
Università degli Studi di Padova
Department of information Engineering

Master’s Degree in Bioengineering for neurosciences

Exploratory study of the relationship
between metrics derived from [18F]FDG
PET and directed connectivity estimated

from fMRI signals
Master’s degree dissertation

Supervisor

Prof. Alessandra Bertoldo

Co-Supervisors

Eng.Giorgia Baron
Eng.Giulia Vallini

Master candidate

Andrea Bertola

Academic Year 2022-2023

27 November 2023



Andrea Bertola : Exploratory study of the relationship between metrics derived from
[18F]FDG PET and directed connectivity estimated from fMRI signals, Master’s
degree dissertation, © 27 November 2023.



"The expert is a person who, in a very narrow field, has made all possible
mistakes."

— Niels Bohr

Dedicated to my family and friends.





Abstract

In the intricate landscape of neuroscience, the exploration of brain connectivity has
traditionally focused on understanding the functional and structural relationships
among different brain regions. However, the brain’s dynamic interplay between
neural activity and energy metabolism, crucial for its optimal functioning, has given
rise to a burgeoning field known as metabolic connectivity.

In this thesis we aim to explore a specific fusion approach that exploit a symmetric
model-driven method such as DCM with FDG-PET connectivity maps from healthy
subjects, characterizing the the overall network behaviour in terms of particular
metrics that account for entropy variation. More over we will compare resulting
relationship with respect of oncological patients.
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Chapter 1

Introduction

In the intricate landscape of neuroscience, the exploration of brain connectivity has
traditionally focused on understanding the functional and structural relationships
among different brain regions. However, the brain’s dynamic interplay between
neural activity and energy metabolism, crucial for its optimal functioning, has
given rise to a burgeoning field known as metabolic connectivity.[39] This emerging
paradigm transcends traditional neuroimaging boundaries, offering a unique per-
spective into the energetic dialogue that underlies cognitive processes and forms
the backbone of the brain’s functional networks.At its essence, it delves into the
intertwined relationship between neural activity and energy demands within the
brain.
Metabolic connectivity characterizes the brain as a complex network of intercon-
nected nodes and edges. In this context, nodes represent distinct brain regions, and
edges signify the strength of metabolic coupling between them. The application of
graph theoretical measures, such as degree centrality and efficiency, provides insights
into the hierarchical organization of the brain’s metabolic networks, shedding light
on regions that play pivotal roles in energy distribution and information trans-
fer. The implications of metabolic connectivity extend beyond the examination of
resting-state networks. Task-related metabolic connectivity studies delve into how
the brain dynamically allocates its energy resources in response to specific cognitive
demands or external stimuli.[68] Whether unraveling the intricacies of memory
formation, language processing, or emotional responses, task-related metabolic
connectivity unveils the adaptability of the brain’s energetic networks in supporting
diverse cognitive functions.[41]
On the other hand, Blood oxygenation level-dependent fMRI has been heavily used
as probe into functional brain connectivity characterization given the temporal
coherence of low-frequency large-amplitude changes in BOLD signal.[79] Moreover
it has been demonstrated its usefullness in the clinical field giving high sensitivity
with respect to other conventional imaging methods.
That being the case , BOLD-fMRI provides a surrogate measure of neuronal activity
with high spatial and temporal resolution but it could be affected by confounding
effects generated by non-neuronal components.[89][68]
Despite both Metabolic connectivity and BOLD-fMRI represents powerful tools to
grasp the interplay between neural activity and energy metabolism, the interpreta-
tion of activity-dependent glucose uptake remains intricate.Over the past decade,
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2 CHAPTER 1. INTRODUCTION

two main theories regarding central nervous system (CNS) glucose metabolism have
been vigorously debated.
The first theory, known as the Astrocyte-to-Neuron Lactate Shuttle Hypothesis
(ANLSH), posits that energy metabolism is compartmentalized, with glycolysis
outsourced to astrocytes.[32] Glucose is primarily taken up by astrocytes, converted
to lactate through oxidative metabolism, and then utilized by neurons through mi-
tochondrial lactate oxidation.[43] This hypothesis implies that glucose metabolism
in activated brain regions only indirectly reflects neuronal metabolism, challenging
the accuracy of functional brain imaging in representing neuronal activity.[55]
On the other hand, the Parsimonious Hypothesis (PH) proposes that neurons
directly take up glucose from the interstitium and generate ATP through both
glycolysis and oxidative metabolism. The ANLSH-PH debate has led to divergent
views based on experimental studies.
Studies by Lundgaard et al. (2015)[55] have suggested that neurons, rather than
astrocytes, are the primary consumers of glucose during rest and activity-dependent
increases in neural activity. The evaluation of Hexose Kinases (HKs), considered
gatekeeper enzymes in glycolysis, revealed consistently higher levels in neurons
compared to astrocytes, supporting the idea that local neuronal glycolysis supports
increased synaptic activity.
However, Patel et al. (2014)[1] argued against the ANLSH, presenting evidence
that neuronal glucose-derived pyruvate, not lactate from astrocytes, is the major
oxidative fuel for activated neurons. These conflicting findings highlight the com-
plexity of CNS glucose metabolism.
Recent studies propose a middle-ground interpretation, suggesting that under
resting conditions, brain metabolism occurs almost exclusively through complete
oxidative metabolism of glucose in both neurons and astrocytes. The glutamate-
glutamine cycle facilitates interaction between these cell types, confirming the
compartmentalization of metabolic processes.[9][4]
Moving from the cellular level to noninvasive imaging methods, functional Magnetic
Resonance Imaging (fMRI) and [18F]Fluorodeoxyglucose Positron Emission Tomog-
raphy (FDG-PET) have provided valuable insights into functional and metabolic
coupling in the brain. Starting from the concept of the Human Connectom as an
extensive map of neural connections, studies have revealed coordinated activation of
local neural circuits, forming functional brain networks. However, the relationship
between specific tasks, functional brain networks, and metabolic processes remains
an ongoing area of investigation.[86][85]
Recent advancements in FDG-PET and fMRI have demonstrated their complemen-
tary nature in understanding neural mechanisms.[68] The introduction of measures
like the Metabolic Connectome Mapping (MCM) has allowed the integration of
unidirectional functional connectivity with local energy metabolism (Riedl et al.,
2016)[117]. Studies have also unveiled bidirectional and unidirectional signaling
across the cortex, highlighting changes in network interactions across different brain
states.
Despite the controversies and discrepancies in findings, the integration of FDG-PET
and fMRI has shown promise in uncovering the complexities of neural function
and metabolism. These multimodal imaging approaches offer unique advantages,
emphasizing the need for a comprehensive understanding of the brain’s intricate
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processes.
Latest innovation proposed simultaneous PET/MR acquisitions , however there are
still some technical limitation to be improved indeed image artifacts or decrease
signal-to-noise ration can be caused by induced eddy currents in the PET shielding
therefore interfering with B0 field homogenity. Despite the technical demands
underlying the “matchmaking” between PET and MR, the differences between these
two partners is the greatest source of strength in their potential marriage.[24]
Another emerging approach in connectivity field exploits data fusion between the
two thereof modalities. As stated by Jamadar [100] quantitative or calibrated
fMRI toghether with MR-PET or PET techniques , have the potential to offer
additional insights into the shift between neaural energy sources and the relative
utility of glucose and oxygen cerebral metabolic processes. These approaches have
indeed shown improved ability to uncover latent relationship between data types
and currently there are four main methods for data fusion. [116] Many studies use
a qualitative visual comparison which can be very informative despite non allowing
quantitative inference . Most existing existing BOLD-fMRI/FDG-PET studies use
a data integration approach, where data from each modality is analysed separately
and compared at the second-level using correlation [52][7] or similarity metrics
[13]. Particular cautions is needed if asymmetric data fusion is intended to be
used where information from one modality constraint the other as it could impose
unrealistic assumptions and also bias the analysis.[100] Therefore the emerging field
of integrated FDG-PET/fMRI holds great potential for advancing neuroscience
research and providing a deeper understanding of the interplay between neural
activity and metabolism.

In this thesis we aim to explore a specific fusion approach that exploit a symmetric
model-driven method such as DCM with FDG-PET connectivity maps from healthy
subjects, characterizing the the overall network behaviour in terms of particular
metrics that account for entropy variation. More over we will compare resulting
relationship with respect of oncological patients.

The first three chapter are an explanation on the key concepts used in this disserta-
tion , organized as follow:

∗ Chapter1 : gives a general introductions about key concept used in this thesis.
1

∗ Chapter2 : defines key concepts like SUVR and reviews the genesis of metabolic
connectivity. It discusses main approaches like seed correlation, ICA/PCA,
graphical lasso, and graph theory. 2

∗ Chapter3 : introduces dynamic causal modelling (DCM) as a framework to
estimate effective connectivity from neuroimaging time series. It details the
bilinear state space model combining neuronal and hemodynamic models. It
also presents sparse DCM, which estimates whole-brain effective connectivity
from resting-state fMRI.n. 3

The last four chapter are dedicated to the experiment explanation, divided in :
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∗ Chapter4 : describes the healthy and oncological datasets, acquisition proto-
cols, preprocessing steps, and the reference atlas used. It explains how effective
connectivity, metabolic connectivity, and SUVR matrices were estimated..

∗ Chapter5 : presents the results. It shows the choice of noise variance in sparse
DCM. It analyzes correlations between derived metrics and finds consistent
relationships. It uses Wilcoxon tests to compare healthy and oncological
correlations. It isolates network contributions to specific correlations.

∗ Chapter6 : discusses key findings. It analyzes the noise variance selection and
correlation results. It interprets network contribution analyses and group-level
differences. It acknowledges limitations like residual noise and tumor effects.

∗ Chapter7 : gives final conclusion. Highliting main limitations and proposing
future research topics



Chapter 2

Metabolic Connectivity

2.1 Standardized Uptake Value Ratio

The standardized uptake value (SUV) is a dimensionless ration used to distinguish
between "normal" and "abnormal" levels of uptake thus being utilized in positron
emission tomography(PET) as well as in modern calibrated single photon emission
tomography (SPECT). This measure is common in the clinical field especially in
the analysis [18F]fluorodeoxyglucose ([18F]FDG) images of cancer patients and it
could be also be used in combination with other PET agents when no arterial input
function is aviable for more detailed pharmacokinetic modelling.
Originally it was designed to be a simplistic method to quantify uptake as opposed
to true quantification through compartmental and kinetic modelling and clinically
exploited to determine whether a region could be considered "tumor" or "malignat"
but may have limited value for determining the edges of a tumor.[87]

Many factors affect SUV measure, including accuracy of dose calibration, time
between injection and imaging (dose to scan time ), patient weight (changes
common in oncology patient), motion artifacts and blood glucose level indeed SUV
is dependent on many patient-related as well as procedural factors such as definition
of ROIs , competition with endogenous glucose , rate of phosphorylation , body
size and composition as well as tumor type.[33] Technically, SUV values would vary
depending on PET scanner’s signal-to-noise properties , the accuracy oh the image
reconstruction algorithm as well as corrections algorithms. Not accounting for all
these factos can lead to potential errors of ≥50% in SUV calculations.

It is defined as the ratio of activity per unit volume of a region of interest(ROI) to
the activity per unit whole body volume or alternately as ratio of the radiotracer
concentration crad (kBq/ml) and the whole body concentration of the injected tracer
cinj .

SUV =
crad(kBq/ml)

cinj
(2.1)

Injection The cinj value is calculated as ration of two independent measurements
: the injected tracer (injected dose ID) and the subject-specific factor a where it

5



6 CHAPTER 2. METABOLIC CONNECTIVITY

can be expressed in terms of body weight (BW), surface area or lean body mass.
The ID can be estimated as difference in the radioactivity of the syringe before and
after injection , if considered necessary with correction for physical decay between
each measurements and the time of injection. Usually the time of injection is t = 0
, This reference concentration represents the supposed even distribution of the
injected radiotracer across the whole body .

