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Abstract

The recent interest of the scientific community about the properties of networks is based
on the possibility to study complex real world systems by renouncing the exact knowledge
of the nature of system itself. This approach allows to model the system, for example, as
a large collection of agents linked together in pairs to form a network. The networks are
very studied in different scientific fields and, particularly, in the ecological one, in order to
understand the dynamics of the evolution related to a community composed by different
species interacting with each other.
A random matrix can incorporate many information according to the type of the system.
By using the graph’s theory, it is possible to extrapolate information about the matrix and,
therefore, about the system considered.
The statistical features of the eigenvalues of large random matrices have been the focus of
wide interest in mathematics and physics[1]. This thesis is mainly focused on the study of the
spectral density of sparse random matrices. Symmetric random matrices and non-Hermitian
matrices have been considered in this work, paying attention to both the analytical and
numerical approach of the eigenvalues distribution calculation.
There are different mathematical methods used to analyze ensembles of random matrices
with a particular underlying symmetry. It is well-known that the spectral density of random
matrices ensembles will converge, as the matrix dimension grows, to a precise limit. One
example is Girko elliptic law [2].
The introduction of the sparsity is one of the factors that complicate enormously the mathe-
matical analysis and new techniques for the calculation of the spectral density are welcome.
The cavity method is a new approach presented to extend our knowledge about large-scale
statistical behavior of eigenvalues of random sparse Hermitian and non-Hermitian matrices.
Therefore, the cavity method provides a specific analysis related to the study about how the
modularity structure influences the stability in the ecological communities.
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Abstract

Il recente interesse della comunità scientifica riguardo le proprietà dei networks è basato sulla
possibilità di studiare sistemi complessi del mondo reale rinunciando all’esatta conoscenza
della natura del sistema stesso. Questo approccio permette di modellizzare il sistema, per
esempio, come una grande collezioni di agenti connessi in coppie per formare un network.
I networks sono molto studiati in differenti campi scientifici e ,particolarmente, in quello
ecologico, per capire the dinamiche di evoluzione relative ad una comunità composta da
specie differenti che interagiscono tra di loro.
Una matrice random può incorporare molte informazioni a seconda del tipo di sistema.
Attraverso l’uso della teoria dei grafi, è possibile estrapolare infomazioni sulla matrice e
quindi sul sistema considerato.
Le caratteristiche statistiche degli autovalori di grandi matrici random sono state il centro di
un ampio interesse in matematica e fisica [1]. Questa tesi è principalmente focalizzata sullo
studio della densità spettrale di matrici random sparse. Matrici random simmetriche e non-
Hermitiane sono state considerate in questo lavoro, ponendo l’attenzione sia sull’approccio
analitico sia su quello numerico del calcolo della distribuzione degli autovalori.
Ci sono differenti metodi matematici usati per analizzare ensembles di matrici random con
una particolare simmetria sottostante. E’ ben noto che la densità spettrale di ensembles di
matrici random convergerà, quando la dimensione della matrice cresce, ad un limite preciso.
Un esempio è la legge ellittica di Girko [2].
L’introduzione della sparsità è uno dei fattori che complica enormemente l’analisi matematica
e nuove tecniche per il calcolo della densità spettrale sono accolte.
Il metodo di cavità è un nuovo approccio presentato per estendere la nostra conoscenza
riguardo il comportamento statistico su larga scala degli autovalori di matrici random sparse
Hermitiane e non-Hermitiane.
Inoltre, il metodo di cavità fornisce un’analisi specifica relativa allo studio riguardo a come
la struttura modulare influenza la stabilità nelle comunità ecologiche.
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Chapter 1

Introduction

In 1972 May proved that sufficiently large ecological network, resting at a feasible equilib-
rium point, have a probability of persisting close to zero: arbitrarily small perturbations of
the population densities would drive the system away from equilibrium [3] [4]. The study
of May has been focused on the network in which species interact at random [3] [4][5]. The
tools of Random Matrix Theory (RMT) [6] [7] has been exploited to extend the May’s work
to more complex cases in which particular features of natural system would violate May’s
simple assumptions and how these violations would translate into stabilizing or destabilizing
mechanism.
The birth of the modern RMT is due to the work of Eugene Wigner in physics [8] and
the mathematical area has grown strongly over the last fifty years. The reason of the wide
interest, within the scientific communities, about this field is the applicability of RMT to
many different real systems. For example, the biological systems are typically very large
and inherently complex : the basic parameters used to describe parts of the cells and its
mechanism, individuals and populations in ecosystem are all affected by environmental and
demographic stochasticity and the variations across space and time.
Therefore the RMT is ideally suited to study the fundamental behavior of large biological
system with network structure. In particular an important open question is to understand
how the topological structure of a network influences its stability and in general which mech-
anisms define the stability and the instability of an ecological system.
The concept of local asymptotic stability, developed inside the modeling of ecological com-
munities as a continuous-time dynamical system, is described by a set of autonomous (i.e.
which do not explicitly contain the time variable) ordinary differential equations for each
density of population Xi(t). Each equation about the time evolution of Xi(t) is related to
the growth rate of a population of the entire ecological community:

