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SOMMARIO

I convertitori per 1’alimentazione di veicoli elettrici o ibridi Plug-in, (Plug-in Hybrid
Electric Vehicle, PHEV), richiedono alta potenza ed un flusso di corrente bidirezionale,
con un ampio range di voltaggio in ingresso. Questa tesi presenta la progettazione di un
carica batterie ideato per operare con un ingresso universale. Il convertitore AC/DC ¢’
implementato usando una tipica struttura a due stadi. Il primo stadio include un
convertitore boost con Power Factor Correction (PFC), per soddisfare i requisiti sul
fattore di potenza e per migliorare 1’efficienza del sistema. Il secondo stage e’ costituito
da un convertitore buck che e’ direttamente collegato alle batterie. Il controllo di questo
dispositivo e’ implementato usando un controllore PID multi-loop per il raddrizzatore
PFC, tramite il controllo average mode della corrente. Un semplice controllore PID ¢’
implementato nel convertitore DC/DC ed entrambi utilizzano uno switching PWM. Viene
inoltre presentato un nuovo approccio digitale per eliminare il controllore feed-forward
dallo schema convenzionale, che semplifica ulteriormente la strategia di controllo. I
controllore digitale del sistema di potenza usa una strategia di switching binaria per i
transistor. Essi switchano in base al segno dell’errore, usato come segnale di controllo.
Una valutazione comprensiva del convertitore e’ condotta per analizzare le performance e
la robustezza del controllore in termini di stabilita’. L’analisi FFT ¢ le curve phase-plane
sono usate per derivare le regioni di stabilita’ del circuito. Alcune condizioni di

funzionamento instabili vengono individuate per migliorare il progetto.
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ABSTRACT

Power electronic converters in Plug-in Hybrid Electric Vehicles (PHEV) and
Electric Vehicles (EV) require high power and bidirectional power flow capabilities,
with wide input voltage range. This thesis presents a battery charger designed to
operate over a universal input. The converter is implemented using a basic two-stage
structure. The first stage includes a Power Factor Correction (PFC) Boost converter
to meet power factor requirements and improve the efficiency of the system. The
second stage is comprised of a buck converter which is directly connected to the
battery pack. Control of this converter has been implemented using a multi-loop PID
controller for the PFC rectifier using average current control mode. A simple PID
controller is implemented in the DC/DC converter and they both use Pulse Width
Modulation switching. In addition, this thesis presents a new digital approach to
eliminate the feed-forward controller from the conventional topology, which further
simplifies the control strategy. Digital control of a power electronic system uses a
binary switching strategy for the switches. High-power semiconductors switch based
on the sign of the error which is used as control signal. A thorough evaluation of
the converter has been conducted to assess the performance and robustness of the
controller in terms of stability. FFT analysis and phase-plane plots are used in order
to derive stability maps for the circuit. Unstable conditions are found and system

design is improved accordingly.

xiii



CHAPTER 1
INTRODUCTION

In recent years, Hybrid Electric Vehicles (HEV) and Plug-in Hybrid Electric
Vehicles (PHEV) have attracted more and more attention of automotive industry.
Hybrid vehicles have several advantages over conventional car given their efficiency
and capability of a better fuel economy. PHEVs combine the Internal Combustion
Engine (ICE) with the ability of charging and discharging a storage pack. It can use
the electricity stored while the battery charge is in a high state, allowing an all-electric
range. At the same time PHEV provides a fuel tank to be used when an extended

driving range is needed.

A battery charger is essential for the PHEV functioning. This power electronic
circuit has two main functions. It charges the battery with a proper State Of Charge
(SOCQC) in recharge mode of operation. The other operation mode is called inverter
mode, which means that the battery energy is transferred back to the grid. Also
supplying AC electricity for on-board loads is possible. Therefore the battery charger

consists in a multi-converter system capable of bi-directional power flow.

In multi-converter systems many power electronic converters such as AC/DC
rectifiers, DC/DC choppers, and DC/AC inverters are used as sources, loads, or
distribution networks to provide power in different magnitudes and forms. Recent
advancements in semi-conductor technology have enhanced the use of these converters
in Plug-In Hybrid Vehicles applications [57]. A multi-stage conversion is considered a
common choice for a battery charger circuit in [29] and [22]. It includes a rectification

stage and is usually cascaded with an output regulator.

Several bi-directional AC/DC converter topologies can be used as the PHEV

battery charger [38]. The specific configuration chosen depends on the requirement



of the applications in terms of efficiency, reliability, cost, volume and weight. Two
main strategies involve an AC/DC bi-directional converter which can be separated
from the driving system. The other one combines the motor driving inverter with
the converter as an integrated PHEV motor driving system. Several research papers
have been written on the design and the analysis of the converters, especially on a

stand-alone basis [73].

Basic structure consists in the cascade of a AC/DC rectifier and a DC/DC
converter placed between the battery and the high voltage bus. This thesis includes
an example of a bi-directional circuit that can be used with Plug-in Hybrid Electric
Vehicles. These power electronic circuits can be also integrated with existing gasoline

or electric vehicles to provide plug-in features.

Control circuits also represent a fundamental component of considered system.
It is responsible to provide a regulated and flat current at the output to charge the
battery pack. Power Factor Regulation also needs to be done for the input current in
order to maximize the efficiency of the system. A new control approach is analyzed
with the goal to simplify the hardware structure. In fact, classical analog control
techniques need a complicated implementation. It usually consists in a multi-loop
controller for the PFC circuit, including a feed-forward compensator [26]. DC/DC
converter stage on the other hand uses only a single PID regulator. Therefore a
new approach needs to be developed in order to simplify the design of the control
circuit while assuring good performances and stable operation. A novel digital control

provides a reliable and robust solution for this application.

Stable behavior of the system has to be assured by the controller. Circuit
design and the choice of critical components are responsible for the good performances
in terms of stability. Whereas a separated stability analysis is usually conducted for

each converter stage, a unified approach is preferable. Complete systems stability



analysis has to be performed accordingly to some practical criteria.

A stable system with desired response is obtained with the use of the novel
digital controller. Performed research work results to be essential to provide a safe
and reliable system. Its stable and sustainable operation are of primary importance

for critical power electronic circuits such as in Plug-in Hybrid Electric Vehicles.

This thesis has been organized as follows. In the second chapter, a brief in-
troduction on the application and on its recent developments has been done. PHEV
concept is introduced and standard control methods are explained. A complete lit-
erature overview is provided on the most significant research topics that have been
conducted. Power electronic converters design is analyzed and various control strate-
gies are reviewed, considering their performances and robustness. Importance of the
bi-directional multi-converter battery charge is underlined and various configurations

are presented.

The third chapter describes in details the circuit adopted for the battery
charger application. A complete analysis is done for the components of each con-
verter as well as for the overall circuits. Buck converter and Boost converter are
combined together in order to obtain the Buck-Boost topology and its bi-directional
version. A Power Factor Correction circuit is developed to meet stringent require-
ments of this application. Its bi-directional version is then combined together with
the DC/DC converter in the overall model. A two-stage bi-directional battery charger
is then described and its differential equations are derived. Parametrical models are
derived and different mathematical representations of the circuit are provided. The
state space model of combined circuit is used in this thesis as the primary analysis

tool to investigate the control design and the stability of the system.

Chapter four introduces a new approach in the control strategy involving a



digital design. Digital control techniques are analyzed and their advantages over
analog regulators are shown. Digital control takes advantage of its flexible structure
and of its ease of implementation in modern integrated circuits. A novel approach
is here presented and its performances are shown. A detailed comparison with the
classical PID regulator is also performed. Related issues and practical solutions, along

with other possible implementations are presented for the control design.

In chapter five, a detailed stability analysis is presented. Classical tools are
used in order to investigate the stability of the system through a practical approach.
Instability conditions are described and detected in the operating conditions of the
circuit. Unstable regions are identified with respect to circuits critical components
values. Circuit design and the choice of critical components are thus explained with
the use of stability analysis tools. The performance of the new controller design is
compared with the classical analog control in terms of stability. Robustness of the
controller is investigated through the simulation of a variation in the input voltage

or in the load, and its performances are commented.

Chapter six discusses obtained results showing all the advantages of proposed
configuration. Analysis results are explained and summarized in this chapter. Need
for future works is discussed, including a further simplification in the controller. Also
a mathematical confirmation of practical results obtained has to be done. Derived
mathematical model in all its different configurations can be adopted for a more

rigorous stability analysis.



CHAPTER 2
AN OVERVIEW ON PHEV POWER ELECTRONIC CONVERTERS

Primarily due to an increasing environmental consciousness and a fuel price
lift over the last few years, Plug-in Hybrid Electric Vehicle market and research
interest has widely grown. Plug-in Hybrid Electric Vehicles are vehicles that combine
an internal combustion engine and an electric operating energy system, including
batteries and power electronics circuits. In particular, two specific and fundamental
circuits have been analyzed and will be modeled in this thesis, the AC/DC inverter
and the DC/DC converter, placed between the external universal AC outlet and the
battery pack. Integrated converters need to be bi-directional, in order to let the
energy flow in either direction. Electrical energy can be either stored to the battery
pack, from an external power supply or through regenerative braking, or used to

supply power to an electrical motor or on board devices.

A thorough research has been conducted on these topics, including design con-
siderations and simulations of single phase bi-directional AC/DC inverter with boost
Power Factor Correction system, bi-directional DC/DC switching converters and bat-

tery evaluation, suitable for high power Plug-in Hybrid Electric Vehicle applications.
2.1 Plug-in Hybrid Electric Vehicle

Plug-in hybrid-electric vehicles have recently emerged as a promising technol-

ogy that uses electricity to displace a significant fraction of petroleum consumption.

A plug-in hybrid electric vehicle (PHEV) is a hybrid vehicle with the ability
to recharge its energy storage system with electricity from an off-board source, such
as the electric utility grid. Similarly to traditional hybrid electric vehicles, it has
both an electric motor and an internal combustion engine. The vehicle can then

drive in a charge-depleting (CD) mode that reduces the system batteries’ state-of-
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Figure 2.1. Plug-in Hybrid Electric Vehicle schematic view, picture courtesy of Ar-
gonne National Laboratory.

charge (SOC), thereby using electricity to displace liquid fuel that would otherwise
be consumed. This liquid fuel is typically petroleum (gasoline or diesel), although
PHEVs can also use alternatives such as biofuels or hydrogen [38]. PHEV batteries
typically have larger capacity than those in HEVs so as to increase the potential for

petroleum displacement and all-electric range capabilities.

Compared to conventional vehicles, PHEVs can reduce air pollution, minimize
dependence on petroleum and fossil fuels, and lower greenhouse gas emissions that
contribute to global warming. In fact, PHEVs can avoid use of any fossil fuel during
their all-electric range if their batteries are charged from nuclear or renewable sources
of energy. In addition to reducing gasoline consumption, they have the potential to
also reduce total energy expenses. Existing commercial hybrid vehicles have proven
to be successful components of the transportation system in the US and abroad.
Plug-in hybrid electric vehicles (PHEV) can contribute significantly to transportation
system efficiency by introducing vehicles that, within a limited range, can operate
entirely in an electric mode and be powered by the electricity grid. Conventional
Hybrid Electric Vehicles (HEVs) are already starting to create great benefits to US

energy including consumption and security. Based on EPA data, the most energy



efficient existing hybrids cut gasoline consumption by around 40 percent compared
with similar conventional cars. But PHEVs typically replace half of the remaining
gasoline consumption with electricity. Thus PHEVs could reduce the consumption of

liquid fuels by at least 70 percent compared with conventional cars.

One of the basic yet important components of a PHEV is its drive train, which
include the electrical motor drive, storage device (battery pack), control electronics,
inverter and battery charging circuit. In particular, the power electronic converter is
responsible of the power flow from the electrical source to the load and vice versa,
allowing the charging and the discharging of the battery. This basic component will
be here analyzed in details, and an efficient control system will be designed and

discussed.

Plug-in Hybrid Electric Vehicles and electric cars may allow for more efficient
use of existing sources of electric energy, which most of the time is unused or is
available as an operating reserve of power in the storage system. This assumes that
vehicles are charged primarily during off peak periods, or equipped with technology
to shut off charging during periods of peak demand. Another advantage of a plug-in
vehicle is their potential ability to help the grid during peak loads. This is accom-
plished with vehicle-to-grid technology chargers [57]. Such vehicles take advantage
of excess battery capacity to send power back into the grid and then recharge dur-
ing off peak times using cheaper power. Such vehicles are actually advantageous to
utilities as well as their owners. Even if such vehicles mat led to an increase in the
use of night time electricity they would also out electricity demand which is typically
higher in the day time. This would represent a greater return on capital for electricity

infrastructure.



2.2 Bi-directional Converters

Bidirectional converters are nowadays widely used in various applications, and
are among the most studied Power Electronic’s circuits. Applications such as electric
vehicles, photovoltaic systems, UPS power supplies, general battery based storage
systems and various industrial fields require the development of bi-directional con-
verters in order to allow power flow in either direction. They are usually employed
as interface circuits for the different voltage level buses and have several advantages.
Among all, saving space, reduction of weight and cost of the power systems with
respect to standard unidirectional circuits. One of the most common applications is a
battery charger circuit, in which both charging (i.e. energy storage), and discharging
(energy consumption) methods are implemented, through bi-directional power con-
version. Various topologies have been studied, accordingly to specific requirements,
based on power capabilities, isolation, input/output relations and conversion type,

number of stages and phases.

Unidirectional converters can be classified into two basic categories, according
to voltage conversion type, DC/DC converter and the AC/DC converter, respectively
including a DC voltage power source, or an AC voltage input, and providing a different
output value of DC voltage. Classic topologies include Buck DC/DC converters, in
which the output voltage is smaller than the input value, boost circuit in which
output voltage is greater than the input, and buck-boost converters, in which the
output can be either smaller or greater than the input. Similarly AC rectification
can be made, through buck rectifiers or boost rectifiers. Bi-directional power flow
requires those standard circuits to be modified to accommodate two alternate power
sources and loads and bi-directional operations, thus using DC/DC bi-directional
buck-boost converter and buck-boost AC/DC rectifiers. These two basic topologies

can be also combined together in order to obtain a multiple stage converter, usually



using a cascaded converter system. Whereas unidirectional circuits have been widely

discussed, bi-directional circuits still form an active research field [30].

In the cases where isolation is required, most of the existing bi-directional
converters are of the flyback-forward topologies [11]. These buck and boost derived
converters include a transformer in the circuit which provides electrical isolation be-
tween the input and the output ports. Built in transformers electrically isolate the
input of the converter from its output. Not only they owe all the advantages of high
frequency operation, small size and weight of the transformer, but also provide more
flexibility in an eventual multiple output contexts [63]. In fact isolated topology allows
multi-inputs and multi-outputs configurations using multi-winding transformers that
connect multiple sources having different voltage levels, or give a greater flexibility in

outputs.

For high-efficiency and high-power applications such as PHEVs, which do not
require magnetic coupling, standard Bi-directional switching conversion is adopted.

In such systems the load is directly connected to the grid through a conversion circuit.

Researchers have analyzed several PWM switching techniques, to eliminate
transition responses and to provide soft-switching [56] using auxiliary and complex
circuits, in order to increase the system’s overall efficiency. Moreover, all these switch-
ing converters can provide voltage regulation as well as protection in case of power
outages. In addition they also show excellent performance in terms of suppressing

incoming line transient and harmonic disturbances.
2.3 AC/DC Converters

The first stage of the power electronic system for PHEV applications con-
sists in the PWM Rectifier circuit with Power Factor Correction (PFC). This classic

switching converter is mainly studied in its unidirectional topology [62] for standard
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applications, to provide highly stable DC voltage at the output while maintaining a
high power factor at the input. This converter is extremely useful in several power
conversion devices [55] and also meets quality specifications and guidelines to regulate
power quality. One of main issues of non-power factor corrected circuits is the har-
monic distortion that is injected back into the mains power line. Furthermore in the
United States and Europe, Federal Communications Commission (FCC) and Euro-
pean Association for Electrical, Electronic, and Information Technologies, have lately
worked together to introduce a series of strict standards to govern conducted-noise
emissions and maximum conducted noise limits. For this reason an active control

circuit needs to be implemented.

PWM unidirectional inverter includes a diode rectifier circuit at the input,
to convert sinusoidal 90 — 240 V AC, 50 — 60 Hz universal voltage input into a DC
rectified voltage waveform. AC/DC circuit also requires a switching boost converter,
which regulates output voltage to an almost constant value, higher than the input.
An inverter is a device that converts DC current from the output of DC/DC converter
or the battery into AC which can be used for electric motor drives, and vice versa. It
is typically comprised of a power module including high power semiconductor devices
with high current capabilities as BJTs or MOSFETS, sensors, filters and a control

system that regulates the switching scheme.

Considering the specific PHEV requirements, where power is drawn from the
AC side to feed the battery, DC rectified power may also be used for the electri-
cal motor or the on board electrical system, as well for vehicle-to-grid applications.
For this specific use a bi-directional circuit needs to be chosen, and furthermore the
bridge diode rectifier is modified into an H-bridge configuration, for power reversal
capabilities. The presence of current harmonics results in several problems, and re-

duces power losses and decrease efficiency. Thus the current drawn from the input



11

inductance needs to be shaped, by only a scaling factor of the AC voltage waveform.
A closed loop control [64] can be implemented as before using a voltage control loop,
with voltage feed-forward compensator. It thus generates the constant output signal,

while an inner current shaping regulator generates a near sinusoidal current waveform.

Circuit design based on recent results for High Current Battery Chargers for
PHEVs [44] requires a calculated choice of critical components such as the inductor,
based on theoretical analysis which is verifies by simulations results of this specific

circuit.

Several control strategies and topologies have been studied in [7] and [28] and
researchers have attempted to obtain desired performance of the system and suitable

waveforms for input current and output voltage in standard operating conditions.

Furthermore a deep analysis is done for the performance of the converter,
emphasizing input and output waveforms and improvements due to an appropriate
design or control. Faulty conditions and their effects on the shape of the waveforms
are then studied and concretized in the design of more robust control system and

fault tolerant circuit.
2.4 DC/DC Converters

DC/DC bi-directional converter forms another basic circuit for PHEV charg-
ers. This converter requires high power capabilities and works as a Buck-Boost topol-
ogy, as mentioned. Its bi-directional energy flow allows also both the charging of the
battery pack, and its discharge through the opposite direction, supplying energy back

to the system.

It has a simple structure that is derived from basic Buck and Boost topologies,
which are as now well-known and suited for this kind of applications. PWM switching

converter is adapted for high power handling and simply in a cascade configuration
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with the AC/DC rectifier explained above. Bi-directional buck-boost converter works
as a buck circuit, producing an almost constant output voltage across the battery,
reducing high input voltage from the inverter stage. In the opposite direction, with
energy flowing from the load to the input side, it operates as a boost converter thus

increasing the voltage and allowing battery discharge.

Modeling difficulties which make space state differential equations derivation
quite complicated are related to non-linear and time varying nature of switching
converters. Time-variant matrix structure, represented in the scheme of figure 2.2,
may requires the use of Space State Averaging technique, in order to eliminate the

time dependence.

x = A(t)x + B(t)u
tnput output

duty function | y = C(t)x + D(t)u

disturbance

Figure 2.2. Non-linear time-invariant state space scheme.

In this thesis, functioning of this converter is analyzed and differential equa-
tions of its space state model are derived in order to simulate its behavior using
MATLAB®. As for the other converters, modeling of the converter and simulation
are indispensable tools. They are used to investigate further circuit responses under

specific conditions.
2.5 Battery Model

One of the most important components of the power electronic circuit in PHEV
drive trains are batteries, which are connected at the DC side output of the converter.

Battery packs are portable sources of electrical energy that can be converted to me-
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chanical energy by the electric motor. Similarly stored power can be used to feed
on-board electrical equipment such as electric power steering, air conditioning sys-
tem, light, pumps etc. There are many types of batteries specifically suited for Hybrid
Electric Vehicle applications, including Nickel Iron, Nickel Cadmium, Nickel Metal

Hydride, Lithium Polymer and other metal-air batteries.

Many factors characterize battery quality and specific performance criteria,
and form interesting research topics, including: energy density, specific power, typ-
ical voltage, Ampere hour efficiency, energy efficiency, commercial availability, cost,
operating temperature, self-discharge rates, life cycles and physical duration. Several
studies are now focusing on developing a detailed model for a battery pack [10]. These
researches involve consideration on the variation of battery load with respect to its
temperature and its state of charge, realistic charge and discharge rates, analyzing
battery geometry, optimum temperature of operation, along with suitable charging

methods.

