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A B S T R A C T

The contact process is one of the simplest models for studying popu-
lation dynamics on a lattice, whose properties have been well studied
when birth and death rates are constant in time. However, non-trivial
effects arise when such rates fluctuate, as for instance due to environ-
mental variability. In this work we develop a general framework to
analyze the case of colored (i.e. temporally correlated) environmental
noise; by means of the well-established "unified colored noise approx-
imation" and a path-integral approach, we calculated the stationary
density distributions as well as the asymptotic extinction time behav-
ior. At the same time, we implemented exact simulation techniques
which proved to be a robust tool to check our analytical results. Fi-
nally we apply our results to a topic of interest in the context of living
systems. We focus on the problem of bet-hedging in population dy-
namics, in which a community of individuals reproduces through to
two different spreading strategies: a constant one with a low benefit
and a more risky one which depends on the external environmental
conditions. In particular we study the role that temporal correlations
of such environmental conditions may have on the overall dynamics,
since they are an intrinsic characteristic of every real system.
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I N T R O D U C T I O N

In this Master Thesis I present the work done by me together with
Professor Miguel Ángel Muñoz and Dr. Jorge Hidalgo at the Depart-
ment of Electromagnetism and Condensed Matter Physics of Univer-
sity of Granada, under the supervision of Professor Amos Maritan of
University of Padua. In an effort to introduce temporally correlated
environmental noise in the previous work of Hidalgo and Muñoz
[17] we ended up putting together a series of techniques, both ana-
lytical and numerical, developing an optimal framework to tackle the
problem of correlated noise in a large number of stochastic models.
Most importantly we understood the importance of sound simulation
techniques when dealing with time-varying rates which are often un-
derestimated, leading to the possibility of contradictory results. In
this work we first explain such techniques in general and we apply
them in the case of the classic contact-process dynamics with the ad-
dition of the environmental correlated noise. Then, we study the case
of a bet-hedging dynamics to understand if a temporal correlation of
the noise leads to different effects respect to the white noise case.

the first chapter consists of an brief introduction to the contact
process as well as to some main concepts in statistical physics
such as critical behaviour, absorbing states, phase diagrams and
extinction times.

the second chapter is meant to be a small review of the known
effects of noise in the contact-process dynamics.

the third chapter is a review of the different types of simulation
techniques.

the fourth chapter is where we explain the main analytical ap-
proximation we used to obtain the stationary density distribu-
tion fot the contact process with environmental colored-noise:
the Unified Colored Noise Approximation (UCNA)

the fifth chapter is devoted to the problem of the extinction times,
with the calculation of the their scaling as a function of the pop-
ulation size.

the sixth chapter illustrates the bet-hedging theory and the ap-
plication of the results of the previous chapters.

the seventh chapter concludes the work with a summary of the
results.
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appendix a is a basic summary of the Itô-Stratonovich dilemma,
whose understanding is mandatory when dealing with absorb-
ing states.



1 T H E C O N TA C T P R O C E S S

1.1 an introduction to the contact process

1.1.1 The CP model

The contact process (CP) is a toy-model for activity propagation on a
lattice [26]. It was first introduced as a simple model for epidemics
by Harris in 1974 [15] and it can be used to model the spreading of in-
fections [27], the survival or extinction of populations [21], forest fires
[1] , transport in random media [16] etc. Spreading processes share a
common dynamics emerging from the competition between two main
effects. Taking the case of an infection as example, we have individu-
als infecting neighbors and individuals recovering from the infection;
depending on the respective infection and recovering rates we can
have two outcomes: one in which the infection spreads through the
population, eventually reaching a stable percentage of it whose value
depends on the balance between the rates and one in which the re-
covering is much faster decreasing the infected percentage until it
vanishes. The CP is important because its relative simplicity makes
it easy to study, while it still presents many physical properties; the
most important of these are the absorbing states. The CP represents a
paradigm for systems with such states and related non-equilibrium
problems. Moreover, the CP belongs to the same universality class
(i.e. it shares the same critical properties) of other significant mod-
els in theoretical physics such as the directed percolation [26] or the
Reggeon field theory [26]. Finally the versatility of the CP makes
it easy to study how the introduction of small modifications, both
micro- or macroscopic, can lead to different dynamics respect to the
basic case, as done in this work with the introduction of environmen-
tal noise.

1.1.2 The CP equation of motion and its mean-field approximation

In a lattice, at time t a site x is either occupied (σx(t) = 1) or empty
(σx(t) = 0): an occupied site can be for instance a member of a pop-
ulation or an infected cell. Calling q the coordination number of the
lattice, in the CP an occupied site reproduces at rate λ/q and dies at
rate µ, as represented in figure 1. We can write an equation of motion

1



1.1 an introduction to the contact process 2

Figure 1: A schematic representation of the contact process in dimension 1.

for the probability of a site to be occupied ρ(x, t) ≡ Prob[σx(t) = 1]

which we will use as an order parameter:

ρ(x, t) =
λ

q

∑
y

Prob[σx(t) = 0,σy(t) = 1] − µρ(x, t) (1)

The sum is taken upon the nearest neighbors of the site x.
We can already see that although being very simple the CP is not
exactly solvable. The argument of the sum in the right side of equa-
tion (1) is an infinite hierarchy of probabilities. The two-site probabil-
ity leads to the three-site one and so on: solving the system requires
the knowledge of these probabilities. However if we eliminate the
site-dependence with a mean-field approximation, meaning that every
site can see every other and not just the nearest neighbors, the model
is solvable. In the mean-field approximation we set ρ(x) → ρ and
Prob[σx(t) = 0,σy(t) = 1] → (1 − ρ) and we can see that the CP’s
equation of motion becomes nothing more than the Malthus-Verhulst
equation:

ρ̇ = (λ− µ)ρ− λρ2 (2)

This approximation is a strong one but keeps the main properties of
the CP . We can then use it to illustrate these properties as well as
some important concepts of statistical mechanics. Equation (2) tells
us that ρ will gradually reach a stationary value ρ(λ,µ). If λ < µ,
ρ vanishes. If ρ represents a population’s density this means the
population goes extinct since there are more deaths than births per
unit time. We call this phase inactive and this type of state of the
system absorbing. Since there are no beings left to reproduce there
is no possibility for the dynamics to start again and the system gets
trapped in the state. When the birth rate λ is bigger than the death
rate µ there are now two possible stationary states: ρ = 0 and ρ =

(λ−µ)/λ. Moreover the non-vanishing stationary state is an attractor
for the system, meaning that starting from any density bigger than
zero the system will eventually reach this stationary density (figure 2).
We then call this phase of the system active. We can picture this
behavior in a phase diagram in which we plot our order parameter
ρ against our control parameter λ as represented in figure 3. The
phase transition between the two phases is called an absorbing phase
transition because of the presence of the absorbing state. CP’s phase
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Figure 2: An example of phase diagram for the Cp described by equa-
tion (2). The active phase starts when λ > µ.

transitions belong to a class of transitions which is continuous but
singular The value of the control parameter at which the transition
happens is called the critical point λc. The critical point together
with the phase diagram provide a rough description of how a system
behaves and which phase transitions is subjected to. This overall
description of the CP keeps its validity even when moving away from
the mean-field approximation, although just qualitatively.

Figure 3: This image illustrates the stability of the fixed points for the two
regions of the control parameter space λ > µ and λ < µ.

1.2 cp properties: criticality, absorbing states
and extinction times

1.2.1 Criticality in the CP

Criticality is a fundamental concept in statistical mechanics and refers
to the set of laws that many models share at the critical point. At the
critical point the system’s properties are usually governed by power-
laws whose exponents, called critical exponents, are the same indepen-
dently of the small differences between the models. Moreover at the
critical point different quantities of the system obey scaling relations
and correlation lengths or susceptibilities diverge. A famous and
studied example is the 2D Ising model [4] where at the critical point
the stationary magnetization obeys the powe-law M ∼ |t|1/8 and the
magnetic susceptibility diverges as χ ∼ |t|−7/4 where t = (T − Tc)/Tc
is the scaled control parameter (temperature in this case). The same
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considerations apply to the CP, for which we can use equation (2) to
deduce a simple critical exponent in the mean-field approximation.
Defining ∆ ≡ λ− λc, our stationary active density becomes

ρ =
λ− λc
λ

=
∆

λc +∆

=
∆

λc
+O(∆2)

(3)

from which we can see that

ρ ∼ |∆|β with β = 1 (4)

There are many more critical exponents related to the CP, for instance:

• the relaxation time (or survival probability time) exponent δ:
near the critical point there is a characteristic slowing-down of
the time dependence of the density

ρ(t) ∼ t−δ (5)

We can see this by the fact that at the critical point equation (2)
becomes simply

ρ̇|λ=µ = −µρ2 (6)

so that ρ ∼ t−1.

• the correlation time critical exponent ν‖: it regulates the tempo-
ral behavior of the stationary time correlation function Cs(t) ≡
Prob[σ0(t0 + t) = 1;σ0(t) = 1] − ρ2 where we have

Cs(t) ∝ e−t/τ with τ ∼ |∆|−ν‖ (7)

• similarly to ν‖, ν⊥ is related to the correlation length ξ of the
two-point equal time correlation function C(x) ≡ 〈σxσ0〉− ρ2

C(x) ∝ e−|x|/ξ with ξ ∼ |∆|−ν⊥ (8)

Clearly this spatial correlation function has a meaning for sys-
tems on a lattice and not in the mean-field approximation.

One important thing that influences the numerical values of the criti-
cal exponents is the dimension of the system. As we can see from ta-
ble 1, one, two and three dimensional systems have their own values
for the critical point and critical exponents and for dimension bigger
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exponent d = 1 d = 2 d = 3 d = 4

λc 3.29785(2) 1.6488(1) 1.3169(1) 1

β 0.27649(4) 0.583(4) 0.805(10)f 1
2

δ 0.15947(3)f 0.4505(10) 0.730(4) 1

Table 1: In this table are collected some known values of the critical expo-
nents of the CP with µ = 1.

than three we retrieve the mean field values. We then say than the
upper critical dimension of the CP is four. Models who share these prop-
erties and the numerical values of the critical exponents and scaling
relations are said to belong to the same universality class. Universality
is a very important concept, linking different models that apparently
have nothing in common in a unique scheme. A conjecture by Janssen
and Grassberger [12] states that all the different systems and models
with a unique absorbing state, a single order parameter and no extra
symmetry or conservation law belong to the same universality class
called "direct percolation class". The basic CP belongs then to this
class, but there are others [29] that arise when introducing certain
modifications. One of these is multiplicative noise such the one we
inserted in our CP model. This type of systems seem to belong to the
multiplicative noise universality class.

1.2.2 Absorbing states

We’ve seen that the presence of an absorbing state defines by itself
a universality class. But what are absorbing states exactly and what
is the difference between the other states? Absorbing states are char-
acteristic of non-equilibrium processes. In fact, in normal equilibrium
procecces a strong condition known as detailed balance holds. Detailed
balance is a concept related to microscopic reversibility and we can
reassume it by saying that in a system near equilibrium, around any
close cycles of states there is no net flow of probability. When a sys-
tem such ours reaches an absorbing states (which in CP is usually
an empty lattice), the state acts as a probability sink thus creating a
net flow. The CP is then a non-equilibrium process. In chapter 2 we
will visualize this concept more in detail showing how the effective
potential relative to a stationary Fokker-Planck distribution has a sin-
gularity at the absorbing state. In the noisy case, where fluctuations
can move the system from one state to another, we will see how an
absorbing state can be seen as a fluctuation-independent one.
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1.2.3 Extinction times in the CP

Apart from phase diagrams and critical properties, a significant way
to characterize a spreading process such the CP is to study the mean
extinction times (MET). MET are the mean time necessary to reach
the absorbing state and provide another way to look at the different
phases of the model. All the considerations made so far are based
on the assumption that the population is infinite in size. Equation (2)
describes a dynamical system and its solutions are unique and sepa-
rate: the absorbing state represents a singular trajectory itself and we
then know the time required to reach it is infinite. But real systems
are finite. Finite-size effects then modify the dynamics, as we will
see more in detail in chapter 2. What is important for the present
argument is that a finite population always goes extinct at some point.
What differentiate the phases is how it does so as a function of the
lattice size N. When a system is in the inactive phase, the MET scale
logaritmically with N. When it is in the critical state, MET scale lin-
early and when the phase is active MET scale exponentially. All of
these behaviors are depicted in figure 4. To explain this we will refer
again to equation (2). The right hand side of this equation of motion
can be rewritten as the spatial derivative of a potential V(ρ, t):

ρ̇(t) = −
∂V

∂ρ
(9)

The potential V(ρ) is then:

V(ρ) =
1

6
ρ2(3µ+ λ(2ρ− 3)) (10)

In figure 5 it is represented for values of the birth rate in the inactive,
critical and active phase. In the inactive phase, whatever the initial
condition a particle will fall towards the absorbing state. Near ex-
tinction the density is small so that equation (2) can be approximated
with

ρ̇ = −|λ− µ|ρ (11)

whose solution is an exponential decay:

ρ(t) = ρ0 exp (−|λ− µ|t) (12)

To obtain the scaling function we consider the absorbing state reached
when the there is just one particle left, that is, ρ = 1/N. We can then
invert the previous relation to obtain the time required to reach it that
is

t|ρ=N−1 =
log (N)

|λ− µ|
(13)

The critical scaling behavior was already given in section 1.2.1: we
know that at the critical point ρ ∼ t−1 meaning that the MET scales
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Figure 4: The three different behav-
iors for the MET of the CP
with fixed rates depicted
schematically in a log-log
plot.