Tackling the problem of nuance factors Boellaard et al. [91] showed how simple
SUV depended strongly on patient-related metrics therefore making suitable its use
only for diagnostic purposes when data acquisition and processing are performed in
a standardized way. Contrary to that SUV rations depend less on noise and image
resolution and therefore are more suitable for multicenter studies.
Finally, when considering the SUV from two different region whithin the same PET
image thus applying a sort of reference-based approach we have to define what is
termed as standardized uptake value ratio (SUVR). For the SUVR , the injected
radiotracer , the body weight and the mass density that are all part of the SUV
calculation , cancel:

SUV R =
SUVtarget

SUVreference

=
cimg,target

cimg,reference

(2.2)

2.2 The genesis of Metabolic Coneectivity
In the last forty years [18F]-fluordeoxy-glucose (FDG) has become increasingly
considered in the research as well as in the clinical world.
Unlike the BOLD fMRI, PET measurements are deemed indicative of a presumed
steady state of neuronal activity during the recording interval for several reasons.
PET imaging, employing radiotracers like fluorodeoxyglucose ([18F]FDG), captures
brain activity over a relatively extended time scale, encompassing the administration,
distribution, and accumulation of the radiotracer, as well as the subsequent decay
of the radioisotope. This prolonged timeframe results in a more averaged and
sustained representation of neuronal activity, contributing to the perception of
a steady state. The radiotracer kinetics, mirroring the metabolic pathways of
substances like glucose, entail processes such as uptake, phosphorylation, and
entrapment in tissues, further emphasizing the temporal characteristics of PET
measurements. Additionally, PET measurements, rooted in metabolic processes,
particularly glucose utilization, are closely tied to cellular energy demands, including
those of neurons. This metabolic stability implies that PET captures a state where
overall metabolic requirements remain relatively constant, indicating a presumed
steady state of neuronal activity. Notably, PET measurements are less sensitive to
rapid and transient changes associated with neurovascular coupling, making them
suitable for probing more sustained facets of brain function and metabolism.
This immunity from post-capillary down-stream vascular noise together with the
high count rate in [18F]FDG-PET recording from brain, may contribute to the
robustness and reproducibility of [18F]FDG-PET findings at a single subject level.

When this field had yet to emerge Clark and Stoessl [30] in a proof of concept
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, suggested how the analysis merely focused on regional variation of cerebral
metabolic rate of glucose (CMRGlu) woldn’t be enough to highlight changes in
regional relationship. At that time such changes were examined by testing for
covariance or correlations between brain regions where inter-regional covariance
were specifically explored using multivariate techniques such as PCA, factor analysis
and subscale subprofile model (SSM). [25][61]
The concept of "Metabolic Connectivity" arose with Horwitz et al.,1984 [21] and later
on named by Lee et al.,2008 [39] where using a voxel-wise interregional correlation
analysis (IRCA) they examined resting brain connectivity.

2.3 Main approaches of metabolic connectivity
Hitherto countless statistical methods or frameworks has been developed with the
intention of capturing metabolic connectivity . Despite being originated form group
based data analysis , it has to be noted that the thereof method can support making
inference at a single subject level.

The main approaches on MC include:

1. Seed correlation (SCA) : which consist in defining a reference region and
computing correlation with glucose rediotracer uptake for every other brain
voxel

2. PCA or ICA: ICA optimizes higher-order statistics such as kurtosis and it is
used to retrive independent component . PCA optimizes the covariance matric
of the data which is a second-order statistic and it is used to find uncorrelated
components. So they can be considered as multivariate decompositions that
impose constrains of orthogonality and statistical independence on derived
components.

3. Sparse inverse covariance estimation(SICE): also known as graphi-
cal lasso in which one approaches the true undelying connectivity matrix
and simultaneusly imposes sparsity1 ( proportion of zero-entry) to increase
statistical robustness in the face of a low number of observations.

4. Graph theory: a popular framework in wich sparsity is imposed by thresh-
olding the pair-wise correlation values to form binary adjacency matrices.

Recently has been presented an extensive comparison work by Volpi et al.2021 [112]

1In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix
in which most of the elements are zero. There is no strict definition regarding the proportion of
zero-value elements for a matrix to qualify as sparse but a common criterion is that the number
of non-zero elements is roughly equal to the number of rows or columns. By contrast, if most of
the elements are non-zero, the matrix is considered dense. The number of zero-valued elements
divided by the total number of elements (e.g., m × n for an m × n matrix) is sometimes referred
to as the sparsity of the matrix.
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for SICE and non-SICE approach with the aim to derive MC at single subject-level.
They compared with SC four approaches to estimate sparse inverse covariance
matrices as well as three similarity-based methods to derive adjacency matrices.
The metrics and approaches that they considered included: bivariate Pearson’s cor-
relation coefficientsr, Euclidean distance, Cosine similarity and SICE methods such
as DP-GLASSO(See GLassoElnetFast R package [97]), nonparanormal truncated
approach, skeptic method and the γ − LASSO.
In this work they also tackled different issues on behalf the thereof method’s ap-
plication moreover suggesting how Pearson’s correlation, Euclidean distance and
Cosine Similarity provided better results for between-subject reproducibility and
similarity with Structural connectivity(Fig.4.3). Nevertheless most methods sec-
ceeded in retrieving a similar network structure, with consistent identification of
inter-hemispheric and homotopic connections.

Figure 2.1: Dice similarity between binarized SC and median MC matrices.
Dice similarity between binarized SC and median MC matrices (20% sparsity)
for all standardization (rows) and MC estimation (columns) methods. (Volpi
et al.,2021 )[112]

Taking advantage on these conclusions Volpi et al., in a subsequent work(Volpi et
al.,2023 )[113], tackled and reassessed the problem of validity and interpretability
of Metabolic Connectivity inferred from either the covariation of static [18F]FDG
PET images across participants (across-individual MC (ai-MC)) or, as for rs-fMRI
functional connectivity, from dynamic [18F]FDG signals (within-individual MC(wi-
MC)). By doing so they have proposed a novel wi-MC methodology that reassessed
the concept of metabolic from a PET kinetic modelling perspective, estimating MC
through a Euclidean similarity approach.(Fig.2.2)
In brief, PET data were first motion-corrected using FSL’s mcflirt [80] and static
PET image were generated by summing late frames after motion correction. The
static PET image was afterwards linearly registered to T!w space and normalized
into SUVR by dividing each voxel’s value by the whole-brain [18F]FDG average
uptake. For PET kinetic modeling, an image-derived input function (IDIF) was
extracted through a semi-automatic pipeline [42], including carotid artery segmen-
tation, selection of "hot voxels", parametric clustering [38], and model fitting with
spillover correction.[64]
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Figure 2.2: Analysis pipeline for inferring metabolic connectivity at the in-
dividual (within-individual approach) and group level (across-
individual approach). [18F]FDG PET dynamic data (far left) is the
source of all inferences of metabolic connectivity. A static SUVR image (top
left) is obtained from frames in the 40–60 min window of the dynamic PET
data; in parallel, a two-tissue compartment model is fitted to dynamic PET
data to estimate [18F]FDG kinetic parameters at the voxel level (using Varia-
tional Bayesian inference and an image-derived input function as a surrogate
for the [18F]FDG plasma concentration Cp), in particular Ki, K1 and k3
(center), and reconstruct the time courses of compartments 1 and 2 (bottom
center). From the subject series of SUVR, Ki, K1 and k3, parcellated thanks
to the chosen atlas ROIs registered to individual PET space, we calculate
across-individual MC via Pearson’s correlation (top right), while from the
time series of the tissue TACs, compartments 1 and 2, individual-level MC is
obtained via Euclidean similarity and averaged across participants (bottom
right). (Volpi et al.,2023 )[113]

Voxel-wise estimation of Sokoloff’s model parameters employed a Variational
Bayesian approach, with k-means clustering applied to dynamic PET data. Paramet-
ric maps of K1, k2, k3, and Vb were obtained for each participant. The parametric
map of Ki(irreversible tracer uptake) by solving at voxel level:

Ki =
K1k3
k2 + k3

(2.3)

The volxel-wise prediction of the time-varying free intracellular concentration of
the [18F]FDG tracer (C1(t)) and its metabolized intracellular concentration (C2(t)),
was then reconstructed from Laplace transorm solution of Sokoloff’smodel by using
IDIF as plasma function (Cp(t))

C1(t) =
K1k2
k2 + k3

e−(k2+k3)t ⊗ Cp(t)

C2(t) = Ki

∫︂ t

0

Cp(τ)dτ

(2.4)
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Finally, ROI-level PET signals ([18F]FDG tissue TACs, C1(t) and C2(t)) were
temporally filtered, interpolated onto a uniform time-grid and wi-MC calculated
with an Euclidean similarity approach.

Exploiting this framework for wi-MC estimates they were able to show the dis-
similarity between ai-MC and wi-MC matrices and assess the higher matching
pattern between FC derived matrix and wi-MC (Dice similarity: 0.47-0.63). There-
fore demonstrating the feasibility of computing individual-level MC from dynamic
PET and that it yields to interpretable matrices that bear similarity to fMRI FC
measures.



Chapter 3

The Effective Connectivity

In the last decades the main forms of brain connectivity, which allows to characterize
the interactions between brain regions, have been summerized in three groups:

∗ Anatomical or Structural Connectivity(SC) measures the density or probability
of anatomical pathways that connect two brain areas. It is Aimed to provide
a exhaustive description of the physical connections of the human nervous
system.

∗ Functional Connectivity (FC) gives information about the temporal correlation
in neuronal activation between spatially remote areas through the estimation
of pairwise statistical dependencies.

∗ Effective Connectivity (EC)

Contrary to functional connectivity which captures patterns of statistical depen-
dence, effective connectivity attempts to extract networks of causal influences of one
neural element over another, hence highliting a directed connection . Various tech-
niques for extracting effective connectivity have been pursued. One technique called
“covariance structural equation modeling” assigns effective connection strengths
to anatomical pathways that best match observed covariances in a given task
(McIntosh and Gonzalez-Lima, 1994). A model-driven directed data fusion and
generalization of this approach is called “Dynamic Causal Modelling (DCM)” has
emerged as Gold Standard to estimate EC and was later extended with various
considerations.

3.1 Dynamic Casual Modelling
The concept of Dynamic Causal Modelling (DCM) was introduced as series of
procedures that deals with the interactions among neuronal population at a cortical
level. Using neuroimaging time series, estimates the coupling between brain areas,
giving an insight on how the coupling is affected by changes in the experimental
evirorment.[15]
It can be considered as a forward model build on a nonlinear Multiple Input Multiple
Output (MIMO) dynamical system that use a Byesian inference framework .The
models are formulated in terms of differetial equations that represent the dymanic

11
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of a hidden state in the nodes of a probabilistic graphical model , in which the
conditional dependencies have to be cosidered in terms of effective connectivity.

DCM principles Consider a MIMO with m inputs and l corresponding outputs
(one for each region), where the m inputs are specific causes (e.g. stimulous
functions) . Each input theoretically , could have direct access to every region but
in practise the outward effects, related to inputs, are restricted to a single input
region .
Given a set of m input each of the l regions produces a measurable output that
corresponds to the observed BOLD signal, where each region is described by five
state variables1. Only the first state variable of each region , though, has to be
considered for the estimation of the effective connectivity due to the fact that these
variables corresponds to neuronal or synaptic activity and are a function of the
neuronal states of other brain regions.[15]

We will start by explaining some ground concepts which were refined in (Friston et
al.,2003 ). First BOLD-fMRI specific equations for neuronal states and then we will
have a look on the differential equations that constitute the hemodynamic model
for each region.