dXi(t)
dt

= fi(X(t)) (1.1)

where the vector X(t) is the vector of all population densities and fi is a function relating
the growth rate of population i to the density of the S populations.
The system is at equilibrium point if:

dXi(t)
dt

∣∣∣
X∗

= fi(X∗) = 0 (1.2)

for all i. In this condition the system will remain at equilibrium until it is not perturbed. The
equilibrium is said to be stable if all infinitesimal perturbations are dampened and locally

9
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unstable if there is an infinitesimal perturbation after which the system never goes back to
the equilibrium. The analysis of the stability is performed by linearization of the system at
equilibrium point. For this scope, the Jacobian matrix J is introduced. It is associated to
each system whose elements Jij are defined as:

Jij(X) = ∂fi(X(t))
∂Xj

(1.3)

and evaluating these at the equilibrium point, the so-called community matrix M is obtained
[5], defined as:

Mij = Jij
∣∣∣
X∗

= ∂fi
∂xj

(X(t))
∣∣∣
X∗
. (1.4)

The entry Mij is a measure of how a slight increase in the population j influences the
growth rate of the population i. The eigenvalues of M give information about the stability
of the underlying equilibrium point: if all eigenvalues have negative real parts then the
equilibrium is stable, while if some eigenvalues has positive real part, the equilibrium is
unstable, because in the directions of the corresponding eigenvectors the system is driven
away from the equilibrium.
Because this analysis is based on linearization, the results hold only locally and it is not
saying about global stability. Another limit is that the stability does not necessary imply
lack of persistence: population could coexist thanks to limit cycles or chaotic attractors,
which typically are originated from unstable equilibrium points.
To establish if a system is stable or not, it is enough to find the real part of the rightmost
eigenvalue(s) (which will be denoted as R(λ1)). In order to follow this approach it is necessary
to know exactly the functions fi(X(t)) as well as to calculate precisely the equilibrium X∗.
This means that any different set of equations, and each equilibrium state of the same system
would lead to a different community matrix.
The May’s insight was to consider directly the community matrix, modeled as a large random
matrix and to attempt estimating the real part of its rightmost eigenvalue based on the
characteristics of the random matrix.
In his study, May did not specify the details of the distribution but only its mean and its
variance. This choice becomes exact in the large S limit as these are the only important
quantities needed to have information about eigenvalues distribution [9]. This propriety is
known as universality.
May set all the diagonal elements Mii = −1, the off-diagonal elements equal to 0 with
probability 1 − C and he drew them independently from a distribution with mean 0 and
variance σ2, with probability C. For such matrices, May established that the eigenvalues all
have negative real parts with very high probability whenever:

σ
√
SC < 1 (1.5)

and the equilibrium is stable (unstable) with high probability when the inequality is met (is
not met). If the diagonal elements are fixed at −d < 0 (necessary condition for a species to
be self-regulating) the inequality has d on the right-hand side.
The ”stability criterion” has been also derived for famous type of ensembles using RMT [10].
One of the most studied cases in this context is the ”circular law”. This law considers a S
X S matrix M, whose entries are independent and identically distributed random variables
with mean zero e variance one. Then, the empirical spectral distribution of M/

√
S converges
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to the uniform distribution on the unit disk as S → ∞. Hence, for sufficiently large S, all
the eigenvalues of M are approximately uniformly distributed in the disk in the complex
plane centered at (0,0) and with radius

√
S, so that R(λ1) ≈

√
S.

