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Abstract
Scattering processes are a crucial ingredient for the investigation of fundamental in-
teractions. The ever-increasing amount of data produced at particle colliders has
fuelled recent progresses in the field of scattering amplitudes computation. To date,
on the numerical side, the results achieved are mainly based on Monte-Carlo simula-
tions. In this Thesis the problem is attacked with a different approach: a real-time
simulation of the dynamics of a 1+1 dimensional quantum field theory is performed,
exploiting the powerful tensor network methods from many-body theory. A matrix
product state representation of the asymptotic input states is identified, allowing
for the preparation of the initial momentum wave packets. This initial state is then
evolved and we aim to compute the S-matrix elements from the knowledge of the
final state. We focus on a specific fermionic U(1) gauge model, developing a set
of tools which are relevant for a broader class of 1 + 1 dimensional quantum field
theories with global or local symmetries.
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Introduction
Gauge theories are the cornerstone of our current understanding of the fundamental
laws of nature. Apart from the Standard Model of particle physics, gauge theories
and more in general the framework of quantum field theory, have found important
applications in condensed matter physics [43, 75], e.g., in the study of superconduc-
tivity [10, 64]. Motivated by the extreme relevance of the topic, the investigation of
quantum field theories has played a central role in physics research since their intro-
duction. This has lead to outstanding results and countless experimentally tested
predictions, mostly coming from a perturbative expansion around well known free
theories [49]. Nevertheless, because of its nature, the perturbative approach is viable
only in weak coupling regimes. Even in this regime the perturbative series is known
to be generally ill defined and plagued by divergencies that have to be cured order by
order via regularization and renormalization procedures [50, 77]. On the other hand,
despite all the efforts put forward by the physics community over the last fifty years,
we still lack non-perturbative control of any 1 + 3 dimensional interacting quantum
field theory [77]. Lattice quantum field theory poses itself as a candidate solution
of both the aforementioned problems. It does this by reformulating the theory as a
quantum many-body system. On a conceptual level, this approach might provide an
alternative, non-perturbative, way of defining quantum field theories [68]. On a more
practical level, the lattice has proven to be a successful framework for the numeri-
cal computation of quantities of physical interest, especially in theories or regimes
outside the domain of application of the perturbative expansion [102]. In particle
physics, the paradigmatic way of probing the properties of elementary particles are
scattering experiments [49]. It follows that numerical simulations of these processes
are a crucial tool for the comparison of the measurements carried out at particle
colliders with the predictions of theoretical models.

The numerical simulation of many-body systems, and thus lattice field theories, is an
extremely demanding task [87]. Its complexity stems from the exponential growth
of the Hilbert space dimension with the size of the system. To circumvent this
obstacle, most numerical investigations have been based on Monte-Carlo methods,
which evaluate of phase space integrals by stochastic sampling [102]. However, in-
tegrals involving fermions often exhibit an highly oscillatory behaviour that causes
a severe increase in the sampling complexity. This is the infamous sign problem
[102]. A complementary approach to the study of many-body systems, proposed by
Feynman in 1982 [37], is quantum computation. The basic idea is that of emulat-
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vi Introduction

ing the system of interest with another, more controllable, quantum system, called
simulator. Exploiting quantum phenomena such as interference and entanglement,
these devices can potentially perform many-body calculations with resources that
scale polynomially with the system size [100]. Quantum simulators are synthetic
quantum systems made of, e.g., trapped ions, ultra-cold atoms in optical lattices or
superconducting circuits. They are divided in two classes, analog and digital sim-
ulators [97], that differ in how the emulation is achieved. Analog simulators are
engineered specifically to reproduce the degrees of freedom and the dynamics of the
investigated system, while in digital simulators the dynamics of the target system
is obtained by applying sequence of short quantum operations or gates. In the re-
cent years there have been some experimental realizations [76, 88, 92] of various
simulating platforms. Moreover, some studies and platforms target specifically the
simulation of lattice gauge theories [81, 84, 87–89, 97, 104]. Together with the imple-
mentation of quantum computation techniques, the development of efficient classical
numerical methods still remains an important research topic [97], at least for two
reasons. The first being that classical methods can be used to benchmark quantum
simulators [87]. The second reason is that recent feasibility studies [101, 103] have
shown that the technologies currently available are not yet capable of reliable large
scale quantum computations, especially for simulations tackling the complicated dy-
namics of lattice gauge theories. It is thus important to develop quantum-inspired
numerical techniques able to reproduce closely both the theory of interest and the
behaviour of a quantum simulator. The state-of-the-art in this regard are tensor
network methods [87, 95]. For many important physical systems, tensor networks
overcome the exponential growth of the Hilbert space dimension by discarding the
irrelevant information contained in an exact representation of the many-body Hilbert
space [80]. In this way they allow to represent the state and the operators of the
many-body system and solve standard quantum mechanical problems, e.g., evaluate
ground states and time evolutions. This is achieved without resorting to stochastic
methods and thus avoiding the sign problem [90].

In this thesis we lay out the ingredients that are needed to set up a tensor network
simulation of a scattering process. To this aim we present the Hamiltonian lattice
formulation of abelian and nonabelian gauge theories and study some tensor network
methods. We focus on 1 + 1 dimensional problems and implement the relevant
numerical codes. We demonstrate the applicability of the methods we have presented,
and partly developed, by reporting the simulation of meson-meson scatterings in
the lattice Schwinger model [9]. In particular, we show that tensor networks are
capable of simulating these processes for various coupling strenghts, discuss the role
played entanglement generation and characterize the numerical convergence of the
simulations.
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This Thesis is organized as follows.

Continuum Theories. In the first Chapter the foundations of relativistic quan-
tum field theory are recalled. A definition of particle is given and an idealized
scattering process is characterized. We put forward a strategy to extract S-matrix
elements from transition amplitudes evaluated on a finite spacetime.

The Lagrangian formalism is reviewed and used to construct the relativistic theories
of Dirac and Yang-Mills fields. We expose the geometric structure behind gauge
theories, which will allow a smooth transition to the lattice setting. The Hamiltonian
formalism is reviewed as it provides the natural language for the implementation
of tensor network simulations, as well as quantum simulations. The Hamiltonian
description of Dirac and Yang-Mills fields is developed following the Dirac-Bergmann
theory of constrained systems and the Yang-Mills Gauss law constraint is derived.
The Chapter terminates with a review of the canonical quantization prescription.

Lattice Theories. In the second Chapter the principles of Hamiltonian lattice
quantum field theory are outlined. The plan for the reminder of the Chapter is the
following: we first reformulate the theories introduced in the continuum as classical
Hamiltonian systems with a finite number of degrees of freedom and, afterwards,
quantize them. In this way, the mathematical inconsistencies typically encountered
in the quantization of continuum field theories are avoided. The first step is partially
covered introducing a discretization prescription. The quantization formally follows
the same procedure introduced at the end of the previous Chapter.

In the implementation of the above plan, some peculiarities emerge for both matter
and gauge fields. Matter fields are affected by the fermion doubling problem, which
we solve introducing Kogut-Susskind staggered fermions. The quantized theory of
free staggered fermions is analyzed in detail. We solve its equations of motion, find
the particle spectrum and show it reproduces that of a well-defined free quantum
field theory. Gauge fields are discretized adopting a compact formulation, where the
fundamental degrees of freedom are group valued comparators and representatives
for the electric field.

We specialize to the quantized lattice Schwinger model. We introduce three strategies
to cope with the infinite dimensional photon Hilbert space. The first one exploits
Gauss law to integrate the gauge field degrees of freedom; the others are truncation
prescriptions. Finally, we discuss the confining properties of the model and put
forward a proposal for the construction of its asymptotic meson states.
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Tensor Networks. In the third Chapter the general properties of quantum many-
body systems are discussed. We emphasize the exponential scaling of the dimension
of the Hilbert space with the system size. The entanglement entropy is introduced
and some far reaching results, known as area laws, are recalled. These identify tensor
networks as an efficient classical method for the simulation of one dimensional lattice
systems. Two tensor network ansatze, namely matrix product states and operators,
are presented; ground state search and time evolution algorithms are outlined.

Scattering Simulations. In the last Chapter we present the results of our numer-
ical simulations. We first test the numerical tools developed in this Thesis simulating
the kinematics of free staggered fermions wave packets and verifying it complies with
the analytic results obtained in the second Chapter. Then, we investigate the lattice
Schwinger model in a moderately weak coupling regime. We attack the scattering
problem with approaches, either integrating out the gauge field or with tensor net-
works, and discuss their feasibility. The outcome of some proof of principle scattering
simulations is reported, together with a study of their numerical convergence.



Notations and Conventions
We use natural units, so that the speed of light and the Planck constant are set to one,
c = ~ = 1. The dimension of spacetime is D = 1 + d, d being space dimension. In
the first chapter the spacetime coordinate is denoted by x = (xµ) = (x0, xi) = (t,x).
We adopt the mostly minuses metric signature, (+,−, . . . ,−).

The following families of indices are implicitly contracted:
∗ Lorentz vector indices µ, ν, ρ, σ (and sometimes α, β);
∗ Lorentz spinor indices α, β (generally omitted);
∗ internal symmetry algebra indices a, b, c, . . .;
∗ internal symmetry group indices r, s (denoting an irreducible representation);
∗ generic indices m,n transforming under both the Lorentz and internal group.

More specific contraction conventions are introduced in some Sections of the Thesis.
We use the Feynman slash notation vµγµ = /v, where γµ are the gamma matrices
defined in (1.43).

For Grassmann variables we always use left derivatives and complex conjugation is
defined by (FG)∗ = G∗F ∗. The (super) Poisson bracket { · , · } is defined in (1.61).

We use the Dirac 〈bra|ket〉 notation to represent pure quantum states. From the
second Chapter we omit the hat on operators and denote the graded commutator
[ · , · ]± defined in Section 1.5 by [ · , · ].

Lattice Conventions.

We represent Euclidean space as d-dimensional hypercubic lattice Λ with lattice
spacing ` and linear size `L. The position coordinate is x = (xi), xi = `, 2`, . . . , L`.
Summations involving space coordinates x, y, z, w always extend over Λ. Summations
involving momenta k, p, q are over the reciprocal lattice defined in (2.2); unless the
starred sum ∑? symbol is used, in which case they are restricted to the sublattice
(2.42). We typically work in lattice units, ` = 1.

The same notation, either by index or by argument, is used to denote the variable
of discrete and continuous functions. This applies also to δ functions which can be
either Kronecker deltas or Dirac deltas. The symbol ∂ is used for both the continuous
derivative and the discrete central derivative defined in (2.3). For all these objects
the distinction should be clear from the context.
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x Notations and Conventions
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ϕ(x)

ϕ(x) = 1
Ld/2

∑
k

e
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∑
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ϕ(k)

(C)
Γ(x, y) =

∫ +π

−π
dp dq e+ipµxµ+iqµyµΓ(p, q)

(2π)Dδ(p+ q)Γ(p, q) =
∑
xy

e−ipµx
µ−iqµyµΓ(x, y)

Table 1: Normalization and sign conventions for Fourier transforms. (A)
is adopted for functions of discrete space and continuous time and in
Appendix B also for functions of space only. (B) is adopted for functions
of space only, notice it is an isometry. (C) is adopted in Subsection 2.3A
to compute a propagator on an infinite and discrete spacetime, in this
case only x, y and p, q are D-vectors rather than d-vectors.

In Chapter 2 and Appendix B we compute various continuous and discrete Fourier
transforms. Functions and their Fourier transforms are generally denoted with the
same symbol and distinguished by their argument. Different normalizations are used
for Fourier transforms of different objects. These are summarized in Table 1.

Tensor Networks Acronyms.

In Chapter 3 various acronyms for tensor network related concepts are introduced.
These are reported below, together with their meaning.

SVD Singular Value Decomposition
SV Singular Value
TN Tensor Network

MPS Matrix Product State
MPO Matrix Product Operator

DMRG Density Matrix Renormalization Group
TEBD Time Evolving Block Decimation



1
Continuum Theories
In this Chapter the basic principles of quantum field theory are presented. Some
concepts of scattering theory, relevant for the numerical simulations of Chapter 4,
are discussed. Classical Lagrangian and Hamiltonian gauge theories are reviewed
with the aim of developing a description that naturally fits in the lattice framework
introduced in Chapter 2. Finally, a quantization prescription appropriate for the
numerical tools introduced in Chapter 3 is elaborated.

1.1 Relativistic Quantum Mechanics

Quantum field theories (QFTs) have emerged as the natural way to reconcile the prin-
ciples of quantum mechanics with those of special relativity. The quantum mechan-
ical interpretation of the theory requires that when “maximal information” about
the configuration of the system is available, this information is identified with a pure
state, i.e. a ray in a Hilbert space H . A ray is an equivalence class of normalized
Hilbert space vectors that differ only by a phase1. Relativistic covariance requires
that H carries a representation of the Poincaré group of spacetime symmetries. The
quantum mechanical description mandates this representation to be projective and
unitary. Namely, that it is realized by unitary operators defined only up to a group
element dependent phase2. Besides spacetime (or external) symmetries, the theory
may posses other (internal) symmetries that have to be represented on H as well.
Anyhow, under some reasonable assumptions, the Coleman-Mandula no-go theorem
[14] states that continuous external and internal symmetries have to be combined in
the “trivial” way, in the sense that the overall symmetry algebra must be the direct
sum of the Poincaré algebra and another Lie algebra g. This result greatly simplifies
the tractation as it allow to study the two symmetries separately.

1 Measurable quantities, namely expectation values of observables 〈Ψ|Ô|Ψ〉 and transition proba-
bilities |〈Φ|Ψ〉|2, are clearly representative independent. The phase is void of physical significance.

2 This is the most general well-defined action of a continuous symmetry transformation on Hilbert
space rays. If the phase can be reabsorbed the representation is equivalent to an ordinary unitary
representation, otherwise it is said to be intrinsically projective. Discrete symmetries may also
be implemented by antiunitary operators, this is the case of time reversal [50].

1



2 1. Continuum Theories

In the light of these observations, we now focus on some consequences of spacetime
symmetries, which are a mandatory feature of every relativistic theory. A more spe-
cific qualification of the internal symmetry group is postponed to the next Sections.

Spacetime symmetries. By spacetime here it is meant the Minkowski D = 1 +d

dimensional affine space equipped with the “mostly-minus” metric tensor ηµν ,

R1,d =
{
xµ = (x0, xi) = (t,x) , i = 1, . . . , d

}
, η = diag(+,− . . . ,−) . (1.1)

The group of spacetime symmetries is the Poincaré or inhomogeneous Lorentz group3

IO(1, d) = O(1, d) nR1,d (1.2)

of isometries of Minkowski spacetime. Namely, affine transformations consisting of
an homogeneous Lorentz group O(1, d) transformation Λµν and a translation aµ,

(Λ, a) : xµ 7→ Λµνxν + aµ , ηµνΛµρΛνσ = ηρσ . (1.3)

Other than the physical space d = 3 case, hereafter also d = 1 is considered as the
tensor network methods studied in this Thesis have been employed in the study of
gauge theories only for spacetime dimension lower than 1+3 and, until very recently
[98], only in 1 + 1. It should be kept in mind that not all the results that hold
for d = 3 extend straightforwardly to lower dimensions, e.g., the Coleman-Mandula
theorem holds only for d > 1 [59]. In such cases we proceed by analogy.

Particles. The aim of this Thesis is to lay the foundations for a numerical simu-
lation of the scattering of particles. It is thus important to define what a particle
is in the context of in high energy physics and, more generally, relativistic QFT.
According to Wigner’s classification [3] particles are identified with subspaces of H

carrying an irreducible (projective, unitary) representation of the symmetry group
of the theory4. These are labeled by some symmetry invariant quantum numbers, to
be identified. Translations commute thus their generators on H , namely the com-
ponents P̂µ of the energy-momentum operator, can be simultaneously diagonalized.
The P̂µ are not Lorentz invariant but the mass squared operator M̂2 = P̂µP̂

µ is. Its
eigenvalues m2 provide a first quantum number. In general the mass spectrum might
include both of a discrete and a continuous part. It is only the discrete part orthog-

3 In this Thesis we take parity and time reversal as valid spacetime symmetries, see Appendix A.
4 An overview of these representations for d = 3 as well as d = 1 is given in Appendix A.



1.2. Particle Scattering 3

onal to the vacuum |Ω〉, P̂µ |Ω〉 = 0, that can be related to single particle states5.
The continuous part corresponds to multi-particle states [52]. In d = 3 there is also
a quantum number j ∈ N/2 associated with the generators of rotations, the spin or,
for m = 0, the magnitude of the helicity. Finally, other quantum numbers related to
the internal symmetry group might be present.

1.2 Particle Scattering

The paradigmatic particle physics experiment consists in preparing the system by
specifying its content in localized and far-distant regions of space to resemble that
of a single particle. This initial state of, typically two, effectively non-interacting
particles is then let evolve, the particles approach each other and interact. During
the interaction the multi-particle state interpretation is lost. It is recovered when the
products of the collision are again well separated, making their description indepen-
dent one from the others. The observer may then measure transition probabilities
by comparing the appearance of this final state with that of the initial one. We shall
now make this picture more precise and concrete, mostly following [50].

It has been observed that particles are irreducible symmetry-invariant subspaces
of the Hilbert space H that correspond to an isolated mass shell. Inside such a
subspace, a state can be singled out specifying its spatial momentum p and possibly
a spin projection σ (in d = 3) and some other discrete labels related to the internal
group. States specified in this way are called single particle states or bound states
and denoted |pσα〉, were α collects all the remaining labels including one identifying
the particle specie. By definition, under Poincaré transformations Û(Λ, a), these
states transform as

Û(Λ, a) |pσα〉 =
√

(Λp)0

p0 exp(−iaµpµ)
∑
σ′

W
(α)
σ′σ (Λ, p) |(Λp)σ′α〉 . (1.4)

Here W (α)(Λ, p) is a representative of the little group6 of particle type α and the
coefficient in front of the right hand side serves to make the normalization

〈qτβ|pσα〉 = δd(q − p)δτσδβα (1.5)

consistent under Poincaré transformation.

An important point is that in the definition of particle there is no reference to it

5 Complications here ignored arise if no sharp mass eigenvalues are present, as it happens in 1 + 3
dimensional quantum electrodynamics. In such cases one speaks of infraparticles [52, 77].

6 See Appendix A. In one space dimension D(Λ, p) ≡ 1 for all particle types.



4 1. Continuum Theories

being elementary with respect to the degrees of freedom of the theory. This is crucial
in confined theories, such as quantum chromodynamics. There, at sufficiently low
energies, the particles are internal group singlets (mesons, baryons and glueballs) and
correspond to composite operators rather than to the colour charged quark and gluon
fields that appear in the Hamiltonian of the theory [49]. An analogous phenomenon
is present in the theory of 1 + 1 dimensional quantum electrodynamics (QED2) that
we will introduce at the end of Chapter 2.

Free multi-particle states are defined to be states that transform as a tensor product
of single particle states (1.4). In particular, for spacetime translations we have

Û(1, a) |{pkσkαk}〉 = e−iaµP̂
µ |{pkσkαk}〉 = exp

(
−iaµ

∑
k

pµk

)
|{pkσkαk}〉 , (1.6)

where k indexes the particles in the state. Multi-particle states are normalized via a
condition analogous to (1.5) but that also takes into account the indistinguishability
of identical particles and their bosonic or fermionic statistics,
〈
{qkτkβk}Nk=1

∣∣{pj σjαj}Mj=1
〉

= δNM
∑
S

sgnS
∏
i

δd(qSi − pi)δτSiσiδβSiαi , (1.7)

where S is a permutation of 1, 2, . . . , N and sgnS is −1 if an odd number of fermions
exchanges is involved, +1 otherwise. It follows from transformation law (1.6) that
these states are energy and momentum eigenstates belonging in the continuous part
of the mass spectrum. Their total energy equates the sum of the energies of their
“constituents”, whence the “free” attribute. It also implies that multi-particle states
cannot be localized and are time translation invariant. These states are clearly an
idealization and are not actually realized in interacting theories. Nevertheless, super-
positions of free multi-particle states can be localized and are realized as asymptotic
configurations in nontrivial scattering processes. At least, this happens when the
theory has a mass gap, namely when in the mass spectrum there is a finite separa-
tion between the vacuum and the lowest-lying single particle state. This guarantees
that the interaction decays sufficiently fast [52, 77] and asymptotically particles are
effectively non-interacting. In the following we always assume a mass gap is present.

We work in the Schrödinger picture7 and assume that the instant t = 0 occurs during
the collision. The scattering experiment is described through a state

|Ψ(t)〉 = e−itH |Ψ〉 , (1.8)

7 The Schrödinger picture is not well suited for non-perturbative continuum QFT because it requires
sharp time localization [77]. Yet, the aim of this presentation is to prepare the ground for the
description of scattering in a lattice theory with a finite and discrete spacetime.
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called scattering solution. At asymptotic times |Ψ(t)〉 approaches the “trajectories”
of wave packets w±({pk, σk, αk}) of free multi-particle states

|Ψ(t)〉 t→±∞−−−−−→
∑
{σk,αk}

∫
d{pk}w±({pk, σk, αk}) exp

(
− it

∑
k

p0
k

)
|{pkσkαk}〉 .

(1.9)
We assume that scattering solutions are completely determined by either their infinite
past or their infinite future asymptote. Otherwise stated, given one of the wave
packets w± the state |ψ〉 is uniquely identified. We can use this fact to label it,

|Ψ〉 = |w−, in〉 = |w+, out〉 . (1.10)

That is, |w−, in〉 denotes the state that approaches the trajectory of the t = 0 wave
packet w− at t → −∞; |w+, out〉 approaches the trajectory described by w+ at
t→ +∞. Scattering theory is concerned precisely with the relation between the two
“bases” | · , in〉 and | · , out〉.

If the probability amplitudes that a state approaching a generic asymptotic config-
uration w− in the far past will approach another generic configuration w′+ in the
distant future are given, the outcome of any scattering experiment is known. These
amplitudes are called S-matrix elements and denoted

S
(
{pkσkαk} → {qkτkβk}

)
= 〈{qkτkβk}, out |{pkσkαk}, in〉 , (1.11)

where a limiting procedure of narrow wave packets is implied [50]. Notice that the
S-matrix elements are precisely the coefficients of the expansion of the | · , in〉 states
in terms of | · , out〉 states. Transition probabilities are the absolute square of the
S-matrix elements. Often spin polarizations are not measured experimentally; then
the relevant probability is obtained averaging over the initial polarizations σk and
summing over final ones τk [49].

Clearly the t→ ±∞ limits are an idealization. In real world experiments the states
are measured at times that precede and follow the collision by a time lapse much
larger than the microscopic time scale of the collision itself, but still finite. If the
wave packets are localized in a energy range ∆E then t→∞ should read t� 1/∆E.
Measurements done at these finite times should reveal a state that approximates a
free multi-particle state with a degree of precision related to that of the time limit.
The same criterion applies if the scattering takes place in a finite spacetime, such
as a lattice. Consider a finite spacetime with a time direction spanning the interval
t ∈ [−T, T ]. A state can be prepared as an approximate free multi-particle wave
packet w−T at the initial time −T , let evolve until time T , and finally compared
with another approximate wave packet w′+T .
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The transition amplitudes obtained in this way, namely

〈w′+T |e−2iTH |w−T 〉 , (1.12)

can be related to S-Matrix elements. To this aim the free evolution of the wave
packets w−T and w+T from time t = 0 to t = ±T has to be compensated8. In this
way approximate (due to the finite T ) and smeared (due to the finite momentum
spread of the wave packets) S-matrix are obtained. Increasing T and, simultaneously,
the precision with which the wave packets approximate a single free multi-particle
state, the S-matrix elements (1.11) are recovered.

1.3 Lagrangian Formalism

A common starting point for the construction of a quantum field theory is the La-
grangian description of the associated classical field theory. This approach makes it
particularly easy to write down theories that respect the symmetry requirements of
Section 1.1 [53]. The degrees of freedom of the theory are functions of spacetime:
the fields ϕ = {ϕn}Nn=1 and their derivatives. Under a Poincaré transformation:

(Λ, a) : ϕm(x)→ D(Λ)mn ϕn(Λ−1(x− a)) (1.13)

where D(Λ) is a finite-dimensional representation of the Lorentz group9 O(1, d). In
this Thesis we only consider vector fields and Dirac fields. The former transform
in the defining representation of O(1, d) while the latter belong to the Dirac spinor
representation, introduced in Subsection 1.3B. If a non-trivial internal symmetry
group G is also present, we denote V (g), g ∈ G, the finite-dimensional unitary
representation under which the fields transform:

g : ϕm(x)→ V (g)mn ϕn(x) . (1.14)

The dynamics of the classical theory is specified by a variational principle as the
stationary point δS = 0 of an action functional S(ϕ). We always assume that
the action can be written as the spacetime integral of a local Lagrangian density
L(ϕ(x), ∂µϕ(x)) (or simply Lagrangian for the reminder of this Section) in the form

S(ϕ) =
∫

dDxL(ϕ(x), ∂µϕ(x)) . (1.15)

8 Recall that the reference wave packet states in (1.10) are defined at time t = 0.
9 Actually of its covering group, see Appendix A. The requirement of D(Λ) being finite-dimensional

is that of having a finite number of fields.
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The Lagrangian must be real, of mass dimension10 D and a scalar under Poincaré
and internal group transformations11. Invariance is ensured if all the Lorentz and
internal group indices appearing in the Lagrangian terms are appropriately con-
tracted via invariant tensors. Finally, if power-counting renormalizability12 of the
quantum theory is required, L must be a polynomial with coefficients of positive
mass dimension [32].