Figure 5: The potential (10) depicted
for different values of λ
and µ = 1. The barrier ap-
pears for values of λ > 1

linearly with N. Finally, the exponential scaling of the active phase
is due to the Arrhenius law. As shown in figure 5 when λ > µ the
second derivative of the potential has an inverted sign respect to the
inactive phase. It forms a potential wall between the stationary state
and the absorbing one. We know from Arrhenius law [9] that the
rate at which the potential wall is hit by casual fluctuations of the
variable is inversely proportional to the height of the wall. In the case
of our potential, such height is the difference between the value of
the potential at the stationary state and at the state ρ = 1/N, all in
absolute value.

∆V ≡ |V(
λ− µ

µ
)|− |V(1/N)|

=
(λ(N− 1) − µN)2(λ(N+ 2) − µN)

6λ2N3

(14)

which goes as N−1 when N → ∞. Since the rate is inversely pro-
portional to the MET we obtain the exponential scaling. This manda-
tory introduction was propedeutic to the understanding of how noise
modify the classic MET behavior as we will see in chapter 5.



2 N O I S E I N T H E C O N TA C T
P R O C E S S

2.1 bringing noise in the scheme

Noise is an unavoidable aspect of every real system and this is espe-
cially true in population dynamics. Birth rates are not the same for
every individual but vary in time and space due to multiple causes:
environmental conditions, intrinsic genetic modifications, finite-size
of the population and so on. Introducing noise makes the models
non-deterministic but it also produces non-trivial effects that make
them more accurate in their description of reality. Noise can be di-
vided in two big categories: spatial noise and temporal noise. Spa-
tial noise refers to a spatial disorder of the control parameters of the
model, which may or may not depend also on time. When it is time-
independent and fixed it is called quenched disorder, whereas when it
also changes in time we speak of annealed disorder. Temporal noise,
on the other hand, refers to a type of disorder that affects every site
equally. Among the possible temporal noises that can affect a sys-
tem, two of them play a fundamental role in this work and will be
discussed separately: environmental noise and demographic noise.

2.2 spatial noise and spatial griffiths phases

Among the two types of disorder, quenched disorder is the most inter-
esting one. Dealing with annealed disorder in fact usually means to
reabsorb its contributions in the thermodynamic averaging. Quenched
disorder, on the other hand, plays the role of an externally given back-
ground and studying it mathematically is not an easy task. This type
of disorder is fixed in time and varies spatially: as an example we can
think of a model for epidemics in which the infection rate depends
on the lattice site x. Such a system may represent an infection over a
large and geographically different environment, where local environ-
mental differences or genetic variability influence the effectiveness of
the infection’s virus. Historically tough the study of the effects of
quenched disorder was born in the field of statistical mechanics with
an article from Griffiths [13]. In his 1969 paper he studied how ran-
domly placed spin vacancies could modify the dynamics of the classic
Ising model. He concluded that quenched disorder strongly modi-
fied the Ising phase diagram introducing a new phase, now called
a Griffiths phase. This phase, located between the inactive and active
ones but before the critical point (schematically depicted in figure 6)

8



2.2 spatial noise and spatial griffiths phases 9

turned out to have very peculiar properties. [33]. These region dis-
play critical-like behavior such as power-laws and correlation diver-
gence, even if the system is not at the critical state (which we recall
is a point in the parameters space). Griffiths phases’s critical expo-
nents though are not numerically fixed but slowly vary with the con-
trol parameter. Quenched disorder then smears the phase diagram
of the system. This is a remarkable property because of two main
reasons: first of all, as already said noise is unavoidable so Griffiths
phases must be present in many real systems, such as brain networks
(see [28] and references). A second reason is that critical properties
are sometimes required to explain certain processes [28] and Griffiths
phases represent a natural way to provide them without requiring
a fine-tuning necessary for maintaining the system in a critical state.
During the years, the study of Griffiths phases gave more insight on
the reason for this peculiar behavior. In particular it was discovered
how the formation of rare regions with a unique dynamics influenced
the whole system. These rare-regions effects are considered to be the
main contributors to the Griffiths phases critical properties [33]. To
better explain this let us refer again to the disordered systems stud-
ied by Griffiths. In such a system, the vacancies reduce the tendency
towards a magnetic long-range order and thus the critical tempera-
ture of the system. When the system is very large though there is the
possibility for large regions without vacancies to form. These regions
will behave ferromagnetically even if the overall system is in the para-
magnetic state. The probability of the formation of a rare region is
exponentially small in its volume, but the activity lingers in this re-
gions for exponentially long times. As Griffiths demonstrated these
effects combined are important as they produce a singularity in the
free-energy. This singularity is the phase transition from the inactive
phase to the Griffiths phase. The relevance of the Griffiths regions is
stronger the stronger the correlation length of the disorder.

Figure 6: This image, taken from [33] represents a schematic phase diagram
of a randomly diluted Ising model as function of temperature T
and impurity concentration p. pc is the geometric percolation
threshold of the lattice and Tcc is the clean critical temprature.
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2.3 temporal noise

Temporal noise is different from spatial noise and we can say that they
represent two sides of the same coin. Contrary to quenched spatial
noise, temporal noise affects the system as a whole but vary in time:
it is then ideal to represent global influences on a system such as
environmental effects. They can be periodical, such as seasons cycling
or alternation of drought and rainy periods or aperiodical such as
random weather modifications or resources casual fluctuations.

2.3.1 White noise, Langevin, master and Fokker-Planck equations

the langevin equation To model ecosystems with noise the usual
approach in the physical sciences is to write an effective equation of
motion for the order parameter [22]. To simplify the argumentation
we will use the density ρ as in the previous chapter referring to pop-
ulation dynamics but the method is general. The equation for the
density, called a Langevin equation, contains a function of time repre-
senting the noise

ρ̇(t) = f(ρ(t)) + g(ρ(t))η(t) (15)

η(t) is an unknown function but whose averaged properties over an
ensemble of systems are simple. This systems are in our case the pop-
ulations on which the noise acts on: this means η(t) can be treated as
a stochastic process. Moreover, to be treated mathematically the func-
tion η(t) must have a defined mean value and autocorrelation function
independent of ρ(t). The autocorrelation function defines how the
value of η(t) at a time t is correlated to its value at a time t ′. The sim-
plest type of noise one can imagine is a totally uncorrelated function
with zero mean

〈η(t)〉 = 0 (16)

〈η(t)η(t ′)〉 = Γδ(t− t ′) (17)

Such a function is called white noise and it is at the base of Brown-
ian motion, representing a random force acting on a particle. White
noise has no time scale and exists independently of any physical sys-
tem. The adjective “white” derives from the fact that it can informally
be seen as a Gaussian process whose spectral function is constant, al-
though a sound mathematical definition is complex and is beyond
the scope of this introduction. Temporal noise can be divided in two
categories depending on g(ρ). If g(ρ) is constant we speak of additive
noise. It is the simplest form for the Langevin equation and the eas-
ier to work with. When g(ρ) is not a constant function then we speak
of multiplicative noise and a series of problems arise. Multiplicative
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noise is strongly coupled with the dynamics of the system and the
problem is generally more difficult to handle. The first and most im-
portant consequence of this coupling is that one has to decide when
the noise influences the density ρ(t) and which value insert in the
function g(ρ). Without this choice the Langevin description is incom-
plete. This mathematical problem has deep physical consequences
and each interpretation represents a different physical process; this is
particularly important when absorbing states are present. Historically
two different interpretations arose: the Itô interpretation and the
Stratonovich interpretation. Appendix A is and introduction to their
mathematical representation, meaning and comparison. However, al-
though being used frequently for its convenience, the Langevin equa-
tion is in any case a continuous approximation of a discrete step-process
which obeys his own rate equation.

the master equation The real system is discrete: a population
is made of n individuals and the birth or death of one of them pro-
duces a jump of ±1/n in the density. Since at every time-step it is
possible to change the density just by one such jump, the contact pro-
cess belongs to the category of so called one-step processes. So, instead
of the density ρ it is appropriate to start with a discrete formulation
using as variable the number of occupied sites n on a lattice made
of N total sites. The evolution over time of n(t) depends on the con-
current happening of births and deaths. n(t) can then be described
as a stochastic process with its probability density distribution function
P(n, t). It is possible to write an exact rate equation for the probabil-
ity density function P(n, t), called master equation, starting from the
death and birth rates:

λn = λn(1−
n

N
) (18)

µn = µn = n (19)

In this equation we set a unitary death rate µ = 1 as in the classic CP
dynamics. We will keep it so throughout the entire work, although
the results are valid for any constant µ. The master equation then
reads

Ṗ(n, t) = µn+1P(n+ 1, t) − µnP(n, t)

+ λn−1P(n− 1, t) − λnP(n, t) (20)

The right hand side of this equation is nothing more than the net flux
of probability through the state of the system with n occupied sites.
Although being exact, this equation cannot be solved directly. It is
then necessary to make an approximation to make it more tractable,
as we will see in the next paragraph.
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the fokker-planck equation the Fokker-Planck equation is a
special type of master equation used as approximation for the exact
one. It is a second order partial differential equation for the proba-
bility density function P(y, t) in the continuous variable y. It has the
following general form:

Ṗ(y, t) = −
∂

∂y
A(y)P+

1

2

∂2

∂y2
B(y)P (21)

The coefficients A(y) and B(y) can be any kind of differentiable func-
tions, with the only constraint that B(y)>0. For one-step processes the
Fokker-Planck equation is an approximation in the continuous limit
of the order parameter y as the Langevin approach. The two are in
fact equivalent since from the Langevin equation one can obtain the
Fokker-Planck equation and vice-versa. For a Stratonovich Langevin
equation of the form (15) the corresponding Fokker-Planck equation
reads

Ṗ(ρ, t) = −
∂

∂ρ
[f(ρ) +

Γ

2
g(ρ)g ′(ρ)]P+

Γ

2

∂2

∂ρ2
g(ρ)2P (22)

Again, different interpretations of the Langevin equation lead to dif-
ferent Fokker-Planck equations as explained in appendix A. The Fokker-
Planck equation can be derived from the exact master equation in
several manners. We will now illustrate a general derivation method
particularly suited for one-step processes [22]. First we change vari-
able in equation (20) from n to the discrete density ρ = n

N . Such
density is not continuous but proceeds by jumps ± 1N . Then we no-
tice that it can be rewritten in terms of an operator E whose action
on a smooth function f(ρ) is

Ef(ρ) = f(ρ+
1

N
) (23)

so that equation (20) becomes

Ṗ(ρ, t) = (E − 1)µNρP(ρ, t) + (E−1 − 1)λNρP(ρ, t) (24)

Now we make the approximation of considering ρ continuous; this is
justified by noting that the rates λNρ and µNρ considered as functions
of ρ, λ(Nρ) and µ(Nρ), are continuous and differentiable and that
in the limit of large population size the jumps in density are small
enough. We can then expand the operator E in a Taylor expansion

E = 1+
1

N

∂

∂ρ
+

1

2N2
∂2

∂ρ2
+ . . . (25)

obtaining our Fokker-Planck equation
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Ṗ(ρ, t) = −
1

N

∂

∂ρ
(λ(Nρ) − µ(Nρ))P(ρ, t)

+
1

2N2
∂2

∂ρ2
(λ(Nρ) + µ(Nρ))P(ρ, t) (26)

From this equation it is possible to derive a stationary solution for the
long-time limit Pstat(ρ) through the following procedure: we first put
the time derivative to zero and then rewrite equation (26) as

0 =
∂

∂ρ
[(µ(Nρ) − λ(Nρ))P+

∂

∂ρ
(λ(Nρ) + µ(Nρ))P] (27)

This means that the quantity in square brackets is constant. Setting
the value of this constant to zero thanks to the detailed balance prop-
erty we now have a first order ordinary differential equation whose
solution is

Pstat(ρ) =
Z

λ(Nρ) + µ(Nρ)
exp [2

∫ρ
ρ0

λ(Nρ ′) − µ(Nρ ′)

λ(Nρ ′) + µ(Nρ ′)
dρ ′] (28)

where Z is a constant. We underline that for this function to be a
probability density it must be integrable so that it can be normalized.

