤2a
γk|g′k(e−z/k)− 1| = sup

0≤z≤2a
e−z/k|φ̃′

k(z)|

Since {φ̃′
k} is uniformly bounded on [0, 2a] the sequence {γk|g′k(ηk) − 1| : k ≥ k0} is

bounded. Then limk→∞ |φ̃k(z)− φk(z)| = 0 uniformly on each bounded interval and this
implies that:

lim
k→∞

φk(z) = φ(z)

uniformly on each bounded interval. The result follows from Corollary 1.46 in [21]

Proposition 1.3. For any function φ with representation (1.16) there is a sequence
{φ̃k∈N}k satisfying Assumption 1.1.

Proof. By the proof of proposition 1.2 it su�ces to construct a sequence {φk}k via expres-
sion (1.17) that is uniformly Lipschitz on [0, a] and φk(z) → φ(z) uniformly on [0, a] for
every a ≥ 0. To simplify the formulations we decompose the function φ into two parts.
Let φ0(z) = φ(z)− bz. We �rst de�ne:

γ0,k = (1 + 2c)k +

∫
(0,∞)

u(1− e−ku)m(du)

and:
g0,k(z) = z + k−1γ−1

0,kφ0(k(1− z)) |z| ≤ 1.

The function z 7→ g0,k(z) is analytic, satis�es g0,k(1) = 1 and:

dn

dzn
g0,k(0) ≥ 0 n ≥ 0.

Therefore g0,k(·) is a probability generating function. Let φ0,k be de�ned by (1.17) with
the pair (γk, gk) replaced by (γ0,k, g0,k). Then φ0,k(z) = φ0(z) if 0 ≤ z ≤ k and this
completes the proof if b = 0.
If b ̸= 0 we set:

g1,k(z) =
1

2

(
1 +

b

|b|

)
+

1

2

(
1− b

|b|

)
z2.

Let γ1,k = |b| and let φ1,k(z) de�ned by (1.17) with the pair (γk, gk) replaced by (γ1,k, g1,k).
Then:

φ1,k(z) = bz +
1

2k
(|b| − b)z2.

Finally let γk = γ0,k + γ1,k and:

gk = γ−1
k (γ0,kg0,k + γ1,kg1,k)

Then the sequence φk(z) de�ned by (1.17) is equal to φ0,k(z) +φ1,k(z) which satis�es the
required condition.

Lemma 1.2. Suppose that the sequence {φ̃k}k∈N de�ned by (1.15) is uniformly Lipschitz
on [0, 1]. Then there exist constants B,N ≥ 0 such that

vk(t, λ) ≤ λeBt

for every t, λ ≥ 0 and k ≥ N .
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Proof. Let bk := φ′
k(0+) for k ≥ 1. Since {φ̃k}k is uniformely Lipschitz on [0, 1] the

sequence {bk}k is bounded. From (1.15) we have that bk = γk[1− g′k(1−)]. Then:∫
Ek

yQ
⌊γkt⌊
k (x, dy) = xg′k(1−)⌊γkt⌋ = x

(
1− bk

γk

)⌊γkt⌊

Let B a constant such that 2|bk| ≤ B for all k ≥ 1. Since γk → ∞ as k → ∞ there is
N ≥ 1 such that:

0 ≤
(
1− bk

γk

)γk/B

≤
(
1 +

B

2γk

)γk/B

≤ e k ≥ N.

It follows that for t ≥ 0 and k ≥ N :∫
Ek

yQ
⌊γkt⌊
k (x, dy) ≤ x exp{B⌊γkt⌊/γk} ≤ xeBt.

The estimate required can be obtained from (1.8) and Jensen's inequality.

Theorem 1.3. Suppose that Assumption 1.1 holds. Then for every a ≥ 0 we have that
vk(t, λ) → vt(λ) uniformly on [0, a]2 and the limit function solves the integral equation:

vt(λ) = λ−
∫ t

0

φ(vs(λ))ds λ, t ≥ 0 (1.18)

Proof. Recall that:

vk(t, λ) = λ−
∫ γ−1

k ⌊γkt⌋

0

φk(vk(s, λ))ds,

so that we can write:

vk(t, λ) = λ+ εk(t, λ)−
∫ t

0

φk(vk(s, λ))ds, (1.19)

where:
εk(t, λ) = (t− γ−1

k ⌊γkt⌋)φk
(
vk(γ

−1
k ⌊γk.t⌋, λ)

)
By lemma 1.1 and Assumption 1.1 for any 0 ≤ ε ≤ 1 we can choose N ≥ 1 so that
|φk(z) − φ(z)| ≤ ε for k ≥ N and 0 ≤ z ≤ aeBa. It follows that for 0 ≤ t ≤ a and
0 ≤ λ ≤ a:

|εk(t, λ)| ≤ γ−1
k |φk

(
vk(γ

−1
k ⌊γkt⌋, λ)

)
| ≤ γ−1

k (1 + sup
0≤z≤aeBa

|φ(z)|) = γ−1
k M. (1.20)

For n ≥ K ≥ N let:
Kk,n(t, λ) = sup

0≤s≤t
|vn(s, λ)− vk(s, λ)|.

By (1.19) and (1.20) we obtain for (t, λ) ∈ [0, a]2:

Kn(t, λ) ≤ 2γ−1
k M +

∫ t

0

|φk
(
vk(s, λ)− φn

(
vn(s, λ)

)
|ds

≤ 2(γ−1
k M + εa) +

∫ t

0

|φk
(
vk(s, λ)− φn

(
vn(s, λ)

)
|ds

≤ 2(γ−1
k M + εa) + L

∫ t

0

Kk,n(s, λ)ds
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where L = sup0≤z≤aeBa |φ′(z)|. By Gronwall's 1 inequality:

Kk,n(t, λ) ≤ 2(γ−1
k M + εa) expLt 0 ≤ t, λ ≤ a

Then vk(t, λ) → vt(λ) uniformly on [0, a]2 as k → ∞ and from (1.19) we get the thesis

The following theorem (whose proof can be founded on [20]) shows some important
properties of the function vt(λ):

Theorem 1.4. Suppose that φ is a function given by (1.16). Then for any λ ≥ 0 there is a
unique positive solution t 7→ vt(λ) to (1.18); moreover the solution satis�es the semigroup
property:

vr+t(λ) = vr ◦ vt(λ) (1.21)

Theorem 1.5. Suppose that φ is a function given by (1.2). For any λ ≥ 0 let t 7→ vt(λ)
be the unique positive solution of (1.18). Then we de�ne a transition semigroup (Qt)t≥0

on [0,∞) by: ∫
[0,∞)

e−λyQt(x, dy) = e−xvt(λ) λ ≥ 0, x ≥ 0 (1.22)

Proof. There is a sequence {φ̃k}k in form (1.15) satisfying Assumption 1.1. By Theorem
1.3 we have that vk(t, λ) → vt(λ) uniformly on [0, a)2 as k → ∞ for every a ≥ 0. Taking
xk ∈ Ek such that xk → x as k → ∞ we see by theorem 1.2 that (1.22) de�nes a
probability measure Qt(x, dy) on [0,∞) and that:

lim
k→∞

Q
⌊γkt⌋
k (xk, ·) = Qt(x, ·)

by weak convergence. By a monotone class argument we can see that Qt(x, dy) is a
kernel on [0,∞). The semigroup property of the family of kernels follows from (1.21) and
(1.22).

Proposition 1.4. For every t ≥ 0 the function λ 7→ vt(λ) is strictly increasing on [0,∞)

Proof. By the continuity of t 7→ vt(λ), for any λ0 > 0 there is t0 > 0 so that vt(λ0) > 0
for 0 ≤ t ≤ t0. Then (1.22) implies Qt(x, {0}) < 1 for x > 0 and 0 ≤ t ≤ t0, and so
λ 7→ vt(λ) is strictly increasing for 0 ≤ t ≤ t0. By the semigroup property (1.21) we infer
λ 7→ vt(λ) is strictly increasing for all t ≥ 0.

Assume now that E is a metrizable locally compact topological space. We also assume
that E is countable at in�nity, meaning that E is a countable union of compact sets. Let
C0(E) the space of real valued continuous functions that vanishes at in�nity (or uniformly
smaller than ε) outside of a compact set); this space is a Banach space with the standard
supremum norm.

De�nition 1.8. Let {Qt}t≥0 a transition semigroup on E, we say that {Qt}t≥0 is a Feller
semigroup if:

1Let I denote an interval on the real line of the type [a, b] and let β, u two real functions continuous
in the interior of I. If u is di�erential in the interior of I and satis�es u′(t) ≤ β(t)u(t) then u is bounded

by the solution of the di�erential equation ν′(t) = β(t)ν(t), speci�cally u(t) ≤ u(a)
∫ t

0
β(s)ds
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� Qtf ∈ C0(E) for all f ∈ C0(E);

� limt→0 ∥Qtf − f∥ = 0 for all f ∈ C0(E).

A Markov process on E is a Feller process if its semigroup is a Feller semigroup.

Theorem 1.6. The transition semigroup (Qt)t≥0 de�ned by Equation(1.22) is a Feller
semigroup.

Proof. For λ ≥ 0 and x ≥ 0 set eλ(x) = e−λx. Denote with D0 the linear span of eλ : λ ≥ 0.
By Proposition 1.4 the operator Qt preserves D0 for every t ≥ 0. By the continuity of
t 7→ vt(λ) it is easy to show that t 7→ Qteλ(x) is continuous for λ ≥ 0 and x ≥ 0. This
implies that t 7→ Qtf(x) is continuous for every f ∈ D0 and x ≥ 0.
Let C0([0,∞)) the space of continuous functions on [0,∞) vanishing at ∞. By the Stone-
Weierstrass theorem the set D0 is uniformly dense in C0([0,∞)). Then each operator Qt

preserves C0([0,∞)) and t 7→ Qtf(x) is continuous for all x ≥ 0 and f ∈ C0([0,∞)). This
gives the Feller property of the semigroup (Qt)t≥0.

At this point we have all the ingredients to de�ne a CB-process:

De�nition 1.9. A Markov process on [0,∞) is called a continuous state Branching process
(CB-Process) with branching mechanism φ if it has transition semigroup (Qt)t≥0 de�ned
by (1.22). Moreover the family of functions (vt)t≥0 de�ned by Equation (1.18) is called
the cumulant semigroup of the CB-process.

It is easy to see that (Qt)t≥0 satis�es the branching property:

Qt(x1 + x2, ·) = Qt(x1, ·) ∗Qt(x2, ·)

To end this section we state a proposition which states an important property of CB-
processes:

Proposition 1.5. Suppose that {(X1(t),F1
t ) : t ≥ 0} and {(X2(t),F2

t ) : t ≥ 0} are two
independent CB-processes with branching mechanism φ and F1

t ,F2
t their associated σ-

algebras. Let X(t) = X1(t) +X2(t) and Ft = σ(F1
t ∪ F2

t ). Then the process {(X(t),Ft) :
t ≥ 0} is also a CB-process with branching mechanism φ.

Proof. Let t ≥ r ≥ 0 and F i
r be F i

r-measurable random variables for i = 1, 2. For any
λ ≥ 0 we have:

P(F1F2e
−λX(t)) = P(F1e

−λX1(t))P(F2e
−λX2(t))

= P(F1e
−X1(r)vt−r(λ))P(F2e

−X2(r)vt−r(λ))

= P(F1F2e
−X(r)vt−r(λ))

A monotone class argument shows that:

P(Fe−λX(t)) = P(Fe−X(r)vt−r(λ))

For any bounded Fr-measurable random variable F . Then {(X(t),Ft) : t ≥ 0} is also a
CB-process with transition semigroup (Qt)t≥0.
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1.4 Construction of a CBI processe

In this section we present the construction of a CBI process starting from a Galton-Watson
process with immigration; we follow [20].

