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Abstract

Brain–Computer Interface (BCI) is a technology that promises to directly connect the human

brain with external devices by translating user intentions into control signals. The primary aim

of this technology is to develop applications that enhance the quality of life for individuals

suffering from various motor-related pathologies. To achieve this, several approaches have

been explored, including the integration of human intention with robotic intelligence, resulting

in shared control systems.

In this thesis, an existing Motor Imagery EEG-based BCI, successfully used to drive an electric

wheelchair, has been integrated with a Hidden Markov Model (HMM) framework to merge

BCI and environmental data, creating a more robust shared control system. Additionally, this

framework introduces the ’Rest’ class, expanding the classifier’s output from two (’Both Hands’

and ’Both Feet’) to three classes. This approach was tested on six healthy subjects in a simulated

environment (ROS-Gazebo) using three different configurations. Enhanced performances were

observed when environmental data were incorporated into the process. Based on the promising

results of this preliminary work, further refinement and implementation could lead to higher

stability and improved performances.
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1 Introduction

The Brain-Compute Interface (BCI) concept was first introduced in the early 1970s by Jacques

J. Vidal [1], he showed the potential of using electroencephalographic signals in order to

dialogue with a machine, opening the way for the study of neuroelectric events elicited by

such interactions. Since then significant strides have been made in BCI research, driven by the

refinement of digital systems that have greatly enhanced the efficiency and ease of acquiring,

storing, and processing neurophysiological data. These advancements have not only expanded

our understanding of brain activity, but have also led to the development of sophisticated BCI

applications that are increasingly integrated into real-world environments [2]. In particular,

the last decade has been highly productive in the field of BCI, both invasive and non invasive

techniques have been extensively studied in order to convert the brain activity into control

signals suitable for simulated environment or real robotic systems. The main purpose of BCI

is then providing an alternative pathway of communication between the brain and computers

especially beneficial for individuals with motor disabilities, such as Amyotrophic Lateral

Sclerosis (ALS), Locked-in Syndrome (LIS), brainstem stroke, brain or spinal cord injury and

many more.[3]. Different experiments have been conducted in order to develop assistive device

that might enhance the quality of life of such individual. For example the BCI driven speller

could allow the patient to communicate just by looking at a monitor [4], while the BCI driven

wheelchair promises to enhance its mobility and autonomy [5].

In this first chapter the reader will go trough the BCI foundations, including the nature

of the involved signals and the various acquisition methods available, with a particular focus

on Motor Imagery (MI) EEG-based BCI.
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1.1 Invasive and Non-invasive Acquisition Techniques

The first crucial step in Brain-Computer Interface is acquiring useful cerebral signals. The

methods available can be grouped in invasive and non-invasive techniques according to the

level at which the signals are recorded [3].

The invasive approach is based on the implantation of electrodes arrays directly into the

cortical tissues through out medical surgery. The electrodes type depends on the specific

technique used, indeed it’s possible to distinguish two main categories, namely Electrocor-

ticography (ECoG) and Multielectrode arrays (MEAs) [6]. ECoG exploits the implantation

of electrodes array subdurally on the arachnoidal surface of the brain without penetrating the

cerebral tissue, typically these arrays consist of electrodes 2.3 mm in diameter placed 1 cm

apart [7]. However the research is moving toward the miniaturization of ECoG arrays and

new µ-ECoG arrays have been recently studied in order to improve the spatial resolution end

reduce the invasiveness of the intervention [8]. An example of ECoG array is shown in Figure

1.1a. MEAs are electrode arrays that penetrate the cerebral tissue in order to offer extremely

high spatial resolution. These electrodes are usually based on silicon and ceramics material

and characterized by an high number of needles up to 100 needles per module [6]. Examples

of MEAs are shown in Figure 1.1b. The invasive techniques allow to record both the electrical

activity of single neurons and the summed neural activity from small populations of cells,

leading to two types of signals, namely the single unit spikes and the local field potentials

(LFP) respectively. These acquisition methods offer an high spatial resolution as well as an

high temporal resolution compared to the non-invasive techniques. However the side effects of

this approach are not neglectable, indeed beside the risk involved in the surgery, its important

to consider the possible inflammation of the tissue that eventually leads to device encapsulation

and formation of scar tissue on the cerebral cortex. Although important progress have been

achieved in terms of biocompatibility, this still a challenge for further studies [6].

Non-invasive approaches allow to retrieve the activity of large population of neurons,

and generally they are characterized by poor spatial resolution and a very good temporal

resolution. These techniques exploit signals that can be acquired from outside the body such

as variation of the electrical field, in case of Electroencephalography (EEG), changes in

magnetic field, refers to the Magnetoencephalography (MEG), and hemodynamic responses,

via functional magnetic resonance imaging and functional near-infrared spectroscopy [6]

[3]. Characterized by low cost and high portability, EEG is the most suitable solution for

non-invasive BCI application [3].
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(a) (a) Picture of a clinical electrocorticography

(ECoG) grid underneath a micro-ECoG (μECoG)

array. Side-by-side comparison of the regular

macro-ECoG and μECoG arrays showing differ-

ence in electrode spacing. (b) X-ray image show-

ing the implanted ECoG and μECoG electrode. [8]

(b) (A) Cyberkinetics silicon-based 100-channel

MEA. (B) View of recordings sites on the Cy-

berkinetics array. (D) Tucker-Davis Technologies

(TDT) microwire MEA. (E) View of recording

sites on the TDT microwire array. [6]

Figure 1.1: Example of invasive techniques electrodes

1.2 Foundation of Electroencephalography (EEG)

Human brain is populated by billions of neurons forming a dense network that can be divided

into many subnetworks depending on the task performed. Neurons communicate with each

other exploiting both chemical and electrical junctions, although they are characterized by

different properties, the main process remain the same. A particular electrical signal known as

Action Potential (AP) is actively conducted via the presynaptic neuron axon until it reaches the

synaptic termination. Here the information encoded in the AP firing frequency is transmitted

to the postsynaptic neuron as Post Synaptic Potential (PSP). The signal is then passively

conducted via the postsynaptic neuron dendrites toward the cell body known as soma. At the

soma level all the incoming signals are spatially and temporally integrated and, if a certain

threshold is reached, an AP is generated in the axon, continuing the communication process.

The continuous flowing of ionic current between cells lead to changes in the local extracellular

potential and this phenomenon takes the name of Local Field Potential (LFP). Thanks to the

conductive properties of the overlying tissues and the brain itself, it is possible to sense a

distorted version of the LFP through electrodes mounted at the scalp level. LFP decays with

the square of the distance from the source and, furthermore, the volume conductance of the

head’s tissues acts as a spatial smoother, hence only synchronous activity of large population of

neurons can be detected by EEG electrodes [9]. Piramidal cells are particular shaped neurons

that populate the brain cortex and they are considered to be the main source of EEG. This is
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because they are oriented perpendicular to the scalp surface and parallel to each other, allowing

the integration of all the electrical dipoles resulting from their activity. As a result, an electric

field is generated, which can propagate over long distances [9]. A sketch of the piramidal cell’s

electrical dipole is shown in Figure 1.2.

Figure 1.2: Piramidal cell sketch seen as BCI source. The spatial and temporal dendritic inte-

gration of synaptic transmission leads to formation of electrical dipoles [9].

1.2.1 Cortical Areas and Electrodes

The signal retrieved via EEG reflect the major synchronous activity of the brain cortex, which is

the outer part of the cerebrum. Five different anatomical part can be distinguished on the brain

cortex, namely the frontal lobe, the parietal lobe, the occipital lobe and two temporal lobes. In

addiction to those anatomical lobes, several functional areas can be identified on the cerebral

cortex. These areas are not strictly confined in the anatomical lobes boundaries and may vary

among the two hemispheres. The so called functional areas are generally classified into three

categories: sensory areas, which process the afferent sensory signals; the motor areas, which are

involved in controlling voluntary movements; and associative areas, which are related to higher

cognitive process [10]. A diagram is provided in Figure 1.3 for better understanding. In order

to acquire useful signals from the aforementioned cortex partitions, a standard position system

is used to ensure equal spacing between electrodes placed on the scalp. Following the 10-20

original system the electrodes are placed at 10% and 20% distances form the four anatomical

landmarks, namely the nasion, inion, left and right preauricular points. More electrodes wise

dense system, such as the 10-10 and the 10-5 system, have been designed exploiting the same

principle [9]. Regardless of the system used, electrodes are named after the hemisphere and

the lobe over which they are placed. The name begins with one or two letters that refer to the
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anatomical lobe: F for frontal lobe, C for the central longitudinal line, P for the parietal lobe,

O for the occipital lobe, and T for the temporal one. An additional character can be used to

specify the proximity of the electrode to an other lobe; for example Fc stands for an electrode

in the Frontal lobe but near the central line. Moreover the second character z means that the

electrode lies on the sagittal line. After the letters comes a odd number for left hemisphere and

a even number for the right one. [9]. An explicative sketch is provided in Figure 1.4. Over

the years, several types of electrodes have been developed, which can be categorized into three

main groups: gel-based, water-based, and dry electrodes. As the name suggests, the latter type

doesn’t require any addiction of gel, or water, as conductive bridge between the scalp and the

actual electrode. Compared to the gel or water based electrodes, dry electrodes ensure a faster

setup and eliminate the need to wash the head after use. However gel and water based electrodes

offer grater stability and reliability, especially in terms of robustness against movement artifact

[9]. The most suitable electrode type should be selected based on the experimental needs.

Figure 1.3: Diagram of human brain cortex lobes and functional areas [10].

Figure 1.4: 10-5 electrode system, 10-20 are labeled and bold [9].
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1.2.2 EEG signal and rhythms

EEG can be classified as a non-stationary stochastic signal, namely it exhibits random and un-

predictable behavior that depends on initial condition. However, for short time windows, it can

be assumed as stationary. EEG signal is characterized by a peak-to-peak amplitude typically

under 100µV and a wide frequency spectrum, within which specific bands are associated with

different physiological states [9]. A representation of the different EEG rhythms is shown in

Figure 1.5. Although EEG signal is strongly individual specific, studying changes in the bands

listed below can give valuable insight about the cognitive state of the subject and offer informa-

tion about the mental task being performed.