2.3.2 Demographic noise

A fundamental type of temporal noise, characteristic of discrete sys-
tems such as in population dynamics models is demographic noise.
This noise is an intrinsic internal noise for the systems and arises
directly from and expansion of the fixed-rates CP master equation.
It represents those casual fluctuations of the density ρ due to the
concurring birth and death processes. Demographic noise can be in-
troduced in a Langevin equation by means of a multiplicative term
proportional to the square root of ρ

ρ̇ = f(ρ) +α
√
ρη(t) (29)

Because of this intrinsic fluctuation a finite-size system will eventu-
ally get trapped in the absorbing state. Since in population dynamics
f(ρ) usually contains terms in ρ, ρ2 or higher powers, demographic
noise leads the dynamics near the absorbing state. However, the mul-
tiplicative term α turns out to be inversely proportional to square root
of the size N of the system so that demographic noise effects vanish
when N → ∞. However, we underline that most simulations are car-
ried out on finite systems and so this effect is always present. Now we
can also give a better interpretation of the absorbing state: any state
different from the absorbing one cannot be stable since the presence
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Figure 7: This image can be found in [26]. From left to right it shows
phase diagrams for the one-dimenstional CP with lattice size of
20, 50, 100, 20, 50, 1000 to appreciate the scharping at the transition.

of demographic noise constantly causes jumps in the stochastic vari-
able. The absorbing state (in this case ρ = 0) is the one at which such
fluctuations vanish. The absorbing state is a fluctuation-free state. Us-
ing the method explained in section 2.3 we can show how the square
root appears. Inserting the noiseless rates (18) we obtain the follow-
ing master equation

Ṗ(ρ, t) = N(E − 1)ρP(ρ, t) + λN(E−1 − 1)ρ(1− ρ)P(ρ, t) (30)

whose Fokker-Plank approximation is

Ṗ(ρ, t) = −
∂

∂ρ
(ρ(λ− 1)(1− ρ)P+

1

2N

∂2

∂ρ2
(ρ(λ+ 1)(1− ρ))P (31)

from equation (22) we know that it must be

g(ρ) =

√
ρ(λ+ 1)(1− ρ)

N

≈
√
λ+ 1

N

√
ρ

(32)

We stress again that this noise is unavoidable since it is an intrinsic
property of the system. It is also a finite-size effect since it vanishes
in the limit of large populations. Because simulations are carried out
on finite-size systems, the phase diagram obtained presents a smooth
phase transition that gets sharper at the critical point as the size of
the system grows, as depicted in figure 7. Another way to see that
a finite-size system always ends up in the absorbing state consists in
using equation (28) to show that the only stable state is the absorbing
one. Inserting the rates and changing variable to ρ we obtain

Pstat(ρ) =
ZN

ρ(λ+ 1)(1− ρ)
exp [−2N

λ− 1

λ+ 1
)ρ]. (33)

We can see that this distribution is peaked at ρ = 0 for any N.
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2.3.3 Environmental white noise and temporal Griffiths phases

With the term environmental noise we refer to a type of noise which
does not arise naturally from the master equation as the demographic
noise but it is instead imposed on the system. Such noise is external
and is usually used to model the effects of changing environmen-
tal conditions in population dynamics, thus the name environmental
noise. Environmental noise can be any type of function of time. Like
spatial noise, temporal noise can greatly influence the dynamics and
produce changes in the system’s phase diagram, depending on the
type of time-dependence of the noise itself. Noises with correlation
times and complex time dependencies are very hard to treat mathe-
matically and the usual approach is to use white noise coupled with
some function of the order parameter, since Gaussian white noise al-
lows to use the techniques illustrated in the previous sections which
do not work for non-Markovian systems. The study on the effects
of environmental noise on stochastic population models started with
Leigh [25] who showed how it can change the MET of a system from
exponential to power-law. A fair amount of literature flourished after
Leigh’s work showing how time-dependent fluctuations of the pa-
rameters of a model can shift critical points [8] and change universal
features in and out of equilibrium [2, 19]. An extensive analysis of
the effects of environmental white noise on the CP of [31] showed
how it gives origin to a phase of the system with a behavior similar
to the spatial Griffiths phase: for extended regions in the parameter
space the system presents critical-like properties. These new phase
has been called temporal Griffiths phase (TGP). The main difference be-
tween usual Griffiths phases is that they take place before the critical
point while TGPs are found after. These findings allow to insert TGPs
and normal GPs into a coherent framework of the effects of noises
depending on both space and time.

velasquez et al. work We will now go briefly through Velasquez
et al. analytical work since their conclusions are important to under-
stand ours. In [31] they explored the properties of a classic CP system
with the addition of multiplicative white noise for dimensions 1 , 2

and for the mean-field approximation, both analytically and through
simulations. We note here that they didn’t actually use a Gaussian
white noise, whose variance is technically infinite, but a noise b(t)
randomly sampled from an uniform distribution instead. The distri-
bution is centered at a value b0 and its half-width is σ. b0 repre-
sents the control parameter for this system. A birth occurs with rate
b(t)ρ(1−ρ) and a death with rate ρ(1−b(t)). These rates are normal-
ized so they can also be interpreted as probabilities for the birth and
death processes. From the master equation an Itô Langevin equation
is derived.
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ρ̇ = aρ− bρ2 +α
√
ρη(t) + σρξ(t) (34)

where a = 2b0− 1+σ
2/2, b = b0, α = N−1/2 (N is the size of the sys-

tem) and the noise ξ(t) = 2[b(t) − b0]/σ. We can see in this equation
the presence of the demographic noise, proportional to the square
root of the density. From this equation a Fokker-Planck equation can
be derived, whose stationary solution in the limit of large N is:

P(ρ) = ρ
2( a
σ2

−1) exp (−
2b0ρ

σ2
) (35)

This probability density function exhibits a singularity at ρ = 0 de-
pending on the value of a/σ2. When a < ac = σ2/2 (or equivalently
b < b0,c = 1/2 for every σ) such singularity is non-integrable and
the only acceptable solution for the probability density is a delta dis-
tribution peaked at ρ = 0. This means that for values of b0 below
1/2 the system is in the absorbing state. With a change of variable to
z = log (ρ) equation(34) becomes

ż = −ãz+ b exp (z) + σξ(t) (36)

This equation describes a random walker trapped in a potential as
already showed in section 1.2.3. We can then identify three different
regimes:

i When ã > 0 the phase is active and the same argument of sec-
tion 1.2.3 holds, so we get

MET(N) ∼ exp [(V(z(ρ = 1/N))/(σ2/2)]

∼ exp (
2ã log (N)

σ2
)

∼ N
2ã

σ2

(37)

This means that due to the noise the MET exhibits generic alge-
braic scaling with continuously varying exponents.

ii When ã = 0 the system is at the critical point and the barrier
vanishes for small values of z, meaning that near the absorbing
state the variable represents a free random walker. A general
free random walk covers a distance

√
t in a time t. Equating

this distance to the one required to reach the absorbing state
which is z = log(N) we obtain

MET(N) ∼ [log (N)]2 (38)

iii When ã < 0 the system is in the absorbing phase. Since in this
phase the density ρ decays exponentially in time, z decays lin-
early and thus the time required to reach the state z = log (N)

is
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MET(N) ∼ log (N) (39)

The analogy between TGPs and normal GPs is strong. In GPs rare
active regions exist even when the overall state is absorbing, whereas
in TGPs there exist rare time intervals when the system behaves like
in the absorbing state, even if the overall phase is active. The roles
of active and absorbing phases are exchanged by the different noises.
It can be stated that in GPs noise is quenched in space and in TGPs
it is “quenched” in time. In GPs the probability for an active region
of size s to form is exponential, P(s) ∼ exp (−αs); the same holds for
the probability in TGP for an absorbing interval of length T to hap-
pen, P(T) ∼ exp (−αT). Moreover, in GPs the leading contribution of
the decay at time t comes from a rare region of size s? ∼ log (tβ/α)/β

which combined with the exponential probability of finding one gives
the generic power-law decay in time of the order parameter t−α/β. In
TGPs the time required to reach the absorbing state in a rare absorb-
ing interval is given by t? ∼ log (N)/β which again combined with
the exponential probability of finding one gives rise to a generic alge-
braic decay in the system’s size MET(N) ∼ Nα/β. The conclusion is
that TGPs are the exact analogous of GPs, just with switched roles of
space and time.

2.3.4 Colored noise

Completely uncorrelated noise is never an exact representation of real
noise. In the early studies of Brownian motion, when the first stochas-
tic methods were developed, inertial forces could be neglected since
the damping of suspended particles was much larger compared to
the motion of the fluid’s molecules. White noise it is a very good
approximation in these cases and it simplifies the problem making it
Markovian: nowadays a large amount of literature exists on how to
deal with Markovian processes. However, in many physical models
making such approximation is a mistake since the dynamics of the
noise and of the order parameter are not easily separable. In these
cases the time-correlation of the noise is comparable with the relax-
ation time of the system and can play an important role that cannot
be neglected. This argument is valid above all for biological systems
in which changes usually evolve at the same time scale of the en-
vironment: temperature rises and drops, humidity modifications or
DNA genetic alterations are smooth functions of time and do not
usually vary randomly and rapidly in a short time interval (except
for catastrophic events like volcanoes eruptions which are a separate
matter). The term colored was introduced to distinguish the correlated
case from the white noise case. Depending on the strength of the col-
ored noise the system’s behavior can deviate significantly from the
Markovian one and this poses serious limitations on the techniques
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available to study it. In such problems the markovianity can be re-
trieved by extending the number of variables considered but this is
not a solution by itself since this procedure can gratly complicate the
problem. If the noise one is interested in is not a specific type of time
function but rather a general effect of several coupled environmen-
tal degrees of freedom, thanks to the central limit theorem they can be
treated as Gaussian and if the noise itself is Markovian then Doob’s
theorem [7] states that the only possible time-correlated noise of this
kind is a Ornstein-Uhlenbeck process (OU). A OU process ξ(t) is a
process with an exponentially decaying autocorrelation function and
zero mean[22]

〈ξ(t)〉 = 0 (40)

〈ξ(t)ξ(t ′)〉 = D

τ
exp (−

|t− t ′|

τ
) (41)

where D is the dimensionless noise intensity and τ is the correlation
time. The first to study intensively this type of noise were Stratonovich
and coworkers who established a small τ approximation [24]. Several
methods have been developed since: [14] presents a fair review of
some of these. Referring to [22] we will now outline the main differ-
ences between a proper white noise Langevin equation and a colored
noise one as well as introducing the Fokker-Planck equation in the ex-
tended variable space. We start with the following general equation:

ẏ = f(y) + g(y)ξ(t) (42)

in which ξ is a stationary process with

〈ξ(t)〉 = 0 (43)