In this thesis a very simple model of battery is used, considering an ideal
series of a DC voltage generator and a resistance. Other following research work will
further investigate the modeling of a battery pack specifically suited for this high

current charger.
2.6 Design Consideration and Modeling

Several papers have addressed design considerations for PHEVs’ battery charg-
ers, including practical comparative evaluations of different cascaded configurations.
In standard literature, the two stages of system have been often studied separately
and have led to a partial analysis of stability issues. In fact, many articles have con-
sidered the cascaded DC/DC converter for output voltage regulation as an equivalent

resistive load, which dissipates the same power. Due to a complex interaction between
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these two circuits, the dynamic behavior of this nonlinear system and stability issues

need a thorough investigation.

In terms of stability, the operation of overall circuit results more restricted
than that for PFC circuit with a constant resistive load, and further considerations
are to be done. A new controller design has to be developed according to analysis
results. The effects of the interaction between the two stages, shown in [24] are verified
for this model. In fact, the DC/DC converter stage represents a constant power load,
equivalent to a negative resistance seen from the PFC stage only when its output is
perfectly regulated. In practice, since the PFC Boost regulator - is almost always
cascaded with a voltage regulator - especially for medium to high power ranges,
it is useful consider the overall cascaded structure of the power supply. Another
particularly important issue is the choice of inductive and capacitive components in
the circuits, including the AC side inductor, bi-directional buck-boost inductor and

output capacitors.

This thesis considers the development of a converter capable of operating for
universal voltage input. This range is defined nominally from 90 V' to 240 V' and a
constant battery voltage of 48 V. It must be noted that this choice leads to some
important considerations on the value of the DC bus voltage level. Maximum in-
termediate DC bus voltage level is set to 400 V' between the PFC rectifier and the
DC/DC converter. This choice along with the modulation index calculation, which

has been widely discussed in literature [75], maximizes overall system efficiency.

Further design specifications along with the ratings of circuit components con-
sider both mathematical and a practical approach [3], based on the investigation of
the performances of the circuit. Values of critical components have been evaluated in
order to optimize the system response as well as its robustness, noise immunity and

stability.
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2.7 Control Techniques

One of the most important topics in the design is the control circuit, involving
both the bi-directional PFC inverter and the DC/DC converter, to be robust and
fault-tolerant. A simple yet effective typology of controllers is presented in this design
using a Proportional, Integral and Derivative (PID) regulator. This control strategy
assures desired response while providing quick tuning capabilities and a not very

complex structure.

The PFC converter circuit uses a more complex control algorithm, including a
few different regulators loops. This is due to its need of simultaneously regulate the
output DC voltage and shaping input current in order to correct the power factor. In
this circuit the external control loop is designed for voltage regulation. DC reference
and actual sensed signal are used as inputs to produce a control output such that
the DC value remains constant regardless variations of the load, supplied AC voltage
or output current drawn. The voltage controller also produces a reference signal for
the inner current loop, which controls the shape of input current. Output voltage is
controlled by a simple PI regulator, in which a signal proportional to voltage error and
to its integral is generated. When the input of the voltage error compensator increases,
signal generated by PWM circuit also increases. Therefore for an increase in output
terminal voltage, the inner current regulation loop reduces the current proportionally
to keep the input power constant. In fact, this internal current error compensator
uses sensed current and regulated voltage signal to determine the reference. Control
loop error is thus determined by the difference between calculated reference signal
and actual inductor current and is processed by a PID controller. This regulation

system forces the inductor current to follow the reference sinusoidal waveform.

It must be mentioned that in the control strategy implemented, the current

control loop should run at a much faster rate compared to the voltage loop in order
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to correctly shape the input sinusoidal waveform and thus requires a relatively small
bandwidth. The current controller produces a signal which is then elaborated through
a PWM generator, in order to produce the appropriate duty cycle value for the
gate signal of circuit MOSFETs. If the voltage decreases, also reference signal for
input current decreases, thus resulting in a lower drawn power. However, in order
to maintain a constant output power in correspondence of a reduced input, current
reference should proportionally decrease [7]. A voltage feed-forward compensator
maintains the output power constant and determined only by the load, regardless of
input variations. Its operating principle averages the input voltage and divides input

reference current by its squared value.

Control of bi-directional buck-boost DC/DC converters result in a simpler
structure, as compared to the multi-control loop for PFC Circuits, with just one
PI regulator. Proportional and integral actions are used in a feedback error loop for
output current, which is compared with desired battery current reference. The output

of the regulator is then used to obtain a PWM signal to generate switching signals

for the MOSFETs.
2.8 Stability Issues

Power electronic circuits such as switching converters, are commonly realized
using a closed loop control system, e.g. PID controller in order to minimize the er-
ror between actual and commanded response. The Converter can be implemented
SimPower System toolbox in MATLAB® Simulink, which allows multiple control
strategies, including direct circuit approach and more flexible digital /discrete design.
Behavior of the system can be similarly described through its circuit-based repre-
sentation as well as its space state model, using differential equations. Equivalently,
input-output relation can be expressed in terms of Transfer Function, as a rational

function of the output and the input of the system.
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Stability of a control system is often extremely important and is generally a
primary issue in the engineering of a system. It is usually related to the response of
the system to various inputs or disturbances. Stability analysis of power converters
is quite difficult due to some intrinsic features of the systems. Variation of model
parameters, such as input voltage or change in load resistance, as well as structure
changes in mode of operations (Continuous mode or Discontinuous mode), gives the

system a complex non-linear model.

Stability analysis of the system can be performed both for its open and closed
loop configurations. Using various techniques it is possible to identify instability is-
sues, constraints in operating conditions, and performance under faulty conditions
of operation. Frequency analysis, which includes methods such as Routh-Hurwitz
stability criterion or Bode plot and Nyquist diagram have been preferred in many
publications [37], while often regarding unidirectional systems [45] or linearized mod-
els [40]. In particular, stability issues for bi-directional circuits, need to be analyzed
in both power flows directions, since common ways to improve the stability usually af-
fect other direction. Similarly, while each bi-directional converter in the power system
is designed and optimized separately, when the converters are cascaded, the system

may reveal to be unstable [68|.

Other stability analysis techniques consider for example Middlebrook Impedance
Criterion [31], or linearization of the system around particular load conditions, and
Lyapunov theory of the state space model using state feedback control to stabilize

the converter.
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CHAPTER 3
CONVERTER DESIGN

Charging the battery of a Plug-in Hybrid Vehicle from the AC outlet requires
relatively high power capabilities. Allowing a universal input voltage range and in-
verse power flow for discharging operation of for in-grid applications, are also impor-
tant features. This chapter will provide a detailed description of the circuits used in
the battery charger implementation. Their behavior and dynamic response is ana-
lyzed through the derivation of differential equations and simulating their response in
the MATLAB® Simulink environment. Figure 3.1 shows a typical two-stage cascaded
converter topology as it is used in [73]. This is a typical choice for PHEV battery
charger circuits. The basic scheme of this configuration consists of two cascaded bi-
directional power electronic converters, an AC/DC rectifier /inverter and a DC/DC
converter respectively. The converter output is required to obtain a smooth controlled
current in order to charge the energy storage device, which requires stables conditions
and a flat waveform. Given its relatively simple structure and well known design and
control issues, as often described in literature 7], a PFC boost circuit is is the most
commonly used circuit. It is found to have the most suitable configuration for this
application, requiring high efficiencies and power factor correction at the input. The
second stage switching converter is typically needed to eliminate the ripple at the DC
bus voltage, which is typically at twice the input frequency and to regulate the out-
put current for the large input voltage range. In this project a simple bi-directional

buck-boost circuit has been chosen.

90 - 240 V—— PFC Boost Step Down —— 48V
50 - 60 Hz 008 DC/DC Converter
AC Input —— (60 KHz) (60 KHz) ——DC Out

Figure 3.1. Basic block representation of the circuit schematic.
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This chapter also describes the controller implementation, using a classical
approach of a simple analog control circuit, both for the AC/DC and DC/DC con-
verter. A multi-loop regulator is used to control the DC bus voltage and the shape of
the input inductor current, whereas a single controller is implemented for the second

stage output current regulation.

For each converter a simple ideal model is derived and its mathematical equa-
tions are calculated, considering the dynamic behavior of continuous conduction mode
of operation. Furthermore, a more detailed circuit design includes ESR resistors and

ON switches resistors and provides more realistic simulation results.
3.1 Boost Converter

The boost converter used here is described in continuous conduction mode of
operation. It is a basic DC/DC converter that is used to get higher output voltage
than the input voltage V;,. This high efficiency step-up DC/DC switching converter,
connected to a DC power source is able to change the output DC value to a higher
voltage level V,,;. Boost converter uses a switch, typically a BJT or a MOSFET, to
modulate the voltage into an inductor. It has a simple circuit which contains two
switching components: a diode and a transistor. The inductor and the capacitive
filter manage the energy conversion and reduce the ripple in the output current and
voltage. The main operating principle can be explained as follows: the switch is
positioned such that the input source charges the inductor, while the capacitor at the
output maintains the output voltage using energy stored across its plates. When the
switch changes its state, both the DC source and the stored energy supply power to
the load, hence the output voltage boosts. When switch is closed the inductor absorbs
energy from the input and the circuit is separated into two parts. This configuration
allows the output signal to be completely independent of input values, as output

voltage depends only on the energy stored while keeping rated power constant. This
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circuit is described in greater detail later in the thesis.

This section analyzes ideal boost converter, its voltage and current relation-
ships, and derives a state space model for the circuit. A second circuit considers
equivalent series resistances (ESR) of the components, and is described through state
space averaging method. This more precise model is then built, making some im-
portant considerations pertaining to the choice of component values and definition of
the design requirements. In the last part of the section its behavior is observed and

simulated with the use of Simulink. Also a first rough controller is designed.

3.1.1 Boost Converter State-Space Model. Analysis of the Boost converter
needs some general assumptions that will be considered also in the next section for
the Buck model. Described circuit operates in the steady state, and all transients
and impulses conditions are neglected. This implies that all voltages and currents are
periodic over one switching period. The circuit is analyzed in an equilibrium state, in
which the inductor current never reaches zero (Continuous Conduction Mode - CCM).
Switch S has a switching frequency of f, and is considered to be open (switch OFF)
for the time t,;f = (1— D)7}, where T, = 1/ f; is the switching period and D indicates
the Duty Cycle expressed as a percentage of the commutation period during which
the switch is ON. Besides the ideal switch remains closed for time t,, = DT,. Each

component in this circuit, as shown in figure 3.2, is considered ideal.

Under these ideal assumptions, the simple Boost converter circuit is presented
for the two possible states of the switch. In the ON state the switch is closed and
the source input results in an increase in the inductor current, whereas in the OFF
state the switch is open. In this situation the only path offered to inductor current is
through the diode D, the capacitor C' and the load R. This results in transferring the
energy accumulated by the inductor, into the capacitor. Input current is the same

as the inductor current and it is not discontinuous as will be in the buck converter,
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V() —¢ S=r

Figure 3.2. Ideal Boost circuit representation.

thus requirements on the input filter are relaxed. Two sets of equations describing the
dynamics of voltage and current relationships are derived for both the closed switch
circuit and the open switch circuit as follows.

Closed Switch (u = 0)

L
T

V() —¢ §R

Figure 3.3. Equivalent Boost circuit representation for S = ON, D = OFF, u = 0.

When the switch S is closed, the diode is reverse biased and equivalent circuit

is shown in figure 3.3.

Kirchhoft’s voltage law around the left path containing the source, inductor

and closed switch, along with Kirchhoff’s current law on the leftmost upper node give
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the following set of equations:

diy,

L——-V, =0 3.1
7 (3.1)
dv v

C—+= =0 3.2
dt +R ( )

These equations, describing the circuit for © = 0, can be written in terms of states

variables v, and iy, as

dv, 1

diL V;n

& = 3.4
dt L (3:4)

Open Switch (u=1)

L
0

V() —¢ S=r

Figure 3.4. Equivalent Boost circuit representation for S = OFF, D = ON, u = 1.

While the switch is open, the inductor current cannot change instantaneously,
so the diode D becomes forward biased to provide a path for 7. Assuming that the
output voltage V,,; is a constant, again with Kirchhoff’s voltage law around the outer

loop and Kirchhoff’s current load in the same node, following equations are derived.

e (3.5)



23

dc C
ey e (3.6)

iL = ZC+ZR:Cdt R

Differential equation (3.5) can be rearranged in terms of capacitor’s voltage
and inductor’s current, and substituted in equation (3.6), leading to system equations

for u = 1.

dUc o iL ‘/Z’n, Ve

& - C RC EC (3.7)
diL ‘/zn Ve
@ T L 1L (3:8)

These two models can be now combined together with the use of a binary
input variable u € {0, 1} as the value of the switching input. It assumes either value
u = 0 when the switch is closed, or the value u = 1 when opened, as schematized
in the circuits. Equations (3.4), (3.7) and (3.5), (3.8) respectively are combined to

obtain following differential global system, written using v. and 7;, state variables.

dv. 1 i, Vi
a RO“”*{O RO}U (3:9)

diL ‘/m Ve

3.1.2 Boost Converter State-Space Model with ESR. In previous analysis
only ideal elements are considered, that is input power is transferred to the load
without any losses. In real circuits, due to intrinsic properties of the materials,
parasitic resistances are always present. For this reason a fraction of the input power
is dissipated, producing power losses and heat. Even though some efforts need to be

done in maximizing efficiency issue through a correct dimensioning of components and
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a good design, it is also important to analyze the circuit considering the more general
case of non-ideal components. As it has been done for the ideal Boost converter,
at first complete circuit is presented, analyzing general functioning principles and
then the two different switch states are discussed, deriving differential equations for
the closed switch and open switch cases. The non-ideal behavior of inductor and
capacitor is here modeled using Equivalent Series Resistances (ESR): Ry, as inductor
body resistor and R, as capacitor body resistor. Similarly BJT switch S and diode
D are modeled through an ON resistor R, and Rp. Boost more detailed circuit is

shown in figure 3.5.

Figure 3.5. Non-Ideal Boost circuit representation.

Closed Switch (u = 0)

As before, when the switch is ON, diode is reversed biased and the equivalent
circuit is represented in figure 3.6. Two sets of differential equations can be written
for the system, considering the Kirchhoff’s voltage law around the leftmost and right-

most loops respectively, as follows:
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L Ry
o AVAYAY: o o
___C
v, @) R, R
R,

Figure 3.6. Equivalent Boost circuit representation for S = ON, D = OFF, u = 0.

V; = RLiL+RSiL+UL (311)

Vowr = ve+ iR, (3.12)

These equations, describing the circuit for © = 0, can be written in terms of states

variables v, and iy, as

d’Uc 1
N 3.13
dt C(R+R.) " (3.13)
diL (RL+R3) . V;n
S M) 3.14
dt Lttt (3.14)

Open Switch (u=1)

When the switch is open (S = OFF) the diode is forward biased and its
internal resistance becomes Rp; equivalent circuit for the value of u = 1 is represented

in figure 3.7. State space equations are derived from Kirchhoff’s voltage law for
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L Ry, Rp

V() R

Figure 3.7. Equivalent Boost circuit representation for S = OFF, D = ON, u = 1.

external loop, Kirchhoff’s voltage law for the rightmost loop and from Kirchhoff’s

current law on the upper right node as follows:

Vin = Rypir+vp+ Rpip + Vou (3.15)
iL == ic + iout (316)
‘/out = U+ Z.c}%c (317)

Differential equation (3.15) and (3.16) can be rewritten in terms of inductor’s current
and capacitor’s voltage. Equation (3.16) is substituted in equation (3.17), leading to

following system equations for u = 1.

d’Uc 1 R .
- Yy R 3.18
al CR+R) " CR+R) " (3.18)
di L R RL + RD RRC . ‘/zn
dip _ R 3.19
di LR+ R " ( L +MR+&QZV%L (3.19)

Obtained system, described by differential equations (3.13), (3.14) and (3.18),

(3.19) is the equivalent state space model for boost circuit. This is characterized by
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a bilinear behavior due to the nature of the control input, assuming binary values
u € {0,1}. Global system can be written using a two set of equations. Values of
diode ON resistor and switch ON resistor are assumed to be Ry ~ Rp with a very

reasonable approximation, obtaining

dve

!
I S IR L S 3.20
dt CR+R) T {C(RJrRC) ZL] ! (3:20)
di, R+ R, Vi RR. R
dip Bt lfe, Ve N AR 0 R 391
at R [L(R+RC) " L(R+RC)U]u (3:21)

The highly non-linear model resulting from the combination of the two cir-
cuits can now be simplified and made suitable for simplified control analysis. The
switch is replaced by replacing a continuous element, using the technique of system
averaging. In particular, in following page average behavior is modeled, such as only
information about low-frequency action of the converters is considered, ignoring rip-
ple, commutations and other fast effects. For this averaged model the two switches
configurations can be rearranged, considering system equations 3.13, 3.14 and 3.20,
3.21. Here the state is changing linearly from its initial value at the beginning of the
switching period, until time instant ¢ = DT,. This approximation considers deriva-
tives to be almost constant, in the condition of a triangular ripple waveform or with
a high switching frequency fs, which usually holds in reality. The value for the x

vector, representing state variables x; = v, and x5 = iy, can be written as
x(DTy) ~x(0) + %(0) DT ~ x(0) + (Aox + Bou) DT}
while, at time ¢ = Ty, second configuration matrices are utilized as follows
x(Ty) ~ x(DTy) + x(DTs)(1 — D)Ts ~ x(DT}) + (A1x + Byu)(1 — D)7}
Therefore, global state evolution becomes

x(T,) ~ x(0) + [(DAg + D1 Ay)x + (DBy + Dy By)u)|T,
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where D; = 1 — D indicates time interval in which the second configuration is active.
In equation above, averaged matrices A = DAy + D1A; = DAy + (1 — D)A; and
B = DBy + DB, = DBy + (1 — D)B are defined, as averages of the configurations,
weighted by the fraction of the duty cycle spent in every configuration. Then it is
possible to simplify and produce the general form of averaged system (equation 3.22),

which can be adopted also for further modeling of other converters explained later.
%X = Ax + Bu (3.22)

This approximate model gives exact results when switching period 7 is much shorter
than any other time constant of the circuit. It has been proved in literature [31] that
the new averaged states do track the average behavior of x. In the infinite frequency
limit the values match, avoiding the time dependence and the non-linearity typical of

the switching systems.

In order to obtain a single state space system it is possible to describe the model
through matrices A, B and to rearrange equations using the duty ratio D. Here the
dynamic of the system switches therefore between 3y = (A, By, Cy) obtained by the
value u = 0, in the interval D; = (1 — D)7 and the system ¥; = (A;, By, C}) when

the input corresponds to © = 1 in the interval D;T.

The two space state subsystems correspond to derived differential equations.
They can then be represented using canonical model form for State Space Linear Sys-
tems, in which states depend on the value of the duty cycle D as percentage in the

switching period 7.



29

[ S R(1-D)
A=DAy+(1-D)A, = | clfirfie) (3.23)
__R(1-D) _ Rp+Rs _ RR.(1-D)
| L(R+Rc) L L(R+R.)
_ 0
B=DBy+(1-D)B, = (3.24)
1
|z
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3.2 Buck Converter

The Buck DC/DC converter can be used for step down operation. It reduces
the input voltage V;, to the desired output voltage level of V,,,; suitable for example
for battery charger applications. Exactly like Boost converter it is a switched-mode
power supply that uses two switches (a BJT or MOSFET and a diode), an inductor
and a capacitor, whereas the load can be assumed simply resistive. Although its
topology is fairly simple, a buck converter can be highly efficient (easily up to 95%)

and it is preferred over linear regulators.

Its operating principle takes advantage of the high commutation frequency of
the switch that alternates between connecting the inductor to source voltage to store
energy, and discharging the inductor into the load. Thanks to the very short transition
time, and a precise choice of inductor and capacitor values output ripple is minimized
and the dynamic transfer of power from the input to its output is regulated. Switching
frequency is maintained constant to the value f,, while its duty cycle is varied through
a Pulse Width Modulation. In this way the ratio D = t,,/Ts between the time t,, in
which the switch is closed and the period Ts = 1/ fs determines the desired DC level
at the output. The low-pass structure of the converter, as explained in next section,

guarantees a low frequency noise spectrum for this modulation scheme.