3.1.1 Neuronal state equations

Recalling Friston et. al. 2003 [15] , let us define the neuronal states z = [z1, . . . , z1]
T

and the model for effective connectivity

ż = F(z, u, θ) (3.1)

where F is a nonlinear function describing influences that activity z ,in all l brain
region, and inputs u exert upon changes in the others. θ are parameters of the
model whose posterior density we require for inference.
Considering a bilinear approximation of (3.1) we end up with a natural representation
in terms of EC thus is not required to give a specific form to the function (3.1).
The bilinear form is:

ż ≈ Az +
∑︂
j

ujB
jz + Cu = (A+

∑︂
j

ujB
j)z + Cu (3.2)

where we have considered a bilinear low-order Taylor approximation to account for
both endogenous and exogenous causes of system dynamics, where:

A =
∂F

∂z
=

∂ż

∂z
Bj =

∂2F

∂z∂uj

=
∂

∂uj

∂ż

∂z
C =

∂F

∂u
(3.3)

The matrix A known as connectivity matrix represents the first order connectivity
among brain region in condition of absence of external stimuli .We can think of EC

1Four state variables (vasodilatory signal, normalised flow, normalised venous volume and
normalised deoxyhemoglobin content) ,representing the hemodynamic states, are required to
compute the BOLD signal itself and are not effected by states of other regions.



3.1. DYNAMIC CASUAL MODELLING 13

as the influence of a neuronal region over another in terms of inducing a response
∂ż
∂z

thus changing the neuronal state.
Therefore considering the DCM procedure we recognise the response in an activity
change over time ż and it can be thought as intrinsic coupling in absence of
experimental perturbations.2
The matrices Bj are the actual change in coupling iduced by the j-th input, thus
they encode the modulation over the instrinsic coupling itself and are obtained
from manipulations of the experimental envirorment or setup. We refer to Bj as
bilinear given that includes a secon-order differential term.
On bealf of C matrix , it represent input-driven influences on the neural activity .
In the idenfitifation phase we would identify the parameters θc = {A,Bj, C}
and define the functional architecture and connections among brain region thus
describing the model at neuronal level.

In a subsequent study the original equation(3.2) was characterized in order to deal
with resting-state fMRI (Friston et al.,2014 [67]). In this setting, external stimuli
are absent , that is u(t) = 0 and the random fluctuations associated with the neural
state are responsible for driving the neural activity. Therefore, the neural state
equation (3.1) beacomes linear and can be expressed as :

ẋ(t) = Ax(t) + ν(t) (3.4)

with A representing effective connectivity and ν(t) the random fluctuations associ-
ated to the neural state.
This formulation for rs-fMRI was later exploited in section (3.2).

3.1.2 Hemodynamic state equations

The DCM procedure combines the presented bilinear model of neuronal connec-
tome dynamics with a validated hemodynamic model that describes the transition
from neuronal activity to a BOLD observable response .In brief, neuronal state
changes drive local changes in blood flow, which inflates blood volume and reduces
deoxyhemoglobin content.
The so-called "Balloon Model" , also known as Balloon-Windkessel model, was fist
introduced by Bruxton et al.,1998 [14] and later extended in Friston et al.,2000 [16].
Therefore to describe the remaining four state variables , which consitute the BOLD
signal and rule the transition from neuronal activity to observable hemodynamic
response, in Friston et al.,2006 [15] it has been expoited the Balloon model as follow.

For the i-th region a significant neuronal activity zi increases the vasodilatory signal
si that is subject to auto regolatory feedback .
Incoming fluxes fi responds proportionally to si with consequent changes in blood
volume νi and deoxyhemoglobin content qi.

2Caveat: The state depends on the experimental design thus intrinsic coupling is unique and
chracterize each experiment.
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Figure 3.1: (A) The bilinear state equation of DCM where the modulation of connectivity
can also be considered as induced connectivity . (B) An example of a DCM
describing the dynamic of a system of visual areas , consisting in two
regions each described by a state variable (z1, z2). Black arrow represent
the directional connection between neural states (blue color) whereas dotted
arrow represent transformation from neural state into BOLD signal(red
colour) also referred as hemodynamic observations.

ṡi = zi − κisi − γi(fi − 1)

ḟ i = si

τiν̇i = fi − ν
1
α
i

τiq̇i =
fiE(fi, ρi)

ρi
− ν

1
α
i qi
νi

(3.5)

where throughout the Grubb’s exponent [17] we can exert a modulation effect on
the outflow as fout(ν) = ν

1
α and the oxygen extraction is in function of the flow

E(f, ρ) = 1− (1− ρ)1/f 3.
The BOLD signal is taken to be a static nonlinear function of volume and deoxyhe-

3ρ is the resting oxygen extraction fraction
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moglobin:

yi = g(qi, νi) = V0(k1(1− qi) + k2

(︃
1− qi

νi

)︃
+ k3(1− νi))

k1 = 7ρi

k2 = 2

k3 = 2ρi − 0.2

(3.6)

where V0 = 0.02 is resting blood volume fraction. The main prior of biophysical
parameters θh = {κ, γ, τ, α, ρ} commonly used are represented in the following table
and a block diagram of the hemodynamic model is shown in Fig. (3.2)

Figure 3.2: This is an adaptation fom Stephan et al.,2007c and where use z referring to
the activity instead of x. The neuronal activity evoke a vasodilatory and
activity dependent signal s which increase blood flow f . Blood flow then
causes changes in volume and deoxyhemoglobin(v and q). In [18] the model
has six state variables : the rate constant of the vasodilatory signal decay
(κ), the rate constant for auto-regulatory feedback by blood flow (γ), transit
time (τ), Grubb’s vessel stiffness exponent(α), capillary resting net oxygen
extraction (E0), and ratio of intra-extravascular BOLD signal(ϵ). E is the
oxygen extraction function. This figure graphically represent the transition
from neuronal states to hemodynamic response.
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Parameter Description Prior Mean ηθ Prior Variance Cθ

κ Rate of signal decay 0.65 s 0.015
τ Hemodynamic transit time 0.98 s 0.0568
ρ Resting oxygen extraction fration 0.34 0.0024
γ Rate of flow-dependent elimination 0.41 s 0.002
α Grubb’s exponent 0.32 0.0015

Table 3.1: Priors on biophysical parameters

3.1.3 Estimates

The parameters θ = {θc, θh}4 are estimated from the measured BOLD data following
a posterior density analysis under a Gaussian assumption.[15] Briefly, starting from
a full forward model that is specified by (3.2) and (3.5)(3.6) :

ẋ = f(x, u, θ) (3.7a)
y = λ(x) (3.7b)

where ẋ = f(x, u, θ) is the state equation , x = {z, s, f, ν, q} is the combination
of neural and hemodynamic states, u the model inputs and θ the parameter set
described shortly before. For different combination of parameter θ and inputs u the
equation (3.7a) can be integrated and passed through (3.6) to obtain a predicted
response h(u, θ). A detailed description on how to compute h(u, θ) can be found in
Friston, 2002, Section 3.4 [66] or alternately in Friston et al., 2003, Section 2.2 [15].
Moreover the forward model can be refined by adding error and confounding or
nuisance variables X(t) obtaining y = h(u, θ) +Xβ + ϵ where β are the unknown
coefficients of the confounds.
Following [66] and thus using Laplace smoothing[74] we end up with :

y − h(u, ηθ|y) ≈ J∆θ +Xβ + ϵ = [J,X]

[︃
∆θ

β

]︃
+ ϵ

∆θ = θ − ηθ|y

J =
∂h(u, ηθ|y)

∂θ

(3.8)

This local approximation enters subsequently an estimation algorithm based on
Expectation maximization (EM) [11][66].Once the parameters have been estimated
, the posterior distributions 5 of the parameters estimates can be used to test
the connection strength. Usually the hypothesis to be tested concern changes in
coupling due to experimental environment variations or external stimuli.[18]

4Respectively the neural and hemodynamic parameters
5Due to Laplace approximation the posterior distribution will be defined by maximum a

posteriori (MAP) estimate and their posterior covariance
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3.2 Sparse Dynamic Causal Modelling
Since its introduction almost two decades ago, Dynamic Causal Modelling (DCM)
has gone through refinement with numerous discoveries. These have helped to
shed light on and delve deeper into the inner complexity of the human brain.
The non linear equation (3.1) was modified to embody an updated knowledge on
biophysical parameters and to account for MRI acquisition parameter such as echo
time [18] and slice timing [105][104]. Further extended model included excitatory and
inhibitory subpopulations in each region allowind a detailed description of intrinsic
connectivity (between subpopulations) within a region, where a positive constraint
was set to reflect that extrinsic(inter-regional) connections of cortical areas are
purely excitatory.[2] Other approaches took into consideration the limitations of
the biliniar model(3.2) :

1. the neuronal origin of the modulatory influence is not specified

2. may be not the appropriate framwork to model. fast changing in EC , which
are mediated by non linear effect at the level of single neuron. [65]

thus proposing a solution that considered nonlinear interaction among synaptic
inputs where the effective strength of a connection between two regions is modulated
by activity in a third region.[58]
One of the latest approches ,proposed by Prando et al.,2020 [49] , extended the
previous resting-state DCM procedure (Friston et al.,2014 [67]) by overcoming the
principle that the procedure would work only with a restricted set of nodes.

The Sparce Dynamic causal modelling ,in fact, gives a wider range on information by
estimating whole-brain effective connectivity form resting-state fMRI data. Having
as reference the stochastic DCM proposed in Friston et al,2014 [67] it has been
introduced a a discretization of the non-linear model and a statistical linearization
of the HRF.
Considering the general mathematical expression of the DCM model

ẋ(t) = f(x(t), u(t), θf ) + ν(t)

y(t) = h(x(t), θh) + e(t) e(t) ∼ N (0, R)
(3.9)

where ẋ(t) describes the coupling among neuronal populations, h(x(t), θh) a dynamic
map from neuronal activity to measured BOLD signal y(t), ν(t) is a stochastic
term representing intrinsic brain fluctuations , e(t) account for observation noise
with covariance matrix R and θf describe the model at neural level whereas θh are
biophysical parameters defining the hemodynamic response. Under the assumption
that external stimuli are absent6, u(t) = 0 and applying on (3.9) the discretization
and the linearization cited before , we end up with :{︄

x(k + 1) = Ax(k) +w(k)

y(k) = Hx(k) + e(k)
(3.10)

6The random fluctuations ν(t) remain the only term that drives the neural activity thus the
non-linear function in (3.9) becomes linear ẋ = Ax(t) + ν(t)
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where A refers to the EC matrix, w(k) represent wite gaussian noise associated with
endogenous fluctuations with variance Q [54] and e(k) describes the measurement
error trough a white gaussian variable with variance R.[49]
The matrices A and H are defined as follow:

A =

[︃
eATR 0

In(s−1) 0

]︃
(3.11)

H =

⎡⎢⎢⎢⎢⎣
h1,0 0 . . . 0 h1,1 0 . . . 0 . . . h1,s−1 0 . . . 0

0 h2,0
. . . ... 0 h2,1

. . . ... . . . 0 h2,s−1
. . . ...

... . . . . . . 0
... . . . . . . 0 . . .