〈ξ(t)ξ(t ′)〉 = κ(t− t ′) (44)

where κ(t− t ′) is not a delta function. An equation of this type is a
stochastic differential equation, meaning a differential equation whose
coefficients are random numbers or random functions of an indepen-
dent variable (time t in this case). The variable y itself is not a Marko-
vian process since its value at a time t bigger than the initial time
t0 depends on the quantity ξ(t) whose value, being time-correlated,
depends on the values before t0. Analytic solutions for y(t) are not
easy to obtain and they usually require making use of some kind of
approximation meant to retrieve markovianity, as we will do in this
work. If there is the need to retrieve the Markovian problem without
any approximation the only way is to increase the number of stochas-
tic variables and consider the complete system

ẏ = f(y) + g(y)ξ(t) (45)

ξ̇ = h(ξ, t) (46)
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This bivariate process (y, ξ) is Markovian and its joint probability
P(y, ξ, t) obeys the master equation

Ṗ(y, ξ, t) = −
∂

∂y

{
f(y) + g(y)ξ

}
P+ WP (47)

where W is the matrix regulating the master equation of the ξ process
alone [22]. In the case of ξ being a OU process the system is of this
type:

ẏ = f(y) + g(y)ξ(t) (48)

ξ̇ = −
1

τ
ξ+ η(t) (49)

with

〈η(t)〉 = 0 (50)

〈η(t)η(t ′)〉 = Γδ(t− t ′) (51)

We stress here the fact that in this system the noise is additive since
ξ(t) in the first equation is not a delta-correlated function of time. In
this case the Itô-Stratonovich interpretation is not an issue and the
problem is well defined as it is. The related master equation reads

Ṗ(y, ξ, t) = −
∂

∂y

{
f(y) + g(y)ξ

}
P+

1

τ

∂

∂ξ
ξP+

Γ

2

∂2

∂ξ2
(52)

In chapter 4 we will introduce the Markovian approximation scheme
we used, while in chapter 5 we will make use of equation (52) in order
to apply a path-integral approach to the computation of the MET for
our system.



3 R E V I E W O F T H E S I M U L AT I O N
T E C H N I Q U E S

Being able to correctly simulate a dynamical system is of paramount
importance: little details that affect the dynamics may or may not
appear depending on the method used to simulate the equations, in
particular when dealing with noise; bad simulations may introduce
correlations difficult to spot that can predict non-physical results.

3.1 basic simulation method for the cp

The simplest way one can imagine to simulate a birth-death process
on a lattice is to actually simulate it directly in the classical sequential
way using probabilities instead of rates [26]. One constructs a lattice
and fills it with particles. Then for each time step a cell is chosen ran-
domly. If there is a particle there it dies with probability pdie = µ

(λ+µ)

or reproduces with probability pbreed = λ
(λ+µ) , where λ and µ are the

birth and death rates respectively. If a reproduction event is selected
a neighbor is chosen randomly and, if empty, a particle is placed. The
time is then updated with time-step dt = 1

N whereN is the number of
particles in the system before the update. This assures that on average
each particle will be processed at least once. The process in itself is a
continuous Markov process and this discrete formulation is not exact
in the short time, but the two share the same stationary properties
and long-time dynamics. If the rates are continuous functions of time
though ((λ = λ(t),µ = µ(t))) this simulation method is not correct.
A rate indicates the number of events per second, but in translating
it into probabilities this meaning is lost. A process with doubled
rates proceeds at doubled speed, but such doubled rates lead to the
same probabilities. Moreover for pdie and pbreed to be probabilities
they must always sum to one. When rates change in time as in our
case this is not always assured. We then need simulation techniques
whose solutions are exact solutions of the master equation.

3.2 gillespie methods

With the term Gillespie methods we generally refer to a way of simu-
lating a continuous deterministic process as a discrete stochastic one.
This way of approaching the problem was first invented by Doob and
others around 1945 and popularized by Gillespie years after when

20
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he used it to simulate chemical systems of reactions. In his 1977 pa-
per he describes the algorithm whose pivotal points are separately
extracting when the next reaction will occur and which reaction occurs
[11] . To show this, consider a system of N chemical species X1, ...,XN
undergoing M chemical reactions with rates a1(X)...aM(X). Now the
entire algorithm is based on the fundamental premise of chemical ki-
netics that states that the probability that reaction k takes place in a
small time interval [t, t + ∆t] is given by ak(X(t))∆t+ o(∆t). Then
the algorithm reads:

1. Initialize the system, setting the number of molecules
and t = 0.

2. Calculate the rates for every reaction and the total rate
a0(X) =

∑M
k=1 ak(X)

3. Sample a uniform random number r1 in the interval (0,1). Ex-
tract the time-step to the next reaction ∆ sampling it from en ex-
ponential distribution weighted by the total rate: ∆ = a−10 log ( 1r0 )

4. Sample another uniform random number in (0,1) r2 to chose
the reaction µ that occurs. The choice is made such that

µ−1∑
k=1

ak < r2a0 6
µ∑
k=1

ak

5. set t = t+∆ and update the number of each molecular species
depending on the reaction µ, then return to step 2 or quit.

This methods overcomes the problem stated in the previous section
by computing the next reaction time extracting it from an exponential
distribution based on the assumption that the rate can be considered
constant at least during the time-step. Then it chooses the next reac-
tion essentially as the previous method. Although being the correct
approach for simulating models with fixed rates, it cannot work for
continuously varying rates as it is. In fact, at each step it computes
the time-step ∆ using the current value of the rates which can change
a lot before the next reaction occurs. Nevertheless we tried it and it
actually works quite well for rates with medium to large correlation
time, since on average they remain almost constant for large chunks
of time. As expected it fails for short correlation times and then it
cannot be used to confirm our theoretical predictions.

3.3 anderson’s algorithm: a modified next
reaction method

The method we finally used it’s a modified version of the Gillespie
algorithm developed by Anderson [3]. To illustrate the algorithm the
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first step is to show how the Gillespie algorithm can be represented
using Poisson processes. Calling νk and ν ′

k the vectors representing
the number of each species created and consumed in the kth reaction
we can write an equation for the evolution over time of the chemicals

X(t) = X(0) +
M∑
k=1

Rk(t)(νk − ν
′
k) (53)

where Rk(t) represents the number of times that the kth reaction has
taken place up to time t. It can be shown [23] that, based on the fun-
damental premise, Rk(t) is a counting process with intensity ak(X(t))
so that it can be restated as an independent unit rate Poisson process
Yk(t) with internal time Tk(t). The latter is given by the integrated
rate

Tk(t) =

∫t
0

ak(X(s))ds (54)

Rk(t) = Yk(Tk(t)) (55)

Then equation 53 can be rewritten

X(t) = X(0) +
M∑
k=1

Yk(Tk(t))(νk − ν
′
k) (56)

This representation of the problem shows that the Poisson processes
account for the whole randomness in the system and that there are
M+ 1 significant time frames: the absolute one in which the system
evolves and one for each of the Poisson processes.
Now, denoting by Pk the first firing time of the Poisson process Yk in
its time frame

Pk = min {s > Tk : Yk(s) > Y(Tk)} (57)

we can use equation 55 to obtain the absolute time interval required
for the Poisson process to fire, assuming the rate ak remains constant:

∆tk =
Pk − Tk
ak

(58)

In this way we know that the next reaction to take place and the
absolute time steps required are given by the minimum ∆tk over all
values of k = 1, ...,M. The algorithm goes as follows:

1. Initialize time and number of molecules.

2. Calculate the rates ak.

3. Generate M independent and uniform random numbers in the
interval (0,1) rk.
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4. Calculate Pk from an exponential distribution Pk = + log (1/rk)

for each k.

5. Compute ∆tk = Pk−Tk
ak

for each k.

6. Find the minimum time-step ∆ = mink {∆tk}. We denote µ the
corresponding reaction.

7. Update the number of molecules corresponding to reaction µ
and time t to t+∆.

8. For each k, set Tk = Tk + ak∆.

9. Update the internal firing time for reaction µ generating a uni-
form random number in (0,1) r and setting Pµ = Pµ + log (1/r)

10. Recalculate the rates and start again from step 5.

So far we assumed that the rates don’t depend explicitly on time but
just on the number of molecules. This algorithm is completely equiv-
alent in terms of computational expense and results to the next reac-
tion method by Gibson and Bruck [10]. The main and most important
difference though is that Anderson’s algorithm can be easily adapted
to any type of time dependence of the rates whereas the next reaction
method can’t apart from special cases. Anderson’s method remains
the same but it may not be possible to solve equation 55 directly. ∆tk
is then found by solving∫t+∆tk

t

ak(X(s))ds = Pk − Tk (59)

Now that we have a proper way to simulate a contact-process like
system with rates depending explicitly on time we need to apply it to
our system. In our case we have two rates, one of which is constant.
We obtain the following equations

∆tdeath = Pdeath − Tdeath (60)

λ̄∆tbirth +

∫t+∆tbirth

t

ξ(s)ds = Pbirth − Tbirth (61)

Here a small complication arises: our birth rate depends on time
stochastically. Moreover, the method has an anticipating nature. For
example imagine we compute the two time steps and ∆tdeath results
to be the shortest. Then a death will occur and time will start again
from t + ∆tdeath. But then ∆tbirth has been calculated with a O.U.
path that goes longer than t+∆tdeath and must not be forgotten. We
then need to compute the O.U. before and keep track of it’s values
on a temporal grid with fixed time-step. The grid goes from the
present t to a t ′ large enough and it is continuously updated as the
time moves. The grid’s time-step has to be small enough so that the
integral can be evaluated properly and must be quite smaller that the
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O.U. correlation time τ. To compute the OU at any time step, we use
a linear interpolation from the grid’s stored values. Since the grid’s
time-step is usually very small this is a legit procedure.



4 S TAT I O N A R Y S TAT E
D I S T R I B U T I O N S

4.1 introduction

We are now ready to present the main subject of this work: a contact
process with unitary death rate and a birth rate subjected to environ-
mental OU noise. The decision to study this type of system originated
from the need to introduce temporal correlations in the study of bet-
hedging dynamics. Chapter 6 contains a full introduction to the sub-
ject; in the present and next chapters we will focus on the statistical
properties of this model without any reference to its applications. The
stochastic equation for this models is the following.

ρ̇ = (λ+ ξ(t))ρ(1− ρ) − ρ (62)

The control parameter is represented by the mean value of the birth
rate λ, since the OU noise has zero mean as defined by equation (43).
This equation does not contain the term accounting for the demo-
graphic noise, introduced in section 2.3.2. This does not mean our
equation is incorrect: it means it is an approximation valid for large-
size populations. For the OU noise ξ(t) we are using a particular
form which guarantees we can control the correlation time and the
standard deviation of this Gaussian process separately. Written as
in equation (49) the OU process has stationary variance Γτ

2 , where
Γ comes from the autocorrelation function as in equation (51). By
taking Γ = 2 and rewriting the equation in the following form

ξ̇ = −
ξ

τ
+
σ√
τ
η(t) (63)

The variance is now σ2 and it is not influenced by the correlation time
τ. The autocorrelation function now reads

〈ξ(t)ξ(t ′)〉 = σ2 exp (−
|t− t ′|

τ
) (64)

The main goal of this section is to derive a stationary probability den-
sity distribution for the density ρ alone. The Markovian system of the
joint process (ρ, ξ) made by equations (62) and (63) can be translated
into equation (52). We could ideally use it to find an equation for
the marginal probability P(ρ, t) alone, but this approach turned out
too complex. Instead, we used a Markovian approximation for the
system to retrieve a proper Langevin equation.