Symmetries and conservation laws. Noether theorem associates a conserved
quantity to every infinitesimal transformation ϕ 7→ ϕ + δϕ that leaves the action
invariant. Suppose that the internal symmetry group G is a compact reductive13 Lie
group and that the representation V (g) has generators {T a}dimG

a=1 , namely

V (g) = exp(θaT a) , (1.16)

for g in a neigbourhood of the identity and some θa ∈ R. The generators satisfy

(T a)† = −T a ,
[
T a, T b

]
= fabcT c , (1.17)

where fabc are the completely antisymmetric structure constants of the Lie algebra
of G. The infinitesimal symmetry transformations of the fields read

δθϕ
m = θa(T a)mnϕn , θa � 1 . (1.18)

Noether theorem provides as (independent) conserved currents and charges,

jaµ = (T a)mnϕn
∂L

∂(∂µϕm) , Qa(t) =
∫

ddx ja 0(t,x) . (1.19)

On the solutions of the equations of motion,

∂µj
aµ = 0 , dQa/dt = 0 . (1.20)

10 A quantity Z is said to have (classical) scaling dimension or mass dimension ∆ if, under spacetime
dilations x → λx, it transform as Z → λ−∆Z. Obviously ∆(∂/∂xµ ) = 1 and ∆(dxµ) = −1. In
natural units the action is adimensional ∆(S) = 0, whence ∆(L) = −∆(dDx) = D.

11 That is, (Λ, a, g) : L(x) ≡ L(ϕ(x), ∂µϕ(x))→ L(Λx+ a).
12 Renormalizability is not necessary if the theory is an effective theory, but the requirement is at

least of historical importance as it greatly constrained the terms allowed in the Lagrangian.
13 Compactness ensures the existence of finite dimensional unitary representations, necessary since

we want to construct a unitary quantum theory with a finite number of fields. Reductiveness is
here assumed only to lighten the notation. The Lie algebra of a reductive Lie group is a direct sum
of one-dimensional (abelian) aj and simple (nonabelian) hk factors g = a1⊕· · ·⊕aJ⊕h1⊕· · ·⊕hK .
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1.3A Gauge Theories

A gauge theory is a redundant description of a physical system, typically due to
an arbitrariness in the choice of some “frame of reference” in which the system
configuration is specified. This redundancy turns out to be necessary to achieve
a local and Lorentz covariant formulation of an interacting quantum theory that
includes massless particles of helicity ±1 [50], such as quantum electrodynamics.

Gauge theories originate from the requirement of the invariance of the action S(ϕ)
under gauge transformations: internal group G transformations assigned indepen-
dently at each spacetime point. In the notations introduced above,

ϕ(x) 7→ ( ϕg )(x) = V (g(x))ϕ(x) , S(ϕ) = S( ϕg ) , (1.21)

for smooth g : R1,d → G such that g(x) |x|→∞−−−−→ 1G . Gauge theories built out of
nonabelian groups are called Yang-Mills theories after Yang and Mills who first
considered this possibility in 1954 [6]. In the following we will sometime use the
expression Yang-Mills also to refer to the abelian case.

Geometrical viewpoint. Transformation law (1.21) can be interpreted stating
that the image of field ϕ at different spacetime points belongs to different copies
of the internal group representation space, with no canonical identification between
them. In order to compare field values at different spacetime points, e.g., when taking
a derivative, such an identification has to be provided explicitly. This is usually done
introducing the (differential) notion of covariant derivative which allows to define the
(integral) notion of parallel transport. Here we proceed the other way round [49]
and start from the parallel transport. This will provide useful insights on how to
build a lattice Yang-Mills Hamiltonian (see Section 2.4).

Let γ : I → R1,d be a smooth curve defined on an open interval I ⊂ R. To each
γ and s, t ∈ I we associate a unitary matrix Uγ(t, s) in the V representation of G,
requiring

(i) the association to be smooth14;
(ii) Uγ(s, s) = 1V , the V representation space identity;

(iii) Uγ(t, u)Uγ(u, s) = Uγ(t, s), in particular Uγ(s, t) = U †γ(t, s);
(iv) Uγ(t, s) 7→ V (g(γ(t)))Uγ(t, s)V †(g(γ(s))) under gauge transformations (1.21).

The parallel transport Uγ(t, s) maps the representation space attached to x = γ(s)

14 This is better qualified deriving the parallel transport from the connection but this presentation
is not aimed at strict rigor.
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to the one at y = γ(t), in such a way that the difference

U †γ(t, s)ϕ(y)− ϕ(x) (1.21) + (iv)7−−−−−−−−−→ V (g(x))
[
U †γ(t, s)ϕ(y)− ϕ(x)

]
(1.22)

makes sense and transforms covariantly (and independently of t) by construction15.

Due to locality, we are interested in derivatives rather than finite differences16. A
notion of covariant derivative along the curve γ, Dγ , is retrieved taking the t → s

limit of (1.22):

Dγϕ(s) ··= lim
t→s

U †γ(t, s)ϕ(γ(t))− ϕ(γ(s))
t− s

= d
dtU

†
γ(t, s)ϕ(γ(t))

∣∣∣∣
t=s

. (1.23)

Recalling properties (i) and (ii), Uγ(t, s) can be expanded for small ε = t− s via the
generators T a of the V representation. Let us assume a γ dependence of the form

Uγ(t, s) = 1 + εγ̇µ(0)Aµ(x) +O(ε2) , Aµ(x) = Aaµ(x)T a , Aaµ(x) ∈ R , (1.24)

where the connection 1-form A has been introduced. Setting η = γ̇(0), x = γ(0),

Dγϕ(s) = lim
ε→0

(1− εηµAµ)(ϕ+ εηµ∂µϕ)(x)− ϕ(x)
ε

= ηµ(∂µ −Aµ)ϕ(x) , (1.25)

which defines the covariant derivative of ϕ in x along η. Symbolically,

D = ∂ −A , D
(1.21)7−−−−−→ V DV † . (1.26)

This (adjoint) transformation law is a consequence of (1.21) and (1.22) and ensures
that ϕ and Dϕ belong to the same G representation. Moreover, it implies

A
(1.21)7−−−−−→ VAV † − V ∂V † ; (1.27)

or, under infinitesimal transformations V = exp(θT a) [32],

δθA
a
µ = Dµθ

a = ∂µθ
a − fabcAbµθc = fabcθbAcµ + ∂µθ

a (1.28)

Because of the inhomogeneous term, A is not a tensor under gauge transformations17.

15 It is anyway path dependent.
16 At least in theories defined on a continuous spacetime. When we will reformulate gauge theories

on the lattice in Chapter 2 the situation will be different.
17 Otherwise stated, it does not transform covariantly. It is nevertheless well defined, in the sense

that the transformed connection is still algebra representation valued and its components Aaµ
are independent from the representation V chosen, as shown by the infinitesimal transformation
(1.28).
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The ingredients introduced above allow to convert a Lagrangian invariant under
global G transformations into a Lagrangian invariant under local transformations
via the minimal substitution

∂ → D . (1.29)

Pure Yang-Mills Lagrangian. The last step to obtain a proper gauge theory is
to promote the connection components Aaµ to propagating degrees of freedom, termed
gauge fields or gauge bosons. In order to do so, a kinetic term has to be introduced.
Recalling transformation rule (1.26) a covariant term containing derivatives of the
connection components is its curvature or field strength

Fµν = F[µν] = −
[
Dµ, Dν

]
= F aµνT

a , F aµν = ∂µA
a
ν − ∂νAaµ − fabcAbµAcν . (1.30)

As a consequence of (1.26), the field strength also transforms in the adjoint

Fµν
(1.21)7−−−−−→ V FµνV

† . (1.31)

A valid kinetic term for gauge bosons should be local, Poincaré and internal group
invariant, renormalizable (by our requirement) and quadratic (by definition). It is
now evident that such a term is provided by

L ∝ tr
(
FµνF

µν) ; (1.32)

together with cubic and quartic self-interactions whenever the group is nonabelian
(fabc 6= 0). It is nevertheless worth it pursuing an alternative, easily discretizable,
derivation of Lagrangian (1.32). It can be proven that the parallel transport is the
unique solution to the initial value problem [49]

d
dtUγ(t, 0) = γ̇µ(t)Aµ(γ(t))Uγ(t, 0) , Uγ(0, 0) = 1 ; (1.33)

and can be expressed as a path ordered exponential18

Uγ(t, 0) = P exp
{∫ t

0
ds γ̇µ(s)Aµ(γ(s))

}
. (1.34)

For every closed curve γ, the holonomy or Wilson loop [20]

Wγ = trUγ ··= trP exp
∮
γ
A (1.35)

18 Path ordering P is needed when G is nonabelian. The path ordered product of a one-parameter
family of operators is here defined as the product of the operators ordered from right to left by
increasing parameter. For functions, the ordering is done on the terms of their Taylor expansion.
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is gauge invariant as a consequence of the transformation law (iv) of the parallel
transport. For abelian gauge groups this is easily recast into a surface integral via
Stokes theorem. Considering the abelian case19 G = U(1),

Uγ = exp
∮
γ
A = exp

∫
Σ
F . (1.36)

where Σ is a surface enclosed by ∂Σ = γ and the 2-form F is the field strength. Since
we want a local action term, given any point x, vectors σµ1 , σ

µ
2 and ε � 1, consider

the infinitesimal surface Σ = (εσ1) ∧ (εσ2) with origin in x, then

U∂Σ = exp
(
ε2σµ1σ

ν
2Fµν(x) +O(ε3)

)
. (1.37)

In the nonabelian case (1.36) is more involved [31] but for the infinitesimal path ∂Σ
the result is again (1.37) [49]. Assume now G is either U(1), or a simple20 nonabelian
Lie group, such as SU(N). Suppose also that the representation V (g) is irreducible,
of dimension dV and that the generators are normalized via

tr
{
T aT b

}
= −2DV δ

ab , DV ∈ R . (1.38)

Then21, by (1.37) and (T a)† = −T a,

1
2
[
W∂Σ +W †∂Σ

]
= tr

[
1V + ε4

2 σµ1σ
ρ
1σ

ν
2σ

σ
2 F

a
µνF

b
ρσ(x)T aT b +O(ε5)

]
= dV − ε4DV σ

µ
1σ

ρ
1σ

ν
2σ

σ
2 F

a
µνF

a
ρσ(x) +O(ε5) . (1.39)

In principle higher order terms may be considered but their coefficients have negative
mass dimension and are thus ruled out by renormalizability. In the lattice theory
they will however play a role. No intrinsic preferred directions σµ1 , σ

µ
2 are available,

thus the last step to obtain a valid kinetic term is to replace them with an invariant
tensor in the same Lorentz group representation; the only possibility is

σµ1σ
ρ
1σ

ν
2σ

σ
2 → ηµρηνσ . (1.40)

Introducing a last bit of notation, this replacement can be achieved directly at the
level of Wilson loops. Let Wαβ(x; ε) be the infinitesimal square Wilson loop with

19 To comply with the above conventions A is pure imaginary here, A = A1T 1 = A1(−i).
20 A simple Lie group is a Lie group which does not have nontrivial connected normal subgroups,

namely subgroups invariant under conjugation by elements of the group.
21 The O(ε3) terms in (1.37) (and its nonabelian generalization) do not contribute up to O(ε6). To

see this, recall that U∂Σ is a matrix in the V representation of G. Then, order by order in ε,
all the terms in the exponent in (1.37) are of the form caT a for some real ca. In the first order
expansion of the exponential they cancel with the contribution of the Hermitian conjugate.
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origin in x and σµ1 = δµα and σµ2 = δµβ , (α, β = 0, . . . , d). Then,

∑
αβ

ηααηββ
Wαβ(x; ε) +W †αβ(x; ε)

2 =
∑
αβ

ηααηββ
[
dV − ε4DV F

a
αβF

a
αβ(x)

]
+O(ε5) ,

(1.41)
and the general22 pure Yang-Mills (no matter fields) Lagrangian is

L = 1
4g2 lim

ε→0

∑
αβ

ηααηββ

DV ε4

[
Wαβ(ε) +W †αβ(ε)

2 − dV

]
= − 1

4g2F
a
µνF

aµν . (1.42)

Here a coupling constant g has been introduced. This coupling is typically reabsorbed
in the gauge fields via Aaµ → gAaµ in order to obtain canonically normalized kinetic
terms and explicit coupling dependence in front of the interactions. Observe also
that, remarkably, gauge invariance forbids a gauge boson mass term AaµA

aµ. When
the Lie algebra is not simple but is reductive a sum of Lagrangians of type (1.42)
is obtained, one for each algebra factor, each with its independent coupling. This
happens, e.g., for the Standard Model of particle physics which has gauge group
SU(3)× SU(2)×U(1).

1.3B Three Models

Lagrangian (1.42) has been obtained without any specific choice of matter fields. We
now want to couple the theory to some Dirac fields. To this scope it is sufficient
to identify a valid Dirac field Lagrangian with some internal (global) symmetries
and perform the minimal substitution (1.29). Before doing so, we review the basic
properties of the Dirac spinor representation.

Free Dirac fermions. A way to construct Dirac spinors in arbitrary spacetime
dimensions23 is through the gamma matrices, namely matrices generating an irre-
ducible representation of the Clifford algebra

γµγν + γνγµ = 2ηµν . (1.43)

In D spacetime dimensions the gamma matrices are 2bD/2c×2bD/2c dimensional [61],
b · c denoting the integer part. In particular, for d = 1 they are 2× 2 matrices. Now,

Σρσ ··=
1
4
[
γρ, γσ

]
(1.44)

22 At least imposing renormalizability and parity or time-reversal invariance. Fixing an orientation
of spacetime a topological θ-term can enter the action [21, 25].

23 The problem of how spinors arise in d = 1 where there is no spin is addressed in Appendix A.
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obey the Lorentz algebra (A.2a) and thus generate a representation D(Λ),

D(Λ)αβ ··= exp
[1

2ω
ρσ(Σρσ)αβ

]
, ωρσ = −ωσρ . (1.45)

A multiplet of fields ψα transforming with D(Λ) is a Dirac spinor field; the conjugate
spinor ψα ··= ψ†β(γ0)βα is in the dual representation; and (γµ)αβ are invariant tensors,

Λµν D(Λ)αγ (γν)γδD(Λ−1)δβ = (γµ)αβ . (1.46)

They have one vector, one spinor and one conjugate spinor index and thus allow to
write down a Lorentz invariant expression containing a derivative of ψα. From now
on spinor indices will be usually omitted and when gamma matrices are contracted
with a vector we will sometimes write /v in place of vµγµ.

For a single Dirac fermion ψ the simplest kinetic Lagrangian that can written down,
complying with the conditions on the action imposed at the beginning of this Section,
is24

L = ψ (i/∂ −m)ψ . (1.47)

It describes a free Dirac field. Its equation of motion, namely

δS
/
δψ = (i/∂ −m)ψ = 0 , (1.48)

is the Dirac equation. This equation can be solved exactly, also at the quantum level.
With this particle content no other Lagrangian term satisfying our requirements can
be built in more than two spacetime dimensions25. In D = 2 the spinors have mass
dimension 1/2 thus a four-fermion interaction is also allowed by renormalizability.
Here we neglect it but it appears, e.g., in the Thirring and Gross-Neveu models [59].

As will be clear in Section 1.5, when the theory is quantized, the fields ψα, ψα become
operators ψ̂α, ψ̂α that have to satisfy anticommutation relations26. In order to have
a consistent quantization procedure, the classical variables ψα(x) and ψα(x) should
be treated as anticommuting Grassmann numbers [46]. In doing so, here we define
derivatives and complex conjugation by

δF (ψ,ψ) = δψα
∂F

∂ψα
+ δψα

∂F

∂ψα
, (FG)∗ = G∗F ∗ ; (1.49)

following the conventions of [46].

24 If equations of motion are to be first order (1.47) is the only possible kinetic Lagrangian; it is not
real but its imaginary part is a total derivative (see the Grassmann number conventions below).

25 Even adding other Dirac fields, L is a sum of (1.47) copies, possibly with different masses.
26 This consequence of the spin-statistic theorem holds also in D = 2, see Appendix A.
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Electrodynamics. Lagrangian (1.47) is invariant under the particle number U(1)

ψ 7→ e−iθψ , ψ 7→ e+iθψ , θ ∈ R . (1.50)

Promoting this U(1) to a gauge symmetry via the minimal substitution we obtain the
abelian gauge theory of electrodynamics, also known in two spacetime dimensions as
Schwinger model [9, 18]. In this context the field ψ is called electron. The Lagrangian
is

L = −1
4FµνF

µν + ψ(i /D −m)ψ , (1.51)

where the gauge field Aµ = A1
µ, called photon, has been canonically normalized. The

the Noether current27 and the Euler-Lagrange equations of (1.51) read

jµ = gψγµψ , ∂µF
µν = jν , (i /D −m)ψ = 0 . (1.52)

Chromodynamics. Considering a theory of N fermions {ψs} all with the same
mass, the global symmetry group becomes the nonabelian U(N), with the fermions
transforming in the defining representation: V ∈ U(N). Any of its continuous
subgroups may be used to build a gauge theory. For ease of notation we pick its
largest simple subgroup, SU(N). The minimal substitution provides immediately a
Lagrangian similar in form to (1.51),

L = −1
4F

a
µνF

aµν + ψr(i /Dr
s −mδrs)ψs , (1.53)

This Lagrangian describes chromodynamics28, the theory of quarks ψ and gluons A.
Expanding and isolating kinetic and interaction terms L = Lkin + Lint yields

Lkin = −1
2(∂µAaν − ∂νAaµ) ∂µAa ν + ψs(iγµ∂µ −m)ψs (1.54)

Lint = −igψrγµAaµ(T a)rsψs + gfabc∂µA
a
νA

b µAc ν − 1
4g

2fabcfadeAbµA
c
νA

dµAe ν .

(1.55)

Noether theorem provides a particle number conserved current associated to u(1)
transformations, but also a conserved but not gauge invariant current for su(N),

jµu(1) = ψrγ
µψr , jaµsu(N) = igψrγ

µ(T a)rsψs + gfabcAbµF
c µν . (1.56)

27 The coupling in front due to the rescaling of the generator (−i)→ g(−i) in (1.50).
28 Clearly Lagrangian (1.53) is not exactly that describing the strong interactions observed in nature

but the structure is exactly the same. Both theories involve massive Dirac fermions matter fields
transforming in the defining representation of a special unitary gauge group.



1.4. Hamiltonian Formalism 15

The latter receives a contribution from the gluons, reflecting their self-interactions.
The Euler-Lagrange equation for the gluons reads

∂µF
aµν = ja ν , (1.57)

and clearly shows that the Noether current is conserved.

1.4 Hamiltonian Formalism

The numerical simulations implemented in this Thesis rely on the Hamiltonian for-
malism. Contrarily to the manifestly covariant Lagrangian approach of the previous
section, in the Hamiltonian formulation the time coordinate plays a privileged role.
A choice of time direction has to be made, then the fields are taken to be functions
of the space coordinates only29.

Consider again the generic theory of the fields ϕ = {ϕn} introduced in Section 1.3.
In the Hamiltonian formalism the degrees of freedom are the fields {ϕn} and their
conjugate field momenta {πn}. To lighten the notation here the indices n,m not
only label the different fields but also run over the space coordinate x when the
space dependence of the field is not indicated explicitly. Their contraction involves
summation over different fields as well as integration over space. This convention
facilitates the parallelism with the case of a finite number of degrees of freedom.

The mapping from (ϕ, ϕ̇) space to phase space (ϕ, π) is the Legendre transform:

πn = δL/δϕ̇n , (1.58)

where L is the Lagrangian, defined as the space integral of the lagrangian density,

L(ϕ, ϕ̇) =
∫

dxL(ϕ(x), (ϕ̇(x), ∂iϕ(x))) . (1.59)

The Hamiltonian is

H(ϕ, π) = ϕ̇n(ϕ, π)πn − L(ϕ, ϕ̇(ϕ, π)) . (1.60)

Grouping the fields in commuting {ϕne} and anticommuting {ϕno} ones, the (super)
Poisson bracket of two functionals F (ϕ, π), G(ϕ, π) is defined as [46]

{F,G} =
[
δF

δϕne
δG

δπne
− δF

δπne

δG

δϕne

]
+ η

[
δF

δϕno
δG

δπno
+ δF

δπno

δG

δϕno

]
; (1.61)

29 Their time dependence is fixed by time evolution.
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where η = +1 if F is commuting, −1 otherwise. The properties of (1.61) reproduce
those of commutators or anticommutators. The fundamental brackets read

{ϕme , πne} = −{πne , ϕme} = δmene , {ϕmo , πno} = +{πno , ϕmo} = −δmono .
(1.62)

As in the Lagrangian formalism, the dynamics descends from an action principle [46]

δS = δ

∫ +∞

−∞
dt
[
ϕ̇nπn −H(ϕ, π)

]
= 0 . (1.63)

The equation of motion deriving from (1.63) can be written in terms of the Poisson
brackets. For a generic functional of the canonical variables F (ϕ, π) it reads

Ḟ = {F,H} . (1.64)

Symmetries and conservation laws. The Hamiltonian formalism provides an
elegant description of continuous symmetries. Suppose the theory has again the
internal symmetry group G of Section 1.3. The Noether charges together with the
Poisson bracket form a representation of the Lie algebra,

Qa =
∫

dx (T a)mn ϕn(x)πm(x) , {Qa, Qb} = fabcQc . (1.65)

Most importantly, the charges realize the internal symmetry transformations (1.18)
as infinitesimal canonical transformations. Considering again a generic F (ϕ, π)

δθF = θa{F,Qa} , δθϕ
m = θa{ϕm, Qa} = θa(T a)mnϕn . (1.66)

1.4A Gauge Theories

The canonical variables describing the configuration of a gauge theory in its Hamil-
tonian formulation satisfy relations that constrain them to a submanifold of phase
space [46]. To see this, observe that the invertibility of the Legendre transform (1.58)
is equivalent to the invertibility of the Hessian

Wmn = δπm
δϕ̇n

= δ2L

δϕ̇m δϕ̇n
. (1.67)

Provided Wmn is invertible, Euler-Lagrange equations can be put in standard form
and thus the existence and uniqueness theorems applies to their solutions. On the
other hand, the solutions of the equations of motion of a gauge theory are only
determined up to gauge transformations, whence the original claim that the Legen-
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dre transform cannot be invertible, its image being a submanifold of phase space30.
It can be shown that it is still possible to introduce an Hamiltonian which is well
defined on this submanifold and freely extensible elsewhere31 [46]. Nevertheless, in
order to allow the description of constrained systems, the traditional Hamiltonian
formalism requires some adjustments, originally developed by Bergmann and Dirac
[4, 5]. The core ideas of the formalism are now sketched; for an exhaustive and rigor-
ous treatment see [46]. In the following we assume that all the fields are commuting,
the extension to the anticommuting case is a matter of keeping track of the correct
signs.

The initial ingredients are the Hamiltonian H(ϕ, π) and some (primary) constraints

κu1(ϕ, π) = 0 , u1 = 1, . . . , U1 (1.68)

These can be enforced by the method of Lagrange multipliers, introducing auxiliary
variables (functions) λu(t,x) and a modified version of the action principle (1.63),

δS = δ

∫ +∞

−∞
dt
[
ϕ̇nπn −H(ϕ, π)− λu1κ

u1(ϕ, π)
]

= 0 , (1.69)

where the implicit integration over repeated indices has been extended con the con-
straints. Moreover the canonical and auxiliary variables are implicitly evaluated
along a trajectory t → (ϕ, π, λ)(t), an abuse of notation that will be reiterated in
the following. The time evolution of F (ϕ, π) along such trajectories is then

Ḟ = {F,H + λu1κ
u1} . (1.70)

Consistency algorithm. We now show that, in order for the primary constraints
(1.68) to be preserved by the time evolution, a new set of constraints as well as some
restrictions on the Lagrange multipliers might have to be enforced. Via (1.70) the
condition (1.68) can be recast as an initial value problem. Namely, we require that
the constraints are satisfied by the initial system configuration (ϕ, π) and that they
are respected by time evolution:

κu1(ϕ, π) = 0 , κ̇u1(ϕ, π) = {κu1 , H} + λu′1{κ
u1 , κu

′
1} = 0 . (1.71)

Each of the right equations results either in a restriction on the auxiliary variables or,
when the λ dependence cancels, in a (possibly new, secondary) constraint. The same

30 At least under some assumptions better formulated in the finite dimensional case and here omitted.
31 This arbitrariness in the definition of the Hamiltonian is unsurprisingly related to gauge freedom

in a way that will be made precise below.
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equation is then imposed on the U2 newly obtained constraints and so on, until no
new independent condition is generated. In the end we are left with an enlarged set
of constraints κu and a system of linear equations for the auxiliary variables {λu1}.
The former, here assumed to be all independent, identify the constraint surface

Σ = {(ϕ, π) : κu(ϕ, π) = 0 , u = 1, . . . , U = U1 + U2 + . . .} ; (1.72)

the latter read

{κu, H} + λu1{κu, κu1} ≈ 0 ∀ u = 1, . . . , U , (1.73)

where “≈” denotes equality on Σ. Inserting a solution Au1 of (1.73) in (1.69) provides
a refined time evolution generated byH ′ = H+Au1κ

u1 which automatically preserves
the constraints, all is left to do is to choose valid initial conditions (ϕ, π) ∈ Σ.

