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[...] we may admit in private that the wind is cold on the peaks of
abstraction. The fact that the objects and examples in functional anal-
ysis are themselves mathematical theories makes communications with
non-mathematicians almost hopeless and deprives us of the feedback
that makes mathematics more than an aesthetical game with axioms.
The dichotomy between the many small and directly applicable mod-
els, and the large, abstract supermodel cannot be explained away. Each
must find his own way between Scylla and Charybdis.

Pedersen, G.K., Analysis Now, Springer, New York, 1989.

To my future wife Anna, with love



3

PREFACE

Many marketing policies can be correctly explained and analyzed
only through a stochastic approach to the problem. In this thesis the
planning of a pre-launch publicity campaign has been studied using
the stochastic control theory and some recent results of the stochastic
linear quadratic control theory. We assume that a firm controls the
goodwill evolution of a product through the advertising flow, or some
other communication channel, in the programming interval [0, T ]. The
advertising flow increases the goodwill level which otherwise sponta-
neously decreases. Such hypotheses have been introduced by Nerlove
and Arrow in a deterministic framework and have led to the develop-
ment of a model class called “advertising capital model”, in which the
advertising flow is considered as an investment in goodwill (a stock
which represents the firm image in the market). In this work:

• we assume that the advertising effects on the goodwill evolu-
tion are stochastic;

• we describe the effects of the word-of-mouth publicity, by in-
troducing a diffusion term representing the goodwill volatility;

• we assume that the firm can use different advertising channels.

Using the stochastic control theory, under these new assumptions we
can introduce a general model that describes the economic problem.
The presence of a control in the diffusion term makes the problem math-
ematically interesting and different from the one studied through the
deterministic approach as well as from the one introduced by Tapiero
in a stochastic framework. Since the problem is so general, we can-
not obtain any solutions in a closed form and it is therefore necessary
to specialize it, in order to study some sub-problems which are both
simple from a mathematical point of view and relevant for their eco-
nomic features. At first, we study the introduction of a new product
in the market with the aims of maximizing the expected utility coming
from the goodwill level at the launch time T and minimizing the to-
tal advertising costs. In fact, we summarize these interesting elements
for the decision-maker in the same objective functional. The problem
is solved using the generalized differential Riccati equation when the
utility and the advertising cost functions are quadratic. In this sit-
uation the decision-maker is risk proclive and hence the advertising
policy is more aggressive than the one obtained in the deterministic
case because the introduction of risk in the system is considered as a
further utility. Then we consider the possibility of using two different
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advertising channels for the planning of an event (e.g. a concert or
a workshop) characterized by a limited number of seats. For such an
event the firm wants to drive the goodwill in order to obtain a final
demand as close as possible to the congestion threshold minimizing the
total advertising costs. The problem is solved when the advertising cost
function and the penalty function are quadratic. The results obtained
permit us to compare the efficiency of the two advertising channels and
to establish how much the risk connected with the stochastic channel
influences its usage. Moreover, we can see that the problem remains
well-defined even though the advertising costs of the stochastic chan-
nel become negligeable (in such hypotheses the analogous deterministic
problem is singular), because the risk connected with this channel can
be seen as a further cost. Both problems are solved using some recent
results of the stochastic linear quadratic control theory connected with
the Riccati equation. This approach permits us to find the optimal
control in the feedback form. The comparison between the determin-
istic and the stochastic results is rather interesting because, when the
control affects directly the diffusion term of the motion equation, the
two approaches give different optimal policies. This work is composed
of two parts. In the first part, which is made up of four Chapters,
we introduce the mathematical instruments that are used, while in the
second part, which presents the new results, we discuss the market-
ing models and the solutions obtained. More specifically, Chapter 1
is a summary of the stochastic calculus instruments. In Chapter 2
the general results of the forward and backward stochastic differen-
tial equations are presented. The formulation of an optimal control
problem in a stochastic framework is the topic of Chapter 3. In the
same Chapter we describe the necessary conditions, which consist in
Peng’s Maximum Principle. In Chapter 4 we deal with the stochas-
tic linear quadratic control problem and we describe the generalized
Riccati equation that, under suitable hypotheses, represents necessary
and sufficient conditions for the optimality. Chapter 5 opens the sec-
ond part of this work. Here, we introduce the general model for the
launch of a new product in the market. In the following two particular
sub-problems are studied: they are interesting for their mathematical
characteristics and their economic interpretations. In Chapter 6 we
formulate and solve a stochastic extension of the Nerlove and Arrow’s
advertising model with one communication channel, by assuming that
the cost and utility functions are quadratic. In Chapter 7 the commu-
nication mix problem for an event planning is introduced and solved.
The results obtained permit us to compare the efficiency of different
advertising channels. Chapter 6 and 7 are conceived as independent
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works to permit a separate reading. This choice may give the im-
pression of redundance which is however necessary to make the two
Chapters complete and autonomous. Finally, in Chapter 8 we sum-
marize our analysis and present some further research directions which
seem promising.
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PREFAZIONE

Molte politiche di marketing possono essere correttamente spiegate
e analizzate solo grazie ad un approccio stocastico al problema. In
questo lavoro la pianificazione di una campagna pubblicitaria, che pre-
cede l’introduzione di un prodotto nel mercato, è stata studiata uti-
lizzando il controllo stocastico e sfruttando alcuni risultati recenti di
controllo stocastico lineare quadratico.

Si suppone che un’azienda controlli, attraverso il flusso di pub-
blicità o di altre forme di comunicazione, l’evoluzione del goodwill di
un prodotto durante l’intervallo di programmazione [0, T ]. La comu-
nicazione pubblicitaria contribuisce ad incrementare il livello di good-
will (una variabile di stato che riassume gli investimenti pubblicitari
dell’azienda) che altrimenti, senza un’azione diretta, è soggetto ad un
decadimento spontaneo. Tali ipotesi sono state introdotte da Nerlove e
Arrow in un contesto deterministico e hanno portato a sviluppare una
famiglia di modelli, chiamati “advertising capital model,” nei quali
il flusso pubblicitario è considerato come un investimento nello stock
goodwill: un titolo che rappresenta l’immagine dell’azienda nel mer-
cato. In questo lavoro:

• si suppone che gli effetti della pubblicità sull’evoluzione del
goodwill siano stocastici;

• si descrive l’effetto della pubblicità “passaparola” con l’inseri-
mento di un termine di diffusione che rappresenta la volatilità
del goodwill;

• si suppone che l’azienda possa operare con diversi canali pub-
blicitari sull’evoluzione del goodwill.

Queste novità portano alla formulazione di un modello generale
che descrive il problema economico utilizzando la teoria del controllo
stocastico: la presenza del controllo nel termine di diffusione rende il
problema matematicamente interessante e sostanzialmente diverso sia
da quello affrontato nell’approccio deterministico, sia da quello pro-
posto in termini stocastici da Tapiero. La generalità del modello non
permette di ottenere soluzioni in forma chiusa ed è quindi necessario
specializzarlo trattando dei casi particolarmente semplici, ma che man-
tengono un’interpretazione economica interessante.

Inizialmente si studia l’introduzione nel mercato di un nuovo pro-
dotto con l’obiettivo congiunto di massimizzare l’utilità attesa, deri-
vante dal valore del goodwill all’istante di lancio T , e di minimizzare la
spesa totale in comunicazione. In realtà si includono entrambi questi



8

elementi di interesse per il decisore in un unico funzionale obiettivo. Il
problema viene risolto nel caso di costi ed utilità quadratici, utilizzando
una generalizzazione dell’equazione di Riccati. In questa situazione il
decisore è propenso al rischio e quindi la politica pubblicitaria risulta
più aggressiva rispetto a quella che si ottiene nel caso puramente deter-
ministico poiché l’introduzione di elementi di rischio nel sistema viene
vista come una possibile opportunità di utilità aggiuntiva.

In seguito si prende in considerazione il possibile utilizzo di due
forme di comunicazione per l’organizzazione di un evento (e.g. un con-
certo oppure un workshop), caratterizzato da un numero limitato di
posti disponibili, per il quale si vuole che la domanda sia il più vi-
cino possibile alla soglia di congestione, ancora compatibilmente con
la spesa totale in comunicazione. Il problema viene risolto nel caso di
funzione costo e funzione di penalità quadratiche: i risultati ottenuti
permettono di confrontare l’efficacia dei due canali pubblicitari e di sta-
bilire quanto il rischio connesso con il canale stocastico influenzi il suo
utilizzo. Inoltre si vede come, anche supponendo che il costo del canale
stocastico diventi nullo, il problema continui ad essere ben posto (in tali
ipotesi l’analogo problema deterministico diventa singolare) poiché il
rischio connesso con l’azione del decisore può essere interpretato come
un costo aggiuntivo.

Entrambi i problemi sono affrontati utilizzando alcuni risultati re-
centi della teoria del controllo stocastico lineare quadratico e della ge-
neralizzazione dell’equazione di Riccati. Questo approccio permette di
calcolare il controllo ottimo e di esprimerlo in forma di feedback. Par-
ticolarmente interessante risulta il confronto fra le soluzioni ottenute
in ambiente stocastico e quelle ricavate supponendo che la legge di
evoluzione del goodwill sia l’analoga deterministica. Infatti si osservano
notevoli differenze tra i due approcci quando il parametro di controllo
influisce direttamente sul termine di diffusione dell’equazione del moto.

Questo lavoro è diviso in due parti: nella prima, che comprende i
primi quattro capitoli, si introducono gli strumenti matematici utiliz-
zati, nella seconda, che presenta i contributi originali, vengono discussi
i modelli nell’ambito del marketing e i risultati ottenuti. Scendendo
più in dettaglio il Capitolo 1 rappresenta un riassunto degli strumenti
di calcolo stocastico utilizzati. Nel Capitolo 2 vengono presentati i
risultati generali legati alla teoria delle equazioni differenziali stocas-
tiche sia forward che backward. La formulazione in ambito stocas-
tico di un problema di controllo ottimo è l’argomento del Capitolo 3,
dove vengono anche descritte le condizioni necessarie per l’ottimalità
che consistono nel Principio del Massimo dimostrato da Peng. Nel
Capitolo 4 ci occupiamo di problemi di controllo lineare quadratico e
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descriviamo la generalizzazione dell’equazione di Riccati che, sotto le
opportune ipotesi, rappresenta condizioni sia necessarie che sufficien-
ti per l’ottimalità. Nel Capitolo 5, che apre la seconda parte, viene
introdotto il modello generale per il lancio di un nuovo prodotto nel
mercato, mentre nei due capitoli seguenti vengono trattati due sot-
toproblemi che ammettono una buona trattabilità matematica e che
mantengono una interessante interpretazione economica. Nel Capitolo
6 è formulata e risolta un’estensione stocastica del modello di Nerlove
e Arrow con un solo canale pubblicitario, supponendo che le funzioni
di costo e di utilità siano quadratiche. Nel Capitolo 7 viene presen-
tato e risolto il problema di marketing mix legato alla campagna di
preparazione di un evento. I risultati ottenuti ci permettono di con-
frontare l’efficacia di diverse forme di comunicazione. I Capitoli 6 e
7 sono stati concepiti come indipendenti per permettere una lettura
parziale di questo lavoro. Questa scelta può creare ridondanza, ma
è necessaria per rendere i due capitoli completi ed autonomi. Infine,
nel Capitolo 8, sono riassunti i risultati dell’analisi effettuata e sono
proposte alcune direzioni di ricerca che appaiono particolarmente in-
teressanti.
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CHAPTER 1

Stochastic Calculus

1. Notation

Given a probability space (Ω, E , P) and a time interval [0, T ], a
stochastic process is a function

Xt (ω) : [0, T ] × Ω → Rn .

For every fixed ω̄ ∈ Ω the function Xt (ω̄) : [0, T ] → Rn is a sample
path or a trajectory of the process. Generally, the probability space
(Ω, E , P) is equipped with a filtration {Gt}t∈[0,T ], which is an increasing

sequence of sub-σ-fields of E : for all t, s ∈ [0, T ] with t < s

Gt ⊂ E ,
Gt ⊂ Gs .

The filtration models the arrival of the information during the time
interval [0, T ]: at the time t̄ we exactly know whether an event G ∈ Gt̄

occurs or does not occur. Usually, the filtration is required to satisfy
some technical assumptions:

completeness: G0 contains all the P-null sets of E ;
right continuity: for every fixed t̄ ∈ [0, T ] and for every ε ∈

(0, T − t̄) the following relation holds:
⋂

t∈(t̄,t̄+ε)

Gt = Gt̄ .

A filtration that satisfies these conditions (called “usual conditions”)
is called standard, and a probability space equipped with a standard
filtration is called a standard filtered probability space.

A stochastic process is adapted to a filtration if and only if for every
fixed t̄ ∈ [0, T ] the random variable Xt̄ (ω) is measurable with respect
to the σ-field Gt̄. If a process is adapted, then for every fixed t̄ ∈ [0, T ]
we can use the information contained in Gt̄, and therefore we know the
true path of the process up to the time t̄.

In the following, we always work in a filtered probability space
(
Ω, E , {Gt}t∈[0,T ] , P

)
,

13
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where a Wiener process Wt (ω) is defined: i.e. an adapted stochastic
process that has the following characteristics:

• P ({ω ∈ Ω : W0 (ω) = 0}) = 1;
• for all s, t ∈ [0, T ], s ≤ t, the random variable Wt (ω) −

Ws (ω) is independent of Gs;
• for all s, t ∈ [0, T ], s ≤ t, the random variable Wt (ω) −

Ws (ω) is normally distributed with mean 0 and covariance
matrix (t − s) I (I is the identity matrix).

In other words, the third property means that for all s, t ∈ [0, T ], if
s ≤ t then

E (Wt (ω) − Ws (ω)| Gs) = 0 ,
E
(
(Wt (ω) − Ws (ω)) (Wt (ω) − Ws (ω))′

∣∣Gs

)
= (t − s) I .

It can be proved [6, p.25], [28, p.21] that a Wiener process Wt (ω) has
almost surely continuous trajectories: i.e. there exists N ∈ E such that
P (N) = 0 and for all ω̄ ∈ Ω \ N the function Wt (ω̄) : [0, T ] × Ω →
Rn is continuous. Moreover, given a m-dimensional Wiener process
Wt (ω) = (W 1

t (ω) , ..., W m
t (ω)), we can show that each component is

an independent one-dimensional Wiener process with respect to the
same filtration [14, p.6].

The filtration generated by the process Wt (ω) is defined as follows:

FW
t = σ {Ws (ω) : 0 ≤ s ≤ t}

(it is the smallest sub-σ-field of E which makes all the random variables
Ws (ω) measurable for all s ∈ [0, t]). In order to obtain a standard
filtration we have to augment the filtration FW

t with the set NE which
contains all the P-null sets of the σ-field E :

Ft = σ
{
FW

t ∪ NE
}

.

It can be proved that the augmented natural filtration {Ft}t∈[0,T ] is

standard and that the process Wt (ω) is a Wiener process even with
respect to the augmented natural filtration [6, p.58], [28, p.23].

Remark 1. In the following, we always implicitly assume that we
work in a probability space (Ω, E , P) where a Wiener process Wt (ω) is
defined and where the chosen filtration is the augmented natural one.

A spontaneous question is: “When do two stochastic processes
model the same phenomenon?” Several possible definitions are now
introduced.

Definition 1. Two stochastic processes Xt (ω) , Yt (ω) are stochas-
tically equivalent if and only if for all fixed t̄ ∈ [0, T ] there exists an
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event Nt̄ ∈ E such that P (Nt̄) = 0 and for all ω ∈ Ω \ Nt̄ the following
equation holds:

Xt̄ (ω) = Yt̄ (ω) .

Moreover, two stochastic processes Xt (ω) , Yt (ω) are indistinguishable
if and only if there exists an event N ∈ E such that P (N) = 0 and for
all ω ∈ Ω \ N and for all t ∈ [0, T ] the following equation holds:

Xt (ω) = Yt (ω) .

Clearly, if two stochastic processes are indistinguishable, then they are
stochastically equivalent. The converse is not necessarily true, because
the more-than-countable union of events with 0 probability may not
be an event of probability zero. These two definitions are equivalent
when a regularity condition for the trajectories is assumed.

Definition 2. A stochastic process Xt (ω) is said to be continuous
if and only if there exists an event N ∈ E such that P (N) = 0 and for
all fixed ω̄ ∈ Ω \ N the function Xt (ω̄) : [0, T ] → R is continuous.