... . . . . . . 0

0 . . . 0 hn,0 0 . . . 0 hn,1 . . . 0 . . . 0 hn,s−1

⎤⎥⎥⎥⎥⎦
where A, H are components of the parameter vector θ = {A, σ, h1, . . . , hn, λ1, . . . , λn}
estimated following the EM algorithm explained in Prando et al.,2020 (Section
2.3)[49].
In brief, given {y(k)}Nk=1 measure of the BOLD signal we want to find θ and γ that
maximize the marginal posterior

pγ(θ|Y ) =

∫︂
pγ(X, θ|Y )dX (3.12)

where Y = [yT (1), . . . , yT (N)]T and X = [xT (0), . . . , xT (N)]T as measurement and
latent variables respectively.
However, due to computational challenges of this high-dimensional integral, a
tractable lower bound of the likelihood is exploited.
The prior pγ(θ) is specified, assuming uninformative priors for some parameters
and employing a sparsity-inducing prior for the connectivity matrix A based on
Sparse Bayesian Learning (SBL). The SBL perspective allows for the automatic se-
lection of a sparsity pattern in the estimated effective connectivity matrix, avoiding
combinatorial search over candidate network structures.
The Maximum A Posteriori (MAP) estimate is obtained using an Expectation-
Maximization (EM) procedure. The EM algorithm iteratively optimizes a lower
bound of the log-posterior, incorporating a priori information on θ. The procedure
involves maximizing the lower bound with respect to an arbitrary distribution
and θ. The computational complexity of each iteration is O((ns)3), primarily due
to matrix inversions in the Rauch-Tung-Striebel smoother. The EM algorithm
alternates between the RTS smoother and the maximization of the lower bound
to update θ. Hyperparameters γi

n2

i=1 are also updated at each iteration, crucial for
inducing sparsity on A.
The non-convexity of the problem is addressed, emphasizing the importance of
proper initialization (θ(0) and γi

n2

i=1). Experimental investigations highlight the
critical role of the effective connectivity matrix A in the initialization process,
providing insights reported in the Appendix B (Algorithm 1)[49]. The overall
computational cost scales as O((ns)3N) for N iterations, and specific details on
execution times are provided in Sections 3.1 and 3.2[49].
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The estimated matrix A is non-symmetric matrix and each row and column repre-
sents a specific region of interest. The information about the effective connections
between each pair of regions is directed, for example, the weight of the link in
position 10,20 (row, column) of the matrix represents the strength of the link that
region 20 exerts on region 10. Values in the diagonal give information about the
recurrent links of each region.
The matrix A can be also thought, under a graph theory representation , as an
adjances matrix enabling us to retrieve nodes(region of interest like brain network)
and the respective edges.





Chapter 4

Materials and Methods

This section will provide a complete description of the rs-fMRI as well as [18F]FDG
PET dataset and acquisition settings. It also presents the subject’s demographical
as well as the neoplasm data and the chosen reference atlas.

4.1 Healthy and Oncology datasets
Healthy Dataset
Healthy subjects were recruited to match the oncology patients, 42 subject were
drafted (19M, 23F) with mean age of 58.2 (age: 58.2± 14.5)

Oncology dataset
Oncology subjects were recruited resulting in 42 (19M, 24M) patients with different
brain neoplasm types, with mean age 58.8 (age: 58.8±14.9). Additional information
about tumor’s grade, histology and location are provided in table (Tab.4.1).
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Tumor histology
Astrocytoma 2
Diffuse astrocytoma 1
Glioblastoma 28
Gliosarcoma 1
Glioneural neoplasm 2
Oligodendroglioma 1
Other 8

Tumor grade
I 1
II 7
III 4
IV 28
n.a. 3

Tumor site
Left 24
Right 15
Bilateral 4

Table 4.1: Tumor’s grade, histology and site among oncology dataset
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4.2 Atlas
The choice for the reference atlas relapsed on a homotopic variant oh the gwMRF
local-global parcellation model developed by Yan et al.[119], where each parcel has a
spatial counterpart on the other hemisphere. The resulting parcels are homogeneous
in both resting and task states across datasets from diverse scanners, acquisition
protocols, pre-processing and demographics. Additionally , the homotopic local-
global parcellations replicate known homotopic and lateralization properties of the
cerebral cortex.

Figure 4.1: Homotopic parcellation from rs-FC . Cerebral cortex parcellations with
100 parcels based on the full GSP dataset of 1479 subjects. Homotopic
parcels have identical colors. (Yan et al.,2023 )[119]

For computational complexity reasons it has been necessary to reduce the number
of nodes considered as input before applying sparse DCM by utilizing the framework
proposed in Ryali et al.[109], termed consensus clustering, which is based on a
combination of a base K-means clustering(KC) and hierarchical clustering(HC).
By applying this framework it has been possible to retrieve the optimal number
of stable cluster in rs-fMRI data. It has also to be stated that subcortical parcels
were kept unchanged and with respect of Ryali et al, the modified silhouette was
used as objective criteria to determine the number of cluster. Clustering was only
performed on ROIS that were functionally homogeneous and spatially contiguous
in order to preserve the spatial consistency of the hemodynamic properties.
The correspondence between the original Brain areas and the clusterized functional
network are shown in table (Tabl.4.2) whereas the resulting atlas is shown in figure
(Fig.4.2)
From here on we would refer at the clusterized Yan atlas as c-Yan.



24 CHAPTER 4. MATERIALS AND METHODS

Figure 4.2: Clusterize version of Yan homotopic atals . Cerebral cortex parcella-
tions with 100 parcels based on the full GSP dataset of 1479 subjects were
reduced by consensus clustering[109] into 74 cortical ROIs.(See Tabl.4.2)
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ID Network Areas
1 Default FPole
2 Default IPL 1
3 Default IPL 2
4 Default PCC, RSC
5 Default PFCd 1, PFCm
6 Default PFCd 2
7 Default PFCd 3
8 Default PFCv 1
9 Default PFCv 2
10 Default Temp 1
11 Default Temp 2
12 Default Temp 3
13 Cont IPS
14 Cont PCC
15 Cont PFCl
16 Cont PrCv
17 Cont pCun
18 Limbic OFC
19 Limbic PHC
20 Limbic Temp, TempPole
21 SalVentAttn FrMed
22 SalVentAttn Ins 1/2
23 SalVentAttn PostC
24 SalVentAttn SPL
25 DorsAttn IPS, SPL 2
26 DorsAttn PostC
27 DorsAttn PrC, PrCd
28 DorsAttn SPL 1
29 DorsAttn TempOcc
30 SomMot 1/3/4
31 SomMot 2
32 SomMot 5
33 SomMot 6
34 SomMot Ins
35 SomMot ParOper
36 Vis 1/2/4
37 Vis 3/5/6/7
75 Subcortical Thalamus
76 Subcortical Caudate
77 Subcortical Putamen
78 Subcortical Pallidum
79 Subcortical Cerebellum
80 Subcortical Hippocampal

ID Network Areas
38 Default IPL 1
39 Default IPL 2
40 Default PCC, RSC
41 Default PFCd 1,PFCm
42 Default PFCv 1
43 Default Temp 1
44 Default Temp 2
45 Cont FPole
46 Cont IPS
47 Cont PCC
48 Cont PFCd
49 Cont PFCl
50 Cont PFCv
51 Cont PrCv
52 Cont pCun
53 Limbic OFC
54 Limbic Temp, TempPole
55 SalVentAttn FrMed
56 SalVentAttn Ins 1/2
57 SalVentAttn PFCd
58 SalVentAttn ParOper
59 SalVentAttn PostC
60 SalVentAttn SPL
61 DorsAttn IPS, SPL 2
62 DorsAttn PrC, PrCd
63 DorsAttn SPL 1
64 DorsAttn TempOcc
65 SomMot 1/3/4
66 SomMot 2
67 SomMot 5
68 SomMot 6
69 SomMot Ins
70 SomMot PostC
71 SomMot Temp
72 Vis 1/2/4
73 Vis 3/5/6/7
74 Vis PHC
81 Subcortical Thalamus
82 Subcortical Caudate
83 Subcortical Putamen
84 Subcortical Pallidum
85 Subcortical Hippocampal
86 Subcortical Cerebellum

Table 4.2: Atlas clustering (left and right hemisphere)
These are the results of a consensus clustering algorithm applied to the 100-area

parecellation (7-networks) of [119] and AAL2 subcortical parcellation
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4.3 Healthy subjects

For each subject in the dataset rsfMRI and [18F]FDG scans were performed. All
data were processed according to the procedure explained in Volpi et al.,2023 [113].

4.3.1 fMRI acquisition protocol

Structural images were acquired using a 3D sagittal T1-weighted magnetization-
prepared 180° radio-frequency pulses and rapid gradient-echo (MPRAGE) multi-
echo sequence (TE = 1.81, 3.6 , 5.39, 7.18 ms, TR = 2,500 ms, TI = 1,000 ms,
0.8×0.8×0.8-mm voxels). The final T1w image was obtained as the average of the
first two echoes.[62] T2∗ gradient-echo echo planar imaging (GE-EPI) data were
acquired (TR/TE=800/33 ms, flip angle 52°, voxel size 2.4×2.4×2.4 mm, MB 6, 375
volumes for total scan time of 5 min), together with two spin-echo (SE) acquisitions
(TR/TE=6000/60 ms, flip angle 90°) with opposite phase encoding directions (AP,
PA), often used for distortion correction. All data types were acquired on a Siemens
Magnetom Prismafit scanner.

4.3.2 fMRI pre-processing

The fMRI data were processed in a similar way to the Human Connectome Project
minimal processing pipeline [62]. The first four volumes were discarded to avoid
non equilibrium magnetization effects. The remaining volumes were corrected for
slice timing differences and magnetic field distortion and realigned to the median
volume. A template EPI volume was obtain from realigned fMRI data and used to
estimate an affine tranform employed to map main tissue segmentations from T1w
image to the EPI space.
Nuisance signal and the first 5 temporal principal components obtained after PCA
of WM and CSF EPI signals, were regressed out from all brain voxels in native EPI
space. Moreover BOLD signal was cleaned from motion atrifacts with an ICA-based
approach (ICA AROMA [92]) and high-pass filtered(cut-off 0.008 HZ).
Finally, pre-processed rs-fMRI were obtained within each ROI from the c-Yan
atlas (See Tabl.4.2), which had been linearly mapped from T1w to rs-fMRI space
by averaging over voxels within the T1w GM segmentation (Probability >0.8 of
belonging to GM).

4.3.3 [18F]FDG-PET acquisition protocol

[18F]FDG scans were performed on a Siemens model 962 ECAT EXACT HR +
PET scanner (Siemens/CTI) , as previously described [107][44], after i.v. bolus
injection of 5.1 ± 0.3 mCi (187.7 ± 12.1 MBq) of [18F]FDG. Dynamic acquisition
of PET emission data continued for 60 min. Participant head movements during
scanning were restricted by a thermoplastic mask. All PET images were acquired
in the eyes-closed waking state. No specific instructions were given during scanning
other than to remain awake.
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[18F]FDG PET data Reconstruction PET data were reconstructed via fil-
tered back-projection (ramp filter, 5 mm FWHM) as 128x128x63 matrices. The
reconstruction grid consisted of 52 frames of increase duration (24 x 5 s frames, 9
x 20 s frames, 10 x 1 min frames, and 9 x 5 min frames). To address attenuation
correction, participant-specific transmission scans were utilized for performing the
necessary corrections.

4.3.4 [18F]FDG-PET pre-processing

The dynamic 18F]FDG data were motion corrected using the FSL’s mcflirt algo-
rithm.[80] For each subject in the dataset a static [18F]FDG image was computed
by summing the motion-corrected late [18F]FDG frames acquired between 40 and
60 minutes. The static image was linearly registered to T1w space using FSL’s flirt
algorithm [80] and the c-Yan parcellations and the individual GM and WM tissues
segmentations were mapped from T1w to PET space. Finally [18F]FDG static PET
image was normalized to SUVR by dividing the value of ech voxel by the average
uptake of [18F]FDG in the whole brain.

4.4 Oncological subjects

For each subject in the dataset were performed rsfMRI and [18F]FDG scans. fMRI
data were processed according to Pagnin,2022 (Section 6.2)[90] .