Gauge invariance. This refined time evolution has also the advantage of isolating
and making manifest the eventual “ambiguity” in the dynamics of the system. Indeed
Au1 (and thus H ′) is only determined up to solutions {Bv

u1}
V
v=1 of the homogeneous

system associated to (1.73). Let ηv = Bv
u1κ

u1 , then (1.69) is equivalent to

δS = δ

∫ +∞

−∞
dt
[
ϕ̇nπn −H ′(ϕ, π)− λvηv(ϕ, π)

]
= 0 , κu(ϕ, π) = 0 , (1.74)

where the remaining multipliers λv are completely arbitrary. Two Hamiltonian flows
that differ by the choice of λv = λv(t,x) are gauge equivalent. We may include this
gauge freedom in the Hamiltonian defining the total Hamiltonian

HT = H ′ + λvη
v . (1.75)

The relation between constraints and gauge invariance suggests that it might be dif-
ficult or impossible to completely remove the constraints by solving them explicitly.
Nevertheless, not all constraints reflect a gauge freedom and while gauge symme-
tries imply the existence of constraints, the reverse is not true32. An F (ϕ, π) such
that {κu, F} 6≈ 0 for some u cannot generate a valid canonical transformation be-
cause this would violate the constraints. In Dirac’s terminology [5] it is said to be
second-class, as opposed to first-class33. Second-class constraints do not generate
gauge transformations and are thus just relations between the canonical variables;
they can be removed restricting phase space to their zero locus Σ∗, which inherits
a symplectic structure from the original phase space. Conversely, the remaining

32 Indeed, it may happen that (1.73) completely fixes the auxiliary variables.
33 H ′ and ηv are first-class by construction.
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first-class constraints can generate gauge transformations. They may be converted
to second-class ones by imposing gauge-fixing conditions; nevertheless, this is not
always convenient or even doable (due to Gribov’s obstructions [46]).

Dirac Bracket. As a last ingredient it should be mentioned how the symplectic
structure of Σ∗ is defined. This is done introducing a modified bracket [5], called
Dirac bracket. Let {χw}Ww=1 be the second-class constraints. The Dirac bracket is

{F,G}∗ = {F,G} − {F, χw} (∆−1)ww′{χw
′
, G} , ∆ww′ = {χw, χw′} . (1.76)

It has all the properties of the Poisson bracket [46]; moreover it vanishes when F or
G are second-class constraints, its restriction to Σ∗ = {χw(ϕ, π) = 0} is thus well
defined. It also reduces to the Poisson bracket for first-class functionals.

1.4B Three Models

Three theories of increasing complexity, whose Lagrangian description has been given
in the previous Section, are now translated to the Hamiltonian formalism.

Free Dirac Fermions. As a first example consider the Dirac Lagrangian (1.47).
The conjugate momenta to the matter fields ψ, ψ† are

π = ∂L
∂(∂0ψ) = −iψ† , π† = ∂L

∂(∂0ψ†)
= 0 ; (1.77)

Recalling ψ = ψ†γ0 and (γ0)2 = 1 the Hamiltonian is34

H =
∫

dx
[
ψ̇(−iψ†)− ψ†γ0

(
iγµ∂µ −m

)
ψ
]

=
∫

dxψ
(
−iγi∂i +m

)
ψ (1.78)

Equation (1.77) provides two primary second-class constraints,

κ1 = π + iψ† = 0 , κ2 = π† = 0 ; (1.79)

{κ1(x), κ2(y)} = {iψ†(x), π†(y)} = −iδ(x− y) . (1.80)

The consistency algorithm just fixes the Lagrange multipliers. We have therefore
an example of a constrained but not gauge invariant theory; κ1 and κ2 can be con-
sistently solved introducing the Dirac bracket (1.76). There is nothing particularly
instructive in the computation thus we just state the well known result,

{ψ(x), ψ†(y)}∗ = −iδ(x− y) ; (1.81)

34 Space dependence of the integrands is omitted when this does not creates confusion.
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while π and π† can be safely eliminated solving the constraints.

Pure Yang-Mills. We now turn to the pure Yang-Mills theory, described by the
Lagrangian (1.42) (here we adopt canonically normalized kinetic terms). Due to the
space-time splitting, in the Hamiltonian formalism it is convenient to parametrize
the field strength by electric and magnetic fields

F a0i = Eai , F aij = Ba
ij . (1.82)

For the reminder of this Chapter (Xab...
ij... )2 represents ∑i<j<..., ab...(Xab...

ij... )2 and re-
peated spatial i, j . . . indices are summed over independently from their position.

The conjugate momenta associated to the gluons Aaµ read

Πaµ = ∂L
∂(∂0Aaµ) = −1

2F
b ρσ ∂F bρσ

∂(∂0Aaµ) = −F a 0µ = δµi E
a
i ; (1.83)

providing a family of primary constraints

κ1a = Πa0 ≈ 0 . (1.84)

The invertibility of the Legendre transform is lost because Ȧa0 is not specified by
the canonical coordinates Aaµ and Πaµ; but the Hamiltonian is still unambiguously
defined on the constraint surface,

H =
∫

dx
[
ȦaµΠaµ − L

]
=
∫

dx
[
ȦaiE

a
i + 1

4
(
F a0iF

a 0i + F ai0F
a i0 + F aijF

a ij
)]

=
∫

dx
[
ȦaiE

a
i + 1

4
(
−2(Eai )2 + 2(Ba

ij)2
)]

.

(1.85)

Integrating by parts (assuming appropriate behavior at spatial infinity) we have

ȦaiE
a
i =

[
F a0i + ∂iA

a
0 + gfabcAb0A

c
i

]
Eai

= (Eai )2 −Aa0(∂iEai ) + gfabcAb0A
c
iE

a
i

= (Eai )2 −Aa0
[
∂iE

a
i − gfabcAbiEci

]
= (Eai )2 −Aa0(DiE

a
i ) ,

(1.86)

where in the last step the fact that Eai transforms in the group adjoint was used.
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Inserting in the expression of H

H =
∫

dx
[1

2(Eai )2 + 1
2(Ba

ij)2 −Aa0(DiE
a
i )
]
. (1.87)

Making use of the modified time evolution (1.70), the consistency of κ1a ≈ 0 implies35

κ̇1a(t,x) = {Πa0(x), H}t +
∫

dyλb1(t,y) {Πa0(x),Πb0(y)}t = DiE
a
i (t,x) ≈ 0 ;

(1.88)
thus giving Gauss Law as a secondary constraint:

κ2a = Ga = DiE
a
i ≈ 0 . (1.89)

It can be shown [36, 47] that the consistency algorithm stops here, namely that no
new independent conditions are obtained imposing κ̇2a ≈ 0. Moreover, the Ga satisfy
the algebra

{Ga(x),Gb(y)} = gfabc Gc(x) δ(x− y) ≈ 0 . (1.90)

Obviously we also have

{κ1a, κ2b} = {Πa0, DiE
b
i } = 0 , (1.91)

therefore all constraints are first-class and the auxiliary functions λa1 are free. This
has the immediate consequence that the solution Aa0(t,x) is an arbitrary function:

Ȧa0(t,x) = {Aa0(x), H}t +
∫

dyλb1(t,y) {Aa0(x),Πb0(y)}t = λa1(t,x) . (1.92)

We can use it to express λa1. Summarizing all the above, the total Hamiltonian is

HT = H +
∫

dxλa1κ1a =
∫

dx
[1

2(Eai )2 + 1
2(Ba

ij)2 −Aa0 (DiE
a
i ) + Ȧa0Πa0

]
. (1.93)

Hamiltonian flows that differ by the choice of the arbitrary Aa0(t,x) must be gauge
equivalent thus we can almost36 read off the generator of gauge transformations from
(1.93). Calling θa(t,x) the Aa0 parametrizing the transformation,∫

dx
[
−θa(t) (DiE

a
i ) + θ̇a(t) Πa0

]
=
∫

dx
[
(Diθ

a(t))Eai + θ̇a(t) Πa0
]
, (1.94)

35 Here { , }t means that, after the Poisson bracket has been computed, is evaluated along the
solutions of the equations of motion, at time t.

36 The generator given below is incomplete, it does not give the correct transformation laws of the
arbitrary variables Aa0 . While it can be completed by a standard procedure [36] to (Dµθ)aΠµa,
we do not need this result because we will completely remove Aa0 by gauge fixing.
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where we moved the covariant derivative as in (1.86).

For our purposes it is convenient to impose the temporal gauge fixing Aa0 ≈ 0. Since

{Aa0(x),Πb0(y)} = δabδ(x− y) , (1.95)

the gauge fixing converts Πa0 and Aa0 in second-class constraints. On the other hand,
Ga is still first-class and we expect it to generate residual gauge transformations.
Having introduced a new condition we must check its consistency; recalling (1.92)
this fixes the multipliers λa1:

Ȧa0(t,x) = λa1(t,x) ≈ 0 ⇒ λa1 = 0 ⇒ Aa0(t,x) = Aa0(x) . (1.96)

Then the last term of the total Hamiltonian (1.93) is removed and the residual gauge
transformations are time independent; they are generated by −Ga:

−
∫

dx θa (DiE
a
i ) = +

∫
dx (Diθ

a)Eai , θa(t,x) = θa(x) . (1.97)

This gives the correct transformation (1.28) of Aai , indeed

δθA
a
i (x) =

∫
dy
{
Aai (x), (Db

jθ
b)(y)Ebj (y)

}
(1.98)

=
∫

dy dz δA
a
i (x)

δAck(z)
δ((Djθ

b)(y)Ebj (y))
δEck(z) (1.99)

= Diθ
a(x) . (1.100)

Furthermore, Eai transforms in the adjoint, as expected from its definition (1.82),

δθE
a
i (x) =

∫
dy
{
Eai (x), (Db

jθ
b)(y)Ebj (y)

}
(1.101)

=
∫

dy dz
[
− δEai (x)
δEck(z)

δ((∂jθb − gf bdeAdi θe)(y)Ebi (y))
δAck(z)

]
(1.102)

= gfabcθbEci (x) . (1.103)

At this point we can introduce the Dirac brackets and then restrict the phase space
by removing Aa0 and Πa0. All the fundamental Dirac brackets coincide with the
Poisson ones, except for {Aa0,Πa0}∗ = 0 that allows the removal of Aa0 and Πa0.
Finally,

H(Aai , ∂iAaj ,Πai) =
∫

dx
[1

2(Eai )2 + 1
2(Ba

ij)2
]
. (1.104)
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Electrodynamics and Chromodynamics. The matter coupled Yang-Mills the-
ory (1.51)-(1.53) is obtained combining the two previous ones. Here we just state
some results (see, e.g., [77]), working directly in the temporal gauge. The Hamilto-
nian is the sum of (1.78) (eventually generalized to many flavours) and (1.104), plus
the potential accounting for the interaction between fermions and gauge fields:

H =
∫

dx
[1

2(Eai )2 + 1
2(Ba

ij)2 + ψr
(
−iγi∂i +m

)
ψr + igψrγ

iAai (T a)rsψs
]

(1.105)

=
∫

dx
[1

2(Eai )2 + 1
2(Ba

ij)2 + ψr
(
−i(γiDi)rs +mδrs

)
ψs
]
. (1.106)

Observe that, in temporal gauge, the minimal coupling (1.29) (here involving space
derivatives only) gives precisely the interaction term between gauge and matter fields.

As expected, matter fields give an additional contribution to Gauss law:

Ga = DiE
a
i − igψrγ0(T a)rsψs

= ∂iE
a
i − gfabcAbiEci − igψrγ0(T a)rsψs

= ∂iE
a
i − ja 0 ≈ 0 ;

(1.107)

where we used the definitions (1.86) of DiE
a
i and (1.56) of the Noether current.

The Ga smeared with a time independent parameter θa(x) are still the generators of
gauge transformations. If the parameters θa are taken also space independent the
generators of global transformations are recovered: integrating by parts we have

−
∫

dx θaGa(x) = −
∫

dx θa(∂iEai − ja 0) =
∫

dx θaja 0 = θaQa . (1.108)

1.5 Canonical Quantization

Among the various quantization prescriptions, canonical quantization is the most
suited for the application of the tensor network techniques of Chapter 3. Consider a
generic theory with canonical fields (ϕ, π) = ({ϕn}, {πn}) and Hamiltonian H(ϕ, π).

Canonical quantization [2] “maps” the classical Hamiltonian theory in a quantum
one promoting the canonical fields ϕn, πn as well as their functionals F (ϕ, π) to field
operators ϕ̂n, π̂n, F̂ (ϕ, π) = F (ϕ̂, π̂). Namely operator valued functions37 of space
acting on an Hilbert space H , where the state of the system is defined. The field
operators are imposed to satisfy

[F̂ , Ĝ]± = i {̂F,G} , F̂ † = F̂ ∗ ; (1.109)

37 Actually distributions; but we do not pursue this level of mathematical rigor in this work.
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where the graded commutator [F̂ , Ĝ]± is equal to the commutator F̂ Ĝ− ĜF̂ unless
F and G are both Grassmann odd, in which case the anticommutator F̂ Ĝ+ ĜF̂

is used [46]. As a consequence of (1.109), canonical field operators ϕ̂, π̂ obey the
canonical commutation (or anticommutation) relations

[ϕ̂m(x), π̂n(y)]± = ∓iδmnδ(x− y)1̂ . (1.110)

Another consequence of (1.109) is that, in the Heisenberg picture, the time evolution
of the system is specified by

d
dt F̂ = i[Ĥ, F̂ ]− . (1.111)

Alternatively, working in the Schrödinger picture field operators remain time inde-
pendent while the state |Ψ(t)〉 evolves according to the Schrödinger equation

i
d
dt |Ψ(t)〉 = Ĥ |Ψ(t)〉 . (1.112)

Ordering of operators. The above quantization prescription leaves an ambiguity.
Consider for simplicity a theory of a single field ϕ. Classically ϕ(x)π(x) = π(x)ϕ(x)
but due to (1.110) ϕ̂(x)π̂(x) 6= π̂(x)ϕ̂(x) in the quantum theory. This makes the
expression F̂ (ϕ, π) = F (ϕ̂, π̂) not completely well defined unless an ordering prescrip-
tion for the operators can be identified; an example will be given in Subsection 2.3C.

Quantum symmetries. Recall that the Noether charges associated to an internal
symmetry form, with the Poisson bracket, a representation of the symmetry algebra
(1.65)-(1.66). By (1.109), a representation of the algebra is now realized on H

through the charge operators38 Q̂a and the commutator,

[Q̂a, Q̂b]− = ifabcQ̂c , δθF̂ = iθa[Q̂a, F̂ ]− or δθ |Ψ〉 = iθaQ̂a |Ψ〉 . (1.113)

Moreover, the conservation of the charges Q̂a reads,

[H,Q]− = 0 . (1.114)

Analogous results hold for the generators of spacetime symmetries. Finally, using
the representatives Û(Λ, a) of the Poincaré group on H , the transformation (1.13)
of the classical fields can be recast in [50]

Û(Λ, a) ϕ̂m Û †(Λ, a) = D(Λ−1)mn ϕ̂n(Λx+ a) . (1.115)

38 Here we assume that all the charges are bosonic, i.e. Grassmann even at the classical level.
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In the following we omit the hat on operators and the ± in the graded commutator.

1.5A Quantization of Gauge Theories

The constraints that appear in the Hamiltonian formulation of gauge theories require
some care during quantization and the prescription given above has to be integrated
with further conditions. In classical Hamiltonian gauge theories, only the subspace
of phase space that satisfies the constraints corresponds to physical configurations.
A similar result holds for the Hilbert space of the quantum theory. However, it is
important to distinguish between first-class and second-class constraint.

In Subsection 1.4B second-class constraints have been solved; they correspond to null
operators in the quantum theory obtained using the Dirac bracket in (1.109) [46].
First-class constraints have been recognized as generators of gauge transformations.
It seems reasonable not to impose their vanishing in the operatorial sense. Still,
physics is expected to be invariant under gauge transformation. Therefore, following
Dirac [5, 46], we impose the weaker condition that only the gauge-invariant states
annihilated by first-class constraints are physical and identify the subspace

Hphys = {G |Ψphys〉 = 0} ⊂H , (1.116)

where G denotes symbolically the set of all first-class constraint operators.

An attempt at the quantization of the photon. Even in the simplest scenario,
the quantization of pure electromagnetism, the prescription just presented encounters
a difficulty. This emerges when we try to impose the physical condition on the states

G |Ψphys〉 = ∂iΠi |Ψphys〉 = 0 . (1.117)

Then, for any operator O we have

〈Ψphys| [O, ∂jΠj ] |Ψphys〉 = 0 ; (1.118)

a result that clashes with the canonical commutation relations [27], giving

〈Ψphys| [Aai (x), ∂jΠj(y)] |Ψphys〉 = −i ∂
∂xi

δ(x− y) 〈Ψphys|Ψphys〉 . (1.119)

It has been suggested [40] to circumvent the problem assuming that the states sat-
isfying Gauss law are not normalizable. Yet, among these states there must be the
vacuum |Ω〉. As pointed out by Strocchi [77], an unormalizable vacuum may lead to
inconsistencies from the perspective of a rigorous non-perturbative quantization. We
do not discuss this problem any further because it is beyond the scope of this Thesis
and, interestingly, will disappear when we formulate the theory on the lattice.





2
Lattice Theories
In this Chapter the general principles of Hamiltonian lattice quantum field theory
are discussed. A discretization prescription is elaborated and applied to theories of
Dirac and gauge fields. Then the lattice Schwinger model is studied in more detail
and some numerically tractable reformulations of the theory are put forward, paving
the way for the application of the methods presented in Chapter 3.

2.1 Lattice as a Regulator

Applying the canonical quantization prescription to a classical Hamiltonian is not
enough to completely define a QFT. The theory obtained in this way produces diver-
gent results that must be cured by also specifying a regularization prescription. A
possible strategy is to start from a theory with a finite number of degrees of freedom
defined on a lattice: a discrete and finite spacetime and then defined the QFT as the
continuum and thermodynamic limits of this finite theory. This is the paradigm of
lattice quantum field theory. The lattice provides both an ultraviolet (UV) cutoff,
due to the finite spacing between lattice points, and an infrared (IR) cutoff, because
of the finite extent of the lattice. The continuum and thermodynamic limits consists
in sending the spacing to zero and the volume to infinity1; in doing so a renormal-
ization procedure is necessary to ensure that the relevant observables remain finite
in the limits. In the following we will use the expression continuum limit to refer to
both the above limits. There are many reasons to choose the lattice as a regulator
and study lattice quantum field theories, both technical and conceptual [102].

Technical motivations. The first observation is that the lattice regularization
is genuinely non-perturbative. Moreover, prior to taking the continuum limit, the
theory is really a many-body quantum mechanical system. Avoiding the problem
of dealing directly with an infinite number of degrees of freedom has important
advantages: (i) many far-reaching exact statements can be made quite rigorous in
the framework of quantum mechanics and thus of lattice quantum field theories; (ii)
the finiteness of the problem makes it accessible, at least in principle, to numerical

1 It should be noted that the two limits do not in general commute and care has to be taken.

27



28 2. Lattice Theories

simulation on the computer. Clearly, some difficulties are just postponed to the
delicate task of taking the continuum limit. This obviously can not be performed
directly on a computer (as the amount of available resources is always finite) and
other techniques, such as finite-size scaling analysis [19, 95], are necessary for its
extrapolation. Furthermore, whether the exact results mentioned above continue to
hold in the continuum limit is often not clear for interacting theories and positive
answers are generally based on circumstantial evidence [102].

Conceptual motivations. Depending on personal taste, the problem of having a
rigorous continuum limit might not be perceived as relevant as the previous state-
ments make it appear to be. Without dwelling too much on topics that go beyond
the scope of this Thesis and partially attain to philosophy of science [74], if the uni-
verse is assumed to be finite and quantum gravity appears at some ultraviolet scale,
any theory on flat Minkowski spacetime is to be considered an effective field theory,
only relevant over a finite distance and up to a finite energy. Consequently a finite
and discrete theory might actually even be a better approximation of nature than
its continuum counterpart.

Hamiltonian approach. Lattice field theories are most commonly quantized in
Euclidean2 spacetime using the path integral formalism; and numerically simulated
via Monte-Carlo methods. This approach provided remarkable results in the past
decades. Here a different but promising path [23, 30] is followed and a canonical
quantization of the (finite) lattice degrees of freedom is preformed. In this frame-
work there is no need to analytically continue to imaginary times; for this reason,
when performing dynamical studies this approach is referred to as real-time simula-
tion. The Hamiltonian formalism requires to choose a time direction thus spoiling
manifest Lorentz boost invariance, which is nevertheless already broken by the lattice
itself. On the other hand, it is particularly well suited to compute physically interest-
ing quantities such as ground states, masses, properties of bound states and phase
diagrams, that are sometimes hard to extract from the path integral formulation
[62]. Notably, Hamiltonian numerical simulations do not suffer from the sign prob-
lem often found in Monte-Carlo simulations [90, 102]. Finally, the numerical analysis
performed in this Thesis relies on classical simulation techniques from many-body
and quantum information theory (introduced in Chapter 3). However, the canoni-
cal formulation is also the natural one for the study of analog and digital quantum
simulation [58, 87, 97] of quantum field theories.

2 The presence of the oscillatory phase in the path integral partition function requires a Wick
rotation (analytic continuation of the time coordinate to imaginary values) for formal convergence.
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2.2 Discretization Prescription

Some key ingredients for the discretization of a (1+d)-dimensional Hamiltonian field
theory are now briefly outlined. As mentioned in Section 1.4, Hamiltonian fields are
functions of Euclidean space Rd rather than Minkowski spacetime R1,d. It is thus
Euclidean space that has to be truncated and discretized in order to obtain the
discrete domain on which the Hamiltonian lattice field theory degrees of freedom are
defined. The time direction is not involved in this procedure. The lattice theories
here studied are thus formulated in continuous time3 and discrete space [62].

Lattice and reciprocal lattice. In this Thesis an homogeneous lattice4 with
spacing ` and linear size `L,

Λ ··= ` {1, . . . , L}d , (2.1)

is always used. Analytic derivations are carried out assuming periodic boundary
conditions, Λ ∼= `(ZL)d. Continuous spacetime symmetries cannot be implemented
on the lattice but are recovered in the continuum limit [68]. On the lattice, space
rotations are broken down to the finite rotation group of the d-hypercube while only
translations by multiples of the lattice step ` are available, the group of residual
space translations being Λ itself. There are still conserved charges associated to
these symmetries, such as the momentum, but they take discrete values [102].

The UV and IR regulators provided by the lattice are ` and 1/L respectively. By
removing these regulators ` → 0 and 1/L → 0 (after a renormalization procedure)
the continuum theory is defined. The cutoff role played by ` and L is even clearer in
momentum space. The frequency spectrum of a function defined on Λ cannot contain
modes of wavelength shorter than ` or longer than `L.5 Explicitly, the momentum
space or reciprocal lattice of the theory on which discrete Fourier transforms of
spatial functions are defined is (even L is here assumed for ease of notation),

Λ∗ ··=
2π
`L

{
−L2 ,−

L

2 + 1, . . . , L2 − 1
}d
' 2π
`L

(ZL)d . (2.2)

3 If numerical simulations are performed the time direction has to be discretized anyway. However,
this discretization is not part of the definition of the theory and is not present in analytical studies.

4 As a slight generalization, hyperrectangular lattices may be considered. More exotic geometries
have been explored in the past but did not provide manifest benefits [102].

5 Let d = 1 (the generalization is obvious). Since x is a multiple of `, Fourier modes eikx with
momenta differing by 2π/` are identified. In addition, due to periodic boundary conditions, a
function defined on Λ is equivalent to a `L-periodic function on `Z, thus only momenta multiple
of 2π/`L are allowed.
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This is the discrete subset of the Brillouin zone of solid state physics on which Fourier
transforms of `L-periodic functions are supported. For L→∞ the full Brillouin zone
is recovered. The correspondence is due to periodicity and translation invariance of
the lattice Λ, that make it equivalent to a hypercubic Bravais lattice with primitive
cell of side ` and whose Brillouin zone is the d-torus Td ' [−π/`, π/`[d [63].

Discrete analysis. Loosely speaking, limiting procedures (ε → 0) that appear
in analytic operations, such as (Riemann) integration and derivation, have to be
reverted on the lattice (ε ∼ `). In fact they are incorporated in the continuum
limit of the lattice theory. This operation is not always uniquely determined but the
various implementations must yield the same `→ 0 limit.

More concretely, integrals and derivatives will be replaced by Riemann sums and
finite difference operators, such as the central derivative,

∫
dDxφ(x) → `d

∑
x∈Λ

φ(x) , ∂kφ(x) → φ(x+ `k̂)− φ(x− `k̂)
2` (2.3)

where k̂ is the k-th element of the canonical basis of Rd. Analogous substitutions
apply in momentum space with Λ and ` replaced by Λ∗ and 2π/`L.

Lattice units. Most of the work in lattice field theory is done at finite spacing, in
which case ` provides a convenient length unit. If not otherwise stated, lattice units
` = 1 are assumed in the following.