Proposition 1. Let Xt (ω) , Yt (ω) be two stochastic processes de-
fined on the same filtered probability space. Let us assume that these
two processes are continuous and stochastically equivalent, then they
are indistinguishable, too.

Proof. [6, p.29], [11, p.2]. �

We work with the space of the adapted processes with continu-
ous trajectories, and we identify two indistinguishable processes. The
following position clarifies this matter: let us consider the space of
all continuous and adapted processes on the same filtered probability
space. The stochastic equivalence of processes is an equivalence rela-
tion, therefore we can consider the quotient space of all continuous and
adapted processes by the stochastic equivalence relation. We use the
symbol C to denote this quotient space. Clearly, the Wiener process
Wt (ω) is an element of the set C.
We want to model the evolution of a system and we require the system
state functions to be elements of the space C. On the other hand,
we need to define some other process space in order to represent the
control functions, through which the system can be driven.

Definition 3. A stochastic process Xt (ω) is said to be measurable
if and only if the map

Xt (ω) : [0, T ] × Ω → Rn
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defined on the measurable space ([0, T ] × Ω,B ([0, T ]) ⊗ E) is measur-
able (by the symbol B ([0, T ]) we denote the Borel σ-field defined on the
interval [0, T ]).
A stochastic process Xt (ω) is said to be progressively measurable if and
only if for all fixed t̄ ∈ [0, T ] the map

Xt (ω) : [0, t̄] × Ω → Rn

defined on the measurable space ([0, t̄] × Ω,B ([0, t̄]) ⊗ Ft̄) is measur-
able.

If we want to define the stochastic integral, it is fundamental to work
with processes which are progressively measurable. Fortunately, the
processes we are working on are sufficiently regular for this condition
to be always satisfied.

Proposition 2. If Xt (ω) ∈ C then Xt (ω) is progressively measur-
able (every element of an equivalence class of the space C is progressively
measurable).

Proof. [6, p.23], [28, p.17]. �
Let us define some new useful process spaces. First of all, we have

to define a new equivalence relation between processes.

Definition 4. Let Xt (ω) , Yt (ω) be two measurable and adapted
processes defined on the same standard filtered probability space; they
are almost everywhere identical if and only if there exists an element
N ∈ B ([0, T ]) ⊗ E such that (λ ⊗ P) (N) = 0 and for all (t, ω) ∈
([0, T ] × Ω) \ N

Xt (ω) = Yt (ω) .

Let us consider the space of all measurable and adapted processes
defined on the same standard filtered probability space(

Ω, E , {Ft}t∈[0,T ] , P
)

.

We decide to identify two processes when they are almost everywhere
identical (we are considering the quotient space with respect to the
almost everywhere identity). We define Lp (with p = 1, 2) as the set of
all the equivalence classes Xt (ω) such that

∫ T

0

‖Xt (ω)‖p dt < +∞ , P-almost surely.

Xt (ω) may be an n × m-dimensional matrix process: in that case, we
consider the matrix norm ([28, p.354])

‖Xt (ω)‖ = tr
(
Xt (ω) Xt (ω)′

)
,
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and we note that Xt (ω) ∈ Lp if and only if each component process
X i,j

t (ω) ∈ L2 (for all i = 1, ..., n, and for all j = 1, ..., m).
It is interesting to note that if Xt (ω) ∈ L1 and Yt (ω) ∈ C, then
Xt (ω) Yt (ω) ∈ L1. If we consider a measurable and adapted process
Xt (ω), it may not be progressively measurable, but there exists another
process Yt (ω) stochastically equivalent to Xt (ω) which is progressively
measurable [14, p.45]. It follows that as long as we identify processes
that are almost everywhere identical, there is no difference between
adapted measurable processes and progressively measurable processes:
in every equivalence class of L1 there exists an element which is not only
adapted and measurable, but also progressively measurable. Therefore,
we assume that, when we choose an element of an equivalent class in
L1, it is always a progressively measurable process.

For the processes which are in L1 we can define the time integral
processes by means of the pathwise time integral.

Proposition 3. There exists a linear function of the linear space
L1 into C, defined as follows:

L1 → C
Xt (ω) 7→

(
t 7→

∫ t

0
Xs (ω) ds

)
.

Proof. The function is well-defined because: given a progressively mea-
surable element Xt (ω) of an equivalence class of L1, the time integral

t 7→
∫ t

0
Xs (ω) ds is a well-defined, continuous and adapted process [14,

p.31]. Moreover, two processes have indistinguishable time integrals if
and only if they are almost everywhere identical [14, p.31]. Finally,
the function is linear because of the linearity of the Lebesgue integral.

�

Now, let n = 1, so that we consider one-dimensional processes.
First of all we define the stochastic integral for such processes, then
we extend the definition to the multidimensional processes. Let k be
a natural number, and let t0, t1, ..., tk be elements of the set [0, T ] such
that 0 = t0 < t1 < ... < tk = T ; we define the following function as a
one-dimensional simple process:

Xt (ω) =
k−1∑

i=0

Yi (ω) I(ti,ti+1] (t) ,

where Yi (ω) ∈ L2 (Ω,Fi, P) and I(ti,ti+1] (t) is the indicator function of
the interval (ti, ti+1]. First of all, we define the stochastic integral on
[0, t̄] (t̄ is a fixed time in the interval [0, T ]) for a simple process. It is
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a random variable defined P-almost surely by the relation
∫ t̄

0

(∑k−1
i=0 Yi (ω) I(ti,ti+1] (s)

)
dWs (ω)

,
∑k−1

i=0 Yi (ω)
(
Wt̄∧ti+1

(ω) − Wt̄∧ti (ω)
)

.

Now, let Xt (ω) be a one-dimensional measurable and adapted process
such that

(1)

∫ T

0

|Xt (ω)|2 dt < +∞ , P-almost surely .

May we define the stochastic integral of Xt (ω) on the interval [0, t̄]
using the definition just given for the simple process? The following
theorem provides an answer.

Theorem 4. Let Xt (ω) be a measurable and adapted process that
satisfies (1), then

• there exists a sequence
{
X

(h)
t (ω)

}
h∈N

of simple processes such

that, as h → +∞,

(2)

∫ t̄

0

∣∣X(h)
s (ω) − Xs (ω)

∣∣2 ds
P→ 0

(i.e. there exists an approximation with simple processes of
Xt (ω));

• for every sequence
{
X

(h)
t (ω)

}
h∈N

of simple processes as in (2)

there exists one and only one random variable I (ω) (defined
P-almost surely) such that, as h → +∞,

(3)

∫ t̄

0

X(h)
s (ω) dWs (ω)

P→ I (ω) ,
∫ t̄

0

Xs (ω) dWs (ω)

(i.e. there exists a natural candidate to be the stochastic inte-
gral of the process Xt (ω));

• if two different sequences
{
X

(h)
t (ω)

}
h∈N

and
{
Y

(h)
t (ω)

}
h∈N

approximate the same process Xt (ω), in the sense given by the
relation (2), then the sequences of their stochastic integrals
converge to the same random variable as h → +∞:
∫ t̄

0
X

(h)
s (ω) dWs (ω)

P→∫ t̄

0
Y

(h)
s (ω) dWs (ω)

P→

}
I (ω) ,

∫ t̄

0

Xt (ω) dWs (ω)

(i.e. the random variable I (ω) found in (3) does not depend

on the choice of the sequence
{
X

(h)
t (ω)

}
h∈N

).
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Proof. [14, p.36] �

Now, we have the definition of stochastic processes for one-dimensional
processes. What happens if Xt (ω) is an n× m-dimensional process or
Wt (ω) is an m-dimensional Wiener process? First of all, we recall that
Xt (ω) ∈ L2 if and only if each component process X i,j

t (ω) ∈ L2 (for
all i = 1, ..., n, and for all j = 1, ..., m). Therefore, we define

∫ t̄

0

Xs (ω) dWs (ω) ,




∑m
j=1

∫ t̄

0
X1,j

s (ω) dW j
s (ω)

· · ·∑m
j=1

∫ t̄

0
Xn,j

s (ω) dW j
s (ω)


 .

We note that in this definition we use the one-dimensional stochastic
integral introduced above.
Now, we want to consider the stochastic integral as an n-dimensional
process depending on the extreme of integration t̄.

Proposition 5. Let Xt (ω) , Yt (ω) ∈ L2, then the following prop-
erties hold

linearity: for all a, b ∈ R
∫ t̄

0
aXs (ω) + bYs (ω) dWs (ω)

= a
∫ t̄

0
Xs (ω) dWs (ω) + b

∫ t̄

0
Ys (ω) dWs (ω) ;

time consistency: for all fixed t̄ ∈ [0, T ]

∫ t̄

0

Xs (ω) dWs (ω) =

∫ T

0

I[0,t̄] (s) Xs (ω) dWs (ω) ;

adaptivity: the process (ω, t) 7→
∫ t

0
Xs (ω) dWs (ω) is adapted

to the filtration {Ft}t∈[0,T ];

continuity: the stochastic process (ω, t) 7→
∫ t

0
Xs (ω) dWs (ω)

is continuous and identifies one and only one element of the
space C.

Proof. [14, p.37-38] �

If we choose two measurable and adapted processes almost every-
where identical, which are in L2, then their stochastic integral processes
are linked together by the following result.

Proposition 6. The stochastic integral processes of two measur-
able and adapted processes, which are in L2, are indistinguishable if
and only if Xt (ω) , Yt (ω) are almost everywhere identical.
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Proof. [14, p.38] �

Therefore, the following linear function is well-defined:

L2 → C
Xt (ω) 7→

(
t 7→

∫ t

0
Xs (ω) dWs (ω)

)
.

Now, let us consider a subspace of the process space L2 defined as
follows:

H2 ,
{

Xt (ω) ∈ L2 : E
(∫ T

0

‖Xt (ω)‖2 dt

)
< +∞

}
.

By the definition given for the matrix norm of matrix processes, we have
that Xt (ω) ∈ H2 if and only if each component process X i,j

t (ω) ∈ H2

(for all i = 1, ..., n, and for all j = 1, ..., m). Clearly, H2 is a proper

subset of L2 because the time integral
∫ T

0
‖Xt (ω)‖2 dt may take finite

values with probability one and yet have infinite expectation. As H2 ⊂
L2, the stochastic integral is well defined also on the elements of H2.
Furthermore, the stochastic integral process defined on an element of
H2 has some special properties.

Proposition 7. Let Xt (ω) , Yt (ω) be elements (with the same di-
mension) of the process space H2, then

(1) the process
∫ t

0
Xs (ω) dWs (ω) ∈ C is a martingale with respect

to the filtration {Ft}t∈[0,T ]: i.e. for all t, s ∈ [0, T ] with s < t

E
(∫ t

0

Xu (ω) dWu (ω) | Fs

)
=

∫ s

0

Xu (ω) dWu (ω)

in particular the mean of the stochastic integral is always zero;

(2) the process
(∫ t

0
Xs (ω) dWs (ω)

)(∫ t

0
Ys (ω) dWs (ω)

)′
∈ C is

integrable and the following relation (called Itô isometry) holds
for all s, t ∈ [0, T ] with s ≤ t

E
[(∫ t

0
Xu (ω) dWu (ω)

)(∫ t

0
Yu (ω) dWu (ω)

)′∣∣∣∣Fs

]

=
∫ t

s
E
[
Xu (ω) Yu (ω)′

∣∣Fs

]
du .

Proof. [14, p.43] �

The space H2 is important not only for the previous relation, but
also for the following theorem. Let M2

c be the space of processes be-
longing to C which are square integrable martingale w.r.t. {Ft}t∈[0,T ],
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i.e. the process Mt (ω) ∈ C such that for all s, t ∈ [0, T ], s < t,

E (Mt (ω)| Fs) = Ms (ω) ,

E
(∫ T

0
‖Mt (ω)‖2 dt

)
< +∞ .

We note that M2
c is a subspace of the space C. A natural question

is: “When does a stochastic integral operator give a process belonging
to M2

c?” The following result answers this question and characterize
the image of the space H2 with respect to the action of the stochastic
integral operator.

Theorem 8. Let Mt (ω) be an element of the process space M2
c ,

then there exists one and only one element Xt (ω) of H2 such that:

Mt (ω) = m +

∫ t

0

Xs (ω) dWs (ω) .

Proof. [14, p.44] �
This result is called martingale representation theorem and it can be
explained saying that the image of the space H2 with respect to the
action of the stochastic integral operator is the space of the continuous
square integrable martingales which vanish at the time 0.

2. Stochastic Calculus

Definition 5. A process Xt (ω) ∈ C is called an Itô process if and
only if there exist two processes Xdrift

t (ω) ∈ L1 and Xdiff
t (ω) ∈ L2 such

that

Xt (ω) = x̄ +

∫ t

0

Xdrift
s (ω) ds +

∫ t

0

Xdiff
s (ω) dWs (ω) .

Clearly, the set of Itô processes is a subspace of the process space C. If
Xt (ω) ∈ C is an Itô process, then we say that its stochastic differential
is

dXt (ω) = Xdrift
t (ω) dt + Xdiff

t (ω) dWt (ω) .

This definition is well-posed because the following proposition holds.

Proposition 9. Let Xt (ω) , Yt (ω) ∈ C be two Itô processes:

Xt (ω) = x̄ +

∫ t

0

Xdrift
s (ω) ds +

∫ t

0

Xdiff
s (ω) dWs (ω) ,

Yt (ω) = ȳ +

∫ t

0

Y drift
s (ω) ds +

∫ t

0

Y diff
s (ω) dWs (ω)

if they are indistinguishable, then x̄ = ȳ in R, Xdrift
t (ω) = Y drift

t (ω) in
L1, and Xdrift

t (ω) = Y drift
t (ω) in L2.
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Proof. [14, p.60] �
This result assures the uniqueness of the stochastic differential. The
power of the stochastic calculus is connected with the existence of some
differential rules which are very similar to the deterministic ones.

Proposition 10. Let Xt (ω) , Yt (ω) ∈ C be two Itô processes such
that

Xt (ω) = x̄ +
∫ t

0
Xdrift

s (ω) ds +
∫ t

0
Xdiff

s (ω) dWs (ω) ,

Yt (ω) = ȳ +
∫ t

0
Y drift

s (ω) ds +
∫ t

0
Y diff

s (ω) dWs (ω) ,

then the following properties hold:

linearity: for all a, b ∈ R
d [aXt (ω) + bYt (ω)] = adXt (ω) + bdYt (ω) ;

inner product: the stochastic differential of the inner prod-
uct process 〈Xt (ω) , Yt (ω)〉 can be computed as follows (Xt (ω)
and Yt (ω) are n-dimensional processes, but Wt (ω) is a one-
dimensional process):

d 〈Xt (ω) , Yt (ω)〉 = 〈Yt (ω) , dXt (ω)〉
+ 〈Xt (ω) , dYt (ω)〉 +

〈
Xdiff

t (ω) , Y diff
t (ω)

〉
dt ;

chain rule: let g (x) ∈ C2 (A, R) be a real function (A is an
open set of Rn); if P {ω ∈ Ω : ∀t ∈ [0, T ] Xt (ω) ∈ A} = 1,
then

d [g (Xt (ω))] =
∇g (Xt (ω)) Xdrift

t (ω) dt+
+1

2
tr
[
Xdiff

t (ω)′ Hess [g (Xt (ω))] Xdiff
t (ω)

]
dt+

+∇g (Xt (ω))Xdiff
s (ω) dWt (ω) .

Proof. [6, p.131], [14, p.54], [28, p.37]. �



CHAPTER 2

Stochastic Differential Equations

1. Stochastic Differential Equations

Given a
(
Ω, E , {Ft}t∈[0,T ] , P

)
a stochastic differential equation is an

object defined as follows:

(4)

{
dXt (ω) = b (t, ω, Xt (ω)) dt + σ (t, ω, Xt (ω)) dWt (ω) ,
Xt (ω) = x̄ ,

where b : [0, T ]×Ω× Rn → Rn and σ : [0, T ]×Ω× Rn → Rn×m, while
Wt (ω) is an m-dimensional Wiener process. As in the deterministic
case, the meaning of (4) becomes clear when we define the concept of
solution for a stochastic differential equation (SDE for short).

Definition 6. A process Xt (ω) ∈ C is a solution of the SDE (4)
if and only if

(5) Xt (ω) = x̄ +

∫ t

0

b (s, ω, Xs (ω)) ds +

∫ t

0

σ (s, ω, Xs (ω)) dWs (ω) .