In this chapter Buck’s ideal circuit is first presented and then its dynamic
equations are derived with the fundamental Kirchhoff’s current and voltage laws, in
order to get a state space model. Non-ideal components are then used to describe a
state-space model for continuous conduction mode of operation of the circuit, which
is also implemented in MATLAB® Simulink. The end of the chapter analyzes its
control design, evaluating choices of inductor and capacitor values and provides some

simulation results.
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3.2.1 Buck Converter State Space Model. Analysis of the ideal Buck con-
verter represented in figure 3.8 requires some ideal assumptions. As before the circuit
operates in the steady state, in continuous conduction mode of operation (CCM),
that is inductor current is always positive and never reaches zero. Output voltage is
considered almost constant V,,;, while all components are ideal and body resistor are

neglected.

YHW

Vi @) /\ ——cC R

Figure 3.8. Ideal Buck circuit representation.

The switch S is closed in the interval DTy and open for time (1 — D)T;. This

leads to the following two equivalent circuits.

Closed Switch (u = 0)

AE -

_l’_
N
|
N
Q
=

Figure 3.9. Equivalent Buck circuit representation for S = ON, D = OFF, u = 0.
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Figure 3.9 shows equivalent Buck circuits when the switch S is closed. Diode
D is reversed biased and following voltage and current relationships can be obtained
using Kirchhoff’s voltage law for inner and outer loops and Kirchhoff’s current law

for upper node

dir,
m = L— 4+, 3.25
V e (3.25)
Ve = Uput (3.26)
dv, .
1, = Odt + 1R (327)

These equations describe the circuit for u = 0 and can be written in terms of states

variables v, and 7,

dv,. 1 1 .
S T 2
dt RrC et (3.28)
L 2 _n 2
o 7 Ve + 7 (3.29)

Open Switch (u = 1)

V() —¢ §R

Figure 3.10. Equivalent Buck circuit representation for S = OFF, D = ON, u = 1.

When the switch is open the diode becomes forward biased and equivalent

circuit is represented in figure 3.10. Kirchhoff’s voltage law around leftmost and
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rightmost loops, together with Kirchhoff’s current law on upper node give the follow-

ing differential equations.

dir,
= [ —= .
0 7 + v, (3.30)
Ve = Vot (3.31)
) dv, .
1, = Cdt —f-ZR (332)

Equations (3.30) and (3.32) can be rewritten in terms of inductor’s current and ca-
pacitor’s voltage. Substituting equation (3.31) following equivalent system for u = 1

is obtained.

dv,. 1 1 .

@ ~ moTton (3.33)
B i .34
= 7 Ve + 7 U (3.34)

3.2.2 Buck Converter State Space Model with ESR. A further step in mod-
eling the Buck converter is assuming non-ideal components such as inductor and
capacitor, as well as the diode and the switch. In its circuit representation parasitic
values are schematized as equivalent series resistors (ESR): Ry, Rc, Rp and Rg, as

shown in circuit schematic in figure 3.11.

Two different sets of equations are derived for the circuit with either open or

closed switch, based on the binary values of .

Closed Switch (u = 0)

When the non-ideal switch is closed the diode D is off, because it is reversed

biased. The DC voltage source at the input supplies power to the circuit and results



34

V() R

Figure 3.11. Real Buck circuit representation.

an output voltage across the resistor. Figure 3.12 shows equivalent Buck circuit for
the closed switch. Writing Kirchhoff’s current law for the upper node, and Kirchhoft’s

voltage law in the inner and outer loops we obtain

, : . . dv
iR = ZL—ZC:ZL—Cd—tc (3.35)
dig, . .
V; = LE + (RS + RL)ZL + RZR (336)
i
Vi, = Léf+&@+Rmn+nﬁk+vc (3.37)
Rip = v+ icRc (338)

Thus with some simple algebraic manipulations we get

dvo ! i

S ' 3.39
al (R+Ro)C ° T R+Ro)C ™ (3:39)
dig, R RRc Rr,  Rs| . Vin
B M| tHe T Jis 3.40
di RrroL " |Repor T "ot B340

These are the state space equations for the circuit, assuming ¢; and vo as state’s

variables.
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V() R

Figure 3.12. Equivalent Buck circuit representation for S = ON, D = OFF, u = 0.

Open Switch (u=1)

Figure 3.13. Equivalent Buck circuit representation for S = OFF, D = ON, u = 1.

While the switch is open the diode D becomes forward biased to carry the

inductor current and the energy stored in the inductor and capacitor will discharge
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through the resistor. Buck converter equivalent circuit is shown in figure 3.13. Using

the same strategy this converter can be described with the following pair of differential

equations:
dUC 1 R .
S N | S 3.41
dt (R+ER)C TR+ Ro)C ™" (3.41)
di, R RR. R, Ro].
foo_ A | e f B 3.42
di R+R)LC |R+RoL L L™ (342)

Before combining the two pairs of equations in one single space state system,
it is useful to make some considerations about real parameters, in order to simplify
the system structure. As usually happens in real circuits, both diode and switch
resistances are quite small, and can be considered as Rg = Rp. Body resistors of the
inductor and the capacitor may have a significant effect on the output ripple, and
on the efficiency issue for this converter, therefore they must be considered into the

above model.

Using this assumptions equation (3.42) can be simplified and then combined
with equation (3.37) introducing the binary input u. Along with equations (3.40-3.42)

it leads to the following overall switching model:

dv, 1 R .

_ __R 3.43
al R+R)C T RrR)C "™ (3.43)
diy, R RR¢ R, Rp|. Vi
G ___ M |_fhe M Tip 3.44
a A S A A K A S

The switching position wu is taken as input variable, assuming values in the discrete

set {0,1}.

This model can be written in the typical state space system representation.
Here the input vector is given by the control input « that indicates the switch states,
whereas the output vector must be calculated through equations (3.38) and (3.36)

in order to get the output current and voltage of the converter. In terms of state
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variables we get:

v, = mR:mu—hg:RGL—%g%) (3.45)
. . . . , dv,
1y, = zR:zL—zczzL—Cdt (3.46)

Solving equation (3.46) produces the output voltage v, as

RR,

%:(R+RC

)in + (

TR ) v, =~ Reip + v. (3.47)

It can be further simplified as R, value is usually neglectable compared to the load

resistance R, obtaining a simples expression for the two outputs of the system

Vo = V¢
. UO /UC
7 0 = _— = —
R R

Output matrix C, for which we have v, = CTx, is valid for both switch positions and

can be expressed as

R RR.
R+R. R+Rc

R+R. R+Rc

Therefore final system description, for general case considering R, # 0, is given

by
( B 7] B — -
J 1 R
ve (R+R.)C (R+R.)C Ve . 0 0
. . R . RRc Ry Ry . 1 -
L ' J L (R+Rc)L (R+Rc)L + L + L i L i 7 Vin - 1
R RR.
Yo R+R. R+R. Ve
; 1 R )
(L% | R+R. R+Rc K
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A Pulse Width Modulation circuit is used to determine the switch position
both in simulation and modeling. The control input signal is specified as the following
duty ratio:

1 §t<ti+u(ti)Ts
p(t) =
0 p(t)To <t <t;+T,

t; is sampling instant in the fixed switching period 5.

The model derived can be represented by a state space averaging simply letting
the switch states taking values in the close interval of the real axes, v € [0,1], and
averaging the equations over the switching period 7. State space averaging model is

similar to the previous one and can be described as follows:

x = Ax+ Bu

y = Cx

!/
In this case the input vector is u = [ 0 ‘ Vi, - u } , with the values of the matrices

A=A, B=Band C =C.
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3.3 Bi-directional Buck-Boost Converter

The use of a bi-directional DC/DC converter in power electronic applications
allows the control and management of the power flow in both directions. It is es-
pecially suitable for battery charging applications. During charging operation of a
battery a DC/DC converter is used to adjust the output current such as to follow the
reference signal and maintain desired output power. A bi-directional arrangement of
the converter is needed for the reversal of the power flow in order to discharge the
battery or for in-grid applications. Since power can flow in both directions the output
of a buck-boost can also be connected to a voltage source and thus bi-directional op-
eration requires a direction change in output current, in order to recover the energy.
In this section a traditional unidirectional form of buck-boost circuit topology is mod-
ified in order to accommodate bi-directional operations. This results in a new design
of a bi-directional buck-boost system. This converter topology operates either in buck
or boost mode and therefore has the ability of both step up and step down operations,
as output voltage can be either higher or lower than the input voltage. To achieve
bi-directional operations capability the standard circuit needs to be augmented. Two
other switching elements are introduced with anti-parallel diode configuration and a

new input capacitor.

3.3.1 Bi-directional Buck-Boost Space-State Model. Ideal bi-directional
buck-boost circuit can be easily obtained with the combination of ideal boost and
ideal buck circuits described in sections 3.1 and 3.2. The two switches S; and Sy with
anti-parallel diodes configuration D; and D, are here implemented using MOSFETs
or BJTs and operate in an alternate complementary fashion. When switch S; is ON
switch Sy is OFF and vice versa. A negative current is now possible through the
inductor L and enables both the increase of the voltage from the battery to the DC

bus and the charging of the storage system from the hi-voltage level DC input.
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As shown in the ideal bi-directional buck-boost circuit (figure 3.14) buck mode
is active when switch S; is ON (and diode D, is OFF) and switch Sy is OFF (and
diode D, is ON). The circuit operates boost mode when switch S; is OFF (diode
D; ON) and switch Sy is ON (Dy is OFF). Two equivalent circuits have the same
representation of figure 3.2 on page 21 and scheme 3.8 on page 31. Two equivalent
circuits can be represented with the introduction of an input capacitor, which can be

neglected in the derivation of differential equations.

Co —— +—000™ *

W@) Ry Sy %[:DQ Y

|
¢ Ry Vo

1

=

Figure 3.14. Ideal bi-directional Buck-Boost circuit representation.

Buck Mode

First circuit representation is equivalent to buck mode. It requires switch S
and diode D, to be ON and lead to a transfer of power from the left side to the right
side of the circuit, as shown in figure 3.15. In buck mode input capacitor can be
neglected since in steady state analysis input voltage charges instantaneously capac-
itor Cj,. It results in an immediate input voltage V;, across it. This consideration
simplifies drastically following differential equations as they are the same as those

presented in section 3.2 for ideal buck converter.
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Figure 3.15. Equivalent Buck circuit representation for bi-directional circuit.

dvc out

M = Ve + i 3.48
dt RCout ! out * Oout ' ( )
dir, 1 Vi
-y 2 - 4
o 7 Veiout + 7 U (3.49)

Boost Mode

Equivalently, boost mode circuit representation is shown in figure 3.16 and
corresponds to switch S, and diode D; ON. Here which power is transferred from the
output to the input with the constraint of 0 < V,,; < V;,. Output capacitor C,,; is

neglected in deriving following differential equations due to its fast charging time.

Differential equations of bi-directional buck-boost converter operating in boost
mode are obtained exactly like equations 3.7 and 3.8 of ideal boost circuit represen-
tation on page 23. The circuit transfers power from the output to the input side in a

revers fashion, and its behavior is described by following equations.
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Figure 3.16. Equivalent Boost circuit representation for bi-directional circuit.

dvcm o iL ‘/out Vein
d  C, RC; RC, (3:50)
diL o ‘/out Ve,
i i (3.51)

These two operating modes can be grouped into a single system described by a
space state representation’s pair of differential equations. This new system considers
four state variables, v, , i and v,,,,, i1 that are now written respectively as v.,, ir,,

ve, and 7y, for simplification to indicate capacitors’ voltages and inductor current.

3.3.2 Bi-directional Buck-Boost Space-State Model with ESR. As done
before for buck and boost switching converters modeling, non-ideal components such
as ESR and on-state resistor are now considered. A more precise model is then build
using differential equations which describe its behavior in continuous conducting mode
of operation. The analyzed circuit is presented in figure 3.17. This circuit includes

Equivalent Series Resistor Ry, R.,, and R ON resistors R;, = Ry, = R and

Cout *

Rp, = Rp, = Rp are considered in the model but omitted in the figure for clarity.

Again, the circuit is analyzed for the four different states of the two switches

and diodes. Differential equations are derived for buck mode (S; and D,, ON) and
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boost mode (Sy and Dy, ON) of operation.

% % —— 55 %[#Dl__

L Ry,
— 3

“@ rE Srs PR

?%1 I =

Figure 3.17. Non-Ideal bi-directional Buck-Boost circuit representation.

Buck Mode
Sy
>
—__ (Y —
e .
Reo Re,

Figure 3.18. Equivalent Non-Ideal Buck mode circuit representation for bi-directional
circuit.
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Picture 3.18 represents equivalent circuit of bi-directional buck-boost in buck
mode of operation. Input capacitor C;, = C} along with its ESR resistor R, are
assumed to be negligiThis chapter will provide a detailed description of the circuits
used in the battery charger implementation. Their behavior and dynamic response is
analyzed through the derivation of differential equations and simulating their response
in the MATLAB® Simulink environment. Its space state equations are the same as
those derived for non-ideal buck converter in section 3.2. Considering v, = v.,,, and

i1, as state variables,

dv, 1 R .
I S 3.52
d Co(R+ R {02(R+R02) “] u (3:52)
diL RL + Rs . ‘/zn RRCQ . R
@ _ _frti L B L 3.53
di A {L(RJFRCQ) T TRy Y|t 393
Boost Mode

— 0,

R, —

RC2 X? 52 RC1

Figure 3.19. Equivalent Non-Ideal Boost mode circuit representation for bi-directional
circuit.

In boost mode of operation, general bi-directional buck-boost circuit is rep-
resented in figure 3.17. It is considered when switch S5 and diode D; are both ON,

implying S; and D, to be OFF. Equivalent circuit representation is given in figure
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3.19. It is almost identical to the non-ideal boost circuit described in section 3.1.2.
Only basic differences are the inversion of input and output ports and the presence of
the capacitor Cy with its Equivalent Series Resistor R¢,. The capacitor at the input
of the boost circuit can be neglected since steady state behavior is studied. Following

equations can be derived.

dv, ! + { ' } (3.54)
= ———0 i | u :
dt Co(R+ Re,) ' |Co(R+ Rey) -
dig, Rp+ R, | Vo RRc, . R
dip. Bt R Ve _ 3.55
di L+t T [L(R+Rcl) T TR Ry Ve (399)

3.3.3 Design Considerations. One fundamental step of the design of the circuit
and the overall system is the ratings of the components of the converter. Significant
research has been done considering rigorous mathematical approaches [43], which
usually work better for ideal models, as well as more practical techniques by examining

the real system response.

Critical components have been identified in this system. They are extremely
important in terms of stability and robustness of the system and in terms of cost,
reliability and size. Major issues are related to the energy storage components of the
system that are the inductor and the capacitors. All following equations provide a
guideline for the design of the converter and have been analyzed in details in [3]. Here

they are used as a fundamental basis for the sizing of components.

First critical element, especially for battery charger circuits, is the output
current ripple. It has to be limited according to manufacturer specifications in order
not to damage the storage pack. Assuming a constant output voltage V5 determined
by battery voltage the peak-to-peak ripple on the output current is given by the ripple

on the inductor L as follows:
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V- ‘/22
Vindpe(1 — dpe) S V2
Al = = ! .
t fsL fsL (3.56)

In equation 3.56 f, indicates the switching frequency and dpc the instanta-
neous value of the duty cycle of the DC/DC converter. The input-output relation
of the buck circuit is used to simplify final expression. Magnitude of V,, either the
input voltage of the converter or the voltage output of the previous stage, influences
the amplitude of the output current ripple and increase its value proportionally. On
the other hand, increasing the switching frequency will decrease the amplitude of the
ripple, whereas the inductor value assumes an important role in the design, decreasing
AT}, for high values. Considering a constant output voltage value V5 for the battery a
tradeoff between the switching frequency f, and the value of the inductance has to be
found. A large inductor, while desirable to decrease the output ripple amplitude, will
become larger and heavier. Moreover, the converter will be working with relatively
low duty cycles values in order to satisfy output battery voltage. The increase of the
switching frequency will affect the overall efficiency of the converter due to increased
switching losses. High switching of the high current I, will also cause significant EMI
issues that will affect the performance of the circuit together with eventual other

stages.

3.3.4 Simulink Model and Simulations. The bi-directional Buck-Boost circuit
is implemented in MATLAB® Simulink environment and its behavior is simulated.
Further stability analysis and control design are performed. Circuit presented in fig-
ure 3.17 is modeled using the SimPower System toolbox, including Equivalent Series
Resistances and non-ideal elements as switching devices. MOSFET semiconductors
consider internal resistance R,, and include a diode in anti-parallel configuration. On
the other hand, manual switches are used for commuting between the two modes of

operation, the buck converter and the boost converter respectively. The metal-oxide
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semiconductor field-effect transistor (MOSFET) is a semiconductor device control-
lable by the gate signal (¢ > 0). The MOSFET device is connected in parallel with
an internal diode that turns on when the MOSFET device is reverse biased (V5 < 0)
and no gate signal is applied (¢ = 0). The model is simulated by an ideal switch

controlled by a logical binary signal (g > 0 or g = 0) coming from the controller.

The MOSFET device turns on when a positive signal is applied at the gate
input (g > 0) whether the drain-source voltage is positive or negative. If no signal
is applied at the gate input (¢ = 0), only the internal diode conducts when voltage
exceeds its forward voltage V;. With a positive or negative current flowing through
the device the MOSFET turns off when the gate input becomes zero. If the current is
negative and flowing in the internal diode (no gate signal or g = 0) the switch turns
off when the current becomes zero. In the ON state voltage across MOSFET becomes

instead Vy, = R, - [ when a positive signal is applied at the gate input.

Also passive elements like capacitors and inductors are modeled including their
series resistance. DC voltage sources are considered to be ideal. Battery, at the
rightmost end of the circuit, is simply modeled as a resistor, or a constant DC voltage
source. Storage pack State of Charge (SOC), temperature varying parameters and

charging/discharging characteristics are neglected.

Buck-boost converter is controlled using a current feedback for output current.

Its error is calculated through following equation,

ie = iZut - Z.out (357)

and is processed by a simple Proportional Integral (PI) controller that eliminates
steady-state error. PI regulator functioning is described by following expression; cur-

rent error i, is multiplied by a constant proportional gain K; and integrated (integral
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term):

ipr=Kp i+ K; - /2 (3.58)

Output of PI controller is then used to create the binary pattern of the
switches, which is used as a gate signal for both MOSFETs. Pulse sequence is thus
reversed, using the logical NOT operator, in order to guarantee the alternate func-
tioning of the switches, either ON switch (short circuit) or OFF switch (reversed
diode). PWM is generated through a comparator between the current PI signal ip;
which is logically compared with a pulsating saw-tooth waveform. This repeating

frequency, at f,, indicates the switching frequency of the converter.

Even if for designed circuit a bi-directional behavior is simulated, some realistic
constraints have to be verified. In order to guarantee a universal input voltage,
a different approach has to be considered for a practical implementation. Voltage
conversion between the battery level and the DC bus value has to be done with
shown DC/DC converter. However, due to practical issues, boost converter gain
should not exceed three. Stability problems and other issues related to components
can be caused by higher gains. Therefore, simulations provided are given only for the

110 V' grid voltage.

Some design considerations can be done in order to adapt the behavior of the
circuit to a wider operating range in the inverse power flow. A larger voltage can be
considered for the battery pack, thus limiting the gain of the DC/DC bi-directional
buck-boost in boost mode of operation. Furthermore, an isolated topology can be used
to increase the voltage level with the use of a transformer. Future works may include
some considerations on different specifications for the system in order to optimize the

bi-directional power flow.
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Significative simulation results are shown in figures 3.20 and 3.21, where output
voltage and inductor current are given for both ways of functioning. PID controllers
previously commented are used, whereas also a digital approach as will be explained
later is of easy implementation.

Output Voltage VB & Output Current IDC
100 B B - - T - - - - T B B B g T g g g g T

Current [A], Voltage [V]

20l

-20 L T A SR
0

Time [s]

Figure 3.20. Output voltage and current of Buck-Boost converter, in Buck mode of
operation.
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Output Voltage Vi & Output Current Is
2 2
160 : : : B T - g g g T B g g g T g g g g T

Output Voltage |

200 | L

QO e L L L L

Figure 3.21. Output voltage and current of Buck-Boost converter, in Boost mode of
operation.