2.3 Matter Fields

The mapping of continuum fermionic theories into their lattice equivalent requires
particular care. The most striking consequence of a näıve discretization is the in-
famous doubling problem: a proliferation of propagating degrees of freedom on the
lattice. This problem is now discussed and a possible solution, staggered fermions,
is introduced and adopted throughout the remainder of the Thesis. The discussion
in then specialized to 1 + 1 spacetime dimensions and the general solution of the
discretized Dirac equation is found. Upon quantization the general solution provides
the free theory creation and annihilation operators that allow to build particle wave
packet states. Finally, the normal ordered Hamiltonian and particle number charge
operators are given. Apart from the doubling problem, the results here obtained
reproduce most of the features of the continuum ones [49]; some peculiarities of the
lattice description are emphasized.
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2.3A Doubling problem

To adhere to the presentations of the doubling problem commonly found in the
literature [57, 63, 73], in this introduction discretized fermions are studied from
the prespective of the action rather than that of the Hamiltonian. Space and time
are momentarily taken to be both discrete and are modeled by an infinite lattice
x, y ∈ `ZD. Similar results hold on a finite lattice or working with only space
discretized. The “näıve” discretization of the action of free Dirac fermions (1.47),

S =
∫

dxψ
(
i/∂ −m

)
ψ , (2.4)

following the recipe of Section 2.2 provides

S =
∑
xy

ψxΓxyψy , Γxy = i/∂
x
y −mδxy . (2.5)

Here spinor indices are left implicit and the derivative is the central derivative

(∂µ)xy ··=
1
2`
[
δx+`µ̂

y − δx−`µ̂y
]
. (2.6)

The cinematic of the free theory is contained in the propagator Γ−1. This is easily
obtained in momentum space. The only non-trivial term of Γ(k) is the derivative:

∑
xy

e−i(px+qy)(∂µ)xy =
[∑
x

e−i(p+q)x
]
e−i`pµ − e+i`pµ

2` = (2π)DδD(p+ q)−i sin
(
`pµ
)

`

(2.7)
Therefore

Γ(k) = γµ
1
`

sin
(
`kµ

)
−m . (2.8)

and the propagator reads

Γ−1(k) = γµk̃µ +m

k̃2 −m2 , k̃µ = 1
`

sin
(
`kµ

)
. (2.9)

The denominator of Γ−1(k) is invariant under kµ → kµ + πnµ with n ∈ {0, 1}D and
thus has 2D zeros. On its turn, this implies that our lattice version of a continuum
theory with one fermion specie has a propagator with 2d poles, and hence propagating
fermion species. Even if an initial state composed by excitations corresponding only
to one of the poles is prepared, as soon as some interaction is included the additional
fermions can be produced just as easily as the original ones [96]. The problem clearly
does not fade away in the continuum limit `→ 0, nor it is a peculiarity of the followed
discretization prescription.
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The problem presented above is the manifestation of a general result [35, 38, 96],
the Nielsen-Ninomiya no-go theorem (1981), which states that for even spacetime
dimensions6 there cannot exist a Γ satisfying

(i) Γ(k) = γµkµ −m +O(`k)2 , to reproduce the continuum theory for momenta
small compared to the ultraviolet cutoff;

(ii) Γ(k) is analytic in k ∈ TD, to ensure the locality of the continuum limit theory;
(iii) Γ(k) anticommutes with γ0γ1 . . . γD−1, to preserve chiral symmetry for m = 0;
(iv) Γ−1(k) has a single pole, to avoid doublers (violated by näıve fermions).

Therefore there cannot exist a translation invariant, local, hermitian lattice theory
of Dirac fermions with chiral symmetry and no doublers.

The doubling problem is essentially a consequence of the first derivative nature of
fermionic actions (there is no doubling problem for bosons) and is also strictly related
to chiral symmetry (absence of axial anomaly [15, 16, 41] on the lattice [34, 73]).
These aspects are not discussed here. We turn instead to one of the possible (partial)
solutions: staggered fermions, proposed in 1975 by Kogut and Susskind [23, 24, 26].

2.3B Staggered Fermions

The staggered formulation stems from a procedure of spin-diagonalization [57, 63] of
the action. At each lattice site a unitary transformation of the spinor allows to put
the action in a diagonal and degenerate form with respect to the 2D/2 spinor com-
ponents (even D is assumed here). Finally the contribution of only one component
is kept. In this way the number of doublers is reduced, but 2D/2 − 1 of them still
presist: like näıve fermions, staggered fremions verify (i), (ii) and (iii) but not (iv).

In 1 + 1 dimensions with only space discretized the staggerization corresponds to a
complete removal of the doublers. In the following we focus on this case and stagger
directly the näıvely discretized (` = 1) Dirac Hamiltonian (1.78)

H =
∑
x

[
−iψxγ1∂1ψ

x +mψxψ
x
]

; (2.10)

where ∂1 ≡ ∂ is the spatial central derivative. A possible choice of γ matrices is

γ0 =
[

1 0
0 −1

]
, γ1 =

[
0 1
−1 0

]
. (2.11)

We now use these to make explicit the spinor components ψx = (ψ1,x, ψ2,x) . With

6 A similar result holds for odd spacetime dimensions, with chiral symmetry replaced by parity.
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a summation over the repeated position indices x implied,

H =
[
−iψ†1,x∂ψ

2,x + (1↔ 2)
]

+
[
mψ†1,xψ

1,x − (1↔ 2)
]
. (2.12)

Here “1 ↔ 2” denotes symbolically the terms on its left with 1 and 2 exchanged.
Similar notations are used in the following. Introducing

ξx =

ψ1,x x even
ψ2,x x odd

, ξ̃x = ξx|1↔2 ; (2.13)

the kinetic terms become (via periodic boundary conditions)

− i

2 ξ†x(ξx+1 − ξx−1)
∣∣∣
x even

+ (ξ → ξ̃)
∣∣∣
x odd

+ (ξ ↔ ξ̃) = i

2ξ
†
x+1ξ

x + H.c.+ (ξ → ξ̃) .
(2.14)

An identical procedure applies to the mass term

ξ†xξ
x
∣∣∣
x even

+ (ξ → ξ̃)
∣∣∣
x odd

− (ξ ↔ ξ̃) = (−1)xξ†xξx − (ξ → ξ̃) ; (2.15)

where an alternating sign, peculiar of staggered fermions, has appeared. In both
terms the contributions of ξ and ξ̃ decouple; moreover, via the field redefinition
ξ̃x → i(−1)xξ̃x the Hamiltonian becomes also manifestly degenerate in ξ and ξ̃ and
the spin-diagonalization procedure is complete. Finally, only one of the two identical
contributions is kept and the Hamiltonian describing a free staggered fermion field
is obtained

H = i

2
∑
x

(
ξ†x+1ξ

x − ξ†xξx+1
)

+m
∑
x

(−1)xξ†xξx . (2.16)

The Poisson bracket between ψx and ψ†y, discrete analogous of (1.81), implies

{ξx, ξ†y} = −iδxy . (2.17)

Staggered lattice. The mass term in Hamiltonian (2.16) is invariant only under
x → x + 2` shifts (` has been reintroduced for clarity). Accordingly, the lattice
of staggered fermions can be thought of as the union of two even and odd site
sublattices with doubled spacing and thus halved Brillouin zone. Specularly, the
reciprocal lattice can be thought of as the union of two halved effective Brillouin
zones of width π/`, one for each pole of Section 2.3A. In some cases encountered
in the following it will be convenient to introduce staggered functions, i.e. functions
defined separately on the even and odd sublattices. Some machinery that will prove
useful for this scope is introduced in Appendix B. The main message is that the
even site and odd site parts of the position space staggered function correspond
respectively to the π/`-periodic and π/`-antiperiodic part of its momentum space
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representation.

Quantization and Jordan-Wigner representation. The quantization prescrip-
tion of Section 1.5 applies straightforwardly to the theory of free staggered fermions.
The Poisson bracket (2.17) results in the canonical anticommutation relations

[ξx, ξ†y] = δxy , [ξx, ξy] = 0 , [ξ†x, ξ†y] = 0 . (2.18)

We now aim to find an explicit irreducible representation of (2.18). These imply

[ξ†xξx, ξ†y] = ξ†xδ
x
y , (ξx)2 = 0 , (ξ†xξx)2 = ξ†xξ

x . (2.19)

The first shows that ξx is a raising operator for the occupation number operator
nx = ξ†xξ

x . The others that there can be only two occupation levels, |0〉 and |1〉.
Hence, for a one site chain and working in the {|1〉 , |0〉} basis, a representation of
(2.18) is in terms of the spin-1/2 raising and lowering matrices,

ξ† = σ+ =
[

0 1
0 0

]
, ξ = σ− =

[
0 0
1 0

]
, n = σ+σ− =

[
1 0
0 0

]
. (2.20)

When dealing with more sites, as many-body Hilbert space basis we choose{⊗
x

|nx〉 : nx = 1, 0
}
. (2.21)

In order to achieve anticommutation between fermionic operators acting on different
sites we adopt the Jordan-Wigner representation [1]

ξ†x = σ+
x

∏
y<x

(−1)ny = σ+
x e

iΘx , Θx = π
∑
y<x

ny ; (2.22)

which corresponds the convention that ξx and ξ†x pick up a minus sign for every filled
site on their left. Notice that in the (quantized) Hamiltonian (2.16) all the non-local
Jordan-Wigner strings eiΘx cancel out in the case of open or infinite boundaries. For
periodic boundary conditions, observing that σ+ = −(−1)nσ+ we have

ξ†Lξ
1 = (−1)

∑
x<L

nxσ+
Lσ
−
1 = (−1)N−1σ+

Lσ
−
1 , N =

∑
x

nx . (2.23)

While the explicit representation of the staggered fermions operators outlined above
is needed for the implementation of numerical simulations, it will not be relevant for
the analytic investigations carried out in the following Sections.
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2.3C Particle Spectrum

In continuum free quantum field theories the particle picture of Sections 1.1–1.2 can
be constructed explicitly. Particle quanta are excitations of modes of an infinite
system of Harmonic oscillators, and generate the Fock space of the free theory. The
previous statements become manifest through a Fourier decomposition of the general
solution of the equations of motion. Here we follow the same procedure to show that
analogous results hold for the lattice theory of free staggered fermions.

Solution of the equation of motion. Let ξ(t, x) ≡ ξx(t) be a classical trajectory.
The Hamilton equations of the staggered fermion Hamiltonian (2.16) read7

iξ̇(t, x) = i
∂H

∂(iξ†x)

∣∣∣∣∣
ξ(t,x)

= − i2

[
ξ(t, x+ 1)− ξ(t, x− 1)

]
+m (−1)xξ(t, x) . (2.24)

Equations (2.24) imply the second order condition

− ξ̈(t, x) = −1
4

[
ξ(t, x+ 2)− ξ(t, x− 2)− 2ξ(t, x)

]
+m2 ξ(t, x) . (2.25)

Writing ξ(t, x) in terms of its Fourier transform

ξ(t, x) =
∫

dω
∑
k

e−iωt+ikx ξ(ω, k) (2.26)

and inserting it in (2.25)∫
dω
∑
k

[
ω2 − 1

4 (e+2ik + e−2ik − 2
)

+m2
]
ξ(ω, k) = 0 , (2.27)

yields the on-shell condition, namely

ξ(ω, k) = δ(ω2 − sin2(k)−m2) ζ(ω, k) (2.28)

for some function ζ(ω, k). This result is the lattice equivalent of the observation
that the general solution of the Dirac equation also satisfies Klein-Gordon’s and
thus verifies the relativistic dispersion relation ωk =

√
m2 + k2. Nevertheless, this

dispersion relation and the related group velocity are modified by lattice artifacts to

ωk =

√
m2 + sin2(`k)

`2
, ω′k = sin(`k) cos(`k)

`ωk
; (2.29)

7 Here we work at the classical level but the equations are linear thus their solution provides also
a solution of the Heisenberg equation for the ξx operator.
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where the lattice spacing ` has been reintroduced for clarity. The continuum relations
are reproduced in a neighbourhood of each pole `k ∼ 0, π. This modification has
nevertheless important consequences on the propagation of staggered fermions, see
Figure 2.1.
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Figure 2.1: Dispersion relation and propagation speed in the continuum
(left) and on the lattice (right, L =∞, ` = 1) for different values of the
mass m (lighter colours correspond to lighter particles) and momenta in
one of the two effective Brillouin zones of staggered fermions (the other
being an identical copy).

Before pressing on and imposing the first order equations (2.24) two observations are
in order. Firstly, these equations are different in form for the ξ degrees of freedom
living on even and odd sublattices, it is then convenient to write them in terms of
two independent functions ξE and ξO, as per (B.2). Secondly, (2.28) can be further
expanded isolating the contribution of positive and negative frequency solutions

ξ(ω, k) = ξ+(ω, k) + ξ−(ω, k) = δ(ω − ωk) ζ+(k) + δ(ω + ωk) ζ−(k)
2ωk

, (2.30)

with ζ±(k) = ζ(±ωk, k). Bearing all this in mind,

ξE,O
± (t, x) =

∑
k

1
2ωk

e∓iωkt+ikx ζE,O
± (k) . (2.31)

Recalling that the Fourier transform of (−1)x is δ(k − π) and the shift symmetry



2.3. Matter Fields 37

properties (B.7), (2.24) imply

± ωk
[
ζE
±(k) + ζO

±(k)
]

= sin(k)
[
ζE
±(k) + ζO

±(k)
]

+m
[
ζE
±(k)− ζO

±(k)
]
. (2.32)

These must hold for every k, combining them with the equations for k + π provides[
±ωk −m − sin(k)
− sin(k) ±ωk +m

] [
ζE
±(k)
ζO
±(k)

]
= 0 . (2.33)

The solutions are[
ζE

+(k)
ζO

+(k)

]
= a(k)

[
ωk +m

sin(k)

]
,

[
ζE
−(−k)
ζO
−(−k)

]
= b†(k)

[
sin(k)
ωk +m

]
; (2.34)

where the Grassman odd a(k) and b(k) are the Fourier weights of the positive and
negative frequency plane wave solutions of momentum k. These are completely
determined by their behaviour on half of the Brillouin zone,

a(k) = a(k + π) , b†(k) = −b†(k + π) ; (2.35)

confirming that the two poles of the propagator (2.9) are related to the same “wave”
component and making the counting of position space and momentum space degrees
of freedom consistent.

Introducing some normalization conventions, the general solution reads

ξ(t, x) = 1√
L

∑
k

1√
2ωk

(fk + gk)
[
a(k) e−ikµxµ + b†(k) e+ikµxµ

] ∣∣∣
kµ=(ωk,k)

, (2.36)

where

fk =
√
ωk +m , gk = sin(k)/

√
ωk +m ;

f2
k + g2

k = 2ωk , f2
k − g2

k = 2m ;

f−k = fk+π = +fk , g−k = gk+π = −gk ;

gk → 0 , f2
k ∼ 2m for m→∞ , f2

k ∼ g2
k ∼ ωk for m→ 0 .

(2.37)

Using these, even and odd site contributions are recovered; at t = 0

ξ(0, x) = 1√
L

∑
k

e+ikx
√

2ωk

[
(fk + gk)a(k) + (fk − gk)b

†(−k)
]

(2.38a)

= 1√
L

∑
k

e+ikx
√

2ωk

fk a(k) − gk b†(−k) x even
gk a(k) + fk b

†(−k) x odd
. (2.38b)
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Finally,

a(k) = 1√
L

∑
x

e−ikx√
2ωk

ξ(0, x)

fk x even
gk x odd

, (2.39a)

b†(k) = 1√
L

∑
x

e+ikx
√

2ωk
ξ(0, x)

gk x even
fk x odd

. (2.39b)

We now check (2.39a) explicitly, an identical procedure applies to (2.39b),

(2.39a) =
∑
q

1√
2ωk2ωq

 fk(fqaq − gqb†−q) ∑
x even

+ gk(gqaq + fqb
†
−q)

∑
x odd

 e−ikx+iqx

L
.

(2.40)
Recalling (B.5) the space sums of the phases yield (δkq±δk, q+π)/2. Yet, given (2.35)
and (2.37), the summand is symmetric under q → q+π. If we restrict the summation
on the half of the domain containing p, only the first delta contributes,

(2.39a) =
∑
q

fk(fqaq − gqb
†
−q) + gk(gqaq + fqb

†
−q)√

2ωk2ωq
δkq = f2

k + g2
k

2ωk
ak = ak . (2.41)

As just found, sometimes the π-periodicity of the integrand in (2.38b) makes it
convenient to work only with momenta contained in one half of the full Brillouin
zone, e.g., with the effective reciprocal lattice

Λ∗ ∩ [−π/2,+π/2[ . (2.42)

This is not always the case; in particular this choice does not allow to to write the
Fourier decomposition of the general solution of the equation of motion (2.24) in
terms of a unique function of the momentum, as in (2.36). To exploit the best of
both approaches, alongside a(k) and b(k) we introduce two new “effective” Fourier
coefficients ã(k) and b̃(k) related to the previous by8

ã(k) =
√

2a(k) , b̃(k) =
√

2b(k) , k ∈ [−π/2,+π/2[ ; (2.43)

but defined only on the effective reciprocal lattice. In terms of these (2.38b) becomes

ξ(0, x) =
√

2
L

?∑
k

e+ikx
√

2ωk

fk ã(k) − gk b̃†(−k) x even
gk ã(k) + fk b̃

†(−k) x odd
; (2.44)

8 Conversely, due to (2.35) a(k) and b(k) are completely specified by ã(k) and b̃(k).
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where the starred summation symbol,
?∑
, (2.45)

signals that only momenta in the effective reciprocal lattice (2.42) are involved. A
notation that we will reiterate in the following.

We may now interpret the classical solutions of the previous paragraph as solutions of
the Heiseberg equation for the operatorial ξx. The Fourier modes ãk and b̃k become
operators and the anticommutation relations (2.18) satisfied by ξx and ξ†y imply

[ãp, ã†q] = [b̃p, b̃†q] = δpq ; (2.46)

while other anticommutators vanish. To check this recall (B.5) and (2.37), by those
we have

[ãp, ã†q] = 2
L

∑
xy

e−ipx+iqy√
2ωp2ωq

[ξx, ξ†y]


fpfq x, y even
gpgq x, y odd
. . . otherwise

= 2
L
√

2ωp2ωq

[
fpfq

∑
x even

+ gpgq
∑
x odd

]
e−i(p−q)x

=
fpfq
2ωp

(δpq + δp,q+π) +
gpgq
2ωp

(δpq − δp,q+π)

=
f2
p + g2

p

2ωp
(δpq + δp,q+π) . (2.47)

The π-shifted delta does not contribute9 because p, q ∈ [−π/2,+π/2[ and the antic-
ipated result is obtained. An analogous derivation carries over with b̃.

We now express the Hamiltonian (2.16) in terms of the monochromatic solutions ã†k
and b̃†k and show that these operators act by “creating” quanta of momentum k.

9 Had we used a or b this would not be true, instead

[ap, a†q] = (δpq + δp,q+π)/2 , [bp, b†q] = (δpq − δp,q+π)/2 . (2.48)

Once again the contributions of the two poles of Section 2.3A are intertwined.
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Momentum space Hamiltonian. All the terms in Hamiltonian (2.16), namely

H = i

2
∑
x

[
ξ†x+1ξ

x + H.c.
]

+m
∑
x

(−1)xξ†xξx , (2.49)

have the form ξ†yξ
x. For such an operator we have, by (2.38a),

ξ†yξ
x = 1

L

∑
qp

e−iqy+ipx√
2ωq2ωp

Θ(p, q) , (2.50)

with

Θ(p, q) = Θ†(q, p) =
[
(fq + gq)a†q + (fq − gq)b−q

] [
(fp + gp)ap + (fp − gp)b

†
−p

]
.

(2.51)
Specializing this result to the kinetic terms,

∑
x

ξ†x+1ξ
x = 1

L

∑
qp

∑
x

e−iq(x+1)+ipx√
2ωq2ωp

Θ(p, q) =
∑
k

e−ik

2ωk
Θ(k, k) . (2.52)

Only the antiperiodic terms in Θ(k, k) survive the summation, recalling (2.35)–(2.37),

Θ(k, k) = (fk + gk)
2 a†kak + (fk − gk)

2 b−kb
†
−k + (f2

k − g2
k)(a

†
kb
†
−k − b−kak)

= 2 sin(k)
(
a†kak − b−kb

†
−k

)
+ 2m

(
a†kb
†
−k − b−kak

)
+ [. . .] (2.53)

where [. . .] are the periodic terms. For the mass term,

∑
x

(−1)xξ†xξx = 1
L

∑
qp

∑
x

e−iqx+ipx+iπx√
2ωq2ωp

Θ(p, q) =
∑
k

1
2ωk

Θ(k, k + π) . (2.54)

This time it is the periodic part that survives, namely

Θ(k, k + π) =
[
(fk − gk)a

†
k − (fk + gk)b−k

] [
(fk + gk)ak + (fk − gk)b

†
−k

]
= (f2

k − g2
k)(a

†
kak − b−kb

†
−k) + (fk − gk)

2 a†kb
†
−k − (fk + gk)

2 b−kak

= 2m
(
a†kak − b−kb

†
−k

)
− 2 sin(k)

(
a†kb
†
−k + b−kak

)
+ [. . .] , (2.55)

where [. . .] are the terms vanishing upon summation.
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Putting everything together,

H =
∑
k

1
2ωk

[
i

2e
−ik Θ(k, k) + H.c.+mΘ(k, k + π)

]

=
∑
k

1
2ωk

[
sin(k) Θ(k, k) +mΘ(k, k + π)

]

=
∑
k

1
2ωk

(2 sin2(k) + 2m2)
(
a†kak − b−kb

†
−k

)
=
∑
k

ωk
(
a†kak − bkb

†
k

)
. (2.56)

The Hamiltonian is thus diagonalized by working in an eigenbasis of a†kak and bkb
†
k.

Switching over to the effective Fourier modes and using anticommutator (2.46), the
Hamiltonian can be rewritten as a positive semidefinite operator minus a constant,

H =
?∑
k

ωk
(
ã†kãk + b̃†k b̃k − 1

)
. (2.57)

The constant term incorporates both ultraviolet and infrared divergencies when the
respective regulators are released10 and makes the theory ill defined in the continuum
limit. This is a manifestation of the problem of ordering of operators mentioned in
Section 1.5. In the mass term of (2.49) we should have written,

(1− C)ξ†xξx − Cξxξ†x = ξ†xξ
x − C (2.59)

in place of ξxξ†x, with the constant C parametrizing our ignorance about the correct
ordering. Using this constant we can cancel the problematic term in (2.57) and
ensure the continuum limit is well defined11. More in general we say that an operator
written in terms of the Fourier modes is well or normal ordered if all the ak and bk
appear on the right of the a†k and b†k. To achieve normal ordering the Fourier modes
are exchanged as if they were classical variables [49].

In the end,
Pµ =

?∑
k

kµ
(
ã†kãk + b̃†k b̃k

)
, kµ = (ωk, k) ; (2.60)

10 Recalling dispersion relation (2.29),
?∑
k

ω(k) >
?∑
k

m = mL

2
L→∞−−−−−→ ∞ ,

?∑
k

ω(k) > ω(π/2`) ∼ 1
`

`→0−−−−→ ∞ . (2.58)

11 This is in fact a basic example of the renormalization procedure mentioned in Section 2.1 [66].
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where P 0 ≡ H and P 1 ≡ P is the spatial momentum operator, clearly [P 0, P 1] = 0.
The energy-momentum operators (2.60) mimics the one of free continuum quantum
field theories and the usual results apply. By the usual anticommutators (2.46),

[Pµ, ãk] =
∑
p

[ã†pãp, ãk] = −kµãk , [Pµ, b̃k] = −kµb̃k ; (2.61)

showing that ãk and b̃k (ã†k and b̃†k) destroy (create) excitations of energy-momentum
kµ and unveiling the correspondence with two independent systems of anticommuting
harmonic oscillators.

Fock space. Let |0〉 be the state with no “exchitation to destroy”12,

ãk |0〉 = b̃k |0〉 = 0 ∀k , 〈0|0〉 = 1 . (2.62)

That is, |0〉 is the ground state of H and the (free theory) vacuum state Pµ |0〉 = 0.
The Fock space of the theory is generated acting with ã†k and b̃†k on this state,

|qN , . . . , q1, pM , . . . , p1〉 ··= b̃†qN · · · b̃
†
q1 ã
†
pM
· · · ã†p1 |0〉 . (2.63)

States (2.63) are the lattice equivalent13 of the single-particle and multi-particle
states of Sections 1.1–1.2. Due to the properties of the creation and annihilation
operators, they are automatically antisymmetrized and normalized as per (1.7), e.g.

〈p|q〉 = 〈0| [ãp, ã†q] |0〉 = δpq , 〈p|q〉 = δpq . (2.64)

Particle wave packet states. In order to prepare a more physical state such as
a momentum wave packet, a superposition is taken. For a single particle state,

|φ〉 =
?∑
k

φ(k) |k〉 =
?∑
k

φ(k)ã†(k) |0〉 . (2.65)

Where |φ(k)|2 must be a probability distribution, so that

〈φ|φ〉 =
?∑
k

|φ(k)|2 = 1 , 〈φ|Pµ|φ〉 =
?∑
k

kµ|φ(k)|2 . (2.66)

12 The existence of |0〉 is guaranteed by the fact that ãk and b̃k satisfy the same canonical anticom-
mutation relations of ξx and thus they admit the same representation; although here we label the
states differently.

13 As mentioned in Section 2.2, on the lattice Poincaré invariance is broken. Apart from this, the
states constructed here are still energy-momentum eigenstates and hence are the direct analogue
of the states in equations (1.4) and (1.6).
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The prototypical φ(k) corresponds to a momentum space probability distribution
|φ(k)|2 peaked in some momentum µk, and a position space |φ(x)|2 localized around
a position µx. The obvious choice is a normal distribution14, then

φ(k;µx, µk, σk) = N exp
(
−(k − µk)2

4σ2
k

− ikµx
)

; (2.67)

where N is a normalization constant. Identical considerations apply to antiparticle∣∣k〉 wave packets. For a multi particle state an amplitude φ(p1, . . . , pM , q1, . . . , qN )
is placed in front of (2.63). The normalization of the wave packet imposes

?∑
{pi,qj}

M∑
{σi}

N∑
{τj}

εσ1...σM ετ1...τN |φ(pσ1 , . . . , pσM , qτ1 , . . . , qτN ])|2 = 1 , (2.68)

where εα1...αK is the Levi-Civita tensor. If the momenta of the particles are uncor-
related this factorizes in a product of single particle wave packets.

For our future purposes, it convenient to introduce a wave packet creation operator
A† and write it in terms position space staggered fermion field ξ†x. Recalling the
expressions (2.39a) and (2.43) we have

A† =
?∑
k

φ(k) ã†(k) =
∑
x

φ̃(x) ξ†(x) =
∑
x

ξ†(x)
√

2
L

?∑
k

φ(k) e
+ikx
√

2ωk

fk x even
gk x odd

;

(2.69)

which implicitly defines the position space amplitude φ̃(x). Recalling also (2.39b),
the antiparticle wave packet creation operator B† is obtained from the previous
equation exchanging fk with gk and substituting ξ† with ξ , namely

B† =
?∑
k

φ(k) b̃†(k) =
∑
x

φ̃(x) ξ(x) =
∑
x

ξ(x)
√

2
L

?∑
k

φ(k) e
+ikx
√

2ωk

gk x even
fk x odd

.