In order to derive the May’s result the assumptions of the circular law have been relaxed.
When the variance is different from one the only effect is the re-scaling for the radius of the
disk: it is multiplied by an additional factor of

√
σ2 compared to the unit variance case. The

introduction of a probability (C) of having entries different from zero changes the radius
with other additional factor equal to

√
C. Finally, subtracting a constant from the diagonal

elements, the shape of the distribution of the eigenvalues does not change but its position is
shifted horizontally (the center of the disk is moved to value −d).
These considerations are sufficient to recover May’s result, imposing that for stability it is
necessary to have negative real part R(λ1) < 0.
In natural systems it is not expected that the positive effects of the resource on the consumers
exactly offset the negative effects of consumers on resources. Then it is appropriate to
consider a nonzero mean for the off-diagonal entries. In this case it is expected that one
eigenvalue corresponds to the expectation of the row sum, i.e.

E
[∑
j

Mij

]
= −d+ (S − 1)E[Mij ] = −d+ (S − 1)E (1.6)

where E = Cµ (µ is the mean of the distribution from which the off-diagonal coefficient has
sampled with probability C).
The other S − 1 eigenvalues are still closely approximated by a uniform distribution on a
disk. The center of the disk is given by the mean of the other S − 1 eigenvalues and is equal
to −(d + E). To estimate its radius it has been calculated the variance of the off-diagonal
elements of M, which is:

V = Var[Mij ] = E[M2
ij ]− E2 = C(σ2 + µ2)− C2µ2 = C(σ2 + (1− C)µ2). (1.7)

The radius is estimated
√
SV .

To consider all possible scenarios, one can write a criterion for stability that takes into
account both the eigenvalues corresponding to the row sum and the rightmost eigenvalue on
the disk. It is the following:

max
{√

SV − E, (S − 1)E
}
< d. (1.8)

However, in ecological network pairs of species have well-defined interactions such as predator-
prey, mutualistic and competitive. In these cases Mij is not independent from Mji. To
express this dependence, it is a good idea to sample directly the coefficients in pairs from a
bivariate distribution.
The elliptic law is the result obtained by this generalization of the circular law and its state-
ment is as follows. Take a S X S matrix M, whose off-diagonal coefficients are independently
sampled in pairs from a bivariate distribution with zero marginal means, unit marginal vari-
ances and correlation ρ ( i.e. ρ = E[MijMji]). Then, as S →∞, the eigenvalue distribution
of M/

√
S converges to the uniform distribution on an ellipse centered at (0,0) with horizon-

tal semi-axis of length 1 + ρ and vertical semi-axis of length 1− ρ. This law shows an useful
analogy with two-dimensional classical electrostatics.
Just as for the circular law, the elliptic law can be extended to the same more general cases.
Following the same strategy illustrated above about the relevant statistic for the off-diagonal
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coefficients, it has been found that the ellipse is centered at −d−E, and has horizontal semi-
axis
√
SV (1 +ρ). The variance is the same as the previous case. The correlation ρ is related

to the parameter of the bivariate distribution of mean µ and covariance matrix Σ:

µ =
[
µ
µ

]
, Σ =

[
σ2 ρ̃σ2

ρ̃σ2 σ2

]
by the relation:

ρ = E[MijMji]− E2[Mij ]
Var[Mij ]

= ρ̃σ2 + (1− C)µ2

σ2 + (1− C)µ2 . (1.9)

Finally, the criterion for stability becomes [11]:

max
{√

SV (1 + ρ)− E, (S − 1)E
}
< d. (1.10)

In the ecological field, one of the most important issue is to understand how the distribution
of X∗ affects the stability for different type of community matrix. In fact the particular shape
of the distribution of species abundances influences the location of rightmost eigenvalue. The
previous studied models correspond to the most famous and simple types of ecological sys-
tem modeling the equilibrium point. In general, the community matrix M has particular
features according to the model used to describe the evolution of the species. The elliptic
law fails to predict the location of the leading eigenvalue in more realistic cases. One of these
concerns the species that can be divided into subsets such that within-subset connections are
much more frequent than between-subset connections. This partition subdivides the entire
community in ”modules”. The presence of modules must leave a mark in the eigenvalue
distribution.
A considerable contribution to extend the elliptic law to the case of very sparse (the matrix
has many entries equal to zero) and structured matrix is provided by the cavity method. It
is a valid support to study eigenvalues distribution analytically and in some particular case
permits to obtain information about how the stability is influenced by the parameters used
to build the random structured matrix.
The plain of the thesis is the following. In the first chapter of this thesis it is introduced
the mathematical tools and the numerical simulations developed to explain how the cavity
approach is used to obtain the spectral density of sparse symmetric random matrices [12].
The set of recursive equations, which characterize the cavity method, has been solved nu-
merically employing a simple iterative approach known as belief propagation.
The second one extends the cavity method to the more complex case of sparse non-Hermitian
random matrices [13] and the approach has been verified through a numerical analysis for
some types of ensemble.
In the last chapter an application to the ecological community is shown. In particular a
quaternionic parameterization of the cavity method has been used. It allows to analyze
analytically the effect of a structured matrix, with two subsystems of the same size, on the
stability. The results are in good agreement with the numerical simulations and underline
that a given structure is stabilizing or destabilizing according to the specific conditions.