• Delta (δ) rhythms (0.5-4 Hz) are the slowest EEG waves, they are characterized by high

amplitude and are most prominent in the frontal and central regions of the brain during

deep and restorative sleep. They play a critical role in processes such as memory consol-

idation and brain recovery [11].

• Theta (θ) rhythms (4-8 Hz) have moderate amplitude and are typically observed in the

frontal and temporal regions during lighter sleep stages, relaxation, and meditative states,

reflecting creativity and daydreaming [11].

• Alpha (α) rhythms (8-12 Hz) feature moderate amplitude and are most pronounced in the

occipital and parietal regions when a person is awake but relaxed, often with closed eyes.

They are associated with a state of calm attentiveness and readiness [11].

• Beta (β) rhythms (13-30 Hz) have lower amplitude and are prominent in the frontal and

central regions. They are linked to active cognitive processes such as problem-solving,

focused attention, and motor control, and they tend to increase with mental activity and

alertness [11].

• Gamma (γ) rhythms (30-100 Hz) exhibit low amplitude and high frequency and are dis-

tributed across multiple brain regions, including the parietal and frontal lobes. They are

involved in higher-order cognitive functions, such as sensory perception, working mem-

ory, and the integration of information across different brain areas [11].
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Figure 1.5: Representation of the different EEG rhythms.

1.3 Event Related Potential and Self-paced BCI

EEG-based BCI aims to retrieve the variation of the brain activity caused by a specific event in

order to extrapolate the event itself and parse it into some kind of control signal. Based on the

source of the event, two major types of EEG-based BCIs have been developed over the years:

Event-Related Potential (ERP) and self-paced BCI. The first type, ERP, relies on exogenous

stimuli that elicit responses in the subject’s brain, while the second type, self-paced, is based

on endogenous stimuli voluntarily controlled by the subject. Like other types of BCI, these

methods require a loop architecture in which the subject plays a fundamental role [3].

1.3.1 Human In The Loop

Both the exogenous and the endogenous paradigms share the main loop architecture. Indeed, in

both cases the EEG signal is acquired from the subject, then, the data collected are processed

as needed in order to feed a classifier, whose output is used as control signal for eventual ex-

ternal actuators. The difference between the two types of non-invasive EEG based BCI consist

on how the loop is closed. Namely, while for the exogenous paradigm the stimuli presented to

the subject does not represent the output, but it is just an exogenous stimuli, in case of endoge-

nous paradigm the stimuli is a proper feedback that resemble the classifier output. This closed

loop architecture allows the subject to understand and actively control the ongoing process [3].

Further details about exogenous (ERP) and endogenous (self-paced) BCIs are provided in the

following sections. Generally, beside the differences between these two types of paradigm, the

BCI classifier has to be trained on subject specific features, as a result two different steps are re-

quired for building a proper BCI loop, namely, the Calibration (or Offline) loop and the Control
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(or Online) loop [3] [12]. During the Calibration loop, data are acquired following specific trial

protocols in order to extract subject specific features and train the classifier. In particular, the

signal is processed to enhance the signal-to-noise ratio through out different methods. Spatial

filters are, indeed, applied to reduce the low frequency components, which can interfere with the

further analysis leading to bias in the interpretation of data. In addiction, algorithm of projec-

tion into multidimensional space, such as principal component analysis (PCA) and independent

component analysis (ICA), can be used for better explaining the variance of the signal and creat-

ing a new features space. Consequently, time and frequency based features can be extracted via

algorithms like shape detection, band-pass filters, Fourier transform, wavelet decomposition,

Welch’s algorithm, and many others [3]. Once the features are extracted, a process of feature

selection is performed in order to select only the most discriminant ones and reduce the dimen-

sionality of the classifier [3]. Several machine learning and deep learning approaches have been

tested in the field of BCI in order to create a stable and reliable classifier [13][14], which, once

trained over the extracted features from the calibration data, can be used in the actual Control

loop [12]. Finally, in the Control loop, the classifier is continuously fed with the samples re-

trieved by the subject, for delivering the needed control signals [12]. A sketch of the BCI loop

is provided in Figure 1.6 for better understanding.

Figure 1.6: Scheme of the BCI loop. Two different phases can be distinguished: the Offline and

the Online phase. During the Offline phase, the classifier is built based on the most discriminant

features. The classifier is then used in the Online phase for delivering the control signals. In

case of self-paced BCI, the loop is closed via a proper feedback.
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1.3.2 Event Related Potential BCI

Event Related Potential are transient brain activities triggered by specific external stimuli,

appearing as a finite series of waves named after their latency. They are characterized by

a much lower amplitude compared to the continuous EEG signal. In order to extract them,

averaging algorithms are applied to repeated epochs of the signal. Depending on the nature

of the stimulus, they are classified as visual, cognitive, motor, or auditory [10]. Therefore

ERP based BCIs exploit external stimuli in order to modulate the brain activity and parse the

retrieved information into control signals.

P300

P300 signal is one of the most studied event related signal, it is part of the cognitive type,

indeed it is elicited after a rare stimulus of interest is delivered to the subject. It appears as slow

positive deflection after about 300ms the stimulus on set and it is usually predominant over

the central parietal area [4]. Several experiments have shown the P300 potentiality in BCI, for

example the P300 speller. In this particular application, for each trial the subject is presented a

grid of letter of which each row and column correspond to a signal. The signal can be auditory,

namely a different tone for each row and column, or visual, when rows and columns are lighted

up randomly. The letter is selected as the match between the row and the column that elicited

the P300 potential [4]. In order to identify the signal, time base feature, such as amplitude and

wave shape, are used. Therefore the average between several trials is needed for extrapolating

a clear and stable signal. For this reason the P300 speller was born as an extremely slow but

reliable approach providing a letter every 26s with 95% of accuracy [4]. Although further

studies tried to improve the information per time ratio, this still the biggest downside of the

P300 speller approach [4]. The auditory ERP speller example is provided in Figure 1.7.

Steady State Visual Evoked Potential (SSVEP)

Steady State Visual Evoked Potential (SSVEP) represent an other valuable signal for BCIs.

It consist on a resonance phenomenon elicited mainly over the visual cortex, in the occipital

lobe, during the fixation of flickering light sources. In particular the SSVEP shows periodic

properties that reflect the blinking frequency of the light stimulus. Thanks to frequency domain

analysis, such as the power spectrum, it is possible to identify which is the presented stimulus

and parse it in control signals [15]. Indeed, few experiment have been conducted aiming to

drive a wheelchair exploiting SSVEP. During the trial the subject was asked to focus on a

screen in which four squares were constantly flickering at 37 Hz (top), 38 Hz (right), 39 Hz

(bottom) and 40 Hz (left). High frequencies have been used since they don’t interfere with the

spontaneous EEG and result more comfortable for the pilot. Power spectral density analysis
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was then applied to the occipital EEG in order to retrieve the amplitude of the peaks in 37

Hz, 38 Hz, 39 Hz and 40 Hz. When a certain frequency showed the higher peak for more

than 2s, the corresponding command was delivered to the wheelchair. An example of result is

shown in Figure 1.8. Although the subject fatigue played an important rule in decreasing the

performances, this method allowed the user to reach the effective control even without a proper

training [15].

Error-related Potential (ErrP)

Error-related Potential (ErrP) is an other evoked potential worth to mention. It is elicited

after the subject recognizes an error and it is believed to have origin in the Anterior Cingulate

Cortex (ACC), which is highly involved in the regulation of emotional responses. Three main

type of ErrP have been distinguished depending on the source of the error, namely, response,

feedback and observation ErrP [16]. The error ErrP is elicited after the subject realizes that it is

performing the wrong task, for example a wrong movement. The feedback ErrP, instead, arises

when the subject is notified that the choice it made is incorrect. Lastly, the observation ErrP

occurs when the subject recognize that the action performed by a third operator is erratic [16].

While the first type is characterized by a large positive peak occurring between 200ms and

500ms, the other two types show a negative deflection taking place after 250ms [16]. Compared

to the Error potential, the ErrP is a slow signal and it is suitable for a single trial detection

exploiting low-pass filtering [16]. It has been shown as the ErrP may be implied as control

gate in online BCI applications. In particular, if the ErrP is detected after presenting virtual

feedback to the subject, the trial is rejected and no actual control signal is generated. This

particular type of ErrP is called interaction ErrP [16]. A representation is provided in Figure

1.9. Further researches demonstrate how the ErrP can be involved in reinforcement learning

paradigm in order to teach a robotic arm the optimal motor behavior to reach a target. In this

case, the human cognitive capacities are used as a controller in the reinforcement learning loop,

Figure 1.10, letting the robot understand which the target is and how to reach it [17].
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(a) (A) 3×3 speller matrix design. (B) Distribution

of the nine stimuli tones to the stereo channel of

the headphone. T9 standard system is then used

to help in selecting the right character [18].

(b) (A) Grand averaged ERPs at electrodes Cz

(thick lines) and FC5 (thin lines). The ssAUC bars

(B) quantify the discriminative information for the

two channels. The averaged ERP scalp maps of

target and non-target stimuli for the two marked

time frames are shown in (C) [18].

Figure 1.7: Sound based P300 speller able to reach the speed of 0.89characters/min with an

accuracy up to 92.63% for short sentences [18].

Figure 1.8: Driving test results of a SSVEP driven wheelchair. (a) SSVEP power spectrum over

time; (b) Commands sent to the wheelchair based on the SSVEP powers showed in (a); (c) Path

described by the wheelchair with time stamps corresponding to (b) [15].
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Figure 1.9: Interaction ErrP for 5 different

subject at channel “FCz”, plus the grand av-

erage, with an error rate of 20%. Feedback is

delivered at time 0 s. Scalp potential topogra-

phies, for the grand average EEG of the five

subjects, at the occurrence of the peaks [16].