51

3.4 Boost Rectifier and Power Factor Correction

Basic Switching Mode Power Supply design requires, other than the rectifier
stage, a Power Factor Correction circuit. Power factor is defined as the ratio, usually
expressed in percentage, of the average power flowing to the load, to apparent power

P P

pf = 5= VI = cos(9) (3.59)

The last expression holds for sinusoidal AC circuits and ¢ is the phase angle
between current and voltage sinusoidal waveforms. Non-linear loads such as rectifiers
or switching circuits produce a large Total Harmonic Distortion. It is modeled as
noise that distorts the sinusoidal wave shape of the current coming from the AC
source. This results in apparent power that can be greater than the real power, and
consequently a low Power Factor. Power Factor Correction (PFC) allows thus power
distribution to operate efficiently. It minimizes losses and maximizes the real power
available from the line. Ideally a PFC circuit appears purely resistive to its source and
consequently the reactive power drawn from the device is zero. This implies that the
input current must differ from the sinusoidal source voltage by only a scaling factor
and must be exactly in phase with it. In case of purely reactive loads power factor
can be corrected. It is possible to add either an inductor, in the case of a capacitive
load, or a capacitor in the case of an inductive load. On the other hand, for non-linear
load like the full wave bridge rectifier at the input port a passive PFC filter is not
efficient. In fact, for this design purpose the preferable type of PFC is active Power
Factor Correction since it provides a lighter and more effective power factor control.
An active PFC circuit is an electronic system that controls the input current of the
load so that the current waveform is proportional to the main voltage waveform. It
keeps power factor as close as possible to unity (¢ = 0) and reaches high efficiencies.
Active PFC circuit chosen design is composed by a full bridge diode rectifier followed

by a switching boost regulator. It operates at a high frequency fs and it is capable
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of a wide range of input voltage.

The choice for the active power electronic converter for current shaping, is
based on practical considerations about this peculiar design. Electrical isolation be-
tween the utility input line and the output of the power supply is not needed. It is
also desirable to stabilize the DC voltage at the input of the bi-directional Buck-Boost
converter optimizing the universal input feature. Since power flow in this device can
be bi-directional some peculiar technical solutions must be used for the Boost step-up

converter in this application.

3.4.1 Input Rectifier. The first stage in this model design is the bridge rectifier.
Given universal AC input voltage, a simple full wave rectifier converts sinusoidal
input to purely DC voltage. It uses four diodes in a bridge configuration to provide
the same polarity of output voltage for both polarities of input voltage, as shown in

figure 3.22.

_|_

]
‘/ac V;)utg

Figure 3.22. Full Wave Bridge Rectifier circuit representation.

As a feature of this power supply universal input from nominally 90V to 240V
passes through the simple circuit represented above. It consists in 4 diodes connected
in a typical bridge configuration on a resistive load. Output voltage is alternatively

the positive or negative voltage coming from the input. Similarly output current is
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rectified by the circuit and it is therefore scaled by a /2 factor. Equations for the
full wave bridge rectifier represent output voltage across a general resistive load as
shown in the circuit schematic. As follows:

Vinsin(wt) O<wt<m
Vout(Wt) =

—Vsin(wt) T <wt <21
Value of average output DC voltage can be calculated by following equation:

2V,
T

1 ™
Vout = —/ Vinsin(wt) d(wt) = (3.60)

T Jo

The rectifier produces an unregulated DC voltage that is sent to the DC/DC
boost step-up converter. The current drawn from this rectifier circuit occurs in short
pulses around the AC voltage peaks. These pulses have significant high frequency
energy that reduces the power factor. In next paragraph a Power Factor Correction

circuit will be designed.

3.4.2 Active Power Factor Correction Circuit. A boost step-up converter is
used together with a full wave bridge rectifier for current shaping. Basic principle of
operation of the circuit is represented in the scheme of figure 3.1 and it is straight-
forward. At the utility input the current is desired to be sinusoidal and in phase
with V;,,. Full bridge rectifier output voltage and current waveforms are given by the

rectified version of the input scaled of a V2 factor.

In the step-up converter circuit is shown in figure 3.23. Some general as-
sumptions are necessary before proceeding with the analysis: output capacitor C' is
considered to be fairly large, in order to get an almost constant DC output voltage

VUout- Input power of the ideal circuit equals output power on instantaneous basis.
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Figure 3.23. Power Factor Correction circuit representation.

Because the input current of the step-up converter is to be shaped it operates
in current-regulated mode. Feedback control measures both the input voltage and
the current. It also adjusts the switching duty cycle to produce an in-phase voltage
and input current. Current mode control keeps a constant switching frequency to
obtain that inductor current i reaches the reference. Controlling the ON time toy
in the switch S the current in the inductance increases as the input voltage increases.
Switching frequency of the boost converter is required to be much higher than the
line frequency. For this application it is set to fs = 60 K H z allowing the inductor to
be very small and light. Feedback control is done measuring output voltage that is
maintained almost at a constant value V,,;. Normally, the DC output voltage is set
to 10 — 20 V' higher than maximum input voltage. Thus the universal input power
supply application meets a 90 — 240 Vrms input voltage at 50 — 60 Hz and a DC
output voltage. Input of the DC/DC converter that equals the DC bus voltage is set
at the maximum value of V,,; = 400V depending on the input amplitude. A real-time
calculation algorithm is developed specifically to calculate the modulation index and

the bus voltage value.
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Another advantage of the PFC circuit in this power supply is that there is no
hold-up capacitor directly across the bridge rectifier. It is instead postponed to the
output of the circuit where high frequency of operation permits a lower value and

therefore a smaller component.

3.4.3 Bi-directional Buck-Boost Power Factor Correction. As before, a bi-
directional circuit is now derived. Thus the converter operates in both directions, as
an AC/DC boost converter and as a DC/AC rectifier for a battery charge depleting
mode. Diode rectifier previously illustrated is now substituted with an H-bridge
rectifier, that lets energy flow in either direction. It is shown in circuit of figure 3.24.
With suitable control, this circuit can operate as the boost PWM rectifier explained
above. It is connected to an AC source whose waveform is rectified and boosted to
a suitable value, while power factor is hold to a value of around 95%. With the use
of the switches the output load can be switched to a constant DC voltage supply
and the AC input can work as a linear load. This reversed functioning mode allows
power to flow from the DC side to the AC side of the circuit to send energy to the
drive. Voltage converter of figure provides excellent control over power flow in both
directions. It can operate as an AC/DC converter to generate regulated DC voltage at
a high power factor and the power flow can be easily reversed to operate the converter

as a DC/AC inverter.

This section describes a first ideal circuit. Its differential equation of a space
state model are derived and a non-ideal AC/DC converter considering ESR and ON

resistor is built and analyzed.

3.4.3.1 H-Bridge PWM Rectifier. H-bridge circuit is used in the bi-directional
buck-boost Power Factor Correction circuit as a reversible rectifier. It is capable
of operating as both a PWM boost converter and a DC/AC inverter, through the

alternate use of the switches. Two configurations are allowed, considering that only
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two opposite switches are turned ON at the same time and that the current can flow
in either direction. Thus the basic operating mode of an H-bridge is fairly simple: if
S3 and S4 are turned on the left side of the circuit is connected to ground, while the
right side is connected to the power supply. Current starts flowing through the bridge
that energizes in the forward direction and results in an output voltage in the load. If
S1 and S2 are turned on the converse takes place and the load gets energized in the

reverse direction. It results thus in a negative current through the rectifier branch.

This simple circuit (figure 3.24) is composed of a series of four solid-state
switches such as BJTs or MOSFETs with anti-parallel diodes configuration. The

switches are fed by a sinusoidal AC input voltage and applied to an equivalent resistive

G

Ve (V) vmé
& 5

Figure 3.24. H Bridge Rectifier circuit representation.

load.

3.4.4 Bi-directional Buck-Boost Power Factor Correction Space-State Model.
Power Factor Correction circuit of previous section is now modified in order to ac-
commodate bi-directional operations. As explained diode bridge is converted in an

H-bridge, a circuit that enables a voltage to be applied across a load in either direc-
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tion. It uses 4 BJT or MOSFET devices in a bridge configuration.

As shown in circuit schematic of figure 3.25 the system consists in a single-
phase voltage source Vi with AC side inductor L. The rectifier bridge, explained in
previous paragraph consists of four bipolar transistors with anti-parallel diodes. It is
controlled by a voltage and current loop and provides a reference PWM signal for the
semiconductors. Manual switches in the circuit are intended for the bi-directional use
of the converter. They are used here to switch between the AC/DC boost converter

with input current shaping and the reverse system of the DC/AC step-down inverter.
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Figure 3.25. Ideal bi-directional PFC circuit representation.

Ideal circuit is here described and the behavior of ideal circuit is examined
without considering Equivalent Series Resistors and ON resistors for the switches.
Its differential equations are derived with the hypothesis of a large input and output

capacitor and a constant output voltage V.

Vs
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3.4.4.1 AC/DC mode. Ideal equivalent circuit represented in figure 3.26 shows
the AC/DC operating mode. The sinusoidal input voltage is rectified by the H-bridge
rectifier and boosted to the desired value V,,; by the boost step-up converter. Boost
rectifier’s functioning results to be very similar to simple boost converter. Input volt-

age is rectified by the use of the absolute value of the input V;,, = |v1| = Vi|sin(wt)|.

L
(M= — cé Ry

e

Figure 3.26. Ideal bi-directional PFC circuit representation, in AC/DC operating
mode.
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Recalling ideal boost model differential equations 3.9 and 3.10, dynamics of

the system can be adapted considering the rectified input voltage, as follows:

doe 1 o4k (3.61)
i ~ RO TCY ‘
diL ‘/zn Ve

3.4.4.2 DC/AC mode. Inverter mode of operation for the bi-directional converter
implies the DC/AC mode of operation. The DC input voltage is PWM modulated

to obtain a sinusoidal output waveform with the desired amplitude and frequency.
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Inverter scheme is represented in figure 3.27 as the ideal equivalent circuit. It works
as a step-up converter based on the simple buck converter previously explained, where

the output voltage is sinusoidal shaped by the H-bridge converter.

s
L L
§ Ry—”— Cy = O="

LCIR

Figure 3.27. Ideal bi-directional PFC circuit representation, in DC/AC operating
mode.

L
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Buck equations for the ideal circuit 3.7 and 3.8 are here modified in order to
accommodate the PWM generator which creates the output voltage waveform. As
before converter output voltage is considered as the rectified version V,,; = |vc,| =

Ve, |sin(wt)|.

dvc iL V;n Ve

& ~ C RO RO (3.63)
diL ‘/zn Ve
Fr (3:64)

PWM switching frequency to control the H-bridge switching pattern is calcu-
lated comparing a sinusoidal at the desired output frequency and proportional to the

output voltage magnitude with a triangular waveform at the switching frequency f,.
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3.4.5 Bi-directional Buck-Boost Power Factor Correction Space-State Model
with ESR. Ideal circuit representation of previous section is here modified. Non-
ideal elements are introduced to provide a more complete model of the system. Equiv-
alent Series Resistor R, for inductor and Rq,, R¢, for capacitors, ON resistors R,,
for BJTs and diodes are added, while diode voltage drop is neglected. This more com-
plex circuit represented in figure 3.28 will be simulated using MATLAB® Simulink

in following section.

L Ry,

X Re, {:SEX { Re, X
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Figure 3.28. Bi-directional PFC circuit representation.

3.4.5.1 AC/DC mode. First mode of operation analyzed is standard boost
rectifier PFC circuit. It is obtained considering a switch configuration where the
sinusoidal input V; on the left side and the battery load R; are connected. Power
flows from the AC input to the load resulting in a voltage rectification and regulation
and in an input current shaping. Circuit schematic is shown in figure 3.29. Usual

assumption of neglecting the input capacitor can be made.

For AC/DC boost Power Factor Correction operation mode state space equa-

tions can be derived for the two equivalent switches states, S, So = ON, S3,5;, =
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Figure 3.29. Bi-directional PFC circuit representation, in AC/DC operating mode.

w2

OFF and S;, S = OFF, S5, 54 = ON similarly to what has been done in section 3.1.
Since the converter is analyzed in continuous conduction mode of operation only 2
switches states are possible. State space equations are derived for each of the possible
circuit configurations. Equivalent series resistors are considered for each component

and ON resistors are used to model the switch and diode ON state.
Mode 1: S;, S; = ON, S3, S, = OFF

When switches S; and S5 are in the ON state the respective anti-parallel diodes
are OFF and switches S3, Sy are OFF, whereas diodes D3, D, = ON. Following state

space equations, referring to state x = [vg, 7] are given:

d’UR 1

Sr - 3.65
dt Ci(R+ Ro,) ™ (3.65)
dip Rt B (3.66)

dt L
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Mode 2: S, S, = OFF, S3, S, = ON

Similar analysis has been done for the alternate switches states. Switches S,
and S5 are off whereas their anti-parallel diodes Dy, Dy and switches S3 and S; are

ON.

dle 1 R .
_ _ N 3.67
dt Ci(R+ Re,) "™ T Cl(R+ Rey) * (367)
diy R RRe, R, +Rp] .
BLo_ T pp — 3.68
dt IR+ o)™ |IThrey T — 1 | %

Combined model can be obtained considering above state space equations in

conjunction. Following typical space state system representation is derived:

dvg, 1 R ,

at _01(R+RCI)”RI+lcl(R+RCI)"L]“

di, R +R, RRe, Ry + Rp)\ . R

a L 't KL(R+R01) L >L LR+ Rey) |

3.4.5.2 DC/AC mode. When manual switches are positioned to work as a
DC/AC inverter battery is used as a DC voltage source V3 to allow power flow to AC
side equivalent resistor Ry. Low voltage coming from the battery source is boosted
and converted to an AC voltage thanks to a proper switching scheme of the H-bridge.
In this operating situation no equations or simulations are derived but equivalent

circuit schematic is represented in figure 3.30.

3.4.6 Design Considerations. This section discusses the choice of the most
important components, considering the converter to be working mainly as an AC/DC
rectifier as a battery charger. Theoretical constraints and practical issues are derived,
based on the considerations explained in [3]|, where the choice of components for a

unity power factor correction circuit is derived, providing a rigorous method.
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Figure 3.30. Bi-directional PFC circuit representation, in DC/AC operating mode.

As the main purpose of the power factor correction circuit is that to improve
the PF value, shaping input current to be perfectly in phase with the input voltage,
and being a scaled waveform of it, one of the most critical components is the AC side
inductor. In particular, its ripple is considered for continuous conduction mode of

operation, and is given by following equation:

Vidac

Al=—7

(3.69)

whereas before, f, indicates the switching frequency, and d ¢ the instantaneous value

of the duty cycle.

Ripple in input inductor current, as shown in equation 3.69, is proportional to
input voltage amplitude, thus providing a design constraint, which has to be optimized
for the maximum input voltage case. On the other hand, a large value of the inductor
L will result in a lower current ripple, providing a closer reference tracking, and a
lower Total Harmonic Distortion (THD). One major design issue, in the rating of the

input inductor, is given by the tradeoff between the ripple amplitude above explained
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and the drawn current rating capabilities of the component. In fact, for a low input
voltage, the ripple is low while a higher current is drawn from the grid. Thus the
inductor has to be sized consequently. Regulation of the input inductor current, which
is forced to track a line frequency sine wave, is done through a very fast switching
sequence. While it increases the switching losses and significantly decreases efficiency
of the converter, it can be used as a design parameter to reduce the amplitude of the

current ripple.

Another important component in PFC circuit is given by the DC bus capac-
itor, responsible for the rectified DC bus voltage ripple, oscillating at twice the line
frequency as a perfect sine wave. Considering a constant DC load power, the DC bus
capacitor voltage increases when input power is higher than the load power, storing
the extra energy provided. On the other hand, when the input power is lower than
the load power, the effect is opposite, thus showing the regular oscillating wave in the

voltage waveform. As calculated in [3], DC bus voltage Vj,s can be expressed as:

Vius = sin(2wt) (3.70)

in
2wc1‘/bus
where P, indicates the input rated power and w is the angular frequency of input

voltage.

As before, a second ripple in the DC bus voltage is given by following relation,
function of the duty cycle da¢ and also of the equivalent load, or depending on the

following DC/DC converter stage dpc in cascaded system.

I; _dpcd
A%us = LDCf gclf A (371)

Ripple amplitude is much smaller than the previous case, and has a higher frequency.
It is highly dependent on the value of the DC bus capacitor . It is rated such
that it minimizes the two identified ripples, as an important issue for the stability

performance. Lowest input voltage and rated power conditions have to been used as
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the critical case in the sizing of the component, as will be shown later in chapter 5

which deals with the stability analysis.

3.4.7 Simulink Model and Simulations. The bi-directional Power Factor
Correction rectifier circuit presented in the previous sections is now modeled using

MATLAB® SimPower Systems toolbox in Simulink.

All passive elements, including the AC side inductor, input and output capac-
itors, are modeled as linear elements with a small valued Equivalent Series Resistor
(ESR). Semiconductor devices are modeled using MATLAB® MOSFET blocks, con-
sidering the internal resistance R,, for the FET and internal resistance of the anti-
parallel diode R;. Switches behavior is considered ideal, as pure ON-OFF switches,
where snubber resistance, snubber capacitance and other non-idealities are not con-
sidered. Output load of the circuit is modeled as a pure resistive one, whereas when
switching to inverter mode, input DC voltage is considered constant and modeled as

an ideal voltage source.

Switching between the two systems, corresponding to the AC/DC rectifier or
DC/AC inverter circuits, is done using a series of manual switches that connect or

disconnect respectively either load or voltage source.

PFC converters, like most power electronics circuits, cannot function without
feedback control. As shown in figure 3.31 and 3.32, which represent unregulated PFC
operation, without a proper control scheme, output voltage and AC side inductor
current shape does not meet the requirements of unity power factor. Output DC
voltage presents typical ripple oscillations while inductor current shows alternating

spikes with high harmonics content.
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Unregulated Output Voltage of Non—Power Factor corrected PWM rectifier
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Figure 3.31. Output voltage ripple of a Non-Power Factor regulated Boost Converter.

AC side inductor current of a Non—Power Factor regulated PWM rectifier
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Figure 3.32. Inductor current waveform of a Non-Power Factor regulated Boost Con-
verter.
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3.4.7.1 DC Voltage Controller. The outer loop in the control scheme is the
voltage feedback. The input to the voltage regulator is the reference DC voltage v},
and the actual sensed output DC voltage vpe. The voltage error compensator is
designed to produce a control signal such as the DC bus voltage remains constant at
the desired level, regardless variations of the input or in the load current. Output of
this outer loop is then used to determine the inductor current reference signal, thanks

to the current controller for the inner loop.

A simple proportional integral (PI) controller is selected for DC voltage regu-
lation, through error feedback of the sensed output voltage compared with reference

voltage. Voltage error v, is calculated as
Ve = V), — Upc (3.72)
and processed by the PI voltage regulator, which output is given by

UP[IKP'Ue—i-K]'/Ue. (373)

Controller parameters, given by gains Kp and K; represent respectively proportional

and integral constants.

3.4.7.2 Average Current Control Loop. Average mode current control operates
by directly comparing the actual inductor current waveform to the reference signal,
obtained as the voltage controller output. This high gain current error amplifier
tracks the current sinusoidal reference with a high degree of accuracy, enabling high
power factor and providing excellent noise immunity. Output current signal should

match as closely as possible the AC input voltage to have high power factor.

Output voltage, from the voltage control loop, is used to control the average
value of the current amplitude signal, while a sinusoidal reference signal, in phase

with AC input voltage, provides the shape. Current reference signal is calculated by
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calculating the product between the scaled input voltage v4¢, the voltage controlled
error vp; and the output of voltage feed-forward compensator. When input voltage
increases, the product of va¢ and vpy increases, and thereby increasing the reference
1. When the signal is divided by the square of the average voltage signal, it results
in the current reference signal being reduced proportionally. The outcome is that
also the current is reduced proportionally to the increase in voltage, thus keeping the

input power constant.

If the voltage decreases, the product vac - vpy, which determines current ref-
erence, also proportionally decreases. However, to maintain a constant output power
at reduced input voltage, the term 7%, should proportionally increase. The voltage
feed-forward compensator is essential to maintain a constant output power because it
compensates for the variations in input voltage from its nominal value. This compen-
sator is implemented by calculating the RMS value of the input line voltage, squaring
this value and using the result as a divider for the input reference current, which is
fed to the current error compensator. If v, is the sinusoidal input voltage to the
PFC circuit, the input voltage feed-forward term is calculated as shown in following
equation:

ver = 1/(vac - 2/pi)*. (3.74)

As before, the input current error is given by the difference between the refer-
ence current calculated from the outer control loop and the actual current, i, = i} —iy.

It is processed through a high gain PI controller as

ipr=Kp i+ K; - /2 (3.75)

Output of PI controller is then processed through a PWM comparator in
order to obtain switching pattern for semiconductor devices. Output signal is in

fact compared with a fixed frequency saw-tooth waveform oscillating at switching
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frequency f,, obtaining a binary valued square wave.

Some simulation results are shown in figures 3.33 and 3.34, including inductor
current waveform perfectly in phase with the AC input voltage, and DC bus volt-
age. Test results show Power Factor improvements and current harmonic reduction,

compared with unregulated waveforms in figure 3.31 and 3.32.