Chapter 2

Spectral density of sparse
symmetric random matrices

2.1 Introduction

One of the most well-studied ensemble is the Gaussian ensemble of real symmetric matrices.
In this case the average spectral density of the eigenvalues is given by the Wigner semicircle
law [1][14][15].
In this chapter it is explained how it is possible to derive the spectral density of sparse sym-
metric random matrices by comparing it with interacting particles in statistical mechanics.
In this analogy, the number of particles is equal to the size of the considered matrix. Each
particle is located on one of the nodes of a weighted graph and they are connected according
to the coefficients of the matrix. Associated to the particles are stochastic variables which
can be interpreted as the non-deterministic effect of the interaction of a single particle with
the others. Following this approach the spectral density can be written as the sum of the
variances imaginary part of the relative distributions.
The cavity methods final result is a set of equations that can be interpreted as a belief-
propagation algorithm on single instances. This algorithm can then be easily implemented.
In this work has been demonstrated under the fully-connected limit that the method gives
an exact result when the size of the graph goes to infinity and the average connectance tends
to the size of the matrices.

2.2 Cavity approach to the spectral density

It has been considered an ensemble M of N × N symmetric matrices. Every matrix has a
set of eigenvalues noted as {λAi }i=1,...,N . The empirical spectral density is defined as:

ρA(λ) = 1
N

N∑
i=1

δ(λ− λAi ) (2.1)

where δ is a Dirac delta. For Hermitian matrices, the spectral density represents a probability
measure over the real plane. However, if the eigenvalues of A are confined to a certain subset
then it can be treated as a measure on that subset.
Since A is extracted by some random matrices ensemble, the empirical spectral density is
a random probability measure. The objective of this analysis is to totally characterize the

13
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empirical spectral densities of random matrices from the ensemble, particularly in the limit
N →∞.
For some ensembles, the answer is well-known. For a real symmetric N × N matrix A, its
spectral density can be modified with the following technique as was shown by Edwards and
Jones[15].
If to λ is added a small negative immaginary part −iε, then the Sokhotsky-Plemelj theorem
can be used to write the following expression:

lim
ε→0+

1
λ− λAi − iε

= P
( 1
λ− λAi

)
+iπδ(λ− λAi ) (2.2)

where P detones the Cauchy principal value. This leads to:

ρA(λ) = lim
ε→0+

1
πN

N∑
i=1

Im(λ− λAi − iε)−1 = lim
ε→0+

1
πN

ImTr
( 1

(λ− iε)1−A

)
. (2.3)

Considering that:

det((λ− iε)1−A) =
N∏
k=i

(λ− iε− λAi ) (2.4)

and:
∂

∂λ
[ln det((λ− iε)1−A)] =

N∑
i=1

1
λ− iε− λAi

= Tr
( 1

(λ− iε)1−A
)

(2.5)

finally can be obtained:

ρA(λ) = lim
ε→0+

1
πN

Im ∂

∂λ

[
ln det((λ− iε)1−A)

]
= lim

ε→0+

−2
πN

Im ∂

∂λ

[
ln det−

1
2 ((λ− iε)1−A)

]
(2.6)

Defining z = λ− iε, the determinant of a symmetric matrix may be represented by multiple
Fresnel integral:

det−
1
2 (z1−A) =

(
ei
π
4

π
1
2

)N∫ +∞

−∞

∏
dxiexp

(
−i

N∑
i,j=1

xi(z1−A)ijxj
)

(2.7)

Details of the proof of this relation can be found in Appendix A.