1.4.1 Galton-Watson process with immigration

Let {p(j) : j ∈ N} and {q(j) : j ∈ N} be probability distribution on the space of positive
integers N with generating functions g and h respectively. Suppose that {ξn,i : n, i =
1, 2, ...} is a family of N-valued random variables with distribution {p(j) : j ∈ N} and
{ηn : n = 1, 2, ...} is a family on N-valued random variables with distribution {q(j) : j ∈
N}. Assume moreover that the two families are mutually independent. Given another
random variable Y (0) independent of {ξn,i} and {ηn} we de�ne inductively:

Y (n) =

Y (n−1)∑
i=1

ξn,i + ηn (1.23)

This is clearly a generalization of Equation (1.4). For i ∈ N let {Q(i, j) : j ∈ N} denote
the i-fold convolution of {p(j) : j ∈ N} by:

P (i, j) = (Q(i, j) ∗ q)(j) = (p∗i ∗ q)(j)

Now for n ≥ 1 and {i0, ..., in−1 = i, j} with ij ∈ N we have:

P (Y (n) = j|Y (0) = i0, ..., Y (n− 1) = in−1) = P

( Y (n−1)∑
k=1

ξn,k + ηn = j

∣∣∣∣Y (n− 1) = i

)

= P

( Y (n−1)∑
k=1

ξn,k + ηn = j

)
.

By the above computation {Y (n) : n ∈ N} is a Markov chain with one step transition
matrix given by: P = {P (i, j) : i, j ∈ N}.
Remark 1.1. The random variable Y (n) can be thougth as the number of individuals
in generation n of a population system with immigration; after one unit of time each
of the Y (n) individuals splits independently of others into a random number of o�spring
according to the distribution {p(j) : j ∈ N} and a random number of immigrants are
added to the system according to the distribution {q(j) : j ∈ N}.

It is easy to see that:
∞∑
j=0

P (i, j)zj = g(z)ih(z) |z| ≤ 1. (1.24)

A Markov chain in N with one step transition matrix de�ned by (1.24) is called a Galton-
Watson branching process with immigration (GWI-process) or a BienaymÃ�-Galton-
Watson branching process with immigration (BGWI-process) with branching distribution
given by g and immigration distribution h. When h ≡ 1 this reduces to the previous GW
process de�ned before. For any n ≥ 1 the n-step transition matrix of the GWI-process is
just the n-fold product P n = {P n(i, j) : i, j ∈ N}.
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Proposition 1.6. For any n ≥ 1 and i ∈ N we have:

∞∑
j=0

P n(i, j)zj = g◦n(z)i
n∏
j=1

h(g◦(j−1)(z)) |z| ≤ 1. (1.25)

Proof. From (1.24) we have that the statement is true for n = 1; suppose now that it
holds for some n ≥ 1, then:

∞∑
j=0

P n+1(i, j)zj =
∞∑
j=0

∞∑
k=0

P (i, k)P n(k, j)zj

=
∞∑
k=0

P (i, k)g◦n(z)k
n∏
j=1

h(g◦(j−1)(z))

= g(g◦n(z))ih(g◦n(z))
n∏
j=1

h(g◦(j−1)(z))

= g◦(n+1)(z)i
n+1∏
j=1

h(g◦(j−1)(z))

Suppose now to have a sequence of GWI-processes {Yk(n) : n ≥ 0} with branching
distribution given by the probability generating function gk and immigration distribution
given by the probability generating function hk. Let:

Zk(n) :=
Yk(n)

k
k ∈ N, n ∈ N

Then {Zk(n) : n ≥ 0} is a Markov chain with state space Ek = {0, k−1, 2k−1, ...} and
n-step transition probability P n

k (x, dy) determined by:∫
Ek

e−λyP n
k (x, dy) = g◦nk (e−λx)kx

n∏
j=1

hk
(
g
◦(j−1)
k (e−λ/k)

)
(1.26)

Suppose now that {γk} is a positive real sequence so that γk → ∞ as k → ∞. Let
⌊γkt⌋ denote the integer part of γkt. In view of (1.26) given Zk(0) = x ∈ Eℸ the random
variable:

Zk(⌊γkt⌋) =
Yk(⌊γkt⌋)

k

has distribution P ⌊γkt⌋
k (x, ·) determined by:∫

Ek

eλyP
⌊γkt⌋
k (x, dy) = g

⌊γkt⌋
k (e−λ/k)kx

⌊γkt⌋∏
j=1

hk(g
◦(j−1)
k (e−λ/k))

= exp{xk log
[
g
⌊γkt⌋
k (e−λ/k)

]
} exp

{ ⌊γkt⌋∑
j=1

log
[
hk(g

◦(j−1)
k )(e−λ/k)

]}

= exp

{
− xvk(t, λ)−

∫ γ−1
k ⌊γkt⌋

0

ψk(vk(s, k))ds

}
,



1.4. CONSTRUCTION OF A CBI PROCESSE 21

where:
vk = −k log

(
g
◦⌊γkt⌋
k (e−λ/k)

)
and

ψk(z) = −γk log hk(e−z/k) (1.27)

As in Section 1.3 we can rewrite Equation (1.27) in term of a function ψ̃(z):

ψk(z) = −γk log[1− γ−1
k ψ̃k(z)] (1.28)

where:
ψ̃k(z) = γk[1− hk(e

−z/k)]. (1.29)

Lemma 1.3. Suppose that the sequence {ψ̃k}k is uniformely bounded on each bounded
interval. Then we have that limk→∞ |ψ̃k(z) − ψk(z)| = 0 uniformely on each bounded
interval.

We set up now a condition that will be used in the following theorems:

Assumption 1.2. There is a function ψ on [0,∞) such that ψ̃k(z) → ψ(z) uniformly on
[0, a] for every a ≥ 0 as k → ∞.

Proposition 1.7. Suppose that Assumption 1.2 is satis�ed. Then the limit function ψ
has representation:

ψ(z) = βz +

∫
(0,∞)

(1− e−zu)ν(du) (1.30)

where β ≥ 0 is a positive constant and ν is a σ-�nite measure on (0,∞) such that:∫
(0,∞)

(1 ∧ u)ν(du) <∞

Proof. It is well known that φ has representation (1.30) if and only if e−ψ = Lµ is the
Laplace transform of an in�nitely divisible distribution µ on [0,∞) (see [21] Theorem
1.39). In view of (1.29) the function can be represented by a special form (1.30), so
e−ψ̃k = Lµk is the Laplace transform of an in�nitely divisible distribution µk on [0,∞).
By the previous lemma and Assumption 1.2 we have that: ψ̃k(z) → ψ(z) uniformly on
[0, a] for every a ≥ 0 as k → ∞. By Theorem 1.2 there is a probability distribution µ on
[0,∞) such that µ = limk→∞ µk weakly and e−ψ = Lµ clearly µ is also in�nitely divisible
and hence ψ has representation (1.30).

The following two theorems have a proof which is the complete analoguous to the one
presented in the previous section so it is omitted.

Proposition 1.8. For any function ψ with representation (1.30) there is a sequence {ψ̃k}k
in the form (1.29) satisfying Assumption 1.2.

Theorem 1.7. Suppose that φ and ψ are given by (1.16) and (1.30) respectively. For
any λ ≥ 0 let t 7→ vt(λ) be the unique solution of (1.18). Then there is a Feller semigroup
(Pt)t≥0 on [0,∞) de�ned by:∫

[0,∞)

e−λyPt(x, dy) = exp

{
− xvt(λ)−

∫ t

0

ψ(vs(λ))ds

}
(1.31)



22 CHAPTER 1. PROPERTIES OF CBI AND HAWKES PROCESSES

We have all the ingredients to de�ne a CBI process:

De�nition 1.10. A Markov process on [0,∞) with transition semigroup de�ned by (1.31)
is called a Continuous-state Branching process with Immigration (CBI-Process) with branch-
ing mechanism φ given by Equation (1.16) and de�ned on [0,∞) and immigration mech-
anism ψ given by (1.30) de�ned again on [0,∞).

The following proposition states an additivity property of CBI processes:

Proposition 1.9. Suppose that {(Y1(t),G1
t ) : t ≥ 0} and {(Y2(t),G2

t ) : t ≥ 0} are two
independent CBI processes with branching mechanism φ and immigration rate ψ1 and ψ2.
Let:

Y (t) = Y1(t) + Y2(t)

Gt = σ(G1
t ∪ G2

t )

Then the process {(Y (t),Gt) : t ≥ 0} is a CBI-process with branching mechanism φ and
immigration rate ψ = ψ1 + ψ2.

Proof. Let t ≥ r ≥ 0 and for i = 1, 2 let Fi a bounded positive Git-measurable random
variable. For any λ ≥ 0 we have:

P[F1F2e
−λY (t)] = P[F1e

−λY1(t)]P[F2e
−λY2(t)]

= P
[
F1 exp

{
− Y1(t)vt−r(λ)−

∫ t−r

0

ψ1(vs(λ))ds

}]
· P

[
F2 exp

{
− Y2(t)vt−r(λ)−

∫ t−r

0

ψ2(vs(λ))ds

}]
= P

[
F1F2 exp

{
− Y (t)vt−r(λ)−

∫ t−r

0

ψ(vs(λ))ds

}]
As in the proof of proposition 1.5 one can see that {(Y (t),Gt) : t ≥ 0} is a CBI process
with branching mechanism φ and immigration rate ψ.

To conclude this Section we give an additional de�nition of CBI processes which will
be the base of the models that we are going to build in the following chapter.

De�nition 1.11. A Markov process Y with state space R+ is called a CBI process char-
acterized by branching mechanism φ and immigration rate ψ if its characteristic repre-
sentation, for p ≥ 0, is given by:

Ey[e
−pY (t)] = exp

(
− yν(t, p)−

∫ t

0

Φ
(
ν(s, p)

)
ds

)
(1.32)

where Ey denotes the conditional expectation of with respect to the initial value Y (0) = y.
The function ν : R+ × R+ → R+ satis�es the following di�erential equation:

∂ν(t, p)

∂t
= −ψ(ν(t, p))

ν(0, p) = p
(1.33)
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where ψ and Φ are functions of the variable q ≥ 0 given by:

φ(q) = aq +
1

2
σ2q2 + γ

∫ ∞

0

(e−qu − 1 + qu)π(du)

ψ(q) = abq +

∫ ∞

0

(1− e−qu)ν(du)

with a, b ∈ R, σ, γ ≥ 0 and π, ν being two Lévy measures such that:∫ ∞

0

(u ∧ u2)π(du) <∞.∫ ∞

0

(1 ∧ u)ν(du) <∞.

An important theorem was proved by Li (see [12] Theorem 3.1) and it guarantees the
uniqueness od a solution to the SDE given by (??):

Theorem 1.8. There is a unique non-negative strong solution of the SDE:

Y (t) = Y (0)+

∫ t

0

a(b−Y (s))ds+σ

∫ t

0

∫ Y (s)

0

W (ds, du)+γ

∫ t

0

∫ Y (s−)

0

∫
R+

zÑ(ds, du, dz)

Moreover the solution {Yt : t ≥ 0} is a CBI process with branching mechanism:

ψ(q) = aq +
1

2
σ2q2 + γ

∫ ∞

0

(e−qγz − 1 + qγz)µ(dz)

And immigration rate given by:

Φ(q) = abq q ≥ 0

1.5 Hawkes Processes

The self exciting point process, which is commonly known as the Hawkes process, it is a
point process on the real line introduced by Hawkes (1971). The distinguishing feature
of such processes is that they allow all past events to a�ect the intensity function at the
current time. In this section we present the de�nition and some important features of
Hawkes processes and then we provide the de�nition of Hawkes processes with exponential
kernel that will be used in the following chapter.

1.5.1 Unmarked point processess

An unmarked random point process on the nonnegative real line [0,∞), where the non-
negative line is taken to represent time, is a random process whose realisations consists
on a sequence of times T1, T2, ... where Tn is the n-th occurrence of an event. We make
moreover the assumption of non-explosion:

T∞ = lim
n→∞

Tn = ∞ (1.34)
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this means that almost surely we do not have an accumulation of events in �nite time.
Given a random point process {Tn}n∈N the sequence of inter-events is de�ned as {Sn}n∈N:

Sn = Tn − Tn−1. (1.35)

To represent a point process we can introduce the following:

De�nition 1.12. Let N :
(
[0,∞),B[0,∞)

)
→ N we say that N is the counting measure

associated to an unmarked point process if for any A ∈ B([0,∞) we have that:

N(A) = #{i : Ti ∈ A}.

Clearly if A = [a, b) then we have that:

N(A) =
∞∑
i=1

1{a≤Ti<b}

In particular we set:

Nt = N([0, t)) =
∞∑
i=1

1{0≤Ti<t}.