We note that the previous definition gives for granted that the two
integrals in (5) are well-defined. Now, we need a result that tells us
when an SDE has some solutions.

Theorem 11. Let us consider the SDE{
dXt (ω) = b (t, ω, Xt (ω)) dt + σ (t, ω, Xt (ω)) dWt (ω) ,
Xt (ω) = x̄ .

If the following conditions hold:

• for all ω̄ ∈ Ω the functions b (t, ω̄, x) , σ (t, ω̄, x) are measur-
able;

• for all x̄ ∈ R the processes b (t, ω, x̄) , σ (t, ω, x̄) are progres-
sively measurable;

• there exists a constant L > 0 such that for all t̄ ∈ [0, T ] and
for all ω̄ ∈ Ω the following conditions hold ∀x, y ∈ Rn

(6)
‖b (t̄, ω̄, x) − b (t̄, ω̄, y)‖ ≤ L ‖x − y‖ ,
‖σ (t̄, ω̄, x) − σ (t̄, ω̄, y)‖ ≤ L ‖x − y‖ ;

23
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• the processes b (t, ω, 0) and σ (t, ω, 0) belong to the process space
L2;

then there exists one and only one process Xt (ω) ∈ C which is a solution
of the stochastic differential equation. Moreover, the solution process
satisfies the inequality

E
(

max
t∈[0,T ]

‖Xt (ω)‖p

)
≤ K (1 + ‖x‖p) ,

where K > 0, and p = 1, 2.

Proof. [28, p.49], [9, Appendix D, p.397] �
A particular case is constituted by linear one-dimensional SDEs.

Now, we study the following SDE (which is called linear SDE)

(7)

{
dXt (ω) = btXt (ω) dt + σtXt (ω) dWt (ω) ,
Xt (ω) = x̄ ,

where bt, σt ∈ C0 ([0, T ] , R) are continuous deterministic functions. It
is easy to prove that the functions b (t, ω, x) , btx and σ (t, ω, x) ,
σtx satisfy the hypothesis (6), therefore there exists one and only one
process Xt (ω) ∈ C which is a solution of the SDE (7). In order to find
such a process Xt (ω), we consider (in analogy with the deterministic
case solution) the process exp (Yt (ω)) (where Yt (ω) is an Itô process).
By the chain rule,

d [exp (Yt (ω))] =

= exp (Yt (ω)) dYt (ω) + 1
2
exp (Yt (ω))

(
Y diff

t (ω)
)2

dt ,

= exp (Yt (ω))
{[

Y drift
t (ω) + 1

2

(
Y diff

t (ω)
)2]

dt + Y diff
t (ω) dWt (ω)

}
.

The process x̄ exp (Yt (ω)) is a solution of (7) if and only if
{

Y diff
t (ω) = σt ,

Y drift
t (ω) = bt − σ2

t /2 .

Therefore, the process (t, ω) 7→ exp
(∫ t

0
(bs − σ2

s/2) ds +
∫ t

0
σsdWs (ω)

)

plays an important role in the solution of linear SDEs. This process is
called stochastic exponential and has some important properties. First
of all, let us define

ηt [b, σ] (ω) , exp

(∫ t

0

(
bs (ω) − σ2

s (ω) /2
)
ds +

∫ t

0

σt (ω) dWs (ω)

)
,

where bs (ω) ∈ L1, and σt (ω) ∈ L2. Clearly, a continuous deterministic
process as bt or σt belongs to the space L2, therefore x̄ ηt [b, σ] (ω) is
well-defined and is the solution of the SDE (7). Moreover, we can prove
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[14, p.73] that every positive one-dimensional Itô process St (ω) can be
written, using the stochastic exponential, as

St (ω) = S0 (ω) ηt [bt, σt]

for some bt (ω) ∈ L1, and σt (ω) ∈ L2. Therefore, the stochastic expo-
nential is the first process to study in order to model positive quantities.
Some useful properties of the stochastic exponential are:

1/ηt [b, σ] (ω) = ηt [−b + σ2,−σ] (ω) ,

ηt [b, σ] (ω) ηt [B, Σ] (ω) = ηt [b + B + σΣ, σ + Σ] (ω) .

These relations may be directly obtained by using the chain rule of the
stochastic calculus.

2. Backward Stochastic Differential Equations

In this Section, we introduce the concept of backward stochastic
differential equation (BSDE for short) and we define the form that a
solution of such an equation must have. A non-linear BSDE on the

standard filtered probability space
(
Ω, E , {Ft}t∈[0,T ] , P

)
is defined as

follows:

(8)

{
dYt (ω) = h (t, ω, Yt (ω) , Zt (ω)) dt + Zt (ω) dWt (ω) ,
YT (ω) = ϑ (ω) ,

where h (t, ω, y, z) : [0, T ] × Ω × Rn × Rn×m → Rn, ϑ (ω) is a fixed n-
dimensional random variable, and Wt (ω) is an m-dimensional Wiener
process.

Definition 7. Two processes Yt (ω) ∈ C and Zt (ω) ∈ L2 are a
solution of the BSDE (8) if and only if
(9)

Yt (ω) = ϑ (ω) −
∫ T

t

h (t, ω, Ys (ω) , Zs (ω)) ds −
∫ T

t

Zs (ω) dWs (ω) .

We note that the above definition requires that the two integrals in (9)
are well-defined. As with the SDEs, we need a result that tells us when
a BSDE has some solutions.

Theorem 12. Let us consider the following BSDE
{

dYt (ω) = h (t, ω, Yt (ω) , Zt (ω)) dt + Zt (ω) dWt (ω) ,
YT (ω) = ϑ (ω) .

If the following conditions hold

• ϑ (ω) ∈ L2 (Ω,FT , P) ;
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• for all ω̄ ∈ Ω the function h (t, ω̄, x, y) : [0, T ]×Rn × Rn×m →
Rn is measurable;

• for all x̄, ȳ ∈ R the process h (t, ω, x̄, ȳ) : [0, T ] × Ω → Rn is
progressively measurable;

• there exists a constant L > 0 such that for all t̄ ∈ [0, T ], and
for all ω̄ ∈ Ω the following condition holds ∀x, y, v, w ∈ R:

‖h (t̄, ω̄, x, y) − h (t̄, ω̄, v, w)‖ ≤ L (‖x − v‖ + ‖y − w‖) ;

• the process h (t, ω, 0, 0) : [0, T ]×Ω → Rn belongs to the process
space L2;

then there exists a unique pair of processes (Yt (ω) , Zt (ω)) ∈ C × L2

that is a solution of the BSDE.

Proof. [28, p.355] �
A one-dimensional linear backward stochastic differential equation (LB-

SDE for short) on the filtered probability space
(
Ω, E , {Ft}t∈[0,T ] , P

)

is defined as follows:

(10)

{
dYt (ω) = (bt (ω)Yt (ω) + σt (ω) Zt (ω)) dt + Zt (ω) dWt (ω) ,
YT (ω) = ϑ (ω) ,

where bt (ω) , σt (ω) are progressively measurable processes, ϑ (ω) ∈
L2 (Ω,FT , P), and Wt (ω) is a one-dimensional Wiener process. We
can prove [28, p.349] that if the processes bt (ω) , σt (ω) belong to the
processes space L2 and if they are essentially bounded, then there exists
a unique pair of processes (Yt (ω) , Zt (ω)) ∈ C × L2 that is a solution
of the LBSDE (10). Moreover, the two processes Yt (ω) , Zt (ω) satisfy
the following relation: there exists K > 0 such that

(11) E

(
sup

t∈[0,T ]

|Yt (ω)|2
)

+ E
(∫ T

0

|Zt (ω)|2 dt

)
≤ K E

(
|ϑ (ω)|2

)
.

As previously done for the LSDE, we want to characterize the pair of
processes (Yt (ω) , Zt (ω)) ∈ C×L2 that solve the LBSDE (10). If Yt (ω)
is a process that satisfies (10), then1

d {ηt [B, Σ] Yt} =

= Ytdηt [B, Σ] + ηt [B, Σ] dYt + ηt [B, Σ] ΣtZtdt ,

= ηt [B, Σ] BtYtdt + ηt [B, Σ] ΣtYtdWt+
+ηt [B, Σ] (btYt + σtZt) dt + ηt [B, Σ] ZtdWt

+ηt [B, Σ] ΣtZtdt .

1In order to have a simpler notation, we do not indicate the dependence on ω
in the stochastic processes.
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The drift of the process ηt [B, Σ] Yt is

ηt [B, Σ] {(Bt + bt) Yt + (σt + Σt) Zt} .

Therefore, if we choose Bt = −bt and Σt = −σt, then we obtain a
process with zero-drift. Hence, for all t̄ ∈ [0, T ]

ηT [−b,−σ] ϑ − η t̄ [−b,−σ] Yt̄ =

∫ T

t̄

(· · · ) dWt .

If we apply the conditional expectation under the σ-field Ft̄ we get

(12) E (ηT [−b,−σ] ϑ| Ft̄) = η t̄ [−b,−σ] Yt̄ .

As t̄ ∈ [0, T ] was chosen arbitrarily, this equation holds for all t̄ ∈ [0, T ].
The process

(t, ω) 7→ E (ηT [−b,−σ] ϑ| Ft̄)

is a continuous square integrable martingale [28, p.351]. Therefore, by
the martingale representation theorem, there exists a process Ht (ω) ∈
H2 such that

E (ηT [−b,−σ] ϑ| Ft) =

= E (ηT [−b,−σ] ϑ) +
∫ t

0
HsdWs ,

= ȳ +
∫ t

0
HsdWs .

Substituting this relation in (12) we obtain,

Yt = ηt

[
b + σ2, σ

] (
ȳ +

∫ t

0

HsdWs

)
.

This relation gives us the form of the process Yt (ω) (it is an implicit
form because we do not know the process Ht (ω) explicitly). Therefore
we define

Yt , ηt [b + σ2, σ]
(
ȳ +

∫ t

0
HsdWs

)
,

Zt , Ytσt + ηt [b + σ2, σ] Ht .

Now we want to prove that the processes Yt (ω) and Zt (ω) just defined
are a solution of the equation (10). By differentiating the process Yt (ω)
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we obtain

d [Yt] = d
[
ηt [b + σ2, σ]

(
ȳ +

∫ t

0
HsdWs

)]
,

=
(
ȳ +

∫ t

0
HsdWs

)
dηt [b + σ2, σ] + ηt [b + σ2, σ] HtdWt+

+ηt [b + σ2, σ] σtHtdt ,

= Yt (bt + σ2
t ) dt + YtσtdWt + ηt [b + σ2, σ] HtdWt+

+ηt [b + σ2, σ] σtHtdt ,

= Ytbtdt + σt (σtYt + ηt [b + σ2, σ] Ht) dt + ZtdWt ,

= (Ytbt + σtYt) dt + ZtdWt .

We note that, if the relation (11) holds, then the uniqueness of the
processes Yt (ω) and Zt (ω) follows directly from the linearity of the
equation.
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Stochastic Control Problems

1. Formulation

Given the filtered probability space
(
Ω, E , {Ft}t∈[0,T ] , P

)
, we con-

sider a controlled SDE:

(13)

{
dXt = b (t, Xt, ut) dt + σ (t, Xt, ut) dWt ,
X0 = x ,

where b (t, x, u) : [0, T ] × Rn × U → Rn, σ (t, x, u) : [0, T ] × Rn × U →
Rn×m, and Wt (ω) = (W 1

t (ω) , ..., W m
t (ω))

′
is an m-dimensional Wiener

process. The function ut (ω) is called the control and it represents the
action/decision/policy of the decision-maker. At all times t ∈ [0, T ],
the controller is knowledgeable about some information (as specified
in the information structure {Ft}t∈[0,T ]) about what has happened up

to the time t, but she/he does not know what is going to happen
afterwards, due to the uncertainty of the system. As a consequence,
for all times t ∈ [0, T ], the controller does not exercise her/his decision
ut (ω) before the time t really comes; in this way she/he can use all
the available information in order to obtain the best result. This non-
anticipative restriction can be represented, in mathematical terms, by
the following constraint: “the process ut (ω) is adapted to the filtration
{Ft}t∈[0,T ]” [28, p.63].

The set of all possible actions is U (for our purposes it is a convex
subset of Rk), hence the control is a process ut (ω) : [0, T ]×Ω → U . The
decision-maker chooses the action ut (ω) in order to maximize her/his
utility. Therefore, we introduce a cost functional that describes the
preference of the decision-maker:

(14) J [ut (ω)] , E
(∫ T

0

f (t, Xt (ω) , ut (ω)) dt + h (XT (ω))

)
.

Generally, the functions f (x, u) : [0, T ]×Rn×U → R and h (x) : Rn →
R are chosen in such a way that the integral in (14) exists (they may be
not finite, but they must be well-defined). Sometimes, we require that
these functions are continuous (or differentiable) and have a polynomial
growth in the variable x: i.e. for all t ∈ [0, T ], x ∈ Rn, and u ∈ U the

29
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relations
‖f (t, x, u)‖ ≤ L (1 + ‖x‖ + ‖u‖)p ,
‖h (x)‖ ≤ L (1 + ‖x‖)p

hold for some positive real numbers p, L.

The set where the control processes are chosen is called the admissible
control set and it is denoted by U . It is defined as follows:

control-state link: a class of almost everywhere identical mea-
surable and adapted processes u∗

t (ω) is in the set U if and only
if there exists a unique process X∗

t (ω) ∈ C which is a solution
of the SDE (13) where the chosen control is u∗

t (ω).

A set of hypotheses that assure the good-definition of the control-state
link is explicitly written in the following definition.

Definition 8. A stochastic control problem is called linear if

• U = L2;
• b (t, x, u) = Atx+Btu, σ (t, x, u) = (σ1 (t, x, u) , ..., σm (t, x, u))

and σi (t, x, u) = Ci
tx + Di

tu for all i = 1, ..., m where At, Bt,
Ci

t , Di
t are continuous and deterministic functions from [0, T ]

to the following space: At, C
i
t ∈ Rn×n, Bt, D

i
t ∈ Rk×n, then the

(13) becomes:
{

dXt = (AtXt + Btut) dt +
∑m

i=1 (Ci
tXt + Di

tut) dW i
t ,

X0 = x ;

• the functions f (t, x, u) : [0, T ]×Rn×U → R and h (x) : Rn →
R are twice differentiable with continuity in all their variables
and have a polynomial growth in the variable x.

A stochastic control problem can be formulated as follows: the goal
is to find u∗

t (ω) ∈ U (if it ever exists) such that

J [u∗
t (ω)] = inf

ut(ω)∈U
J [ut (ω)] .

We say that a stochastic control problem is finite if and only if

inf
ut(ω)∈U

J [ut (ω)] > −∞ ;

we say that it is solvable if and only if there exists at least one control
u∗

t (ω) ∈ U such that

J [u∗
t (ω)] = inf

ut(ω)∈U
J [ut (ω)] .

If a stochastic control problem is finite and solvable, then there exists
at least one control u∗

t (ω) ∈ U such that

J [u∗
t (ω)] = inf

ut(ω)∈U
J [ut (ω)] > −∞ ,
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then u∗
t (ω) is called an optimal control and the corresponding state

process X∗
t (ω) and the couple (u∗

t (ω) , X∗
t (ω)) are called optimal state

and optimal pair, respectively.
The first natural question is: “What kind of conditions have the

functions b, σ, f, h, to satisfy in order to assure that the stochastic con-
trol problem is finite and solvable?” The following theorem gives two
sets of conditions that answer to this question.

Theorem 13. Let us consider a linear stochastic control problem
with the motion equation{

dXt = (AXt + But) dt + (CXt + Dut) dWt ,
X0 = x ,

where A, B, C, D are constant matrices of suitable size, and Wt (ω) is
a one-dimensional Wiener process. If one of the following hypotheses
is satisfied, then there exists a control u∗

t (ω) ∈ U = L2 such that

J [u∗
t (ω)] = inf

ut(ω)∈U
J [ut (ω)] > −∞ .

H1: Lower Bound Hypothesis

• U is convex and closed;
• the function f does not depend explicitly on time, f (t, x, u) =

f (x, u);
• f (x, u) , h (x) are both convex functions;
• there exist two constants L, M > 0 such that for all x ∈ Rn,

u ∈ U

f (x, u) ≥ M ‖u‖2 − L ,

h (x) ≥ −L .

H2: Compactness Hypothesis

• U is convex and compact;
• the function f does not depend explicitly on time, f (t, x, u) =

f (x, u);
• f (x, u) , h (x) are both convex functions.