Output regulated voltage of Bidirectional PFC Boost rectifier
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Figure 3.33. Output voltage waveform of a Power Factor regulated Boost rectifier.

Inductor current and input voltage of Bidirectional PFC Boost rectifier.
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Figure 3.34. Inductor current waveform of a Power Factor regulated Boost rectifier.
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DC/AC rectification operation is fairly simple and control structure turns out
to be less complex. Reference AC voltage waveform is given by a sinusoidal source,
perfectly in phase with desired AC voltage, which amplitude is scaled as to meet the
requirements. Sensed output voltage is then compared with the reference, producing
the error signal, which is processed through a PI controller and a pulse generator.
PWM generator output is a series of pulses with values 0 or 1, for the upper switches

and for the lower switches respectively, proportional to its input signal.

Results of the DC/AC inverter operation mode are shown in following figures,
including the generation of an AC sinusoidal voltage waveform and the corresponding
AC side inductor current.

Output Voltage of DC/AC Inverter Stage
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Figure 3.35. Output voltage waveform of a DC/AC PFC inverter.
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Figure 3.36. Inductor current waveform of a DC/AC PFC inverter.
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3.5 Overall Battery Charger Model

The section describes the modeling of the overall converter using a state-
space system, which is given as a cascaded configuration of two circuits explained
above. Switching between linear circuits, consisting of a series of storage elements,
inductances and capacitors, can be obtained by use of transistors, diodes and other
switching devices. Under the assumption that circuits are working in Continuous
Conduction Mode of operation, in which instantaneous inductor current never drops
to zero at any point has been chosen conveniently following usual adoption for electri-
cal networks. They can be represented by a set of linear state space equations, which

can be combined together to form global state space model.

Non-linear continuous systems, such as those described, can be written in
the typical form of space-state models using following system equations, where an

n-dimensional vector state x and an m-dimensional input w are considered as shown:

x(t) = A(x,t)+ B(x,t)u (3.76)

y(t) = C(x,t)+ D(x,t)u (3.77)

Furthermore, to replace the state space descriptions of equivalent linear circuit
given by the different switches values across the whole period T', a single system can
be derived. Differential equations for the two configurations are averaged by summing
the equations for interval d and (1 — d). As before, resulting equations for equivalent
circuit during interval d, and its complementary d’ = (1 — d), can be grouped in a

single expression, resulting in the following linear continuous system:



73

X = d(A1X + Bl U) + d/(AQX + BQ U)
= (dAl + d/AQ)X + (dBl + d/Bg)

y = dyl + d,yg = (dCl + d,CQ) + (le + d/Dg)X

As shown in above equation, system matrix A of the averaged model can be
obtained by taking the average of the two switched model matrices A; and Ay, which
dynamic is given by the average of the two state dynamic matrices weighted with
the duty cycle value. In this particular application, whereas state space averaging
techniques have been largely adopted in many research papers, it is chosen not to lin-
earize the circuit, thus considering its large-signal model. In particular high-frequency
modulation effects cannot be seen using the small-signal model. Furthermore the cir-
cuit is now analyzed considering its time-variant state space representation, given by

mathematical equations shown in following section.

Similarly, using linear system theory knowledge, input-output and input-state
relations can be derived from the dynamic model as vector transfer functions. Com-
plete description of system behavior using t.f., adopted in particular for stability
analysis as will be explained later, in the frequency domain, is simply given by the

general form:

= (sI-A)7'B (3.78)

= C(s[-A)"'B+D (3.79)

3.5.1 State-Space Model. The illustrated technique that was used for the two
separate stages of the converter in previous sections is now applied to overall system.
Equivalent circuit of proposed battery charger, composed of the cascaded converters,

is now simplified in order to obtain a single input output relation.
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Rectification operation, previously obtained using a four switches device, is
now schematized with a single switch which provides already rectified input voltage.
Sinusoidal inductor current is thus maintained by changing the direction of the current
during the negative half cycle of line voltage by changing the pair of switches. Parasitic
elements and on-state resistor are considered in the non-ideal model description, where
switching devices are represented by Spoest = S1 and Sy = So. Equivalent resistor
load for the PFC boost rectifier is now substituted with the DC/DC converter and
battery load is considered to be simply resistive. PWM boost rectifier followed by
bi-directional buck-boost circuit is thus considered equivalent to circuit in figure 3.37,

where Vg = |V is the rectified version of the input voltage.

L Ry 4 Rp D, S Rg Lo Rp o

Rs Re
[Vac|

N
X
Q
||
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Figure 3.37. Equivalent Non-Ideal circuit representation for charger.

Two above described models can be combined together in order to summarize
bi-directional buck-boost non-ideal circuit, writing a new system of four equations

considering following states variables vc 1, vo 2, ir1 and ig 2. State vector is given by
T

Vci1 Vc2 tLi tL2|

while input is scalar and consisting in rectified version of sinusoidal AC voltage
waveform |Vyco|. Matrices of the system expressed in the form 3.76 and 3.77, where

matrix D(x,t) = 0, are the following:
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1 1
0 0 C_l(l_dAC) _C_ldDC
0 - 0 Rout
Ca(Rout+Rc 2) Ca(Rout+Rc,2)
A= ~ 1 (1—dae) 0 _ Rpat2Rg1  Rei(1-dac) Ro1(1-dac)dpe
Ly AC Ly Ly Ly
1 Rout Rca RoutRo 2 Rpo+Bps Ecna
1 —— Bout L (1-dac)d - 2 ___ L, _ZC1y
Ly 4PC La(Rout+Rc 2) Lo ( ac)dpc La(Rout+Rc,2) Lo Ly ¢PC
0
1
Ly
0
C RoutRC,Q Rout

0 0
Rout + RC,Q Rout + RC,Q

As can be easily noticed, the time-variant characteristic of the circuit, is ex-
pressed by the duty cycles instantaneous values da¢ and dpe, representing the PFC
circuit and DC/DC converter switches respectively. In particular, the configuration
of the system, highly dependent on the binary values of the switching devices, and

not on their averaged value, will be further analyzed in following sections.

3.5.2 Simulink Model and Simulation Results. Simulation results from
the overall model of the battery charger, working as a bi-directional converter is
implemented here in MATLAB® Simulink, in both the circuital and mathematical
model are presented. Mathematical model previously derived, due to some basic
assumptions done to simplify the circuit behavior, is working only as a unidirectional
converter. In this study only charging simulations will be presented, recalling previous

sections for the DC/AC operation mode of the cascaded system.

Important waveforms are shown here, and will be further discussed in following
chapters where a detailed comparison with the novel digital approach and stability
analysis for the two different strategies is done. Input inductor current, which is
shaped by the two-loop controller, is shown in figure 3.38, where, after a small tran-

sient, it follows the sinusoidal voltage reference, obtaining in the steady state an
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almost perfect sine waveform, as can be seen also from the FFT analysis in figure

3.39.
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Figure 3.38. Input current and sinusoidal voltage reference plots.
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Figure 3.39. FFT analysis and steady state plot of sinusoidal input current.
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Second important waveform is the response of the DC bus capacitor volt-
age, Vpus, which is characterized by a ripple at twice the input frequency given, as
explained, by the imbalance of the AC input and DC output power. The voltage
waveform, shown in figure 3.40 represents a stable operating point, where the tran-
sient, response is fast and desired output is easily obtained thanks to a precise tuning
of controllers’ parameters.

Bus Voltage Vbus
250 f f f f

200 -« e I T I T T R TR

Voltage [V]
[y
[6)]
o

Ay
o
o

soflllll- .o N TR L ]

Time [s]

Figure 3.40. DC bus voltage waveform plot.

Output stage, given by the DC/DC converter, working as a buck, provides
regulated output current at the battery constant voltage V;, thanks to the PI control
loop. Therefore, the output current settles to reference value after a small transient

as shown in figure 3.41.
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Figure 3.41. DC/DC converter output waveforms plots.
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3.5.3 Transfer Functions of the system. The derived space state model is
completely described by matrices ¥ = (A, B,C, D) represents a highly non-linear
and time-variant system. System configuration depends on the different states of the
switches d ¢ and dpo. Specifically, since each switch can assume values in the discrete
set d € {0, 1}, possible states combinations include both switches open, both switches
closed, and the alternate case. All possible scenarios for this non-linear system are
studied providing the bases for a full analysis performed in next chapter, involving
different criteria. State space mathematical model is therefore simplified considering
each different configuration separately. Mathematical analysis can be done for each

system, using four different matrices sets.

In following pages, a preliminary mathematical representation of the system is
provided. Transfer functions, which can be easily used for the stability analysis and
to analyze poles plots, are calculated. A more precise and analytical approach can be

pursued in order to confirm practical results obtained in this work.

In particular, a general vectorial input-state transfer function Wyg(s) for global

system is derived as follows:

X(s)
U(s)

Wis(s) = =(s[—A)'B (3.80)

where A and B matrices are given in previous section.

Using equation 3.80 four different transfer functions are derived for each state

x as follows.

3.5.3.1 S; ON, S5 ON. When both switches are in the ON state, duty cycle dac

and dpc assume unit value, and equivalent matrix A is obtained:

0 0 0 -

C1
0 — 1 0 Rout

A C2(Rout+Rc,2) C2(Rout+Rc,2)
1,1 — Ry 1+2R
) 0 0 _ L,1L S,1 0
1

1 Bouwt 0 __ PoutRcp  EpatRps FEca
Ly  La(RouttRc,2) La(Rout+Rc,2) Lo Ly
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Calculating transfer function W, we get following third grade rational expression, for

given components values:

Wi(s) = =(sI— A1) 'B=0 (3.81)

Similarly, transfer functions Wy, W3 and W, are calculated, and their bode

plots and root locus diagrams are shown.

_ Xo(s) _
Wals) = 7 =0 (3.82)
Wats) - Xs8) 10°L, 3333 (3.5

U(S) 3(RL71 + 2R5,1 + Lls) s+ 133.3

Wa(s) = =0 (3.84)

As can be easily noticed, all scalar transfer functions are characterized by
same poles position. Denominator analytical expression comes from the determinant
of matrix (s/ — A;;) and depends on parameters defined in Appendix. Bode plots for

derived functions are given, together with root locus graphs.



Bode Diagram
Gm = Inf, Pm = Inf

[

o
3

Phase (deg) Magnitude (dB)
8 = O

o

10° 10"
Frequency (rad/sec)
Bode Diagram
Gm = Inf, Pm =92.3 deg (at 3.33e+003 rad/sec)

o 50
=
[}
S o
c
&
= -50
> 0
(5
s
@ -45
<
e
& o0 0 1 2 3 4

10 10 10 10 10

Frequency (rad/sec)

Phase (deg) Magnitude (dB)

Phase (deg) Magnitude (dB)

Bode Diagram
Gm =Inf, Pm = Inf

81

0.5

[

0.5

10

[

Frequency (rad/sec)
Bode Diagram
Gm =Inf, Pm = Inf

10"

o
o

o

[

<
3

o

[
o
=)

Frequency (rad/sec)

10"

Figure 3.42. Bode plots for the four transfer functions corresponding to d4c = 1 and

200

dpc = 1.
Root Locus
1
Kol
é 0.5
>
g
g 0
©
E
-0.5
-1
-1 -0.5 0 0.5 1
Real Axis
Root Locus
20
R
é 10
2
g
£ 0
I
E
-10
=20
-600 -400 -200 0
Real Axis

Imaginary Axis

Imaginary Axis

Root Locus
1
0.5
0
-0.5
-1
-1 -0.5 0 0.5 1
Real Axis
Root Locus
1
0.5
0
-0.5
-1
-1 -0.5 0 0.5
Real Axis

Figure 3.43. Root locus diagram for the four transfer functions corresponding to

dAC =1 and dDC’ =1.



82

3.5.3.2 57 OFF, S; ON. When switches configurations corresponds to instanta-

neous duty cycle values of dsc = 0 and dpc = 1, equivalent matrix A is obtained:

1 1
0 0 o o
0 I e — 0 Rout
A C2(Rout+Rc,2) C2(Rout+Rc 2)
01 = [ 4 0 _Rp1+2Rs1  Rog Roa
Ly Ly Ly Ly
1 Rout Rca _ RoutRcp  Rppop+Rps Rga
Ly Ly(RouttRc,2) Ly Lo(Rout+Rc,2) Lo Ly

Exactly as before the four scalar transfer functions are calculated using formula 3.80.

~Xu(s) 2.778 - 10852 + 3.182 - 10%s + 3.817 - 1012
U(s) 844127953 + 5.863 - 10652 4 1.373 - 1085 + 2.095 - 1012

(3.85)

1O4L1(RDS + RL2 + Rout + LQS + 02L2R0282 + CQLQRout82+ L
D(s)

Wi(s) = | (3.86)

o _'_CQRCQRDSS -+ CQRCQRLQS -+ CQRCQRoutS —+ CQRpsRoutS -+ CQRLQRoutS)]
D(s)

X. 815 - 108 + 3.673 - 1012
Wi(s) = 2(s) _ 8.815 - 108 + 3.673 - 10 (387)
U(s)  s*+ 127953 + 5.863 - 10552 + 1.373 - 1085 + 2.095 - 1012

104Ly Ryt (C1 Ry s + 1
WQ(S) = : g(;) < )

(3.88)

Wi(s) X3(s) 333353 +6.04 - 10552 + 1.499 - 10'%s + 4.783 - 10'? (3.89)
s) = = .
K U(s) s* 4+ 127953 + 5.863 - 10652 4 1.373 - 1085 + 2.095 - 1012

. 1O4L1[01R018 + OQRCQS + ClRpss + ClRLQS + ClRoutS + CgRoutS—l— o
N D(s)

Wg(S)
(3.90)
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o +01L282 + 0102L2R0283 + ClchgRoutSB + 0102R01R0282 + 0102R02RD532+ o

D(s)
o +C1CyRe, R, 8% + C1CyRey Rowrs* + C1CsRey Rowts* + C1C2Rps Rours*+ .
D(s)
o —f-ClCQRLQROutSQ + 1]
D(s)
X 2.222 - 10%s% + 1.041 - 1010 4.783 - 102
Wis) = 2als) _ i il (3.91)

U(s) st +1279s3 4 5.863 - 10652 4 1.373 - 108s + 2.095 - 1012

. 104L1(01RCIS + 1)(CQR028 + CgRoutS + 1)

1) D(s

(3.92)

D(S) = 3[RDS — 2R01 +RL1 +RL2 +2R5’1 +Rout +L13+L28 — QClRélS‘l‘ e (393)

. -+ClL1L233+ClLchlsz—C’ngRCl S2+CQL1R0282+01L1RD582+CQL2R0282+‘ .
o +C1 L1 Ry, 8*+C Lo Ry, 8> 4+2C, Ly Rg1 8°4+C1 Ly Roy 5°+Co L1 Ryyy 5°+Co Ly Rgyys* -+ - -
-+ —209Re, Ro,s — C1Ro, Rpss + CoRe, Rpss + C1Ro, Ry s + CoRe, Ry, s + - -
o+ 4+ CyRe,Rr,s + C1RpsRr,s + 2C1 R, Rs15 + 2C5Re, Rs1s + 2C1 RpsRg1s + - -
-+ C1R, Rp,s + 2C Ry, Rs15 — Ch Ry Rowys — 2C5Rey, RowsS + CoRey Ryt + - - -
-+ CyRpsRouts + C1Rp, Rowts + Co Ry, Rowts + CoRp, Rowts + 2C1 Rg1 Rours + - - -
oo —CyRe, Ry, s + CLCy Ly LoRe, s* + C1CoLy LoRyyys* + C1CyLi R, Reys® + - - -
+++ 4+ 205 Rg1 Rouys — 2C1CoRE, Ry s* — 2C1Co R Ryuys® — C1CoLyRey Reys® + - - -
o +C1Cy Ly R, Rpss®+C1CyLi Rey Ry, 52 +C1Co Ly Rey Ry, 52 4+2C, Oy Ly Ry Ry 8% 4+ - -
- 4C1Cy L1 Rey, Ry 83 +C1Co Ly Rey Rowy s —C1Co Lo Ry Roys°+C1Co Ly Rpg Rouy s+ - -

c '+0102L1RL2Rout83+0102L2RL1 ROut83—|—20102L2R51R0ut83—01CQRCl RCQRD582+' .



84

-+ C1CoRe, Rey Ry, 8* — C1CyRe, Rey Ry, s° + C1C3Re, Rps Ry, 8% + - - -
-+ 4+ 2C1CoRe, Re, Rg15° + 20,CoRe, RpsRs15° + C1CoRe, Ry Ry, s* + - - -
-+« +2C,CyRe, R, Rg15° — C1CyRe, Rey Rouws* — C1C03yRe, Rps Row s + -+

oo+ C1CyRey Ry, Rows5* — C1CoRey Ry, Rowss® + C1CoRey Ry, Rowss® + - - -
o+ C1CyRps R, Rowss* + 2C1Cy Ry Rt Routs® + 2010y Ry Rgy Royys® + -+

-+ 20,0y Rps Rt Routs* + C1Co Ry, Ry, Rowss* + 2C1Cy Ry, Rgy Rout5?

Bode plots and root locus are shown for the case S; OFF, S5 ON.
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86

3.5.3.3 S5; ON, S, OFF. Alternate configuration of the switches is here studied.
AC side switch is considered to be in the ON state, whereas DC side switch is OFF.

System A matrix modify as follows:

0 0 0
- r 0 ___ _Rout
Ca(Rout+Rc,2) Ca(Rout+Rc 2)
Ao = 0 0 _RL%fRSJ 0
0 —— fout 0 ___ RoutRc2  Rpot+Rpg
La(Rout+Rc 2) La(Rout+Rc,2) Lo
Xi(s)
1% = =0 3.94
1(8) U(S) ( )
XQ(S)
W = =0 3.95
2(8) U(S) ( )
X 10*L 3333
Wis) = 2308) _ ! - (3.96)

U(S) 3(RL71 + 2R5,1 + Lls) s+ 133.3

Wiy(s) = =0 (3.97)

Transfer functions corresponding to dac = dpe = 1 and dac = 1, dpe = 0,
even if matrices A; ; and A, o are different, due to some cancelations, result identical,
thus also zeros and poles positions correspond. Therefore, bode plots and root loci

represented in following figures are identical to figures 3.42 and 3.43.
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3.5.3.4 S, OFF, S, OFF.

0 0 0

1
C1
0 R

0 1 out
Co(Rout +RC,2)

N Co(Rout +RC,2)
_1 0 _Rrat2Rsy1  Roa

Ly Ly Ly 0

0 — Rout 0 _ RoutBg2  RpatBEps
Lo(Rout+Rc,2) La(Routt+Rc,2) Ly

. Xi(s)  (CyLoRe, + CoLoRoy) - 8% + (Ly + CyRe,Rps + CoRe, Ry, + o

W p—
)= T) D)
(3.98)
. _'_CQRCQROUt + CQRDSRout + C2RL2Rout) -8+ (RDS + +RL2 + Rout)
D(s) B
_ 5.808 - 107752 4+ 0.0006653s + 0.798
©2.091-10"13s% +1.28 - 10-10g3 4 7.403 - 10~ 752 + 0.0005121s + 0.798
Xs(s)
W. = =0 3.99
2(8) U(S) ( )
Xg(S) (0102L2R02 + ClchQRout) . 83 —+ (ClL2 + 0102RCQRDS+
Wg(S) = = Ce
U(s) D(s)
(3.100)
o +C1CyRe, Ry, + C1C2Rey Rout + C1C2Rps Rows + C1Co R, Rowt) - 8%+ o
D(s)
L _'_(ClRDS + ClRL2 + ClRout) -S o
D(s)

_ 6.97 - 107"%s* +7.983 - 10~"s% 4 0.00095765
©2.091-10713s% + 1.28 - 1071053 + 7.403 - 10~7s2 4 0.0005121s + 0.798

Wiy(s) = =0 (3.101)




89

D(s) = (C1Cy Ly LyRe, + C1CyLy Ly Rous) (C1Ly Ly — C1Cy Lo Rey Ry + -+ (3.102)

-+ C1CyL Ry Rps + C1CyLy Rey Ry, 4+ C1Co Lo Rey Ry, + 2C1Cy Lo Rey R, + - - -
e+ C1Cy Ly Rey Ry — C1Co Lo Ry Rowt + C1Cy Ly Rpg Rowt + C1Co Ly Ry, Rous + - - -

++++ C1Co Ly Ry, Row + 2C1Co Lo R, Row)(—C1LaRe, + CiLiRps + CoLaRe, + -+

-+ C1L1 Ry, +C1LyRy, +2C1 LoRg, +Cy L1 Ryt + Co Lo Rows — C1Cs R, Roy Rpg + -+ -
.-—C1CyRe, Rey Ry, +C1CoRe, Rps Ry, +2C1CaRey, Rps R, + C1CyRey Ry Ry, ++ - -
- 4+20,CyRe, Ry, Rs, —C1CoRe, Ry Rowt — C1CaRey Rps Rowt — C1CaRey Ry, Rowt ++ - -
- +C1CoRey Ry, Rout+C1CoRps Ri, Row+2C1CaRey Rs, Rt +2C1CaRps R, Rous+ + -

+++ 4+ C1CyRp, Ry Rowt + 2C1Co R, Rs, Rowt) (Ly — ChRey Rps + CoRey Rps — -+ -

.- —C1Re, Ry, + CoRe, Ry, + CiRps Ry, +2C  RpsRs, +C1Ry, Ry, +2C R, Ry, - - -
-+~ C Ry Rowt +CaRey Ryt +CoRps Rous +Ci Ry Rowt +Co Ry Rous +2C1 R, Rowt) - - -

e (RDS + RLQ + Raut)
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Figure 3.48. Bode plots for the four transfer functions corresponding to d4c = 0 and
dpc = 0.
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3.5.4 Considerations on Transfer Function Structure. The transfer functions
derived fully describe the dynamic behavior of the system. Equation for every config-
uration explains the relations between the input signal and the state variables. This
relation can lead to a different implementation of the equivalent state space system
in Simulink. Transfer function structure is here analyzed and their implementation is
explained in terms of system dynamics analysis. Simple considerations are also made

in terms of stability and relations between system variables.