The point process de�ned above may be represented equivalently via its associated count-
ing process {Nt}t≥0 where:

Nt = n if t ∈ [Tn, Tn + 1) (1.36)

In particular the random variable Nt counts the number of events up to time t and the
non-explosion condition becomes Nt < ∞. Both the processes {Tn}n∈N and {Nt}t≥0 are
the de�ned on some probability space (Ω,F , P ) with a �ltration {F}t≥0 for which N is
{Ft}t≥0 adapted. One important example of a random point process is:

De�nition 1.13. A point process {Nt}t≥0 is called a Poisson point process if:

1. N0 = 0

2. Nt is a process with independent increments i.e. (Nt −Ns) ⊥ Fs ∀t > s.

3. (Nt −Ns) is a Poisson random variable with parameter Λs,t = λ(t− s) =
∫ t
s
λ(u)du

Usually one assumes that Λs,t =
∫ t
s
λudu for some λt deterministic function called

intensity of the Poisson Point Process. In particular if {Ft}t≥0 is the �ltration generated
by Nt i.e. Ft = σ{Ns : s ≤ t} and λt ≡ 1 then Nt is called standard Poisson process. One
can also prove that if λt = λ then the sequence of inter-events {Sn}n∈N is made of i.i.d.
exponential random variables with parameter λ. We now focus our attention to the case
on which the intensity is λ constant. By de�nition we have that:

P ((Nt −Ns) = 0) = e−λ(t−s)
λ0(t− s)0

0!
= eλ(t−s) = 1− λ ·∆+ o(∆)

P ((Nt −Ns) = 1) = e−λ(t−s)
λ(t− s)

1!
= (t− s)eλ(t−s) = λ ·∆+ o(∆)

P ((Nt −Ns) ≥ 2) =
∑
k≥2

e−λ(t−s)
λk(t− s)k

k!
= o(∆)

where ∆ = t− s.
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Remark 1.2. The above characterization for a Poisson process is parallel to the one of
a Wiener process:

� both are processes with independent increment; the increments of a Wiener process
are normally distributed while those of a Poisson process are Poisson distributed.

� The Wiener process is a basic building block for processes with continuous trajecto-
ries, the Poisson process is a basic building block for processes with jumping trajec-
tories.

� the Wiener process is itself a martingale while the Poisson process is not, neverthe-
less it becomes a martingale if one subtracts from Nt its Compensator.

Lemma 1.4. Given (Ω,F , P ) a probability space with �ltration Ft, {Nt}t≥0 Poisson pro-
cess with intensity λs ∈ L1(0, s) which is Ft adapted we have that the process:

Mt = Nt −
∫ t

0

λsds (1.37)

is an P martingale

Proof. We have to check that E(Mt|Fs) =Ms ∀t > s, in particular we have:

E(Mt −Ms|Fs) = E

(
Nt −Ns −

∫ t

s

λudu

∣∣∣∣Fs

)
= E(Nt −Ns|Fs)−

∫ t

s

λudu

= E(Nt −Ns)−
∫ t

s

λudu = 0

Where we used that (Nt − Ns) ⊥ Fs and (Nt − Ns) ∼ Pois(Λs,t) and in particular
Λs,t =

∫ t
s
λudu

1.5.2 Marked point process

A Marked point process is a point process with a random variable or a random vector
attached to each point; each of the times Ti has a mark Mi associated with it and a
possible realization of a marked point process is given by a sequence:

(T1,M1), ..., (Ti,Mi), ...

with T1 < T2, ... and Mi ∈ M the space of marks (we usually work with non negative
marks). The counting process associated is the process {Nt}t≥0 which, as before, counts
the number of occurrence of the sequence of the Ti in the interval [0, t).

Remark 1.3. The generalization of unmarked point processes to marked point processes
subsumes several important point processes. For example, a marked point process can be
used to de�ne a point process with multiple occurrences; the marks in this case would give
the number of occurrences at each point event. A marked point process may also be used
to de�ne a multi-type point process with the marks identifying the type of a point event,
i.e. M = {1, 2, ..., k} for a multi-type point process with k types of point event.
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1.5.3 Hawkes processes

We start de�ning the univariate Hawkes process recalling that {Ft}t≥0 is σ-algebra gen-
erated containing the complete history of the process:

De�nition 1.14. The univariate Hawkes process N with intensity λ(·|Ft) is de�ned for
all t ≥ 0 and h→ 0+ by:

P (N [t, t+ h) = 1|Ft) = λ(t|Ft)h+ o(h)

P (N [t, t+ h) > 1|Ft) = o(h)
(1.38)

where the complete intensity is de�ned by:

λ(t|Ft) = τ +

∫
[0,t)

ω(t− u)N(du)

= τ +
∑
j:tj<t

ω(t− tj)
(1.39)

with τinR, τ > 0 and ω(s) ≥ 0

The complete intensity is a stochastic process and can be tougth as a Shot Noise
process (see [10] p.74) where all the past point events can contribute to the current value
of the complete intensity.
The self-exciting nature of the Hawkes process arises via the integral in Equation (1.39).
The contribution from a point event at time ti < t to the complete intensity at time t is
ω(t− ti), and all points before time t contribute in such a way to the complete intensity at
time t. The function ω(·) controls the e�ect that past point events have on the intensity
and it is often assumed to be a monotonically decreasing function so that the latest point
events have the greatest in�uence on the current value of the intensity.
For a monotonically decreasing ω(·), the intensity will increase immediately after a point
event and as time passes the e�ect from the point event dies o�. As a result, the risk
of further point events occurring increases immediately following a point event and this
increased risk dies o� as time passes.
A Markovian decay function is the exponential decay function which has the form:

ωe(s) = ψ exp(−γs) (1.40)

Where ψ ≥ 0, γ > 0 and ψ < γ. An other popular example of of a decay function used
in several application is the power-law decay function which has the form:

ωd(s) =
ψ

(s+ γ)n+1
(1.41)

Where ψ ≥ 0, η, γ > 0 and ψ < ηγη.
To conclude this Section we add a slightly di�erent de�nition of Hawkes processes that
will be used to in the following chapter:

De�nition 1.15. We have:

� A point process with associated counting process {Nt}t≥0,
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� J(ds, dz) a Poisson random measure with intensity λ(t) satisfying the SDE:

λ(t) = λ(0)− β

∫ t

0

λ(s)ds+ α

∫ t

0

∫ ∞

0

zJ(ds, dz)

= exp(−βt)λ(0) + α
Nt∑
i=1

exp[−β(t− ti)]Zi

(1.42)

with β > 0 is the rate of exponential decay of the in�uence of previous jumps on the
intensity level, α is the amplitude of the of the memory kernel, Ti the jump times
and Zi the jump sizes.

Then we de�ne an Hawkes process with exponential kernel a process that can be written
as:

Y (t) = Y (0) +
Nt∑
i=0

Zi = Y (0) +

∫ t

0

∫ ∞

0

zJ(ds, dz) (1.43)

Moreover we assume that the jump sizes are distributed according to an exponential
density with parameter δ (so that only positive jumps appear in Equations (1.42) and
(1.43)) and we can write:

J̃(ds, dz) = J(ds, dz)− λ(s)µ(dz)ds

and µ(dz) = δ exp(−δz)dz. The last Equation denotes the compensated version of the
Poisson measure J(ds, dz). Finally, in order to guarantee the non explosiveness of of the
Hawkes process we assume that β − α

δ
> 0.
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Chapter 2

Hawkes and CBI to model forward

prices

In this chapter the �rst part is devoted to a review of some notions martingale approach
and arbitrage theory in the Black & Scholes market; the main references for this part are
the books [4] and [14]. In the second part I will present two models for forward prices,
where the dynamic of the underlying factor is driven by a CBI process and by an Hawkes
process, applied to the power marke; the main references for this part will be the articles
[8], [15] and [3].

2.1 Martingale approach to arbitrage theory

2.1.1 The general case

We will start by considering the special case when one of the assets on the market is a
risk free asset with zero rate of return. As the basic setup we thus consider a �nancial
market consisting of N given risky traded assets, and the asset price vector is as usual
denoted by:

S(t) =

S1(t)
...

Sn(t)

 (2.1)

We also assume that there exists a risk free asset with price process S0(t) which satis�es
the following:

S0(t) > 0 P-a.s. ∀t ≥ 0 (2.2)

The main problem is to give condition for absence of arbitrage in this model and this are
easily obtained moving to the "normalized" economy where we use S0 as a numeraire.
Thus instead of looking at the price vector process S = [S0, S1, . . . , Sn], we look to the
relative price vector process S(t)/S0(t) where we have used S0 as a numeraire price.

De�nition 2.1. The normalized economy (also referred as "Z-economy") is de�ned by
the price vector process Z where:

Z(t) =
S(t)

S0(t)

29
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i.e.

Z(t) = [Z0(t), . . . , Zn(t)] =

[
1,
S1(t)

S0(t)
, . . . ,

Sn(t)

S0(t)

]
(2.3)

Note that at this point we have two price systems to keep track of: the S-system and
the Z-system; the following de�nition clari�es the the relations between the two systems:

De�nition 2.2. We de�ne:

� A portfolio strategy is any adapted N + 1-dimensional process:

h(t) = [h0(t), h1(t), . . . , hn(t)]

� The S-value process V S(t, h) corresponding to the portfolio h is given by:

V S(t, h) =
N∑
i=0

hi(t)Si(t) (2.4)

� The Z-value process V Z(t, h) corresponding to the portfolio h is given by:

V Z(t, h) =
N∑
i=0

hi(t)Zi(t) (2.5)

� A portfolio is said to be admissible (as a Z-portfolio) if there exist a non negative
real number α such that:∫ t

0

hS(u)dZ(u) ≥ −α for all t ∈ [0, T ] (2.6)

� An admissible portfolio is said to be S-self �nancing if:

dV S(t, h) =
N∑
i=0

hi(t)dSi(t) (2.7)

� An admissible portfolio is said to be Z-self �nancing if:

dV Z(t, h) =
N∑
i=0

hi(t)dZi(t) (2.8)

We have the following important lemma:

Lemma 2.1. With assumption and notations of the previous de�nition we have that:

� A portfolio h is S-self �nancing if and only if it is Z-self �nancing.

� The value process V Z and V S are connected by:

V Z(t, h) =
1

S0(t))
· V S(t, h)
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� A claim Y is S-reachable if and only if the claim:

Y
S0(t)

is Z-reachable.

� The model is S arbitrage free if and only if it is Z arbitrage free.

Proof. We just prove the third item since the other two are obvious. We assume more-
over that all processes have stochastic di�erentials driven by a �nite number of Wiener
processes and that the portfolio h is S-self �nancing. We set β = S0, then we have:

Z = β−1S

V S = h · S
V Z = β−1V S

dV S = h · dS

And we want to prove that:
dV Z = h · dZ

Using the Ito formula on Z = β−1S we thus want to prove that:

dV Z = β−1h · dS + h · SdB−1 + h · dSdβ−1

From V Z = β−1V S we have:

dV Z = β−1dV S + V Sdβ−1 + dβ−1dV S

= β−1h · dS + h · Sdβ−1 + dβ−1h · dS

where we used dV S = h · dS and V S = h · S.

We formulate the �rst fundamental theorem concerning absence of arbitrage:

Theorem 2.1. Consider the market model S0, S1, . . . , SN where we assume that S0(t) > 0
P -a.s. for all t ≥ 0. Assume furthermore that S0, S1, . . . , SN are locally bounded. The
model is arbitrage free if and only if there exist a martingale measure Q ∼ P such that
the processes:

Z0, Z1, . . . , Zn

are local martingales under Q.