Proof. [28, p.68]. �

2. Peng’s Stochastic Maximum Principle

In this Section we introduce the necessary conditions for the opti-
mality in a stochastic control problem. The following result is related
to the linear stochastic control problem; it holds for a more general
class of problems, but this formulation of the necessary conditions is
useful for the problems we are dealing with.
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Theorem 14 (Peng’s Maximum Principle). Given a linear sto-
chastic control problem, if there exists an optimal pair (u∗

t (ω) , X∗
t (ω))

then there exist the processes pt (ω) , Pt (ω) ∈ C, and qi
t (ω) , Qi

t (ω) ∈ L2

with pt (ω) , qi
t (ω) ∈ Rn, and Pt (ω) , Qi

t (ω) ∈ Sn (i.e. the space of the
symmetric matrices of dimension n× n) for all i = 1, ..., m, such that1





dpt = −
[
A′

tpt +
∑m

i=1 (Ci
t)

′
qi
t −∇xf (t, X∗

t , u∗
t )
]
dt

+
∑m

i=1 qi
tdW i

t ,

pT = −∇xh (X∗
T ) ,

(15)





dPt (ω) = −[A′
tPt + PtAt +

∑m
i=1

(
(Ci

t)
′
PtC

i
t

)
+

+
∑m

i=1 (Ci
t)

′
Qi

t + Qi
tC

i
t−

Hessx (f (t, X∗
t , u∗

t ))]dt +
∑m

i=1 Qi
tdW i

t ,

PT = −Hessx (h (X∗
T )) .

Moreover, if we define the H-function as

H (t, x, u) =

〈(Atx + Btu) , pt〉 − f (t, x, u)+

+1
2
tr
(
(C1

t x + D1
t u, ..., Cm

t x + Dm
t u)

′
Pt (C

1
t x + D1

t u, ..., Cm
t x + Dm

t u)
)

+tr{ (C1
t x + D1

t u, ..., Cm
t x + Dm

t u)
′
[(q1

t , ..., q
m
t )

′

−Pt (C1
t X

∗
t + D1

t u
∗
t , ..., C

m
t X∗

t + Dm
t u∗

t )]} ,

then the following maximum condition holds (λ⊗P-almost everywhere):

H (t, X∗
t , u∗

t ) = max
w∈U

H (t, X∗
t , w) .

Proof. [28, p.118]. �
The necessary conditions play the role of the equation f ′ (x) = 0 in

the finite dimensional optimization problems. Hence, a set of processes
that satisfies the necessary conditions, may not be a minimum point for
the objective functional. Therefore, we need further conditions in order
to assure that a set of processes that satisfies the necessary conditions
singles out a minimum point of the objective functional. This is the
role played by the sufficient conditions that follow.

Theorem 15. Let us consider a linear stochastic optimal control
problem such that the functions f (t, x, u) , h (x) are twice continuously
differentiable with respect to the variable x, and have a polynomial
growth in their variables. Suppose that:

• h (x) is convex;

1In order to have a simpler notation, we do not indicate the dependence on ω
in the stochastic processes.
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• the function

(x, u) 7→ (Atx + Btu) pt (ω) − f (t, x, u)+
+tr

(
(q1

t , ..., q
m
t )

′
(C1

t x + D1
t u, ..., Cm

t x + Dm
t u)

)

is concave for all t ∈ [0, T ], P-almost everywhere.

Then, if there exists a set of processes that satisfies the necessary con-
ditions, then the control-state pair connected with this set of processes
is an optimal pair.

Proof. [28, p.139]. �





CHAPTER 4

The LQ Control Problem

1. Introduction

In this Chapter we are dealing with a special case of stochastic
control problem where, on one hand, the state equations are linear
in both state and control, and on the other hand, the cost functions
are quadratic (this kind of problems is called linear quadratic, LQ for
short). The LQ problems are very important because many non-linear
control problems can be reasonably approximated by the LQ problems.
Moreover, the solution of the LQ problems has a simple structure, and
can be characterized by the solution of a non-linear ordinary differential
equation, called the Riccati equation.

First of all, let us introduce the structure of a LQ stochastic control
problem. Given a linear controlled SDE

{
dXt = (AtXt + Btut) dt +

∑m
i=1 (Ci

tXt + Di
tut) dW i

t ,
X0 = x

we can choose the following operator as cost functional to minimize:

J [ut (ω)] = E
(

1

2

∫ T

0

(〈FtXt, Xt〉 + 〈Rtut, ut〉) dt +
1

2
〈GXT , XT 〉

)
,

where Ft, Rt are continuous matrix values functions such that Ft ∈
C0 ([0, T ] , Sn), Rt ∈ C0

(
[0, T ] , Sk

)
, while G is a fixed matrix such that

G ∈ Sn. Now, let us apply the Maximum Principle to the LQ stochastic
control problem written above.

Theorem 16 (Peng’s Maximum Principle for LQ problems). Given
an LQ problem, if there exists an optimal pair (u∗

t (ω) , X∗
t (ω)), then

there are pt (ω) , Pt (ω) ∈ C, and qi
t (ω) , Qi

t (ω) ∈ L2 with pt (ω) , qi
t (ω) ∈

Rn, and Pt (ω) , Qi
t (ω) ∈ Sn (i.e. the space of the symmetric matrices

35
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of dimension n × n) for all i = 1, ..., m, such that1

{
dpt = −

[
A′

tpt +
∑m

i=1 (Ci
t)

′
qi
t − FtX

∗
t

]
dt +

∑m
i=1 qi

tdW i
t ,

pT = −GX∗
T ,





dPt (ω) = −[A′
tPt + PtAt +

∑m
i=1

(
(Ci

t)
′
PtC

i
t

)
+

+
∑m

i=1

(
(Ci

t)
′
Qi

t + Qi
tC

i
t

)
− Ft]dt +

∑m
i=1 Qi

tdW i
t ,

PT = −G ,

and moreover λ ⊗ P-almost everywhere

Rtu
∗
t − B′

tpt −
∑m

i=1 (Di
t)

′
qi
t = 0 ,

Rt +
∑m

i=1 (Di
t)

′
PtD

i
t � 0 i.e. positive semidefinite .

Proof. [28, p.309]. �

These conditions require to solve a forward-backward SDE, which is
not a simple task. On the other hand, the conditions suggest [28, p.313]
that pt = πtX

∗
t for some process πt. Starting from this suggestion we

arrive to the Riccati equation which permits us to characterize πt in
order to solve the necessary conditions.

2. Riccati Equation

2.1. Notation. First of all, let us define more in detail the pro-
cess space we are working on (in the following p ∈ [1, +∞)). Let
Lp
F
(
0, T ; Rk

)
be the quotient space, with respect to the equivalence

relation of almost everywhere identity, of measurable processes ut (ω)
defined on the time interval [0, T ] which are {Ft}t∈[0,T ]-adapted, Rk-
valued, and satisfy the following condition

E
(∫ T

0

‖ut (ω)‖p
Rk

)
< +∞ .

It is a Banach space with the norm ‖ut (ω)‖ = E
(∫ T

0
‖ut (ω)‖p

Rk dt
)1/p

.

Moreover, let Lp
F (Ω; C ([0, T ] ; Rn)) be the quotient space, with respect

to the stochastic equivalence relation, of measurable and continuous
processes Xt (ω) defined on the time interval [0, T ] which are {Ft}t∈[0,T ]-
adapted, Rn-valued, and such that

E

(
sup

t∈[0,T ]

‖Xt (ω)‖p
Rn

)
< +∞ .

1In order to have a simpler notation, we do not indicate the dependence on ω
in the stochastic processes.
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It is a Banach space with the norm

‖Xt (ω)‖ = E

(
sup

t∈[0,T ]

‖Xt (ω)‖p
Rn

)1/p

.

In the following we shall employ the usual convention of suppressing
the ω-dependence notation of all the stochastic processes.

The data of the problem define the motion equation and the objec-
tive function; they are:

• At, C
i
t ∈ C0 ([0, T ] ; Rn×n);

• Bt, D
i
t ∈ C0

(
[0, T ] ; Rn×k

)
for all i = 1, ..., m;

• Ft ∈ C0 ([0, T ] ; Sn) (Sn is the space of the symmetric n × n
matrices);

• Rt ∈ C0
(
[0, T ] ; Sk

)
;

• G ∈ Sn.

One can prove [28, p.49] that, for all fixed ut ∈ L2
F
(
0, T ; Rk

)
, there

exists a unique Xt ∈ L2
F (Ω; C ([0, T ] ; Rn)) such that

{
dXt = (AtXt + Btut) dt +

∑m
i=1 (Ci

tXt + Di
tut) dW i

t ,
X0 = x .

The LQ problem consists in finding a control ut ∈ L2
F
(
0, T ; Rk

)
that

minimizes the functional

J [ut] = E
(

1

2

∫ T

0

(〈FtXt, Xt〉 + 〈Rtut, ut〉) dt +
1

2
〈GXT , XT 〉

)
.

Under these assumptions we are not sure that the problem is well-
defined, but we can provide necessary conditions in order to obtain
this result. We note that the matrices Ft, Rt, G are possibly indefinite
(but generally in the literature it is required that all these matrices are
positive definite in order to have a well-defined problem).
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2.2. Riccati equation.

Theorem 17 (Riccati equation). Let us assume that there exists a
matrix function πt ∈ C1 ([0, T ] ; Rn×n) such that

(16)





π̇t + πtAt + A′
tπt +

m∑
i=1

(Ci
t)

′
πtC

i
t + Ft − Φ′

tΨ
−1
t Φt = 0 ,

Φt , B′
tπt +

m∑
i=1

(Di
t)

′
πtC

i
t ,

Ψt , Rt +
m∑

i=1

(Di
t)

′
πtD

i
t ,

πT = G ,

Rt +
m∑

i=1

(Di
t)

′
πtD

i
t � 0 i.e. positive definite ,

therefore the optimal control can be written in a feedback form as

u∗
t = −Ψ−1

t ΦtX
∗
t .

First of all, let us present some useful results that give some further
information on the solution of the ODE introduced by the above the-
orem.

Theorem 18. Let π∗
t , π

o
t ∈ C1 ([0, T ] ; Rn×n) satisfy the conditions

(16), then π∗
t = πo

t for all t ∈ [0, T ].

Proof. Let us define ϕt = π∗
t − πo

t ; it can be proved [28, p.320] that

‖ϕ̇t‖ ≤ K ‖ϕt‖ ,

where K > 0. Hence, as ϕT = 0, we can use the Gronwall Lemma and
obtain that ϕt = 0 for all t ∈ [0, T ]. �

Lemma 19. Let πt ∈ C1 ([0, T ] ; Rn×n) satisfy the conditions (16),
then πt ∈ Sn for all t ∈ [0, T ].

Proof. We note that if πt ∈ C1 ([0, T ] ; Rn×n) satisfies (16), then the
matrix function π′

t satisfies the same conditions, too. But, the condi-
tions (16) characterize a unique matrix function, therefore π′

t = πt for
all t ∈ [0, T ]. �

Now, let us prove the result previously introduced.

Proof of Theorem 17. Let (ut, Xt) be a control-state pair for the LQ
problem. We consider the process 〈πtXt, Xt〉; its stochastic differential
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is
d [〈πtXt, Xt〉] =

= 〈d [πtXt] , Xt〉 + 〈πtXt, dXt〉+
+
∑m

i=1 〈πt (C
i
tXt + Di

tut) , Ci
tXt + Di

tut〉 dt ,

= 〈π̇tXt, Xt〉 dt + 〈πtdXt, Xt〉 + 〈πtXt, dXt〉
+
∑m

i=1 〈πt (C
i
tXt + Di

tut) , Ci
tXt + Di

tut〉 dt .

We can rewrite the second and third term as

〈πtdXt, Xt〉 = 〈πt (AtXt + Btut) , Xt〉 dt
+
∑m

i=1 〈πt (C
i
tXt + Di

tut) , Xt〉 dW i
t ,

〈πtXt, dXt〉 = 〈πtXt, (AtXt + Btut)〉 dt
+
∑m

i=1 〈πtXt, (C
i
tXt + Di

tut)〉 dW i
t .

Moreover, the argument of the sum in the fourth term has the following
form:

〈πt (Ci
tXt + Di

tut) , Ci
tXt + Di

tut〉 =

= 〈πtC
i
tXt + πtD

i
tut, C

i
tXt + Di

tut〉 ,

= 〈πtC
i
tXt, C

i
tXt + Di

tut〉 + 〈πtD
i
tut, C

i
tXt + Di

tut〉 ,

=
〈
(Ci

t)
′
πtC

i
tXt, Xt

〉
+ 2

〈
(Di

t)
′
πCi

tXt, ut

〉
+
〈
(Di

t)
′
πtD

i
tut, ut

〉
.

Hence, setting Πt as the drift of the process 〈πtXt, Xt〉, i.e.

E (〈πT XT , XT 〉) = 〈π0x, x〉 + E
(∫ T

0

Πtdt

)
;

we have that

E (〈GXT , XT 〉) + E
(∫ T

0
(〈FtXt, Xt〉 + 〈Rtut, ut〉) dt

)
=

〈π0x, x〉 + E
(∫ T

0
Πtdt

)
+ E

(∫ T

0
(〈FtXt, Xt〉 + 〈Rtut, ut〉) dt

)
,

therefore

J [ut] =
1

2
〈π0x, x〉 +

1

2
E
(∫ T

0

(Πt + 〈FtXt, Xt〉 + 〈Rtut, ut〉) dt

)
.

Now, we want to investigate the form of the process Πt + 〈FtXt, Xt〉+
〈Rtut, ut〉. By expanding the terms we obtain

Πt + 〈FtXt, Xt〉 + 〈Rtut, ut〉 =

= 〈π̇tXt, Xt〉 + 〈πtAtXt, Xt〉 + 〈B′
tπtXt, ut〉+

+ 〈A′
tπtXt, Xt〉 + 〈B′

tπtXt, ut〉 +
〈∑m

i=1 (Ci
t)

′
πtC

i
tXt, Xt

〉

+2
〈∑m

i=1 (Di
t)

′
πCi

tXt, ut

〉
+
〈∑m

i=1 (Di
t)

′
πtD

i
tut, ut

〉

+ 〈FtXt, Xt〉 + 〈Rtut, ut〉 .
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After recalling that

π̇t = −πtAt − A′
tπt −

m∑

i=1

(
Ci

t

)′
πtC

i
t − Ft + Φ′

tΨ
−1
t Φt ,

we get

Πt + 〈FtXt, Xt〉 + 〈Rtut, ut〉 =

=
〈
Φ′

tΨ
−1
t ΦtXt, Xt

〉
+ 2 〈ΦtXt, ut〉 + 〈Ψtut, ut〉 .

We know that Ψt is a symmetric positive definite matrix, therefore

there exists a symmetric matrix Ψ
1/2
t such that Ψ

1/2
t Ψ

1/2
t = Ψt. Hence

〈
Φ′

tΨ
−1
t ΦtXt, Xt

〉
+ 2 〈ΦtXt, ut〉 + 〈Ψtut, ut〉 =

=
〈
Ψ

−1/2
t ΦtXt, Ψ

−1/2
t ΦtXt

〉
+ 2 〈ΦtXt, ut〉 +

〈
Ψ

1/2
t ut, Ψ

1/2
t ut

〉
,

=
〈
Ψ

−1/2
t ΦtXt + Ψ

1/2
t ut, Ψ

−1/2
t ΦtXt + Ψ

1/2
t ut

〉
,

=
∥∥∥Ψ−1/2

t ΦtXt + Ψ
1/2
t ut

∥∥∥
2

.

By substituting this result in the previous equation connected with the
objective functional, we obtain

J [ut] =
1

2
〈π0x, x〉 +

1

2
E
(∫ T

0

∥∥∥Ψ−1/2
t ΦtXt + Ψ

1/2
t ut

∥∥∥
2

dt

)
.

This relation holds for all ut ∈ L2
F
(
0, T ; Rk

)
, therefore the optimal

control can be characterized by choosing

u∗
t = −Ψ−1

t ΦtX
∗
t .

�
The main difference between deterministic and stochastic LQ problems
is strictly connected with the form of the term

Ψt = Rt +
∑m

i=1

(
Di

t

)′
πtD

i
t .