25
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4.2 the ucna

4.2.1 Review of the method

The U.C.N.A acronym stands for Unified Colored-Noise Approximation
and was developed by Jung and Hänggi [20]. It will allow us to
use general Markovian techniques to tackle the problem and most
importantly it will do this for any correlation time, in contrast with
the usual small τ approximations. The method basically consists in
an adiabatic elimination scheme combined with a time rescaling. To
explain it we will start from a general system of this form

ẏ = f(y) + ξ(t) (65)

ξ̇ = −
ξ(t)

τ
+
σ√
τ
η(t) (66)

where 〈η(t)η(t ′)〉 = 2δ(t− t ′). The method requires to start with a
stochastic equation (65) with additive noise. The first step consists
in deriving equation (65) with respect to time and then substitute ξ̇
from equation (66). Then, we introduce a new time scale t̂ = tτ−1/2

obtaining the following equation

ÿ+ γ(y, τ)ẏ− f(x) = σ
√
τξ(τ1/2t̂) (67)

where

γ(y, τ) = τ−1/2 − τ1/2
df

dy
(68)

It is important to notice that γ(y, τ) is positive whenever f ′(y) < 0

and that it approaches infinity both in the limit of vanishing τ and
infinite τ. The adiabatic approximation is carried out by setting ÿ = 0.
Thanks to the behavior of γ(y, τ) this approximation is valid when
τ → 0 and τ → ∞, that is, for a white noise and for a fixed-rates sys-
tem. Jung and Hänggi expect to verify its validity for any τ through
the confrontation with simulations, but as we will see on the next
section another interpretation sheds some light on the matter. From
this procedure we obtain another Langevin equation, but with multi-
plicative noise χ(t̂) instead:

ẏ =
f(y)

γ(y, τ)
+
σ 4
√
τ

γ(y, τ)
χ(t̂) (69)

Such equation must be interpreted as Stratonovich since we used the
usual calculus rules to obtain it. The corresponding Fokker-Planck
equation reads:
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Ṗ(x, τ)t̂ = −
∂

∂x
({
f(x)

γ(x, τ)
−
σ
√
τ
dγ(x,τ)
dx

γ3(x, τ)
}P(x, τ)t̂)

+ σ
√
τ
∂2

∂x2
{
P(x, τ)t̂
γ2(x, τ)

} (70)

whose stationary solution is:

Pstat(y, τ) = Z|1− τf ′(y)| exp [−

√
τ

2σ
f2(x)] exp

{√τ
σ

∫y
f(y ′)dy ′} (71)

where Z is as always the normalizing constant.

4.2.2 How to interpret the UCNA method?

Although the validity of this probability density can be ensured each
time by simulating the system, a more solid interpretation is desirable.
The above brief explanation on the validity of the UCNA method does
not clarify how exactly it interpolates the limit regimes of white noise
and constant noise. In [5] the authors interpret the UCNA method
from a path integral point of view. We provide a more detailed discus-
sion of this approach in the next chapter, although the path integral
formulation of stochastic processes is nowadays a standard technique.
We now show of this interpretation is derived. First we combine equa-
tions (62) and (63) in the limits of τ → 0,∞ and obtain the following
Langevin equations:

i [τ→ 0 ]

ẏ = f(y) + σ
√
τη(t) (72)

whose corresponding Fokker-Planck equation is

Ṗ(y, t) = −
∂

∂y
f(y)P+ σ2τ

∂2

∂y2
P (73)

ii [τ→∞ ]

ẏ = −
f(y)

τf ′(y)
−

σ√
τf ′(y)

η(t) (74)

whose corresponding Fokker-Planck equation is

Ṗ(y, t) = −
∂

∂y
{−

f(y)

τf ′(y)
−
σf ′′(y)

τf ′3(y)
}P+

σ2

τ

∂2

∂y2
f ′−2(y)P (75)
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In these limits we can see that the markovianity is naturally retrieved.
Associated with this Fokker-Planck equations are two Langrangians
L0 for the white noise and L∞ for the constant noise that read

L0(x, ẋ) =
[ẋ− f(x)]2

4σ2τ
+
f ′(x)

2
(76)

L∞(x, ẋ) =
[τf ′(x)ẋ+ f(x)]2

4σ2τ
−
1

2τ
(77)

In the same way, a Langrangian related to the UCNA Fokker-Planck
equation (70) can be found:

LUCNA(x, ẋ) =
1

4σ2τ
{[1− τf ′(x)]ẋ− f(x)}2

+
1

2
[1− τf ′(x)]−1f ′(x) (78)

We now observe that if we can find an appropriate function θ[τf ′(x)]
that satisfies the limit conditions

limτ→0θ[τf
′(x)] = 1 (79)

limτ→∞θ[τf ′(x)] = −[τf ′(x)]−1 (80)

then an interpolating Langrangian can be defined

LInt(x, ẋ) =
1

4σ2τ
{

ẋ

θ[τf ′(x)]
− f(x)}2 −

1

2
θ[τf ′(x)]f ′(x) (81)

Comparing this expression with the UCNA’s Langrangian it follows
that

θ[τf ′(x)] = [1− τf ′(x)]−1 (82)

From this point of view, the UCNA method can be interpreted as
the choice of an appropriate interpolating function between the Lan-
grangians associated with the extreme regimes τ→ 0,+∞. This inter-
pretation shows also how a general Markovian approximation can be
seen as a choice of θ and this can be used to compare different approx-
imations through the comparison of different interpolating functions.
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4.3 implementing the ucna

4.3.1 The stationary p.d.f.

We now apply the UCNA procedure to our system. We rewrite it in
this form

ρ̇ = λρ(1− ρ) − ρ+ ρ(1− ρ)ξ(t) (83)

ξ̇ = −
ξ

τ
+
σ√
τ
η(t) (84)

Since in equation (83) the noise is multiplicative, we first have to
change it into additive through a change of variable. The new vari-
able we will be working with is

u =

∫ρ dρ ′

ρ ′(1− ρ ′)

= log (
ρ

1− ρ
)

(85)

This change of variable modifies our working domain from ρ ∈ [0, 1]
to u ∈ [−∞,+∞]. Eq. 83 then becomes

u̇ = λ− 1− eu + ξ(t) (86)

In the notation of section 4.2 we then have

f(u) = λ− 1− eu (87)

Substituting this function into equation (71) and changing back to ρ
we obtain the stationary p.d.f.

P(ρ) = Z−1ρ
λ−σ2τ−1
σ2τ (ρ(τ− 1) + 1)(1− ρ)

1−λ
σ2τ

−2×

× exp

−

(λ(ρ−1)+1)2

(ρ−1)2
+ 2ρ
τ(1−ρ)

2σ2

 (88)

By means of this p.d.f. we can build a phase diagram and character-
ize our system. The term in this function that determines its behavior

is ρ
λ−σ2τ−1
σ2τ : when λ < λc = 1, a non-integrable singularity in ρ = 0

appears. This value of λ delimits then the absorbing phase since as al-
ready said in the previous chapters the only solution for equation (88)
is a delta function peaked on ρ = 0 for λ < 1. The first result of this an-
alytical study is that the influence of correlated environmental noise
does not shift the critical point, at least in the contact process. For
values of λ > 1 the function P(ρ) can be integrated successfully and
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Figure 8: A schematic representation of the phase diagram obtained with
the UCNA approach. From left to right are depicted the different
shapes of the p.d.f. for λ < 1, 1 < λ < λbim, λbim < λ < 1+ σ2τ,
λ > 1+ σ2τ,

so it represents a proper p.d.f. In this case though emerges a differ-
ence from the system with fixed rates. In the fixed-rates case, as soon
as the active phase is reached the probability P(ρ = 0) of reaching
the absorbing state is zero in the thermodynamic limit N→∞. With
the presence of environmental noise the active phase gets split in two
regions. The first spanning 1 < λ < 1+ σ2τ has P(ρ = 0) 6= 0 and
the second, for values λ > 1 + σ2τ, has P(ρ = 0) = 0. We remind
that we excluded the effects of demographic noise which may play a
fundemental role and change the present picture. The shape of this
p.d.f. rises a new question: is the condition of integrability sufficient
to define the active phase? Can the first region be properly called
“active”? Moreover, this region is itself divided into two subregions;
after a certain value λbim the distribution becomes bimodal, only to
recover its monomodality when λ > 1. The value of λbim does not
have a simple analytical form and must be found numerically. The
description done so far is summarized in figure 8 and in figure 9 on
page 32. We can see now how noise smeared the usual phase diagram
into a more variegated one in which the absorbing behavior slowly
blends into the active one. We also notice that by just looking at the
phase diagram it is not possible to understand if P(ρ) is bimodal or
not, and if a 〈ρ〉 > 0 has still a physical significance in such case, since
we know that once the absorbing state is reached the system cannot
escape from it. We know also that the description provided by the
Fokker-Planck equation is not too precise near the absorbing and re-
flecting states so all of this could be a problem of approximation. To
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better understand the situation we computed the extinction times, as
illustrated in the next chapter.

4.3.2 Comparison with simulations

In figure 10 is represented a comparison between the analytical p.d.f.
(solid lines) and the simulated ones (colored histograms). To produce
the histograms we used Anderson’s simulation algorithm illustrated
in section 3.3 removing the absorbing state. Without doing so the sim-
ulated systems would rapidly die as explained in the previous chap-
ters because of intrinsic demographic noise. To remove the absorbing
point we simply forced the birth of a particle every time the system
reached zero density: in the jargon of statistical physics these are
called quasistationary p.d.f.. The results are in very good agreement
with the analytical ones except for minor differences which do not
modify our conclusions. The graph in which analytical functions and
simulations seem to disagree is the one for τ = 0.1 but this is clearly
due to numerical errors since the region 1 < λ < 1+σ2τ spans a very
small interval.
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5 E X T I N C T I O N T I M E A N A LY S I S

In this chapter we analyze the problem of the extinction times of the
contact process with environmental noise. MET have already been
introduced in section 1.2.3. In this chapter we will present some ap-
proaches that can be adopted to solve the problem, show the results
in our case and compare them with simulations.

5.1 the backward fokker-planck method

As a first try to find the MET for our model, we adopted a classic ap-
proach based on the backward Fokker-Planck equation [9]. We know
that our density ρ lives in the interval [0, 1]. ρ = 0 is an absorbing
extreme since it is a sink for the probability flux and ρ = 1 is a reflect-
ing extreme since we cannot have densities bigger than one. We then
ask ourselves what is the values of the time T during which ρ lives
in the interval before “exiting” through zero. We consider then the
probability

Prob(T > t) = G(ρ, t) =
∫1
0

P(ρ ′, t|ρ, 0)dρ ′ (89)

The probability P(ρ ′, t|ρ, 0) obeys the backward Fokker-Planck equa-
tion which is an equivalent form of equation (21). In the case of
homogeneous processes it is

∂tP(ρ
′, t ′|ρ, 0) = [A(ρ)∂ρ +

1

2
B(ρ)∂2ρ]P(ρ

′, t|ρ, 0) (90)

The same equation holds then for G(ρ, t). We then define the MET, or
mean first passage time to the absorbing state starting from an initial
state ρ as

T(ρ) = −

∫∞
0

tdG(x, t)

= −

∫∞
0

t∂tG(ρ, t)dt

= −

∫∞
0

G(ρ, t)dt (after integrating by parts)

(91)

Equation (90) can be translated into a differential equation for T(ρ):

A(ρ)∂ρT(ρ) +
1

2
B(ρ)∂2ρT(ρ) = −1 (92)

34
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This equation is useless without the appropriate boundary conditions.
It can be showed that the proper boundary conditions in this case are
[9]

∂ρG(ρ = 1, t) = 0 (93)

G(ρ = 0, t) = 1 (94)

A closed form for T(ρ) is then

T(ρ) = 2

∫ρ
0

dy

ψ(y)

∫1
y

ψ(z)

B(z)
dz (95)

with

ψ(ρ) = exp [2

∫1
0

A(ρ ′)

B(ρ ′)
dρ ′] (96)

Although this is the classic way of approaching extinction times prob-
lems, since in our case we were looking for an analytical result equa-
tion (95) proved to be too difficult to solve.