2.1.2 Completeness

In this section we assume absence of arbitrage i.e. that there exist a local martingale
measure. We now turn to the possibility of replicating a given contingent claim in terms
of a portfolio based on the underlying assets. We introduce an important lemma:
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Lemma 2.2. Consider a given T -claim X. Fix a martingale measure Q and assume that
the normalized claim X/S0(t) is integrable. If the Q-martingale M de�ned by

M(t) = EQ

[
X

S0(T )

∣∣∣∣Ft

]
(2.9)

admits an integral representation of the form:

M(t) = x+
N∑
i=1

∫ t

0

hi(s)dZi(s) (2.10)

then X can be hedged in the S-economy. Furthermore the replicating portfolio (h0, h1, . . . , hN)
is given by equation (2.10) for the part (h1, . . . , hN) whereas:

h0(t) =M(t)−
N∑
i=1

hi(t)Zi(t) (2.11)

Proof. We want to hedge X in the S-economy i.e. we want to hedge X/S0(t) in the Z-
economy. In terms of normalized prices we are looking for a process (h0, h1, . . . , hN) such
that:

V Z(T, h) =
X

S0(T )
P-a.s. (2.12)

and

dV Z =
N∑
i=1

hidZi (2.13)

where the normalized value process is given by:

V Z(t, h) = h0(t) · 1 +
N∑
i=1

hi(t)Zi(t) (2.14)

A reasonable guess is that M = V Z so let M be de�ned by (2.9) and set (h1, . . . , hN) by
(2.10) and h0 by:

h0(t) =M(t)−
N∑
i=1

hi(t)Zi(t)

Now from (2.14) we obviously have M = V Z and from (2.10) we get:

dV Z = dM =
N∑
i=1

hiZi(t)

which shows that the portfolio is self �nancing. Furthermore we have:

V Z(T, h) =M(T ) = EQ

[
X

S0(T )

∣∣∣∣FT

]
=

X

S0(T )

which shows that X is replicated by h.
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We thus see that, modulo some integrability considerations, completeness is equivalent
to the existence of a martingale representation theorem for the discounted price process.
Now we are ready to set an important theorem which is the base of the proof of the second
fundamental theorem of asset pricing:

Theorem 2.2. Let M denote the convex set of equivalent martingale measures. Then
for any �xed Q ∈ M the following are equivalent:

� Every Q local martingale M has dynamics of the form:

dM(t) =
N∑
i=1

hi(t)dZi(t)

� Q is an extremal point of M

Then we have:

Theorem 2.3 (Second fundamental theorem of asset pricing). Assume that the market
is arbitrage free and consider a �xed numeraire asset S0. Then the market is complete if
and only if the martingale measure corresponding to the numeraire S0 is unique.

Proof. If the martingale measure is unique then M is a singleton M = Q so Q is trivially
an extremal point of M and thus for the previous theorem (Jacod) we have a stochastic
integral representation of every Q martingale and then it follows from lemma 2.2 that the
model is complete. The other implication is trivial.

2.1.3 Martingale pricing

We turn to the pricing problem for contingent claims. We thus consider the primary
market S0, S1, . . . , SN and we �x a T -claim X. Our task is to determine a reasonable
price process Π(t,X) assuming that the market is arbitrage free. There are two possible
approaches:

� The derivative should be priced in a way that it is consistent with the price of
the underlying assets. More precisely we should demand that the extended market
Π(t,X), S0, S1, . . . , SN if free of arbitrage opportunities.

� If the claim is attainable with hedging portfolio h then the only reasonable price is
given by Π(t,X) = V (t, h).

In the �rst approach the aim is to �nd a martingale measure Q for the extended market
Π(·, X), S0, S1, . . . , SN . Assuming that such a measure Q does exist, and assuming enough
integrability conditions, by de�nition of martingale measure we have that:

Π(t,X)

S0(t)
= EQ

[
Π(T ;X)

S0(T )

∣∣∣∣Ft

]
= EQ

[
X

S0(T )

∣∣∣∣Ft

]
(2.15)

We thus have the following:
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Theorem 2.4 (General pricing formula). The arbitrge free price process for the T -claim
X is given by:

Π(t,X) = S0(t)E
Q

[
X

S0(T )

∣∣∣∣Ft

]
(2.16)

Where Q is the (not necessarily unique) martingale measure for the a-priori given market
S0, S1, . . . , SN with numeraire S0.

If we assume that S0 is the money account:

S0(t) = S0(0) · e
∫ t
0 r(s)ds (2.17)

where r denotes the short rate, then equation (2.16) reduces to the "risk-neutral valutation
formula":

Theorem 2.5. Assuming the existence of a short rate, the pricing formula takes the form:

Π(t,X) = EQ
[
Xe

∫ T
t r(s)ds

∣∣Ft

]
(2.18)

Where Q is the (not necessarily unique) martingale measure with money account as nu-
meraire.

For the second approach to pricing let us assume that X can be replicated by h. Since
the holding of the derivative contract and the holding of the replicating portfolio are
equivalent from a �nancial point of view, we see that the price of the derivative must be
given by the formula:

Π(t,X) = V (t, h) (2.19)

One problem is what happen in case when X can be replicated by two di�erent portfolios
and one would also know how this formula is connected to (2.16).
De�ning Π(t,X) by (2.19) we see that Π(t,X)/S0(t) = V Z(t) and since, assuming enough
integrability, V Z is a Q martingale we see that also Π(t,X)/S0(t,X) is a Q-martingale.
Thus we obtain the formula:

V (t, h) = S0(t)E
Q

[
X

S0(T )

∣∣∣∣Ft

]
(2.20)

which will hold for any replicating portfolio and any martingale measure Q.

2.2 The mathematics of Martingale approach

2.2.1 Stochastic integral representation

Let us consider a �xed time interval [0, T ], a probability space (Ω,F , P ) with some �l-
tration {Ft}t≥0 and an adapted vector Wiener process W = (W1, . . . ,Wd)

T . Fix now a
vector process h = (h1, . . . , hd) which is "integrable enough" and a real number x0.If we
de�ne the process:

M(t) = x0 +
d∑
i=1

∫ t

0

hi(s)dWi(s), t ∈ [0, T ] (2.21)
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then we know that M is a martingale. (Recall that under mild integrability condition
every stochastic integral w.r.t a Wiener process is an Ft martingale). A natural and
important question is whether the converse holds, i.e. if every Ft-adapted martingale M
can be written in the form (2.21); if this is the case we say that M admits a stochastic
integral representation.
It is not hard to see that in the completely general case, there is no hope for a stochastic
integral representation w.r.t. toW for a general martingale. As a counterexample consider
the case in which d = 1 so W is scalar, we consider a Poisson process N and we assume
that Ft contains all the information generated byW and N in the interval [0, t]. We know
that:

M(t) = N(t)− λt

is an Ft-martingale. If we look at the trajectories they consist into straight lines with
downward slope λ interrupted at exponentially distributed points in time by positive
jumps of unit size. From this it is obvious that M can posses no stochastic integral
representation of the form (2.21) since any such representation has continuous trajectories.
It is clear from the previous example that we can only hope for a stochastic integral
representation in the case when {Ft}t≥0 is the internal �ltration generated by the Wiener
process W itself.
We state now:

Theorem 2.6. Let W a d-dimensional Wiener process and let X a stochastic variable
such that:

� X ∈ FW
T

� E[|X|] <∞

There exist a uniquely determined FW
t -adapted process h1, . . . , hd such that X has repre-

sentation:

X = E[X] +
d∑
i=1

∫ T

0

hi(s)dWi(s) (2.22)

Proof. For simplicity of notations we consider the scalar case d = 1. Recall the Geometric
Brownian motion equation:

dXt = σXtdWt

X0 = 1

and its solution:
Xt = e−

1
2
σ2t+σWt (2.23)

The previous SDE in integral form becomes:

Xt = 1 +

∫ t

0

σXsdWs (2.24)

Plugging now (2.23) into (2.24) we obtain that:

eσWt = e
1
2
σ2t + σ

∫ t

0

e−
1
2
σ2(u−t)+σWudWu
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Using the same argument we obtain for s ≥ t that:

eσ(Wt−Ws) = e
1
2
σ2(t−s) + σ

∫ t

s

e−
1
2
σ2(u−t+s)+σWudWu (2.25)

Thus any stochastic variable of the type:

Z = exp{σ(Wt −Ws)}

will have representation of the form:

Z = E[Z] +

∫ T

0

hudWu

with h ≡ 0 outside [s, t]. From this we have easily that any random variable Z of the
form:

Z =
n∏
k=1

exp{σk(Wtk −Wtk−1
)} (2.26)

where 0 ≤ t0 ≤ · · · ≤ tn ≤ T has representation of the form:

Z = E[Z] +

∫ T

0

hudWu (2.27)

It is now fairly straightforward to see that any variable of the form:

Z =
n∏
k=1

exp{iσk(Wtk −Wtk−1
)} (2.28)

where i is the imaginary unit, has representation of the form (2.27). Using now some
Fourier techniques we can prove that the set of variables of the form (2.28) is dense in
L2(FT ) and from this we can conclude that any variable in L2(FT ) has a representation
of the type (2.27).

From this theorem we easily obtain the:

Theorem 2.7 (Martingale representation theorem). Let W a d-dimensional Wiener pro-
cess and assume that the �ltration {Ft}t≥0 is de�ned as:

Ft = FW
t = σ{Ws : s ≤ t} t ∈ [0, T ]

Let M any Ft adapted martingale, then there exist a uniquely determined Ft adapted
process h1, . . . , hd such that M has the representation:

M(t) =M(0) +
d∑
i=1

∫ t

0

hi(s)dWi(s) (2.29)

The proof follows immediately from theorem 2.6.
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2.2.2 The Girsanov Theorem

In this section we discuss the e�ect that an absolutely continuous measure transformation
will have upon a Wiener process.
Assume that our space (Ω,F , {Ft}t≥0, P ) carries a P -Wiener process W P and that for
some �xed T we have changed to a new measure Q on FT by choosing a non-negative
random variable LT ∈ FT and de�ning Q by:

dQ = lTdP on FT

This measure transformation will generate a likelihood process {Lt : t ≥ 0} de�ned by:

Lt =
dQ

dP
on FT

and we know that the previous process is a P -martingale.
Since L is a P -martingale and since any stochastic integral with respect to W is a mar-
tingale it is natural to de�ne L as the solution of the stochastic di�erential equation:{

dLt = φtLtdW
P
t

L0 = 1
(2.30)

With this procedure it seems that we can generate a large class of natural measure trans-
formations from P to Q by following:

1. Choose an arbitrary process W .

2. De�ne a likelihood process L by:{
dLt = φtLtdW

P
t

L0 = 1

3. De�ne a new measure Q setting:

dQ = LtdP

on Ft for all t ∈ [0, T ].

Applying Ito formula we easily �nd that

Lt = e
∫ t
0 φsdWP

s − 1
2

∫ t
0 φ

2
sds

Thus L is non-negative and under some integrability conditions on φ (Novikov condition)
we easily derive that L is a martingale with EP [Lt] = 1.
We recall now an important theorem known as "Abstract Bayes formula", (for a complete
proof we remind to [4], Appendix B, proposition B.41)

Theorem 2.8. Assume that X is a random variable on (Ω,F , P ) and let Q a probability
measure with radon Nikodym derivative:

L =
dQ

dP
on Ft (2.31)

Assume that X ∈ L1(Ω) and that G is a sigma algebra s.t. F ⊆ G then

EQ[X|G] = EP [L ·X|G]
EP [L|G]

Q− a.s. (2.32)
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Our aim is now to compute what are the dynamics of W P under Q. Recall that if X
has dynamics:

dXt = µtdt+ σtdW
P
t

and we have that:

EP [dXt|Ft] = µtdt

EP [(dXt)
2|Ft] = σ2

t dt
(2.33)

with the informal interpretation dXt = Xt+dt −Xt.
Let now X = W P (i.e. µ = 0 and σ = 1), using theorem 2.8 and the fact that L is a
P -martingale we obtain

EQ[dXtFt] =
EP [Lt+dtdXtFt]

EP [Lt+dtFt]

=
EP [Lt+dtdXtFt]

Lt

=
EP [LtdXtFt]

Lt
+
EP [dLtdXtFt]

Lt

Since L is adapted and X has zero drift under P we have that:

EP [LtdXtFt]

Lt
= Lt ·

EP [dXtFt]

Lt
= 0 · dt

Furthermore we have that:

dLtdXt = LtφtdW
P
t (0 · dt+ 1 · dW P

t ) = Ltφt(dW
P
t )

2

and hence since Ltφt ∈ Ft:
EP [dLtdXt|Ft]

Lt
= φtdt

�nally using that dX2
t = dt we can compute the quadratic variation of X under Q:

EQ[(dXt)
2|Ft] =

EP [Lt+dt(dXt)
2|Ft]

Lt

=
EP [Lt+dtdt|Ft]

Lt

=
EP [Lt+dt|Ft]

Lt
dt

= dt

We found that the process X that was, under P , a standard Wiener process with unit
di�usion term and zero drift, under Q de�ned above the drift process has changed from
zero to φ and the di�usion remains the same. In other words we have that:

dW P
t = φtdt+ dWQ

t
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Theorem 2.9 (Girsanov Theorem). Let W P a d-dimensional P -Wiener process de�ned
on a probability space (Ω,F , {Ft}t≥0, P ) and let φ be any d-dimensional adapted column
vector process. Choose a �xed T and de�ne the process L on [0, T ] by:{

dLt = φ⋆tLtdW
P
t

L0 = 1
(2.34)

i.e.
Lt = e

∫ t
0 φ

⋆
sdW

P
s − 1

2

∫ t
0 ∥φs∥2ds (2.35)

Assume that:
EP [LT ] = 1 (2.36)

and de�ne a new probability measure Q on FT by:

dQ

dP
on FT (2.37)

then
dW P = φtdt+ dWQ

t (2.38)

where WQ is a Q-Wiener process.