If the problem is deterministic (or if the control does not affect the
diffusion term, i.e. Di

t = 0 for all i = 1, ..., m), then the theorem above
holds if and only if Rt � 0. On the other hand, when Di

t 6= 0 for
some i ∈ {1, ..., m}, the result is useful even if Rt is indefinite. This
interesting observation appeared for the first time in the paper [7].

There is another problem connected with the theory of the stochas-
tic Riccati equation. First of all, we recall that a necessary condition
for both the solvability and the finiteness of a deterministic LQ problem
is the condition Rt � 0 [28, p.290]. On the other hand, this condition
is not sufficient for the solvability, nor for the finiteness. On the other



2. RICCATI EQUATION 41

hand, if we assume that Rt � 0, then a deterministic LQ problem is
finite and solvable if and only if the deterministic Riccati equation




π̇t + π′
tAt + A′

tπt + Ft − (B′
tπt)

′ R−1
t B′

tπt = 0 ,
πT = G ,
Rt � 0

has a solution2 defined in the whole interval [0, T ] [28, p.296]. This
quick summary on deterministic LQ problems, leaves us with the sug-
gestion that if in the stochastic LQ problem one required that Rt +∑m

i=1 (Di
t)

′
πtD

i
t should be positive definite, then the existence of a so-

lution of the stochastic Riccati equation would be equivalent to the
solvability of a stochastic LQ problem. However, this is not true. In
fact, it has been proved in the paper [7] that there exist some solvable
stochastic LQ problems that do not satisfy the condition that Ψt is
positive definite. Recently, in the work [1], a generalized Riccati equa-
tion has been proposed, whose solution is equivalent to the solvability
of a stochastic LQ problem. In the final part of the Section we present
the more interesting results connected with this theory.

2.3. Generalized Riccati equation. We know that given a ma-
trix M ∈ Rm×n there exists a unique matrix M † ∈ Rn×m, called the
pseudo inverse of the matrix M , such that

MM †M = M , M †MM † = M † ,(
MM †)′ = MM † ,

(
M †M

)′
= M †M .

We use the pseudo inverse in the following result.

Theorem 20 (Generalized Riccati equation). Let us assume that
there exists a matrix function πt ∈ C1 ([0, T ] ; Rn×n) such that

(17)





π̇t + π′
tAt + A′

tπt +
m∑

i=1

(Ci
t)

′
πtC

i
t + Ft − Φ′

tΨ
†
tΦt = 0 ,

πT = G ,

ΨtΨ
†
tΦt − Φt = 0 ,

Ψt � 0 ,

therefore the set of all optimal controls can be written in feedback form
as

u∗
t = −

(
Ψ†

tΦt + Yt − Ψ†
tΨtYt

)
X∗

t + Zt − Ψ†
tΨtZt ,

2Moreover, if the LQ problem is standard (i.e. if not only Rt positive definite,
but also G positive semidefinite) then the deterministic Riccati equation has a
solution defined in [0, T ], hence the deterministic LQ problem is solvable. However,
there exist solvable deterministic LQ problems that are not standard, hence being
standard is not a necessary condition for the solvability.
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where Yt ∈ L2
F
(
0, T ; Rk×n

)
and Zt ∈ L2

F
(
0, T ; Rk

)
.

Proof. [1, Theorem 3.1]. �
We know that the pseudo inverse coincides with the inverse when the
matrix is non-singular. Hence, two particular cases of the Theorem
above are the following:

• if for all t ∈ [0, T ] the matrix Ψt � 0, then the Riccati equation
is the same as the one written in (16);

• if for all t ∈ [0, T ] the matrix Ψt = 0, then the Riccati equation
is 



π̇t + πtAt + A′
tπt +

m∑
i=1

(Ci
t)

′
πtC

i
t + Ft = 0 ,

πT = G ,
Φt = 0 ,

and all the controls in L2
F
(
0, T ; Rk

)
are optimal.

We close this Section with a very interesting result that justifies the
previous theorem. In fact, the relation above is not only a sufficient
condition for the optimality, it is also a necessary one.

Theorem 21. A stochastic LQ problem has an optimal control if
and only if the generalized Riccati equation (17) has a solution.

Proof. [1, Theorem 5.3]. �



CHAPTER 5

A Marketing Model

1. Nerlove and Arrow’s Model

One of the earliest studies in advertising is a paper written by
Nerlove and Arrow [15]. In that work, the authors consider adver-
tising as an investment in a stock (the goodwill At), which summarizes
the effects of current and past advertising flow at; they assume that the
goodwill evolution satisfies the first order linear differential equation

(18) Ȧt = −δAt + at .

Then the goodwill decreases spontaneously with decay coefficient δ > 0.
At is always positive and is sustained by the advertising investment
at. The original model is introduced considering the long run scenario.
However, the finite horizon hypothesis is already studied and it is quite
simple to introduce: the firm wants to choose a price pt > 0 and an
advertising flow at ≥ 0 in order to maximize its profit:
∫ T

0

{S (At, pt, Zt) [pt − C (S (At, pt, Zt))] − c (at)} e−rt dt + u (AT ) ,

where

• S (At, pt, Zt) is the sales function, it is increasing in the variable
A (the more the goodwill is, the more the sales are), while it
is decreasing in the variable p (the more the price is, the less
the sales are), and it depends on some exogenous factors out
of the firm control, Zt;

• C (S (At, pt, Zt)) represents the production cost connected to
the sales level S (At, pt, Zt);

• c (at) is the advertising cost that the firm has to sustain in
order to obtain an advertising flow at;

• r > 0 is the discount rate;
• u (AT ) is the utility considered as a prospective profit given by

a final level of goodwill AT and it is an increasing function.

As already studied in [5], this model can also be useful in the prob-
lem of a new product introduction. In fact, the motion equation re-
mains the same, but the objective functional can be modified as follows:

43
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Maximize
at≥0

∫ T

0
−c (at) e−rt dt + u (AT ) .

During the pre-launch interval [0, T ] the firm can only present its prod-
uct to the consumers, hence, it has only to sustain the advertising cost
and does not have any revenues. At the time T , in some cases (concert,
workshop,...) the firm obtains the total revenue, in other cases it starts
to obtain the revenue which depends on the goodwill at the final time.
In this situation u (AT ) represents an estimate of the expected revenue.
Therefore, all the utility obtained by the firm is concentrated at the end
of the programming interval and it is described by the function u (AT ).
If the pre-launch interval is not too wide it is convenient to choose r = 0
and consider only the trade-off between advertising cost and final util-
ity. An interesting example which can be described with this model
is the following: we can consider an organization which has planned
a social event (concert, workshop, soccer match), at a fixed time T .
An advertising campaign has to be organized in order to stimulate as
wide a participation as possible. We suppose that the customers buy
the tickets only at time T and that the demand depends on the event
goodwill at T .

2. Advertising and a Stochastic Goodwill Process

While introducing the concept of goodwill we have assumed that the
advertising flow is an investment in the stock of goodwill. Nowadays,
the price evolution of the stocks is described using the stochastic pro-
cesses theory, and therefore a natural question arises: “What would
happen if we modeled the goodwill evolution using the same instru-
ments used in the modern Finance theory?”

The first studies dealing with a stochastic extension of Nerlove and
Arrow’s advertising model are proposed by Tapiero [21], [22], [23],
[24], [25]. He assumes that both the advertising policy and the forget-
ting phenomenon affect the goodwill evolution stochastically. He intro-
duces transition probabilities on a discrete set of system states to model
the effects of advertising on consumers’ behavior and sales process and,
in the feedback advertising policy framework, he obtains a stochastic
differential equation (SDE for short) which models the changes of the
state variable At [22, p.457]. The drift term of Tapiero’s SDE is similar
to the Nerlove and Arrow’s goodwill variation rate in (18), whereas the
diffusion term is the result of some technical approximations. Other
authors propose different SDEs to model the goodwill evolution, see
e.g. Rao [17], Raman [16] and Sethi [20]. The first two authors take
the r.h.s. of equation (18) as the drift term and introduce a diffusion
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term that focuses on a specific economic aspect of the problem (e.g.
Rao introduces a white noise in the goodwill evolution).

Hence, the description of the goodwill evolution using the stochas-
tic processes theory is not new in advertising models. However, the
idea of modeling directly the goodwill evolution by controlled SDEs, as
already done for the stocks evolution in Mathematical Finance, seems
to be the most natural approach to the problem. The simplest stock
evolution model describes the price process of a risky asset using a lin-
ear SDE. Hence, we can assume that the goodwill evolution, without
any advertising flow, can be described by the following linear SDE

dAt = −δAtdt + σAAtdW A
t .

We can note that the goodwill is always positive as in the original
Nerlove and Arrow’s model. On the other hand the diffusion term can
describe the uncertainty source due to the word-of-mouth communica-
tion, a kind of publicity which is independent of the firm advertising
policy. With the above SDE we are assuming that the weight of the
word-of-mouth communication is proportional to the actual goodwill
and we argue that it affects the goodwill randomly. Actual consumers
communicate their product experience randomly, either favorably or
unfavorably. The parameter σA ≥ 0 represents the advertising volatil-
ity and describes the power of this effect.

The control of this SDE is obtained using the advertising flow. We
assume that the advertising flow increases the mean evolution of the
goodwill, however the advertising message introduces also an uncer-
tainty source in the system. These hypotheses are motivated by the
assumption that the advertising policy has a double effect on the good-
will, partly deterministic (the information effect) and partly stochastic
(the lure/repulsion effect). Potential consumers react randomly to ad-
vertising, being attracted or repelled by the advertising message. The
advertising message has an unforeseeable effect on the goodwill, be-
cause either it may not be completely understood by the consumers, or
it may completely meet the taste of the public. This can be described
assuming that the goodwill evolution is represented by the following
controlled SDE:

dAt = (at − δAt) dt + σAAt dW A
t + σaat dW a

t ,

where W A
t , W a

t are independent Wiener processes, while σa represents
the advertising volatility and describes the rate of uncertainty intro-
duced by advertising. Under these assumptions, also the advertising
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flow becomes a stochastic process and now the problem can be de-
scribed using the stochastic control theory

Maximize
at∈L2

F (0,T ;[0,+∞))
E
(∫ T

0
−c (at) dt + u (AT )

)
,

Subject to

{
dAt = (at − δAt) dt + σAAt dW A

t + σaat dW a
t ,

A0 = A > 0 ,

where A ∈ R is a constant which represents the goodwill level at the
time 0.

3. Communication Mix

We are supposing that the goodwill is created and increased by the
advertising flow, but the new marketing theories [13] emphasize the
importance of recognizing different advertising channels which affect
different segments of the market (different people react to an adver-
tising channel in a different way). Moreover, the use of different ad-
vertising channels is necessary to meet as many consumers as possible.
Finally, it is very important to characterize the most useful communi-
cation channel if the firm wants to maximize its share of the market.
In order to introduce more advertising channels we can modify the
goodwill motion equation as follows:

dAt =

(
k∑

i=1

ϑiai
t − δAt

)
dt + σAAt dW A

t +

k∑

i=1

σi
aa

i
t dW i

t ,

where ϑi is the marginal productivity of the i-th advertising channel
in terms of goodwill. Moreover, different advertising channels have
different costs, and therefore also the objective functional has to be
modified:

E

(
−
∫ T

0

k∑

i=1

ci
(
ai

t

)
dt + u (AT )

)
,

where ci (ai
t) is cost function of the i-th advertising channel.

The general problem we are dealing with can be summarized as follows:

(19)

Maximize
ai

t∈L2
F (0,T ;[0,+∞))

E
(
−
∫ T

0

k∑
i=1

ci (ai
t) dt + u (AT )

)
,

Subject to





dAt =

(
k∑

i=1

ϑiai
t − δAt

)
dt

+σAAt dW A
t +

k∑
i=1

σi
aa

i
t dW i

t ,

A0 = A > 0 .
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The complete study of this model is very difficult because the nec-
essary conditions for the optimality involve some forward backward
SDEs that, generally, cannot be solved explicitly. However, if we con-
sider some quadratic instances of the problem we can get some results
in a closed form that clarify the features of this model. In the follow-
ing Chapters we consider some instances of this problem and analyze
the new effects introduced by the presence of the diffusion term in the
motion equation. The following Chapters describe marketing models
that can be considered as instances of (19) and make some practical
and useful examples to understand the setting of the problem. Then,
under the LQ hypotheses, we get some information that are used to
analyze the soundness of this formulation from an economic point of
view.





CHAPTER 6

Advertising for a New Product Introduction

1. The problem

We present a stochastic model for the introduction of a product in
the market, as a counterpart of a deterministic model proposed by Bu-
ratto and Viscolani [5]. We assume that the firm can control (through
the advertising flow) the goodwill evolution during the programming
interval [0, T ] and that it wants to maximize the expected utility given
by the product goodwill at the (fixed) launch time T and minimize
the total advertising cost. The utility is a continuous and increasing
function of the final goodwill level AT , as in [5]. Here we admit an
uncertainty in the goodwill evolution, which is realistic and rather ob-
vious. A random goodwill has already been taken into account by
Buratto and Viscolani [4] for a problem of this kind, though for the
final time value only.

One of the earliest studies concerning a dynamic model in adver-
tising is a paper written by Nerlove and Arrow [15]. In that work, the
authors consider advertising as an investment in a stock (the goodwill
At), which summarizes the effects of current and past advertising flow
at. They assume that the goodwill evolution satisfies the first order
linear differential equation

(20) Ȧt = −δAt + at .

Then the goodwill decreases spontaneously with decay coefficient δ > 0.
At is always positive and is sustained by the advertising investment.

The first studies dealing with a stochastic extension of Nerlove and
Arrow’s advertising model are proposed by Tapiero ([21], [22], [23],
[24], [25], [26]). He assumes that both the advertising policy and the
forgetting phenomenon affect the goodwill evolution stochastically. He
introduces transition probabilities on a discrete set of system states
to model the effects of advertising on consumers’ behavior and sales
process and, in the feedback advertising policy framework, he obtains
a stochastic differential equation (SDE for short) which models the
changes of the state variable At (see [22, p.457]). The drift term of
Tapiero’s SDE is similar to the Nerlove and Arrow’s goodwill variation

49
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rate in (20), whereas the diffusion term is the result of some technical
approximations. Other authors propose different SDEs to model the
goodwill evolution, see e.g. the paper of Rao [17], or the article of
Raman [16], or the work of Sethi [20]. The first two authors take the
r.h.s. of equation (20) as the drift term and introduce a diffusion term
that focuses on a specific economic aspect of the problem (e.g. Rao
introduces a white noise in the goodwill evolution).

Here we consider two uncertainty sources for the goodwill evolution
and represent them by introducing two independent diffusion terms in
equation (20). In fact, we may reasonably assume that both phenomena
act independently on the goodwill evolution process.

The first uncertainty source is due to the word-of-mouth communi-
cation, a kind of publicity which is independent of the firm advertising
policy. We assume that the weight of the word-of-mouth communica-
tion is proportional to the actual goodwill and we argue that it affects
the goodwill randomly. Actual consumers communicate their product
experience randomly, either favorably or unfavorably.

The second uncertainty source is due to the advertising message and
is motivated by the assumption that the advertising policy has a double
effect on the goodwill, partly deterministic (the information effect) and
partly stochastic (the lure/repulsion effect). Potential consumers react
randomly to advertising, being attracted or repelled by the product.
We want to analyze in particular the optimal policies for a risk inclined
decision-maker.

Let us assume that a filtered probability space
(
Ω,F , {Ft}t∈[0,T ] , P

)

satisfying the usual conditions [28, p.17] and two standard, stochas-
tically independent, one-dimensional Brownian motions W A

t , W a
t are

given. Let {Ft}t∈[0,T ] be exactly the natural filtration generated by the
Brownian motions augmented by all the P-null sets in F .

Moreover, given a set U ⊆ Rn, let L2
F (0, T ; U) be the space of all

the processes Xt (ω) : [0, T ] × Ω → U which are {Ft}t∈[0,T ]-adapted,
U -valued, progressively measurable, mean square integrable; i.e.

E
(∫ T

0

‖Xt‖2 dt

)
< +∞ .

Finally, let L2
F (Ω; C ([0, T ] ; Rn)) be the space of all the continuous

processes Xt (ω) ∈ L2
F (0, T ; Rn) such that E

(
supt∈[0,T ] ‖Xt‖2) < +∞.