(2.70)

If in the above equations we set φ(k) = φ(k;µx, µk, σk) as per (2.67), then φ̃(x) reads

φ̃(x;µx, µk, σk) = N√
L

?∑
k

1
√
ωk

exp
(
−(k − µk)2

4σ2
k

+ ik(x− µx)
)

Ξ(x, k) ; (2.71)

where Ξ(x, k) = fk for A† and even x, or for B† and odd x; otherwise Ξ(x, k) = gk.

14 Actually a truncated and discrete normal distribution since the lattice is a finite and discrete set.
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2.3D Conserved Charges

The Hamiltonian action (1.63) associated to Hamiltonian (2.16), namely

S =
∫

dt
[∑
x

iξ†xξ
x −H(ξ, ξ†)

]
, (2.72)

is invariant under particle number global U(1) transformations

ξx 7→ e−iθ ξx , θ ∈ R . (2.73)

The Noether conserved charge operator generating the symmetry is

Q =
∑
y

ξ†yξ
y , [H,Q] = 0 ; (2.74)

indeed,
iθ[Q, ξx] = iθ

∑
y

(
ξ†y[ξy, ξx]−

[
ξx, ξ†y

]
ξy
)

= −iθξx = δξx . (2.75)

In analogy with the continuum case, this global conservation law is associated with a
local continuity equation (in the lattice sense). Using the equation of motion (2.24)
and its complex conjugate,

d
dt
(
ξ†xξ

x) = ξ̇†xξ
x + ξ†xξ̇

x = −
[
(∂ξ†x) ξx + ξ†x (∂ξx)

]
= −∂̃(ξ†xξx) , (2.76)

where ∂ is the central derivative and ∂̃ another finite difference derivative. Therefore,

ρ(x) = ξ†xξ
x ,

dρ
dt + ∂̃ρ = 0 , (2.77)

where ρ(x) is the sought after charge density. However, due to the very definition of
the staggered fermion field (2.13), the charge density (1.52) of the continuum theory
is reproduced only by the sum of the contributions to ρ(x) from two neighboring
sites.

The expression of the total and local charges in terms of creation and annihilation
operators is now derived and the normal order correction is evaluated. For ρ(x) we
can set x = y in (2.50). Of the four terms in Θ(p, q) only

(fq − gq)(fp − gp)b−qb
†
−p (2.78)
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has to be reordered. Denoting with N (ρ(x)) the normal ordered charge density,

ρ(x)−N (ρ(x)) = 1
L

∑
qp

ei(p−q)x√
2ωq2ωp

(fq − gq)(fp − gp)(b−qb
†
−p + b†−pb−q)

= 1
L

∑
qp

e−i(p−q)x√
2ωp2ωq

(bqb†p + b†pbq)

gqgp x even
fqfp x odd

= 4
L

?∑
qp

e−i(p−q)x√
2ωp2ωq

b̃q b̃
†
p + b̃†pb̃q

2

gqgp x even
fqfp x odd

= 1
L

?∑
k

1
ωk

g2
k x even
f2
k x odd

. (2.79)

Here the symmetry properties (2.35) and (2.37) have been used extensively; in partic-
ular in the second step they allow to restrict the summation on the effective reciprocal
lattice and exploit anticommutator (2.46). By construction 〈0|N (ρ(x))|0〉 = 0. As
a consequence, the expression (2.79) is also the vacuum expectation value of the
unordered charge density. The two following limits hold:

〈0|ρ(x)|0〉 m→∞−−−−−→

0 x even
1 x odd

, 〈0|ρ(x)|0〉 m→0−−−−→ 1
2 ; (2.80)

while for every mass value an half-filling condition is verified,

〈0|ρ(x) + ρ(x+ 1)|0〉 = 1 . (2.81)

These observations lead to an alternative expression for the normal ordered charge
density that will be useful in the following:

N (ρ(x)) = ξ†xξ
x − 1− (−1)x

2 − (−1)xν , ν = 1
L

?∑
k

g2
k

ωk
; (2.82)

with the ν correction vanishing in large mass limit or when the continuum charge is
recovered, summing over pairs of neighbouring sites.

In order to derive the expression of the total charge in momentum space we recall
that the (appropriately normalized) Fourier transform is an isometry, therefore

Q =
∑
x

ξ†(x)ξ(x) =
∑
k

ξ†(k)ξ(k) . (2.83)
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According to (2.38a),

ξ(k) =
(fk + gk) ak + (fk − gk) b

†
−k√

2ωk
. (2.84)

Via the usual symmetry and anticommutation properties (2.35), (2.37) and (2.46),

Q =
∑
k

1
2ωk

[
(fk + gk) a

†
k + (fk − gk) b−k

] [
(fk + gk) ak + (fk − gk) b

†
−k

]
=
∑
k

1
2ωk

[
(f2
k + g2

k) a
†
kak + (f2

k − g2
k) b−kb

†
−k

]
=
∑
k

[
a†kak + bkb

†
k

]
=

?∑
k

[
ã†kãk − b̃

†
k b̃k

]
+ L

2 ; (2.85)

where in the last step the half-filling normal ordering counter term has been isolated.

From now on Q and ρ(x) will denote the normal ordered charge and charge density.
In particular

Q =
?∑
k

[
ã†kãk − b̃

†
k b̃k

]
, [H,Q] = 0 , Q |0〉 = 0 . (2.86)

The charge operator Q counts the difference between the number of particles (ex-
citations of type ak) and antiparticles15 (bk), which is a conserved quantity. In the
light of this identification, the limits (2.80) are easily interpreted recalling those of
fk and gk in (2.37). In particular, for m→∞ the particle (antiparticle) component
of the general solution (2.38b) is supported on even (odd) sites.

The action of Q on field operators and the states they produce is the expected one:

[Q, ξ†x] = [ξ†yξy, ξ†x] = +ξ†x , Qξ†x |0〉 = [Q, ξ†x] |0〉 = +ξ†x |0〉 ; (2.87)

(plus the opposite sign ones for ξx) meaning that ξ†x can either create a particle or
destroy an antiparticle (vice versa for ξx). Similarly, in momentum space we have

Q |k〉 = [Q, ã†k] |0〉 = + |k〉 , Q |k〉 = [Q, b̃†k] |0〉 = − |k〉 . (2.88)

Multiple flavours. A theory of N staggered fermion flavours with degenerate
mass is again described by Hamiltonian (2.16), only with ξ representing a colour
multiplet {ξr}Nr=1. The theory has a global U(N) symmetry, with ξ transforming in
the fundamental representation. On top of the u(1) conserved charge (2.77), there

15 Notice that up to now there was no physical distinction between ak and bk operators.
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are the su(N) ones [87]. Up to ordering issues,

Qasu(N) =
∑
x

ρ(x)su(N) , ρasu(N)(x) = ξ†x,r (T a)rs ξx,s . (2.89)

2.4 Gauge Fields

Lattice gauge theories originate, analogously to the continuum case, from the require-
ment of the invariance of the action under internal group transformations specified
independently at each lattice site. (In principle there could also be a time depen-
dence but temporal gauge is here assumed.) The same geometric picture presented
in the continuum case applies. Gauge degrees of freedom are introduced in order to
compare matter fields evaluated at different lattice sites but, being the sites finitely
separated, the transformation to be compensated is a finite group transformation.
Thus, it is natural to replace as gauge degrees of freedom the (algebra valued) con-
nection with (group valued) comparators Uk(x) ≡ U(x + `k̂, x). This formulation
of the gauge theory in terms of compact valued degrees of freedom is called com-
pact formulation. It is natural to regard the comparators as variables living on
the link between two neighbouring lattice sites. In notations analogous to those of
Section 1.3A, they transform as

U(x+ k̂, x) 7→ V (g(x+ `k̂))U(x+ `k̂, x)V †(g(x)) (2.90)

and can be thought of as the discrete equivalents of a continuous parallel transport
along a standard straight path between adjacent sites. In fact, to make contact with
the continuum description, we may associate a (canonically normalized) connection
Aak(x) ≡ A(x+ `k̂, x) to each link and write

Uk(x) = eg`A
a
k(x)Ta . (2.91)

We now introduce a representative of the electric field. In the continuum, the electric
field was the conjugate momentum of the connection. This suggest to define the
electric field Ebk(x) by,

{Aai (x), Ebj (y)} =
∑
z,k

∂Aai (x)
∂Ack(z)

∂Ebj (y)
∂Eck(z)

= δxyδijδ
ab . (2.92)

In the abelian theory this is still a valid choice. However, in the compact formulation
the relevant bracket is the one with the comparator, namely

{Ui(x), Ej(y)} =
∑
z,k

∂eg`Ai(x)(−i)

∂Ak(z)
∂Ej(y)
∂Ek(z)

= ` δxyδij g(−i)Ui . (2.93)
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Thus Ek generate shifts in the algebra space and rotations (phase multiplications) in
the group space. In the non-abelian case the derivative of the matrix exponential that
would appear in (2.93) does not have a closed form. Instead of Eai it is convenient
to introduce two sets of variables, Laj and Raj , defined as the generators of left and
right group rotations [42, 89]:

{Ui(x), Laj (y)} = g` δxyδij T
aUi(x) , {Ui(x), Raj (y)} = g` δxyδij Ui(x)T a . (2.94)

Generators associated to different links have vanishing brackets; those associated to
the same link realize the symmetry algebra. Indeed, omitting x = y and i = j,
Jacobi identity provides

{U , {La, Lb} } = −{La, {Lb, U } } − {Lb, {U ,La} }
= −{{U ,Lb} , La} + {{U ,La} , Lb}
= −g2`2T bT aU + g2`2T aT bU

= +g2`2fabcT cU .

(2.95)

Analogously (up to a sign) for right generators. Consequently,

{La, Lb} = g`fabcLc , {Ra, Rb} = −g`fabcRc , {La, Rb} = 0 . (2.96)

In the ` → 0 limit both Lak and Rak reduce to the continuum electric field. In this
limit, the nonabelian version of the bracket (2.93) becomes (again with x = y and
i = j implicit)

{U ,Ea} = ∂ exp(g`AbT b)
∂Aa

= lim
ε→0

exp(g`A + g`εT a)− exp(g`A)
ε

=
[
lim
ε→0

exp(g`A + g`εT a) exp(−g`A)− 1
ε

]
exp(g`A)

=
[
lim
ε→0

g`A + g`εT a − g`A +O(ε`2)
ε

]
U

= g` T aU +O(`2) ;

(2.97)

where Baker–Campbell–Hausdorff formula was used. Had we collected the compara-
tor on the left the result would differ only in the O(`2) terms, thus

Eak = Lak +O(`) = Rak +O(`) . (2.98)

In the abelian case the above equalities are exact.
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2.4A Lattice Yang-Mills Theory

The ingredients introduced above allow to map the pure and matter coupled con-
tinuum Hamiltonian Yang-Mills theories to their lattice counterpart. The discussion
that follows is kept at the classical level to allow for a direct comparison with the
results of Subsection 1.4B. On the other hand, the quantization prescription of Sub-
section 1.5A encounters no obstacle on the lattice. This will be clear in a moment,
when the theory of lattice quantum electrodynamics in two spacetime dimensions is
presented.

Pure lattice Yang-Mills Hamiltonian. With no matter fields, gauge invariants
are appropriate combinations of Lai or Rai and Wilson loops, obtained concatenating
comparators Ui(x) along any closed lattice path. These are all valid Hamiltonian
terms. In order to reproduce the continuum theory, we restrict to those arising from
the discretization prescription applied to Hamiltonian (1.104), namely

H =
∫

dx
[

1
2
∑
i,a

(Eai )2 + 1
2
∑
i<j,a

(Ba
ij)2

]
. (2.99)

Recalling (1.42) and the discussion that precedes16,

∑
a

(Ba
ij)2 =

∑
a

(F aij)2 = lim
ε→0

1
g2DV ε4

[
dV −

Wij(ε) +W †ij(ε)
2

]
. (2.100)

Reverting the limit (ε = `) and neglecting a constant, this becomes a plaquette term:

Wij(x; `) +W †ij(x; `) = trU †j (x)U †i (x+ `ĵ)Uj(x+ `̂i)Ui(x) + H.c. . (2.101)

At finite spacing the plaquette introduces infinite additional tree-level terms com-
pared to the continuum magnetic energy [102]. These start from next-to-leading
order in ` and correspond to non-renormalizable or, in Wilson’s language, irrelevant
gluon self interactions. Setting ` = 1, the lattice Yang-Mills Hamiltonian is [23, 42]

H = − 1
8DV

∑
x

tr
[∑

i

L2
i (x)+ 1

g2

∑
ij

U †j (x)U †i (x+ĵ)Uj(x+ î)Ui(x)+H.c.
]
, (2.102)

where the left generators Li = Lai T
a have been used in place of the electric field17.

16 The coupling factor in the denominator compensates for the one in the exponent of the compara-
tors in (2.91).

17 Substituting Li with Ri results in the same Hamiltonian, also at finite lattice spacing [42].
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The discrete version of the Gauss law constraint (1.89) reads

Ga(x) =
∑
k

[Ra(x+ k̂, x)− La(x, x− k̂)] . (2.103)

It is the generator of the gauge transformations of the comparator; via (2.94)

{Ui(x),−
∑
y

θb(y)Gb(y)} =
∑
y,j

θa(y)
[
{Ui(x), Lbj(y − ĵ)} − {Ui(x), Rbj(y)}

]
= (gθb(x+ î)T b)Ui(x) + Ui(x)(−gθb(x)T b) , (2.104)

which exponentiated yields exactly (2.90) with V = exp(gθaT a). Moreover,

{Lai (x),−
∑
y

θb(y)Gb(y)} =
∑
y,j

θa(y){Lai (x), Lbj(y − ĵ)}

= gθb(x+ î)fabcLci (x) . (2.105)

This shows that Lai (and analogously for Rai ) transforms in the adjoint representation,
like its continuum counterpart (1.103). For finite transformations we have

Li 7→ V (g(x+ î))Li V †(g(x+ î)) . (2.106)

Together with the cyclic property of the trace, (2.90)–(2.106) prove the invariance
of the Hamiltonian (2.102). We thus have a well defined gauge theory.

Matter coupled lattice Yang-Mills. We now couple the gauge theory to stag-
gered fermion matter fields. The treatment of Section 2.3 is specialized to 1 + 1
spacetime dimensions. We restrict to this setting, where there is no magnetic or
plaquette term, and adopt the notation Ux+1

x = U (x+ 1, x) (similarly for the other
variables living on the links). For a single fermion specie we gauge its particle number
G = U(1) symmetry (2.73); for N flavours which we can, e.g., gauge the G = SU(N)
symmetry subgroup.

The lattice minimal coupling consists in the insertion of a comparator Ux+1
x in the

hopping terms of the staggered fermion Hamiltonian (2.16):

i

2
∑
x

ξ†x+1ξ
x + H.c. → i

2
∑
x

ξ†x+1U
x+1

x ξ
x + H.c. . (2.107)

This substitution makes the hopping terms gauge invariant by construction as soon
as we choose the representation V (g) in the transformation law of the comparator
(2.90) to be the one under which the matter fields transform. We now check that,
among all the gauge invariant terms built out of comparators and matter fields, the
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right hand side in (2.107) reproduces the covariant derivative term of the continuum
Hamiltonian (1.106). Repeating backwards the steps that brought to the staggered
fermion Hamiltonian (2.16),

i

2
∑
x

ξ†x+1U
x+1

x ξ
x + H.c. = (−i)

∑
x

ξ†x

[(Ux+1
x )†ξx+1 − (Ux−1

x )†ξx−1

2

]
. (2.108)

Comparing this result with (1.23), the term in square brackets is recognized to be a
central covariant derivative. Since (in temporal gauge) the minimal substitution does
not interfere with the staggering procedure we conclude that the minimal coupling
(2.107) provides the correct continuum limit.

Finally, the complete d = 1 matter coupled lattice Yang-Mills Hamiltonian reads

H = 1
2
∑
x,a

[
(La)x+1

x

]2
+
∑
x

[
i

2ξ
†
x+1U

x+1
x ξ

x + H.c.
]

+m
∑
x

(−1)xξ†xξx ; (2.109)

while Gauss law receives a contribution from the matter current (2.73) or (2.89),

Ga(x) = (Ra)x+1
x − (La)xx−1 − ρ

a(x) , ρa = ig ξ†r(T a)rsξs , (2.110)

like its continuum counterpart (1.107).

2.4B Lattice Schwinger Model

We now investigate in more detail the quantized compact lattice QED2 or Schwinger
model, namely the theory of a staggered fermion with U(1) gauge invariance. This
model is arguably the simplest gauge invariant fermionic quantum field theory that
can be written and thus provides an optimal test-bed for new numerical as well as
analytical approaches to the study of gauge theories. Despite this simplicity, the
model has an interesting phenomenology, e.g., the generation of a mass gap, as well
as some features in common with chromodynamics, such as a confining behaviour
[22, 59]. For these reasons the Schwinger model is the focus of the simulations
implemented in this Thesis. Here we always take the fermion to be massive18 but
let us mention that the massless case has been solved exactly [9, 18].

The quantization prescription of Subsection 1.5A applies straightforwardly. Here
we compute an explicit realization of the comparator and electric field operators, as
previously done for the staggered fermion operators. To this aim, it is convenient to
reabsorb the coupling factor appearing in the Poisson bracket (2.93) via E → gE.

18 The lattice description of massless particles presents some subtleties. The infrared cutoff always
generates a non vanishing mass O(1/`L) as a finite volume artifact [102].
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Before going in further detail, let us collect the defining ingredients of the theory.
These are

(i) the link and site operators

Ux+1
x (unitary), Ex+1

x (Hermitian) and ξx, ξ†x ; (2.111)

(ii) the Hilbert space
H =

⊗
x

(Hx−1,x ⊗Hx) , (2.112)

namely a tensor product of local link (photon) and site (matter) Hilbert spaces;

(iii) the fundamental commutation and anticommutation relations

[Ux+1
x , E

y+1
y ] = δxyU

x+1
x , [ξx, ξ†y] = δxy , (2.113)

(other fundamental commutators vanish);

(iv) the Hamiltonian

H = g2

2
∑
x

(Ex+1
x)2 +

∑
x

[
i

2ξ
†
x+1U

x+1
x ξ

x + H.c.
]

+m
∑
x

(−1)xξ†xξx ; (2.114)

(v) the physical state condition,

G(x) |Ψphys〉 = [Ex+1
x − Exx−1 − ρ(x)] |Ψphys〉 = 0 , (2.115)

identifying the physical Hilbert subspace Hphys.

Since electric field and comparator operators associated to different links commute
(rather than anticommuting), a representation of (2.113) on a single link is immedi-
ately extended to a representation on the whole chain. Then, leaving x = y implicit
to lighten the notation, the commutator in (2.113) becomes

[U,E] = U . (2.116)

This shows that the electric field acts as a generator of phase rotations on the com-
parator but also that the comparator is a ladder (lowering) operator for the electric
field. An irreducible representation of (2.116) is clearly

E |λ〉 = λ |λ〉 , U |λ〉 = |λ− 1〉 , λ = 0, ±1, ±2, . . . . (2.117)

This is not unique. There exist infinite other unitarily inequivalent representations
but these are all related to (2.117) simply by a shift in the electric field spectrum:
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E → E + δλ, 0 < δλ < 1 [67]. Observe that the electric field has a discrete
spectrum. Consequentely, there cannot exist a generator of infiniteimal electric field
translations; namely a connection operator A satisfying

[A,E] = i/g , (2.118)

such that we could define a one-parameter family of operators U(β) = eigβA obeying
the commutator (2.116) for each β ∈ R. An accidental consequence of this result is
that the clash between Gauss law constraint and the canonical commuation relation
encountered during the quantization of electromagnetism in the continuum, namely
(1.118), is not present in the compact formulation of the lattice theory.

Let us stress that all the above properties are general results regarding the quantum
mechanical commutation relations for angular variables [24, 67]. In our case, this
commutation relation is a direct consequence of the compact formulation of the
lattice gauge theory. In this formulation the fundamental degrees of freedom are a
periodic variable (the comparator) and its quantized angular momentum (rescaled
electric field) rather than a flat direction (connection) and its linear momentum
(electric field) [24]. As just shown, the latter cannot even be implemented as an
operator.

We now discuss some selected topics that are relevant for the implementation of
numerical simulations of the Lattice Schwinger model dyanmics.

Physical subspace and normal order. The physical dynamics is contained in
the gauge invariant sector of the Hilbert space, spanned by the states complying
with Gauss law (2.115). If the normal ordering of the charge density derived for the
theory of free staggered fermions should be performed also in the interacting theory,
its relation with Gauss law must be adressed. Inserting the expression (2.82) of the
normal ordered charge density in the definition of the Gauss operator we obtain

G(x) = Ex+1
x − Exx−1 − ξ†xξx + 1− (−1)x

2 + (−1)xν . (2.119)

Here we follow [60, 87, 89] and drop the ν correction; otherwise stated, we calibrate
the normal order on the large mass limit case and define

ρ(x) = ξ†xξ
x − 1− (−1)x

2 . (2.120)

Observe that the above modification is equivalent to a shift of the electric field,

Ex+1
x → Ex+1

x − (−1)xν/2 . (2.121)
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In the Hamiltonian (2.114) this shift amounts to∑
x

(Ex+1
x)2 −→

∑
x

(Ex+1
x − (−1)xν/2)2 =

∑
x

(Ex+1
x)2−ν

∑
x

(−1)xEx+1
x + const.

(2.122)
The sum of the charge or the average of the electric field over pair of sites are
unaffected by these operations.

Integrating out the electric field. We now show that, thanks to the Gauss
law (2.115), an alternative descritpion of the theory which involves only the matter
degrees of freedom is possible. This claim requires certain assumptions, the crucial
one being that we are only interested in the gauge invariant properties of the system.
Otherwise stated, we only aim to represent the states in Hphys and the action of the
operators on this subspace. For the remainder of this discussion we denote with “≈”
an equality that is only required to hold on the physical Hilbert subspace Hphys,
e.g., G(x) ≈ 0.

Given an arbitrary site z ∈ Λ, for all x > z,

Ex+1
x ≈ Ex+1

x −
x∑
y=z
G(y) ≈

x∑
y=z

ρ(y) + Ezz−1 . (2.123)

An analogous formula can be written for x < z. The action (on physical states) of all
the electric field operators is determined in terms of the matter and Ezz−1 degrees
of freedom only. Substituting expression (2.123) in the Hamiltonian (2.114), the sole
operators acting on the link local Hilbert spaces Hx,x−1 (x 6= z) that are left are the
comparators Uxx−1 , whose only dynamical role is to raise or lower the electric field
Exx−1 value. Since the Exx−1 operators have been replaced with the right hand side
of (2.123) we can remove Uxx−1 from the Hamiltonian and represent all the physical
states in the Hilbert space [99]

Hz−1,z
⊗
x

Hx . (2.124)

After this “integration” procedure, there is no longer a propagating gauge field (one
degree of freedom per site) but only a single degree of freedom corresponding to
Ezz−1 . Working with open boundaries, we can remove also Ezz−1 via a boundary
condition [96, 99] on the electric field; e.g., fixing its value on the leftmost link:

Ex+1
x ≈

x∑
y=1

[
ξ†yξ

y − 1− (−1)y
2

]
+ E , E1

0 ≈ E ∈ R . (2.125)

With the electric field integrated out in this way, the dynamics of the Schwinger
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model is specified by the Hamiltonian

H ≈ g2

2
∑
x

[
x∑
y

(
ξ†yξ

y − 1− (−1)y
2

)
+ E

]2

+
∑
x

[
i

2ξ
†
x+1ξ

x + H.c.
]
+m

∑
x

(−1)xξ†xξx .

(2.126)

A few comments are due. In Section 1.3A we mentioned how gauge theories introduce
a redundancy in the description of a physical system. Here, by explicitly solving
Gauss law, we successfully removed the redundant degrees of freedom (together with
gauge invariance) and reduced the dimension of the Hilbert space of the theory.
However, notice that this comes at a price: Hamiltonian (2.126) contains non-local
interaction terms. A second comment concerns the spectrum of the electric field on
the physical subspace. Since the spectrum of ξ†xξx is {0, 1}, (2.125) mandates that
also the electric field is quantized in integer units [24]. The observation makes the
representation of the link operators constructed in the previous pages more natural.

Photon Hilbert space truncation. Despite the reduced number of degrees of
freedom, the theory with the electric field integrated out is not particularly well
suited for the application of tensor network methods or quantum simulation because
of the non-local character of Hamiltonian (2.126). On the other hand, if we choose
to keep the electric field explicit we run into the problem that the link Hilbert space
constructed in (2.117) is infinite dimensional. No finite dimensional representation
of commutation relation (2.116) can be realized in terms of an invertible U and an
Hermitian E [86].19 To make numerical simulations feasible the Hilbert of the theory
space has to be truncated. Parametrizing the severity of the truncation it is then
possible, at least in principle, to check the convergence of the results to an exact
solution. The following paragraphs address the problem of how this truncation can
be achieved, using the commutation relation (2.113) between the comparator and
the electric field as a guiding principle.

A possible truncation strategy consists in introducing an upper bound Λ on the |E|
spectrum and consequently restricting the Hilbert space to the subspace

Htrunc = span {|λ〉 : |λ| ≤ Λ} . (2.127)

The heuristic justification for this choice is the following. The contribution, e.g., to
transition amplitudes, from configurations far from those explored by the classical

19 Rewriting (2.116) as UEU−1 = E + 1 shows that it is incompatible with E having a bounded
spectrum. This result can also be interpreted observing that the photon is a bosonic degree of
freedom and in the Fock space of bosonic degrees of freedom a single momentum mode can have
arbitrarily high occupation number [49].
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trajectory is generally suppressed20 [50, 67]. If the physics simulated involves, at the
classical level, modest excitations of the electric field, then the states discarded in
(2.127) should always have low occupations for Λ large enough. When the Hilbert
space is truncated to Htrunc a new definition of U |−Λ〉 and U † |+Λ〉 has to be
provided. Two possibilities are commonly considered in the literature.