Observation 2.1. In the previous theorem we adopted the following notation:

� we denote with φ⋆ the transpose of the vector φ and we can rewrite equation (2.34)
and (2.35) by components as:

dL(t) = L(t)
d∑
i=1

φi(t)dW
P
i (t)

L(t) = exp

{ d∑
i=1

∫ t

0

φi(s)dW
P
i (s)−

1

2

∫ t

0

d∑
i=1

φ2
i (s)ds

}

� We often refer to the process φ as the Girsanov Kernel of the measure transformation

De�nition 2.3. For any Wiener process W and any kernel process φ the Doleans-Dade
exponential process E is de�ned by:

E(φ⋆W )(t) = exp

{∫ t

0

φ⋆(s)dW P (s)− 1

2

∫ t

0

∥φ∥2(s)ds
}

(2.39)

Observe that in Girsanov theorem we have to assume an ad-hoc condition thet φ is
such that EP (LT ) = 1 or, in other words, that L is a martingale. We can remove this
hypothesis in case in which it is satis�ed the following condition:

Lemma 2.3 (Novikov Condition). Assume that the Girsanov kernel φ is such that:

EP

[
e

1
2

∫ T
0 ∥φt∥2dt

]
<∞ (2.40)

Then L is a martingale and in particular EP [LT ] = 1
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2.3 Forward price modeling

In this section we are going to introduce two alternative models for the forward prices
and we are going to test them against electricity market data. We assume that the spot
price process evolves according to the following dynamics:

S(t) = α(t) +X(t) (2.41)

where α(t) is a function representing the seasonality and the process {X(t) : t ≥ 0} is a
superposition of the factors Yi; we can rewrite the previous equation as:

S(t) = α(t) +
n∑
i=1

Yi(t) (2.42)

2.4 The model based on CBI

In this subsection we will focus to the case in which the underlying factors follows a
dynamic which is given by the stochastic di�erential equation:

Yi(t) = Yi(0)−
∫ t

0

αi(bi − Yi(s))ds+ σi

∫ t

0

∫ Yi(s)

0

Wi(ds, du)

+ γi

∫ t

0

∫ Yi(s−)

0

∫
R+

xÑ(ds, du, dz)

(2.43)

where αi, σi, γi ∈ R+ are constant parameters for i = 1, . . . , n. Assuming that the factors
Yi follows the dynamic given by equation (2.43) we obtain that:

Lemma 2.4. For any T ≥ 0 and τ ≤ T we have that:

E[Yi(T )|Fτ ] = bi + (Yi(τ)− bi)e
−ai(T−τ) (2.44)

Proof. First of all we observe that:

E(Yi(T )) = Yi(0) + E

[ ∫ T

0

ai(bi − Yi(s))ds

]
= Yi(0) +

∫ T

0

ai(bi − E(Yi(s)))ds

set now φ(t) = E(Yi(t)), we can di�erentiate both sides to get:

∂

∂t
φ(t) = ai(bi − φ(t))

whose solution is:
E(Yi(t)) = bi + (Yi(0)− bi)e

−ait (2.45)

A direct application of Markov property allow us to conclude.
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We discuss now the procedure of choosing a suitable risk neutral probability measure,
in particular in the electricity market, the risk-neutral probability Q is often chosen by
introducing a drift adjustment in the dynamics of an underlying asset. The following
proposition tells us that after this change of measure the spot process remains in the
same class (i.e. CBi processes with modi�ed coe�cients).

Proposition 2.1. Let Y1, . . . , Yn be independent CBI processes where for each i = {1, . . . , n}
Yi is a CBI process under the historical probability measure P. Assume that the �ltration
{Ft}t≥0 is generated by the random �elds W1, . . . ,Wn and Ñi, . . . , Ñn. For each i �x
ηi ∈ R and ξi ∈ R+ and de�ne:

Ut =
n∑
i=1

ηi

∫ t

0

∫ Yi(s)

0

Wi(ds, du) +
n∑
i=1

∫ t

0

∫ Yi(s−)

0

∫ ∞

0

(e−ξiz − 1)Ñ(ds, du, dz) (2.46)

Then the Doleans-Dade exponential E(U) is a martingale under P and the probability
measure de�ned by:

dQ
dP

∣∣∣∣
Ft

= E(U) (2.47)

Moreover under Q the processes Yi are independent on each other and for each i they are
CBI processes with parameters (a′i, b

′
i, σ

′
i, γ

′
i, µ

′
i) given by:

a′i = ai − σiηi − γi

∫ ∞

0

z(e−θiz − 1)µi(dz)

b′i =
aibi
a′i

σ′
i = σi

γ′i = γi

µ′
i(dz) = e−θizµi(dz)

Proof. The process (Y1, . . . , Yn, U) is a time homogeneous a�ne process ([13] Theorem
2.12). The Doleans-Dade exponential E(U) is a true martingale by checking that the
conditions in ([17], Corollary 3.2) are satis�ed, so it de�nes an equivalent probability
measure Q. Note that Z = E(U) is the unique strong solution of

dZt = ZtdUt.

Then for any function F ∈ C2(Rn
+) the process:

ZtF (Y1(t), . . . , Yn(t))−
n∑
i=1

σ2
i

2

∫ t

0

ZsF
′′
ii(Y1(s), . . . , Yn(s))Yi(s)ds

−
n∑
i=1

∫ t

0

ZsF
′
i (Y1(s), . . . , Yn(s))

{
aibi −

[
ai − σiηi − γi

∫ ∞

0

z(e−θiz − 1)µi(dz)

]
Yi(s)

}
−

n∑
i=1

∫ t

0

ZsYi(s)ds

∫ ∞

0

[
F (Y1(s−), . . . , Yi(s−) + γiz, . . . , Yn(s−)−

− F (Y1(s−), . . . , Yn(s−) + F ′
i (Y1(s−), . . . , Yn(s−)Yi(s−)γiz

]
e−θizµi(dz)
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is a local martingale which implies that under Q the process Y1, . . . , Yn are independent of
each other and for each i = 1, . . . , n Yi is a CBI process with parameters (a′i, b

′
i, σ

′
i, γ

′
i, µ

′
i).

Applying now the result proved in Lemma 2.4 we can provide an explicit expression
for the instantaneous forward contract in the present modelling framework. By de�nition
of a forward contract we have that:

F (τ, T ) = EQ[S(T )|Fτ ] (2.48)

The model parameters that we used so far were those de�ned by the hystorical dynamics
in such a way that ai, bi and µi denote respectively the mean-reversion speed, the long
term value and the jump measure with respect to P. Applying the equivalent change of
probability measure described in Proposition 2.1 we move to parameters a′i, b

′
i and µ

′
i with

respect to Q.
Since the factors Yi remains CBI processes also under Q we can apply the result given by
Lemma 2.4:

Proposition 2.2. The price of the forward contract written on S is given by:

F (τ, T ) = S(τ) + (α(T )− α(τ)) +
n∑
i=1

()e−a
′
i(T−τ) − 1)(Yi(τ)− b′i) (2.49)

Proof. Applying Lemma 2.4 we have that under the probability measure Q:

F (τ, T ) = α(T ) +
n∑
i=1

EQ[Yi(T )|Ft]

= α(T ) +
n∑
i=1

b′i + (Yi(τ)− b′i)e
−a′i(T−τ)

and in particular:

S(τ) = F (τ, τ) = α(τ) +
n∑
i=1

b′i + (Yi(τ)− b′i)

Hence:

F (τ, T ) = S(τ) + F (τ, T )− F (τ, τ)

= α(T )− α(t) + S(τ) +
n∑
i=1

(e−a
′
i(T−τ) − 1)(Yi(τ)− b′i)

2.5 The forward model based on Hawkes processes

In this section we will provide an alternative model where our factor are assumed to follow
an Hawkes-type dynamic. Let n the number of factors in our model and let ci, σi ∈ R+
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with i = 1, . . . , n constant parameters. We assume that under the historical probability
measure P the dynamics of the Xi is given by the following SDE:

Xi(t, T ) = Xi(0, T )−
∫ t

0

ciXi(s, T )ds+ σi

∫ t

0

√
Xi(s, T )dWi(s) +

∫ t

0

∫ ∞

0

zJ̃i(dz, ds)

(2.50)
where J̃i(dz, ds) are compensated marked point process with intensity λi(t) satisfying the
SDE:

λi(t) = λi(0)− βi

∫ t

0

λi(s)ds+ αi

∫ t

0

∫ ∞

0

zJi(ds, dz) (2.51)

where in the previous equation βi is the rate of exponential decay of the in�uence of the
previous jumps on the intensity level and αi is the amplitude of the memory kernel of each
factor Xi. We also assume that the jump size is distributed according to an exponential
density with parameter δi for each (λi, Xi) so we can write:

J̃i(ds, dz) = Ji(ds, dz)− λi(s)µ(dz)ds

= Ji(ds, dz)− λi(s)δi exp(−δiz)(dz)ds
(2.52)

We observe, as a remark, that the choice of a square root process for the di�usion part
of the forward curves dynamics is motivated by the positivity requirement as well as the
choice of the exponential distribution for the sizes of the jumps.
In view of this preliminary work we obtain that formulation for the price of the forward
contract written on n underlying factors Xi:

F (t, T ) = Λ(t)− Λ(0) + f(0, T )−
n∑
i=1

∫ t

0

ciXi(s, T )ds+
n∑
i=1

∫ t

0

σi
√
Xi(s, T )dWi(s)

+
n∑
i=1

∫ t

0

∫ ∞

0

zJ̃i(ds, dz)

(2.53)

An alternative representation for the for the Hawkes type dynamic given by Dawson and
Li, under the Historical probability measure P is given by the following SDE:

Xi(t, T ) = Xi(0, T )−
∫ t

0

ciXi(s, T )ds+

∫ t

0

∫ Xi(s,T )

0

σiWi(du, ds)

+

∫ t

0

∫ Xi(s−,T )

0

∫
R+

zÑi(dz, du, ds)

(2.54)

Also in this case the intensity evolves according to equation (2.51). It appears immediate
that the dynamics described by the two models look almost identical when written in the
Dawson-Li representation and the unique di�erence is given by the equation governing
the evolution of the intensity process.
At this point in order to have a description with respect to a risk neutral probability
measure Q we need to introduce a measure change. The following proposition provides a
measure change which preserves the Hawkes type dynamic.
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Proposition 2.3. Let (λi, Xi) be described by equations (2.51) and (2.50) under the
historical probability P. Fix (η, ξ) ∈ R× (−δi,∞) and de�ne:

Ut :=
n∑
i=1

ηiσi

∫ t

0

∫ Xi(s,T )

0

σiWi(du, ds) +
n∑
i=1

∫ t

0

∫ Xi(s−,T )

0

∫
R+

(e−ξiz − 1)Ñi(dz, du, ds)

(2.55)
Then the Doleans-Dade exponential E(U) is a martingale under P and the probability
measure de�ned by:

dQ
dP

∣∣∣∣
Ft

:= E(U)t (2.56)

is equivalent to P. Moreover the dynamic with respect to Q takes the following form:

Xi(t, T ) = Xi(0, T ) +

∫ t

0

∫ Xi(s,T )

0

σ′
iWi(du, ds) +

∫ t

0

∫ Xi(s−,T )

0

zÑ ′
i(dz, du, ds)

λi(t) = λi(0)−
∫ t

0

β′
iλ(s)ds+ α′

i

∫ t

0

∫ ∞

0

exp(−β′
i(t− s))J ′

i(ds, dz)

(the symbol ′ denotes the parameters under the probability measure Q) where:

c′i = ci − σiηi −
∫ ∞

0

z(e−θiz − 1)µi(dz)

σ′
i = σi

α′
i = αi

β′
i = βi

µ′
i(dz) = e−θizµi(dz)

We end this section with some remarks:

� parameters ηi and ξi can be interpreted as the market price of risk associated with
the di�usion/jump part of the i-th factor Xi.