5.2 the path-integral method

5.2.1 The method

Many stochastic processes can be seen from the alternative point of
view of the path-integrals. Every stochastic equation defines an en-
semble of paths that the dynamical variable can take depending on
the values of the random function. Without the random function (the
noise in our case), the equation would be deterministic and the path
the variable would take would be the one of minimum energy. The ba-
sic idea behind the path-integral approach is that in the phase space
defined by the set (X, Ẋ) of stochastic variables and their velocities
the paths still obey the constraints defined by the Langrangian func-
tion L(X, Ẋ). The probability density function defined in such phase
space and associated with each particular path will be exponential in
the action of the path itself, in WKB-like approximation :

P((X(t), Ẋ(t))) ∝ exp (−S[X(t), Ẋ(t))]) (97)

where the action S[X(t), Ẋ(t))] is

S[X(t), Ẋ(t))] =
∫
dtL(X(t), Ẋ(t))) (98)

In this framework, we can then interpret extinction as a special set of
paths which pass through the absorbing state. Between all of these,
the most probable ones will be the ones minimizing the action. We
restate the interpretation as follows: the extinction time is governed
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by rare paths that go rapidly to the extinction since they follow the
line of minimum action (the deterministic one), instead of bumping
back and forth because of random fluctuations. The extinction time is
then given by the inverse of the probability of this paths, that is, the
exponential of the action calculated upon them up to a prefactor

MET ≈ exp (S[X(t)min, Ẋ(t))min]) (99)

5.2.2 Applying the path-integral method

As we will see to make use of the path integral method it is not nec-
essary to derive a Langrangian function: one can use directly the an
Hamiltonian function associated with the Fokker-Planck equation of
the system. However, the Langrangian function highlights the impor-
tant variables that really weight the paths in the phases space. To gain
a deeper understanding of the topic in the next two paragraph we
will write the Langrangian for a OU noise and for the whole system
of equations (83) and (84) and show that they are the same function,
because of the non-markovianity of the ρ(t) process.

the langrangian of o.u. noise Lets consider now the simple
OU process of equation (63). Which is the associated Langrangian?
To obtain it, we first write (63) in the corresponding Fokker-Planck
form:

Ṗ(ξ, t) =
1

τ

∂

∂ξ
ξP(ξ, t) +

σ2

τ

∂2

∂ξ2
P(ξ, t) (100)

Similarly to the Schrödinger equation, by setting pξ = −∂ξ we can
rewrite this Fokker-Planck equation in the form Ṗ = HP where the
Hamiltonian H = H(ξ,pξ) reads:

H(ξ,pξ) = −
pξξ

τ
+
σ2pξ

2

τ
(101)

Interpreting pξ as a variable instead of an operator we treat H(ξ,pξ) as
a proper Hamiltonian. This allows us to recover the Langrangian
equation associated with equation (63) through a Legendre trans-
form:

L(ξ, ξ̇) = pξ(ξ, ξ̇)ξ̇−H(ξ,pξ(ξ, ξ̇)) (102)

To find pξ(ξ, ξ̇) we invert the Hamilton equation for ξ̇:

ξ̇ =
∂H

∂pξ

= −
ξ

τ
+
2σ2pξ
τ

(103)
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obtaining

pξ =
τ

2σ2
(ξ̇+

ξ

τ
) (104)

now we can write

L(ξ, ξ̇) =
τ

4σ2
(ξ̇+

ξ

τ
)2. (105)

Finally we can find the most probable path: it is the one minimizing
the action and the solution of the Euler-Lagrange equation:

∂L

∂ξ
−
d

dt

∂L

∂ξ̇
= 0⇔ ξ̈+

ξ

τ2
= 0 (106)

the langrangian for the whole system The very same proce-
dure applied in the previous paragraph can be used to derive the
Langrangian function of the whole system made by equations (83)
and (84). However, it is possible to know the Langrangian just by
looking at the system: the stochasticity of the equations is all inside
equation (84). Equation (83) is ”deterministic” once ξ(t) is known.
Thus, we expect the Langrangian to be the OU one. The Fokker-
Planck equation corresponding to the system

Ṗ(ρ, ξ, t) = −
∂

∂ρ
(λρ(1− ρ) − ρ+ ξρ(1− ρ))P(ρ, ξ, t)

+
1

τ

∂

∂ξ
ξP(ρ, ξ, t) +

σ2

τ

∂2

∂ξ2
P(ρ, ξ, t) (107)

Again, setting (pρ = −∂ρ, pξ = −∂ξ) and interpreting them as
variables instead of operators, the Hamiltonian associated with the
Fokker-Planck equation is

H(ρ,pρ, ξ,pξ) = pρ(λρ(1− ρ) − ρ+ ξρ(1− ρ))

−
ξpξ
τ

+
σ2pξ

2

τ
(108)

The Legendre transform immediately shows that the Langrangian
function is independent of ρ and ρ̇:

L(ρ, ρ̇, ξ, ξ̇) = pρ(ρ, ρ̇)ρ̇+ pξ(ξ, ξ̇)ξ̇−H(ρ,pρ(ρ, ρ̇), ξ,pξ(ξ, ξ̇))

= pρ(ρ, ρ̇)ρ̇+ pξ(ξ, ξ̇)ξ̇

− pρ(ρ, ρ̇)(ρ(1− ρ)(λ− 1) + ξρ(1− ρ))

+
ξpξ(ξ, ξ̇)

τ
−
σ2pξ(ξ, ξ̇)2

τ

=
τ

4σ2
(ξ̇+

ξ

τ
)2 = L(ξ, ξ̇)

(109)
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This result is a natural consequence of the non-Markovianity of the
process ρ(t). We can use equation (83) to translate L(ξ, ξ̇) into L(ρ, ρ̇),
obtaining

L(ρ, ρ̇) =
1

4σ2τ(ρ− 1)4ρ4
((τρ̇2 + ρ2(λ+ τρ̈+ ρ̇− 1)

− ρ(τρ̈+ 2τρ̇2 + ρ̇) + (λ− 1)ρ4 − 2(λ− 1)ρ3)2) (110)

which is not a proper Langrangian since it contains second deriva-
tives of ρ. Setting these derivatives to zero to obtain a true Lan-
grangian function in the variables (ρ, ρ̇) corresponds to a pretty strong
Markovian approximation.

the ucna To make use of the path-integral approach we then need
to use a Markovian approximation for our system. We already de-
veloped such approximation in the previous chapter and we can al-
ready derive a complete Hamiltonian for the variables (u,pu) from
the UCNA Fokker-Planck (70) with f(u) given by equation (87):

H(u,pu) =
√
τpu

(τeu + 1)3
(σ2τpu(τe

u + 1)

+ (λ− eu − 1)(τeu + 1)2 + σ2τ2(−eu)). (111)

This equation contains just u and pu so it is not necessary to com-
pute the Langrangian to understand which variables will effectively
contribute. We now show how we can directly use the Hamiltonian
function without first deriving the Langrangian: since the path min-
imizing the action is also the one of minimum energy, by setting
H(u,pu(u)) = 0 we can obtain pu(u) and write

S(u(t)) =

∫
L(u)dt

=

∫
{pu(u(t))u̇(t) −H(u(t),pu(u(t)))}dt

=

∫
pu(u(t))u̇(t)dt.

(112)

Solving H(u,pu) = 0 leads to

pu(u) =
1

σ2τ(τeu + 1)
(−λ− λτ2e2u − 2λτeu

+ σ2τ2eu + τ2e2u

+ τ2e3u + 2τeu + 2τe2u + eu + 1). (113)

In figure 12 we can see pu(u) represented with others paths in the
(u,pu) space as well with the direction of the trajectories. Now, to
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Figure 11: A representation of
V(u) =

∫
{(λ− 1) + eu}du

in the active, critical and
absorbing phases.

Figure 12: This image shows the
path of zero energy
pu(u) as well with the
trajectories of different
energies and their direc-
tions. For this example
we used λ = 1.2, τ = 5

and σ =
√
0.05.

compute the action we do not need to integrate over the whole do-
main of u [−∞,+∞]: as we already stated in section 1.2.3 the dynam-
ical variable is confined in a well. This well has a finite wall before
the absorbing point ρ = 0 in the variable ρ (see figure 5). When λ > 1
the potential in the variable u, obtained integrating the function f(u)
in equation (87), has an infinite wall instead as depicted in figure 11.
Since we are interested in the scaling behavior of the action and not
in the proper values of the integral, we can restrict the interval of
integration to [u(ρ = 1/N) = − log (N− 1),u?] where u? can be any
value as long as it is kept fixed and it is not a singular one (in this
case, u(ρ = 1) = +∞). This allows us to write

S(N) =

∫tfin

t0

pu(u(t))u̇(t)dt (114)

=

∫u(tfin)=log (N−1)

u(t0)=u?
pu(u)du (115)

= −

∫u?

log (N−1)
pu(u)du (116)

=
1

σ2τ
(
−λτ+ τ+ 1

N− 1
+ (λ− 1) log(N− 1) (117)

+ σ2τ log(
τ

N− 1
+ 1) +

τ

2(N− 1)2
(118)

+ eu
?
((λ− 1)τ− 1) + λu? − σ2τ log(τeu

?
+ 1) (119)

−
1

2
τe2u

?
− u?). (120)



5.2 the path-integral method 40

where the minus sign before the integration arises because of the
change of variable t → u: the actual path starts at u? and arrives at
log (N− 1). Since u? does not depend on the system’s size N, when
N≫ 1 we get the following asymptotic behavior:

S(N) ∼
λ− 1

σ2τ
logN. (121)

Thus by taking the exponential of the action we obtain our second
main result: the asymptotic behavior for large populations of the ex-
tinction times for the contact process with environmental OU noise:

MET(N) ∼ N
(λ−1)

σ2τ . (122)

kamenev et al. work The analysis we carried out thanks to the
path-integral approach was inspired by an article by Kamenev et al.
[21]. They were some of the early authors pointing out how colored
environmental noise could strongly reduce the MET of a model for
population dynamics. We will now apply their mathematical pro-
cedure to obtain again result (122) in the limit of small τ. In their
analytical work they consider the noise ξ(t) and the density ρ sepa-
rately: first they derive the Hamiltonian for a “fixed-rates” system
without extending ξ to the role of variable and then they weight
the paths with the Langrangian of the OU noise (105). We start
by writing the Fokker-Planck equation expanding the proper fixed-
rates master equation as explained in chapter 2, with the modification
λ→ (λ+ ξ(t)):

Ṗ(ρ, t) = −
∂

∂ρ
((λ+ ξ(t))ρ(1− ρ) − ρ)P(ρ, t)

+
1

2N

∂2

∂ρ2
((λ+ ξ(t))ρ(1− ρ) + ρ)P(ρ, t) (123)

The associated Hamiltonian is then:

Hξ(t)(ρ,pρ) = pρ((λ+ ξ(t))ρ(1− ρ) − ρ)

+
pρ
2

2N
((λ+ ξ(t))ρ(1− ρ) + ρ) (124)

whose term proportional to pρ2 vanishes in the large population size
limit, in which we can rewrite it

Hξ(t)(ρ,pρ) = pρ((λ+ ξ(t))ρ(1− ρ) − ρ) (125)

= H(ρ,pρ) + ξ(t)pρρ(1− ρ) (126)

where H(ρ,pρ) = Hξ(t)=0(ρ,pρ) Taking now the Legendre tranform
of the Hamiltonian but keeping the variables ρ(t) and pρ(t) we can
write the total action in this way:
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Sξ(t)[ρ(t),pρ(t)] =
∫
dt

τ

4σ2
(ξ̇(t) +

ξ(t)

τ
)2

+ pρρ̇− pρ((λ+ ξ(t))ρ(1− ρ) − ρ) (127)

and now derive with respect to ρ(t),pρ(t) and ξ(t) obtaining the fol-
lowing three equations

ρ̇ =
∂H(ρ,pρ)
∂pρ

+ ξ(t)ρ(1− ρ) (128)

ṗρ = −
∂H(ρ,pρ)

∂ρ
− ξ(t)ρ(1− 2ρ) (129)

ξ̈τ2 + ξ = 2σ2τpρρ(1− ρ) (130)

where equations (128) and (129) are the Hamilton equations for the
paths ρ(t) and pρ(t). In the limit of vanishing τ equation (130) be-
comes

ξ = 2σ2τpρρ(1− ρ). (131)

Substituting ξ into the Hamiltonian equations we obtain

ρ̇ =
∂H(ρ,pρ)
∂pρ

+ 2σ2τpρ[ρ(1− ρ)]
2 (132)

ṗρ = −
∂H(ρ,pρ)

∂ρ
− 2σ2τp2ρ(1− 2ρ)ρ(1− ρ) (133)

which can be seen as the Hamiltonian equations of an effective Hamil-
tonian

H(ρ,pρ)eff = H(ρ,pρ) + σ2τp2ρ[ρ(1− ρ)]
2. (134)

Now we can repeat the procedure illustrated previously. The path of
zero energy reads:

pρ(ρ) =
λρ− λ+ 1

(ρ− 1)2ρσ2τ
(135)

We can then write

S(N) =

∫tfin

t0

pρ(t)ρ̇(t)dt (136)

=

∫ρ(tfin)=
1
N

ρ(t0)=ρ?
p(ρ)dρ (137)

= −

∫ρ?
1
N

{ λρ− λ+ 1

(ρ− 1)2ρσ2τ

}
dρ. (138)
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where again we integrate from a starting point ρ? whose value is not
important as long as it is kept fixed and it is not singular for the path
(such as ρ = 1). We obtain

S(N) =
Nρ? − 1

σ2τ(N− 1)(ρ?)
+

(λ− 1)

(σ2τ)
log [

(N− 1)ρ?