The first [33, 44, 54, 58] is

U |−Λ〉 = U † |+Λ〉 = 0 . (2.128)

With this approach the commutation relation (2.116) and thus gauge invariance are
preserved exactly. The unitarity of U is lost but the restriction of U to |−Λ〉⊥ is still
an isometric operator. Theories obtained in this way, called quantum link models,
identify the Hilbert space of a link with that of a spin degree of freedom of spin
S = Λ. The electric field operator is mapped to a spin projection operator while U
and U † correspond to its lowering and raising operators respectively21.

The second possibility [28, 29, 86, 93] consist in

U |−Λ〉 = |+Λ〉 , U † |+Λ〉 = |−Λ〉 , (2.129)

corresponding to a cyclic electric field λ ∈ ZN with N = 2Λ+1. This choice preserves
the unitarity of the comparator but violates the commutation relation (2.116)

[U,E] |−Λ〉 = (−Λ) |+Λ〉 − (+Λ) |+Λ〉 = (1−N)U |−Λ〉 ; (2.130)

and analogously for U † on |+Λ〉. As a consequence, global or local U(1) transforma-
tions of the comparator can no longer be implemented, indeed

e−iθEUeiθE |λ〉 = ηeiθU |λ〉 , η =

e−iθN , λ = −Λ
1, λ 6= −Λ

. (2.131)

On the other hand, if θ ∈ (2π/N)Z the spurious η factor that shows up for λ = Λ
is canceled and we get a well defined transformation on the whole Htrunc

22. Hence
U(1) gauge invariance is broken down to its finite subgroup generated by e2πi/N and
the model becomes a discrete ZN gauge theory. In the N →∞ limit, true compact

20 This is particularly clear in the Euclidean path integral formulation of the quantum theory [83].
21 At least, in the conventions adopted here, up to a different normalization of the matrix elements

of raising and lowering operators with respect to the standard ones. See, e.g., in [67]
22 Commutation relation (2.116) as well as its Hermitian conjugate still hold when restricted to the

“bulk” of Htrunc, generated by |−Λ + 1〉 , |−Λ + 2〉 , . . . , |+Λ− 1〉. On this subspace continuous
U(1) transformations can still be implemented, but the requirement |Ψ〉⊥ |±Λ〉 is clearly not
consistent with time evolution.
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QED is recovered [17, 29]. For finite N , given that only a subset of the original
U(1) gauge transformations is preserved, the subspace of gauge invariant states is
enlarged. The physical state condition (2.115) becomes

exp
(
−i2π

N
G(x)

)
|Ψphys〉 = |Ψphys〉 ; (2.132)

and can be rewritten as a condition on the eigenvalues of the restriction of elec-
tric field and charge operators to the (truncated) physical subspace. Denoting an
eigenvalue with the name of the corresponding operator, (2.132) implies

[Ex+1
x − Exx−1 − ρ(x)] mod N = 0 , (2.133)

where mod is the modulo operation23. Only the condition (2.132) is preserved by
time evolution, while the U(1) Gauss law (2.115) is not.

For the simulations performed in this Thesis we adopt the cyclic electric field trun-
cation scheme. Other than preserving the unitarity of the comparator, this choice
will allow a simple estimation of the severity of the truncation taking place during
the simulation. Despite this choice, both approaches have their own strengths and
are routinely used in numerical studies (see, e.g., the references above).

Before proceeding, it should be mentioned that quantum link models have a straight-
forward generalization to nonabelian lattice gauge theories. Moreover, both the
quantum link and ZN models here introduced as a truncated version of compact
quantum electrodynamics are of interest per se [29, 56].

Meson bound states. In order to perform a scattering simulation, an initial free
multi-particle state has to be prepared24. For free staggered fermions we have shown
how to explicitly solve the spectrum of the theory and construct the asymptotic
particle states introduced in Sections 1.1–1.2. In the massive Schwinger model the
solution to this problem is no longer known. What can be safely argued is that the
asymptotic states will not correspond to the charged fermions of the model. This
is yet another consequence of Gauss law: hypothetical asymptotic charges would
correspond to states of infinite electric field energy in the continuum limit. The
linear rise of the Coulomb potential and the consequent confining force (“quark-
trapping” [22, 59]) are typical of 1 + 1 dimensional models. In the exactly solvable
massless Schwinger model, all the asymptotic states are known to belong to the Fock
space of a free massive boson [18, 59]. In the massive case an exact solution is not

23 Given two numbers X,Y then X mod Y = 0 when X is a multiple of Y .
24 At least approximately, given the finite time extent of the simulation.
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available but “quark-trapping” still holds [22]. In the light of these observations, as
candidate asymptotic scattering states, we look for charge neutral bound states.

The simplest guess for a meson25 bound state with momentum k is

|k〉 = c†(k) |Ω〉 =
?∑
qp

δ(p+ q − k)ψ(p, q) ã†(p)b̃†(q) |Ω〉 , (2.134)

where |Ω〉 is the interacting vacuum, ã†(p) and b̃†k(q) are the fermion and antifermion
creation operators of the free theory and c†(k) is a tentative meson creation operator.
Together with P |Ω〉 = 0, the transformation properties of ã†(p) and b̃†k(q) under
space translations26 ensure that the state |k〉 is a momentum eigenstate, P |k〉 = k |k〉.
However, unless further conditions are imposed on ψ(p, q), |k〉 is not an Hamiltonian
eigenstate (and thus not a proper stable bound state). The bound state problem is
intimately non-perturbative but it is possible to formulate and solve an approximate
version of such conditions by treating the Coulomb potential as a classical field [78].
Nonetheless, the number of sites available in our numerical lattice simulations may
not even allow to resolve the internal structure ψ(p, q) of the bound state. For this
reason we just point out that, as a first approximation, a physically sensible ansatz
for ψ(p, q) is obtained requiring that the fermion and antifermion are centered in
close real space positions (x and y) and have similar momenta. Assuming that q− p
follows a normal distribution centered in zero and of standard deviation λk, the
previous requirements suggest

ψ(p, q) ∝ exp
[
−(q − p)2

4λ2
k

− i(px− qy)
]

= exp
[
−(q − p)2

4λ2
k

− ikµx − i(q − p)
λx
2

]
.

(2.138)
Here the meson center of mass position µx and string length λx parameters have

25 This name is chosen in analogy with the mesons of quantum chromodynamics. In both cases the
bound state is a composed by a fermion in the fundamental representation of the gauge group
and an antifermion in the conjugate representation.

26 In a lattice theory (` = 1) with staggered fermions, space translation symmetries x → x + 2n
(n ∈ Z) are implemented by integer powers of exp(−2iP ). Inserting

e2iP ξ(x) e−2iP = ξ(x− 2) (2.135)

in the expression (2.39a) of ã†(k) yields

e2i`P ã†(k) e−2i`P = e2ikã†(k) ; (2.136)

analogously for b̃†(k). Then

e2i`P δ(p+ q − k)ã†(p)b̃†(q) e−2i`P = δ(p+ q − k)e2i(p+q)ã†(p)b̃†(q) ; (2.137)

proving that (2.134) produces excitations of momentum k.
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been introduced, they read

µx = (x+ y)/2 , λx = y − x . (2.139)

As observed in the discussion of the theory of free staggered fermions, the physical
states are momentum wave packets. Independently from the explicit form of ψ(p, q),
we can define a meson wave packet creation operator C† as

C† =
?∑
k

φ(k)c†(k) =
?∑
qp

φ(p+ q)ψ(p, q) ã†(p)b̃†(q) ; (2.140)

where φ(k) is the momentum space wave packet amplitude, typically a Gaussian.
Introducing a new function φ(p, q) = φ(p + q)ψ(p, q) and inserting the expressions
(2.39a) and (2.39b) of the Fourier mode operators in terms of the position space
staggered fermion operators, C† becomes

C† =
?∑
qp

φ(p, q) ã†(p)b̃†(q) =
?∑
xy

φ̃(x, y) ξ†(x)ξ(y) . (2.141)

This equation implicitly defines φ̃(x, y), analogously to (2.69)–(2.71).

For simplicity, in the numerical simulations reported in Chapter 4 the fermion and
antifermion within a meson are produced completely uncorrelated. With this choice,
a meson wave packet can be prepared by means of the fermion and antifermion
wave packet creation operators (2.69) and (2.70). We use the same momentum
space normal probability distribution for both wave packets but, to center them in
different real space positions x and y, the amplitudes are shifted by a phase. In the
end, our factorized meson wave packet creation operator reads,

C† = A†B† =
?∑
qp

φ(p;x, µk, σk) ã†(p) φ(q; y, µk, σk) b̃†(q)

=
∑
xy

φ̃(x;x, µk, σk) ξ†(x) φ̃(y; y, µk, σk) ξ(y) . (2.142)

All the approximations we have introduced here are not a priori justified. Never-
theless, as far as scattering processes are concerned, a partial justification can be
put forward. The result of using (2.142) to produce a meson wave packet should
mostly amount to the introduction of some internal excitation in the bound state.
As long as this excitation is not too strong, we still expect to observe meaningful
scattering processes. More specifically, we hope that the states we prepare are still
bound enough to survive until the collision. The simulations reported in Chapter 4
show that, in the coupling regime that has been explored, this is the case. More
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importantly, in Chapter 4 we show how bound states with correlated fermion and
antifermion of type (2.138) can be prepared27.

Dressing of creation and annihilation operators. All the creation operators
in the previous paragraph violate Gauss law and thus do not produce gauge invari-
ant states. In order to obtain physical states the fermion and antifermion creation
operators ã†k and b̃†k have to be appropriately combined with electric field raising
(Uxx−1 )† and lowering Uxx−1 operators respectively. This is achieved writing them
in terms the position space fields ξ†x and ξx, as per (2.39a) and (2.39b), and making
the replacements

ξ†x → ξ†x
∏
y>x

(Uyy−1 )† , ξx → ξx
∏
y>x

Uyy−1 . (2.143)

With these substitutions Gauss law is preserved by increasing (decreasing) the elec-
tric field in all the links following the site in which a positive (negative) charge has
been created. Notice that to preserve the value of the electric field at the boundary
of the chain we must always act with a charge neutral operator28, namely with both
a ξ†x and a ξy. This is, by construction, the case of all the creation operators of the
previous section. Given x < y, recalling the unitarity of the comparator (2.111),

ξ†xξ
y → ξ†xξ

y
∏
z>x

∏
w>y

(U zz−1 )†Uww−1 = ξ†xξ
y
∏

x≤z<y
(U z+1

z )† ; (2.144)

similarly for y < x, with (U z+1
z )† replaced by U z+1

z .

27 The only reason why these are not in the reported simulations is that the related code has not
been implemented yet.

28 This is simply a restatement of the observation that the asymptotic states of the Schwinger model
are charge neutral.
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Tensor Networks
In this Chapter the many-body problem is formulated and the entanglement entropy
is defined, motivating the introduction of some concepts from tensor network theory.
An efficient representation of many-body states and operators is illustrated, together
with two algorithms implementing a ground state search and time evolution. These
tools are essential for the development of the simulations presented in Chapter 4.

3.1 Many-Body Problem

In Chapter 2 it has been discussed how lattice quantum field theories are many-body
quantum mechanical systems. The many-body problem, namely the study of several
interacting quantum degrees of freedom, is encountered in a wide range of scientific
fields [85, 87]. Among these, the numerical simulation of high energy physics is just
an example. In this Section we present some general features of many-body systems
and introduce the concept of entanglement. The latter is at the foundation of an
important class of numerical techniques, introduced in the next Section, that allow
to attack many-body problems efficiently.

The Hilbert space of an L-body system is the tensor product of L single-body or
local Hilbert spaces,

H = H1 ⊗ · · · ⊗HL . (3.1)

The single-body constituents of the system can be any quantum degree of freedom.
Here we label them with a position index x = 1, . . . , L in analogy with the case of
lattice quantum field theory, where each degree of freedom represent the local state
of a field on a lattice site1. Chosen a local basis {|αx〉} for each Hx space, a state
|ψ〉 ∈H can be represented by a rank-L complex tensor ψα1α2...αL via

|ψ〉 =
∑

α1α2...αL

ψα1α2...αL |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αL〉 . (3.2)

Let us assume for simplicity that all the local Hilbert spaces have dimension d. Then

1 Here, to lighten the notation, we neglect the distinction between site and link degrees of freedom.

61
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dim H = dL independent coefficients have to be specified in order to identify the
state |ψ〉. This exponential growth of the Hilbert space dimension with the system
size makes many-body problems extremely challenging to attack numerically. To
give a quantitative idea, consider a small chain of L = 160 two-level bodies, an
example are the lattices of 160 staggered fermions sites that will be considered in
the next Chapter. Storing the coefficients ψα1α2...αL representing the state of such a
system requires an enormous amount of memory, about 1040 gigabytes.

Mean field and beyond. The crucial observation in overcoming the above obsta-
cle is that not all the states in the Hilbert space H have the same physical relevance.
Usually the description of physical phenomena involves only an exponentially small
portion of the exponentially large Hilbert space H [80, 87]. A key step in the inves-
tigation of many-body systems is the development of methods that target directly
the relevant portion of H . As an example, the assumption at the basis of mean
field theory is that a good approximate description of a many-body system can be
achieved considering only states that factorize as

|ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψL〉 ; (3.3)

namely, neglecting the correlations between the components of the system. In this
way, each of the |ψx〉 is specified separately and only Ld coefficients are needed to
represent the overall state of the system. The complexity of the problem has been
thus reduced from exponential to linear in the system size. However, the mean field
ansatz is an uncontrolled and not always justified approximation. In order to show
how it can be improved, let us consider a two-body system AB with Hilbert space

HAB = HA ⊗HB , dA ≡ dim HA ≤ dB ≡ dim HB . (3.4)

Given two bases {|α〉} and {|β〉} of HA and HB respectively, we can represent a
normalized state |ψAB〉 ∈HAB of AB as

|ψAB〉 =
dA,dB∑
α,β

ψαβ |α〉 ⊗ |β〉 (3.5)

Via a singular value decomposition (SVD) ψαβ can be written as a matrix product:

ψαβ =
dA∑
k

SαkVkkDkβ , (3.6)
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with S and D unitary and V diagonal with non-negative entries Vkk = λk ≥ 0, called
singular values (SVs), that we assume to be listed in descending order. Equivalently,

|ψAB〉 =
dA,dB∑
α,β

dA∑
k

λk(Sαk |α〉)⊗ (Dkβ |β〉) =
dA∑
k

λk |kA〉 ⊗ |kB〉 . (3.7)

Here {|kA〉 = ∑
α Sαk |α〉} is a new orthonormal basis of HA and the analogously

defined {|kB〉} can be completed to an orthonormal basis of HB. Typically, for non-
random states and in particular for states describing physical configurations, there
is a strong hierarchy in the singular values. We can exploit this fact to discard some
of them, e.g., the ones below an arbitrary precision ε, and reduce the dimensionality
of the matrices involved in (3.6) and (3.7). Denoting with χ the number of singular
values left, called bond dimension, the introduced approximation reads

|ψtrunc
AB 〉 = 1

N

χ∑
k

λk |kA〉 ⊗ |kB〉 , N =
√∑χ

k λ
2
k ; (3.8)

whereN enforces the normalization of the state. Notice that setting χ = 1 we recover
the mean field ansatz. Consequently, varying the precision ε, we can interpolate
between the mean field and exact representations in a controlled way [87, 95]. It can
be proven [11, 91] that the approximation (3.8) is also the optimal one in the sense
that, for fixed Mαβ rank, Mαβ = ∑χ

k SαkVkkDkβ minimizes the 2-norm∥∥∥ψαβ −Mαβ

∥∥∥ . (3.9)

We now give a possible generalization of the above compression procedure to the
many-body case. As is now explained, this is mostly a matter of reshufflings tensor
indices. Consider the state ψα1α2...αL in (3.2). We can identify α1 with the index
α in (3.6) and fuse all the other indices in a single index β = 2, . . . , dL; perform
an SVD; eventually truncate; adsorb the Vkk matrix in the definition of Dkβ; and
finally split again the index β. The procedure is then repeated, this time {k, α2} is
identified with α and the indices on the right of α2 with β. Proceeding iteratively,
the many-body wave function ψα1α2...αL is decomposed in a product of L tensors2

[80, 87]
ψα1α2...αL =

∑
k1k2...kL

Sk1
α1S

k1k2
α2 · · ·SkL−2kL−1

αL−1 DkL−1
αL

, (3.10)

where we moved up the contracted indices kx = 1, . . . , χx to better distinguish them
from the external indices αx = 1, . . . ,dim Hx. The right hand side of (3.10) is the

2 Despite their common name, the Skx−1kx
αx are different tensors for different values of x. We adopt

the convention that tensors are identified not only by their name but also by their indices.
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matrix product state representation of |ψ〉 and provides a first example of tensor
network ansatz. A more systematic discussion of tensor network methods is given in
the next Section. Here we just point out that the procedure outlined above, namely
the construction of a matrix product states out of a rank-L tensor is only a formal
procedure. In practice, matrix product states are often used to study systems whose
state cannot even be stored in its exact representation. Rather than providing an
exact state and rewriting it in matrix product state form, the algorithms presented
in the next Section assume that a faithful tensor network representation of the state
of interest with sufficiently low bond dimensions exists. To understand why this is
often the case we introduce the concept of entanglement.

Entanglement entropy. The efficiency of the compressions (3.8) and (3.10) de-
pends heavily on how rapidly the singular values decrease. Let us focus on the
two-body case. If in the decomposition (3.7) there is only one non-vanishing singu-
lar value the state |ψAB〉 is said to be separable and the mean field representation is
exact. Generally this is not the case and |ψAB〉 is said to be an entangled state. To
quantify the achievable compression we need a measure of entanglement. Namely, a
measure of how far from the separable case |ψAB〉 is and how much the configurations
of the subsystems A and B are correlated.

To this aim, consider again the decomposition (3.7). Notice that, unless |ψAB〉 is
separable, we cannot associate two wave functions, |ψA〉 and |ψB〉, to the subsystems
A and B. Indeed, the wave function is not the most general description of the
state of a quantum system. In the following we refer to states that admit a wave
function representation, e.g., |ψAB〉, as pure states. In systems that interact with
an environment, such as the subsystems A and B, the state generally consists of a
statistical mixture of pure states {|ψn〉}, each associated with a classical probability
or population pn. We refer to these configurations as mixed states. Mixed states are
conveniently described in terms of a density matrix ρ, defined as

ρ =
∑
n

pn |ψn〉〈ψn| ,
∑
n

pn = 1 . (3.11)

The density matrix is Hermitian, positive semidefinite, has unit trace and satisfies

tr(ρ2) ≤ 1 . (3.12)

Inequality (3.12) is saturated if and only if ρ represents a pure state |ψ〉, in which
case the density matrix is the projector |ψ〉〈ψ|. Given a density matrix ρ, the scalar

S(ρ) = − tr(ρ log ρ) ; (3.13)
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is called Von-Neumann entropy of ρ. Notice it vanishes for pure states, such as |ψAB〉
and also the wave functions |ψA〉 and |ψB〉 when |ψAB〉 is separable. The important
point is that, having introduced the density matrix, we can now associate a density
matrix ρA (ρB) to the subsystem A (B) also when |ψAB〉 is not separable. As we now
motivate, S(ρA) provides a good entanglement measure for the pure state |ψAB〉.

Recalling (3.7), the density matrix representation of |ψAB〉 is

ρAB = |ψAB〉〈ψAB| =
∑
i,j

|iAiB〉λiλ∗j 〈jAjB| ; (3.14)

with |iAiB〉 = |iA〉⊗ |iB〉. The reduced density matrix for the subsystem A is simply
the partial trace of ρAB over the subsystem B,

ρA =
∑
β

〈β|ρAB|β〉 =
∑
i,j,k

〈kB|iAiB〉λiλ∗j 〈jAjB|kB〉 =
∑
k

λ2
k |kA〉〈kA| , (3.15)

and the squared singular values are interpreted as populations. Together with the
analogous result for ρB, (3.15) yields

S(ρA) = S(ρB) = − tr(ρA log ρA) = −
∑
k

λ2
k log λ2

k . (3.16)

This quantity is called the entanglement entropy of the pure state |ψAB〉 of the
bipartite system AB [94]. It vanishes if |ψAB〉 is separable and has the maximum
possible value when all the λk coefficients are equal. As a consequence, it provides
a good estimate of how difficult it is to compress |ψAB〉 or, otherwise stated, how
much information the state contains.

For a many-body pure state, the above discussion defines an entanglement entropy
for every bipartition of the system. A “typical” pure state in the Hilbert space
has an entanglement entropy between large enough subregions that scales like the
volume of the subregions [94]. On the other hand, low-energy eigenstates of gapped
Hamiltonians with local interactions have been proven to satisfy area laws [80, 87,
94]. These assert that the entanglement entropy of a region tends to scale as the size
of the boundary of the region and not as its volume; in particular it is constant in one
dimensional systems [65]. Area laws are the profound explanation for the efficiency
of tensor network ansatze in describing the low-energy properties of physical systems:
they target directly the relevant, low-entanglement, portion of the Hilbert space [80].
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3.2 Tensor Network Methods

A tensor network (TN) is a collection of tensors and contraction rules. Although we
do not use it here, there exist a particularly convenient diagrammatic notation for
TNs [95]. A TN is represented by a graph in which a node corresponds to a tensor
and the edges attached to it represent its indices. In particular dangling edges are
uncontracted indices while edges that connect two nodes denote a contraction.

As just discussed, many-body computations typically involve huge tensors; TN meth-
ods allow to break these huge tensors in smaller ones while accommodating as much
information as possible with the available resources. Here an overview of some con-
cepts from tensor network theory, relevant for the development of the Thesis, is put
forward. A detailed presentation can be found in [71, 80, 94, 95].

3.2A Ansatze

We now introduce TN ansatze for the representation of states and operators. To-
gether with the TN algorithms outlined in the next Section, they constitute the
building blocks of most of the work presented in Chapter 4. In the following we
always assume that repeated indices are contracted.

Matrix Product State. The Matrix Product State (MPS) ansatz is one of the
most successful TN representations of one-dimensional many-body pure states [95].
It encodes the coefficients ψα1α2...αL as a product of matrices Mαx ,

|ψ〉 = Mk0k1
α1 Mk1k2

α2 · · ·MkL−2kL−1
αL−1 MkL−1kL

αL
|α1α2 . . . αL〉 . (3.17)

The kx are called bond or virtual indices and their dimension χx is the local bond
dimension. The αx are physical indices and run over the local Hilbert space basis.
The boundary matrices are vectors, χ0 = χL = 1, so that the contraction of the
virtual indices always produces a scalar. The trivial indices k0, kL are introduced
just to uniformize the MPS layout; at least working with open boundary conditions.
Although we do not use them in numerical simulations, with periodic boundaries it
is natural to treat k0 and kL as proper virtual indices and contract them.

The space spanned by MPS is dense in the sense that, in principle, every Hilbert
space vector can be represented using an exponentially large (in L) bond dimension.
For fixed uniform bond dimension χ, an MPS naturally realizes the one-dimensional
area law as the entanglement entropy for every bipartition is bounded by logχ [80].
Notice also that the tensors in (3.10) satisfy by construction the isometric condition

S∗l1α1S
k1
α1 = δk1l1 , S∗kj−1lj

αj S
kj−1kj
αj = δkj lj for j < L . (3.18)
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Given an MPS it is always possible to enforce this or similar isometric conditions
exploiting the invariance of the network under the local invertible transformations

Mαx →MαxY
−1 , Mαx+1 → YMαx+1 ; (3.19)

where Y is an invertible χx × χx matrix. Chosen a site x, via a sequence of trans-
formations (3.19) it is possible to impose [94, 95]∏

y<x

M∗ky−1ly
αy M

ky−1ky
αy = δkx−1lx−1 ,

∏
z>x

M∗lz−1kz
αz Mkz−1kz

αz = δkxlx . (3.20)

This is known as mixed canonical form of the MPS. It reduces the evaluation of the
norm of the MPS 〈ψ|ψ〉 to the complete contraction of the Mkx−1kx

αx tensor with its
conjugate, namely to an O(1) operation in the system size. Similarly for expectation
values of local operators with support on the site x. Finally, the site around which
the isometrization is performed can be moved quite efficiently [71].

Matrix Product Operator. Another tensor network ansatz emerging naturally
when MPSs are employed is the Matrix Product Operator (MPO) [69]. It is used to
represent many-body operators as

O = wk0W k0k1
α1β1

W k1k2
α2β2
· · ·W kL−1kL

αLβL
wkL |α1α2 . . . αL〉〈β1β2 . . . βL| . (3.21)

The main difference with the MPS ansatz is that there are both ingoing and outgoing
physical indices. The vectors wk0 and wkL are here introduced in order to have a
uniform bulk. In the MPOs considered in this Thesis they are always

[wk0 ] =
[

1 0 0 0
]
, [wkL ] =

[
0 0 0 1

]T (3.22)

An important result is that all local short range interactions can be represented
exactly as an MPO with small bond dimension [94]. The MPO representation of
the free staggered fermions and lattice Schwinger model Hamiltonians, as well as
of the fermion, antifermion and meson wave packet creation operators, are given in
Chapter 4.

3.2B Algorithms

Two crucial operations for the simulation of scattering processes in lattice gauge
theories and, more in general, for the investigation of quantum systems, are:

(i) determining of the ground state, to prepare the initial wave packets;
(ii) evolving the prepared state, to compute transition amplitudes.

Here we present the working principles of two algorithms that implement the above
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tasks; we disregard technical details and efficiency issues.

The simulations presented in Chapter 4 are based on the Tensor Network Python
(TeNPy) library [94] implementation of these algorithms.