Such technical assumptions allow us to use the stochastic optimal
control theory as introduced in [28]; the notation used here is the same
as the one defined in [1], [7], [28].
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The problem of determining an advertising policy in order to have
an optimal goodwill level at the final time T , when the goodwill is
subject to a random evolution, is
(21)

Maximize at≥0 E
(∫ T

0
−c (at) dt + u (AT )

)
,

Subject to

{
dAt = (at − δAt) dt + σAAtdW A

t + σaatdW a
t ,

A0 = A > 0 ,

where

• the function c represents the cost of advertising and, according
to literature (e.g. [22, p.455]), it is non-linear, increasing, and
convex (c′ ≥ 0, c′′ ≥ 0). We assume also that c′(0) = 0; for the
sake of simplicity, let c′ be a strictly increasing, unbounded,
1-to-1 map of [0, +∞) onto [0, +∞);

• the function u represents the utility from the final goodwill
and is homogeneous with the cost, it is twice continuously
differentiable and increasing (u′ > 0);

• δ > 0 is the decay coefficient and A > 0 is the initial value of
the goodwill;

• the first diffusion term, σAAt dW A
t , accounts for the word-of-

mouth communication, the parameter σA ≥ 0 is the advertis-
ing volatility;

• the second diffusion term, σaat dW a
t , accounts for the lure/

repulsion effect of advertising, the parameter σa ≥ 0 is the
communication effectiveness volatility.

We notice that, although the goodwill is assumed to be positive
at the initial time, it may as well be negative at any time t > 0.
We may single out three special situations which are associated with
the following choices of diffusion coefficients: σA = σa = 0, i.e. the
deterministic case with motion equation (20); σA > 0, σa = 0, i.e. the
case in which the word-of-mouth phenomenon is the unique cause of
randomness; σA = 0, σa > 0, i.e. the case in which the advertising
lure/repulsion effect is the unique source of randomness.

2. General results on optimal solutions

Here we characterize the possible optimal control-state pairs by
using the Peng’s stochastic maximum principle [28]. In the following,
we use the notation [·]+ for max(0, ·), as usual.

Lemma 22. Let (a∗
t , A

∗
t ) be an optimal control-state pair for problem

(21), and let b be the inverse of the bijective map c′; then there exist
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processes A∗
t , pt, q

A
t , qa

t , Pt, Q
A
t , Qa

t , which solve the following forward-
backward SDE (FBSDE for short):

(22)





dA∗
t =

(
b
(
[pt + σaq

a
t ]

+)− δA∗
t

)
dt

+ σAA∗
t dW A

t + σab
(
[pt + σaq

a
t ]

+) dW a
t ,

dpt =
(
δpt − σAqA

t

)
dt + qA

t dW A
t + qa

t dW a
t ,

dPt =
(
(2δ − σ2

A)Pt − 2σAQA
t

)
dt + QA

t dW A
t + Qa

t dW a
t ,

A∗
0 = A ,

pT = u′ (A∗
T ) ,

PT = u′′ (A∗
T ) .

In particular:

(23) a∗
t = b

(
[pt + σaq

a
t ]

+) .

Proof. The H-function [28, p.118] associated with the optimal control-
state pair (a∗

t , A
∗
t ) is

H (A, a, t) = (a − δA) pt − c (a) + 1
2
Pt (σ

2
AA2 + σ2

aa
2)

+ σAA
(
qA
t − PtσAA∗

t

)
+ σaa (qa

t − Ptσaa
∗
t ) ,

and hence

(24) Ha (A, a, t) = pt − c′ (a) + Ptσ
2
aa + σa (qa

t − Ptσaa
∗) .

For all t, the function Haa (A, a, t) does not depend explicitly on A and
the maximum condition implies that

– either a∗
t = 0 and Ha (A∗

t , 0, t) ≤ 0, so that

pt + σaq
a
t ≤ c′(0) = 0 ,

– or a∗
t > 0 and Ha (A∗

t , a
∗
t , t) = 0, so that

pt + σaq
a
t = c′ (a∗

t ) > 0 .

Therefore, for all t, there exists a unique candidate value of the
control, which can be written as a∗

t = b
(
[pt + σaq

a
t ]

+). �

In order to compute explicitly the solution of problem (21) we have
to analyze the FBSDE (22). The standard method to solve this kind
of equations, i.e. the so called “four step scheme” [28, p.387], does not
work here, as the functions involved in (22) are not smooth enough.
Nevertheless, we are able to propose some economic observations de-
rived from the above Lemma.

First of all, we can obtain a representation of the solution of the

adjoint equations. Let us set η [as, bs] = exp
(∫ t

0
asds +

∫ t

0
bsdWs

)
, i.e.
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the stochastic exponential which is the unique solution of the linear
SDE dXt = atXtdt + btXtdWt and let us consider the backward SDE

{
dYt = (atYt + btZt) dt + ZtdWt ,
YT = ζ ∈ L2 (Ω,FT , P) ,

where Yt is a one-dimensional process, while Zt and Wt are two k-
dimensional processes. Using Itô’s formula we have

d (Yt ηt [−as,−bs]) = (· · · ) dWt ,

so that

ζ ηT [δ,−bs] − Yt ηt [−as,−bs] =

∫ T

t

(· · · ) dWt ,

and applying the conditional expectation E ( ·| Ft) to both sides we
obtain

Yt = η−1
t [−as,−bs] E (ζ ηT [−as,−bs]| Ft) .

This well-known result [28, p.349] permits us to represent the processes
pt and Pt, solution of (22), as follows:

pt = η−1
t [−δ, (σA, 0)] E (u′ (A∗

T ) ηT [−δ, (σA, 0)]| Ft) ,

Pt = η−1
t

[
σ2

A − 2δ, (2σA, 0)
]

E
(
u′′ (A∗

T ) ηT

[
σ2

A − 2δ, (2σA, 0)
]∣∣Ft

)
.

The variable pt represents the marginal value of the goodwill At

[28, p.251] and is always positive (as u′ > 0). It is well-known that a
deterministic optimal advertising rate satisfies the relation: “marginal
cost equal to marginal goodwill value” (i.e. c′ (a∗

t ) = pt) as documented
by Sethi [20] and Feichtinger, Hartl and Sethi [8]. Here that relation
holds if and only if the control has a simply deterministic effect on the
goodwill evolution, i.e. if σa = 0. When σa > 0 the previous relation
is modified into c′ (a∗

t ) = pt + σaq
a
t , so that the decision-maker must

also consider the uncertainty introduced by the control in the system.
In fact, this is an interesting case, because, under such an assumption,
the deterministic and the stochastic problems have different kinds of
solution.

The variable Pt represents the weight of the risk which depends
on the uncertainty of the goodwill evolution related to advertising. If
the decision-maker is risk averse, then Pt < 0 (as u′′ < 0), so that
Haa (A, a, t) = −c′′(a)+σ2

aPt < 0, for all a, and the function H (A, a, t)
is concave in a, hence the solution (23) is indeed a maximum point of
H (A, a, t). On the other hand, if the decision-maker is risk inclined,
then Pt > 0 (as u′′ > 0), so that H (A, a, t) may not be concave in a
and might also be upper unbounded w.r.t. the variable a in [0, +∞). If
supa≥0 H (A, a, t) = +∞, for some t, then the problem (21) is ill-posed,
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because we should have at = +∞. This fact may occur because the
variance of AT increases when the firm drives the goodwill evolution
using the leverage of the process volatility. If the decision-maker is risk
inclined, then the variance increment is felt as an extra-utility. In the
following, we see how a well-posed deterministic problem may have a
corresponding stochastic ill-posed problem, due to the risk proclivity
of the decision-maker.

3. Deterministic interlude

If σA = σa = 0, then no stochastic effect is considered any more and
we are faced with the following deterministic optimal control problem:

(25)
Maximize at≥0

∫ T

0
−c (at) dt + u (AT ) ,

Subject to

{
Ȧt = at − δAt ,
A0 = A > 0 .

Here the motion equation is the same as in the Nerlove and Arrow’s
model, and it assures that the goodwill is always positive. The Lemma
of the previous Section is specialized in the following theorem.

Theorem 23. Let (a∗
t , A

∗
t ) be an optimal control-state path for prob-

lem (25), let b be the inverse of the bijective map c′, then the optimal
advertising expenditure is

a∗
t = b

(
u′ (A∗

T ) eδ(t−T )
)

,

where A∗
T is a solution of the equation

(26) AT eδT = A +

∫ T

0

eδsb
(
u′ (AT ) eδ(s−T )

)
ds .

Proof. If σA = σa = 0, then the necessary conditions (22) are satisfied
by the following functions qA

t ≡ qa
t ≡ QA

t ≡ Qa
t ≡ 0,





Ȧ∗
t = b

(
[pt]

+)− δA∗
t ,

ṗt = δpt ,

Ṗt = 2δPt ,
A∗

0 = A ,
pT = u′ (A∗

T ) ,
PT = u′′ (A∗

T ) .

Now, the function pt can be written as pt = u′ (A∗
T ) eδ(t−T ), so that

it is always positive. Hence, the candidate optimal control is a∗
t =

b
(
u′ (A∗

T ) eδ(t−T )
)

and its associated state function can be written as

(27) A∗
t = Ae−δt + e−δt

∫ t

0

eδsb
(
u′ (A∗

T ) eδ(s−T )
)
ds .
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Equation (26) is actually the transversality condition. �

3.1. Quadratic cost and utility. Let the cost and utility func-
tions be as follows:

(28) c (a) = κa2/2, u (A) = γA2/2, κ, γ > 0 ;

hence c′(a) = ka, b (p) = p/κ and u′ (A) = γA. The cost function
is continuous, increasing, and convex, as usual. The utility function
is continuous and increasing; moreover it has been chosen quadratic
and convex in order to obtain a closed form solution using the Riccati
equation technique. Therefore, equation (26) is equivalent to

δκAT eδT = δκA − γAT sinh (−δT ) ,

which has the unique solution

AT =
δκA

δκeδT + γ sinh (δT )
.

The above assumptions do not guarantee that the solution just ob-
tained is optimal. In order to prove that this is indeed the optimal
advertising flow we use the Riccati equation approach. As problem
(25) with assumptions (28) is a linear quadratic (LQ for short) optimal
control problem, we can study a Boundary Value Problem (BVP for
short) in order to have necessary and sufficient conditions for optimal-
ity.

Proposition 24. If the BVP

(29)

{
π̇t = 2δπt + π2

t /κ ,
πT = −γ

has a solution defined in the whole interval [0, T ], then there exists a
unique optimal control and it has the following feedback form:

(30) a∗
t = −πt

κ
A∗

t .

Proof. Under the assumptions (28) the optimal control problem (25)
is

(31)

Maximize at≥0

∫ T

0
(−κa2

t /2)dt + γA2
T /2 ,

Subject to

{
Ȧt = at − δAt ,
A0 = A > 0 .

The feasible set of the problem is L2 (0, T ; [0, +∞)). The relaxed prob-
lem, with the feasible set L2 (0, T ; R), is an LQ optimal control problem.
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We prove that an optimal control a∗
t ∈ L2 (0, T ; R) of the relaxed prob-

lem must satisfy the constraint a∗
t ≥ 0 and must be an optimal control

of the original problem (31).
Using a well-known result on the LQ deterministic optimal control

problems [28, p.296] we know that if a solution πt of the BVP (29) is
given , then the relaxed LQ optimal control problem has an optimal
control which can be written in the feedback form (30). Now, the
ODE in (29) has two equilibrium points: πe = 0, which is unstable,
and πε = −2δκ < 0, which is asymptotically stable. The condition
πT = −γ can only be satisfied if the BVP solution is negative in the
whole interval [0, T ]. Therefore we have that a∗

t = −πtA
∗
t /κ > 0 for

all t and the optimal control of the relaxed problem is feasible (and
optimal) also for the original problem (31). �

The BVP (29) can be solved locally in (T − ε, T ] for some ε > 0, and
its explicit solution is

(32) π(t) = − δκγeδ(t−T )

δκeδ(T−t) + γ sinh (δ (T − t))
.

We observe that the denominator δκeδ(T−t)+γ sinh (δ (T − t)) is strictly
decreasing in [0, T ] and reaches the value δκ > 0 at t = T , so that it
is strictly positive for all t ∈ [0, T ]. Therefore function (32) solves the
BVP (29) for all t ∈ [0, T ].

In order to study the feedback function (30) it is convenient to
analyze the phase portrait (Figure 6.1), rather than using the explicit
solution (32).
We observe that the stable equilibrium point πε is an attractor for the
set (−∞, 0). On the other hand, all the solutions starting from a point
of the set (0, +∞) go to +∞ as t 7→ +∞. To respect the condition
πT = −γ, we have that either limt 7→−∞ πt = 0 (when −γ ∈ (−2δκ, 0),
i.e. γ/2κ < δ), or limt 7→−∞ πt = −∞ (when −γ ∈ (−∞,−2δκ), i.e.
γ/2κ > δ). Then we are led to consider three different kinds of policies
(Figure 6.2).

γ/2κ < δ: the decay coefficient δ is large, therefore the optimal
advertising/goodwill ratio (i.e. −πt/κ) is strictly increasing
and upper bounded by the value γ/κ;

γ/2κ = δ: the optimal advertising/goodwill ratio is constant dur-
ing the whole programming interval;

γ/κ2 > δ: the decay coefficient δ is small, therefore the optimal
advertising/goodwill ratio is strictly decreasing and is lower
bounded by the value γ/κ.
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4. Stochastic framework and risk proclivity

In the previous Section we have seen how the LQ instance of prob-
lem (25) can be profitably used in order to obtain some explicit results.
Here we focus on the analogous instance of problem (21), where the
cost and utility functions are c (a) = κa2/2 and u (A) = γA2/2, with
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κ, γ > 0 fixed parameters. In the stochastic framework the convexity
of the utility function has a precise interpretation: it means assuming
a risk inclined decision-maker. With such a choice we could describe a
firm which wants to obtain a share of a new market and is prepared to
accept some risks in order to reach that goal.
The stochastic problem (21) with the quadratic cost and utility func-
tions is
(33)

Maximize at≥0 E
(∫ T

0
(−κa2

t /2)dt + γA2
T /2
)

,

Subject to

{
dAt = (at − δAt) dt + σAAtdW A

t + σaatdW a
t ,

A0 = A > 0 .

As in the deterministic case, the problem is a linear quadratic (sto-
chastic) optimal control problem as soon as we relax the constraint
at ∈ L2

F (0, T ; [0, +∞)). Now, we show that if a BVP called stochastic
Riccati equation has a solution, then the relaxed problem has an opti-
mal solution, which is related to the solution of the BVP. Moreover, the
control is non-negative, so that the solution is optimal for the original
problem, too.

Theorem 25. If the BVP

(34)





π̇t = (2δ − σ2
A) πt + π2

t / (κ + σ2
aπt) ,

πT = −γ ,
κ + σ2

aπt > 0

has a solution which is defined in the whole programming interval [0, T ],
then there exists a unique optimal control for problem (33), which has
the feedback form:

(35) at = − πt

κ + σ2
aπt

At .

Proof. Let us consider the relaxed instance of the problem (33) (i.e.
the problem with the feasible set L2

F (0, T ; R)). Using the solution of
the BVP (34) we can write the objective functional of (33) as (see [28,
p.315]:

E (· · · ) = −1

2
π0A

2 − 1

2
E




T∫

0

√
κ + σ2

aπt

∣∣∣∣at +
πt

κ + σ2
aπt

At

∣∣∣∣ dt


 .

Therefore the optimal control is unique and has the feedback form (35).
Moreover, if we choose such a control, the motion equation becomes
a linear SDE with a stochastic exponential solution. This guarantees
that the optimal state process is positive, A∗

t > 0. In order to state that
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also the optimal control is positive we have to prove that the solution
of equation (34) is negative. This depends on the fact that the ODE
in (34) has π = 0 as an equilibrium point and moreover πT = −γ < 0.
�

We observe that, as κ > 0 the BVP (34) is solvable if and only if
the problem (34) is well-posed [7], [1].

4.1. Word-of-mouth effect only. If σa = 0 and σA > 0, then
only the word-of-mouth effect is considered in the model. The BVP
(34) becomes:

(36)





π̇t = (2δ − σ2
A)πt + π2

t /κ ,
πT = −γ ,
κ > 0 .

First, we notice that the third condition is satisfied trivially. Moreover,
the above BVP is essentially the same as (29) in the deterministic
instance. They only differ for the linear term coefficient, which now
is 2δ − σ2

A and may be negative as well as positive. Then we have to
consider the following two different cases.