1− ρ?
] (139)

which in the limit of N≫ 1 corresponds to (122).

5.2.3 Comparison with simulations and comment on the result

The path-integral approach gave us a critical exponent for the MET

κ =
λ− 1

σ2τ
(140)

Before commenting on the result, we stress again the fact that in our
analysis we excluded the term responsible of the demographic noise
because it would have introduced many complications in the Marko-
vian approximation. Our system is valid for population of large size
in which the environmental noise is the sole responsible for extinction.
As we can see from figure 13 this assumption is correct since the ana-
lytical scaling trend and the simulations are in very good agreement.
What conclusions can we take from exponent κ?

i The first important thing is that environmental noise induces alge-
braic scaling on the whole active phase. This is in contrast not
only with the fixed-rates case but also with the TGPs originat-
ing from white noise.

ii The second consequence is that the active region gets divided into
two sub-regions. For 1 < λ < 1+ σ2τ the MET scale sublinearly
while for λ > 1+ σ2τ they scale superlinearly.

iii The third conclusion is that the effects of σ and τ are combined in
a unique effective variance var = σ2τ.

Again, we spoke of “active” phase, but this results confirm what we
already knew from the analysis of the stationary distribution: we
must be cautious when speaking of a proper active phase since as we
can easily see a value of λ bigger than one doesn’t mean the phase
is active. The exponent grows linearly with λ so that there is no ac-
tual threshold after which we can say that the phase is active or still
absorbing. This behavior makes sense because there is always the
possibility that our birth rate samples from the absorbing phase val-
ues for a certain amount of time. If we take a look at the exponent, is
nothing more than the ratio between the distance from the absorbing
phase and the fluctuations of the birth rate. When σ grows this has
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the obvious meaning that there are more possibilities for the birth
rate to sample from the absorbing phase, but when τ grows it means
that despite being not so probable, if the birth rate samples from the
absorbing phase it keeps doing that for a grater amount of time.



5.2 the path-integral method 44

Figure 13: In these images we can appreciate the comparison between the
simulations and the analytical results of MET for different τ and
λ. The upper graph refers to OU noise with τ = 1 while the
lower to a OU noise with τ = 10. As we can see they are almost
all in very good agreement with the analytical trend, depicted as
a dashed line. Although the predicted behavior is clearly wrong
for λ = 1.6 and is not in good agreement for λ = 1.5, 1.4 the
simulations seem to suggest that the MET curves gets less steep
as the size grows. We then make the reasonable hypothesis that
the analytical results and simulated systems still agree but for
larger N. To certify it requires a computational effort beyond our
current means. All error bars are smaller than point markers.



6 B E T- H E D G I N G

6.1 what is bet-hedging about?

It is a common practice in biology and evolutionary ecology to clas-
sify at species and populations from their evolutionary strategies. A
species in a particular environment will develop a series of charac-
teristics that together form their strategy to survive. In a steady en-
vironment this strategy is either a winning one or one that leads to
extinction. In such a case, once a successful strategy has been found
the species should just stick to it. In terms of classical contact process
we could encode this in a fixed birth rate above the critical threshold.
When environmental conditions are rapidly changing though this pic-
ture does not hold anymore. It’s a long time conjecture that in these
type of situations, either when the environment conditions vary with
time or there is insufficient knowledge to find the optimal strategy,
implementing a bet-hedging strategy may save the species from extinc-
tion. A bet-hedging strategy consists in the parallel application of
two different strategies: the first one is a relatively safe one that guar-
antees a really slow but steady growth rate while the second one is
a rather risky one; its goodness depends on the environmental condi-
tion. On their own these two strategies lead to extinction on the long
time. Recalling the example of bacteria introduced at the beginning
of this report, if the population chooses to continue to process the
same sugar that’s running out it can only slow down the extinction
process. On the other hand, just randomly starting to process other
sugars without a real knowledge of their global concentration in the
environment is rather risky: what if it will not be enough? A move
such this one can be a deadly stab for the survival of a population.
Although it may seem paradoxical, bet-hedging strategies in nature
show that a combination of two potentially losing strategies makes a
winning one. Nowadays there’s been a large empirical confirmation
that bet-hedging-like strategies are actually implemented in nature
such as by bacterial and viral communities, insects or plants [6, 18,
32]. In game theory this effect has been formalized under the name
of Parrondo’s paradox [30]. The paradox states that a winning strat-
egy can be obtained by alternating two losing ones.
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6.2 bet-hedging with white noise

In the work by Hidalgo et al [17] the benefits of bet-hedging have been
studied computationally for dimension 1, 2, 3 and mean-field under-
lying the positive effects of stochastic demographics fluctuations; a
mean-field analysis supports and explains the point: bet-hedging ben-
efits are strongly enhanced in low-dimensional environments. Their
work is important since it shows that an effect of modest magnitude
in a fully connected network such as bet-hedging can make the differ-
ence when dimension decreases. They simulate their systems using
the basic technique explained in section 3.1. Here, they encoded the
low-gain strategy as a p0 fixed birth probability placed slightly below
the active phase threshold. The risky one is then represented by an
uncorrelated Gaussian white noise p(t) = p̄+σξ(t) centered at p̄with
variance σ2. Since it is also a probability σ cannot be too large to not
lose physical significance. In the simulation a selected cell chooses
with probability α the risky strategy and with probability 1− α the
low-gain one, with 0 6 α 6 1. As we can see in figure ??, they found
that there exist values of α for which the system passes from the
absorbing to the active phase. An explanation of how this can hap-
pen can be given in the mean-field approximation: the corresponding
Langevin equation for this system reads

ρ̇ = α[p(t)ρ(1− ρ) − (1− p(t))ρ]

+ (1−α)[p0ρ(1− ρ) − (1− p0)ρ] (141)

This equation is interpreted in the Itǒ sense. It can be rewritten keep-
ing just the linear leading terms in the form

ρ̇ ≈ (2pav(α) − 1)ρ+ 2ασρξ(t) (142)

where pav(α) = αp̄+ (1− α)p0 is the average spreading probability.
This form is quite valid near the critical point when ρ is still very
small. By a change of variable and using Itǒ’s calculus this equation
can be put in term of the exponential growth rate G(α) [17]

d

dt
< log ρ > = G(α) (143)

= −2σ2α2 + 2pav(α) − 1 (144)

The region in which G(α) is positive characterize the active phase,
where it’s negative the absorbing phase and where it’s zero the critical
point. What this tells us is that the critical point pc(α) interpolates
quadratically between the critical point of the pure strategies

pc(α) =
1

2
+ σ2α2 (145)
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where pc(0) = 1
2 and pc(0) = 1

2 + σ2. Since pav(α) interpolates
linearly with α this opens up the possibility for a window of values in
which the pure strategies are in the absorbing phase but the combined
strategy is in the active one, as depicted in figure ??. The important
thing to notice here is that these strong effect is due to the fact that the
critical point moves. This goes against the analysis done by Vezquez
and our results and we will discuss this in the concluding chapter of
this work. By fixing all parameters and maximizingG(α) with respect
to α it’s possible to obtain the optimum value α?. When p̄ < p0 we
have α? = 0, when p̄ > p0 + 2σ

2 we have α? = 1. For values of
p̄ in between those the optimum values is α? = (p̄− p0)/2σ

2. The
conclusion we can take is that a larger variability in the environment,
given by σ, widens the window of values in which is possible to have
an active phase by means of a bet-hedging strategy.

6.2.1 A note on the simulations

When simulating this processes there are two possible ways to up-
date the system: in parallel or sequentially. Sequential update is the
one already described in section 3.1. Parallel update, on the contrary,
means that every cell in the lattice is processed at each time step. In
the two cases the time step is different. The time step in the sequen-
tial update is changed every time depending on the number of active
sites in the system. The main difference between the two methods is
that in parallel updating every cell is subjected to the same environ-
mental conditions (when they depend only on time) while in sequen-
tial updating the conditions change since different cells are evaluated
at different times. The second difference is that in parallel updating
every cell is processed at each time step while the same holds for sequen-
tial updating just on average: it is possible that some cells may not be
processed at all. We could then say that parallel and sequential updat-
ing correspond to different physical dynamics. This important facts
can lead to very different outcomes and makes it hard to compare
systems simulated with one method or the other. Although in the
fixed-rate CP they produce very similar results, further investigation
is required when temporal noise is added.

6.3 bet-hedging with colored noise

When we introduce bet-hedging in the colored noise scheme it still
provides some advantages but not as strong ones as in Hidalgo’s
work. The Lagevin equation (141) is modified in this way

ρ̇ = α[(λ̄+ ξ(t))ρ(1− ρ) − ρ] + (1−α)[λ0ρ(1− ρ) − ρ] (146)

which can be rewritten into
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ρ̇ = λ?(α)ρ(1− ρ) − ρ+αξ(t)ρ(1− ρ) (147)

where λ?(α) = αλ+ (1− α)λ0. Once the equation is written in this
way we can just take the results of the previous chapters making the
substitutions λ → λ?(α) and σ → ασ. While the first substitution is
obvious, the second derives from a basic property of Gaussian func-
tions. In our analysis we are forced to exclude zero as a possible
values for α since this would mean a zero variance noise and the
change of variable needed by the UCNA method would not be pos-
sible. what we find applying the method showed in the previous
chapters is that the critical point remains fixed to λ? = 1 and that the
“second” critical point is placed in 1+ α2σ2τ. The coefficient of the
MET scaling Nκ turns into

κ =
λ?(α) − 1

α2σ2τ
(148)

Then in this case we can say that bet-hedging can have the positive
effect that taken two strategies, a fixed strategy λ0 sampled from the
absorbing regime λ?(α) 6 1 and a time-varying one with mean λ̄

sampled in the sub-linear scaling regime 1 < λ?(α) 6 1+ α2σ2τ, a
proper choice of α can get the bet-hedged one λ?(α) to be in the super-
linear scaling regime. Also, even if λ̄ is already in the super-linear
phase a bet-hedging strategy strongly increases the scaling exponent.
To prove this we can maximize the exponent with respect to α to find
the α? that gives the best results. It turns out it’s independent of both
σ and τ

α? = 2
(λ0 − 1)

(λ0 − λ̄)
(149)

Now we first notice that for α? to belong to (0, 1] it must be λ0 < 1.
Otherwise α? would be negative, meaning that the best bet is α = 0.
This obviously makes sense, meaning that when the fixed strategy λ0
(which we underline represents a fixed strategy in a evolving environ-
ment) is already a winning one there is no need to adopt bet-hedging.
Then, in the case λ0 < 1 for α? to be less then one, which means
the best strategy is the pure noisy one, we must choose λ̄ > 2− λ0.
Evaluating the exponent κ at α? we obtain

κα? =
(λ̄− λ0)

2

4σ2τ(1− λ0)
(150)

This equation tells us is that the greater the distance between λ̄ and λ0
and the nearer λ0 to the critical point, the grater the exponent is. Now
how to choose λ̄ and λ0 properly depends on several parameters since
the super-linear threshold 1+α2σ2τ moves also with τ and σ. When
σ2τ� 1 the bet-hedging strategy does not really have any advantage
since this represents the limit of zero variance noise and thus we re-
cover the noiseless dynamics. The sub-linear phase shrinks so much
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that any λ̄ bigger just a bit more than the critical point would have
a very large exponent and thus the pure noisy strategy would be al-
ready enough. The bet-hedging strategy would increase the exponent
if λ0 approaches one but this wouldn’t make a difference in practice.
As σ2τ grows the sub-linear region widens and bet-hedging effects
starts to be of practical value. Rising the fluctuations permits to lower
λ0 ( allowing more and more loosing strategies) although this must
be compensated by a larger λ̄. Parallel to this α? decreases because it
is inversely proportional to the distance between λ0 and λ̄, as we can
see in figures 14. This leads to the paradox that for σ2τ � 1 some
extreme behaviors are allowed, in which λ0 gets smaller and smaller
and also α?, while λ̄ grows larger and larger. These values represent
the unrealistic situation in which a population with a really losing
strategy is constantly saved by rare but very effective events in which
the environmental conditions are so good that the growth in this pe-
riods compensates the losses. These cases are obviously extreme and
do not represent a bet-hedging strategy in the sense we described.
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Figure 14: This images show the effects of colored-noise bet-hedging for
different values of τ, λ̄ and λ0 with fixed σ2 = 0.05. In the graph
are depicted the values of λ?(α), the super-linear threshold and
the variation of the exponent κ. In clockwise order we have
[τ=1, λ̄= 1.04, λ0=0.99], [τ=5, λ̄= 1.24, λ0=0.95], [τ=100, λ̄= 4,
λ0=0.95],[τ=100, λ̄= 4, λ0=0.7],[τ=100, λ̄= 2, λ0=0.95].