Ground state search. Many interesting properties of a quantum mechanical sys-
tem can be deducted studying it low-energy eigenstates. The MPS representation
of these states can be computed with an extremely efficient variational algorithm:
the Density Matrix Renormalization Group (DMRG) algorithm [94, 95]. DMRG
relies on the MPO representation of the Hamiltonian to recasts the global energy
optimization problem in a sequence of local optimizations of the MPS tensors with
respect to local effective Hamiltonians.

The optimization problem for the ground state is encoded by the Lagrangian [95]

L ({Mkx−1kx
αx ,M∗ kx−1kx

αx }) = 〈ψ|H|ψ〉 − λ(〈ψ|ψ〉 − 1) , (3.23)

where the variables with respect to which we optimize are the MPS tensors as well
as the Lagrange multiplier λ, enforcing the normalization of the state. Ideally, given
an initial guess or random MPS we should optimize all its tensors simultaneously.
In practice this is not efficient or even viable [80], so we use as variational space the
coefficients of a single tensor at time, while keeping the others, called environment,
fixed. Imposing the stationarity of L with respect to the tensor M∗ kx−1kx

αx provides

H̃
kx−1kxlxlx+1
αxβx

M
lxlx+1
βx

− λMkx−1kx
αx = 0 (3.24)

where the effective Hamiltonian H̃ for Mαx results from the contraction of the Hamil-
tonian MPO with all the other MPS tensors and their conjugates. Moreover, we as-
sumed that the MPS is in the mixed canonical form (3.20) to simplify the derivative
of 〈ψ|ψ〉 with respect to M∗αx [71]. Once the sets of indices αx, kx, kx+1 and βx, lx, lx+1
are fused in two single indices, (3.24) becomes an ordinary eigenvalue problem. The
lowest eigenstate can be found via standard algorithms (e.g., Lanczos) together with
its eigenvalue λ0, providing the current ground state energy estimate.

The update of Mkx−1kx
αx changes the effective problem for the other tensors. The

algorithm sweeps over the tensors iteratively, performing local optimizations until
the desired convergence of λ0 or some other global observable is reached [94]. Once
a ground state |Ψ0〉 has been found, the next excited state can be computed adding
a term λ′ 〈Ψ0|Ψ〉 to the Lagrangian (3.23). The extremization with respect to the
multiplier λ′ imposes |Ψ〉 is orthogonal to the ground state. Proceeding iteratively
a few low-energy eigenstates can be determined.

The DMRG implementation used in our simulations updates two neigbouring tensors
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at a time. In this version, an initial contraction of the two tensors and a final SVD to
split back the optimized tensor have to be performed. The SVD allows the algorithm
to grow the bond dimension as required by the chosen precision [94].

Time evolution. Suppose an Hamiltonian H and an initial state |ψ(0)〉 in MPS
form are given. The Schrödinger time evolution (1.112) of |ψ(0)〉, namely

|ψ(t)〉 = U(t) |ψ(0)〉 = e−iHt |ψ(0)〉 , (3.25)

can be determined using the Time Evolving Block Decimation (TEBD) algorithm
[94, 95]. TEBD assumes that the Hamiltonian contains at most nearest-neighbour
interactions3, i.e. it can be written as a sum of two-site operators of the form

H =
∑
x

H [x,x+1] =
∑
x

H
αxαx+1
βxβx+1

|βxβx+1〉〈αxαx+1| . (3.26)

The starting point of the algorithm consists in isolating the Hamiltonian terms cor-
responding to even and odd bonds, namely

H = Heven +Hodd =
∑
x even

H [x,x+1] +
∑
x odd

H [x,x+1] . (3.27)

In general Heven and Hodd do not commute one with the other. Nonetheless, each is
a sum of commuting operators. Consequently, their exponentials factorize exactly:

exp
(
− itHeven

)
=
∏

x even
exp

(
− itH [x,x+1]

)
=
∏

x even
U [x,x+1](t) . (3.28)

Identically for odd bonds. The (small) matrices U [x,x+1] can be evaluated exactly.
In order to compute the exponential of Heven +Hodd, the TEBD algorithm splits the
time interval t in small steps δt and relies on a Suzuki-Trotter decomposition [45].
Let X and Y be two non commuting operators, the second-order Suzuki-Trotter
decomposition reads

eδt(X+Y ) = eδtX/2eδtY eδtX/2 +O(δt3) ; (3.29)

there exist higher order variants as well.

Without going into the implementation details [94], notice that acting with U [x,x+1]

on the MPS tensors Mkx−1kx
αx and M

kxkx+1
αx+1 merges them in a single bigger tensor.

The MPS representation is recovered applying an SVD and truncating the singular

3 In the presence of slightly longer range interactions a nearest-neighbour Hamiltonian can be
recovered by fusing groups of neighbouring sites in a single, bigger, local Hilbert space.
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values below the desired precision4. Notice also that, generally, the update increases
the entanglement entropy (and thus χx) at the bond between sites x and x+ 1 [94].

The error sources of the algorithm are the truncation of the singular values and the
Trotterization. Specifically, a Suzuki-Trotter decomposition of order M introduces
an error O(tδtM ) on the final state |ψ(t)〉 [94].

4 The unitarity of the transformation (up to the final truncation error) ensures that it can be
performed in a way that preserves the canonical form of the MPS [94].



4
Scattering Simulations
In this Chapter the numerical simulations are presented. These involve the kine-
matics of the theory of free staggered fermions and the scattering of mesons in the
lattice Schwinger model. For each class of simulations we first give an overview of
the ingredients required and then report and comment the obtained results.

All the numerical values reported in the Chapter are in lattice units1. The simula-
tions based on tensor network methods rely on the TeNPy library [94].

4.1 Free Staggered Fermions

The theory of free staggered fermions is an ideal setting to test the numerical codes
developed. This is particularly simple working with an exact representation of the
many-body Hilbert space H . By exact representation we mean that a basis for H is
chosen and the coefficients defining the states and operators in that basis are stored
in memory as complex arrays (exactly, up to the machine floating-point precision).
However, due to the exponential increase of the Hilbert space dimension with the
system size, only small2 lattices can be studied with an exact representation. The
achievable number of sites does not allow to produce wave packets with positions
and momenta localized enough to study the free kinematics with sufficient precision.
For this reason a MPS implementation has been undertaken. Its main features are
now summarized, before presenting the outcome of some simulations.

In our tensor network based implementations we always work with open boundary
conditions. We use the local occupation number ξ†xξx eigenbasis for the site Hilbert
spaces Hx, x = 1, . . . , L. The staggered fermion operators are constructed according
to the Jordan-Wigner representation (2.22). Let us recall the non-vanishing matrix
elements of the single-site operators involved,

〈1|σ+|0〉 = 1 , 〈0|σ−|1〉 = 1 , 〈1|n|1〉 = 1 . (4.1)

1 This is consistent because we do not study the continuum limit of our simulations. However, care
is required when comparing the parameters of simulations involving different lattice sizes.

2 Up to 22 sites with the available amount of RAM memory (16 GB) and using sparse matrices.

71
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In terms of these operators, the free staggered fermion Hamiltonian (2.16) reads

H = i

2
∑
x

(
σ+
x+1σ

−
x − σ+

x σ
−
x+1

)
+m

∑
x

(−1)xnx , (4.2)

where the x subscript of the single-site operators denotes the site on which they
act, tensor products with the identity on the other sites are implied as usual. A
direct computation reveals that the MPO representation (3.21) of (4.2) is built by
the tensors

[W kx−1kx
H ] =


1 σ+ σ− m(−1)x n
0 0 0 −i/2σ−
0 0 0 +i/2σ+

0 0 0 1

 . (4.3)

Here and in all the representations of MPOs that follow the matrix entries are labeled
by the virtual indices kx−1, kx. We omit the physical indices αx, βx that would be
attached to each matrix entry, as well as the site index x.

In order to prepare the initial states for simulations of the free kinematics, also the
fermion and antifermion wave packet creation operators (2.69) and (2.70) have to be
implemented. In terms of the operators (4.1) they read

A† =
∑
x

φ̃(x)

∏
y<x

(−1)ny
σ+

x , B† =
∑
x

φ̃(x)

∏
y<x

(−1)ny
σ−x . (4.4)

Despite the non-local Jordan-Wigner strings, these operators admit a simple MPO
representation with

[W kx−1kx
A† ] =

[
(−1)n φ̃(x)σ+

0 1

]
, [W kx−1kx

B† ] =
[

(−1)n φ̃(x)σ−
0 1

]
. (4.5)

In our simulations we use as amplitude φ̃(x) the φ̃(x;µx, µk, σk) in (2.71), namely a
wave packet centered in µx in position space and corresponding to a normal proba-
bility distribution with mean µk and standard deviation σk in momentum space.

Simulation scheme. We simulate the free propagation of two wave packets for
various fermion masses and wave packets parameters. For each wave packet, the
momentum and position space amplitudes are evaluated numerically from the input
parameters m, µx, µk and σk. The wave packets probability distributions and the
expected peak trajectories based on the wave packet group velocity (2.29) are de-
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picted in a preview plot, before any resource heavy computation is performed. An
example is shown in Figure 4.1.
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Figure 4.1: Preview of two m = 0.5 fermion wave packets on a 160
sites lattice, and of their expected trajectories up to t = 200. The wave
packets are centered in positions µx = 62 and 124 and momenta µk±σk =
+0.14 ± 0.07 and −0.7 ± 0.07 respectively. In the position space plot,
|φ̃(x)| 2 corresponds to the solid curve on even sites and to the dashed
curve on odd sites. For antifermions the two are exchanged, as per (2.71).
The Fourier transform automatically satisfies the uncertainty principle.

From now on we will often refer to fermion and antifermion wave packets simply as
fermion or antifermion. Once the wave packet parameters are chosen we proceed
with the actual simulation, which consists of the following steps:

(i) determine the model ground state |0〉 via DMRG, exploiting the MPO repre-
sentation (4.3) of the Hamiltonian;

(ii) prepare the initial state |Ψ(0)〉 by applying to |0〉 a sequence of creation MPOs
(4.5), one for each wave packet;

(iii) compute its time evolution |Ψ(t)〉 = e−itH |Ψ(0)〉 via TEBD, using the nearest
neighbour form (4.2) of the Hamiltonian.

During the evolution, the particle number charge density and the entanglement en-
tropy associated to every bipartition of the chain (bond entropy) are sampled at
regular intervals. In all the plots of this Chapter the charge density is summed over
pairs of neighbouring sites to reproduce that of the continuum theory.

Results: free kinematics. We consider a chain of size L = 160 and different
values of the mass parameter m = 0.5, 0.7, 0.9. For each mass we prepare an initial
state of two fermions with different momenta, as those shown in Figure 4.1. The
simulations of their propagation are shown in Figure 4.2. The MPS singular values
are truncated at ε = 10−4.5 and a fourth order Trotter decomposition with δt = 0.05
is used for TEBD.
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Figure 4.2: Particle number charge density and bond entropy during
the free propagation of the two fermions of Figure 4.1. The straight
lines in overlay are the trajectories of the wave packet peak predicted
by the group velocity. Different columns correspond to different masses,
m = 0.5, 0.7, 0.9 from left to right.

We observe that the propagation reproduces the behaviour expected for a free theory.
Both fermions appear to follow their free trajectory and no sign of interaction or
entanglement generation is present. The explanation of this fact is particularly
simple in terms of the momentum space dynamics. It has been shown, see (2.60), that
the Hamiltonian is diagonal in momentum space. As illustrated in Figure 4.1, the
initial wave packets have well separated support in momentum space and thus evolve
independently, but the same holds also for each momentum mode inside a single
wave packet. Indeed, no entanglement is generated at all by the dynamics. There is
however a spreading of the wave packets and of their initial internal entanglement.
The spreading is more pronounced for light and slow fermions in agreement with the
non linearity of the group velocity in the momentum and in particular with the fast
rise of the group velocity of light particles near zero momentum (see Figure 2.1).

Together with the low entanglement of the initial state, the absence of entanglement
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generation makes MPS simulations of the free theory extremely efficient. The max-
imum MPS bond dimension is constant during the simulation and corresponds to
about 20 for a minimum singular value ε = 10−4.5.

4.2 Massive Schwinger Model

We simulate the Schwinger model dynamics with two of the approaches presented in
Subsection 2.4B. Their numerical implementation is now discussed in more detail.

4.2A Integrated Electric Field and Exact Representation

In the first approach we exploit the integration of the electric field degrees of freedom
to reduce the dimension of the Hilbert space and opt for its exact representation.
Nevertheless, similar memory limitations to the ones discussed for the exact repre-
sentation of the free theory are present.

We work with open boundary conditions, fix the electric field at the left of the chain
to zero and integrate out all the remaining link degrees of freedom by enforcing
the Gauss law constraint. With this operation the many-body Hilbert space H is
the one of the free theory. Working in the local occupation eigenbasis, the single-
site operators are the ones of the free theory, defined in (4.1). The electric field is
expressed as

Ex+1
x =

x∑
y=1

[
ny −

1− (−1)y
2

]
; (4.6)

while the Hamiltonian (2.126) becomes

H = g2

2
∑
x

 x∑
y

(
ny −

1− (−1)y
2

)2

+ i

2
∑
x

[
σ+
x+1σ

−
x − σ+

x σ
−
x+1

]
+m

∑
x

(−1)xnx .

(4.7)

To further reduce the dimensionality of H we restrict our analysis to a charge q
sector3

Hq = {|Ψ〉 ∈Hphys : Q |Ψ〉 = q |ψ〉} , Q =
∑
x

nx − L/2 . (4.8)

The consistency of this operation with time evolution is guaranteed by charge con-
servation [H,Q] = 0. Observing that Q+ L/2 is the total occupation number, by a

3 The justification for considering only charge eigenstates comes from the electric charge superse-
lection rule, which is yet another consequence of Gauss law [55, 77].
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simple combinatorial argument the dimension of the charge q sector is

dim Hq =
(

L

q + L/2

)
. (4.9)

Chosen a total charge q, via a recursive algorithm we identify all the local occupation
eigenstates in H that have total charge q and use them as a basis of Hq. Finally, we
compute the matrix elements of the operators used in the simulation in this basis.
The observables, such as the Hamiltonian, the charge density and the electric field,
are operators that map each charge sector into itself4. Conversely, by (2.87), the
staggered fermion operators ξx and ξ†x that appear in the creation and annihilation
operators map a charge sector into a different one. It follows that two bases, related
to different values of q, are involved in the computation of their matrix elements.

Simulation scheme. Some simulations of the dynamics of an excited fermion-
antifermion pair have been carried out and are reported in Figure 4.3. Despite the
different implementation, the workflow is similar to the one used for the free theory,
namely:

(i) find the interacting ground state |Ω〉, which we assume to be in the charge zero
sector, via standard numerical routines;

(ii) apply to |Ω〉 a fermion and an antifermion wave packet creation operators from
the free theory (4.4);

(iii) evolve the prepared state, using a standard numerical algorithm that computes
the action of a matrix exponential on a vector [70].

Results: fermions confinement. We consider a chain of size L = 24, fix the
mass parameter m = 0.9 and perform simulations for various coupling strengths
g = 0.2, 0.4, 0.6, 1.0. We prepare an initial state consisting of a fermion and an
antifermion with opposite momenta, pointing one away from the other. Their prop-
agation is shown in Figure 4.3.

We observe that the reciprocal attraction bends the trajectories and confines the
fermion-antifermion pair in an oscillatory motion, whose period depends on the value
of the coupling5. Despite the outgoing momenta, no “asymptotic” well separated
fermion and antifermion are observed. Indeed, in hindsight, the usage of the words
fermion and antifermion to describe the content of the initial state is improper:
as discussed in Subsection 2.4B there are no such isolated charged particles in the

4 That is, they commute with Q, in accordance with the charge superselection rule [77].
5 Actually, in the g = 0.20 case the wave packets approach the boundaries. In order for the

simulation to be completely trusted it should be repeated on a longer chain.
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Figure 4.3: Dynamics of a fermion and an antifermion initially pointing
one away from the other, for different values of the coupling. In all the
simulations m = 0.9 and the momenta are µk ± σk = ±0.5± 0.2

Schwinger model. The initial state is thus better qualified as an excited fermion-
antifermion bound state. Here we prepared the initial state pretending to ignore the
confining properties of the model but ended up obtaining a (very circumstantial)
evidence of confinement. The limited achievable lattice sizes (24 sites) preclude a
quantitative study of the confining properties of the model, which is anyhow beyond
the scope of this Thesis. In the following, we take for granted that the correct
asymptotic particle states are the charge neutral mesons discussed in Subsection 2.4B
and focus on the study of meson-meson scattering processes.

The limited number of available lattice sites in the just discussed implementation
does not allow for the preparation of an initial state of two well localized mesons,
left aside the simulation of their dynamics. In order to study this problem, we need
to reformulate it within a tensor network approach.

4.2B ZN Model and Matrix Product State Representation

The second approach to the simulation of the Schwinger model is based on the ZN
gauge model (N = 2Λ + 1, Λ = 1, 2, 3), originating from a cyclic electric field
truncation scheme, and on a MPS representation of the sate of the system.

In addition to the fermion local Hilbert spaces Hx, located on the sites of the chain,
the link Hilbert spaces Hx,x+1 and the related operators have to be represented. In
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the electric field eigenbasis, the link operators are defined by

E |Λ〉 = Λ |Λ〉 , U |Λ〉 =

|+Λ〉 , Λ = −Λ
|Λ− 1〉 , otherwise

. (4.10)

In terms of the operators (4.1) and (4.10), the Hamiltonian reads

H = g2

2
∑
x

(Ex+1
x)2 + i

2
∑
x

[
σ+
x+1U

x+1
xσ
−
x − σ+

x (Ux+1
x )†σ−x+1

]
+m

∑
x

(−1)xnx .

(4.11)
In order to have a nearest-neighbour Hamiltonian, as required by TEBD, we group
the Hilbert spaces of a site and of the subsequent link together6

Hx ⊗Hx,x+1 → H̃x . (4.12)

The operators defined on Hx and Hx,x+1 are extended to operators on H̃x by taking
their Kronecker product with an identity on Hx,x+1 and Hx respectively. With this
grouping, the tensors of the Hamiltonian MPO are similar to the free ones:

[W kx−1kx
H ] =


1 σ+U † σ−U (−1)xmn+ g2/2E2

0 0 0 −i/2σ−
0 0 0 +i/2σ+

0 0 0 1

 . (4.13)

Our proposal of a meson wave packet consisting of uncorrelated fermion and an-
tifermion pairs can be prepared dressing the free theory wave packet creation opera-
tors (4.4) according to (2.143). The fermion wave packet creation operator becomes

A† =
∑
x

φ̃(x)

∏
y<x

(−1)ny
σ+

x

∏
y≥x

(Uy+1
y )†
 , (4.14)

whose MPO representation is in terms of

[W kx−1kx
A† ] =

[
(−1)n φ̃(x)σ+U †

0 U †

]
. (4.15)

Analogously for the antifermion case B†. These are the MPOs that we use to prepare
the initial state in all the simulation shown in the following pages. As done for

6 Notice that this operation is not generally convenient when working with MPOs only.
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the free theory simulations, as φ̃(x) we use the amplitude φ̃(x;µx, µk, σk) in (2.71),
corresponding to a normal momentum space distribution.

Although not implemented in the simulations shown here, we found an MPO repre-
sentation of the generic dressed meson wave packet creation operator (2.141), namely
of

C† =
∑
xy

φ̃(x, y)
[ ∏
z<x

(−1)nz
]
σ+
x

[ ∏
z≥x

(U z+1
z )†
][ ∏

z<x

(−1)nz
]
σ−x

[ ∏
z≥x

U z+1
z

]
.

(4.16)
In order to derive the MPO representation of this operator, it is convenient to rewrite
it in a different form. Using the commutation between operators that act on different
sites, (−1)2n = 1 and the unitarity of the comparator

C† =
∑
xy

φ̃(x, y)



nx , x = y

σ+
x

[ ∏
x≤z<y

(−1)nz(U z+1
z )†
]
σ−y , x < y

σ+
x

[ ∏
y≤z<x

(−1)nz(U z+1
z )
]
σ−y , x > y

; (4.17)

recalling also (−1)nσ− = σ− and σ+(−1)n = σ+,

C† =
∑
xy

φ̃(x, y)



nx , x = y

σ+
x (U z+1

z )†
[ ∏
x<z<y

(−1)nz(U z+1
z )†
]
σ−y , x < y

σ−y (U z+1
z )

[ ∏
y<z<x

(−1)nz(U z+1
z )
]
σ+
x , x > y

. (4.18)

Finally, the WC† tensors of the MPO representation of this operator are shown in
Figure 4.4. These tensors have a virtual index of dimension L+ 2, a fact that might
make the contraction with an MPS quite resource heavy for long chains. However,
the MPO can be compressed, numerically [71] or analytically, by discarding the rows
and columns related to irrelevant amplitudes, fy � 1. The relevance of this MPO
comes from the fact that all the approximations we made in the preparation of our
meson states are contained in the functional form of φ̃(x, y). If a more precise guess
for the amplitude φ̃(x, y) is available, it suffices to plug it in the tensors in Figure 4.4.

With the introduced tools, various simulations of meson-meson scatterings have been
performed. Except for the different operators involved, the simulations follow the
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Figure 4.4: Meson wave packet creation MPO tensors. For the W kx−1kx

tensor, fy = φ̃(x, y) . Empty entries represent null operators.

same workflow of the free theory ones. During the simulation, together with the
charge density and the bond entropy we measure also the expectation value of the
electric field, which we always average over pairs of neighbouring sites in the plots
shown below.

Scattering for different couplings. Some meson-meson scatterings for fixed
mass and initial wave packet parameters but different coupling strengths have been
simulated in the Z7 Schwinger model7 on a lattice with 80 sites. The results are shown
in Figures 4.5 and 4.6. For comparison, we also report the evolution predicted by
the free theory8. In all the simulations of this paragraph the MPS singular values
are truncated at 5×10−5 and a fourth order Trotter decomposition with δt = 0.0625
is used for TEBD.

For the weak coupling g = 0.08 the scattering trajectories approach the free ones.
Conversely, in the stronger g = 0.20 case we observe a clear repulsion of the two
mesons which starts even before the two mesons have completely penetrated one into
the other. The intermediate case is more enigmatic: it seems that a (likely unstable)

7 See the following paragraphs for a justification of the choice N = 7.
8 This is obtained using the MPS code from the free theory, the same result can be obtained setting
g = 0 in the the Schwinger model code.
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Figure 4.5: Charge density and electric field during a meson-meson scat-
tering, for different values of the coupling. The mass is m = 0.9. The
fermion and antifermion wave packets have µk ± σk = ±0.80± 0.15.

intermediate state is produced. However, the final product(s) of the collision are not
clearly distinguishable from the above plot, we will return on this case below.
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Figure 4.6: Bond entropy during the same simulations of Figure 4.5. The
top and bottom plots show the entanglement entropy profile at the initial
and final time.
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Another interesting quantity we have monitored during these simulations is the en-
tanglement entropy, shown in Figure 4.6. The absence of entanglement between the
fermion and antifermion constituents of a single meson is an artifact of the factor-
ization of the meson amplitude in a pair of uncorrelated fermion and antifermion
amplitudes. We observe that, as soon as the interaction is turned on, some entan-
glement is generated between the final products of the collision. This entanglement
generation is the most apparent difference between the free and g = 0.08 cases. The
intermediate coupling case g = 0.14 is again peculiar and requires further investiga-
tion.
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Figure 4.7: Scattering of mesons with different momenta for g = 0.14.
Momenta are µk±σk = ±0.80±0.15 (left) and ±0.45±0.15 (right). The
remaining parameters are the ones of the simulations in Figure 4.5.
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We simulated its evolution for a longer time. The result is plotted in Figure 4.7 (a).
From the final part of the evolution it seems that the outcome of the collision is a
superposition of different possible products with similar associated probabilities; fur-
ther investigations are anyway required for this case. We also simulated a scattering
of a pair of mesons with lower momenta and same value of all the other parameters.
The phenomenology, shown in Figure 4.7 (b) is quite different: the products of the
collision are clearly also two mesons, but their polarization is inverted with respect
to the one of the incoming mesons.

Another case that we consider is that of two oppositely polarized mesons. We do
this for the stronger coupling g = 0.20 and report the results in Figure 4.8 (b).
For comparison in Figure 4.8 (a) we report also the scattering for aligned meson
polarizations from the previous simulations. The prominent difference between the
two processes is a stronger entanglement generation in the case of antialigned mesons.
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Figure 4.8: Scattering of mesons with aligned or antialigned polarizations
for g = 0.20. The other parameters are identical to those of Figure 4.5.
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Convergence and truncation of the MPS singular values. In order to vali-
date all the above results it is important to verify the convergence of the simulations
with the minimum singular value (SV) threshold ε. This has been done for the sim-
ulation with the strongest coupling in Figure 4.5. We choose this case because, on
very general grounds, stronger interactions induce stronger correlations (slower SV
decay) and thus the effects of the truncation are expected to be more severe. The
parameters of the model are m = 0.9, g = 0.20 and N = 7. The lattice size is
L = 80. All simulations use a fourth order Trotter decomposition with δt = 0.05 and
terminate at t = 80, corresponding to a final Trotterization error of about 5× 10−4.
The convergence is qualitatively depicted in Figure 4.9.
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Figure 4.9: Convergence of the simulations with the SV cutoff ε, namely:
ε = 10−3 (grey line) and ε = 10−3.5, 10−4, . . . , 10−5.5 (progressively
darker shades of blue). The first row is concerned with the bond en-
tropy, the second with the electric field. Left column: time evolution of
the midchain values of the above quantities; center column: their profile
at the end of the simulation; rightmost column: logarithm of the relative
deviations of the results in the previous column with respect to the result
X∗ corresponding to the smallest SV: log10(|X/X∗ − 1|).