Figure 1.10: Reinforcement learning loop in

which the human plays the role of controller

through out the ErrP [17].

1.3.3 Self-paced BCI

The BCI techniques introduced so far rely on decoding the subject response after presenting

particular external stimuli, meaning the produced cerebral signals merely reflect what is

happening around the subject. In contrast, self-paced BCI systems are based on endogenous

stimuli, namely signals that the subject voluntarily generates [9]. As already highlighted, a

proper feedback system is therefore needed to help the subject understand the ongoing process

and, if necessary, make corrections [3].

Covert Visuospatial Attention (CVSA)

During the last few years, Covert Viasuospatial Attention (CVSA) signal has attracted the in-

terest of several research groups as an alternative paradigm for self-paced BCI. CVSA is related

to the process of focusing attention on different part of the visual field without the actual eye

movement. It results in a lateralized modulation of the α band power over the parietal and oc-

cipital lobes, which reflect the endogenous shift of the attention target [19]. In particular, the

power in the α band increases ipsilateral to the hemi-field containing the target the subject is

focusing on, resulting in a topographical distribution over the lateral and posterior cortex [20].

An example of different activation across the cortex is provided in Figure 1.11. The feasibility

of online BCI systems based on CVSA has been demonstrated for the first time by Tonin et

al. group, that exploited a time-dependent approach in order to classify two classes, namely,

bottom-left versus bottom-right [19]. In particular, the EEG signal acquired form the parieto-

occipital regions was filtered in order to obtain sub-bands in the α range. Referring to the trial

design (Figure 1.11), the period after 3000ms from the cue on set was divided into 150ms win-

dows, and for each window a quadratic discriminant analysis classifier was built over the most

discriminant features. The evidence for each window were accumulated thanks to a Bayesian
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framework in order to deliver the classification at the end of the trial [19]. This paradigm was

tested on 8 healthy subject, showing promising performances. Indeed none of the subject scored

a results below the chance level, and the average accuracy across subjects reached 70.6±1.5%.
Despite these preliminary results, additional studies that also involved the attempt to build a

neurofeedback training for goalkeepers, revealed that CVSA-based BCIs are still in the early

stages of development, and further research is needed to fully employ this method in real-world

applications [21].

Figure 1.11: (A) Schematic trial representation for a CSVA task. The subject was asked to focus

on the very bottom-right corner of the screen while staring at the cross located in the center of

the screen. (B) Evolution of the envelope of the signals in the α band (8–14 Hz) over the EEG

electrodes P7–8, PO7–8, O1–2. The topographic maps represent the difference between two

attention conditions, namely right against left, in six different time windows. The signals were

averaged across the ten healthy subjects that participated to the experiment [20].

Motor Imagery (MI)

Motor Imagery (MI) mental task is the most studied paradigm that lead to self paced signals.

In particular the subject is asked to think about performing a certain movement without physi-

cally executing it, causing a modulation of the EEG activity highly localized both in frequency

and in space domain [3]. Indeed, it has been shown that voluntary movements are preceded

by the so called Event Related Desynchronization (ERD), which is a decrease of power in µ

(8-12 Hz) and β (16-30 Hz) bands taking place 1.5s before the actual movement [22][23]. Fur-

thermore, after the movement, an increase of power is recorded in the same frequency bands,

producing the signal known as Event Related Synchronization (ERS) [23]. It is believed that

ERD and ERS are phenomenon reflecting the recruitment of cortical neurons populations while

performing a specific motor task [3]. In particular, ERD is given by the asynchronous activity

of cortical neurons that are recruited in order to perform the task, and therefore a low ampli-

tude and high frequency signal is recorded. Contrary, ERS occurs when the neurons activity is
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synchronized, namely during the idling state that follows the task execution [22]. According

to fMRI studies, compared to the movement task, MI task lead to the activation of similar and

broader areas over the sensorimotor cortex [24]. Indeed ERD and ERS can be seen even without

performing the actual movement [25]. Although the exact localization in space and frequency

domain is subject specific, each task is characterized by specific localization according to the

sensorimotor representation shown in Figure 1.12 [3]. For example, right or left hand MI would

result in contralateral activity, namely around electrodes C1–3 and C2–4, respectively; while

feet movement MI would be localized in the medial regions, namely around electrode Cz [3].

In Figure 1.13 is provided an example of ERD/ERS recorded both from a right hand movement

task and a right hand MI task, showing similar behavior. In this example ERD/ERS were ex-

tracted through out the following steps: first the raw EEG signal was divided into event related

trials, then for all the trials band-pass filters were applied in order to isolate the wanted fre-

quency, the squared amplitude was then obtain and averaging across all trial was applied, lastly

a smoothing filter was applied to reduce variability in the signal [22]. After the identification

of a reference period (R) and an active period (A) along the trial, it was possible to quantify the

ERD% as ERD% = 100 × (A−R)
R

[22]. An other example is provided in Figure 1.14, showing

the difference in the activation due to left hand and right hand MI task over C3 and C4 EEG

electrodes [25]. In conclusion, since different tasks lead to different activation of the cortex,

Motor Imagery signals can be exploited for reliable BCI implementations exploiting proper trial

designs as the one shown in Figure 1.15.

Figure 1.12: Sensorimotor representation on the motor cortex [12]
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Figure 1.13: (a) Grand average (n=9) ERD

curves calculated in the α and β bands in

a right hand movement task. Grand aver-

age maps calculated for a 125ms interval dur-

ing movement (A) and after movement-offset

in the recovery period (B). (b) Superimposed

ERD curves with β rebound from eight ses-

sions with right motor imagery in one sub-

ject. C3 EEG channel in 18-26Hz band is pro-

vided. ERD maps from one session display-

ing simultaneous contralateral ERD and ipsi-

lateral ERS during and contralateral ERS after

motor imagery. Areas are marked as ‘Red’ in-

dicating ERD, and ‘blue’ for ERS [22].

Figure 1.14: Grand average ERD/ERS curves

recorded over left and right sensorimotor cor-

tex during left and right hand motor imagery

task. The ERD/ERS time courses were cal-

culated for the α (upper panels, n=16) and β
range (lower panel, n=8). Controlateral acti-

vation (ERD) is clearly visible. A gray bar in-

dicates the time period in which the subject

were asked to perform the mental task [25].

Figure 1.15: Graz imagination paradigm for MI based BCI [25]. First, the subject focuses on a

cross displayed on the screen without performing any task. This period is also considered the

reference period for further computations. Next, a cue symbol is presented, indicating which

class the subject should perform in the following phase. During the control phase, active feed-

back is provided to the subject, reflecting the real-time output of the classifier.

20



Several studies have demonstrated the great potential of Motor Imagery based BCIs to improve

the lives of patients suffering from various pathologies by enabling the control of robotic and

prosthetic devices. For instance, Edelman et al. presented a BCI implementation to control a

robotic arm through MI, highlighting the importance of using an effective learning paradigm

to master the continuous control of the robotic device. [26]. In particular, the subjects used

mental imagery of left versus right hand movements (left-right MI) and both hands versus rest

(up-down MI) to directly control the horizontal and vertical movements of a cursor, in the fist

phase of the experiment, and subsequently, a real robotic arm. In order to train the subject, the

novel continuous pursuit task, instead of using discrete trial tasks, was employed. Namely, the

users had to continuously track a randomly moving target in a 2D workspace, requiring constant

focus and motor imagery. This approach significantly increased user engagement and learning

effectiveness compared to traditional tasks. Regarding the signal acquisition, EEG Source

Imaging technique was used with the aim to improve the spatial resolution of the neural signals

and reconstruct cortical activity. In order to distinguish the different tasks, frequency based

feature were extracted particularly around the α band (8–13 Hz) power from motor-related

electrodes, like C3 and C4. Finally, a stepwise linear regression based classifier was employed

to optimize the electrode weights for task separation and provide real-time control. During

all the process, users were provided with immediate visual feedback, reflecting the real-time

output of the neural decoding algorithm [26]. The set up of the experiment and the feature

extracted are provided in Figure 1.16.

Figure 1.16: (A) Robotic arm continuous pursuit BCI setup. Users controlled the 2D contin-

uous movement of a 7–degree of freedom robotic arm to track a randomly moving target on a

computer screen. (B) Group-level feature maps for the horizontal (top row) and vertical (bottom

row) control dimensions projected onto a template brain [26].

Although Motor Imagery based BCI can guarantee the direct control of robotic devices with

high reliability in controlled environment, due to the limited numbers of commands that such a

method is able to generate, the control of complex devices in a real-life situation remain challeng-

21



ing [3]. In order to overcome this limit, the research is heading toward the integration of human

intention with the robot intelligence, leading to a sheared semi-autonomous control. Tonin et al.

explored this field presenting a preliminary study on the effects of the shared intelligence on the

mental control of a telepresence robot [27]. In particular, the study involved two subject with

motor disabilities and four healthy subject, all of them have been previously trained with the

BCI. The subjects were ask to perform two motor imagery task, such as both feet versus both

hand or left hand versus right hand, and each task were associated to a steering command (left

or right), in addition the robot were set to go forward when no mental task was performed. EEG

was recorded with a portable 16-channel g.tec device, with a sampling rate of 512Hz, and pre-

liminary processing was applied to the raw signal. The processing involved the filtering through

a band-pass filter between 0.1Hz and 100Hz, the application of a Laplacian spatial filter, and

finally the computation of the Power Spectral Density (PSD) between 4Hz and 48Hz with a

resolution of 2Hz over the last second, delivering 16 sample per second. For each sample, only

the most discriminant features were fed to the statistical Gaussian classifier employed in this

experiment. Furthermore, an exponential framework were used in order to stabilize the clas-

sifier output and accumulate evidence about the subject intention before delivering the actual

command [27]. The telepresence robot, namely a three wheels powered Robotino, was equipped

with nine infrared sensor able to detect nearby obstacles and a camera for telepresence purposes.