2δ − σ2
A > 0: the ODE in (36) has the same phase portrait as

the ODE in (29). The two equilibrium points are now πe = 0,
and πε = − (2δ − σ2

A) κ < 0. If σa = 0 and 2δ > σ2
A > 0,

then the stochastic optimal control problem (33) is equivalent
to (i.e. has the same feedback form solution as) the following
deterministic optimal control problem:

Maximize at≥0

∫ T

0
(−a2

t κ/2)dt + γA2
T /2 ,

Subject to

{
dAt = (at − (2δ − σ2

A) At/2) dt ,
A0 = A > 0 .

This implies that there exists a trade-off between the word-
of-mouth publicity and the spontaneous decay of the goodwill
due to the consumers forgetting phenomenon.

2δ − σ2
A ≤ 0: the phase portrait of the ODE in (29) is different

from the previous one because both equilibrium points are in
the non-negative half-plane. πe = 0 becomes an attractor for
the set (−∞, 0), therefore the state coefficient in the feedback
function is strictly decreasing and is lower bounded by the
value γ. Also in the first part of the programming interval a
strong advertisement is convenient because the goodwill is self-
supporting (now the goodwill increases spontaneously, hence
it is convenient to increase the process immediately).
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4.2. Lure/repulsion effect only. If σA = 0 and σa > 0, then
only the lure/repulsion effect is considered in the model. The Riccati
BVP (34) becomes:

(37)





π̇t = 2δπt + π2
t / (κ + σ2

aπt) ,
πT = −γ ,
πtσ

2
a + κ > 0 .

Here, the third condition is essential in order to obtain a well-posed
problem. The ODE in (37) has two equilibrium points: πe = 0, an un-
stable point, and πε = −2δκ/ (1 + 2δσ2

a) < 0, which is asymptotically
stable. The latter, πε, is an attractor for the set (−∞, 0). On the other
hand, all the solutions starting from points of the set (0, +∞) go to
+∞ as t 7→ +∞.

The following cases may occur:

πε < −γ: necessarily κ − γσ2
a > 0 and the decay coefficient δ is

large, δ > γ/2(κ − γσ2
a). The solution πt is negative, strictly

decreasing and lower bounded by the value −γ. From πt ≥ −γ
we obtain that πtσ

2
a +κ ≥ k/(1+2δσ2

a) > 0, so that the third
condition in (37) is satisfied, too. The advertising cost (which
depends on k) is high enough so that the problem is well-posed.
The state coefficient in the feedback function can be rewritten
as

− πt

κ + σ2
aπt

=
1

σ2
a

(
κ

κ + σ2
aπt

− 1

)
,

so that we observe that the optimal advertising/goodwill ratio
is strictly increasing and upper bounded by γ/ (κ − σ2

aγ).
πε = −γ: as previously κ−γσ2

a > 0 (the advertising cost must be
relatively high) and the decay coefficient is δ = γ/2(κ− γσ2

a).
As in the first case, the third condition in (37) is satisfied.
The solution πt and the optimal advertising/goodwill ratio are
constant.

πε > −γ: if κ − γσ2
a > 0 (relatively high advertising cost), then

the decay coefficient is small, δ < γ/2(κ − γσ2
a), otherwise,

if κ − γσ2
a ≤ 0 (relatively low advertising cost), the decay

coefficient is not subject to any additional constraints, δ > 0.
In either alternative, the solution πt of the ODE in (37) is
negative, strictly increasing and upper bounded by the value
−γ. Moreover, limt 7→−∞ πt = −∞, therefore we can define
t∗ ∈ R such that

t∗ = inf
{
t ∈ R : κ + σ2

aπt ≥ 0
}

.
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Now, the third condition in (37) is satisfied if and only if t∗ < 0.
In that case, the optimal advertising/goodwill ratio is strictly
decreasing and reaches its minimum γ/ (κ − σ2

aγ) at t = T .

5. Conclusion

From the comparison of the deterministic and the stochastic LQ
instances of the problem (21) we have found some new features in the
stochastic viewpoint, which are interesting from an economic point of
view.

Under the LQ assumption the decision-maker is risk inclined, there-
fore when she/he maximizes a quadratic final utility she/he is choosing
an advertising policy that increases as much as possible both the mean
and the variance of the final goodwill random variable AT .

The presence of the word-of-mouth effect compensate partly the
goodwill spontaneous decay. This phenomenon can also reverse the
goodwill decay when the goodwill volatility is sufficiently high. How-
ever, the presence of this random advertising channel cannot modify
deeply the feedback form of the optimal advertising policy. It can shift
the equilibrium point πε to the positive half-plane, and so doing reduce
the possibility to have an increasing optimal advertising/goodwill ra-
tio. Nevertheless, it does not modify the feedback form, nor transform
a deterministic well-posed problem into a stochastic ill-posed one.

On the other hand, the action of the uncertainty connected with
the lure/repulsion effect of the advertising message is deeper (and it
is not so surprising because the advertising policy affects directly the
evolution of the goodwill variance). This phenomenon introduces a
high uncertainty in the system, so that the stochastic analogous of a
well-posed deterministic problem may as well be an ill-posed stochas-
tic problem for a risk inclined decision-maker. When the stochastic
problem is well-posed, the optimal advertising/goodwill ratio has a
form which differs from the one of the analogous deterministic prob-
lem. The new form shifts the equilibrium point πε to the positive
half-plane and reduces, as observed above, the possibility to have an
increasing optimal advertising/goodwill ratio.

From a marketing point of view, these results suggest two kinds
of advertising campaign for a risk inclined decision-maker: assuming
that the mean goodwill increases, the first kind of advertising campaign
is rather prudent and concentrates the advertising flow near the end
of the programming interval. The second kind is riskier and drives
the goodwill quickly to a high level in order to exploit the possible
positive fluctuations of the state variable. In order to select one of the
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two alternatives a decision-maker has to consider the trade-off between
the deterministic effects of the advertising channel (as the advertising
cost or the goodwill decay) and the high promising (but risky) effects
connected to the stochastic part of the advertising message.



CHAPTER 7

Event Planning, Communication Mix, and

Congestion

1. Model description

We consider an organization which has planned a social event (con-
cert, workshop, soccer match), at a fixed time T, in a place with a
limited number of seats. An advertising campaign has to be orga-
nized in order to stimulate as wide a participation as possible. We
suppose that the customers pay the tickets only at time T and that
the demand depends on the event goodwill at T . Moreover, we assume
that the goodwill is created and increased by the advertising for the
event, possibly by using different channels (e.g. TV, radio, internet,
newspapers, magazines). We consider two different kinds of advertising
channels. The first one affects the goodwill evolution in a deterministic
way (which we call the deterministic channel): the advertising message
is correctly understood by the consumers and contributes to increase
the goodwill value or to slow down a goodwill decrease. The second
one (which we call the stochastic channel) has a double effect: it surely
increases, or slows down a decrease of the goodwill expectation, but it
also introduces some uncertainty in the goodwill evolution. The sto-
chastic channel advertising message has an unforeseeable effect on the
goodwill, because either it may not be completely understood by the
consumers, or on the contrary it may meet the taste of the public very
well. In this paper, we initially assume that the organization can use
only one advertising channel, then we analyze the case in which two
different advertising channels are allowed. We want to compare the dif-
ferent optimal policies obtained when the channels are deterministic or
stochastic, in order to understand how the presence of some uncertainty
modifies the effectiveness of the advertising message.

Furthermore, we assume that a part of the total demand may not
be satisfied because of a congestion phenomenon due to a limited num-
ber of seats. Therefore a well-planned communication program should
assure that the revenue from the sold tickets fully cover all the costs.
One of the organization’s objectives is to control the goodwill evolu-
tion in order to obtain a demand as close as possible to the congestion

63
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threshold. A lower level means that some tickets have not been sold, so
that the revenue is less than the potential maximum one. On the con-
trary a higher level would signify that the demand is greater than the
offer; in such a way there exist some unsatisfied customers who cause
an unfavorable word-of-mouth publicity, with a negative effect on the
success of future events. Moreover, the organization must take into
account the consumers’ satisfaction in order to obtain a well-organized
event. Another objective we consider is the minimization of the total
advertising cost, which is typical in the firm theory (see. [27, cap. I]).

We refer to the concept of goodwill, introduced by Nerlove and Ar-
row in [15], which resumes the effects of advertising on the demand
and whose evolution is described by a linear differential equation. We
consider two control functions, at and vt, which represent the advertis-
ing flows for the two channels, with marginal productivity ϑ > 0 and
ρ > 0, respectively, in terms of goodwill. We assume that the goodwill
is a stochastic process driven by those two different controls. Let vt be
the control function which deterministically affects the goodwill evolu-
tion, i.e. the advertising flow that only increases the mean evolution.
On the other hand, let at be the control function associated with the
stochastic advertising channel, that increases both the mean and the
variance of the stochastic process.

Let us denote by At the goodwill level at time t ∈ [0, T ]. We assume
that the organization image, as well as the event features, contribute
to affect the initial goodwill of the event, A0, which is therefore posi-
tive: i.e. A0 = A > 0. Assuming that the publicity campaign is short
enough, we can suppose that the consumers do not forget the adver-
tising messages, therefore the goodwill decay is negligible. Hence, the
goodwill decay term in the Nerlove and Arrow’s model is assumed to
be zero. Moreover, we assume that the goodwill motion equation is

dAt = (ϑat + ρvt) dt + σat dWt ,

where σ ≥ 0 is the stochastic channel uncertainty coefficient and Wt

is a standard Brownian motion. In other words, the goodwill is the
solution of a controlled linear stochastic differential equation.

The stochastic approach to the communication mix problem is
rather innovative. The integration of two communication forms has
been studied under deterministic assumptions in [2] and [3]. Whereas,
the problem of planning a publicity campaign for an event that takes
place at a fixed time has some analogies with the problem of introduc-
ing a product in the market, which has already been studied from a
deterministic point of view in [4]. At a more general and different level,
there are a lot of papers concerning stochastic models in advertising:
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[16], [17], [20], [21], [22], [23], [24], [25], [26]. For a complete survey
of dynamic optimal control models in advertising, updated to the year
1994, we refer to [8].

As far as the organization’s objectives are concerned, we assume
that the advertising costs have a quadratic form. In particular, after
denoting by κ > 0 and β > 0 the cost coefficients of the two advertising

channels, the total advertising cost is assumed to be
∫ T

0
(κa2

t + βv2
t ) dt

(which is the same quadratic cost assumption for an advertising channel
as used in [10]).

Let us denote by d the demand function, d : [0, +∞) → [0, +∞) ,
which we assume to be an increasing and bijective function of the final
goodwill level AT . Let d̄ > 0 be the congestion threshold, e.g. the
maximum number of available seats, then there exists a corresponding
goodwill congestion threshold Ā, such that the demand fully covers the
offer, i.e. d(Ā) = d̄. The sales are given by the following function of
the demand:

s (AT ) = min
{
d (AT ) , d̄

}
= d

(
min

{
AT , Ā

)}
.

The organization wants to achieve a final goodwill level AT as close as
possible to the goodwill congestion threshold Ā > A. In order to reach
such a result, the firm defines a loss function ` of the final goodwill
level AT with the properties that ` (AT ) > 0 and ` (AT ) = 0 if and only
if AT = Ā. In this paper we assume that the loss function chosen by
the firm is quadratic, this is in fact a typical choice in order to obtain

a computational tractable problem [19]. Let γ
(
AT − Ā

)2
be the loss

function the organization wants to minimize, where γ > 0 is a penalty
coefficient, which represents the cost for the distance of the target value
from the final goodwill value.

The paper is organized as follows: in Section 2 the problem is an-
alyzed from a mathematical point of view; the optimal policy in a
feedback form is found using the Riccati equation technique. In Sec-
tion 3 we comment on this solution assuming that the organization can
use only one advertising channel, either deterministic, or stochastic.
Then, in Section 4, we deal with the general solution and compare the
efficiency and the risk of the two channels.

2. The problem

Let us assume that a filtered probability space
(
Ω,F , {Ft}t∈[0,T ] , P

)

satisfying the usual conditions [28, p.17] and a standard Brownian mo-
tion Wt are given. {Ft}t∈[0,T ] is the natural filtration generated by Wt

augmented by all the P-null sets in F . Such technical assumptions
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allow us to use the stochastic optimal control theory [28]. The model
described in the previous Section can be written as the following opti-
mal control problem
(38)

Minimize
at,vt≥0

J [at, vt] = 1
2
E
(∫ T

0
(κa2

t + βv2
t ) dt + γ

(
AT − Ā

)2)
,

Subject to

{
dAt = (ϑat + ρvt) dt + σat dWt ,
A0 = A > 0 ,

where the control functions are non-negative, {Ft}t∈[0,T ]-adapted, R-

valued, square-integrable processes defined on the time interval [0, T ]:
at, vt ∈ L2

F (0, T ; [0, +∞)).
Moreover, let L2

F (Ω; C ([0, T ] ; R)) be the set of {Ft}t∈[0,T ]-adapted, R
valued, continuous processes Yt defined on the time interval [0, T ] and
such that E

(
supt∈[0,T ] |Yt|2

)
< +∞) , then the state function At is the

unique process in L2
F (Ω; C ([0, T ] ; R)) that solves the motion equation

in (38).
In order to deal with a standard LQ stochastic control problem,

it is convenient to introduce a goodwill translation and to relax the
constraint at, vt ≥ 0. Let us define the new state variable (translated
goodwill) Xt = At − Ā. After setting ut = (at,vt)

′ ∈ L2
F (0, T ; R2) and

R =

(
κ 0
0 β

)
, B =

(
ϑ , ρ

)
, D =

(
σ , 0

)
,

the following optimal control problem is the relaxed form of problem
(38) (as usual the transpose of a matrix M is written as M ′):

(39)

Minimize
ut∈L2

F (0,T ;R2)
J [ut] = 1

2
E
(∫ T

0
u′

tRutdt + γX2
T

)
,

Subject to

{
dXt = But dt + Dut dWt ,
X0 = X = A − Ā < 0 .

We solve this problem using the completion of squares method [28]
which leads to the following proposition.

Proposition 26. Let us assume that there exists πt ∈ C1 ([0, T ] ; R)
solution of the Riccati BVP

(40)

{
π̇t = π2

t B (R + D′πtD)−1 B′ ,
πT = γ ,

such that the matrix R+D′πtD is positive definite (i.e. R+D′πtD � 0),
then there exists a unique optimal control u∗

t for the problem (39) and
it can be written in the following feedback form:

(41) u∗
t = − (R + D′πtD)

−1
B′πtXt .
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Proof. This Proposition is a standard result called stochastic Riccati
equation [28, p.315, Th.6.1]. For the reader’s convenience we sketch
the proof under the previous assumptions.

Let us consider the process πtX
2
t , where Xt is the solution of the

motion equation in (39) for some control process ut. The stochastic
differential of this process is:

d [πtX
2
t ] = π̇tX

2
t dt + 2πtXtButdt

+2πtXtDutdWt + u′
tD

′πtDutdt ,

hence, as πT = γ and X0 = X, we obtain

E
(
γX2

T

)
= π0X

2 + E
(∫ T

0

π̇tX
2
t + 2πtXtBut + u′

tD
′πtDutdt

)
.

By substituting π̇t in the previous equation and setting R̂t = R +
D′πtD � 0, we have

E
(∫ T

0
u′

tRutdt + γX2
T

)
=

= π0X
2 + E

(∫ T

0
BR̂−1

t B′ (πtXt)
2 + 2πtXtBut + u′

tR̂tutdt
)

.

From the assumption R̂t � 0 it follows that there exists R̃t, a 2 × 2
positive definite symmetric matrix, such that R̃tR̃t = R̂t. Hence, we
have that

E
(∫ T

0

uT
t Rutdt + γX2

T

)
= π0X

2 +
∥∥∥R̃−1

t B′πtXt + R̃tut

∥∥∥
2

L2
.

The previous relation holds for all ut ∈ L2
F (0, T ; R) , therefore a mini-

mum point is obtained if and only if we choose u∗
t such that

∥∥∥R̃−1
t B′πtXt + R̃tut

∥∥∥
2

L2
= 0 ,

which implies that R̃−1
t B′πtXt + R̃tut = 0, i.e. ut = −R̂−1

t B′πtXt. �

The optimal solution of problem (39) is connected to the solution
of BVP (40); moreover, the optimal value of the objective functional
depends on the initial value of the function πt. If (u∗

t , X
∗
t ) is the optimal

control-state pair of (39), then the following equation holds:

(42) E
(

1

2

∫ T

0

(u∗
t )

T Ru∗
t dt +

1

2
γ (X∗

T )2

)
=

1

2
π0X

2 .