� We assume that the de-seasonalized dynamics of Xi is a local martingale under Q
which makes automatically the mean reversion speed ci = 0 under Q.

� From the formulas in the previous lines, specifying the relations between the model
parameters under the risk-neutral measure Q and the historical measure P, it is
clear that in the Hawkes modeling framework a mean reversion speed coe�cient ci
can be nonzero under P and zero under Q.



Chapter 3

Financial model

In this chapter we discuss an application of the previous two types of processes to power
markets; in particular we want to give an estimate of forward curves starting from future
prices and then use this forward curves to test the two models based on CBI and Hawkes
processes. For this chapter we mainly refer to [8] and also to [2] for the part related on
forward curves estimation.

3.1 From futures prices to forward curves

In this section we focus our attention on how to determine the historical forward prices
starting from future prices observed in the market. First of all we need to set a de�nition:

De�nition 3.1. The price at time t ≥ 0 of a futures contract with delivery period [T1, T2]
with t ≤ T1 ≤ T2 is given by:

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

f(t, x)dx

where f(t, x) is the price of the forward contract to be paid upon delivery.

In our modeling framework the value at time t of a future contract with delivery period
[T1, T2] is given by:

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

f(t, x)dx = Λ(t)−Λ(0)+
1

T2 − T1

( n∑
i=1

∫ T2

T1

Xi(t, x)dx

)
(3.1)

Introducing now the dynamics of factors Xi in Equation (3.1) under the risk neutral
probability Q, we obtain that in the CBI framework:

F (t, T1, T2) = Λ(t)− Λ(0) +
1

T2 − T1

∫ T2

T1

f(0, x)dx

+
1

T2 − T1

n∑
i=1

σi

∫ T2

T1

∫ t

0

∫ Xi(s,x)

0

Wi(ds, dy)dx

+
1

T2 − T1

n∑
i=1

γi

∫ T2

T1

∫ t

0

∫ Xi(s−,x)

0

∫
R+

zÑi(ds, dy, dz)dx.

(3.2)

45



46 CHAPTER 3. FINANCIAL MODEL

and in the Hawkes setting:

F (t, T1, T2) = Λ(t)− Λ(0) +
1

T2 − T1

∫ T2

T1

f(0, x)dx

+
1

T2 − T1

n∑
i=1

σi

∫ T2

T1

∫ t

0

√
Xi(s, x)dWi(ds)dx

+
1

T2 − T1

n∑
i=1

γi

∫ T2

T1

∫ t

0

∫
R+

zJ̃i(dz, ds)dx.

(3.3)

In order to avoid arbitrage opportunities the prices of futures with di�erent delivery period
must satisfy some speci�c time consistency relations. In particular if we have a contract
with delivery period [T1, Tn] it is linked to the values of the contract in intervals [Ti, Ti+1]
with i = 1, . . . , n− 1 by the following:

F (t, T1, Tn) =
1

Tn − T1

n−1∑
i=1

(Ti+1 − Ti)F (t, Ti, Ti+1). (3.4)

From a theoretical point of view the contracts are settled continuously over the delivery
period but in practice they are settled at discrete times; assuming settlement at N points
in time u1 < u2 < · · · < un with u1 = T1 and uN = T2, thus the discrete version of
Equation (3.1) becomes:

F (t, T1, T2) =
1

T2 − T1

N∑
i=1

f(t, ui)∆i (3.5)

with ∆i = ui+1−ui. The main goal is to provide a forward dynamics formulation starting
from the futures prices that we observe in the market.

Notation 3.1. We use T si and T ei to denote respectively the �rst and the last day of the
delivery period for the i-th contract

From the market we observe the quantity F (0, T s, T e) for every contract with di�erent
possible choices of T s and T e with T e−T s = 7, 30, 90 and 365 days according to the type
of the contract and where 0 denotes the current date; in other words for any day in an
historical horizon we observe the value F (0, T s, T e) which corresponds to the price of a
future contract with delivery period [T s, T e].
The initial condition that we need to use the Heat-Jarrow-Morton approach when mod-
eling forward is a smooth curve describing today forward prices which must be extracted
from futures prices observed in the market. Following the approach given in [2] we set:

Assumption 3.1. The forward curve can be rapresented as the sum of two continuous
functions Λ(u) and ε(u):

f(u) = Λ(u)− Λ(0) + ε(u), u ∈ [T s, T e] (3.6)

where T s is the starting day of the settlement period for the contract with the closest
delivery period and T e is the �rst day of the settlement period for the contract with the
farthest delivery period.
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We interpret Λ(u) as a seasonality function and ε(u) as an adjustment function that
captures the forward curve's deviation from the seasonality.
For the seasonality function, following [2], we assume that:

Λ(u) = a cos

(
(u− b)

2π

365

)
(3.7)

where a ∈ R+ is the minimum of the prices all over the contracts and b ∈ R is the
normalized distance between the end of the last day of the year from the day when the
minimum occurs. Following again the approach from [2] we require for the adjustment
function that it is twice continuously di�erentiable and horizontal at time T e, that is:

ε′(T e) = 0

This �atness condition is due to the fact that the long end of the curve may be several
years ahead and obviously the market's view on risk becomes less and less sensitive as
time goes by.

De�nition 3.2. Let:

C2
0([T

s, T e]) = {ε : [T s, T e] → R s.t. ε′′ ∈ C0(T
s, T e) and ε′(T e) = 0}. (3.8)

Furthermore we consider C the set of polynomial spline functions of order four which
belong to C2

0([T
s, T e]). Then we de�ne the adjustment function on an interval [T s, T e] the

function that minimizes over C the integral:∫ T e

T s

[ε′′(u)]2du. (3.9)

To determine the adjustment function, and therefore the smoothest forward curve a
detailed algorithm is presented in [8], other approaches can be found in [2].
At this point, applying choosing di�erent initial day (the 0 in the formulation of f(0, u)) in
a �xed (su�ciently long) temporal horizon, we �nd a certain amount of di�erent forward
curves f(0, u) s.t. u ∈ [T s, T e] as in Assumption 3.1.
Given this collection of curves we want to detect if there are times such that positive
jumps in the price occur. For a �xed maturity T we de�ne:

Vt = f(t, T ).

If we plot the forward curves previously determined as functions of time to maturity (x-
axes) we can visualize the quantity Vt as a vertical section of such graph for a �xed time
to maturity T . Clearly t ranges over the number of curves that we dispose. The simplest
way to detect if a jump occurs is to �x a certain Θ ∈ R+, then we say that a jump occurs
at time t̂ if:

|Vt̂+1 − Vt̂| ≥ Θ.

An other possible approach is given by an iterative least square algorithm. Set n the
number of forward curves available and N = {0, 1, . . . , n − 1} then the algorithm reads
as follows:
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1. Set σ2
1 by:

σ2
1 =

1

n− 2

∑
t∈N

(Vt+1 − Vt)
2

Vt

2. De�ne M1 ⊆ N the set of elements t such that Vt+1−Vt√
Vt

≥ 3σ1

3. Set m1 = |M1| and i = 1

4. While mi ̸= 0 repeat the computation:

� set i = i+ 1 and then:

k =
i−1∑
j=1

mj , K =
i−1⋃
j=1

Mj

and

σ2
i =

1

n− k − 1

∑
t∈N∖K

(Vt+1 − Vt)
2

Vt
(3.10)

� De�ne Mi ⊆ N ∖K the set of elements t such that Vt+1−Vt√
Vt

≥ 3σi

� set mi = |Mi|.

Looking at the algorithm we can notice that, as i increases, the number σ2
i decreases and

so the number of jumps detected; it is reasonable, looking at our data set, to stop the
algorithm after a certain amount of iteration in order to focus our attention on larger
jumps; if one waits until when mk = 0 a lot of very small sized jumps occur.

3.2 Testing the model

3.2.1 Parameter estimation

Before proceeding with the Kolmogorov-Smirnov test (KS) on the two models we need
to estimate the sizes of jumps (whose occurrence have been computed in Section 3.1)and
the parameters characterizing the drift and the volatility coe�cients.
Since we assumed for both CBI and Hawkes model that the size of jumps is distributed
as an exponential random variable we can estimate the size of jumps δ via its maximum
likelihood estimator; let zi the size of the i-th jump, and L the number of jump estimated
with the algorithm at the end of Section 3.1, then the estimator is:

δ̂ =
L∑n
i=1 zi

. (3.11)

At this point to estimate the parameters appearing in the drift coe�cient of our forward
dynamics a1 in Equation (2.43) and c1 in Equation (2.50) (recall that we are assuming to
work with a unique factor X) we �rst identify them by ã and then we recall that:
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Remark 3.1. Under the historical probability measure P both the CBI and Hawkes process
in discrete form reads as (assuming no seasonality and no jumps):

X(t+ 1, T ) = X(t, T )−
∫ t+1

t

ãX(s, T )ds

where X is the unique factor in the forward dynamic.

Thus to estimate ã we use, for a �xed maturity T :

ˆ̃a = 1− X(t+ 1, T )

X(t, T )
(3.12)

Finally to estimate the volatility parameter σ we take:

σ̂ = σ2, (3.13)

where σ2 is given by Equation (3.10) of the algorithm to detect jumps at the end of Section
3.1.

3.2.2 KS test for the models

We want now to perform statistical tests on the models described in Chapter 2 and we want
to establish which one of the two model proposed (the one based on CBI processes and the
other based on Hawkes processes) is better. To perform such tests we will use Kolmogorov-
Smirnov (KS) test, it is a non-parametric goodness-of-�t test and is used to determine
whether two distributions di�er, or whether an underlying probability distribution di�ers
from a hypothesized distribution. In our case we will test the null hypothesis:

H0 = ”the distribution of the data is the same of the one coming from the model”

against the alternative H1.
Before using this test we need to estimate the intensity from our data set. We have
as input the occurrences of jumps τ1 < . . . τn = T then in case of the CBI model we
know the stochastic intensity λ(t) is proportional to X(t, T ) (see [15]) and the constant of
proportional is estimated using the number of jumps and the cumulative de-seasonalized
forward prices. In case of the Hawkes dynamic to estimate the stochastic intensity we have
to determine the values of parameters α, β and λ(0) in Equation (2.51). The log-likelihood
of an Hawkes process is given by:

logL(τ1, . . . , τN) = −λ0τN +
N∑
i=1

α

β

(
e−β(τn−τi) − 1

)
+

N∑
i=1

log(λ(0) + αA(i)) (3.14)

with A(i) =
∑

τj<τi
e−β(τi−τj) and A(1) = 0. To determine the values of parameters α, β

and λ(0) we have to compute the maximum of the previous function as a real function of
three variables.
At this point everything is set to perform the KS test to see which of the distribution best
models the jumps observed in our set of data. This procedure is entirely described in [8]; in
particular starting from an historical set of data on French power futures prices and after
the implementation of the algorithms to compute forward prices and to estimates jumps
on such prices and their sizes, the KS statistical test is performed (with a signi�cance
level of 0.05) to test the to models based on CBI and Hawkes processes and an additional
toy model based on Poisson processes.
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Figure 3.1: This �gure shows the evolution of gold future prices (red line) and estimated
jump times (blue vertical lines)

3.3 Focus on jump detection

In this subsection we focus our attention on the algorithm to estimate the number of
jumps presented ad the end of Section 3.1 and we apply it to three di�erent set of data:

� A simulated geometric Brownian motion trajectory with jumps given by an Hawkes
process

� an historical set of data on gold futures1

� an historical set of data on crude oil futures2

In particular starting from this set of data (the �rst one is a toy model) we want �rst to
apply the algorithm (whose code is available in Appendix C) to detect jumps and then
we want to see if we can say something about the correlation of this jumps or not.