A dynamical control system based on attactors and repellors was implemented in order to control

the robot via BCI. Namely, when a commandwas delivered, the robot autonomously pursued the

new target avoiding the obstacles [27]. The experiment showed how the shared control system

allowed the subject to drive the robot along designed paths reducing the mental work load and

improving the effectiveness of the delivered commands [27]. The same research group, Tonin

et al., further proved the effectiveness of the shared control in a longitudinal study, which also

remarked the concept of ”mutual learning”. This highlighted that not only the machine has to be

trained on the subject, but subject also has to undergo proper training in order to develop strong

and stable MI features [5]. The study followed the training of three tetraplegic subjects along a

period of five, three and two months respectively, during which the subjects learnt to perform

two motor imagery task, namely, imagine the movements of both hand and both feet. Their

gained ability were tested by driving a customized powered wheelchair, equipped with several

sensors useful for the environment understanding, in a real scenario [5]. Details about the ex-

periment are shown in Figure 1.17. Acquisition technique and classification method employed

in this study were similar to the previous example [5]. At the end of the followup promising

results have been recorded. In particular the shared control significantly improved the accuracy

in hitting the target along the path from an average of 45.8±33.7%, without the assistance, to
72.5±32.5%, with the shared control [5]. Furthermore, the mutual learning paradigm helped

the subjects increasing their performances along the time, as it is shown in Figure 1.18.
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Figure 1.17: Experimental design and materials used in [5]. (A) Customized powered

wheelchair equipped with an RGB-D camera, a laser rangefinder and a small monitor for the

BCI feedback. (B) Two examples of the visual feedback presented to participants. In the upper

row, the cued paradigm used during the calibration and evaluation sessions is illustrated. In

the bottom, the feedback used during the navigation sessions, completely self-paced, without

any cue, is shown. (C) Schematic representation of the shared-control navigation system. (D)

Experimental field for the navigation phase of the study, in which participants were asked to

mentally drive the wheelchair through four waypoints (WP1-4).

Figure 1.18: Mutual learning results retrieved form the study [5]. (A) Decoding accuracy over

sessions for each participant. (B) Evolution of feature discriminability over sessions for each

participant. On top, the topographic representation of the feature discriminability averaged over

the first and the last 10 runs. In both (A) and (B) the solid black line represents the least-squares

fit of the values, while the dotted line indicates when the decoder has been re-calibrated.
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1.4 Thesis Objectives

In this thesis a novel technique has been explored with the aim of developing a semi-autonomous

control system based on Motor Imagery BCI for driving a electrical wheelchair. In particular,

the already existing BCI system developed by Tonin et al. [5] has been integrated with a Hidden

Markov Model (HMM) to achieve two main goals. First, to interpret the binary Gaussian classi-

fier output to retrieve an additional ’Rest’ class, alongside the existing ’Both Hands’ and ’Both

Feet’ motor imagery classes. Second, under the hypothesis that the probability of performing

one task depends on the surrounding, the system incorporate environment information in the

form of transition probability between classes, prior to the actual classification. A scheme of

the project is provided in Figure 1.19, while the detail description of all the steps involved in

this work is exposed in the following Methods chapter.

Figure 1.19: Illustration of the general purposes of the thesis.
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2 Methods

This project has been realized exploiting ROS-Neuro, namely, a common open-source frame-

work for BCI and robotics research and applications that relies on Robotic Operative System

(ROS) [28]. The latter is considered to be the standard middleware in robotic application field,

offering modularity and reliable communication infrastructure between different environments.

Indeed, ROS-Neuro facilitates the interconnection between the different devices and processing

steps that characterize a BCI system, offering software frameworks that boost their mutual in-

tegration [28]. Using the several nodes already implemented in ROS-Neuro, it was possible to

build a BCI closed loop, like the one shown in Figure 1.6 page 13, and test the application.

2.1 Acquisition and Processing of EEG Data

EEG signal was acquired using the g.USBamp 16-channel amplifier setup by g.tec medical

engineering, Edlinger, Austria. The g.GAMMAbox was used as driver for the 16 g.Ladybird

active electrodes mounted on a g.GAMMAcap over the sensorimotor cortex according to the

10-10 system, namely, Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz,

CP2, CP4. An additional ground electrode (GND) was placed on the forehead and a clip

shaped reference electrode (REF) was ensured on the subject’s ear lobe. All the electrodes

were realized in sintered Ag/AgCl electrode material, with frequency range from 0 to 10 kHz,

and needed the application of specific conductive gel (g.GAMMAgel) for a proper functioning.

Figure 2.1 shows the acquisition devices, while the electrode map is provided in Figure 2.2a.

The signal was acquired using the rosneuro_acquisition node and at the same time it was

recorded in .gdf format by means of the rosneuro_recorder node. The General Data Format

(GDF) is a standard for storing biomedical signals, allowing the file to be fully descriptive

and specified [29]. In fact, information about the signal processing, duration, timing, and

types of events presented during the acquisitions, along with other useful metadata, were saved

alongside the raw signal in such files.
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Figure 2.1: g.GAMMAcap with the 16 electrodes mounted over the sensorimotor cortex, con-

nected to the g.GAMMAbox and the g.USBamp amplifier.

Exploiting the rosneuro_processing node, the raw EEG signal was spatially filtered with a

Laplacian derivation in order to reduce the effect of volume conduction and enhance the spatial

resolution [30]. Indeed the Laplacian filter acts as a high-pass filter, and is useful for highlighting

differences in activation between adjacent electrodes [12]. The Laplacian filter was computed

according to the formula 2.1, in which V
lap
i is the filtered signal from the channel i, V raw

i is the

original signal from the channel i, Si is the set of the j electrodes surrounding the electrode i,

and dij is the distance between electrodes i and j [30]. Laplacian filter was applied through out

the row to column multiplication of each sample of raw data, coming from the 16 channel, to

a 16x16 matrix (Figure 2.2b). Each column of such matrix is referred to a specific channel, in

particular, the diagonal is filed with ones, while the extradiagonal cells are filled with the related

weight, −gij, of all the other channels. In this case the distance dij is considered to be 1, since

the electrodes in the Si set are the adjacent ones, as shown in Figure 2.2a.

V lap
i = V raw

i −
∑︂
j

(gijV
raw
j ) where gij =

1
dij∑︁

j∈Si
( 1
dij

)
(2.1)
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(a) (b)

Figure 2.2: (a) Electrode map used in the project. The electrode highlighted in red are the ones

mounted on the cap. The electrode marked in green are the neighbors electrode for the electrode

C1 according to the Laplacian filter. (b) 16x16 Laplacian filter matrix.

After the spatial filtering, thanks to the rosneuro_processing node, the Power Spectral Den-

sity (PSD) was computed for each channel in order to study how the different frequency bands

changed during time. In theory, infinite time points are needed for computing the exact PSD,

but since this is not possible in a real scenario, the Welch’s algorithm was used to extract a

PSD estimation [31]. Namely, a buffer of 512 samples (1 second) was divided into three subse-

quent windows of 256 sample (0.5 second) overlapped by 50%, each window was filtered with

a Hamming window in order to reduce the frequency leakage effect, and then the Fast Fourier

Transform (FFT) was computed for each of them [31]. Finally, the three FFTs obtained were av-

eraged in order to reduce the variability in the estimated PSD, and the Logarithm transformation

was applied to enhance the signal scale. The process was repeated for each shift of 32 samples

(0.0625 seconds) of the main buffer. Thanks to this algorithm, the estimation of the channel

wise PSD along the time was obtained with a resolution of 2Hz, resulting in a matrix windows

x frequency x channel. Since Motor Imagery tasks elicit variation in α and β bands, only the

frequencies between 2Hz and 48Hz were considered during the feature selection process. As a

result of the PSD computation, the initial sample frequency of 512Hz was reduced to 16Hz. A

scheme of the PSD computation process is provided in Figure 2.3
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Figure 2.3: Scheme of the Welch’s algorithm for the estimation of the PSD.

2.2 Calibration and Feature Selection

Subject specific features were retrieved from the Calibration runs in order to train the binary

Gaussian classifier. During the calibration phase, a wheel animation (Figure 2.4) guided the

subject through the trials. In particular, first a fixation cross was shown for 2 seconds in the

center of the screen, then the cue ball appeared in the same place for 1 second indicating the

task type the subject was asked to perform in the following period. More precisely, a blue ball

was shown for the ’Both Feet’ task, a red one for the ’Both Hands’ task, and a yellow one for

the ’Rest’ task. After the cue period, the wheel animation started moving automatically for a

random time between 4 seconds and 5.5 seconds, indicating the subject the time span to perform

the task suggested by the cue. at the end of the active period, a 1 second pause was used to divide

subsequent trials. Although it was not necessary for the classifier training, also the ’Rest’ task

was acquired for subsequent offline analysis. Multiple calibration runs were acquired, especially

the first time, for assessing the subject’s features strength and stability. Further details about the

calibration runs are provided in the Result chapter.

Figure 2.4: Calibration trial design based on the rosneuro_feedback_wheel package. The figure

shows the sequence of events that characterized the several calibration runs. In this particular

sequence the subject was asked to perform the ’Both Hands’ task.
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Once enough data were collected, a MATLAB tool was used to select the most discriminant

features and train the classifier. The feature selection process relied on the Canonical Variate

Analysis (CVA). CVA is a multivariate statistical technique that uses linear combination of the

original features to create new features called canonical variates, that maximize the separation

between the classes [32]. In particular, for each frequency retrieved with the PSD, given that sij

is the sample (1× channels(ch)) at instant j for the class i, and k is the number of classes, and ni

is the number of sample for the class i, the sample matrix S can be built as shown in the formula

2.2.

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S1

...

Si

...