4.4.1 fMRI acquisition protocol

Data were acquired on a 3 T Siemens Biograph mMR scanner equipped with a
16-channel head–neck coil. Anatomical imaging included T1-weighted (T1w) 3D
magnetization-prepared rapid acquisition gradient-echo (TR = 2400 ms, TE = 3.24
ms, TI = 1000 ms, FA = 8°, FOV = 256 × 256 mm, voxel size = 1 mm × 1 mm
× 1 mm) images acquired both before and after contrast agent injection, a 3D
T2-weighted image (TR = 3200 ms, TE = 535 ms, FOV = 256 × 256 mm, voxel
size = 1 mm × 1 mm × 1 mm), a 3D fluid attenuation inversion recovery (TR =
5000 ms, TE = 284 ms, TI = 1800 ms, FOV = 256 × 256 mm, voxel size = 1 mm
× 1 mm × 1 mm) image. In addition, functional imaging comprised rs-fMRI EPI
scans (TR = 1260 ms, TE = 30 ms, FA = 68°, FOV = 204 × 204 mm, voxel size
= 3 mm × 3 mm × 3 mm, volumes = 750, MBAccFactor = 2, iPAT = 0, phase
encoding direction antero-posterior) and two spin echo-EPI acquisitions with 41
reverse phase encoding (TR = 4200 ms, TE = 70 ms, FOV = 204 × 204 mm, voxel
size = 3 mm × 3 mm × 3 mm, MBAccFactor = 1) for EPI distortion correction
purposes.

4.4.2 fMRI pre-processing

The rs-fMRI data pre-processing pipeline is composed by: a slice timing procedure,
a readout distortion correction(FSL’s TOPUP), a realignment of volumes according
to mcflirt algorithm [80], a non-linear mapping to the symmetric MNI152 atlas
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exploiting the subject-specific T1w (via FSL’s boundary based registration) and
high pass filtering (cut-off frequency: 0.008 Hz), a manual identification and out-
regression of the ICs related to broad head movement artifacts. Moreover the
first 5 principal components related to CSF and WM signal were regressed out
from rs-fMRI time series as well as head-motion parameters and the associated
derivatives. To quantify subject -specific head motion during the scan , it has been
computed a frame-wise displacement.
The rs-fMRI signals has been subsequently projected onto the atlas described in
section (4.2) and despiked in order to mitigate deterioration in accuracy of volume
registration and computational performances .(cite 41) Despiking was performed
using an average approach on the function icatb_despike_tc , which is contained in
Group ICA Toolbox (https://trendscenter.org/software/).
Timeseries were then further temporally filtered to reduce noise outside frequencies
of interest using a band-pass filter(0.0078-0.2 Hz) obtained as combination of high
and low-pass Butterworth filters.
More details about thereof steps and their reasons of choice can be found in
Pagnin,2022 (Section 6.2)[90]
Therefore, from the initial rs-fMRI data registered in the Yan atlas reference space,
we would obtain data projected in a reduced space of 74 cortical regions.

4.4.3 [18F]FDG-PET acquisition protocol

[18F]FDG PET and structural MRI images were acquired for patients. Hence
Glioma patients underwent simultaneous PET/MR acquisitions on a Siemens 3T
Biograph mMR scanner (Siemens Medical Solutions USA, Inc.). Dynamic PET
acquisitions of 60 min duration were performed following an i.v. bolus injection of
203 ± 40 MBq. Images were then reconstructed as matrices of size 256x256x127 with
a voxel size of 2.8x2.8x2.0 mm using the OSEM algorithm starting from list-mode
data. The reconstruction grid comprised 39 frames with increasing duration: 10
frames of 6 s, 8 frames of 15 s, 9 frames of 60 s and 12 frames of 240 s.

4.4.4 [18F]FDG-PET pre-processing

The dynamic [18F]FDG data were motion corrected using the FSL’s mcflirt algo-
rithm.[80] For each subject in the dataset a static [18F]FDG image was computed
by summing the motion-corrected late [18F]FDG frames acquired between 40 and 60
minutes. The static image was linearly registered to T1w space using FSL’s flirt [80]
algorithm and the tumor mask (TM) and lesion mask (TM+E) as well as c-Yan
parcellations and the individual GM and WM tissue segmentations were mapped
from T1w to PET space. Then the static 18F]FDG PET image was normalized
dividing by the average uptake of 18F]FDG in the WM SPM map (probability >0.95
of belongin to WM) resulting in SUVR . It has to be noted that the cerebellum was
chosen as reference region given the low incidence of gliomas (4.5% of all gliomas).
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4.5 MC estimate
A segmented version of Yan atlas was obtained masking the atlas with GM
mask(probability of belonging to GM>0.5) corresponding to 74 cortical regions and
with a notCSF mask(probability of not belonging to CSF >0.95) correspondig to
12 subcortical regions. Region of interest (ROI)-level [18F]FDG PET time-activity
curves (TACs) were derived from the Yan segmented atlas by averaging voxel values
within each parcel. Subsequently, the five-second frames were temporally filtered
by averaging them in triplets, employing a subsampling approach for the initial 24
frames with a 3x3 averaging. Finally, all TACs were interpolated onto a uniform
virtual time grid.
The core analysis revolves around the calculation of Euclidian similarty matrices
between pairs of brain regions. This metric captures reseamblance in the temporal
profiles of metabolic activity, offering a quantitative measure of within-individual
Metabolic Connectivity.
Euclidean similarity it is based on the Euclidean distance dx1,x2 between each pair
of TACs xi,1 and xi,2:

dx1,x2 =

⌜⃓⃓⎷ T∑︂
i=1

(xi,1 − xi,2)2 (4.1)

where T is the number of time points. From dx1,x2 then the Euclidean similarity is
derived aa 1 minums the normalized dx1,x2 (e.g. divided by the maximum distance
among pairs of TACs ).

4.6 SUVR estimate
Applying the procedure outlined in Section 4.5, masks delineating regions of interest
(ROIs) were created. Standardized Uptake Value (SUV) calculations were performed
on static PET images (frames acquired between 40-60 minutes) by dividing voxel
values within the static PET by the ratio of the known injected dose to the subject’s
weight. Subsequently, SUV ratio (SUVR) maps were generated from SUV values,
utilizing the average uptake of [18F]FDG in the white matter (WM) according to
the SPM map (probability > 0.95 of belonging to WM).

4.7 sparse DCM algorithm inizialization

4.7.1 DCM Noise variance setup

A required step to apply sparse DCM is to set a critical parameter teremd noise
variance , as elucidated in section(riferimento alla sezione). This parameter corre-
sponds to the variance of the measurement noise, embedded in the R matrix within
the sDCM framework. Determining the optimal value involves an iterative process
where different weights for the R matrix (expressed as a fraction of the sample
variance of the input BOLD signal) are tested. The aim is to strike a balance
between the empirical-simulated Functional Connectivity (eFC-sFC factor) and the
Kolmogorov-Smirnov (KS) distance, following the methodology outlined in Deco et
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al.2017 [47].
The eFC-sFC factor is computed by considering the ground static Functional Con-
nectivity (FC) matrix. This matrix represents correlations between pairs of BOLD
signals extracted from brain areas over the entire time window of acquisition, with
correlation values ranging from -1 to +1. The eFC-sFC correlation factor is then
determined as the Pearson correlation between the upper triangular part of the
empirical FC matrix, derived from observed BOLD signals, and the simulated FC
matrix obtained through sDCM estimation The simulation involves generating a
time response of a dynamic system to arbitrary inputs, based on system matrices
computed through the sparse estimation algorithm [49].
According to Deco et al, 2017 the Dynamic Functional Connectivity (FCD) matrix
is computed using a sliding window approach. Then , the resulting FCD matrix
, with entries defined by Pearson correlation between corresponding FC matri-
ces is used to compare upper trisngular elements across subject and sessions.The
Kolmogorov-Smirnov (KS) distance is then computed, quantifying the maximal
difference between the cumulative distribution functions of the empirical and simu-
lated data as shown in figure(4.3) In summary, the objective of determining the

Figure 4.3: Methods for measuring fit between simulated and empirical data.
For comparing the FCD statistics, we collected the upper triangular elements
of the matrices (over all participants or sessions) and compared the simulated
and empirical distribution by means of the Kolmogorov-Smirnov distance
between them. The Kolmogorov–Smirnov distance quantifies the maximal
difference between the cumulative distribution functions of the two samples.
(Deco et al.,2017 )[47]

optimal noise variance is to find a value that maximizes the correlation between
empirical and simulated FC while minimizing the KS distance. This subject-specific
procedure results in the selection of a value that performs well across all subjects.
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4.8 Metabolic and EC derived metrics comparison
After having obtained both an EC and MC estimate for each subject in the dataset
we would consider three entropy-related metrics namely Σ which is a symmetric
matrix that quantifies the dissipative flow, S which is an antisymmetric matrix
that measure the solenoidal flow and Σ−1 which is a precision matrix.

4.8.1 Σ and S matrices

According to Prando et al.,2020 [49] the intrinsic random brain fluctuation ν(t) in
the DCM model equation remain the only term that drives the neaural activity ,
thus the non-linear function in (3.9) becomes linear:

ẋ(t) = Ax(t) + ν(t) (4.2)

where x contains the states of brain regions , A is the EC matrix encoding relation-
ships between brain regions and Σν is the covariance matrix associated to the noise
variance estimated in 4.7.1.
In accordance with Casti et al.,2023 [115] and Benozzo et al.,2023 [37] , supposing
A Hurwitz stable, the A matrix can be decomposed as

A =

(︃
−1

2
Σν + S

)︃
Σ−1 (4.3)

where Σ−1 is the inverse matrix of Σ. The Σ matrix also can be seen as a measure
of functional strength between brain regions and can be computed as the solution
of the Lyapunov equation:

AΣ + ΣAT + Σν = 0. (4.4)

The S matrix can be consequently computed as S = 1
2
(AΣ − ΣAT ).(See Proof

Thm.1 [115])

4.8.2 Correlations

For each subject all three matrics explained in 4.8.1 were computed for EC subject-
specific data and then considered along with SUVR and MC subject-specific data
following 2 main approaches:

1. The strength of Σ, Σ−1 , S and MC were obtained by summing over each
matrix column resulting in four row vectors with dimension of 1x86 (1 x
number of c-Yan parcels). All vectors were then merged into matrices ,
respectively Σstr, Σ−1

str , Sstr and MCstr with dimension (number of subjects x
number of c-Yan parcels).

2. For each Σ, Σ−1 , S and MC matrices were extracted their upper triangular
matrices, resulting in a vector of dimension 3655x1 (number of element in the
strictly upper triangular matrix where the number of upper element can be
computed as

∑︁n−1
k=1(n− k) with n = 86 number of c-Yan parcels.



32 CHAPTER 4. MATERIALS AND METHODS

For both approaches Spearman correlation was computed between coupled metrics
as follow : Σ-MC, S-MC, Σ-SUV R, S-SUV R,Σ−1-MC and Σ−1-SUV R.
Subsequently each vector containing correlation coefficients of the coupled metrics
was corrected for multi-comparison type 1 error(False positive) using the multicmp
function (https://www.mathworks.com/matlabcentral/fileexchange/61659-multicmp)[19]
with significance threshold set to α = 0.05.
Non significant values of correlation were finally set to zero.
Moreover, the complete process described above was repeated considering absolute
values of the metrics (e.g. for MCstr the sum over columns of its element’s absolute
values) to check if it would affect the correlation coefficients.

4.9 Oncological and HC comparison

Wilcoxon Rank sum test
Correlations were separately calculated for the Healthy and Oncology datasets, and
the resulting vectors were processed to remove zero values. Resulting vectors were
tested for normality using Lilliefor test with a significance level 5%(α = 0.05).The
test was chosen given the fact that it adjust for estimation of parameters from the
sample consequently being more accurate when dealing with small sample size.
Only for one correlation vector the test couldn’t reject the null hypothesis , however
being composed by just two data points, the interpretation of the test was unsure.
For this reason all vector are supposed non normally distributed. In addiction to
that the use of paired t-test is not recommended, given the fact that the sample
sizes were small for each cleaned correlation vector.[88]
Therefore, significant independent correlation’s vectors between healthy and on-
cology subjects were compared for similarity in median with Wilcoxon Rank sum
test [26] where significant differences in median were selected for pvalue < 0 .