We note that R + DTγD � 0, therefore in the interval [s, T ] (with
s < T ) there exists a solution of (40) such that R + DTπtD � 0. In
the following proposition we prove that this solution can be extended
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to the whole programming interval [0, T ]; hence we prove the existence
of the optimal control for problem (39).

Proposition 27. There exists a positive and strictly increasing
function πt ∈ C1 ([0, T ] ; R) that solves (40).

Proof. The BVP (40) can be rewritten as
{

π̇t = π2
t

(
βϑ2 + κρ2 + πtρ

2σ2
)
/ (κ + πtσ

2)β ,
πT = γ .

Now we observe that πt = 0 is the unique equilibrium point in the
positive half-plane and that it is unstable. Moreover, all the solutions
starting with a positive initial value are strictly increasing and go to
+∞ as t 7→ +∞. A solution of (40) cannot cross an equilibrium point;
therefore, in order to have πT = γ, the solution of (40) must start at a
positive value (i.e. π0 > 0) and must be a strictly increasing function.

�

The previous statements hold under the assumption that the matrix
R + DTπtD is positive definite. In fact a simple computation shows
that, as πt > 0, the matrix R + DT πtD is positive definite, hence
problem (39) has a unique solution, which is given by the feedback
form (41).

The following Theorem closes this section showing that the relaxed
problem provides exactly the optimal solution of the original one.

Theorem 28. If (u∗
t , X

∗
t ) is an optimal solution of problem (39),

and the control is u∗
t = (a∗

t , v
∗
t )

′ , then ((a∗
t , v

∗
t ), A

∗
t )

′ , with A∗
t = X∗

t +A,
is an optimal state-control path for problem (38).

Proof. We note that the feasible set L2
F(0, T ; [0, +∞)) of problem (38)

is a subset of the feasible set of problem (39), moreover the two optimal
control problems have objective functionals with the same structure.
The following relation holds: if a given control ut = (at, vt)

′ belongs to
L2
F(0, T ; [0, +∞)), then J [at, vt] = J [ut], hence, if an optimal control

function for (39) is also feasible for (38), it is an optimal control for
(38), too.
Let X∗

t be the optimal state process of problem (39), then it is the
solution of the following linear SDE





dX∗
t = −B (R + D′πtD)−1 B′πtX

∗
t dt

−D (R + D′πtD)−1 B′πtX
∗
t dWt ,

X∗
0 = X < 0 .
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This solution can be represented using the stochastic exponential pro-
cess

ηt [as, bs] , exp

(∫ t

0

(
as −

1

2
b2
s

)
ds +

∫ t

0

bsdWs

)

in the following form:

X∗
t =X∗

0 ηt

[
−
(
B (R + D′πsD)

−1
B′πs

)
,−D (R + D′πsD)

−1
B′πs

]
,

where the terms inside the square brackets are negative and therefore
the process X∗

t is also negative for all t ∈ [0, T ]. We observe that the
optimal control pair (a∗

t , v
∗
t ) of problem (38) is given in a feedback form

by equation (41). Therefore the components a∗
t and v∗

t are both positive
for all t ∈ [0, T ] and hence they are feasible for problem (38), too. We
can conclude that, as the optimal solution (u∗

t , X
∗
t ) for problem (39) is

feasible for problem (38), it is also optimal for problem (38). �

Corollary 29. Under the general assumption of this Section,
problem (38) has an optimal solution which is uniquely determined solv-
ing the relaxed problem (39).

Proof. The relaxed problem (39) has an optimal solution because the
solution of the Riccati equation is defined in the whole programming
interval [1], [7]. Hence, we can conclude the proof using the previous
result. �

We note that the left-hand side of equation (42) gives the sum of
the cost for the advertising campaign and of the total penalty to pay.
The whole cost is proportional to the square of the difference between
the initial goodwill value A and the target goodwill value Ā, with
proportionality factor π0.

3. One advertising channel

In the following we tackle the problem characterized by only one
advertising channel and we distinguish the case in which such a channel
is deterministic from the case in which it is stochastic.

3.1. Deterministic channel. Let us assume that the decision-
maker can use only one deterministic advertising channel. This is the
case of problem (38) with ϑ = σ = 0. Under these assumptions we
obtain a deterministic optimal control problem. The optimal feedback
control (41) is

(43) v∗
t = wt

(
Ā − A∗

t

)
,
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where wt = (ρπt)/β (we say that wt is the weight of vt in the feedback
function), and πt is the solution of the following BVP,

(44)

{
π̇t = ρ2π2

t /β ,
πT = γ .

We observe that the weight of vt is proportional to the ratio between the
marginal productivity of the advertising channel and its cost coefficient.
As π > 0, we have that the greater the marginal productivity is, the
greater the advertising effect becomes. On the contrary, the greater
the cost coefficient is, the smaller the advertising effect becomes.

3.2. Stochastic channel. Let us assume now that the organizer
can use only the stochastic advertising channel (i.e. ρ = 0); then
problem (38) has the following optimal feedback control (41)

a∗
t = mt

(
Ā − A∗

t

)
,

where

mt =
ϑπt

κ + σ2πt

is the weight of at in the feedback function. The Riccati equation (40)
becomes {

π̇t = ϑ2π2
t / (κ + σ2πt) ,

πT = γ .

3.3. Different behaviors. In order to analyze the difference be-
tween the two behaviors in the one-channel instances of the problem,
we compare the two weight functions wt and mt when ϑ = ρ (i.e. the
two coefficients representing the marginal productivity are the same)
and κ = β (i.e. the marginal cost of the two advertising channels is
the same). First, we solve the problem assuming that the control has a
deterministic effect on the goodwill evolution, then we tackle the prob-
lem with the same parameters values, but under the assumption that
the control affects the goodwill evolution stochastically.
We observe that both weight functions wt and mt are increasing, and
wt is greater than mt in a left neighborhood of T. This means that
the deterministic channel is more intensively used at the end of the
campaign, because the effect of its control on the state is exactly known,
whereas the stochastic channel has to be used more prudently, because
the risk represents an extra cost to take into account.
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4. Two advertising channels

In the following we tackle the problem characterized by two ad-
vertising channels; we first consider the case in which they are both
deterministic and then we analyze the case in which one of them is
stochastic. A more realistic situation considers both advertising chan-
nels as stochastic, since generally their effects on the goodwill are not
completely predictable. However, it is reasonable to assume that the
two channels affect the goodwill evolution in different ways and that
one of them has a behavior closer to the deterministic channel.

4.1. Deterministic channels. Let us assume that the organizer
can use both channels and that the two control functions have only
a deterministic effect on the goodwill evolution (i.e. we set σ = 0 in
problem (38)). We obtain a deterministic optimal control problem and
the optimal feedback control (41) is

(
a∗

t

v∗
t

)
=

(
mt

wt

)(
Ā − A∗

t

)
,

where mt = (πtϑ) /κ , wt = (πtρ) /β are the state coefficients in the
feedback function corresponding to the two channels in the feedback
function respectively. We refer to mt as the weight of at and to wt as
the weight of vt; furthermore, let πt be the solution of the following
Bernoulli’s BVP: {

π̇t = π2
t

(
ϑ2/κ + ρ2/β

)
,

πT = γ .

We observe that this BVP has the same form as the one obtained for
the case of one deterministic channel (44). Moreover, in analogy to the
case of Section 3.1, the state coefficients are proportional to the ratio
between the marginal productivity parameters of the two channels and
their cost (i.e. ϑ/κ and ρ/β respectively). Hence, from a deterministic
point of view, the optimal policy consists in using more intensely the
advertising channel which maximizes this ratio.

4.2. A risk-associated upper bound. Let us consider the prob-
lem dealt with in the previous Section, assuming that in (39) the cost of
at becomes negligible (i.e. κ = 0). Under such hypotheses the problem
is ill-posed because the cost matrix R in (39) is singular. This trivial
result is the policy called “the-larger-the-better” [1], [7], [28, p.283]: if
we assume that in a deterministic maximization problem the activity
cost is zero, and the level of activity carried out by the decision-maker
increases the utility, then the problem is ill-posed, because there is no
trade-off in it.
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On the other hand, if we introduce a stochastic channel with a
positive risk coefficient, σ > 0, then the problem remains well-posed
even if κ = 0. In fact, the Riccati equation (40) becomes

(45)

{
π̇t = ϑ2/σ2πt + π2

t ρ
2/β ,

πT = γ ,

and the feedback function (41) is

(46)

(
a∗

t

v∗
t

)
=

(
ϑ/σ2

πtρ/β

)(
Ā − A∗

t

)
.

Even if the advertising cost of the channel at vanishes, there exists an
upper bound for the weight function of the control at. This bound
is strictly connected to the risk: the decision-maker has to take into
account both the mean evolution and the uncertainty introduced in
the system. The policy “the larger, the better” cannot be an optimal
choice, because it introduces too much volatility in the state process.
Hence, ϑ/σ2 represents the upper bound in the weight function of the
control at and the concavity of this function is connected with the pres-
ence of such a threshold. This observation emphasizes that introducing
uncertainty in an advertising channel we deeply modify the structure of
the problem. In the following Section we find the optimal solution when
one of the two advertising channels is stochastic and we characterize
the optimal policy with respect to the risk parameter σ.

4.3. Stochastic and deterministic channels. The most inter-
esting situation occurs when one of the channels affects stochastically
the goodwill evolution. Under these assumptions problem (38) has the
following optimal feedback control:

(47)

(
a∗

t

v∗
t

)
=

(
πtϑ/ (κ + σ2πt)

πtρ/β

)(
Ā − A∗

t

)
=

(
mt

wt

)(
Ā − A∗

t

)
,

while the Riccati equation (40) becomes
{

π̇t = π2
t

(
ρ2/β+ϑ2/ (κ + σ2πt)

)
,

πT = γ .

As πt is a positive and strictly increasing function, it is interesting
to study the influence of its values on the feedback evolution.

If the deterministic channel is more efficient than the stochastic
one (i.e. ρ/β ≥ ϑ/κ), then it is convenient to invest mainly in the
deterministic channel v∗

t , because this channel is both more efficient
and precise. In fact we have mt ≤ wt for all t ∈ [0, T ] , indipendently
of the risk coefficient σ.
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On the other hand, if the stochastic channel is , in mean, more
efficient than the deterministic one (i.e. ρ/β < ϑ/κ), then it may
be convenient to use the stochastic channel, but one should consider
the risk connected with the control uncertainty. Such a risk can be
considered as a cost and it decreases the effectiveness of the control
a∗

t . In order to stress the dependence of the optimal control on the
uncertainty coefficient σ, let us assume that ϑ/κ = λρ/β, with λ > 1.
Furthermore, let π0 > 0 be the value at t = 0 of the function πt

which solves the Riccati equation (we recall that π0 depends on the
uncertainty coefficient σ). Comparing the feedback functions π 7→
πρ/β and π 7→ πϑ/ (κ + σ2π) in the interval [π0, γ] , we observe that
they take the same value at π# = 0 and π∗ = (λ − 1) κ/σ2. Therefore,
if π∗ ≥ γ, the stochastic channel is more intensively used than the
deterministic one and this correponds to a small uncertainty coefficient
(σ2 ≤ (λ − 1) κ/γ ). The opposite situation occurs if the uncertainty
coefficient is large (σ2 ≥ (λ − 1)κ/π0), then π∗ ≤ π0 and hence the
deterministic channel is more intensively used than the stochastic one
in the whole programming interval. Finally, for intermediate values of
the risk coefficient ((λ − 1)κ/π0 < σ2 < (λ − 1)κ/γ) it turns out that
the stochastic channel, which is more efficient, is more intensively used
only in first part of the advertisign campaign, in order to get quickly
close to the target goodwill value. On the other hand, in the last part
of the programming interval it is useful to control the system with a
less effective, but more precise advertising channel, the deterministic
one.

We observe that the presence of a stochastic channel makes the sit-
uation rather different from the one with deterministic channels only:
the two ratios between the marginal productivity and the cost coeffi-
cient (ϑ/κ and ρ/β respectively) are not sufficient to characterize the
optimal policy. The decision-maker must also account for the risk con-
nected with the advertising message.

5. Conclusion

In order to understand how two advertising channels can be opti-
mally used in the marketing mix problem for an event planning, we
have considered the advertising problem under the assumption that an
advertising channel may have a stochastic influence on the goodwill
evolution. The objective of the decision-maker is to reach a target
goodwill level with the minimum advertising cost. The analysis shows
how, in the deterministic framework, the optimal policy depends on the
ratio between the productivity and the cost of each advertising channel.
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On the other hand, when an advertising channel affects stochastically
the goodwill evolution, the decision-maker has to take into account
also the risk connected to this control. The model is related to the LQ
stochastic optimal control problems which are a subject of increasing
interest from both mathematical and economic point of view. The re-
cent mathematical developments ([1], [7]) in this area represent a very
useful toolkit to study some interesting economic problems, that can
naturally be described in this framework.



CHAPTER 8

Results on the marketing model

The main features of this work are connected with two different
areas. From an economic point of view, we have dealt with a general
model for a new product introduction in the market, formulated using
the stochastic control theory. The general problem is hard to solve,
and therefore, in order to obtain some explicit results, we introduce
the LQ instance of the model. Under this assumption we can use
some recent works connected with the theory of LQ control. More
in detail, in the literature of the LQ control it is typically assumed
that the cost function has a positive definite weighing matrix and the
state term has a positive semidefinite weighing matrix. In that case,
the solvability of the Riccati equation is both necessary and sufficient
for the solvability of the underlying problem. However, stochastic LQ
control problems may be well-posed even if the cost matrix and the
state weighing matrices are indefinite. This new theory (the recent
results on this topic are now appearing in specialized journals) gives
some useful instruments which are applied in mathematical finance;
with this work we want to suggest that this theory can be successfully
applied to other areas of mathematical economics.

We use the stochastic LQ theory to analyze the problem of intro-
ducing a new product in the market. Assuming that the decision-maker
is risk inclined we can study the two stochastic effects (word-of-mouth
publicity and lure/repulsion effect) and we use the closed form solu-
tions obtained in order to explain from an economic point of view the
new features of the model.

Moreover, we use the stochastic LQ theory to analyze the com-
munication mix problem for an event planning. Assuming that the
decision-maker wants to reach a target goodwill value, we use two dif-
ferent advertising channels to drive the goodwill. In order to compare
the efficiency of different advertising channels, we consider the limit
case in which one channel affects deterministically the goodwill evo-
lution, while the other does it stochastically. Using the closed form
solutions obtained we can explain when it is convenient to use the
stochastic channel and when the deterministic one is more efficient.
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1. Future research developments

The two problems studied in Chapter 6 and 7 are LQ instances of
the general problem presented in Chapter 5. We presume that a closed
form solution of the general model cannot be obtained. On the other
hand, the results given by the solution of the problems in Chapter 6
and 7 surely can be used to obtain some information to transfer to
the general problem. However, before considering the general problem
under the LQ assumptions, it is worthwhile evaluating the soundness
and the applicability of some special problems where we can reach some
explicit results. The problems discussed in Chapter 6 and 7 seem to
have such characteristics from both mathematical and economic point
of view. In fact, we believe that they are the simplest cases and the
most natural to consider for this purpose. Further research should be
devoted to the study of different special instances of the problem.

An aspect that we have not considered in this work is the possibil-
ity of the presence of a budget constraint. The upper bound for the
advertising expenditure is usually fixed a priori in planning a public-
ity campaign. Here, we have a trade-off between the utility and the
advertising cost, but the expenditure for the publicity campaign is not
upper bounded. A possible direction for further research is the intro-
duction of a new state variable which summarizes all the advertising
expenditure. The information carried by this new state variable might
be evaluated in a penalty function, which could be part of the objective
functional.

Finally, a complete analysis of the Nerlove and Arrow’s model,
which is made up of two motion equations, one for the goodwill and
one for the sales, requires the study of a different aspect. More pre-
cisely, it might be interesting to analyze the consequences connected
with the introduction of a stochastic goodwill process on the sales evo-
lution. Here, we have not considered such an aspect because it was
not relevant for the new product introduction model. However, a gen-
eral stochastic approach to the marketing problems should account for
a stochastic sales process, depending, on one hand, on the stochastic
goodwill process and, on the other hand, on different market sources
of randomness. Therefore, the analysis of the sales process from a
stochastic point of view might be interesting and could be a relevant
direction for further research.
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