Sk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
n×k

where Si =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

si1
...

sij
...

sini

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ni×ch

(2.2)

Consequentially, the eigenvectors for the first k-1 non-zero eigenvalues λ of the matrix W−1B

are computed. Formulas 2.3 and 2.4 show the computation of the within-classes dispersion

matrix W and the between-classes dispersion matrix B, respectively [32].

Wch×ch =
k∑︂

i=1

ni∑︂
j=1

(sij −mi)
′(sij −mi) where mi =

1

ni

ni∑︂
j=1

sij (2.3)

Bch×ch =
k∑︂

i=1

ni(mi −m)′(mi −m) where m =
1

n

k∑︂
i=1

nimi (2.4)

The obtained k-1 eigenvectors, of dimension ch× 1, are used to build the matrix Ach×k−1, thanks

which is finally possible to retrieve the canonical variates as the projection 2.5 [32].

Yn×k−1 = SA (2.5)

Note that in this particular study the number of classes k is two, therefore only one eigenvector

is selected for the projection into the canonical variates space. Once the canonical variates are

computed, channels are ranked based on their Discriminant Power (DP), namely their contribu-

tion on the new feature space. The DP computation is based on the structure matrix T (formula

2.6), namely the correlation matrix between the original feature S and the canonical variates Y,

and the normalized eigenvalues γu (formula 2.7).

T = corr(S,Y ) whose element teu = corr(Se,Yu) =
cov(Se,Yu)

σSeσYu

(2.6)
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γu =
λu∑︁k−1
u=1 λu

(2.7)

Therefore, for each frequency and for each channel, the DPs are computed following the equa-

tion 2.8, building the so called discriminability map [32].

DPe = 100×
∑︁k−1

u=1 γut
2
eu∑︁ch

e=1

∑︁k−1
u=1 γut

2
eu

(2.8)

The discriminant analysis results are displayed in an ad hoc MATLAB GUI, which provides

the discriminant power of features for each calibration run, highlighting the most stable features

across different runs. The feature selection process is not entirely automated, as the GUI allows

the user tomanually select themost relevant features, also taking into account their physiological

significance. Figure 2.5 displays the MATLAB GUI for better understanding.

Figure 2.5: MATLAB GUI for feature selection showing an example of good features. In the

top the discriminability map for each calibration run are provided, in this case three calibration

runs were acquired for the tasks ’Both Hands’ and ’Both Feet’. The average result is shown in

the bottom left, while the selected feature are displayed in the bottom center. The bottom right

selector allows to switch between the manual and the automatic selecting mode. The first one

allows to manually select and deselect the wanted feature using the mouse pointer, while the

second one automatically mark as relevant all the features above a certain discriminant level,

which is adjustable through out the dedicated sliding cursor. The selected features are then used

to train the Gaussian classifier as soon the Train Classifier button is pressed.
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2.3 Binary Gaussian Classifier

After the feature selection process, the binary Gaussian classifier was trained over the distribu-

tion of the most discriminant features. In particular, the standard Maximization and Estimation

(EM) algorithm, implemented in the same MATLAB tool, was used to retrieve the parameters

for the nclasses(2)× nfeature Gaussian Mixture Model (GMM) that composed the classifier. Each

GMM consisted in only one element, characterized by two parameters, namely the mean and the

standard deviation, leading to a total of nclasses(2)× nfeature × 2 parameters. Once the classifier

was trained, all the parameters and information were saved in a binary format (.dat) in order to

be incorporated in the main pipeline, more precisely, in the rosneuro_processing node. Hence,

during the Online (or Control) phase only the selected features were extracted from each PSD

sample, and the likelihoods over the probability density function of each class were computed.

The equation 2.9 shows how the sample’s likelihood for each class was computed. In the for-

mula x is the sample array 1× nfeatures, whileMj and Cj are, respectively, the array of mean and

variance for the nfeatures GMM for the class j. The likelihoods were then normalized to determine

the probability of the sample belonging to each class, resulting in an output vector of 1× nclasses,

namely 1× 2, for each sample. This probability was then fed to the Hidden Markov Model for

further processing.

Likelihoodj =
1∏︁nclass

i=1 (
√︁

Cj)
e
− 1

2

∑︁nclass
i=1

(x−Mj)
2

Cj (2.9)

2.4 Hidden Markov Model and Traversability

The raw probability output of the binary Gaussian classifier was interpreted by the Hidden

Markov Model (HMM) in order to retrieve the three classes: ’Both Feet’, ’Rest’ and ’Both

Hands’. During the process the surroundings information where also integrated prior the final

classification. A brief introduction about the HMM can be found in the Appendix at page 50.

2.4.1 HMM Structure

In this project the HMM has been designed based on two main hypothesis. First, the EEG

depends on the task the subject want to perform, thus the state can be described by the output

of the Gaussian classifier. Second, the probability of performing one task depends also on the

information about the surrounding. Therefore the HMM was characterized by the following

properties:

• Each state represented a particular class. Therefore, the model consisted of 3 hidden
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states, namely, ’Both Hands’, ’Both Feet’, and ’Rest’. For reference, the HMM scheme

is provided in Figure 2.6.

• The probability of changing classes, namely the transition probability matrix T(t), de-

pended on the information about the surroundings, and therefore was time varying.

• The Observations consisted on the output of the binary Gaussian classifier. In particular

the distribution of the probability that the sample belonged to one of the two classes (’Both

Hands’ and ’Both Feet’) chosen as reference.

Figure 2.6: Scheme of the HMM used in this project. The model features three hidden state, one

for each class. BF stands for ’Both Feet’ and BH stands for ’Both Hands’. While the transition

matrix T(t) is time varying and depends on the surroundings.

2.4.2 HMM states

Each HMM state consisted on a Probability Distribution Function (PDF) designed after the

expected distribution of the probability output of the binary classifier. In particular, based on

the experiences acquired over more than ten years of usage of this Gaussian classifier, it has been

noticed that when good discriminant features are selected, the probability distribution tends to

be concentrated at the extremes, with values collapsing near the boundaries of 0 and 1 [33].

More in details, when the subject is performing an active task (’Both Hands’ or ’Both Feet’),

the probability output for that task is more likely to be near 1. Instead, while performing the

’Rest’ task it is possible to notice a split on the probability distribution mostly concentrated

around 0 and 1 [33]. More evidences about the real distribution and the erratic behavior of

the classifier are provided and commented in the Results chapter at page 38. Thus, the ideal

probability output corresponding to the reference class was considered in designing the PDFs
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that characterize each HMM state. The following equations were used, where pp represents the

raw probability output of the Gaussian classifier for the ’Both Feet’ class.

• Both Feet: 10e20(pp−1) + 5e8(pp−1)

• Both Hands: 10e−20pp + 5e−8pp

• Rest: (10e20(pp−1) + 5e5(pp−1) + 10e−20pp) + 5e−5pp)/2

For better comprehension, Figure 2.7 shows the ideal distributions per class with the normalized

PDF superimposed on each graph. While further discussion about the choice of the PDFs is

provided in the Discussion chapter at page 47.

Figure 2.7: Each graph represent the histogram of the ideal raw output probability of the binary

Gaussian classifier for the class ’Both Feet’ over the three classes. The normalized PDF of the

HMM state is superimposed on each respective graph.

2.4.3 Traversability and Transition Matrix

The surrounding information were incorporated into the model in the form of transition ma-

trix T(t). Indeed, after assigning direction to each task, such as ’Both Feet’ for left, ’Rest’ for

forward, and ’Both Hands’ for right, the transition matrix embedded the information about the

probabilities to pass through each direction. In particular, the wheelchair was equipped with an

RGB-D camera and lidar sensors as in the previous study [5]. The sensors signals were acquired

and integrated into the system exploiting ROS, more in details the move_base package was em-

ployed to retrieve the costmap_2d matrix. This consists on a 200x200 matrix with a resolution
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of 0.05m in which each cell is assigned with a score form 0 to 255 based on the risk of collision

with the objects in the surrounding, where 0 stands for no risk ad 255 stands for certain colli-

sion. Since the costmap_2d is always oriented along the xy axes, an odommetry system was

implemented to get the real orientation of the wheelchair and reinterpret the occupancy values.

Starting from the costmap_2d, the 3x3 transition matrix for the HMMwas retrieved through out

the following steps. An explanatory illustration is provided in Figure 2.8.

• The costmap_2d matrix was divided into three angular sectors, considering the zero angle

as aligned with the wheelchair orientation. As a results the left view [30°, 100°], the front

view [30°, -30°], and the right view [-30°, -100°] were retrieved.

• For each view the total occupancy was computed summing up all the values in the respec-

tive angular sector, forming the occupancy array (1x3). This array was then normalized

in order to obtain the occupancy probability for each view.

• The reverse occupancy was computed starting from the occupancy array as shown in the

equation 2.10. This array was then normalized obtaining the reverse occupancy proba-

bility.

reverse occupancy =
⃓⃓⃓
occupancy array−

∑︂
occupancy array

⃓⃓⃓
(2.10)

• The central row of the transition matrix, which expresses the probability to jump from the

’forward’ state to another or the same state, was computed as the normalized array result-

ing from the equation 2.11. In this way, if a direction was strongly occupied 1-occupancy

probability was extremely low and further lower the reverse occupancy probability. Vice

versa, if a direction was mostly free 1-occupancy probability tent to 1 and did not modify

the reverse occupancy probability.

traversability = (1− occupancy probability)× reverse occupancy probability (2.11)

• The computation of the first and the third raw of the transition matrix was based on the

concept that if the subject is turning into a direction, which is free of obstacle, the most

likely choice is to proceed in the same direction, namely to stay in the same state. Thus,

starting from the traversability array the left and the right directions were incremented by

40% prior the normalization for the first raw and the third raw respectively.
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Figure 2.8: The wheelchair surrounding is first split into three sectors (on the right), following

the mentioned steps was possible to retrieve the transition matrix (on the left). After applying

the +40% the array is re-normalized in order to build the first and the third row of the transition

matrix. Dx stands for right, C stand for forward, and Sx stands for left. Each direction was

assigned to one of the three task, namely, ’Both Hands, ’Rest’, and ’Both Feet’.