4.10 Network influence assessment

An evaluation on network influence on the relationship between metrics were carried
out in the healthy dataset between : MC − Σ−1, SUV R − Σ−1

str, |S|str − SUV R
and S −MC.

Sorting by network
Single subject matrices MC, Σ−1 and S with dimension 86x86 (number of c-Yan
parcels x number of c-Yan parcels) and SUV R, |S|str, Σ−1

strvectors with dimension
1x86 (1 x number of c-Yan parcels) were sorted by functional network according to
table (Tab.4.2), hence e.g. for vector |S|str the first 74 entries would represent the
left and right hemisphere cortical c-Yan parcels and the last 12 entries the left and
right hemisphere subcortical c-Yan parcels.

In particular, for MC, Σ−1 and S matrices the extraction and consequent rear-
rangement of functional network was carried out as follow:
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1. one vector v̂ = [left, right] (left:left hemisphere, right:right hemisphere)
was initialized for each functional network, containing the cluster’s indices
corresponding for that network.(See Tabl. 4.2)

2. an encoding block diagonal matrix was constructed where each square diagonal
block represented intra-network ROI . Each diagonal block was a square matrix
of dimension kxk ( k=length of v̂) containing only one entries multiplied for
a scalar value such that:

a×

⎡⎣ 1 1 1

1 1 1

1 1 1

⎤⎦
kxk

where a = 1, . . . , 13 represent respectively Default, Cont, Limbic, SalVanAttn,
DorsAttn, SomMat, Vis, Thalamus, Caudate, Putamen, Pallidum, Cerebellum,
Hippocampal networks.

3. upper triangular matrices of dimension 1x3655 were extracted using the same
mask for MC, Σ−1 and S and the encoding block diagonal matrix.

4. single network data points were extracted from upper triangular MC, Σ−1

and S using as reference the indexes in the upper triangular encoding matrix
corresponding to the network’s a value.

5. finally each network data points collection were merged into a row vector
for each metric, obtaining 3 row vectors of dimension 1x434 e.g. xMC =
[n1, n2, . . . , n13].

Therefore each final row vector would contain the data points corresponding at
the upper triangular matrix ordered by network. It has to be noted that doing so
inter-network data were excluded from the analysis.

Influence on correlation assessment
For uniformity in metrics measurement scale SUV R, Sstr, Σ−1

str, xMC , xS and xΣ−1

were z-scored. Each coupled metric, was then fitted using fitlm function and plotted.
In addiction, in each plot was superimposed a partial regression leverage plot to
help identify influential observations and assess the effect of individual predictor
variable on the response variable.

For xMC , xS and xΣ−1 , given the high number of data points, the average distance
between each network and the regression line was considered as metric to evaluate
the degree of influence in the correlation. The distance form each data point and
the regression line was computed with point-to-line [96] function and then distance
values within the same network averaged.
Person correlation (significance level 5%) and R2 were computed among all coupled
metrics to evaluate respectively the linearity of the relationship between two metrics
and the goodness of the linear fit.

The group-level impact of networks on correlation was assessed through the following
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steps: firstly, the average distance between each network and the regression line
was computed for each subject, resulting in a vector of dimensions 1x13 (1xnumber
of functional networks). Secondly, a matrix M , sized 43x13 (number of subjects x
number of functional networks), was initialized. Each row in M represented the
subject’s average distance for each functional network data point from the regression
line. Finally, the group-level distance from each network to the regression line was
computed by averaging each column of M .
It is important to note that subjects for whom the Pearson correlation exhibited a
pvalue > 0.05 were excluded from the M matrix as they did not exhibit a significant
linear relationship between fMRI and [18F]FDG PET-derived metrics.



Chapter 5

Results

This chapter will include all the results for sparse DCM setup , Correlation analysis,
similarity testing and network influence analysis.
All quantitative measures and figures have been generated with MATLAB2022a
(MathWorks, Inc.)

5.1 Choice of Variance
According to the procedure in 4.7.1 a key step before utilizing the sparse DCM
algorithm is to set the covariance matrix R as indicates the input observation noise.
The choice of the best weight for the noise variance matrix R was performed by
computing the empirical-estimated FC (eFC-esFC) correlation(Fig.5.2) and the
empirical-estimated FCD Kolmogrov-Smirnov(KS) distance (Fig.5.1).
Starting from a sample group (Tab.5.1) the eFC-esFC factor as well as KS distance
have been computed executing the sparse DCM algorithm for nine weights of the
noise variance : 1/400, 1/100, 1/50, 1/15, 1/10, 1/5, 1/4, 1/3 and 1/2.

Subject IDs
108004 108007 108013 108016 108029
108036 108038 108040 108044 108045

Table 5.1: Subject IDs of the sample group

Subjects corresponding at IDs 108007 and 1080013 didn’t reach convergence for
none of the weights listed above thus they weren’t considered for the choice of the
best covariance matrix weights. In the remaining subjects, if convergence weren’t
reached for a specific weight of noise variance then the correspondent eFC-esFC as
well as KS distance were set to zero.

35
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Figure 5.1: Empirical-estimated FCD KS distance. Kolmogorov-Smirnov distance
FCD distribution for each of the eight subjects, by calculating the KS
distance through the empirical and estimated FCD distribution values. This
distance has been computed for all the nine test weight of the noise variance.
This factor should be minimized.
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Figure 5.2: Empirical-estimated FC correlation. FC Pearson correlation values for
each of the eight subjects, by calculating the Pearson correlation through
the empirical FC matrix and the estimated one. The eFC-esFC factor has
been computed for nine weights of the noise variance. This factor should be
maximized.
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Figure 5.3: Empirical-estimated FCD KS distance through subjects. Visual
representation of the KS distance values through subjects for each weight of
the noise variance . Mean values across subjects are represented in boxplot
by horizontal lines.
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Figure 5.4: Empirical-estimated FC correlation through subjects. Visual repre-
sentation of the FC correlation values through subjects for each weight of
the noise variance . Mean values across subjects are represented in boxplot
by horizontal lines.

After visually inspecting figures, namely (Fig.5.1)(Fig.5.2), values of 1/10, 1/15
were chosen. These values were selected based on criteria such as minimizing
KS-distance and maximizing eFC-esFC correlation among subjects.
In addiction a value of 1/12 was took into consideration and used together with
1/10, 1/15 to estimate EC matrices in the whole dataset. During the estimation of
effective connectivity (EC) matrices in the dataset, the algorithm faced convergence
issues for some subjects. In instances where the algorithm converged with only one
of the three weights of noise variance, the decision-making process was nuanced.
Conversely, when convergence occurred for all three variance weight values, the
selected value was the one that minimized KS-distance and maximized eFC-esFC
correlation.
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5.2 Correlation results
The purpose of the correlation analysis was to identify a significant relationship
between effective connectivity derived metrics (Σ, Σ−1 and S) and metrics derived
from [18F]FDG PET (Metabolic Connectivity and SUVR).
Derived metrics were computed as described in 4.8.1 following the two approaches.
First, the Spearman correlation between the strength values of Σ, Σ−1, S, MC and
SUVR were computed, considering each metric in both its original version (Fig.5.5)
and in its absolute value (Fig. 5.6).

Figure 5.5: Spearman correlation between Σstr, Σ−1
str, Sstr, MCstr and SUVR.

Coupled-Spearman correlation was computed between Σstr, Σ−1
str, Sstr,

MCstr and SUVR. Correlation coefficients were corrected for multple com-
parison (FDR correction , alpha=0.05).
Positive values of correlation are represented in red while negative in blue.

Second, the Spearman correlation between upper triangular matrix of Σ, Σ−1,
S, MC and SUVR were computed , considering each metric both as its original
formulation (Fig.5.7) and in its absolute value (Fig. 5.8). Correlations with SUVR
were still computed considering the strength values of S, Σ−1 and Σ.
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Figure 5.6: Spearman correlation between absolute values of Σstr, Σ−1
str, Sstr,

MCstr and SUVR. Coupled-Spearman correlation was computed between
absolute values of Σstr, Σ−1

str, Sstr, MCstr and SUVR. Correlation coefficients
were corrected for multple comparison (FDR correction , alpha=0.05)
Positive values of correlation are represented in red while negative in blue.
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Figure 5.7: Spearman correlation between upper triangular matric of Σ, Σ−1,
S, MC and SUVR. Coupled-Spearman correlation was computed between
upper triangular matrices of Σ−1, S, MC . Correlation with SUVR metric
was computed in terms of Σstr, Σ−1

str, Sstr.Correlation coefficients were
corrected for multiple comparison (FDR correction , alpha=0.05).
Positive values of correlation are represented from yellow to red while negative
from light blue to blue.
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Figure 5.8: Spearman correlation between absolute values of upper triangular
matric of Σ, Σ−1, S, MC and SUVR. Coupled-Spearman correlation
was computed between absolute values of upper triangular matrices of Σ−1,
S, MC . Correlation with SUVR metric was computed in terms of abslute
values of Σstr, Σ−1

str, Sstr.Correlation coefficients were corrected for multiple
comparison (FDR correction , alpha=0.05).
Positive values of correlation are represented from green to red while negative
in blue.
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Subsequently, correlation analysis was carried out in and independent Oncology
data set. Spearman correlation between the strength values of Σ, Σ−1, S and
SUVR, as well as between strength values of Σ, Σ−1, S and MC were computed ,
considering each metric both as its original formulation (Fig.5.9) and in its absolute
value (Fig. 5.10).

Figure 5.9: Spearman correlation between Σstr, Σ−1
str, Sstr, MCstr and SUVR

in an oncological dataset. Coupled-Spearman correlation was computed
between Σstr, Σ−1

str, Sstr, MCstr and SUVR. Correlation coefficients were
corrected for multple comparison (FDR correction , alpha=0.05).
Positive values of correlation are represented in red while negative in blue.

Consistent monotonic relationship emerged considering both the strength values
of Σ, Σ−1, S, MC and SUVR (Fig.5.5), and their absolute value (Fig. 5.6). In
particular positive-to-weak monotonic relationship between Σstr and SUVR were
observed, indicating a direct proportionality between the influence of a node within
the entire brain network (in terms of Functional strenght ) and the level of local
glucose consumption at each node. Negative-to-weak monotonic relationship were
found between Σ−1

str and MCstr as well as for Σ−1
str and SUVR.

No significant monotonic relationship were found between Sstr and SUVR suggesting
the independence between node predominant characteristic to act as source or sink
and the level of local glucose consumption.(Fig. 5.6)
When considering the absolute values a weak to moderate monotonic positive rela-
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Figure 5.10: Spearman correlation between absolute values of Σstr, Σ−1
str, Sstr,

MCstr and SUVR in an oncological dataset. Coupled-Spearman
correlation was computed between absolute values ofΣstr, Σ−1

str, Sstr, MCstr

and SUVR. Correlation coefficients were corrected for multple comparison
(FDR correction , alpha=0.05).
Positive values of correlation are represented in red .

tionship emerged between Sstr and SUVR, hence suggesting that local contribution
of each node to global entropy production rate is proportionally related to the local
level of glucose consumption. (Fig.5.7)
On the other hand weak positive and negative monotonic relationship emerged
between respectively Σupper and MC, Σ−1

upeer and MC suggesting a match behaviour
between functional strength and the degree of coordination in metabolic activities
between brain regions. Reduced relations between derived metrics were expected
as effect of the tumor.(Fig. 5.9)5.10).
Accordingly, reduced moderate-to-weak monotonic positive relationship emerged
when considering strength values of Σ and SUVR as well as reduced moderate-to-
weak negative monotonic relationship between Σ−1

str and MCstr. Spurious monotonic
relationship appeared between Σstr and MCstr as well as between Σ−1

str and SUVR.
No significant monotonic relationship has been found between Sstr and MCstr.
Unexpectedly, a positive monotonic relationship manifested between Sstr and SUVR.
This suggests, in contrast to healthy patients, that the degree to which a node
serves as a source or a sink is associated with local glucose consumption.
When considering the absolute values, a strengthening monotonic relationship
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emerged between Σ−1
str and SUVR as well as between Sstr and SUVR. Conversely, a

weakening monotonic relationship became apparent between Σ−1
str and MCstr.
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5.3 Wilcoxon results
Dissimilarity in median were tested for metrics computed in the correlation analysis
of the HC and oncological dataset with a Wilcoxon rank sum test. The difference
has been considered as significant if p-value<0.05.
A significant difference were found between: Σstr−SUV R(p-value=0.0052)(Fig.5.11)
and considering its absolute values (p-value=0.0181)(Fig5.12).