7 C O N C L U S I O N S

This work was born with the idea that time-correlation in the noise
would have added small or negligible effects to the already sound con-
clusions of Hidalgo and Muñoz work “Stochasticity enhances the gain-
ing of bet-hedging strategies in contact-process-like dynamics” [17]. Under
suggestion of Prof. Muñoz we decided to introduce them since they
are an intrinsic property of every system in nature, being it a popu-
lation of plants or animals, the spreading of an infection or a fire etc.
We then studied a contact-process system with a birth rate subjected
to a Ornstein-Uhlenbeck noise and a fixed unitary death rate. The
choice of an OU noise was due to the fact that it represents the most
general time-correlated noise and can account for many different en-
vironmental effects.

Carrying out this work not only we were able to obtain a series of re-
sults on how time-correlations modify the classic CP dynamics and to
know how wrong we were in our assumption, but most importantly
we gained a deeper understanding of temporal noise in general: on
how to treat it analytically, on the details and problems of simulat-
ing it, on the nature of temporal Griffiths phases. We where able to
gather in a unique and coherent framework a series of techniques and
approaches which can be readily applied to any other model. On the
analytical side we first studied the know effects of noise to confront
our analysis with the previous literature. From this point of view, this
work belongs to the general field of study of the effects of temporal
noise in dynamical systems began with Leigh [25] and to which be-
long also the works of Velasquez et al. [31] and Kamenev et al. [21]
that we directly confronted with ours in this Thesis.

To tackle the non-markovianity of our system we used a markovian
approximation developed by Jung and Hänggi (UCNA) [20] which al-
lowed us to use a large amount of traditional markovian techniques
to characterize our system. We concentrated our efforts into two dif-
ferent but complementary directions of work: obtaining the long time
steady probability distributions for the density and finding the scal-
ing function of the mean extinction times in the limit of large popula-
tions. The results gave us a coherent picture in which the fixed-rate
CP behavior is strongly modified: in the presence of environmental
time-correlated noise the whole active phase behaves as the temporal
Griffiths phases described in Velasquez’s work. Because of the expo-
nent function the scaling is so slow in the subcritical region that this
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lead us to question ourselves if we can still speak of a proper active
phase when noise is present. Finally, we applied the results to the
problem of bet-hedging with time-correlated noise which was at the
origin of the work. Our conclusion differ slightly from the one for the
white noise case. While a white-noise bet-hedged strategy can move
a population from the absorbing to the active phase, in the case of
colored-noise bet-hedging the effect is weaker: the colored-noise bet-
hedged strategy can move the population from the sub-linear scaling
region to the super-linear scaling region.

On the computational side we adopted exact simulation techniques,
adapting to our goal the method developed by Anderson [3]. This
gave us access to rapid confirmation of the analytical results having
the full control of the simulation process. This knowledge proved
to be of fundamental importance when needing to understand how
the little details of the model concurred to the final outcome and
confronting this results with the literature. The simulations corre-
sponded with very good agreement to our analytical results both for
the stationary probability distributions and the mean extinction times
trend for large populations. This represents an additional confirma-
tion of the goodness of the UCNA markovian approximation.

We conclude by underlining how works such as ours and several oth-
ers addressing the problem of time-correlations in stochastic models
are of great importance since they allow to overcome the white-noise
limit and allow a better description of reality, in which such time-
correlations are unavoidable and may play fundamental and unex-
pected roles.



A I TÔ -S T R ATO N O V I C H
D I L E M M A

a.1 introduction to the problem

In this appendix we outline the problem of interpretation of a Langevin
equation, generally referred to as Itô-Stratonovich dilemma, following
the great in-depth chapter from [22]. Let us consider the following
general Langevin equation:

ẏ = A(y) +C(y)L(t) (151)

with L(t) a zero-mean, delta-correlated function of time. When C(y)
is a constant function of time C(y) = C̄, each sample function L(t)
uniquely determines the process y(t) for a given y(0). y(t) is a
Markovian process, obeys a proper master equation and its associ-
ated Fokker-Planck equation reads

Ṗ(y, t) = −
∂

∂y
A(y)P(y, t) +

ΓC̄2

2

∂2

∂y2
P(y, t) (152)

In this situation equation (151) can be readily rewritten in an integral
form

∆y = y(t+∆t) − y(t) =

∫t+∆t
t

A(y(s))ds+ C̄

∫t+∆t
t

L(s)ds (153)

It is this form which clearly provides all the information related to
the physical process. For a general non-constant function C(y) in fact
equation (151) as it stands has no well-defined meaning. In order to put it
into an integral form we must additionally choose which value of y(t)
use to evaluate the function C(t). The problem is due to the particular
mathematical complications given by the nature of white noise: L(t)
is a singular stochastic function. It can be informally visualized as
a sequence of consecutive delta peaks arriving at random times that
modify the process y(t). Which value of y(t) should be inserted in
function C(y)? We have an infinite set of interpretations depending
on the value of the variable α ∈ [0, 1] parameterizing the interval
[t, t+∆t] such that

∆y(α) = y(t+∆t) − y(t) =

∫t+∆t
t

A(y(s))ds

+C(αy(t) + (1−α)y(t+∆t)))

∫t+∆t
t

L(s)ds (154)
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Although there are countless available choices, the problem is gen-
erally reduced to two main interpretations: the Itô interpretation
αItô = 0 and the Stratonovich interpretation αStrat = 1/2.

a.2 the interpretations

a.2.1 Stratonovich interpretation

The integral form of the Stratonovich interpretation is

∆y(α) = y(t+∆t) − y(t) =

∫t+∆t
t

A(y(s))ds

+C(αy(t) + (1−α)y(t+∆t))

∫t+∆t
t

L(s)ds (155)

The Stratanovich interpretation can be related to the physical proce-
dure of considering a stochastic differential equation in the form (151)
with finite time-correlated noise L(t) associated with a real system
(which has always some kind of time correlation) and then physically
reduce the correlation time τ: in the limit of τ→ 0the Wong-Zakai the-
orem states that the stochastic solution of such an equation becomes
the solution of a Langevin equation of the same form interpreted as
Stratonovich. The associated Fokker-Planck equation reads

Ṗ(y, t) = −
∂

∂y
[A(y) +

Γ

2
C(y)C ′(y)]P(y, t)

+
Γ

2

∂2

∂y2
[C(y)]2P(y, t) (156)

a.2.2 Itô interpretation

The integral form of the Itô interpretation is

∆y(α) = y(t+∆t) − y(t) =

∫t+∆t
t

A(y(s))ds

+C(αy(t))

∫t+∆t
t

L(s)ds (157)

and the associated Fokker-Planck equation reads

Ṗ(y, t) = −
∂

∂y
A(y)P(y, t) +

Γ

2

∂2

∂y2
[C(y)]2P(y, t) (158)

This interpretation brings in an unexpected complication: it makes
the Langevin equation incompatible with the usual calculus rules.
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A new calculus, called Itô’s calculus, must be developed. We stress
the fact that because of Wong-Zakai theorem the Itô interpretation
cannot be obtained as a limit of the correlated case: it cannot be for-
mulated unless τ is strictly zero.

a.3 which interpretation should be chosen?
internal and external noise

There is no correct or incorrect interpretation of the Langevin equa-
tion, but each of them is more suited in certain cases than others. It is
not just a matter of mathematical rigor: every interpretation is asso-
ciated with a different physical system. One must consider first of all
the nature of the noise studied and then decide which interpretation
is the most appropriate one. Then it is possible to switch between
different interpretations [9] in order to ease the solution of problem
because the nature of the coefficients A(y) and C(y) is well-defined.
We can divide noise in two classes: external noise and internal noise. A
noise belongs to the external class when it represents a random force
applied on an otherwise deterministic system, such as the influence of
the environment in the growth of populations or a noise generator in-
serted in an electric circuit. In such a case, the coefficient A(y) comes
directly from the deterministic equation of the isolated system and
the noise term can be added with or without the coupling C(y). In
this situations the Stratonovich interpretation is a better choice since
the correlation time of this type of noise can be physically amplified
or reduced externally. Also, it is legit to model this kind of systems
setting A(y) from macroscopic properties and then add the noise, as
it is usually done by physicists. However as we have seen for the
fixed-rate CP master equation there exist cases in which the noise is
an intrinsic property of the system and cannot be “macroscopically
tuned”. The demographic noise is an exemple of such internal noise.
The origin of internal noise is due to the fact that real systems are
composed of discrete individuals (or particles, sites etc.) and it pro-
ceeds through jumps given by the concurring effects influencing the
order parameter such as births and deaths in population dynamics.
These random jumps are then translated into a random noise when
switching to the continuous formulation given by the Langevin equa-
tion as we have seen in section 2.3.2. Internal noise cannot be turned
off as long as the dynamics proceeds and this has the important con-
sequence that the system cannot be “isolated” from internal noise.
Therefore, it does not exist a proper deterministic A(y) that can be
derived from macroscopic considerations. Choosing a proper inter-
pretation for internal noise is a delicate matter and this is particularly
true if a system has an absorbing state. As we saw in the first chap-
ters an absorbing state is a fluctuation-free one. Depending on the
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type of coupling the system has with the noise, the interpretations
that may allow the system to recover from the absorbing state must
be excluded. The most evident case for which this happens is for
the Langevin equation with demographic noise (29) in which we put
f(ρ) = γρ for sake of simplicity. In this equation the internal noise
is coupled with the square root or the density and should then dis-
appear at the absorbing state ρ = 0. If we interpret the equation as
Stratonovich tough, there is the possibility for the dynamic to escape
the absorbing state due to the anticipating nature of this interpretation:
if at time t the density reaches zero, in the Itô interpretation we have

ρ(t+∆t) = γρ(t) +α
√
ρ(t) + ρ(t) = 0 (159)

while in the Stratonovich we have

ρ(t+∆t) = γρ(t) +α

√
ρ(t) + ρ(t+∆t)

2
+ ρ(t) (160)

which can be different from zero. This can also be seen with the
corresponding Fokker-Planck equations: the Itô equation gives the
following Fokker-Planck

Ṗ(ρ, t) = −γ
∂

∂ρ
ρP(ρ, t) +

α2Γ

2

∂

∂ρ2
P(ρ, t) (161)

and the Stratonovich interpretation gives

Ṗ(ρ, t) = −
∂

∂ρ
(γρ−

α2Γ

2
)P(ρ, t) +

α2Γ

2

∂

∂ρ2
ρP(ρ, t) (162)

Since the coefficient of the first derivative corresponds to 〈ρ(t)〉 [22]
we can see that with the Stratonovich equation we obtain a wrong
value meaning the process actually escapes from the absorbing state.
These considerations are valid in general for every coupling that
should vanish at the absorbing state.
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