As can be seen from previous sections, structure of the ¢f follows a straight-
forward scheme. Independence of the state variable with respect to the input is
expressed by an identically zero relation. In particular, output voltage and output
current are only controllable with the switches in position S; OFF and S5 ON. Simi-
larly, DC bus capacitor results to be independent from the input in the configuration

dac = dpc = 1.

Stability margins can be read in the bode plot or through the crossing point
of the imaginary axis in the root locus. Open loop system, separated into four equiv-
alent states, does not meet stability requirements. This can be easily seen from the
simulation results provided in previous sections. For a PFC circuit an active control

is required thus open loop responses result to be unstable.

Through the use of derived transfer functions, an alternative implementation
is built in MATLAB® Simulink. Exploiting the non-linear nature of the system, a
switching scheme is studied to resemble the alternation between the four equivalent
configurations [18]. Control input selects which system to switch to. Also initial
conditions, depending on previous step, are implemented in the model. Therefore,
based on the instantaneous duty cycles’ values and on initial conditions, the system

moves towards the next state.



92

Logical decision block is built for the automatical switching based on the duty
cycle values at each step of iteration. Corresponding system matrices are selected
and employed for the calculation of the dynamics through the state-space implemen-
tation. Obtained waveforms and control design matches those of the space state

implementation described in previous section.
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3.5.5 Differential Equations Model Implementation. An alternative way
to implement the system in the MATLAB® Simulink environment is chosen to use
the solving of differential equations given by the state space system, at each sam-
pling instant. Results of calculations are used to feedback the initial conditions for
the following sampling instant. The switching between the four different systems
configurations are managed with the selection of one of the four different equations

sets.

Simulink model uses atomic sub-systems to synchronize the operation at each
step. It considers four different switches combinations for the solving of four different
differential equation sets, in the form of state-space blocks. Output of the block
function gives the values of the four states at each step, which is also used for the
implementation of the initial condition calculation algorithm. Controllers uses the
output value of the states to elaborate the error signal and to command the switching

for the following step.

The main issue here is similar to the transfer function model, which is the
dependence of the system by the previous state. In particular, the transition of the
circuit from a state to another, is based on complex interactions between the controller

and the previous instant state. Switching patterns therefore strictly depends on

Stability analysis and analytical consideration can therefore be made sepa-
rately for each different switch configuration. As it has been proven in literature [42],

mathematical equations and resulting model are simpler to be treated.
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CHAPTER 4
DIGITAL CONTROL

An alternative approach for the average current mode control, with respect
to the classical analog control, uses a state of the art technique [24]. Digital control
strategy can be used in the power electronic converter for power factor regulation and

control of the output voltage level [23].

Digital controllers offer several advantages compared to conventional analog
regulators, owing to their simple control structure and capability to implement several
algorithms [33]. They offer the flexibility to design complex and non-linear control
techniques [17]. Moreover the control section can be easily integrated in a larger
system with diagnostic capabilities and they are especially suitable for switching-
mode power electronic converters. This simple structure reduces both the number
of components and provides high reliability and low sensitivity to components’ aging
or other variations. On the other hand, typical drawbacks are the limitation of the
control bandwidth due to the sampling issues. This can now be overcome to some
degree by utilizing modern micro controllers, which are now available at a relatively

low cost.

Previous approaches, based on analog circuit design, used hysteresis control
or used analog components such as comparators, multipliers and op amps. Standard
PID controllers can be also applied as shown for the PFC circuit voltage and current
loops, as well as for the output current control [35]. Their standard control structure
has been largely used in a variety of applications. Good results, as those shown
above, can be obtained with a precise tuning of the parameters and gains. On the
other hand, analog control gives a minor flexibility to the system, which might need
to be re-tuned for particular cases. Reliability and robustness of the system are not

considered among primary advantages of this technique.
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Significant research has been done in the use of the well known UC'1854 or
UC3854A enhanced high power factor pre regulator integrated circuit, distributed
by Unitrode in 7] and [64]. This integrated circuit has been widely used over the
last few years in dual stage cascaded switching converter applications [39]. The IC
uses average current mode control, maintaining a stable low-distorted sinusoidal input
current, without the need for slope compensation. Line voltage feed-forward is also
implemented using this component along with a PWM switching regulator for the

converter.

Other common techniques involve the discretization of continuous controllers,
producing a digital implementation. This is not considered as pure digital control
and usually adds complexity to the overall design. Moreover, the operation in the
discrete domain introduces design and stability issues to the original analog regulator
system. Among these, the most important are the correspondence between stable

areas in the s-domain and the z-domain, and sampling time definition.

Classic control and linear system theory are well known and have widely been
investigated, but their high complexity requires a deep control theory background.
A sophisticated controller has to be designed ad-hoc for each application, in order
to obtain good performances. Digital control theory, on the other hand, allows the
controller to be designed as a more flexible and cost-effective solution. Also its im-

plementation in micro-controllers or DSPs makes this approach preferable.

Lately, digital control techniques have been developed and used in many re-
search areas, such as power electronics or electrical drives. Digital Pulse Width
Modulation (PWM) control in particular exploits the binary nature of pure digital
control. Several techniques can be adopted considering the digital control strategy

and some of them will be analyzed in the following pages.
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4.1 Digital Control for Switching Converters

As briefly discussed, digital control approach for power electronics switching
converters is a growing area, which is gaining growing interest owing to the advantages
previously listed. Moreover, highly non-linear structure of SMPS, and their not very
demanding dynamic performances, make digital control the perfect application for

these systems [69].

The control strategy is usually based on conventional analog controllers, and
widely discussed in literature. Basic structure consists of a multi loop control for the
PFC circuit and a simple single controller for the cascaded DC/DC converter. Control
algorithm is essentially based on an outer voltage loop, determining the reference
signal for the inner current controller by multiplying a signal proportional to the

input sinusoidal voltage waveform.

Digital control techniques can be used to exploit all advantages coming from
this implementation. For instance different control strategies are generally possible
to improve the system dynamics. Digital filtering or other techniques can be used for
example to remove the DC bus voltage ripple at twice the line frequency. Similarly
algorithms capabilities can be used for filtering applications, also using auto-tuning

digital filters, or to avoid input voltage sensing with estimators.

Digital control proposed here uses a completely different approach, in which
a novel design is considered, using a very simple hardware structure and obtaining
very impressive results. Digital control structure is described in following pages,
providing a simple mathematical analysis along with some practical considerations in

the converters.
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4.2 Sliding Mode Control

One of the most used control techniques for non-linear systems, and especially
for switched-controlled circuits, is Sliding Mode [32]. Essentially, the sliding-mode
control utilizes a high-speed switching controlled law to drive and maintain the non-

linear state trajectory onto a specified sliding surface in the state space.

The main benefit of the sliding mode is the robustness of the system against
disturbances in the load and in the input voltage. This makes Sliding Mode control
a good option for circuits controlled by switching devices where the control vari-
able can assume only a binary or discrete set of values. Power converters such as
those implemented in this design, inherently include switching devices and hence it

is straightforward to design sliding mode discontinuous control law.

The fundamental idea of the design is to calculate a switching sequence that
will drive and maintain the system state to the switching surface. Lyapunov method,
which is usually used to determine the stability properties of an equilibrium point,
considers a scalar function V(z), called Lyapunov function without solving the state
equations. Let V(z) be a continuously differentiable scalar function defined in a
domain D that contains the origin into real values R. Lyapunov function V' (z) is said
to be positive definite if V(0) = 0 and V(x) > 0Vz. It is said to be negative definite
if V(0) = 0 and V(x) > 0 for all 2. Lyapunov method assures the system to be
stable if the function is positive definite and its differential is negative. A generalized
Lyapunov function is defined in terms of the surfaces and characterizes the motion of
the state trajectory onto the sliding surface. Switching control strategy chooses the
control sequence such as the derivative of the Lyapunov function is negative definite
and the motion follows the surface. First step in the controller design is the definition
of the sliding surface, which has to be constructed to lead to an equilibrium point

and which defines the rules for proper switching.
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Thus, considering a non-linear model such as the one analyzed, represented by
state space equation in 4.1, where time dependence of switching scheme is included

in matrix f(x,¢) and input vector is given by u(t) € R™.

X(t) = f(x,t) + B(x, t)u(t) (4.1)

In sliding-mode control, system trajectories expressed by 4.1, are forced to
remain into a subspace of the states, and then hold so that they slide along it providing
a stable constraint [69]. This reduced-order subspace is referred to as a sliding surface.
When closed-loop state feedback forces trajectories to slide along it, it is referred to
as a sliding mode of the closed-loop system. Trajectories along this subspace can be
likened to trajectories along eigenvectors and modes of LTI systems. However, the

sliding mode is enforced by increasing the vector field with high-gain feedback.

In order to attract systems’ trajectories to the hyper surface, a switching
function o : R™ — R™ is defined, to represent the switching criteria. A state outside
the sliding surface is characterized by having o(x) # 0, whereas a state lying in
the surface has o(x) = 0. The sliding mode control law switches from one state to
another based on the sign of this distance, in a discrete fashion, thus the trajectory
approaches the surface in a finite time. Once the trajectory has reached the surface,

it slides along it and may, for example, move toward the equilibrium point.

Mathematically, above relations can be easily expressed considering the defi-

nition of the Lyapunov function candidate as

1
V(e(x)) = 5l (4.2)
V(-) is a quadratic function of the sliding surface o(-), where || - || indicates the

Euclidean norm, which consists in the distance from the sliding surface corresponding

to o(x) = 0. As explained, the attraction of system trajectories to the surface is
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possible when the derivative of the Lyapunov function is negative definite, that is

dv 9V do

In the simple scalar case, when m = 1, this corresponds to a control input u(x) that is
chosen such as to achieve 06 < 0. According to Lyapunov theory the system is always
moving towards the surface. In particular, when o(x) is positive, u(x) makes &(x)
negative and when o(x) is negative, the input produces a positive a(x). Moreover, if

the condition to be reachable, given by
— < —p(VV)" (4.4)

where 1 > 0 and 0 < o < 1 are constants, is satisfied, the sliding mode surface will

be attained in finite time.

From the hardware point of view, whereas the simple SMC structure can be
easily implemented in a DSP through a series of if-then loops and with very few lines
of code, an alternative classical system can be also used. In particular, basic structure
of the sliding mode controller involves simple elements which can be also designed
using analog components such as comparators and multipliers. Main disadvantages
result in a more complicate structure and less flexibility for future improvements or

modifications.

On the contrary, sliding mode control approach considers a mathematical
knowledge of the system and of its trajectories. Definition of the sliding surface
also needs a quite complex analysis of the system and some peculiar assumption to
simplify its design. Also the stability of the ideal switching-motion stability and of
the designed controller has to be proven. For the sake of simplicity, both from the
theoretical design and hardware implementation point of view, a different technique

is here explained.
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4.3 True Digital Control

A novel approach in digital control is presented here, for the specific case of
switching mode power electronic converters, which are well suited for this technique.
This new solution treats the system to be controlled as a digital system, in which the
states are alternating in a binary fashion. In particular, given its switching nature,
it only operates in two different predefined states for each switch. Furthermore the
control only manages the switching between the different configurations of the system

124].

Controller action is aimed to decrease the error function, given as the differ-
ence between desired signal and the actual one. Its operating principle commands
the system to switch to either a state that will increase the value of the measured
signal or reduce it. One configuration, corresponding to a positive error, will increase
actual signal thus decreasing and bringing to zero the error. On the other hand, in
correspondence to a negative sign of the error signal, the control switches the system
to a so-called low-energy state. In this situation it will produce a decrease in the

feedback signal.

Control scheme, described above, can be easily schematized, and therefore

digitally implemented, as follows:

e>0 = lowenergy state
Sref(') - Smes(’) = 6() - (45)

e <0 = highenergy state
Therefore, thanks to the application of this switching fashion, the system is controlled
to zero error, through a variable switching frequency. Following simple if-then state-

ments, which can be easily implemented in a digital integrated circuit, summarizes

control operation:
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- If actual measured signal is greater than the reference signal, then switch or stay at
low-energy state;
- If actual measured signal is less than the reference signal, then switch or stay at

high-energy state.

Given the complexity of the described battery charger system to which pure
digital control is applied, regulator structure is presented only for the general case.
In following sections, it is described for each converter circuit. A particularly simple,
thus effective representation of the principle of true digital control hereby described, is
provided through following block scheme (figure 4.1). System structure consists also
in a possible implementation of the real controller in terms of analog circuit design
or Simulink modeling.

Comparator
Smes ()

sref(+)

control signal
low-energy state oy

high-energy state o————e

Figure 4.1. Schematic circuit of proposed true digital control.

The proposed scheme, which consists in a very simple structure, takes advan-
tage of the switching feature of the converters. Its working principle is based on the
generation of a binary output PWM pattern of zeros and ones for the switches, based
on the sign of the input signal. Mathematically, control sequence is calculated from
the error between the reference signal and actual measured values. Control signal is
elaborated through a sign function, given output values {—1,0, 1}, based on the sign

of the error. Controller output is given by a sequence of binary values {0, 1} forced



102

by a saturator block, in order to obtain direct switching patterns.

Hardware structure is either simple and of easy implementation in any of
common commercial micro controllers, in which a sign function is implemented. Its
Simulink realization, obtained cascading a sign block followed by a saturator is rep-

resented in figure 4.2.

AND |«
NOT [—
1D

Figure 4.2. Simulink block scheme of True Digital Control.
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4.4 True Digital Control for Switching Converters

Conventionally switching mode power supplies and power electronics conver-
ters have been controlled using analog integrated circuit technology and linear system
design techniques [50|. Analog control techniques have been so far predominant due to
their simplicity as well as their low implementation cost. However, they are sensitive
to environmental disturbances such as noise, temperature and components’ aging.
Besides, implementation of sophisticated advanced control techniques is inherently

difficult employing analog circuits.

A novel approach in control design is here discussed, introducing advanced
digital control techniques, such as True Digital Control, which provide numerous ad-
vantages over classical analog methods and is becoming the new standard for switching

converters.

Even if digital control compensation development and design tends to be less
intuitive than analog methodologies, however, with the decreasing cost and size of
digital circuits exponentially shrinking, digital control is beginning to replace analog
controllers. Thus, recent research has been conducted on digital controllers, which
perform functions that are not realizable in the analog domain [12]. Most important
features are communication and system-level integration, controller auto tuning, on-
the-fly efficiency monitoring and optimization, and complex nonlinear control for

improved dynamic performance.

Advantages of digital design techniques are numerous, dealing with implemen-
tation simplicity, hardware flexibility and robustness of the scheme. Digital control
assures a simpler and more effective structure with respect to classic analog control
approach. In particular modern integrated circuits offer low implementation cost and

a simple design with theoretically infinite resolution. Moreover components’ drift and
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noise are one of the primary disadvantages for analog circuits. Nevertheless in order
to obtain high performances, complex circuits are needed and analog implementation

for advanced control schemes results difficult and expensive.

On the other hand, true digital control offers a series of fundamental ad-
vantages which make it a desired choice for power electronic systems’ control. Es-
pecially it is very well suited for switching mode converters, due to their intrinsic
non-linearities. High noise immunity, along with a less susceptibility to parameter
variations make digital controllers desirable for electronic circuits. Digital control
scheme results also in a simpler approach, dealing with very few hardware changing.
This important advantage is mainly due to an easy implementation of the algorithm
on a simple micro controller. In fact, a changing in the controller scheme does not
usually require an hardware modification. Also the ability to interface with an ex-
ternal host computer or a user friendly display has led to a wide spread of digital
controllers. On the other hand, a limited resolution due to analog-to-digital conver-
sion, and an inherent time delay for computational tasks are the main disadvantages

of this technique.

4.4.1 True Digital Control for PFC Circuit. First application of True Digital
Control, in this thesis is provided by the two regulation loops for the first power
electronic converter, the PFC boost rectifier. As explained above, instead of the
canonical analog control design, a digital approach is here discussed, whereas in this

paragraph, the inner PID control loop is maintained.

Control structure is based on previously explained principle of digital average
current, control, now applied to switching mode converters. In the first implementation
the basic structure of the classical controller consists in a double feedback loop, in
which two regulators are operating at the same time. External loop is characterized

by a large bandwidth and therefore by a high operating frequency. Its purpose is to
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track the sinusoidal current reference signal, which is provided by the inner control
loop. On the other hand, inner loop requires much slower operation. It only has
to provide the correct amplitude of the sinusoidal signal, scaled accordingly to the
error in the voltage. Therefore, for the voltage control loop the highly reactive digital
control is not suitable. In following sections several alternatives are presented in order

to completely digitalize and thus simplify the feedback control structure.

A classical PID controller is implemented in this study. Feed-forward com-
ponent, while it is necessary for the analog control technique [72]| due to instability
problems especially at low input voltages, can be neglected here. This simpler design
allows a simplified hardware structure, which will reduce both costs and the need for

maintenance.

DC bus voltage measured at the PFC circuit output is shown in figure 4.3
and is compared to the desired voltage level. Through a simple calculation the error
signal to the PID controller is provided. Here only the proportional gain is considered.
Controller output is proportional to the error with the coefficient K,, and represents

the inductor current reference signal, as follows:

Z.7"ef(') = Kp : [Uref(') - Umes(')] = Kp : ev(') (46)

On the other hand, features of the true digital control perfectly fit the needs of
fast reacting and robust regulation for the current control loop [37|. Thus previously
explained structure of the true digital control is adopted here for the outer feedback

loop.

In particular, switching pattern for the digital controller is provided by sensing
the sign of the error in the current waveform. The difference of desired reference and

measured inductor current produces control signal as follows:

€i, (+) = ires () = imes (") (4.7)
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Figure 4.3. Regulated DC bus voltage waveform with typical oscillations at twice the
line frequency.

where ¢,.f is the output of the inner control loop of equation 4.6. Then, digital control
operates following the decision rule explained in previous section, analyzing the error
sign and producing the output signal accordingly. Thus, recalling equation 4.5, the
system is switched to either a low state, corresponding to 1 control output, or a high

state with 0 as PWM value.

Different high and low duty cycles values have been tested, based on recent
research papers. Usually the switching of the system is done between two constant
modulated signals at a fixed frequency. High and low duty cycles are then used to
correct the error of controlled signal. The two duty cycles values can be adjusted
by the designer in order to obtain the best performance for the circuit. In the case
of this peculiar application, the complex interaction between the two control loops
makes the design choice of the duty cycles easier. In particular, stability of the system
can be obtained only with a faster operating current controller. Therefore the choice

of Dy and Dy, is given to be the two constant values 0 and 1.
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This switching fashion produces a signal which compensates the error sign,
allowing the controller to track desired sinusoidal waveform (figure 4.4). In particu-
lar, when the error signal is positive, the reference is bigger than actual current and
the control produces an output which will correspond to a low energy state. An high
switching command for the direct switch signal and a zero for the complementary
switch are provided. Those PWM signals will be applied to the gates of the semi-

conductor devices in the original circuit and will consequently produce an output to

compensate the error.