2.4.4 HMM Forward Step

Finally, the Forward algorithm, whose a theoretical introduction can be found in the Appendix,

was used in order to access the probability of being in each state at time t given a series of ob-

servations and the current transition matrix. The observation consisted in a 1 second long (16

samples) FIFO (first input first output) buffer of raw probability output of the binary Gaussian

classifier for the reference class ’Both Feet’. Also the transition matrix where computed with

a frequency of 16Hz to be aligned with the sample frequency. Thus, every time the buffer was

updated with a new sample, the forward step proceeded as follow. Fist, the buffer’s overall like-

lihood was computed across the three classes PDFs. In particular, for each class, the likelihood

of each sample was evaluated and the overall likelihood was computed as the product of the sin-

gle sample likelihoods. The resulting 1x3 array was then normalized, obtaining the likelihood(t)

array. Consequently, the posterior(t) was obtained as the normalized array resulting from the

equation 2.12, in which the posterior(t-1) is the 1x3 array of posterior probability computed in

the previous step, and T(t) is the 3x3 lastly updated transition matrix. During the first cycle, the

posterior(t-1) was considered to be equally probable across the states, as was T(t) if it had not

been updated yet.

absolute posterior (t) = likelihood(t)× posterior(t− 1) · T (t) (2.12)

2.5 Exponential Smoother

The HMM output was filtered with an exponential smoother based on the concept of the ex-

ponential framework used in previous studies [5][27][33]. The exponential smoother acted as
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a low-pass filter on the probability value assigned to each class in order to accumulate evi-

dences about the classification and stabilize the HMM output. In addition, thanks to this filter

the changes on the class probability were slowed down, letting the visual feedback to be more

comfortably controlled by the BCI user. The exponential smoother followed the equation 2.13,

where α is the smoothing factor and express how much the previous value is considered in the

computation of the new one. Higher is this parameter, larger is the instantaneous classification

change needed to modify the output. In this project α where set to 0.96. Following the experi-

mental design, the initial value of the probability were set to 0.33 every time a new trial started

in order to start form an equally probable condition across the classes.

output(t) = α× output(t− 1) + (1− α)×HMM(t) (2.13)

2.6 Evaluation Protocol

In order to access the efficacy of the HMM implementation, the virtual environment of ROS-

Gazebo was employed. In particular, a virtual model of the wheelchair, equipped with all the

sensors for the environment understanding, was placed in an empty world in which random

objects were spawned following a precise trial design. More precisely, the subject was guided

by an ad hoc visual feedback through out the series of trial phases, namely: 1s rest phase at the

beginning of each trial; 2s of fixation cross; 1s of cue, in which the subject was instructed on the

task to perform on the following phase; the continuous feedback period with a variable duration

between 4s and 5.5s, during which the subject was able to actively control the visual feedback,

consisting on three vertical bars that represented the probability assigned to each class; lastly, 1s

was employed to show the result of the trial. The trial was considered to be ’Hit’ if the probability

for the cue class reached the respective tunable threshold, contrary the trial was claimed to

be ’Miss’ if the time limit was reached or a wrong class reached the respective threshold. In

addition, the sequence of task was random for a total of 10 trial per class for each evaluation

run. The trial design and the visual feedback are provided in Figure 2.9 for better understanding.

Three different types of evaluation were used: one with an equally probable transition matrix

(Toff ), one with spawning objects presenting only the cue task as open direction (T1), and one

with spawning obstacles leaving two open directions (T2). Thus, different level of environment

integration were tested to access the system effectiveness in helping the subject to perform the

right task. Figure 2.10 provides the obstacle shape and the resulting transitionmatrix. During the

evaluation runs, only the visual feedback was presented to the subject, who was not informed

about the evaluation type in order to prevent influencing their control strategy. Furthermore,

the three evaluation types were delivered randomly to the subject to ensure independence from

fatigue factors.
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Figure 2.9: Trial design used for the evaluation runs, showing an example of ’Both Feet’ trial.

The visual feedback was drawn using the neurodraw ROS package. Each bar represents the

probability assigned to each class after the exponential smoothing. When the bar corresponding

to the cue ball’s color reaches its threshold, a green horizontal bar appears, indicating the target

was hit. Otherwise, a red bar signals that the target was missed.

Figure 2.10: Obstacles spawned during the three evaluation types. Beside and below each pic-

ture the resulting transition matrix and the trial classes are provided respectively. During the

Toff modality a constant equally probable matrix was used to access the basic function of the

pipeline without the traversability help. Instead, during T1 and T2 modalities the traversability

system was exploited in order to generate the time varying transition matrix encoding informa-

tion about the surroundings, and therefore helping in the classification. While Toff corresponds

to no help form the system, T1 corresponds to a low help level, and T2 to an high help degree.
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3 Results

The results were computed over the data collected form six healthy subjects that took part in

the evaluation procedure. These subjects featured different levels of experience with the BCI

and were almost the same age, from 23 to 26 years old. In particular two proficiency and one

intermediate subjects participated to four complete acquisitions each, while the other three nov-

elty subjects took part in only one complete acquisition each. Table 3.1 resumes all the subjects

details. During the first acquisition the subject had to perform 3 calibration runs in order to

collect enough data and train the binary Gaussian classifier. Then, a first evaluation on only the

two classes, ’Both Hands’ and ’Both Feet’, where acquired every subsequent sessions to assess

the effectiveness of the classifier and the stability of the selected features. Ulterior calibration

runs were acquired only if the classifier needed to be updated due to poor control performances.

Finally, 6 3-classes evaluation runs, 2 runs per modality (Toff , T1, T2), where acquired using

a random order for assessing the effectiveness of the HMM system. For both calibration and

evaluation runs the task were randomized for a total of 10 trial per class. Table 3.2 reports the

runs type along a typical acquisition. Confusion matrix and accuracy were computed on the

data collected from the 3-classes evaluations in order to assess the effectiveness of the proposed

framework.

Subject Experience Level Gender Age Status N Acquisitions N Classifier Update

C7 Proficiency M 25 Healthy 4 3

D6 Proficiency M 26 Healthy 4 2

G2 Intermediate M 26 Healthy 4 2

H5 Novelty F 23 Healthy 1 1

H6 Novelty F 23 Healthy 1 1

H7 Novelty M 23 Healthy 1 1

Table 3.1: Subjects details
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Calibration Binary evaluation Toff T1 T2

N runs 3 1 2 2 2

N trial 30 20 30

N trial per class 10 10 10

Duration per run 4min 2.5min 5min

Table 3.2: Acquisition details

3.1 Real Task Distributions

As mentioned in the section 2.4.2 the HMM states were designed based on the expected

probability distribution of the classifier output, but after collecting real data it was possible to

notice clear differences between the ideal and the real distributions. In particular, the binary

Gaussian classifier used in the project is characterized by an erratic behavior, meaning that

when the subject is asked to perform one of the two active tasks (’Both Hands’ and ’Both Feet’),

the probability output may fluctuate between 0 and 1, leading to a probability distribution that

is more prevalent around 1, but presenting a peak also in 0 [33]. As a consequence, if the

erratic behavior is prevalent for one of the two active task, that task can be easily misclassified

as ’Rest’ class. In addition, the real distribution of the ’Rest’ class was not always evenly

split between 0 and 1, often showing a polarization toward either 0 or 1. This behavior could

lead to misclassifications between the ’Rest’ class and the class toward which the polarization

occurred. Furthermore, if the subject did not show reliable features, namely with low discrim-

inant power, the distribution for all the classes tent to be flatten or concentrated around 0.5,

leading to poor classification performances. As follow, some example of real distributions

are shown. In particular, the figures show the probability distribution of the classifier output

for each class (’Both Feet’, ’Rest’, ’Both Hands’) related to the ’Both Feet’ output retrieved

during one of the the Toff evaluation, which was not influenced by the varying transition matrix.

As it is possible to notice from the Figure 3.1, the subject C7 showed a distribution for the

’Rest’ class similar to the ideal one with only a slight polarization, while the distribution for

the ’Both Feet’ and ’Both Hands’ classes were characterized by the typical erratic behavior

previously described, featuring a clear peak in 0 and 1 respectively. As a consequence, during

the respective acquisition, the ’Both Feet’ class was missclassified as ’Rest’ class 6 times out

of 20, and the ’Rest’ class showed an unstable behavior, not being able to reach the needed

threshold 14 times out of 20. The confusion matrix for this specific acquisition is also provided

in the same figure.
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Figure 3.1: Subject C7: Toff distributions (left) and resulting confusion matrix (right) for a

single acquisition. The ’Both Feet’ and ’Both Hands’ classes show the typical erratic behavior

that characterizes the employed Gaussian classifier, causing instability in the classification of

’Both Feet’ and ’Rest’ classes.

Subject D6 also showed distributions different for the ideal one, as provided in Figure 3.2. In

this case the ’Rest’ class distribution was characterized by a strong polarization toward the ’Both

Feet’ class, leading to both the misclassification of the ’Rest’ class as ’Both Feet’ class 9 times

out of 20, and an unstable behavior of the same class that was missed 10 times out of 20. Fur-

thermore, it is possible to notice a strong erratic polarization in the distribution of the ’Both

Hands’ class, which however did not effected the accuracy in hitting both the ’Both Hands’ and

the ’Both Feet’ classes that were correctly classified 17 and 19 times out of 20 respectively, as

shown in the relative confusion matrix.

Figure 3.2: Subject D6: Toff distributions (left) and resulting confusion matrix (right) for a

single acquisition. The ’Rest’ class shows a strong polarization toward the ’Both Feet’ class,

leading to instability in the classification of the same class.
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Figure 3.3 shows the distributions for the subject G2. In this case the intermediate subject

showed a similar distribution for all the three classes, lacking of the expected polarization to-

ward 0 for the ’Both Hands’ class, and showing a heavily polarized distribution toward 1 for

the ’Rest’ class. This led to poor accuracy for the ’Rest’ and ’Both Hands’ classes that were

correctly classified only 9 times and 5 times out of 20 respectively. The problem did not occur

for the ’Both Feet’ class, as it is possible to learn from the relative confusion matrix.