Figure 5.11: Wilcoxon ranksum test for correlation betweenΣstr, Σ−1
str, Sstr,

MCstr and SUVR. Significant difference in median were found between
Σstr − SUV R HC and Oncological correlation values (p-value=0.0052)
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Figure 5.12: Wilcoxon ranksum test for cerrelation between absolute values of
Σstr, Σ−1

str, Sstr, MCstr and SUVR in HC and oncological subjects.
Significant difference in median were found between absolute values of
Σstr − SUV R HC and Oncological correlation values (p-value=0.0181)
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Significant difference were found between upper triangular metrices of S −MC(p-
value=0.0098), Σ−1

str − SUV R(p-value=0.0052), Sstr − SUV R(p-value=2.2669 ∗
e−12)and Σ−1 −MC(p-value=0.0046).(Fig.5.13)

Figure 5.13: Wilcoxon ranksum test for correlation between upper triangular
matrices of uΣ, Σ−1, S, MC and SUVR in HC and oncological
subjects. Correlation with SUVR metric was kept in terms of Σstr, Σ−1

str,
Sstr. Significant difference in median were found between correlation
values of upper triangular matrices S − MC(p-value=0.0098), Σ−1

str −
SUV R(p-value=0.0052), Sstr − SUV R(p-value=2.2669 ∗ e−12), Σ−1 −
MC(p-value=0.0046) HC and oncological

Significant difference were found between absolute values of Σstr − SUV R(p-
value=0.0181) and upper triangular matrices Σ−1−MC(p-value=0.0061).(Fig.5.14)

Overall the correlation values has been able to differentiate between oncology
patients and healthy control , with the healthy patients characterized by higher
correlations values than oncological subjects. Specifically, the strength of the
monotonic relationship between a node’s influence within the entire brain network,
in terms of functional strength, and its local glucose consumption has remained
consistently uniform across all correlated metrics. Therefore suggesting a higher
decoupling between dissipative flow and local energy consumption in oncology
patients.
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Figure 5.14: Wilcoxon ranksum test for correlation between absolute values
of Σ, Σ−1, S, MC and SUVR in HC and oncological subjects.
Correlation with SUVR metric was kept in terms of Σstr, Σ−1

str, Sstr. Sig-
nificant difference in median were found between absolute values of upper
triangular matrices Σstr − SUV R(p-value=0.0181),Σ−1 − MC HC and
Oncological correlation values (p-value=0.0061)
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5.4 Network contribution to effective-metabolic cou-
pling

In this analysis, network-wise contribution to the correlation between |S|str-SUVR
(Fig. 5.15), Σ−1

str-SUVR (Fig. 5.16), and between upper triangular matrices of
|S|-MC (Fig. 5.22) and Σ−1 −MC (Fig. 5.19) were isolated. This was done as
these pairs of metric exhibited consistent conotonic relationship in the correlation
analysis. Additionally, the point-to-line distances were computed between data
points and regression line as metric of network influence on the correlation value.
For semplicity, inter-network ROI were excluded from the point-to-line computation
. The mean among point-to-line distances within the same network was chosen as
subject-specific representative metric (Fig. 5.18)(Fig. 5.21 ).
For improved visualization, the aforementioned procedures were initially computed
specifically for the data of subject 108230, given its consistent monotonic rela-
tionship across the considered correlations. On the other hand group-level network
contribution to correlation are depicted in figures (Fig. 5.25)(Fig. 5.26)

Figure 5.15: Networks influence on Sstr − SUV R correlation value. Visual repre-
sentation of Network cluster around the regression line. Regression line
is obtained fitting the data to a first-grade polynomial and quantify the
relation between the two metrics
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Figure 5.16: Networks influence on Σ−1
str − SUV R correlation value. Visual repre-

sentation of Network cluster around the regression line. Regression line
is obtained fitting the data to a first-grade polynomial and quantify the
relation between the two metrics

All metrics have been zscored, by subtracting their mean and dividing for their
standard deviation, for uniformity in measurement scale . After visual inspecting
figure (Fig. 5.15) and figure (Fig. 5.16) linear relationship are assessed. Moderate
significant linear relationship emerged (r=0.3675, pvalue = 4.9898e−4) when consid-
ering |S|str and SUVR, with the linearity driven by subcortical region of Cerebellum,
Hippocampal, Pallidum and cortical regions of Default, Cont, Vis and DorsAttn.
Overall cortical region has higher influences in the correlations between the two
metric. However, only approximately 13.5% of the variability in the dependent
variable is accounted for by the independent variable when considering a linear fit
(R2 = 0.135). Similar results were found in figure (Fig. 5.16) where a weak linear
relationship emerged between Σ−1

str and SUVR where subcortical regions of the
Pallidum, Cerebellum as well as cortical regions of Limbic, Vis, Cont, SalVenAttn
are influencing the correlation .
With respect to figure (Fig. 5.19) and figure (Fig. 5.22) significant weak linear
relationship has been found between respectively Σ−1 and MC, and absolute values
of MC and S. However, in both cases the independent variable could explain only
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an extreme low proportion of the variance in the response variable. Overall it
seems that cortical regions are the ones that influences the most the subject-specific
correlation between the two metric .(See Fig.5.21 and Fig. 5.18)

Transitioning from subject-specific network contributions to correlation, our em-
phasis will now shift to group-level considerations. In contrast to earlier analyses,
the linearity observed in the relationship between |S|str and SUV R (Fig. 5.23)
appears to be influenced by a broad contribution across networks, with a slight
dominance in cortical regions of SalVenAttn and subcortical area of Pallidum,
while the Cerebellum and Hippocampal regions exhibits the weakest contribution.
In accordance with this, the linearity observed in the relationship between Σ−1

str

and SUV R (Fig. 5.24) highlights a predominant contribution to de decoupling
from the subcortical region of the Cerebellum, along with a minor contribution
from the cortical region of the Limbic network. This suggests that the connection
between the influence of a node within the brain network and local glucose uptake
is primarily driven by subcortical regions, specifically the Pallidum.

On the other hand, a notable contribution from the SalVenAttn and SomMot
networks emerged when exploring the relationship between the upper triangular
matrix of Σ−1 and MC (Fig. 5.26). The cortical region of the Pallidum reaffirmed
its significance in influencing this relationship.
Therefore, the subcortical area of the Pallidum prominently emerged as a key
participant influencing the relationship in all linear correlations considered.

No group-level considerations were undertake regarding the relationship between
the absolute values of S and MC as they didn’t show a significant and consistent
linear relationship among partecipant ( 30 subject with no significant Pearson
correlation ). This suggest the presence of a non-linear, monotonic relationship
between the absolute values of S and MC.
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Figure 5.17: (a)

Figure 5.18: (b)

Figure 5.19: Intra-network measure of influence in the correlation between
Σ−1 − MC. (a) Visual representation of intra-network contribution to
the correlation. (b) Single subject Mean point-to-line distance from the
regression line was computed among data within the same network (blue
bar)
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Figure 5.20: (a)

Figure 5.21: (b)

Figure 5.22: Intra-network measure of influence in the correlation between
|S| − |MC|. (a) Visual representation of intra-network contribution to
the correlation. (b) Single subject Mean point-to-line distance form the
regression line was computed among data within the same network (blue
bar)
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Figure 5.23: (a)

Figure 5.24: (b)

Figure 5.25: Group-level network contribution to correlation. Mean point-to-line
distance form the regression line was computed among data within the
same network (blue bar) and averaged among subjects. (a) group-level
network contribution in |S|str −SUV R correlation (b) group-level network
contribution in Σ−1

str − SUV R correlation
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Figure 5.26: Group-level network contribution to correlation between upper
triangular matrices Σ−1 and MC. Mean point-to-line distance form
the regression line was computed among data within the same network
(blue bar) and averaged among subjects.





Chapter 6

Discussion

In the upcoming section, we will engage in a detailed discussion of the results
presented in the previous chapter. This discussion aims to provide insights into the
estimated effective connectivity matrices and their decomposition into S, Σ and Σ−1,
along with their relationship between metabolic metrics (Metabolic Connectivity
and SUVR). Additionally, we will offer insights into the comparison of discovered
correlations between healthy and oncological subjects.

6.1 sparse DCM noise variance setup
As previously mentioned, the selection of the optimal noise variance in sparse DCM
was based on finding a balance between empirical-estimated functional connectivity
(eFC) correlation and empirical-estimated functional connectivity dynamics (FCD)
Kolmogorov-Smirnov distance. This decision was informed by the results presented
in figure (Fig. 5.1) and figure (Fig. 5.2), where eight reference subjects were
considered. The subject-level analysis yielded a variable outcome, revealing that
for both methods, the optimal weights of the noise variance that maximized the
eFC-esFC factor and minimized the KS distance were either 1/10 or 1/15.
This issue is likely primarily attributed to the higher sensitivity to noise in our
original data, given the low TR (repetition time) and short timeseries. Consequently,
this may lead to difficulties in accurately estimating the parameters of Dynamic
Causal Modeling (DCM), affecting the reliability of the inferred connectivity pat-
terns.

6.2 Correlation results
The purpose of this analysis was to evaluate possible relationships between effective
connectivity derived metrics (Σ, Σ−1 and S) and metrics derived from [18F]FDG
PET (Metabolic Connectivity and SUVR).
There are few studies focusing on the decomposition of the effective connectivity
matrix into Σ, Σ−1 and S matrices.
Consistent monotonic relationships across subjects emerged considering the strength
values of Σ, Σ−1, MC and SUVR. Specifically, positive-to-weak (r= 0.22-0.57) mono-
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tonic relationship between Σstr and SUVR were observed (Fig.5.5), indicating a
direct proportionality between the influence of a node within the entire brain net-
work (in terms of Functional strenght ) and the level of local glucose consumption
in each node.[37]
According to Casti et al.,2023 [115] the Σ matrix represents the steady-state co-
variance matrix. In the context of connectivity, it characterizes the functional
connectivity between brain regions by capturing statistical relationships and corre-
lations among the neural activity signals of these regions without specifying the
directionality of the connections.It has to be nothed that Under this interpretation,
similar findings were reported in Palombit et al.,2022 [12], where highly functionally
connected regions (high FC strength) tended to exhibit higher SUVR values.
However, the the modest correlation between regional SUVR and strength of
functional connections Σstr between regions likely depends, also, on other factors
including structural variables and local activity.[12]
As a matter of fact, FC is an indirect measure of structural connectivity [46][22],
and its known to change with practice [31], possibly through activity-dependent
plasticity [34]. Moreover, Recent studies found a moderate-strong relationship
(ρ ∼ 0.4˘0.8) between voxel-wise measures of local connectivity and/or activity
based on fMRI signals (ALFF and ReHo) and SUVR at rest [75][76]. On the other
hand, negative-to-weak monotonic relationship were found between Σ−1

str and MCstr

(r= -[0.46-0.29]) as well as for Σ−1
str and SUVR (-[0.39-0.25]). (Fig.5.5) As stated

by Liégeois et al.,2020 [94] the Σ−1 matrix, also known as precision matrix, is
able to quantify ’direct’ statistical dependencies between variables and discard
dependencies arising from intermediate connections captured in the correlation
matrix Σ. Therefore, the negative-to-weak monotonic relationship mentioned above
when interpreted Σ−1 in terms of partial correlation, becomes positive [94]. This
suggests a directed proportionality between the influence of a node within the brain
network on ’directed’ statistical relationships and both local glucose level uptake
and coordinated metabolic activity.
It has to be noted that the precision matrix has the important characteristic to be
free from hemodynamic counfounding effects.
No significant monotonic relationship were found between Sstr and SUVR suggest-
ing either a non monotonic relationship or its absence between node predominant
characteristic to act as source or sink and the level of local glucose consumption.
However, when considered in its absolute value a positive-to-weak monotonic rela-
tionship emerged, hence suggesting that local contribution of each node to global
temporal non-reversibility is proportionally related to the local level of glucose
consumption.[37]