Figure 3.1 shows the evolution of the future price of gold from the starting date
2017/6/29 to 2023/4/6 in red line and the jumps in the future prices detected using the
algorithm of jump detection (blue line). In particular looking at the position of jumps
we see an high concentration of jumps around the �rst months of 2020, this is due to
the beginning of corona-virus pandemic and in particular by the global collapse of the
economies as a result of policies of home con�nements and the clear contagion e�ect
between markets of very di�erent natures and geographies. After this gold experiment an

1GCM23.CMX on "https://�nance.yahoo.com/", data are choose from 2017/6/29 to 2023/4/6
2CLN23.NYM on "https://�nance.yahoo.com/"data are choose from 2017/11/21 to 2023/4/6
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Figure 3.2: This �gure shows the evolution of crude oil (red line) and estimated jump
times (blue vertical lines)
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Figure 3.3: This �gure shows the evolution of a simulated geometric Brownian motion
with Hawkes jumps and the jumps detected with the algorithm
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exponential recovery and the major driver behind the strong purchasing of Gold during the
year 2020 lies in its store of value nature. As time goes by just few jumps are experimented
but without an apparently �xed pattern.
Figure 3.2 shows the evolution of the future prices of crude oil from the starting date
2017/11/21 to 2023/4/6 (red line) and the jumps in the price detected using the algorithm
of jump detection (blue line). We can see that around February/March 2020 there is a big
downward jump due to corona-virus pandemic and the consequent global collapse of the
economies while an high concentration of jumps, due to the explosion of the war between
Ukraine and Russia, is present starting from the �rst months of 2022.
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Appendix A

Useful results

A.1 Doubly Stochastic Or Conditional Poisson Processes

A nonmathematical de�nition of a doubly stochastic Poisson process consists in describing
a two step randomization procedure: in the �rst step one draws at random the trajectory
of a driving process say Yt and once the trajectory is selected one generates a Poisson
process of intensity f(t, Yt). Of course such an intensity is random, since Yt is a random
process and thereforethe point process is Poisson only conditionally with respect to Yt.

De�nition A.1. Let {Nt}t≥0 a point process adapted to a σ-algebra {Ft}t≥0 and let
{λt}t≥0 a nonnegative measurable process. Suppose that:

λt is F0 −measurable ∀t ≥ 0

and that: ∫ t

0

λsds <∞ P − a.s. ∀t ≥ 0

If for all 0 ≤ s ≤ t and u ∈ R:

E[eiu(Nt−Ns)|Fs] = exp

{
(eiu − 1)

∫ t

s

λvdv

}
(A.1)

then Nt is called a (P,Ft)-doubly stochastic Poisson process.

In particular if λt is deterministic then Nt is a (P,Ft)-Poisson process.
As an example we consider the case in which λt = f(t, Yt) for some properly measurable
and non-negative function f and for some measurable process Yt and if F0 contains FY

∞
then Nt is a doubly stochastic Poisson process driven by Yt. We mention now an important
theorem which gives a characterization for doubly stochastic Poisson processes:

Theorem A.1. Let {Nt}t≥0 a point process adapted to some history {Ft}t≥0 and {λt}t≥0

a non negative process such that ∀t ≥ 0:

1. λt is Ft-measurable.

2.
∫ t
0
λsds <∞ P -a.s.
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Then if the equality:

E

[ ∫ ∞

0

CsdNs

]
= E

[ ∫ ∞

0

Csλsds

]
(A.2)

Is veri�ed for all nonnegative Ft predictable processes Ct then Nt is a doubly stochastic
Poisson process with the Ft-intensity λt.

A.2 Multivariate and Marked Point Processes

Let {Tn}n∈N a univariate point process and {Yn}n∈N a sequence of random variables with
values in {1, 2, ..., K} all de�ned in (Ω,F , P ). For each k we can consider:

Nt(k) =
∑
n∈N

1{Tn≤t}1{Yn=k}

That is a random variable which counts the number of jumps of length k in the interval
(0, t]. Moreover each Nt(k) is a Poisson process and ∀k ̸= h the processes Nt(k) and Nt(h)
have no jumps in common. We have two possible representation to describe this process
called multivariate Poisson process; either with (Tn, Yn)n∈N or with aK-dimensional vector
(Nt(1), ..., Nt(K))t≥0. Considering the �rst representation (Tn, Yn)n∈N we may interpret
Tn as the time of occurrence of some event and Yn as an attribute or a mark of that event.

De�nition A.2. An E-marked point process is a double sequence (Tn, Yn)n∈N where:

1. Tn is a univariate point process.

2. Yn is a sequence of random variables with values on (E, E).

Generalizing the previous representation of a multivariate point process we associate
for any measurable set A ∈ E the counting process:

Nt(A) =
∑
n∈N

1{Tn≤t}1{Yn∈A}

And we let simply Nt := Nt(E). Then we consider the �ltration

FN
t = σ{Ns(A) : s ≤ t, A ∈ E}

And we de�ne the counting measure:

p((0, t], A) = Nt(A) t ≥ 0, A ∈ E

this measure is σ-�nite under the assumption of non explosivity of Tn. Moreover it allows
to obtain more coincise expressions for integrals of the type:∫ t

0

∫
E

H(s, y)p(ds, dy) =
∑
n∈N

H(Tn, Yn)1{Tn≤t} (A.3)

Assume now that for each A ∈ E we have that the point processNt(A) admits the intensity
λt(A); this leads to a measure valued intensity λt(dy), we can then generalize equation
(A.2):

E

[ ∫ ∞

0

∫
E

H(s, y)p(ds, dy)

]
= E

[ ∫ ∞

0

∫
E

H(s, y)λs(dy)ds

]
(A.4)
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That has to be valid for all nonnegative Ft predictable E-marked process where in this
case Ft-predictable means measurable w.r.t. P(Ft) ⊗ E where P(Ft) is the predictable
σ-algebra on (0,∞)× Ω. We have also the generalization of (1.37) in the form:

q(ds, dy) = p(ds, dy)− λs(dy)ds (A.5)

where q(ds, dy) is a signed measure valued martingale in the sense that:∫ t

0

∫
E

H(s, y)q(ds, dy)

is a (P,Ft) martingale for each Ft predictable E-marked process satisfying appropriate
integrability conditions. The most common form of intensity is:

λt(dy) = λtmt(dy)

where λt is non negative and Ft-predictable and represents the intensity of the process
Nt(E) and mt(dy) is a probability measure on E. The pair (λt,mt(dy)) is called the
(P,Ft)-characteristic.

A.3 Martingale representation and generalized Ito for-

mula

Martingale representation results are widely used in �nance especially when it comes to
solving hedging problems. For pure "Wiener-martingales" we have in fact the well known
result that every square integrable martingale with respect to a �ltration generated by a
Wiwener process is, up to an additive constant, a stochastic integral of the Ito type. We
recall now an important theorem:

Theorem A.2. Let (Ω,F ,Ft, P ) be a probability space where Ft = F0 ∨ Fp
t with Fp

t �l-
tration generated by a marked point process represented by the counting measure p(dt, dy).
Then any (P,Ft)-martingale Mt admits the representation:

Mt =M0 +

∫ t

0

∫
E

H(s, y)q(ds, dy) (A.6)

with q(·, ·) as in (A.5) and H an integrable (with respecto to λt(dy)) Ft-predictable E-
marked process. This representation is essentially unique.

Now using the de�nition of a marked point process and of integrals in the form of
(A.3) we may now consider processes of the general type:

Xt = X0 +

∫ t

0

αsds+

∫ t

0

βsdws +

∫ t

0

∫
E

γ(s, y)p(ds, dy) (A.7)

that are called jump di�usion processes and where the coe�cients satisfy the implicit
integrability condition, βt is Ft adapted and γt is predictable in the sense of the previous
de�nition. We may rewrite the previous equation in di�erential form as:

dXt = Xt−

(
αtdt+ βtdwt +

∫
E

γ(t, y)p(dt, dy)

)
(A.8)
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In the previous equation t− speci�es the predictability requirement on the last term. As
we saw before the last term can be rewritten as:∫

E

γ(t, y)p(dt, dy) = γ(t, Yt)dNt (A.9)

where Nt = Nt(E) = p((0, t], E) is the total number of jumps and Yt denotes the piecewise
constant, left continuous time interpolation of the sequence Yn. A particular solution to
(A.7) is given by the following exponential formula:

Xt = X0 exp

{∫ t

0

(
αs −

1

2
β2
s

)
ds+

∫ t

0

βsdws +

∫ t

0

log(1 + γ(s, Ys))dNs

}
= X0 exp

{∫ t

0

(
αs −

1

2
β2
s

)
ds+

∫ t

0

βsdws

} Nt∏
n=1

(1 + γ(Tn, Yn))

(A.10)

While the di�usion part in the expression follows from the usual Ito formula the jump
part follows from the so called exponential formula of Lebesgue-Stieltjes Calculus but can
be also obtained from the generalized Ito formula.
Let Xt a process satisfying (A.7) and let F ∈ C1,2 function F (t,Xt); the generalized Ito
formula:

dF (t,Xt) =Ft(·)dt+ FX(·)αtdt+
1

2
FXX(·)β2

t dt+ FX(·)βtdwt

+ [F (t,Xt− + γ(t, Yt))− F (t,Xt−)]dNt

(A.11)

that in the speci�c case of (A.8) becomes:

dF (t,Xt) =Ft(·)dt+ FX(·)Xtαtdt+
1

2
FXX(·)X2

t β
2
t dt+ FX(·)Xtβtdwt

+ [F (t,Xt−(1 + γ(t, Yt)))− F (t,Xt−)]dNt

(A.12)

and where again Nt = Nt(E) = p((0, t], E) and (·) stands for (t,Xt) the pedices denotes
partial derivatives. If we write the last equation in the integral form we have two equivalent
representations for the last term:∫ t

0

[F (s,Xs−(1 + γ(s, Ys)))− F (s,Xs−)]dNs =
Nt∑
n=1

[F (Tn, XTn)− F (Tn, XT−
n
)] (A.13)

Now choosing as F (t,X) = logX we have:

dF = αtdt−
1

2
β2
t dt+ βtdwt + log(1 + γ(t, Yt))dNt (A.14)

from which:

logXt = logX0 +

∫ t

0

(
αs −

1

2
β2
s

)
ds+

∫ t

0

βsdws +

∫ t

0

log(1 + γ(s, Ys−))dNs (A.15)

And taking exponential on both sides we reobtain (A.10).
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Hawkes process simulation

In this section we discuss the algorithm to simulate an Hawkes process and we provide
also the matlab code of such simulation. The main references are [13] and [24].
This algorithm is able to exactly generate the point process and the intensity process
by sampling inter-arrival times directly via the underlying analytic distribution functions
without numerical inverse and hence avoids simulating intensity paths and introducing
discretization bias.

B.1 The algorithm

Assume to have a one dimensional Hawkes process {(N(t), λ(t)), t ≥ 0} where λ(t) =
λ(t|Ht) conditional on λ0 and N(0) = 0 with jump size distribution Y ∼ G and K jump
times {T1, . . . , TK}, the algorithm is based on the following steps:

1. Set the initial conditions T0 = 0, λ(T0) = λ0 > a, N(0) = 0 and k ∈ {0, 1, 2, . . . , K−
1}.

2. Simulate the (k + 1)th inter-arrival time Sk+1 by:

Sk+1 =

{
S1
k+1 ∧ S2

k+1 Dk+1 > 0

S2
k+1 Dk+1 < 0

where:

Dk+1 = 1 +
δ lnU1

λ(T+
k )− a

U1 ∼ Unif[0, 1]

and:
S1
k+1 = −1

δ
lnDk+1 S2

k+1 = −1

a
lnU2 U2 ∼ Unif[0, 1]

3. record the (k + 1)th jump-time Tk+1 by:

Tk+1 = Tk + Sk+1

4. record the change at the jump time Tk+1 in the process λ(t) by

λ(Tk+1) = λ(T−
k+1) + Yk+1 Yk+1 ∼ G (B.1)

where:
λ(T−

k+1) = (λ(Tk)− a)e−δ(Tk+1−Tk) + a
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5. Record the change at the jump-time Tk+1 in the point process N(t) by

N(Tk+1) = N(T−
k ) + 1 (B.2)

We prove now that this algorithm produces an Hawkes process with exponential decaying
intensity

Proof. Given the k-th jump time Tk the point process has the intensity {λ(t) : Tk ≤ t <
Tk+1} following the ordinary di�erential equation (between the times of the k-th and the
k + 1-th jumps): 

dλ(t)

dt
= −δ(λ(t)− a)

λ(t)|t=Tk = λ(Tk)
(B.3)

The solution of the above ODE is given by:

λ(t) = a+ C2e
−δt (B.4)

and imposing theboundary conditions we obtain:

C2 = (λ(Tk)− a)eδTk (B.5)

Finally we obtain that for Tk ≤ t ≤ Tk + Sk+1

λ(t) = a+ (λ(Tk)− a)e−δ(t−Tk) (B.6)