Figure 3.3: Subject G2: Toff distributions (left) and resulting confusion matrix (right) for a

single acquisition. The ’Both Hands’ class lacks of the expected peak in 0 while the ’Rest’ is

polarized toward 1. This led to poor discriminability between the cited classes.

Figure 3.4 display the distribution obtained from the novelty subject H5. In this case the subject

showed weak features that led the distributions to be flatten, without the usual peaks in 0 and

1, in addition the distribution of ’Both Hands’ class seems to be polarized toward 1 instead of

0. As a result, the subject experienced poor control capabilities, not being able to perform the

’Both Hands’ class, that was mistaken for the other two classes. As it is possible to notice from

the resulting confusion matrix shown in the same figure, also the ’Both Feet’ and ’Rest’ classes

were classified almost by chance, showing a general misclassification behavior.

An other clear example of consequences of weak features is provided in Figure 3.5, were the

distributions for the subject H6 are shown. In this case the subject was not able to elicit useful

features in order to perform a proper control, indeed, as also provided in the confusion matrix,

the proposed framework classified all the trial as ’Rest’ class.
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Figure 3.4: Subject H5: distributions (left) and resulting confusion matrix (right) for the Toff

runs. Due to poor features, the distributions appear to be flatten, leading to low control capabil-

ities.

Figure 3.5: Subject H6: distributions (left) and resulting confusion matrix (right) for the Toff

runs. All the trials were classified as ’Rest’ due to the absence of control capabilities.

Contrary, the novelty subject H7 showed relatively consistent features which brought to the

distribution showed in Figure 3.6. It is possible to notice that both ’Both Feet’ and ’Both Hands’

class feature the erratic behavior also shown for the subject C7, with the difference that in this

case the peaks in 0 and 1 are smaller. Furthermore, the ’Rest’ class distribution seems to be

slightly polarized toward 1. As a result the ’Both Hands’ class was misclassified as ’Rest’ class

12 times out of 20, and the ’Rest’ showed unstable behavior being misclassified as ’Both Feet’

class 8 times out of 20, as it is provided in the confusion matrix.

42



Figure 3.6: Subject H6: distributions (left) and resulting confusion matrix (right) for the Toff

runs. The subject showedmodest control capabilities. Due to the erratic behavior a low accuracy

was recorded for both the ’Rest’ and ’Both Hands’ class.

It is important to mention that the displayed distributions for the subjects C7, D6, and G2 are

derived from a single complete acquisition. However, in the other three acquisitions, the dis-

tributions exhibited similar patterns to the ones provided. This suggest that the shapes of the

distributions are intrinsic characteristic of the subject in case of strong and stable features. An

extended explanation about the reasons why the HMM states were designed after the ideal dis-

tributions and not the real and subject specific ones is provided in the Discussion chapter at page

47.

3.2 Performance and Traversability Effects

Thanks to the data collected, it was possible to prove how using the HMM transition matrix for

incorporating the environmental information into the classification process led to enhanced per-

formances in the T1 (low help) and T2 (high help) evaluation runs compared to the Toff (no help)

one. Indeed, subject C7 achieved an average overall accuracy across the runs of 51.67 ± 9.59%

in the Toff modality, 59.58± 9.50% in T1, and 69.17 ± 14.34% in T2, experiencing an im-

provement of 17.5% in the latter modality compared to the first one. Subjects D6 and G2 also

showed significant improvement in overall accuracy in the T2 (high help) modality compared

to the Toff one. They were able to achieve average overall accuracies of 75.71± 7.53% and

69.58± 5.76 % respectively, recording an average improvement of 20.28% and 19.58% over

the Toff results. Also the novelty subject H7 experienced boosted accuracy for the assisted eval-

uation runs, T1 and T2, going from an average overall accuracy of 51.67 ± 8.33% in Toff , to

61± 11.67 in T1, and 81.67 ± 11.67 % in T2. All the subjects that showed good control capabil-

ities reported that was easier andmore comfortable controlling the visual feedback during T1 and
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especially during T2 evaluation modality, in which they managed to reach accuracy peaks even

over 90%. As it is possible to notice from the confusion matrix in Figures 3.7-3.8-3.9-3.10, the

integration of the environment information into the transition matrix of the HMM significantly

improved the class specific accuracy especially in the T2 modality. The novelty subject H5 also

exhibited enhanced performance in the T1 and T2 modalities. Despite presenting poor features

and being unable to move the cursor in the binary evaluation feedback, the proposed framework

showed improvements. Although she was not able to move the cursor for the ’Both Hands’ task,

the introduction of the traversability system led to accurate classification of the ’Both Feet’ class

against the other two classes, and vice versa, as shown in Figure 3.11. This was not the case for

subject H6, who was unable to control the visual feedback even during the assisted evaluation,

resulting in all trials being classified as the ’Rest’ class.

Figure 3.7: Subject C7. For each evaluation modality the confusion matrix averaged across the

acquisitions is shown. Percentage values are used. BF stands for ’Both Feet’, while BH stands

for ’Both Hands’.

Figure 3.8: Subject D6. For each evaluation modality the confusion matrix averaged across the

acquisitions is shown. Percentage values are used. BF stands for ’Both Feet’, while BH stands

for ’Both Hands’.
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Figure 3.9: Subject G2. For each evaluation modality the confusion matrix averaged across the

acquisitions is shown. Percentage values are used. BF stands for ’Both Feet’, while BH stands

for ’Both Hands’.

Figure 3.10: Subject H7. For each evaluation modality the confusion matrix is shown. Percent-

age values are used. BF stands for ’Both Feet’, while BH stands for ’Both Hands’.

Figure 3.11: Subject H5. For each evaluation modality the confusion matrix is shown. Percent-

age values are used. BF stands for ’Both Feet’, while BH stands for ’Both Hands’.
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Therefore, all the subjects, excluding H6, experienced enhanced performances thanks to the in-

tegration of the environmental data into the classification process. Considering the overall accu-

racy averaged across the subjects, starting from 50.18± 10.32% in the Toff (no help) evaluation

runs, it was recorded a general improvement till 55.08± 9.76 % in the T1 (low help) evaluation

modality, and a further enhancement reaching 71.98± 9.65% in the T2 (high help) evaluation

runs, as it is shown in Figure 3.12. Thus, an average improvement of 5% and 21.7 % was

recorded for the T1 and T2 evaluation modality respectively, compared to the Toff one, which,

however, still above the chance level of 33.3% in terms of overall accuracy. The statistical sig-

nificance of these increments has been assessed through out the T-test, leading to the conclusion

that, although the T1 modality did not show a statistical significant improvement in the overall

accuracy, with a p-value of 0.11, the enhanced performances recorded for the T2 modality were

statistical significant with p-values of 3.68× 10−10 and 9.46 × 10−7 compared to the Toff and

T1 modality respectively.

Figure 3.12: Box-plot of the overall accuracy across the subjects for each 3-classes evaluation

modalities: Toff (no help), T1 (low help), and T2 (high help). Superimposed to the graph the

average accuracy for each modality is shown.
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4 Discussion

In this thesis a novel implementation of the Hidden Markov Model (HMM) was applied to

an already existing Motor Imagery (MI) based BCI, which was previously used for driving an

electrical wheelchair, in order to fulfill two main goals. First, to extract an additional ’Rest’

class, along side the ’Both Feet’ and ’Both Hands’ classes, interpreting the probability output

of the binary classifier. Second, under the hypothesis that the probability of performing one

task depends on the surrounding, the system was designed to incorporate the environmental

information prior the actual classification in order to help the end user taking the right decision.

Figure 4.1 resumes the pipeline employed in this study.

Figure 4.1: BCI pipeline employed in this study. The 16-channel EEG was retrieved from the

subject scalp, then the signal was processed in order to extract the PSD. First, during the Offline

phase, the most discriminant feature were selected through out CVA, and the binary Gaussian

classifier was trained up on the calibration data. Consequently, during the Online phase, the

output of the classifier was accumulated in a 1 second long FIFO buffer and interpreted by the

HMM, whose transition matrix was built based on the environmental information. Then, the

raw HMM output was low-pass filtered by the exponential smoother in order to obtain the final

probability per class. An ad-hoc visual feedback was employed to close the BCI loop.
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Thanks to the Hidden Markov Model framework it was possible to consider each task as a state,

which depends on the raw probability output of the binary Gaussian classifier, forming a fully

connected net of three states, namely, ’Both Feet’, ’Rest’, and ’Both Hands’. The transition

between these state was ruled by a transition matrix, which was the output of the surrounding

environment analysis.

The PDFs that featured each state were designed based on the ideal raw probability distribution

of the ’Both Feet’ class. While ’Both Feet’ and ’Both Hands’ classes were characterized by

mirrored PDFs, the ’Rest’ class PDF was not the mere mean between these two. Indeed, in

order to consider raw probability sample around 0.5 more strongly belonging to the ’Rest’

class, the PDF was the mean between a less steep version of the PDF of the other two classes.