Input Current and Input Voltage Reference
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Figure 4.4. Power factor corrected sinusoidal input current.

In correspondence with a negative error signal the system will be switched

to a high energy state, again to eliminate the difference between desired and sensed

current.

Inverse mode of operation considers the PFC circuit as an inverter. Previously

implemented control circuit result to be simple and effective. True digital control
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may also be used to further simplify it. However, in this thesis its design it is not
considered. Therefore, all simulation results for following sections include only the

charging mode of operation. AC/DC behavior of the circuit is investigated.

4.4.2 True digital control for DC/DC converters. True digital control in
DC/DC converter is easily applied without any drawback with respect to presented
PID classical solution [23]. Adopted strategy considers the basic structure explained
above. Its working principle is again based on the simple decision rule given by the

sign of the error signal.

Several digital implementations consider the switching between two different
states, based on the sign of the error. Those states are usually a high and low duty
cycle PWM sequences as in [52|. The alternation between two constant-modulated
patterns will control the system as explained. Moreover, switching frequency of the
controller will result to be at the fixed value given by the modulation, thus eliminating

high and variable frequency issues.

A different approach is here used to get a faster response for the system. High
and low duty cycles values are substituted as before with constant values. Stability
and performances of the system result to be optimized for chosen constant values and

waveform results will be shown later.

Future work on the controller design might add a varying high and low duty
cycles values. It will be able to optimize its behavior for different voltage levels at
the input or in the DC bus. Efficiency of the controller, as well as its response can be
designed specifically for the different conditions. Considered design, however, shows

good results for the full range required by this application.

As before MATLAB® Simulink implementation is given by the cascade of the

signum function block and a saturator in figure 4.2. Its input is the error between
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the desired signal and the actual measure which will produce either a positive or a
negative value. This signal is then saturated in order to obtain a suitable range for
switching states. In particular, switching rule evaluates the difference between desired

current reference and measured output as follows

e, () =ipref(-) —irmes(:) (4.8)

Sign of the error signal is then calculated by the sign function. Saturation block
saturates the signal as to assume only the binary set of values {0, 1}, which are used
to control the gates of the switching devices. In correspondence of a negative error
the actual measured current value is greater than the reference signal. This means
that the controller will provide a zero valued signal to the MOSFET corresponding
to an OFF switch. On the other hand, a positive error applied to the controller will
provide and high output signal to make the semiconductor device conduct, acting as
a small valued resistor. With such a switching fashion output current of the DC/DC
converter will be adjusted to balance the error and minimize the difference between

the desired and the actual signal.

Global control structure also includes the slow PID control loop for the voltage
regulation. In particular, while the structure from the previously mentioned approach
is maintained, its gains have to be modified. Tuning of the PID parameters is done
accordingly to practical simulation results that consider the settling time as well as
stability issues. Several simulations were carried out to optimize the choice of K,
and K;. Unstable phenomena have been recorded for higher values of proportional
gain, whereas low values will cause a slower settling time. Similarly, a reduction
in the integral gain will produce unstable behavior for the circuit. Total Harmonic
Distortion will drastically increase. A higher K; will cause a faster response but

higher frequency components in the sinusoidal input current.
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Digital controller here implemented works very well in the bi-directional buck-
boost circuit described, showing a fast response and optimal performances. Better
waveforms are obtained here, with respect to the classical analog control strategy, as

can be seen from the output current and voltage plots in figure 4.5.
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Figure 4.5. Regulated output current and voltage waveforms.

Digital control technique can here be used also for inverted operation of the
converter. DC/DC bi-directional buck-boost can be easily controlled by the circuit
of figure 4.2 when it is operating in boost mode. Effectiveness of the controller can

be easily verified with some simulation results that are not shown in this thesis.

4.4.3 Switching Frequency Issues. In this section an important issue relat-
ing to the switching frequency of the converters is discussed. Novel digital control
technique introduces a different switching strategy with respect to classical PWM
control. Conventional Pulse Width Modulation control takes advantage of the fixed

frequency f, used for the modulation of the signal. Thus the control structure and
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system behavior are simpler but maximum bandwidth and reactivity of the system

are limited.

On the other hand, digital control approach is based on the evaluation of the
sign of the error signal. Switching frequency and command signals for the devices are
given only by the output of the digital regulator, without any modulation. Therefore
switching frequency of the generated sequence results to be highly variable in time.
Theoretical maximum pulse period is given by the inverse of the sampling time of
the model Ty = 1/fs, whereas in simulated application is much slower. However,
in order to limit maximum switching frequency and allow a proper response for the
actual circuit components, some expedients need to be employed. Considering the
ease of implementation on the DSP used in the circuit, a fixed frequency approach
is here preferred. In particular, a simple modulation is added at the output of the
digital controller. This will cause the switching signal to be modulated at desired

rate without affecting visibly system performances.

Simulations driven in MATLAB® Simulink have shown a high maximum value
of the f, produced by the digital controller, of around f, ~ 5-10° Hz. In practice,
even if some high frequency peaks are present, the average is much lower. Also only
in particular time instants the digital control needs to be reactive and requiring in

terms of bandwidth.

Reducing the sampling time of the system, or of the digital controller, does not
provide desired solution. The main drawback was found to be a noticeable increase
in the ripple in input and output current waveform. Bandwidth of the system is then
reduced, for safety issues and to assure a good performance to the actual circuit. As
can be seen in the model of figure 4.6, switching frequency of the digital controller
is here modulated at the fixed frequency of f; = 60 kHz. Even if this reduces the

reactivity of the controller slowing down transient responses, final performances are
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satisfactory. Minor differences can be seen from previous modeled regulator, as shown

in the comparisons of figure 4.7 and 4.8.
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Figure 4.6. Simulink model of fixed frequency True Digital Controller.
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Figure 4.7. Comparison of input currents for fixed and variable frequency PWM.
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4.5 Comparison With Conventional Analog Controller

In this section a detailed comparison between the two control approaches is
provided. Major advantages of the true digital control over the conventional PID
controller are also explained. Both theoretical and practical considerations are pre-
sented to show the improvements in terms of stability and performance. Reliability
of the system and the hardware implementation are discussed whereas more detailed

stability analysis will be conducted in the following chapter.

4.5.1 Performance and Waveform Analysis. This section presents the compar-
ison of digital control design approach with the results obtained in previous chapter,
where conventional analog design was implemented. Output waveforms and FFT
analysis are used to compare the two different controllers showing the better perfor-

mances of the digital approach.

Cascaded configuration of the two power electronic converters is simulated with
MATLAB® Simulink, using the mathematical model previously derived. It presents
a useful tool for analytical considerations in terms of stability and robustness of the
system. Recorded waveforms are then showed and commented in details, both in the
steady state and the transient response. Input and output current waveforms are

analyzed together with the DC bus voltage and the output current.

It must be mentioned that the following considerations and practical results are
explained for the most restrictive case, that is the lowest input voltage corresponding
to the highest input current. In this particular application, V; = 90 Vrms is used, at

the line frequency of 60 H z.

Input current is regulated under average current mode control in order to
obtain a near unity power factor and a perfect sinusoidal shape. Using both control

techniques good performance is obtained at steady state. In figure 4.9 the two sine
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waveforms are compared. Cusp distortion in current waveform at the zero crossing
point is minimum and cannot be seen without a very large zoom in the plot (figure
4.10). Using FFT analysis at the steady state the harmonic content of the current
signal is shown in figure 4.11. High frequency components are almost zero (figure
4.12) since the regulator tracks the waveform very well and shapes a 60 Hz sine wave

with little distortion.
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Figure 4.9. Comparison of the input sinusoidal currents.
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Figure 4.10. Detail of the cusp distortion in the input currents.
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DC bus voltage waveform characteristics have been discussed in previous chap-
ter regarding the design of the PFC circuit. A basic feature is the ripple shown in
figure 4.13 at twice the line frequency. Both controllers follow the reference value in
the steady state whereas the analog PID controller shows some high oscillations in
the transient. A detailed transient analysis will be performed and commented later.
A second ripple is present in the DC voltage but can be reduced with a proper design
and a good performance of the controllers. As can be seen in figure 4.14 it is not
visible and the voltage waveform satisfies the stable operation condition of the PWM

boost rectifier.
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Figure 4.13. Comparison between the two DC bus voltage waveforms and input
voltage.

Control for the output current provides a fixed value of I, = 62.5 A and
performs well in both cases. In fact it provides a value that is nearly constant at
the output. Current ripple is minimized through the correct choice of the output

capacitor and results in a very small ripple (less than 0.5 %). An oscillation at twice
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Figure 4.15. Comparison of the two output current waveforms.
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the line frequency is seen from the un-rectified bus voltage and can also be observed
in the output current. The controller operation drastically reduces its amplitude.
Output current waveform of the digital controlled system is compared with the PID

controller output in figure 4.15.

A detailed explanation of simulation results has been done for the transient
conditions during which the system reaches the steady state operation. In particular,
the performance of the digital controller described above results in a much better
than the analog PID controller showing a smoother and faster response. As before,
input and output waveforms are shown considering also FFT analysis and the DC

bus voltage waveform as a quality parameter.

Input sinusoidal current is tracked by the multi-loop controller, either digital
or analog, and shaped with a quite fast settling time, of around 0.4 s. During this
time the error between actual and desired current is almost reset to zero. Most
noticeable advantage of the digital controller in this situation is given by its limited
current spikes in the transient. This does not require any strict protection system and
further simplifies the hardware implementation and the structure of the controller.

The amplitude of the first oscillations is shown in figure 4.16.

Better performance of the digital control can also be seen from the DC bus
voltage which is an important element in the stability of the circuit. Its waveform is
already shown in figure 4.14 for the steady state condition and results in a much more
stable operation with the use of the digital control. As can be seen from figure 4.17
digital control reaches the reference signal much faster than the standard PID multi-
loop controller thanks to the optimization of the inner loop and the effectiveness of the
controller design. In particular, the large oscillations present in the PID-controlled

circuit settle fast and a smooth and more stable waveform is reached.
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Figure 4.16. Comparison of the two input current transients.
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Figure 4.17. Comparison of the two DC bus voltage transients.

Further, improved performance and stability of digital control are also notice-
able in the output waveforms. In particular a very fast response and the absence

of significant oscillations in the current plot can be observed. Figure 4.18 presents



122

the current response of the output DC/DC converter. It reaches the reference signal
after merely 0.0015 s in the digital-controlled circuit whereas the PID-based design is
around 100 times slower. Moreover, analog controller circuit is characterized by large
oscillations during transients. A longer settling time is also the result of a slower ac-
tion of the controller. Large spikes in the current waveform could damage the battery
or shorten its life-time without any protection circuit or peculiar design expedient.

Thus a more complex design or protection solution is required.
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Figure 4.18. Comparison of the two output current transients.
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4.5.1.1 Robustness of the Controllers. In this subsection the response of the
two compared systems to slight variations of their parameters in the steady state is
presented. Using this practical simulation approach, important results can be seen.
Robustness of the system to parameter variations and effectiveness of the controller

to track desired signal regardless the system modification are shown.

Variation of critical parameters will be performed in the MATLAB® Simulink
model, as will be done in following chapter to show stability regions and instabilities
phenomena. The output waveforms are shown and obtained results are explained.
Two variations are performed in selected components. Starting from optimum and
stable case parameters will be changed at instants ¢ = 2 s and t” = 4 s respectively.

All the transient can be observed in the simulation time T = 5 s.

The first set of simulations address a typical series of issues that can happen
when the input voltage level is not constant and changes with slight fluctuations of
around 5 — 10%. This condition is usual in countries like India where amplitude
of the utility voltage is not fixed and variations occur. On the other hand, the
line frequency usually remains constant. System response is simulated and some
considerations about performance and stability issues are done. Input voltage at the

nominal value of 90 Vrms is varied to respectively 85.5 Vrms and 81 Vrms.

Input waveforms is modified by the voltage drop but shows a very stable be-
havior especially for the digital-controlled system, as can be seen from figure 4.19.
Transitions between different voltage levels are done very fast and without show-
ing significant oscillations. A longer settling time with some dumped oscillations is

recorded for the analog-controlled circuit.

On the other hand, DC bus voltage waveform shows more visible effects of

the variation of the input voltage. The system is still stable and with a good output
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Figure 4.19. Comparison of the two input current waveforms for a change in the input
voltage.

response. In particular, digital-controlled system is characterized by unilateral oscilla-
tions that lead the waveform to settle after a small time interval. Small voltage peaks
of around 15% of the steady state value can also be seen. Analog-controlled circuit
shows a better behavior which is probably due to a better tuning of the parameters
of the regulator. Waveform variations are shorter and with smaller amplitude. Both
responses show anyway a good performance for the overall system (figure 4.20) and

the controller seems to work as desired.

Output waveforms are represented in figure 4.21. They also involve the DC/DC
converter control section which works very well for both configurations. Only a small
variation of the output current in correspondence with the input voltage change can
be noticed. In particular, transitions between different levels are smooth even if a

small settling time for the PID regulated system can be seen.
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Figure 4.20. Comparison of the two DC bus voltage waveforms for a change in the
input voltage.
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Figure 4.21. Comparison of the two output waveforms for a change in the input
voltage.
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Second series of simulations has been done considering faulty or un-regular
operating conditions, corresponding to a lower voltage in the storage pack, which
could be considered as a result of an over-heated battery. In particular, for a typical
battery cell at the varying of the temperature rapid changing in the internal equivalent
resistor can be seen. Nominal value of the resistor R,,; = 0.768 €2, chosen such as to

guarantee a transferred power of 3 kW, is decreased to R, . = 0.7 Q and further to

out

R//

"+ = 0.6 Q corresponding to a variation of around —20%. Similarly waveforms and

responses of the systems change accordingly to the lower input and controller reaction
to these variations is here recorded and explained. As can be seen from figure 4.22,
input current is not widely affected by the change in the load and it only shows
larger sinusoidal amplitude. Transition between the three different load values results
to be smooth with both the control strategies, whereas digital controlled circuit is
faster. Some oscillations can be seen in the waveform of the classical PID multi-loop

controller system.
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Time [s]

Current [A]
o

Figure 4.22. Comparison of the input current waveforms for a change in the output
load.
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DC voltage waveform, measured across the DC side capacitor, is affected by the
variation in the output load. It shows a slightly larger ripple at twice the line frequency
under stable conditions. Due to the sudden load change, some oscillations can be seen
in the figure 4.23. Digital implementation of the controller has a unidirectional and
dumped oscillation whereas the classical analog control strategy shows a series of
oscillations of smaller amplitude. Both circuits operate under stable conditions, even

with a load variation of around 20%.
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Figure 4.23. Comparison of the two DC bus voltage waveforms for a change in the
output load.

Regulated output current is affected by the change of the input load. As it
increases linearly rated power also increases. The circuit shows a fair behavior in
terms of the variation in the load due to the second stage controller which regulates
the output DC level very well. Neither transients nor large settling time can be seen
in the waveform of figure 4.24, which shows the comparison between the two control

strategies.
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Figure 4.24. Comparison of the two output waveforms for a change in the output

load.
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CHAPTER 5
STABILITY ANALYSIS AND ISSUES

5.1 System Analysis

The double-stage power electronic converter is characterized by universal volt-
age input and is a cost effective solution for battery chargers. The proposed circuit
provides PFC correction and tight output power regulation either using the conven-

tional PID multi-loop regulator or the novel digital control approach.

Recent studies on the dynamics of switching power converter circuits have
revealed the possibilities of several scenarios for unstable operations showing both
at fast-scale and slow-scale [43|. Slow-scale instability problem may worsen the har-
monic distortion of input current, whereas the fast-scale instability may impose higher

current stresses on switching devices [45].

An incorrect design of the components of the system may give rise to such
problems, in particular due to an improper choice of parameters such as the DC bus
capacitor, input inductor value and the sizing of the battery load. A precise tuning
of the parameters of the controller can be done in order to minimize instabilities for
all working conditions. However, especially for low voltage and high current inputs
instability issues are to be found in the power supply. This chapter also cites examples

of several unstable conditions are provided.
5.2 Instability Issues

Different instability conditions can be found in the analysis of the two cascaded
converters. They can be divided into different categories based on the waveforms
obtained. Several studies [46] and [47] have identified period-doubling bifurcations
for input current in certain parameter ranges. Chaotic instability phenomena can

also be seen from a non-sinusoidal input inductor current and an unstable DC bus
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voltage.

Stable operation for the first stage PFC boost converter is a periodic sinusoidal
input current perfectly in phase with the line frequency as shown in figure 5.1. A
periodic ripple at twice the line frequency has to be present in the DC bus voltage
(figure 5.2). Similarly, instability issues can be seen by the observation of these key
waveforms or through the presence of higher harmonics components in FFT analysis.
Sinusoidal input current shows bifurcations and cusp distortion for a slight variation
of the parameters but reaches a completely non-periodic response for lower values of
DC bus capacitor or lighter loads. Also DC bus voltage shows random waveforms

under chaotic instability case in this situation.
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Figure 5.1. Stable mode of operation seen in the sinusoidal input current.
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Figure 5.2. Stable mode of operation seen in the DC bus voltage and output current

and voltage waveforms.
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Similar results indicating stability-instability regions at the varying of the
parameters can be identified using the technique of the phase plane trajectories. Phase
plane curves, also called Lissajous curves, are a simple method to detect unstable
phenomena. These trajectories are drawn between the output voltage ripple on the
vertical axis and the input current on the horizontal axis and consider a steady state
operation for the circuit. Stable conditions, as well as period-doubling operation and
chaotic instability can be easily deduced from these plots. In fact in the stable case,
they must show two equal symmetrical loops such as in figure 5.3. Asymmetrical

cycles can be seen for period-doubling bifurcation case or chaotic phenomena.
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Figure 5.3. Stable mode of operation seen in the DC bus voltage and output current
and voltage waveforms.

Phase plane curves form a very powerful tool in the stability analysis of the
circuit. A more detailed explanation for particular instabilities conditions as a con-

firmation of what has been shown through simulation results will be provided later.
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5.2.1 Stability Analysis through Circuit Simulations I. In this section a
detailed stability analysis will be done considering designed circuit responses. In
particular, input inductor current, DC bus voltage and output current waveforms
will be analyzed. A series of stability conditions and boundaries will be derived for
important parameter of the circuit as well as for different controller parameters and

techniques.

All system simulations are done using previously derived state space equations
for the combined two-stage converter. The circuit is controlled using the PID analog
feedback loop explained in previous chapters. A final comparison with the novel
digital control approach is also done in following section. Most strict case of low-
voltage high-current input is considered. A n input voltage V;, = 90 Vrms, at the
line frequency of 60 H z is used. Component values and controller gains are indicated

in tables A.1 and A.2 in Appendix.

Circuit behavior is studied by varying only one parameter at a time and rele-
vant plots will be shown. Then more specific instability issues are empirically derived
and will be deeply analyzed with some mathematical references. It must be noted
that the AC/DC rectifying operating mode is tested here for the worst case scenario.
Instability issues for the charging of the battery from the grid and power factor cor-

rection problems for input current are shown.

5.2.1.1 Variation of Load Resistor Value. First study regards variation in
the equivalent resistor load R,,; intended to be internal battery resistor. Its voltage
V,ut remains constant. Current reference signal is changed consequently to maintain
constant output voltage for the DC/DC converter when load resistor is changing.
Variations in the load resistor will lead to an increase or decrease in drawn power
either from the grid or the battery. By the observation of the respective waveforms

interesting stability considerations can be made. In particular, optimum operating
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point in terms of stability is set to output resistor value of R,,; = 0.768 €2, which
corresponds to a nominal 3 kW of power. However, variations around this value can
show undesirable behavior for the circuit. An increase in the load resistor corresponds
to a decrease in the reference current and in drawn power as shown in figures 5.4 and
5.5. This would not result in instability issues and thus phase plane trajectory shown
in figure 5.6 is characterized by a perfect symmetry around the two axes. On the
other hand, unstable phenomena can be seen when lighter loads and therefore higher

power is applied.
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Figure 5.4. Input current waveform and FF'T analysis for R,,; = 1.2 (2.
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Lowering the value of output resistor below a certain threshold will produce
a double effect in analyzed plots, as shown in figure 5.8. The presence of undesired
oscillations in the DC bus voltage transient which is also characterized by a greater
settling time can be recognized. Cusp distortion in the zero-crossing point of the
sinusoidal input current is shown in figure 5.7. Similarly, those oscillations will affect
the phase plane curve plot (figure 5.9) which will lose its symmetry around horizontal
axis. Input inductor current for light load variations of around —25% will still give

an almost perfect sinusoidal waveform as can be seen from FFT analysis of figure 5.7.
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Figure 5.7. Input current waveform and FF'T analysis for R,,; = 0.5 (2.
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Figure 5.8. DC bus voltage and output current and voltage waveforms for R,,; =
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For higher variation of the order of —35% or higher effect of instability can
be seen. The bifurcation effect is visible in the asymmetrical phase-plane plot (figure
5.12), and larger oscillations in the DC bus voltage waveform (figure 5.11). Also
output waveforms are affected by this increasing instability, showing a larger settling
time as can be seen in figure 5.11. Input inductor current becomes non-sinusoidal
and starts showing the presence of higher frequency harmonics (figure 5.10). Chaotic
instability is reached with a completely asymmetrical behavior of the phase-plane

curve and the input inductor current with a variation of the load of around —50%.
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Figure 5.10. Input current waveform and FFT analysis for R,,; = 0.3 €.
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Figure 5.11. DC bus voltage and output current and voltage waveforms for R,,; =
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140

5.2.1.2 Variation of Input Inductor Value. The second set of simulations
presented regards the variation in the value of the input inductor of the PFC circuit.
This very important component has several repercussions in the input inductor cur-
rent waveform, as well as the DC bus voltage and the output current and voltage.
Exactly as before, from the analysis of the phase plane plot and the study of recorded

waveforms some instability patterns are recognized.