We want now to evaluate the cumulative distribution function of the k+1-th inter arrival
time Sk+1

FSk+1
(s) = P (Sk+1 ≤ s)

= 1− P (Sk+1 > s)

= 1− P (N(Tk + s)−N(Tk) = 0

Since we know that {N(Tk + s)−N(Tk), s ≥ 0} is a Poisson random variable with mean:

E(N(Tk + s)−N(Tk)) =

∫ Tk+s

Tk

λ(u)du

Therefore we obtain that:
FSk+1

(s) = 1− e
−

∫ Tk+s

Tk
λ(u)du

we make now the change of variable v = u− Tk to �nd:

FSk+1
(s) = 1− e−

∫ s
0 λ(Tk+v)dv

and �nally replacing the expression obtained for λ in equation (B.6) we derive:

FSk+1
(s) = 1− e−

∫ s
0 [a+(λ(Tk)−a)e−δ(Tk+v−Tk)]dv

= 1− e−
∫ s
0 [a+(λ(Tk)−a)e−δv ]dv

= 1− e−(λ(Tk)−a) 1−e−δs

δ
−as
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At this point we decompose Sk+1 into two simpler random variables S1
k+1 and S

2
k+1 via:

P (S1
k+1 > s) = e−(λ(Tk)−a) 1−e−δs

δ

P (S2
k+1 > s) = e−as

We need now to simulate S1
k+1 and S

2
k+1 since we have that:

P (Sk+1 > s) = P (S1
k+1 ∧ S2

k+1 > s) (B.7)

Recall that:
FS1

k+1
(s) = P (S1

k+1 < s) = 1− e−(λ(Tk)−a) 1−e−δs

δ

then we set:

e−(λ(Tk)−a) 1−e
−δS1

k+1

δ = U1

and we invert explicitely the function:

e−(λ(Tk)−a) 1−e
−δS1

k+1

δ = U1

⇒ −(λ(Tk)− a)
1− e−δS

1
k+1

δ
= lnU1

⇒ −1− e−δS
1
k+1

δ
=

lnU1

λ(Tk)− a

⇒ e−δS
1
k+1 =

lnU1

λ(Tk)− a

⇒ −δS1
k+1 = 1 +

δ lnU1

λ(Tk)− a

S1
k+1 = −1

δ
ln

(
1 +

δ lnU1

λ(Tk)− a

)
Note that the random variable S1

k+1 may take with positive probability the value ∞.
Moreover the condition for simulate a valid S1

k+1 is that:

1 +
δ lnU1

λ(Tk)− a
> 0

thus we introduce the random variable Dk+1 setting:

Dk+1 = 1 +
δ lnU1

λ(Tk)− a

Now for the simulation of S2
k+1, since we have that S

2
k+1 ∼ Exp(a) we use the standard

simulation method:
S2
k+1 =

1

a
lnU2

Hence for the simulation of Sk+1 we have:

Sk+1 =

{
S1
k+1 ∧ S2

k+1 if Dk+1 > 0

S2
k+1 if Dk+1 < 0
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Therefore the (k + 1)-th jump in the Hawkes process is given by:

Tk+1 = Tk + Sk+1

and the change in λ(t) and N(t) at time Tk+1 can be easily derived as given by (B.1) and
(B.2).

B.2 Code of the simulation

In the sequel the code of the simulation of the algorithm previously described

clear all; clc;

% setting initial conditions

tsimul =0;

tmax =100;

npts =500;

a=0.5;

alpha =1;

b=1.3;

k=1;

t=linspace(tsimul ,tmax ,npts);

Rt=zeros(1,length(t));

Rt(1)=a;

jump=Rt(1);

[Rt,Nt]= hawkesSimulation(tsimul ,tmax ,a,alpha ,b,t);

figure (1)

hold on

title('Intensity Hawkes process ')

plot(t,Rt,'r-')

stairs(t ,0.05*Nt,'b-')

hold off

figure (2)

hold on

title('Counting process ')

stairs(t,Nt,'b-')

hold off

This function implements the algorithm and produces two vectors, the �rst one containing
the evolution of the intensity of the process and the second one containing the evolution
of the counting process.

function [Rt,Nt]= hawkesSimulation(tsimul ,tmax ,a,alpha ,b,t)

Rt=zeros(1,length(t));



B.2. CODE OF THE SIMULATION 65

Nt=zeros(1,length(t));

Rt(1)=a;

jump=Rt(1);

k=1;

while tsimul(k,:)<tmax

tjump=tsimul(k,:);

D=1+b*log(rand )/( jump(k,:)-a);

interev=[-log(D)/b,-log(rand)/a];

if D>0

interevNextJump=min(interev );

else

interevNextJump=interev (2);

end

tnextJump=tjump+interevNextJump;

tsimul =[ tsimul;tnextJump ];

ind=find(( tsimul(k,:)<t)&(t<tsimul(k+1 ,:)));

tind=t(ind);

indbelow=find(t<= tsimul(k,:));

tbelow=t(indbelow );

indabove=find(( tsimul(k+1,:)<=t));

tabove=t(indabove );

RtInd=a+(jump(k,:)-a)*exp(-b*(tind -tjump ));

RtBelow=zeros(1,length(tbelow ));

RtAbove=zeros(1,length(tabove ));

Rt=Rt+[RtBelow , RtInd , RtAbove ];

Rtmin=a+(jump(k,:)-a)*exp(-b*(tnextJump -tjump ));

jump=[jump;Rtmin+alpha];

k=k+1;

end

for i=1: length(tsimul)

iabove=find(t>= tsimul(i,:));

nabove=t(iabove );

ibelow=find(t<tsimul(i,:));

nbelow=t(ibelow );

zer=zeros(1,length(tbelow ));

Nt=Nt+[zeros(1,length(nbelow )) ones(1,length(nabove ))];

end
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Appendix C

Matlab simulations

In this section we include some Matlab codes where we implement the algorithm to detect
jumps described in Section 3.1; in particular we use it to detect jumps in case of a simulated
geometric Brownian motion with jumps and in case in which we dispose of historical series
of Gold crude oil future prices (data are chosen in the range from 2017/6/29 until 2023/4/6
for gold and from 2017/11/21 until 2023/4/6 for crude oil).

C.1 Matlab codes

The following are the main code of the simulation of a geometric Brownian motion with
jumps (chosen randomly in the interval [−5, 5]) and the function that performs such
computation:

% simulation geometric brownian motion with jumps

Tin=0;

Tf=10;

npts =1000;

mu =0.03;

sigma =0.1;

inV =50;

nsimul =20;

lambda =1.5;

t=linspace(Tin ,Tf,npts);

a=0.5;

alpha =1;

b=1.3;

k=1;

[Rt,Nt,T]= hawkesSimulation(Tin ,Tf,a,alpha ,b,t);

[GBM ,GBM1 ,time]= simulateGBMHawkes(inV ,Tin ,Tf,mu,sigma ,npts ,T);

hold on

title('Comparison GBM and GBM with Hawkes type jumps')

67
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plot(time ,GBM ,'-b')

plot(time ,GBM1 ,'-r')

xline(T(1:end -1))

legend('geometric brownian motion with jumps', ...

'geometric brownian motion ', 'time of occurrence of a jump')

hold off

function [S,S1,T]= simulateGBMHawkes(inV ,Tin ,Tf,mu,sigma ,npts ,times)

t=sort(Tin+rand(1,npts )*(Tf-Tin));

T=t;

%t=linspace(Tin ,Tf,npts);

r=normrnd (0,1,[1, length(t)]);

S=zeros(1,length(t));

S1=zeros(1,length(t));

S(1)= inV;

S1(1)= inV;

j=1;

for i=2: length(t)

S(i)=S(i-1)* exp((mu-sigma ^2/2)*(t(i)-t(i-1))+ ...

sigma*sqrt(t(i)-t(i-1))*r(i));

S1(i)=S1(i-1)* exp((mu-sigma ^2/2)*(t(i)-t(i-1))+ ...

sigma*sqrt(t(i)-t(i-1))*r(i));

if (times(j)<t(i))&& (times(j)>=t(i-1))

jump=-5+rand *10;

S(i)=S(i)+jump;

j=j+1;

end

end

The following codes are the main code and the function to detect jumps on the set of
data that we dispose (simulated GBM with jumps, gold future prices and crude oil future
prices).

clear all; clc;

%JUMP DETECTION ALGORITHM

%Construction of the futures price vector (random entries)

% n=4000;

% xmin =90;

% xmax =95;

% x=xmin+rand(1,n)*(xmax -xmin);
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% POSSIBLE CHOOSING AS COMMODITY THE SPOT PRICE

% OF GOLD AND CRUDE OIL

% gold=futureprices (" futures_gold1.xlsx", "Foglio4", ...

% [2, Inf]);

% comm=fliplr(gold ')';

% date=readtable (" date_gold.xlsx ");

% oil=futureprices (" futures_gold1.xlsx", "Foglio5", ...

% [2, Inf]);

% comm=fliplr(oil ')';

% date=readtable (" date_imp.xlsx ");

dat=table2array(date);

% SPOT PRICE GENERATED SIMULATING A GBM WITH

% POISSONIAN JUMPS

% setting data to simulate a GBM with poissonian jumps

% Tin=0;

% Tf=10;

% npts =1000;

% mu =0.03;

% sigma =0.1;

% inV =50;

% lambda =1.5;

% [interev ,times]= homoPoisson(Tf,lambda );

% [comm ,t]= ...

% simulateGBMPoisson(inV ,Tin ,Tf,mu,sigma ,npts ,times);

% SPOT PRICE GENERATED SIMULATING A GBM WITH HAWKES JUMPS

% Tin=0;

% Tf=10;

% npts =1000;

% mu =0.03;

% sigma =0.1;

% inV =50;

% nsimul =20;

% lambda =1.5;

% t=linspace(Tin ,Tf,npts);

% a=0.5;

% alpha =1;

% b=1.5;

% k=1;

% [Rt,Nt,T]= hawkesSimulation(Tin ,Tf,a,alpha ,b,t);

% [comm ,comm1 ,time ]=...

% simulateGBMHawkes(inV ,Tin ,Tf,mu,sigma ,npts ,T);

[jumptimes ,numberjumpstep ,sigmavec ]= jumpDetect(comm);
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hold on

plot(dat ,comm ,'-r')

xline(dat(jumptimes (1: numberjumpstep (1))),'--b')

hold off

% print -depsc CrudeOil.eps

% print -depsc Gold.eps

% print -depsc GBM.eps

function [jumptimes ,numberjumpstep ,sigmavec ]= jumpDetect(comm)

par=3;

x=comm;

y=1:1: length(comm);

MatComm =[x';y];

n=length(x);

sigma2 =0;

M1=[];

jumptimes =[];

numberjumpstep =[];

sigmavec =[];

Vt=zeros(2,length(comm)-1)';

for i=1:n-1

sigma2=sigma2 +1/(n-2)* ...

(MatComm(1,i+1)- MatComm(1,i))^2/ MatComm(1,i);

end

for j=1:n-1

test=abs(( MatComm(1,j+1)- MatComm(1,j))/ sqrt(MatComm(1,j)));

Vt(j,1)=j;

Vt(j,2)= test;

if test >=par*sqrt(sigma2)

M1=[M1,MatComm(2,j)];

end

end

jumptimes =[jumptimes ,M1];

m1=length(M1);

numberjumpstep =[ numberjumpstep ,m1];

sigmavec =[sigmavec ,sqrt(sigma2 )];
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% updating x vector

MatComm(:,M1)=[];

k=1;

% counts the number of jumps at each step

counter =0;

while m1 ~= 0

sigma2 =0;

M1=[];

M2=[];

k=k+1;

counter=counter+m1;

for i=1: length(MatComm)-1

sigma2=sigma2 +1/(n-counter -1)*( MatComm(1,i+1) ...

-MatComm(1,i))^2/ MatComm(1,i);

end

for j=1: length(MatComm)-1

test=abs(( MatComm(1,j+1)- MatComm(1,j))/ sqrt(MatComm(1,j)));

if test >=par*sqrt(sigma2)

M1=[M1,MatComm(2,j)];

M2=[M2,j];

end

end

jumptimes =[jumptimes ,M1];

m1=length(M1);

numberjumpstep =[ numberjumpstep ,m1];

sigmavec =[sigmavec ,sqrt(sigma2 )];

if k==3

m1=0;

end

MatComm(:,M2)=[];

end