However, from the results, it is evident that these PDFs did not accurately represent the real

probability distributions. In fact, they failed in describing the subject specific distribution which

often involved the erratic behavior typical of the Gaussian classifier. Despite this, using this

method was the most suitable solution available for interpreting the raw output of the classifier

and retrieve the three classes out of the original two. Indeed, employing PDFs fitted on the

real distributions, such as gamma, log-gamma, or beta functions, would have led to highly

overlapped and similar PDFs functions across the classes. Consequently, during the forward

algorithm, the posterior likelihood values for the samples would have been too close across the

classes, leading to extremely low discriminative power. Furthermore, when the subject is asked

to perform one of the two original classes, for example the reference class, it is reasonable to

expect that higher probability values close to 1 correspond to higher likelihood values on the

reference class PDF. However, there is no reason for considering erratic values, namely, proba-

bility values close to 0, as belonging to the same class. As a result, using ideal instead of fitted

PDFs lead to higher probability of belonging to one of the two original classes, ’Both Hands’

and ’Both Feet’, only if the raw classification was correctly polarized toward 0 or 1 respectively,

otherwise the sample was considered to belong to one of the other two classes. In order to

restrain the effect of this erratic behavior on the final classification two methods were used

simultaneously: prior the classification, the posterior likelihood is computed over a 1 second

long buffer of raw probability samples in order to capture the overall likelihood over 16 samples

and not only the likelihood of a single sample; afterward the classification, the exponential

smoother works as evidence collector, slowing down the changes in the final classes probability.

The method used for computing the transition matrix took into account only the total occupancy

over bounded areas of the cited costmap_2d matrix. Therefore, the central row of the transition

matrix could be interpreted as the probability for each direction to be free of obstacles com-

pared to the others. This means that if the three directions were equally occupied, the resulting
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probability would have been equal across the directions as well. For this reason during the T1

evaluation run, which involved only one direction to be free of obstacles, the closed directions

did not feature extremely low probability as might have been expected, since they shared the

probability to be occupied. As a consequence, only a mild level of assistance was delivered

to the subject in preforming the right choice. Instead, during the T2 evaluation modality, only

one direction was blocked, while the other two were completely clear. This means that the

only blocked direction featured an extremely high occupancy level compared to the other two,

leading to a almost zero probability in the resulting transition matrix. As a result, this modality

offered an high level of assistance to the end user, making almost impossible to chose the

blocked direction.

Promising results have been shown despite the highlighted limitations, supporting the idea

that further improvements of the proposed framework would lead to enhanced outcomes.

For example the HMM states could be designed directly over the distributions of the most

discriminant features across the three classes, avoiding the need to interpret the probability

output of the binary classifier. In this way, the HMM would be fed directly with the PSD

samples of the chosen features, working as a 3-classes classifier it self. In addition, further

implementations of the Traversability system could lead to a more effective integration of the

environmental data into the framework for better assisting the user in performing the right task.

Alongside the methods for incorporating the surrounding information prior the classification,

refined computer vision algorithms could be involved in the posterior process of interpreting the

user intentions in order to build a complete semi-autonomous shared controlled system. Thanks

to this technology it would be possible not only to help the end user in making the right choice,

but also understand the subjects needs and, based on them, autonomously drive the wheelchair.

As it is shown also from the data collected in this study, Motor Imagery skills can sometimes

be innate, as in the case of the subject H7, however, in most cases, the subjects require specific

training in order to develop such features, and despite that, improvements are not guaranteed.

For this reason, refining shared-control systems could broaden the accessibility of BCI driven

assistive devices to those with minimal training, ensuring a remarkable improvement in life

quality.

In conclusion, this thesis aimed to contribute to the research in shared-control BCI by pre-

senting a novel implementation of the Hidden Markov Model for a BCI driven wheelchair.

The hope is that this framework can pave the way for further advancements and effective so-

lutions, ultimately improving the quality of life for those who rely on such assistive technologies.
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A Appendix

A.1 Hidden Markov Model Foundation

Hidden Markov Models (HMMs) are highly versatile and have found widespread applica-

tions across various fields due to their ability to model sequential data with hidden states

[34]. In speech recognition, HMMs are used to link audio signals with underlying phoneme

sequences, enabling both speaker-independent and continuous recognition [34]. They also

play a significant role in natural language processing tasks like part-of-speech tagging and

machine translation [34]. In bioinformatics, HMMs are useful for predicting protein structures,

aligning DNA sequences, and identifying genes [34]. In finance, they model time-series data

for stock prediction and risk management [34]. HMMs are equally useful in human activity

recognition, robotics, and video analysis, where they track movements and predict behaviors.

Moreover, HMM variants such as higher-order HMMs (HO-HMM), hidden semi-Markov

models (HSMM), and hierarchical HMMs (HHMM) expand their applicability, improving

modeling in fields like machine health monitoring, weather forecasting, and even cybersecurity

[34]. This interdisciplinary adaptability makes HMMs an important tool in several scientific,

technical, and industrial domains [34].

The HMM is a tool derived from the Bayesian Network theory. In particular, the latter

one is a graphical method useful for representing conditional independencies between a set of

random variables, providing the view of a particular joint distribution factorization [35]. When

Bayesian Networks are applied to time series data, they are referred to as Dynamic Bayesian

Networks (DBN). These models are based on the assumption that events in the present can be

caused or influenced only by past events [35]. In this context, DBNs are particularly effective

for modeling finite state machines, which represent stochastic processes involving a finite

number of states or events, regularly spaced in discrete time intervals. The transitions between

these states are determined by probabilities that depend on the states at the previous time

points [35]. This particular process takes the name of first order Markov Chain (MC) when the

following properties are respected:
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• The process is defined as discrete time series of states qt, which can take finite number of

values from 1 to N [36].

• The state at instant ti depends only on the event at the previous instant ti−1, namely, the

model is compliant with the Markov property [36].

• The transition probabilities are described by the transition matrix A = {aij}, where aij

is the probability to jump from state qt = Si to state qt+1 = Sj. Thanks to the Markov

property it can be defined as aij = P(qt = Sj | qt−1 = Si). Since it is a probability

aij ≥ 0 ∀i,j ∈ [1,N ] and
∑︁N

j=1(aij) = 1 [36].

• The initial probability of being at state Si is denoted as πi = P(q1 = Si), forming the vector

Π = [π1, π2, . . . , πN ] [36].

Markov Chains are also called Observable Markov Model since each state correspond to a

directly observable and visible event.

Finally, the Hidden Markov Model (HMM) is an extension of the Markov Chain concept. In

particular the states involved in the series are hidden from the observer, who can only retrieve

observations about the current state. Indeed, beside the probability for each state to occur in

the series, each state has also different probabilities to emit a certain observation, and for this

reason HMMs are considered doubly stochastic process [35][36]. Thus, HMMs share the basic

properties of the MC, but in addiction:

• The N qt ∈ {S1,S2, . . . ,SN} different states involved in the model are hidden and not di-
rectly accessible by the observer [36].

• Each state can takeM distinct observationsOt ∈ {o1,o2, . . . ,oM}. The probability of each
state to emit a certain observation is described by the observation probability distribution

B = {bi(k)} = P[Ot = ok | qt = Si], where bi(k) is the probability to witness the obser-

vation ok given that the current state is Si, with k ∈ [1,M ] and i ∈ [1,N ] [36].

Therefore the HMM is fully described when the state transition matrix A, the observation prob-

ability distribution B, and the initial state distribution Π are known. The HMM(λ(A, B, Π)), so

defined generates an observation sequence O = {O1,O2, . . . ,OT} over time [36]. An example
of HMM is provided in Figure A.1.
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Figure A.1: Scheme of an HMM consisting of 2 hidden states (S1, S2) and 2 possible observa-
tion for state (o1, o2). The transition between the hidden states is ruled by the transition matrix
A = {aij}, while the observation emission probability is described by B = {bi(k)}.

A.1.1 Forward Algorithm

The Forward algorithm is a dynamic programming approach for solving the so called ”likelihood

problem”, namely for computing the probability of observing a particular sequence of observa-

tion given the model parameters [36]. Thanks to this recurrent method, instead of computing

the joint probability between the observations sequence and all the possible combinations of

states, the complexity lower from O(2TNT ) to O(TN2), where T is the length of the sequence

and N is the number of hidden states [36]. The Forward algorithm is based on the computa-

tion of αt(i) = P(O,qt = Si | λ), namely the probability that, given the model parameters λ, the
last state qt = Si gives the observation ot after the observation sequence o1,o2, . . . ,ot−1. The

algorithm proceeds through out inductive steps as follow.

• First step:

α1(i) = πi × bi(o1) with i ∈ [1,N ] (A.1)

where πi is the initial probability for the hidden state i, while bi(o1) is the probability for

the state i to emit the observation o1 as first observation of the sequence [36].

• Inductive step:

αt(j) = bj(ot)×
N∑︂
i=1

(αt−1(i)× aij) with j ∈ [1,N ], t ∈ [1,T ] (A.2)

where bj(ot) is the probability for the state j to emit the observation ot at the current step,

αt−1(i) is the likelihood from the previous step for the state i, and aij is the transition

probability between the states i and j [36]. Notice that for long sequences αt become

vanishingly small as the recursion progress, therefore a normalization to sum to one is

performed at each step [35].
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• In conclusion:

P (O | λ) =
N∑︂
i=1

(αT (i)) (A.3)

represent the cumulative likelihood along the sequence, namely the probability of wit-

nessing a particular observation sequence given the model parameter λ.

A.1.2 Other Algorithms

Other algorithms have been refined in order to solve further questions on the HMM. Indeed,

similarly to the Forward algorithm, through out the Backward algorithm is possible to com-

pute the element βt(i) = P(Ot+1,Ot+2,...,OT
) | qt = Si, λ, namely the probability to register a

particular partial observations sequence starting from the instant t, given the initial state Si and

the model parameters λ [36]. In addition, the Viterbi algorithm once again exploits dynamic

programming in order to recursively retrieve the probability of being in a state Si at a time t

based on the most probable path that leads to that state. Tracking all the most probable state

at each time step, the Viterbi algorithm allows to compute the most likely sequence of state

that generated the given sequence of observations [36]. All the algorithms introduced so far

relied on known model parameters λ(A,B,Π), contrary, the Baum-Welch algorithm aims to

estimate such parameters given a sequence of observations. This particular algorithm is based

on the Expectation and Maximization method, thanks which, starting from some initial values,

the model parameters are iteratively updated using the results from the Forward and Backward

algorithms till a stable point is reached [36][35].
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