6.3 Wilcoxon results highlight differences between
HC and Oncological subjects

Reduced relations between derived metrics were expected due to effect of the tu-
mor.(Fig.5.9)(Fig.5.10) Previous studies have demonstrated that patients with brain
tumors exhibit changes in functional connectivity (FC) as observed through resting-
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state functional magnetic resonance imaging (rs-fMRI)[51][71]. These changes
encompass distortion and alteration of resting-state networks due to tumor growth,
a decrease in intra-hemispheric and inter-hemispheric FC within local networks, and
alterations in cognitive function. Additionally, the presence of a tumor is associated
with higher energy consumption levels[93]. Therefore, in addition to functional
changes, it could lead to a decoupling between functional and metabolic activity.[51]
Accordingly, reduced positive-to-weak monotonic relationship emerged when con-
sidering strength values of Σ and SUVR (r= 0.4-0.25) as well as reduced negative-
to-weak monotonic relationship between Σ−1

str and MCstr (r=-[0.42-0.27]).(Fig.5.9)
This could probably be attributed to the tumor type and its location within the
brain network.
Dissimilarity in median values was assessed by conducting a Wilcoxon rank sum
test on the metrics computed in the correlation analysis of both the healthy control
(HC) and oncological datasets. This statistical approach aimed to examine and
compare the central tendencies of these metrics between the two datasets, shedding
light on potential variations in their distributions and providing insights into the
differences observed between the healthy and oncological subjects.
With a specific focus on the relationship between Σ and SUVR, it has consistently
demonstrated the ability to differentiate between healthy and oncological patients,
underscoring its potential as a diagnostic metric. Notably, a significant difference
in median values (p-value = 0.0181) was identified, further supporting its discrimi-
native capacity in distinguishing between the two groups.(Fig. 5.11)(Fig. 5.12)(Fig.
5.13)(Fig. 5.14)
Therefore, the variation in the strength of the monotonic relationship between the
influence of nodes within the entire brain network (in terms of functional strength)
and local glucose consumption implies a heightened decoupling between functional
connectivity and correlated metabolic activity in oncological patients.
Accordingly, prior research has showcased the capability of functional connectivity
(FC) in, classifying various pathologies [120], including different grade of gliomas
[71], and in predicting survivability outcomes[122][50]. Additionally, SUV values has
proven effective in differentiating among residual or higher grade brain tumor.[10]
It also needs to be noted that considering the Σ matrix provides the advantage of
having a functional connectivity cleaned from hemodynamic confounding effects
that has been deconvoluted through DCM.
On the contrary, noteworthy positive distinctions in medians have surfaced when
comparing the correlation of upper triangular matrices S with MC (pvalue = 0.0098)
and also between the upper triangular matrices of Σ−1 and MC. These observed
differences in central tendencies underscore intriguing variations in the relationship
patterns between healthy and oncological patient’s metrics. The difference between
upper triangular matrices S and MC could be interpreted as variations between
solenoidal flow, differential covariance, and the synchronized metabolic activity
correlations. As a matter of fact, metabolic connectivity has proven to be effective
in differentiating among various dementia disorders through a differential analysis.
This approach has demonstrated its utility in discerning distinctive patterns of
metabolic activity that are associated with different types of dementia, providing
valuable insights for accurate diagnosis and potential advancements in treatment
strategies.[40][81]
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6.4 Network contribution to effective-metabolic cou-
pling

In this analysis, network-wise contribution to the correlation between |S|str-SUVR
(Fig. 5.15), Σ−1

str-SUVR (Fig. 5.16), and between upper triangular matrices of
|S|-MC (Fig. 5.22) and Σ−1 −MC (Fig. 5.19) were isolated. Metrics related to
oncological patients were excluded due to potential underlying modifications in the
brain network, thereby resulting in inaccurate inference on network contribution to
correlation.
Firstly, for simplicity, we focused on data specific to subject 108230, as it exhibits
higher values among the measured correlations in the correlation analysis. Mod-
erate significant linear relationship emerged (r=0.3675, pvalue = 4.9898e−4) when
considering |S|str and SUVR (Fig. 5.15), with the linearity driven by subcortical
region of Cerebellum, Hippocampal, Pallidum and cortical regions of Default, Cont,
Vis and DorsAttn. Overall cortical region have higher influences in the correlations
between the two metric. However, only approximately 13.5% of the variability in the
dependent variable is accounted for by the independent variable when considering
a linear fit (R2 = 0.135). With respect to figure (Fig. 5.19) and figure (Fig. 5.22)
significant weak linear relationship has been found between respectively Σ−1 and
MC, and absolute values of MC and S. However, in both cases the independent
variable could explain only an extreme low proportion of the variance in the response
variable. Overall it seems that cortical regions are the ones that influences the most
the subject-specific correlation between the two metric .(See Fig.5.21 and Fig.5.18)
Considering the foregoing, we can deduce that the relationship between the metrics
considered in the analysis is only partially linear. In-depth analyses are necessary
to delve deeper into the topic. Moreover, checking for network contribution, each
subject exhibited differences with spurious networks that kept a slight yet consistent
influence on the correlation.
Secondly, our emphasis shifted to group-level considerations, seeking a broader
understanding of the patterns and trends observed across the entire study cohort.
This transition allowed for a comprehensive examination of collective behaviors,
shedding light on shared characteristics and divergences that may arise when an-
alyzing the data as a whole. The move from individual subjects to a group-level
perspective adds a layer of complexity and richness to our exploration, providing a
more holistic view of the interconnected relationships among the variables under
scrutiny.
In contrast to earlier analyses, the linearity observed in the relationship between
|S|str and SUV R (Fig. 5.23) appears to be influenced by a broad contribution across
networks, with a slight dominance in cortical regions of Limbic and subcortical area
of Pallidum, while the Cerebellum and Hippocampal regions exhibits the weakest
contribution. In accordance with this, the linearity observed in the relationship
between Σ−1

str and SUV R (Fig. 5.24) highlights a predominant contribution from
the subcortical region of the Pallidum, along with a minor contribution from the
cortical region of the SalVenAttn network.
On the other hand, a notable contribution from the Putamen network emerged
when exploring the relationship between the upper triangular matrix of Σ−1 and
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MC (Fig. 5.26). The cortical region of the Pallidum reaffirmed its significance in
influencing this relationship.
Overall, the subcortical area of the cerebellum prominently emerged as the weakest
participant influencing the relationships in all linear correlations, diverging from its
expected physiological importance.
In contrast to our finding, studies have demonstrated that the cerebellum plays a
crucial role in cognitive functions such as attention, language, working memory,
and executive functions.[28] It is involved in the prediction and coordination of
movements, as well as the integration of sensory information. In particular, during
resting state, the main role of the cerebellum is to participate in and synchronize
various intrinsic connected networks involved in cognition and emotion, thus sug-
gesting a consequent metabolic activation.[29] The neocerebellum, which includes
lobules VII-VIII and the dentate nucleus, is functionally interconnected with non-
motor associative cortices and serves as a major relay for these networks.Overall,
the cerebellum is a complex structure that plays a vital role in both motor and
non-motor functions.[27]
On the other hand, studies have affirmed our findings regarding the importance of
the Pallidum region [8][108]. The ventral pallidum (VP) assumes a crucial role in
regulating the default mode network (DMN) and controlling transitions between
internally and externally guided behavior. Specifically, it is intricately involved in
the switch between well-practiced, automatized behaviors that rely on internalized
representations and behaviors that necessitate external focus. Functioning as a
subcortical node of the DMN, the VP’s modulation holds significant implications for
attentional processes. Excitation of the VP has the potential to ensnare individuals
in a DMN state of internally focused behavior, impairing their ability to direct
attention to external stimuli. Conversely, inhibition of the VP facilitates task
acquisition and allows for escape from the DMN brain state. This enables the
seamless incorporation of external sensory information and enhances adaptability
to the dynamic demands of the environment [8].
Therefore, the presence of the Pallidum across various correlations underscores its
crucial contribution, highlighting the need for further investigation into the specific
mechanisms and implications of its involvement in these linear relationships.
No group-level considerations were undertake regarding the relationship between the
absolute values of S and MC as they didn’t show a significant and consistent linear
relationship among partecipant ( 30 subject with no significant Pearson correlation
). This suggests the presence of either a non-linear, monotonic relationship or no
relationship between the absolute values of S and MC.
It has to be noted that, based on our current knowledge, a comparison between the
metrics we consider has never been attempted; therefore, any subsequent deduction
is still in a preliminary phase.





Chapter 7

Conclusion

In this thesis, we characterized the relationships between the metrics derived from
the decomposition of effective connectivity, metabolic connectivity, and SUVR. Our
analysis revealed consistent correlations among the considered metrics and network
influences in correlation, with a notable emphasis on the subcortical region of the
Pallidum as a primary participant in these dynamics. Furthermore, through a
comparative examination of healthy and oncological data, we demonstrated the
potential for distinguishing between patient groups. In general, further investiga-
tions are necessary to optimize the analysis procedure and validate our preliminary
findings. While the sparse DCM algorithm demonstrates its effectiveness at the
individual level, the higher sensibility to noise of our data suggests the need for
testing sparse DCM on a larger and diverse cohort. This step is crucial to ensure
that our findings are not biased by the influence of a noisy component, thereby
enhancing the generalizability and reliability of our results.
Additionally, a more in-depth characterization of the Σ matrix in terms of functional
connectivity can be pursued by comparing connecting hubs and peripheral hubs.
This nuanced exploration will provide valuable insights into the specific roles played
by different brain regions in facilitating functional connections, contributing to a
more comprehensive understanding of the interplay between effective connectivity
and metabolic metrics identified in our study.
Furthermore, future studies can expand their scope to include a characterization of
the relationship between effective connectivity metrics and SUVR with respect to
tumor subpopulations. Investigating the influence of tumor type and location on
these relationships can unveil potential variations in the neural network dynamics,
contributing to a more tailored and nuanced interpretation of the findings. This
approach allows for a more refined understanding of the intricate interplay between
effective connectivity, metabolic activity, and the presence of tumors in the brain.
However, the existence of non-oxidative metabolic pathways underscores an im-
perfect coupling between oxygen and glucose utilization. This imperfection raises
questions about the alignment between BOLD signals and glucose metabolism.[12]
Furthermore, the debate over whether neurons or astrocytes serve as the principal
executors in glucose metabolism remains an open issue. In light of these consid-
erations, our studies, coupled with emerging discoveries in astrocyte specialized
subpopulations whom are capable to function both as a neuron and glia [36], can
provide a comprehensive physiological interpretation of the interplay between neural
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networks and underlying metabolism in the brain
In conclusion, this exploration contributes to a deeper understanding of the intricate
connections within the brain network, laying the groundwork for future research
to explore the clinical implications and diagnostic potential of these identified
relationships in diverse neurological conditions.



Acronyms

BOLD Blood Oxygen Level Dependent. 13

CMRGlu cerebral metabolic rate of glucose. 7

DCM Dynamic Causal Modelling. 11, 13, 17

EC Effective Connectivity. 12, 17, 18

EM Expectation maximization. 16, 18

HRF Hemodynamic Response Function. 17

IRCA interregional correlation analysis. 7

MIMO Multiple Input Multiple Output. 11

SUV standardized uptake value. 5

SUVR standardized uptake value ratio. 6
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