A more quantitative study of the convergence is carried out using the value of the
midchain entanglement entropy Smid at the end of the simulation as a reference
quantity. Its expected value S∗mid is extrapolated by means of a power law fit of Smid
as a function of the SV threshold ε. Afterwards, we computed the relative deviations
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Figure 4.10: Convergence of the final midchain entropy with the SV
cutoff. Left: midchain entanglement at t = 80 and weighted interpolation
(weight 1/ε2) via Smid(ε) = AεB +S∗mid. Right: logarithm of the relative
deviations from S∗mid and linear fit. The outlier simulation ε = 10−3 is
ignored in both interpolations.

δ(ε) from S∗mid, namely

δ(ε) =
∣∣∣∣∣Smid − S∗mid

S∗mid

∣∣∣∣∣ = 1− Smid/S
∗
mid . (4.19)

A linear interpolation of log10 δ(ε) as a function of − log10 ε is shown in Figure 4.10.
For ε small enough, the relative precision is found to scale as

δ(ε) ∼ 104.5±0.2ε1.45±0.04 . (4.20)

We conclude that the simulations show a good convergence in the SV cutoff.

With our implementation we have been able to reach a precision in the measure
of the midchain entanglement of 10−4 ∼ 10−3 but the scaling (4.20) suggests that
it should be possible to improve this value. However, the time required by the
simulation increases with its precision. For our runs it ranges from O(10 hours) for
ε = 10−4, to O(100 hours) for ε = 10−5.5. While this is still a reasonable amount of
time, more efficient implementations are to be pursued if a relevant improvement in
the precision is required. Very efficient tensor network simulations of lattice gauge
theories can be achieved exploiting gauge redundancy of the theory and, at the
same time, preserving the locality of the interaction [82]. Another important remark
concerns the behaviour of the MPS bond dimension during the simulations. After
the two mesons have started interacting entanglement generation takes place and
results in a linear increase of maximum bond dimension χmax with time, shown in
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Figure 4.11: Maximum bond dimension χmax at each time stamp (left)
and of the whole simulation (right) for different SV cutoffs, namely: ε =
10−3 (grey line) and ε = 10−3.5, 10−4, . . . , 10−5.5 (progressively darker
shades of blue).

Figure 4.11. The consequent slowdown of the time evolution eventually causes the
simulation to break down [94]. This behaviour is in stark contrast with what had
been observed in the simulations of the free theory, where χmax was found to be
constant.

Truncation of the electric field. Another important simulation parameter is
the number N of electric field levels resulting from the truncation procedure. It has
been shown [79] that N = 3 gives already an excellent approximation of the exact
ground state of the (massless) Schwinger model. For dynamical processes the answer
is likely to depend significantly on the specific process under investigation. Here we
focus on the meson-meson scatterings in Figures 4.5–4.6 and, more precisely, on the
weakest coupling case g = 0.08. At a first analysis, this case appeared to be the most
demanding one in terms of the number of link levels required. The interpretation
is twofold: for weaker coupling it is energetically less unfavourable to excite states
with high electric field, and the compenetration between the two mesons is more
pronounced. This results in a high probability of finding at least two charges of the
same sign on the same side of a bipartition of the chain. According to the Gauss
law of the untruncated model, such a configuration should have a maximum electric
field of at least 2, questioning the validity of an N = 3 truncation for scattering
processes. As we now show, N = 5 turned out to be insufficient either.

The analysis that follows is based on the Schwinger model Gauss law (2.119)

G(x) |Ψphys〉 = 0 , G(x) = Ex+1
x − Exx−1 − σ+

x σ
−
x + 1− (−1)x

2 . (4.21)
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As discussed in Subsection 2.4B the cyclic truncation scheme returns a ZN gauge
theory, whose gauge invariant states are only required to satisfy the original Gauss
law modulo N , as per (2.133). If our aim was that of studying the ZN lattice gauge
theory, we should treat all these states as physical. Since here the ZN model is
introduced as an approximation of the U(1) theory, we still regard the states not
satisfying the U(1) Gauss law as unphysical. On the other hand, these states can
be generated by the dynamics of the ZN theory and even by our meson creation
operators. When a configuration that cannot be represented exactly with the avail-
able number of electric field levels is generated, the U(1) Gauss law is violated. We
conclude that, even if there is no way of consistently imposing the physical state
condition, we can easily check for its violation monitoring the expectation value of
the U(1) Gauss law. If the truncated model is a good approximation of the exact
theory, we expect the state of the system |Ψ〉 to always contain a small fraction of
Gauss law violating configurations and thus to yield a small 〈Ψ|G(x)|Ψ〉. If this is
not the case we conclude that more link levels are needed.

The expectation value of the Gauss law in Z3, Z5 and Z7 simulations of a meson-
meson scattering with m = 0.9, g = 0.08 are shown in Figure 4.12 (in two colour
scales). The singular values are truncated at 10−5. According to the convergence
behaviour in9 Figure 4.10 the truncation error should be O(10−3). An error of the
same magnitude comes from the δt = 0.05 fourth order Trotter decomposition.

While the simulated values of N are too few to study a convergence of some observ-
able, the obtained results still allow to draw some conclusions. In all the simulations
a violation of Gauss law is observed but in the N = 7 case the violation is below
the precision of the simulation O(10−3), as is clear from the plot in the second row.
Observe that for N = 3 Gauss law is badly violated even by the preparation of the
meson states; for N = 5 a significant violation takes place when the tails of the
meson wave packets start to compenetrate.

9 Actually, those results are referred to the strong coupling case. In the weak coupling case the
convergence might be slightly different but the orders of magnitude are likely to be the same.
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Figure 4.12: Gauss law violation (expectation value) in Z3, Z5 and Z7
simulations of a weak coupling meson-meson scattering. The colour scale
is linear for −δ < 〈G〉 < +δ and logarithmic outside, with δ = 10−9 for
the plots in the first row and δ = 10−3 for the second. The alternating
sign is due to the usage of staggered fermions and ρ = σ+

x σ
−
x −(x mod 2).

The free peak trajectories are shown in overlay to help locating the space-
time region where the Gauss law violation takes place.



Conclusion and Outlook
We presented an idealized description of a scattering process and we specialized it
to a recipe for the lattice computation of S-matrix elements. We reviewed the classi-
cal Hamiltonian description of 1 + d dimensional abelian and nonabelian continuum
gauge theories, deriving the Gauss law constraint and discussing how it should be
treated upon quantization. We then focused on Hamiltonian lattice theories, in-
troducing a possible lattice description of Dirac fermions fields, namely staggered
fermions, and gave a unified presentation of the compact formulation of abelian and
nonabelian gauge theories. We solved the quantum theory of free staggered fermions
in 1+1 dimensions and showed that it reproduces the features of its continuum coun-
terpart. The solution we found allowed us to construct creation operators for free
fermion wave packets. The generalization to higher space dimensions is straightfor-
ward. We then studied the theory of quantum electrodynamics in 1 + 1 dimensions,
also known as Schwinger model. We presented some strategies to approximate the
theory using a finite dimensional Hilbert space: the integration of the electric field,
the quantum link models and the ZN gauge theories. Some of these apply also in
higher space dimensions or to nonabelian gauge theories. We identified the asymp-
totic states of the theory as meson bound states and discussed how such states can
be prepared, with different degrees of approximation.

We studied tensor network methods for the numerical simulation of quantum many-
body problems, specifically matrix product states and operators. Exploiting them,
we verified our solution of the free theory by simulating the kinematics of some
free fermion wave packets. Afterwards, we simulated some scattering processes in
the Schwinger model using two approaches. We first integrated out the gauge field
degrees of freedom which, however, was not efficient enough to observe meaningful
scatterings. On the contrary, tensor network methods allowed us to explore these
processes. We backed up this claim by reporting the outcome of some proof of princi-
ple scattering simulations of the collision between two mesons, and by studying their
numerical convergence. We were able to reproduce different behaviours for different
coupling strengths. These ranged from a qualitatively almost free propagation to a
manifest repulsion. We monitored the entanglement entropy during the scattering
and observed that, in contrast with the free theory, the interaction always generates
entanglement between the final products of the collision. We gave a preliminary
characterization of the minimum N required for a ZN simulation of meson-meson
scatterings.

89
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A possible follow up of this work consists in its generalization to non abelian theories
and, maybe, to higher space dimensions. Another outlook concerns the improvement
of the modelling of the initial meson states. Some possibilities in this direction have
already been hinted in this Thesis. Apart from the introduction of these and other
additional features, it should be stressed that the tools developed with this work
already allow for the investigation of some interesting phenomena in the lattice
Schwinger model. We thus conclude that it might be worth to perform new sim-
ulations in a systematic way, varying the model or initial wave packets parameters.
Finally, it should be possible to increase the lattice size and, eventually, study the
continuum and thermodynamic limits of the obtained results. If this turns out to
be too demanding in terms of computational resources, we mentioned that there is
room for significant optimizations in our tensor network codes. The implementation
of more efficient simulations provides yet another potential future continuation of
this work.



A
Fermions in 1 + 1 Dimensions
According to Wigner [3], particles are classified on the basis of their transformation
law under spacetime (and eventually internal, but we ignore these here) symmetries.
We now review [50] the possibilities in 1 + 3 spacetime dimensions and analyze the
differences arising in 1 + 1 dimensions.

First of all, we shall be more precise about what is meant by spacetime symmetries.
In Section 1.1 we identified these with the Poincaré group, however, it turned out
[7, 8, 12] that among Lorentz transformations only those that do not change the
orientation of space or time are exact symmetries of nature. These belong to its
identity component, the restricted Lorentz group SO+(1, d). In this Thesis invariance
under space inversions is also assumed, but it can be implemented separately because

O(1, d) ∼= {1,P, T ,PT }n SO+(1, d) (A.1)

where P and T are parity and time-reversal.

All is left to do is to study the representations of the restricted Poincaré group
ISO+(1, d). As a prerequisite, its Lie algebra is

[Mµν ,Mρσ] = ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ (A.2a)
[Mµν , Pρ] = ηµρPν − ηνρPµ (A.2b)

[Pµ, Pν ] = 0 (A.2c)

with d(d+ 1)/2 independent Mµν = −Mνµ generating Lorentz transformations in a
neighborhood of the group identity and 1 + d momenta Pµ generating translations.

The unitary irreducible representations can be found by the method of induced rep-
resentations [3], now informally summarized for completeness. Notice that, since the
(restricted) Lorentz and Poincaré groups are not compact, their nontrivial unitary
representations will be infinite dimensional.

Firstly, the unitary irreps of the translation group are characterized. These are in
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correspondence with the (generalized) eigenvectors of the four-momentum operator,

Û(a) |pσ〉 = e−ia
µP̂µ |pσ〉 = e−ia

µpµ |pσ〉 ; (A.3)

labeled by pµ ∈ R1,d and a finite1 index σ for the (p-independent) degeneracy. Sec-
ondly, the orbits of SO+(1, d) in pµ space are identified. Exponentiating (A.2b) P̂µ is
seen to transform in the fundamental representation of the Lorentz group and so do
its eigenvectors2. Consequently, the orbits are labeled by the invariants m2 = pµpµ
and, for m ≥ 0, by sgn p0. A unitary representation of the whole ISO+(1, d) is ob-
tained appropriately “gluing together” the spaces generated by |pσ〉 corresponding
to momenta pµ in a given orbit. Thirdly, the action of SO+(1, d) on each orbit is
factorized as follows. Chosen a representative momentum kµ, any Λ ∈ SO+(1, d)
can be decomposed in a standard transformation Λp that maps3 |kσ〉 in |pσ〉 and a
transformation W of the isotropy group or little group, leaving kµ invariant

Û(Λ) |pσ〉 = Û(Λ) Û(Λp) |kσ〉 = Û(ΛΛp) Û(Λ−1
ΛpΛΛp) |kσ〉 = Û(ΛΛp) Û(W ) |kσ〉 .

(A.4)
Lastly, the possible Û(W ), furnishing a representation of the little group, have to
be investigated. The physical orbits fall in three different classes, (m > 0, p0 > 0),
(m2 = 0, p0 > 0) and pµ = 0, each with its own little group. For concreteness, let us
focus on the first case. As representative momentum we may take k0 = m, ki = 0.
The associated little group is the rotation group SO(d) which is compact and thus
has finite dimensional unitary irreps Dστ (W ), validating the requirement that the
degeneracy index is finite. Analogous results hold for the other two classes of orbits.
In particular pµ = 0 (assumed to be degeneracy-free) is identified with the vacuum
state |0〉 of the theory, corresponding to the absence of particles rather than a single
particle state. It is trivially invariant under the whole ISO+(1, d).

The classification of the unitary irreps of the Poincaré group has thus been reduced to
the simpler problem of finding the unitary irreps of the rotation group. Yet to discuss
is the construction of projective representations. In [3] Wigner proved that every
projective unitary representation of the restricted Poincaré group in four spacetime
dimensions comes from an ordinary one of its covering group SL(2,C) n R1,3. The
above derivation goes on unchanged, except for the little groups which are replaced
with their double covers, e.g., SO(3) is replaced by Spin(3) ∼= SU(2), giving rise to
half-integer quantum numbers. Their unitary irreps are labeled by spin j ∈ N/2 (for
the m > 0) case and helicity j ∈ Z/2 (m = 0). Finally, the spin-statistic theorem

1 This reasonable requirement is because we want (1.115) to hold for a finite number of quantum
fields. Eventual continuous degeneracies are considered unphysical.

2 Explicitly, P̂µ Û(Λ) |pσ〉 = Û(Λ) Û†(Λ) P̂µ Û(Λ) |pσ〉 = Û(Λ) Λµν P̂ ν |pσ〉 = Λµνpν Û(Λ) |pσ〉.
3 Eventually redefining the degeneracy index such a Λ can always be found.
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[13, 50] states that, in order to preserve causality, fields that correspond via (1.115)
to irreps of even (odd) 2j have to commute (anticommute) at separated spacetime
points, thus satisfying bosonic (fermionic) statistic.

In two spacetime dimensions the intrinsically projective representations emerge in
a different way but these do not admit a physical interpretation as particles [51].
On the other hand the little groups encountered in ordinary representations, such
as SO(1), are trivial whence, properly speaking, there is no such thing as spin and
all fields are scalars [39]. Nevertheless, the restricted Lorentz group still possesses
integer and half-integer quantum number representations. Most importantly, fields
in these representations still obey commutation and anticommutation relations re-
spectively [39, 72]. In light-cone coordinates,

x± = x0 ± x1 , η = dx+ dx− ; (A.5)

the defining representation of SO+(1, 1) consists of the boost matrices

Λξ =
[
e+ξ 0
0 e−ξ

]
= eξM01 , M01 =

[
+1 0
0 −1

]
(A.6)

parametrized by the rapidity ξ. It is clearly reducible; the irreducible representations
are labeled by j ∈ R and read

Dj : Λξ
∼7−−→ ejξ . (A.7)

Among these, the ones with j ∈ Z/2 correspond to commuting or anticommuting
fields [39]. Now, (A.6) shows that under parity ξ → −ξ; if P is to be implemented,
irreps consist of either D0 or pairs of opposite j representations Dj ⊕D−j that get
exchanged by P. For j = 1 the vector representation (A.6) is recovered; j = 1/2 is
instead the Dirac spinor4. Indeed, in two spacetime dimensions a possible choice of
gamma matrices verifying (1.43) is

γ0 =
[
0 1
1 0

]
, γ1 =

[
0 −1
1 0

]
 Σ01 = 1

2γ0γ1 = 1
2

[
+1 0
0 −1

]
, (A.8)

providing a boost generator which is half of the one of vectors (A.6), as expected.
From (A.8) it is also clear that the Dirac spinorial representation embeds a parity
transformation implemented by means of γ0.

4 Contrary to what happens in d = 3 where inequivalent finite-dimensional representations of the
Lorentz group induce inequivalent unitary representations of the Poincare group, all these different
j representations correspond to the same (up to the mass P̂ 2) Poincaré representation [39].





B
Staggered Functions
Consider the piecewise (staggered) function

ϕ : {1, 2, . . . , 2N} → C , x 7→

χE(x) x even
χO(x) x odd

. (B.1)

An expression for its discrete Fourier transform F can be obtained rewriting ϕ as

ϕ(x) = ϕE(x) + ϕO(x) = 1 + (−1)x
2 χE(x) + 1− (−1)x

2 χO(x) ; (B.2)

and applying the discrete convolution theorem [48]

ϕ(k) = ϕE(k) + ϕO(k) =
{
F
[

1 + (−1)x
2

]
∗ F [χE] + F

[
1− (−1)x

2

]
∗ F [χO]

}
(k) ,

(B.3)

with k ∈ (π/N) {−N,−N + 1, . . . , N − 1}. Observing that

1 = ei0x =
∑
k

eikxδ(k) , (−1)x = eiπx =
∑
k

eikxδ(k + π) (B.4)

and thus

1
2N

∑
x even
x odd

e−ikx = F
[

1± (−1)x
2

]
(k) = δ(k)± δ(k + π)

2 ; (B.5)

the convolutions are trivial

ϕE(k) = χE(k) + χE(k + π)
2 , ϕO(k) = χO(k)− χO(k + π)

2 . (B.6)

Notice the completely general behaviour under k → k + π,

ϕE(k + π) = +ϕE(k) , ϕO(k + π) = −ϕO(k) ; (B.7)

we refer to these stating ϕE (ϕO) is π-periodic (π-antiperiodic) or π-shift even (odd).
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Journal of Mathematical Physics 37, 2376–2387 (1996) 10.1063/1.531516.

[52] R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Theoretical and
Mathematical Physics (Springer Berlin Heidelberg, 1996), 10.1007/978-3-
642-61458-3.

[53] S. Weinberg, “What is Quantum Field Theory, and What Did We Think It
Is?”, in Conceptual foundations of quantum field theory. Proceedings, Sympo-
sium and Workshop, Boston, USA, March 1-3, 1996 (Mar. 1996), pp. 241–251,
arXiv:hep-th/9702027.

[54] S. Chandrasekharan and U.-J. Wiese, “Quantum link models: A discrete ap-
proach to gauge theories”, Nucl. Phys. B 492, 455–471 (1997) 10 . 1016 /
S0550-3213(97)80041-7.

[55] J. Kijowski, G. Rudolph, and A. Thielmann, “Algebra of Observables and
Charge Superselection Sectors for QED on the Lattice”, Communications in
Mathematical Physics 188, 535–564 (1997) 10.1007/s002200050178.

https://doi.org/10.1142/0356
https://www.worldscientific.com/doi/pdf/10.1142/0356
https://www.worldscientific.com/doi/pdf/10.1142/0356
https://doi.org/10.1016/0550-3213(90)90646-U
https://doi.org/10.1016/0550-3213(90)90646-U
https://doi.org/10.1063/1.529425
https://doi.org/10.1063/1.529425
https://doi.org/10.1063/1.529425
https://doi.org/10.1063/1.529425
https://doi.org/10.1063/1.529425
https://doi.org/10.1007/3-540-58339-4_14
https://doi.org/10.1007/3-540-58339-4_14
https://doi.org/10.1007/3-540-58339-4_14
https://arxiv.org/abs/hep-th/9312078v3
https://doi.org/10.1017/CBO9781139644167
https://doi.org/10.1063/1.531516
https://doi.org/10.1063/1.531516
https://doi.org/10.1007/978-3-642-61458-3
https://doi.org/10.1007/978-3-642-61458-3
http://arxiv.org/abs/hep-th/9702027
http://arxiv.org/abs/hep-th/9702027
https://arxiv.org/abs/hep-th/9702027
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1007/s002200050178
https://doi.org/10.1007/s002200050178
https://doi.org/10.1007/s002200050178


Bibliography 101

[56] B. B. Beard, R. C. Brower, S. Chandrasekharan, D. Chen, A. Tsapalis, and
U. .-J. Wiese, “D-theory: field theory via dimensional reduction of discrete
variables”, Nuclear Physics B - Proceedings Supplements, Proceedings of the
XVth International Symposium on Lattice Field Theory 63, 775–789 (1998)
10.1016/S0920-5632(97)00900-6.

[57] R. Gupta, “Introduction to Lattice QCD”, (1998), arXiv:hep-lat/9807028
[hep-lat].

[58] R. Brower, S. Chandrasekharan, and U.-J. Wiese, “QCD as a quantum link
model”, Physical Review D 60, 094502 (1999) 10 . 1103 / PhysRevD . 60 .
094502.

[59] E. Abdalla, M. C. B. Abdalla, and K. D. Rothe, Non-Perturbative Methods in
2 Dimensional Quantum Field Theory, 2nd (WORLD SCIENTIFIC, 2001),
10.1142/4678.

[60] T. Byrnes, Density Matrix Renormalization Group: A New Approach to Lat-
tice Gauge Theory (timbyrnes, 2003).

[61] B. S. DeWitt and B. S. DeWitt, The Global Approach to Quantum Field
Theory (Oxford University Press, 2003).

[62] J. B. Kogut and M. A. Stephanov, “The Phases of Quantum Chromodynam-
ics: From Confinement to Extreme Environments”, in (Cambridge University
Press, Dec. 2003) Chap. 6 The Hamiltonian version of lattice gauge theory.

[63] S. Chandrasekharan and U.-J. Wiese, “An Introduction to Chiral Symmetry
on the Lattice”, Prog. Part. Nucl. Phys. 53 (2004) 373-418, 10.1016/j.
ppnp.2004.05.003 (2004) 10.1016/j.ppnp.2004.05.003, arXiv:hep-
lat/0405024v1 [hep-lat].

[64] T. H. Hansson, V. Oganesyan, and S. L. Sondhi, “Superconductors are topo-
logically ordered”, Annals of Physics 313, 497–538 (2004) 10.1016/j.aop.
2004.05.006.

[65] M. B. Hastings, “An area law for one-dimensional quantum systems”, Jour-
nal of Statistical Mechanics: Theory and Experiment 2007, P08024–P08024
(2007) 10.1088/1742-5468/2007/08/P08024.

[66] D. Tong, Quantum Field Theory (2007).

[67] K. Konishi and G. Paffuti, Quantum Mechanics: A New Introduction (Oxford
University Press, Oxford, New York, Mar. 2009).

[68] U.-J. Wiese, “An introduction to lattice field theory”, (2009).

https://doi.org/10.1016/S0920-5632(97)00900-6
https://doi.org/10.1016/S0920-5632(97)00900-6
https://doi.org/10.1016/S0920-5632(97)00900-6
https://arxiv.org/abs/hep-lat/9807028
https://arxiv.org/abs/hep-lat/9807028
https://doi.org/10.1103/PhysRevD.60.094502
https://doi.org/10.1103/PhysRevD.60.094502
https://doi.org/10.1103/PhysRevD.60.094502
https://doi.org/10.1142/4678
https://doi.org/10.1016/j.ppnp.2004.05.003
https://doi.org/10.1016/j.ppnp.2004.05.003
https://doi.org/10.1016/j.ppnp.2004.05.003
https://doi.org/10.1016/j.ppnp.2004.05.003
https://doi.org/10.1016/j.ppnp.2004.05.003
https://arxiv.org/abs/hep-lat/0405024v1
https://arxiv.org/abs/hep-lat/0405024v1
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1088/1742-5468/2007/08/P08024


102 Bibliography

[69] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete, “Matrix product operator
representations”, New Journal of Physics 12, 025012 (2010) 10.1088/1367-
2630/12/2/025012.

[70] A. H. Al-Mohy and N. J. Higham, “Computing the Action of the Matrix
Exponential, with an Application to Exponential Integrators”, SIAM Journal
on Scientific Computing 33, 488–511 (2011).
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wards overcoming the Monte Carlo sign problem with tensor networks”, EPJ
Web of Conferences 137, 04001 (2017) 10.1051/epjconf/201713704001.

[91] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Introduc-
tion to Quantum Entanglement (Cambridge University Press, Aug. 2017).

[92] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S.
Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin,
“Probing many-body dynamics on a 51-atom quantum simulator”, Nature
551, 579–584 (2017) 10.1038/nature24622.

[93] E. Ercolessi, P. Facchi, G. Magnifico, S. Pascazio, and F. V. Pepe, “Phase tran-
sitions in Zn gauge models: Towards quantum simulations of the Schwinger-
Weyl QED”, Physical Review D 98, 074503 (2018) 10.1103/PhysRevD.98.
074503.

https://doi.org/10.1088/1367-2630/16/10/103015
https://doi.org/10.1088/1367-2630/16/10/103015
https://doi.org/10.1088/1367-2630/16/10/103015
https://arxiv.org/abs/1404.7439
https://doi.org/10.1016/j.nuclphysa.2014.09.102
https://doi.org/10.1016/j.nuclphysa.2014.09.102
https://doi.org/10.1016/j.nuclphysa.2014.09.102
https://doi.org/10.1088/1751-8113/48/30/30FT01
https://doi.org/10.1088/1751-8113/48/30/30FT01
https://doi.org/10.1088/1751-8113/48/30/30FT01
https://doi.org/10.1080/00107514.2016.1151199
https://doi.org/10.1080/00107514.2016.1151199
https://doi.org/10.1080/00107514.2016.1151199
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1088/0034-4885/79/1/014401
https://doi.org/10.1088/0034-4885/79/1/014401
https://doi.org/10.1088/0034-4885/79/1/014401
https://doi.org/10.1051/epjconf/201713704001
https://doi.org/10.1051/epjconf/201713704001
https://doi.org/10.1051/epjconf/201713704001
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevD.98.074503
https://doi.org/10.1103/PhysRevD.98.074503
https://doi.org/10.1103/PhysRevD.98.074503


104 Bibliography

[94] J. Hauschild and F. Pollmann, “Efficient numerical simulations with tensor
networks: tensor network python (tenpy)”, SciPost Phys. Lect. Notes 5, 10.
21468/SciPostPhysLectNotes.5 (2018) 10.21468/SciPostPhysLectNotes.
5, arXiv:1805.00055v4 [cond-mat.str-el].

[95] S. Montangero, Introduction to Tensor Network Methods: Numerical simula-
tions of low-dimensional many-body quantum systems (Springer International
Publishing, 2018), 10.1007/978-3-030-01409-4.

[96] D. Tong, Gauge theory (2018).
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