Inductor value is chosen to be 300 mH in the optimal case and is varied
from 50 mH to 1100 mH nominal values. Other components are kept as constant
parameters. Two different behaviors are noticed for an increase or decrease in the
value and they both affect stability and phase margin for the system. In particular,
a decrease in the input inductor value will produce a series of oscillations in the
sinusoidal current waveform which can be easily seen from the phase-plane plot. An
increase in the parameter value will correspond to some more visible unstable effect

which will lead to asymmetrical phase-plane curves and cusp distortion.

For lower values of input inductor, the system is still stable even if a small
ripple can be seen in the sinusoidal shape of inductor current (figure 5.13). Also small
oscillations around the symmetrical shape of the Lissajous curve (fig. 5.15) and some

high frequency components in the FFT analysis (fig. 5.13) are present.



141

Sampled Input Current (Is)
100:::l~~~~l~~~~|~~~~|~~~~|~~~~|~~~~

[}
ko)
=2
c
=2}
©
=
_100 M| i i i i i
0.97 0.975 0.98 0.985 0.99 0.995 1
Time (s)
FFT Results
60 . —_— :
ORI
5 A0 - - P
£ :
ongl.. I . . :
< 20F -+ - e e SRR

0 100 200 300 400 500
Frequency (Hz)

Figure 5.13. Input current waveform and FFT analysis for Ly = 150 uH.
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Figure 5.15. Phase plane trajectories for Ly = 150 uH.

For a further decrease in the inductor, this ripple visibly increases leading
to lower performance of the system. The circuit will start showing relevant cusp
distortion and high frequency harmonics (fig. 5.16) but still a near stable behavior

can be seen as verified with the phase-plane plots (figure 5.17).
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Figure 5.16. Input current waveform and FFT analysis for L; = 50 uH.
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Figure 5.17. Phase plane trajectories for Ly = 50 pH.
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A different effect is produced by the increase of the inductor value which
will maintain a low ripple in the input current waveform and the absence of high
frequency harmonic components. For larger values corresponding to around twice
the original value the DC bus voltage response becomes faster and smoother (figure
5.19). Some asymmetrical behavior can be seen in the lower region of the phase-plane
plot with the beginning of the cusp distortion phenomena in the sinusoidal waveform
(figure 5.18). In correspondence with the zero-crossing point of the current, the cusp
distortion effect will cause a non-perfect sine wave. This is due to the fact that right
after the input voltage crossover point there is very limited voltage across the boost
inductor and a significant magnitude of current. As the result, the inductor current
may not be able to follow the reference for a short time period after the zero crossing,
causing current distortion. As explained, this effect will increase with the value of
the inductance used in the PFC boost converter and with the increasing of the line

frequency, which does not represent an extreme issue in this application.
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Figure 5.18. Input current waveform and FFT analysis for Ly = 500 uH.
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Figure 5.22 presents the unstable operation for higher values of the inductor.
It can be especially seen from the phase-plane highly asymmetrical curve (fig. 5.23)
and from the shape of the input current waveform (figure 5.21). Inductor current is

no more sinusoidal and contains high frequency harmonics.
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Figure 5.21. Input current waveform and FFT analysis for L; = 1000 uH.
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Figure 5.23. Phase plane trajectories for L; = 1000 uH.
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5.2.1.3 Variation of DC Bus Capacitor Value. In this subsection, simulations
were run to highlight the effects of the variation of the DC bus capacitor in smoothing
the DC voltage bus and shaping the input current. As before, circuit’s behavior is
simulated in MATLAB® Simulink by varying the value of the capacitor around its

nominal value of 2000 pF'.

Several different effects can be seen from the analysis of the input current
waveform, the DC bus voltage and output current and voltage, as well as with the
phase-plane curves. Instability issues for small values of the parameter are shown and
design considerations are made. DC link capacitor has to be chosen as a trade-off

between size and performances.

As explained, the system becomes unstable for small values of the DC bus
capacitor. A highly distorted input current waveform (fig. 5.24) is clearly visible cor-
responding to a reduction of only 50% from the nominal value. Similarly, smoothing
effect of the capacitor is lowered leading to a higher ripple in the DC bus voltage
(figure 5.25).
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Figure 5.24. Input current waveform and FFT analysis for C; = 1000 pF'.
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High instability patterns can be recognized for even lower values of the pa-
rameter. As a result a highly asymmetrical phase-plane curve and non-sinusoidal
input current with high frequency components can be seen in figure 5.28 and 5.26.

As before, high ripple is present in the DC voltage bus of figure 5.27.

On the other hand, increasing the value of the capacitor the system remains
stable with a smoother DC bus voltage output and a perfectly symmetrical phase-
plane curve. Similarly the input current has the sinusoidal shape required to have
unity power factor. The only drawback considered is the size of the capacitor; dimen-

sion and price increase largely with the capacitance.
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Figure 5.26. Input current waveform and FFT analysis for C7 = 500 puF'.
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Figure 5.27. DC bus voltage and output current and voltage waveforms for C| =

500 puF.
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Figure 5.28. Phase plane trajectories for C; = 500 pF'.
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5.2.2 Stability Analysis through Circuit Simulations II. Similar to section
5.2.1, stability analysis has been performed in this chapter and some considerations
are done for the SimPower System circuit, which is now controlled by the True Digital
controller. Circuit response and waveforms are here shown and a detailed comparison
is made with respect to the analog PID controller. In particular, input inductor
current, DC bus voltage and output current waveforms will be shown and eventual

instability issues are commented and explained.

All simulations involve a battery charger circuit implemented with state space
equations. They consider a digital feedback loop which uses the designed digital
controller. On the other hand, the outer voltage control loop for the PFC boost
rectifier still remains a PI controller. Its parameters need to be readjusted with
respect to the previous design. 90 Vrms input voltage at the line frequency of 60 H z

is examined, varying one parameter value at a time and showing unstable behaviors.

As a consequence of the digital control structure, a general robustness and
better performances are recorded in this case, showing the advantages of this relatively
new and simple control technique. Unstable phenomena, even if always present,
are usually less strong and are visible only for larger variations in the parameters.
All these features of the new control loop will be further discussed in the following

paragraphs.

5.2.2.1 Variation of Load Resistor Value. The first set of simulation regards
the variation of the equivalent resistor load R,,; at the output port. Battery voltage
has to remain constant and therefore the value of output current reference changes

also affecting the power drawn from the circuit.
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Stable case corresponds to the nominal value of R,,; = 0.768 2 and a nominal
3kW of power. It shows the desired behavior for the circuit waveforms. In particular,
figures 5.30 and 5.29 show that system stability is related to the perfect symmetry of
the phase plane plot (figure 5.31), a stable DC voltage and a flat output waveform of
current and voltage. Performance of the converters is better than the one described in
previous section, both in terms of stability and settling time. In particular, amplitude
of the oscillations in the DC bus voltage is less and therefore the settling time is
reduced. Also waveforms of output current and voltage have a very short rising
time without the oscillations that were present in previous situation. Input inductor
current is shaped by the sliding mode controller and results in a perfect sine wave

with no high frequency harmonics, as shown in figure 5.29 from the FFT analysis.
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Figure 5.29. Stable mode of operation seen in the sinusoidal input current.
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Figure 5.30. Stable mode of operation seen in the DC bus voltage and output current
and voltage waveforms.
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Figure 5.31. Stable mode of operation seen in the DC bus voltage and output current
and voltage waveforms.
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An increase in the load resistor and a reduction in the current value and power
drawn will not lead to instabilities, as can be seen in figures 5.33, 5.32, and 5.34. On
the other hand, unstable phenomena can be seen when lighter loads and therefore

higher rated power is applied.
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Figure 5.32. Input current waveform and FFT analysis for R, = 1€2.
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Figure 5.33. DC bus voltage and output current and voltage waveforms for R, = 1.
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For a lower value of the output resistor, doubling effect and visible oscillations
start characterizing the input inductor current and DC bus voltage waveforms respec-
tively (figures 5.35 and 5.36). Oscillations present in the DC bus voltage will cause a
non-symmetrical phase-plane curve (fig. 5.37), also for small decrease of the resistor
load. Cusp distortion phenomena can be seen in the sinusoidal current waveform,

which will show also higher frequency harmonics.
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Figure 5.35. Input current waveform and FFT analysis for R,,; = 0.5 €.
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Figure 5.36. DC bus voltage and output current and voltage waveforms for R,,; =
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Large oscillations are present in the output current and voltage waveforms,
which settling time will increase as the parameter value decreases. In particular,
for a variation of around —40%, the sinusoidal input current remains stable and the
system only requires longer time to reach the steady-state. For higher variations
instead, highly asymmetrical phase-plane plots can be seen (figure 5.40). It will also
show a more visible cusp distortion in the sinusoidal waveform (fig. 5.38) and higher

oscillations for the DC bus voltage (fig. 5.39).
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Figure 5.38. Input current waveform and FFT analysis for R,,; = 0.3 §2.
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Figure 5.39. DC bus voltage and output current and voltage waveforms for R,,; =
0.3 €.
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5.2.2.2 Variation of Input Inductor Value. Another important parameter
in terms of the stability of the system is the input inductor. It largely affects the
response of the power factor correction circuit. Instability conditions and boundaries
are detected analyzing the phase plane plots and some key waveforms of the circuit

simulated in MATLAB® Simulink.

Chosen optimal value of 300 mH is varied as before from 50 mH to 1000 mH
nominal values, while other components are maintained constant. Instability issues
are present for variations in both directions and lead to different phenomena which

anyway result to be less evident than the Pl-controlled circuit analyzed before.

A decrease in the inductor value will still maintain a relatively stable behavior,
as shown in pictures for a variation of around —80% with respect to the original value.
A small ripple is present in the inductor current as can be seen from the picture 5.41.
Phase-plane curve (fig. 5.43), even if it is still symmetrical with respect to both axes,
shows some ripple which becomes more visible for further variations. On the other
hand, even for small values of the inductor, no visible effect of instability can be seen
in DC bus voltage waveform, due to the effectiveness of the digital controller which
also guarantee a very smooth output current and voltage waveforms like those shown

in figures 5.42.
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Figure 5.41. Input current waveform and FFT analysis for L; = 50 uH.
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Figure 5.42. DC bus voltage and output current and voltage waveforms for L; =
50 uH.
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If the input inductor value is increased, the bifurcation phenomena can be
recognized, together with the cusp distortion problem in the sinusoidal current. DC
bus voltage remains almost unmodified showing a slight increase in the ripple and
therefore in the settling time (figure 5.45). Most visible effect is the shape of the
inductor current and the phase-plane curves. In particular, Lissajous curves start
showing a non-symmetrical response with a variation of around 100%. A deformation
in the lower part of the plot, that becomes asymmetrical with respect to the horizontal
axis, can be recognized in figure 5.46. This effect is mainly due to the presence of
the cusp distortion in correspondence of the zero crossing point of the curve. That
introduces some high frequency harmonic contents, as can be seen in figure 5.44.
Once again, the noticed instability phenomenon is less evident due to the better

performance of the digital control loop.
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Figure 5.44. Input current waveform and FFT analysis for L; = 1000 uH.
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5.2.2.3 Variation of DC Bus Capacitor Value. This subsection presents
simulation results and comments to show the effects of the variation in the DC bus
capacitor value, with respect to the stability of the system. From a nominal value of
2000 1 F', an increase of the parameter up to 100% and a decrease of —75% will show

the presence of evident instability.

In correspondence to a decrease of the DC capacitor value an increase in the
ripple in the DC bus voltage can be easily seen in figure 5.48 and it is due to the minor
filtering effect of the capacitor. Even if for small variations the system remains stable,
quite high oscillations are present in both DC bus voltage waveform and DC outputs.
On the other hand, their amplitude is smaller with respect to the standard PID
controlled system. Main instability issue is registered for the input inductor current
waveform. High frequency harmonics and especially the third harmonic can be seen
in both the sinusoidal waveform and the FFT analysis of figure 5.47. Similarly, due to
this instability phenomena, the phase-plane curve results to be highly asymmetrical,

highlighting the poor power factor correction result (fig. 5.49).
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Figure 5.47. Input current waveform and FFT analysis for C; = 1000 pF'.
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Figure 5.49. Phase plane trajectories for C; = 1000 pF'.

If the DC bus capacitor value is increased, no particular unstable phenomena
can be seen, since it filtering effect only smoothes the DC bus voltage waveform. Pri-
mary issue in this situation is the size of the capacitor, which drastically increases with
its value. Therefore it is chosen to be 2000 uF' as a compromise between satisfactory

circuit response and its dimension and cost.



169

5.2.3 Cusp Distortion in Input Inductor Current. One of the most important
indicators of unstable operation of a PFC converter is cusp distortion. It has been
widely observed [21] that the input current in single-phase PFC converters almost
always contains some residual distortions. In particular, the zero-crossing distortion
is considered one of the primary issues for the meeting of regulatory requirements in

mid-high power applications with 50 — 60 H z input.

High performance is required for power factor correction circuits owing to
stringent current harmonics emission limits. Distortion effect increases significantly

at higher frequencies and is a crucial aspect in PFC design and control.

Cusp distortion occurs right after the zero-crossing point of the sinusoidal input
current waveform. In this situation a very limited voltage can be seen across the boost
inductor, and a very high current is required. As a result, the inductor current may
not be able to shape the line current which therefore develops distortion. Effect of
cusp distortion and thus harmonic content of input current increases with increase in
the value of the inductor. It must be noted that discontinuous inductor current or
very small amplitude does not necessarily imply the presence of low-frequency input
current, distortion, especially when the switching frequency is much higher than the
line. Rather, the low gain of the current loop controller deteriorates the input current

response.

Rigorous mathematical analysis has been done in order to determine the mag-
nitude and the duration of the cusp distortion. In particular in [34], the dependence
of the phenomena on circuit parameters is shown. In this context, an alternative

control method has been developed to compensate the distortion issue.

On the contrary, for battery charger circuit purposes obtained results are sat-

isfactory. Even if a small cusp distortion is present in the input current, as shown
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in figure 5.50, with a precise tuning of the parameters of the controller and proper

circuit design, the problem can be minimized.

Cusp distortion in input current waveform
4 T T T T
Digital Control
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Time [s]

Figure 5.50. Cusp distortion detail in the sinusoidal input current.

As can be seen from previous analysis and simulation results, the phenomenon
of cusp distortion constitutes an important element in the performance of the circuit.
In particular, the presence of the distortion in the current waveforms comes along

with the introduction of higher harmonics in the sinusoidal shape.

In PFC circuits, input current distortion is mainly due to the 3rd harmonic
arising from two sources. Input current might fail to track perfectly with the sine wave
reference signal inside the current control loop. Second disturbance source is given
by the second harmonic coming from the DC bus voltage and from the feed-forward

voltage.

Input inductor current behavior can therefore be analyzed in terms of cusp

distortion providing further stability and performance considerations. Small inductor



171

choice is also based on the distortion phenomena. Final inductor value is chosen as a
trade-off between the presence of the cusp distortion and the higher ripple obtained

in the current.
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CHAPTER 6
CONCLUSION

Importance of Hybrid Electric Vehicles and Plug-in Electric Vehicles has been
growing over the last decades and as a result, these areas have received significant
interest. From the power electronics point of view, the power chain has two circuits
that have to be designed- the rectifier and the DC/DC converter. The cascaded bi-
directional configuration of an AC/DC rectifier with power factor correction and a
DC/DC converter is an efficient interfacing circuit that connects the energy storage

device of the PHEV to the grid.

The main objective of this research has been to develop an new integrated
control strategy using the digital control approach. The motivation for choosing this
control strategy was to simplify the hardware structure, reduce complexity of the

control algorithm as well as enhance the overall operation of the system.

This thesis describes a simplified version of the multi-loop control for the
PFC circuit and the DC/DC converter. It is developed based on the concept of
a truly digital control with a fixed switching frequency. Performance of the novel
regulator has been verified with respect to standard PID control loop. A complete
stability analysis is done to verify the robustness of the system and to identify major
stability issues. Operating boundaries are identified investigating various functioning
conditions. The design of critical components of the circuit is therefore modified

according to obtained results.

Its operating mode is simulated and results are discussed. A complete stability
analysis is done to verify the robustness of the system and to identify major stability
issues. Operating boundaries are identified investigating various functioning condi-

tions. The design of critical components of the circuit is therefore modified according
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to obtained results.

Simulation results indicate that proposed design not only reduces the com-
plexity of the controller but also improve the transient response. Stability and per-
formance of the system, on the other hand, are comparable to the equivalent analog

control structure.
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CHAPTER 7
FUTURE WORKS

Future works in this area include further simplification of the controller struc-
ture for the PFC circuit. Its multi-loop structure can be modified according to recent
developments. Inner voltage regulator can be erased and substituted with a sensor-
less structure. The ripple present in the DC voltage at twice line frequency can also
be minimized by using an enhanced control algorithm. Furthermore, digital filtering
and other complex control structures can be used to eliminate AC residue in the bus

voltage.

Sensor-less controller might be designed in order to further simplify the struc-
ture of the circuit. Number of sensors required will also decrease. Soft-switching
algorithms can be implemented for the control structure. Performances of the cir-
cuit will drastically improve, even if a more complex control section will be required.
Future works will consider also a real implementation of the circuit and of the con-
troller. True digital control technique will be implemented in a micro controller and
performances of the circuit will be verified. Actual battery charger behavior can be
simulated considering State Of Charge of the storage pack, as well as a non-constant

voltage.

Important research can be done also in the power electronics field. Bi-directional
functioning of the battery charger has to be verified for all possible voltage range.
Reverse power flow will need therefore a different DC/DC converter design to ac-
commodate the high voltage step for high input voltages. Practical considerations
have been done regarding the boost functioning mode. Voltage boost from the low
battery voltage level is not feasible in practice. Therefore an alternative design has to
be considered. Electrical isolation can be implemented in this application, with the

advantage of an easy step-up of the voltage with a transformer. New bi-directional
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isolated converter topology can be designed and investigated for this application.
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APPENDIX A
CIRCUIT AND CONTROLLER PARAMETERS



Table A.1. Values of the parameters for the circuit components.

Component Symbol  Value
Input Inductor Ly 300 uH

Input Inductor Straw Resistor Rra 0.02Q
DC Bus Capacitor 4 2000 pF'

DC Bus Capacitor Straw Resistor ~ R¢, 0.20Q
Diode ON Resistor Rp 0.01 2
Switch ON Resistor Rg 0.01Q
Output Inductor Lo 100 pH

Output Inductor Straw Resistor Ry, 0.02 Q2
Output Capacitor Cy 1500 pF°

Output Capacitor Straw Resistor Re, 0.2Q
Output Resistor Rou: 0.768 €2




Table A.2. Values of the parameters for the controller gains.

Parameter Symbol Value

Current Controller for PWM Rectifier
Proportional Gain Py 0.025

Integral Gain L 5t

Voltage Controller for PWM Rectifier
Proportional Gain Py 200

Integral Gain I, 100000

Feed-Forward Controller for PWM Rectifier
Proportional Gain Py 2.2

Integral Gain I, 0

Current Controller for DC/DC Converter
Proportional Gain P 100

Integral Gain I3 5000

Voltage Controller for DC/AC Inverter
Proportional Gain P 15

Integral Gain I 5t

Voltage Controller for PWM Rectifier Hybrid Loop
Proportional Gain P 0.15

Integral Gain L 50
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