By making a variable substitution we get rid of the imaginary unit. In the general case
this type of integrals do not converge. In order to ensure convergence, the interval of inte-
gration can be written as [−a · ∞,+a · ∞], where a2 = i and z has a negative imaginary
part. This choice of the boundary is crucial to obtain the non-compact symmetry group for
localization, but it is not important for the density of the states.
Fortunately, with this substitution of the integration interval a partition function in z
emerges:

ZA(z) =
∫ N∏

i=1

dxi√
2π

exp
(
−1

2

N∑
i,j=1

xi(z1−A)ijxj
)

(2.8)

It can then be introduced a Gibbs-Boltzmann probability distribution of x:
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PA(x) = 1
ZA(z)e

−HA(x,z) (2.9)

with:

HA(x, z) = 1
2

N∑
(i,j)∈GA

xi(z1−A)ijxj (2.10)

2.3 The technique

The issue to obtain the spectral density ρA(λ) is converted into a statistical mechanics
problem of N interacting particles x=(x1,...,xN ) on a graph GA with effective Hamiltonian
2.10.
As the size of the graph grow, the cavity method seeks to exploit the topological structure of
the underlying network in order to extract some statistical information to quantify aspects
of its structure. This approach allows to rewrite the spectral density as follows:

ρA(λ) = − lim
ε→0+

2
πN

Im
(Z ′A(z)
ZA(z)

)
z=λ−iε

= lim
ε→0+

1
πN

N∑
i=1

Im[< x2
i >z]z=λ−iε (2.11)

where < ... >z denotes the average over distribution 2.9. As shown in 2.11, the understand-
ing of the spectral density of random matrices can be extended by considering the local
marginals Pi(xi) from Gibbs-Boltzmann distribution PA(x) instead of considering the aver-
aged spectral density ρA(λ). The marginal distribution of xi is the probability distribution
PA(x) integrated over the other N-1 variables.
In this vision the dynamical variables reside on the vertices of a graph and interact in pairs
according to the edges of the graph. For any pairs of particles the weight of interaction is
defined by Aij when Aij 6= 0.
The cavity method offers a way to calculate Pi(xi).

The cavity method

It has been considered in a general way a vector of spins σ, which represents the dynamical
variables associated to the particles in the vertices of a graph GA = (V,E). The Joint
Probability Density Function (JPDF) P(σ) can be factorized into terms {ψij}, which are
associated to the edges of GA, and {φi}, associated to the vertices of the graph. The JPDF
is then supposed to be of the form:

P (σ) = 1
Z

∏
(i,j)∈E

ψij(σi, σj)
∏
i∈V

φi(σi), (2.12)

where the state of each node i is denoted by σi.

From this original system it is possible to consider a system where the node i is removed.
To do so, we then define G(i) = (V (i), E(i)) the subgraph of GA obtained by the removal of
vertex i, the so-called cavity graph (Fig. 2.1).

The JPDF of spins on this cavity graph is given by:

P (i)(σ(i)) = 1
Z(i)

∏
(j,k)∈E(i)

ψjk(σj , σk)
∏

j∈V (i)

φj(σj) (2.13)
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Figure 2.1: Part of a treelike graph GA showing the neighborhood of node i. After the
removal of this node, the resulting graph G(i)

A is composed by three indipendent branches
headed by sites j,k and l.

where σ(i) is the spin vector with the ith component removed.
The single-spin marginals are obtained by integrating on the variables which occupy the
neighbouring vertices of i. For this reason, with P

(i)
∂i (σ∂i) we indicate the joint probability

marginal distribution of spins on the cavity graph whose vertices are described above.
In this way, we obtain:

Pi(σi) = 1
Zi

∫ [∏
j∈∂i

dσj
]
P

(i)
∂i (σ∂i)

(
φi(σi)

∏
j∈∂i

ψij(σi, σj)
)
, (2.14)

where Zi = Z/Z(i).
A common feature of many interesting random graph ensemble is the tree-like structure
in the large limit of N. The main idea of the cavity approach is to exploit this underlying
framework in order to approximately compute the distributions P (i)

∂i (σ∂i) and therefore, give
an approximation to the true marginal distribution at any given vertex.

At this point, it has been calculated P (j)
i (σi) of the spin at the vertex i in the graph G(j) for

some i ∈ V and j ∈ ∂i. Removing the vertex j from equation 2.14, we obtain:

P
(j)
i (σi) = 1

Z(j)
i

∫ [ ∏
l∈∂i/ j

dσl
]
P

(i)(j)
∂i/ j (σ∂i/ j)

(
φi(σi)

∏
l∈∂i/ j

ψil(σi, σl)
)
, (2.15)

where Z(j)
i = Z(i)/Z(i)(j). Assuming that GA is a tree, the removal of a vertex in the graph

consequently makes each vertex in ∂i/ j to belong to a different connected component of the
cavity graph G(i). It is possible, therefore, to conclude that:

P
(i)(j)
∂i/ j (σ∂i/ j) =

∏
l∈∂i/ j

P
(i)
l (σl) (2.16)

and, thus, 2.15 has been semplified significantly to:

P
(j)
i (σi) = 1

Z(j)
i

φi(σi)
∏

l∈∂i/ j

(∫
dσlP

(i)
l (σl)ψil(σi, σl)

)
(2.17)

in the same way, 2.14 becomes:

Pi(σi) = 1
Zi
φi(σi)

∏
j∈∂i

(∫
dσjP

(i)
j (σj)ψij(σi, σj)

)
. (2.18)
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So we have 2|E| equations in 2.17 for a system on a graph GA = (E, V ), which represent a
set of self-consistent relations for cavity distributions {P (j)

i }. The solution of these equations
can potentially be very difficult and depends on the possibility to parameterize the cavity
distributions with a finite set of parameters.
In principle, the cavity approach can be applied for any graph, tree or not, but the degree
of approximation and the time of convergence strongly depend on the type of ensemble. In
particular, the solution is influenced by the degree of interactions of the spins in the cavity
graph and by how their presences affect the marginal distributions at a given vertex.
Once the system is solved, the marginal distributions may be calculated using 2.18.
It is well-known the validity of the method for large random graphs drawn from a tree-like
ensemble (in which short loop are rare). In the next section it will be shown a similar case
for an ensemble of symmetric locally treelike sparse matrices.

2.4 Treelike symmetric matrices

In the case of symmetric locally treelike sparse matrices the cavity distributions are easy
to derive, which is not generally true. Therefore, for this kind of system the set of cavity
equations to be solved {P (j)

i } can be written as:

P
(j)
i (xi) = e−zx

2
i /2

Z(j)
i

∫
dx∂i/ jexp

(
xi

∑
l∈∂i/ j

Ailxl

) ∏
l∈∂i/ j

P
(i)
l (xl) (2.19)

for all i=1,...,N and for all j ∈ ∂i. Once the cavity distributions are known, the marginal
distributions Pi(xi) of the original system GA are given by:

Pi(xi) = e−zx
2
i /2

Zi

∫
dx∂iexp

(
xi
∑
l∈∂i

Ailxl

)∏
l∈∂i

P
(i)
l (xl) (2.20)

for all i=1,...,N. The set of equations [? ] is self-consistently solved by assuming to have
a Gaussian cavity distribution written as follow:

P
(i)
l (x) = 1√

2π∆(i)
l

e−(1/2∆(i)
l

)x2 (2.21)

Replacing this form into the set, the system of the associated cavity variances ∆(i)
j (z)

can be obtained:

∆(j)
i (z) = 1

z −
∑
l∈∂i/ j A

2
il∆

(i)
l (z)

(2.22)

for all i=1,..,N and for all j ∈ ∂i. The derivation of this relation is shown in Appendix B. In
the very same way, it can be assumed also a Gaussian behaviour for the marginal distributions
Pi(xi), and their variances ∆i can be written as a function of the cavity variances [? ]:

∆i(z) = 1
z −

∑
l∈∂iA

2
il∆

(i)
l (z)

. (2.23)
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Finally using 2.11 the spectral density is obtained:

ρA(λ) = lim
ε→0+

1
πN

N∑
i=1

Im[∆i(z)]z=λ−iε (2.24)

In the end, the problem of computing an approximation to the spectral density is reduced
to solve the system 2.22. To find the solutions the equations must be iterated until conver-
gence is reached. One computational methods used to this purpose is the belief propagation
algorithm.

2.5 Numerical result and comparison

In order to solve the large system of cavity equations numerically, it can be used a simple
iterative approach, known as belief propagation algorithm. In this context the number ∆(j)

i

is considered as a message sent from vertex i to vertex j. These messages contain the
”influence” that one variable exerts on another. The scheme of implementation of belief
propagation is as follow: starting with an arbitrary list of initial guesses {∆(j)

i [1]}i∈V,j∈∂i,
one repeatedly applies the update equation:

∆(j)
i [n] =

(
z −

∑
l∈∂i/ j

∆(i)
l [n− 1]A2

il

)−1
(2.25)

until the convergence is reached. A fixed point {∆(j)
i }i∈V,j∈∂i is obtained, such that:

∆(j)
i = ∆(j)

i [n] = ∆(j)
i [n− 1] (2.26)

In the case of a treelike graph, the belief propagation algorithm will compute the exact
marginal variances in a finite number of steps equal to the diameter of the tree. Choosing a
Poissonian graph each entry Aij of the N x N matrix A is drawn from:

P (Aij) = c

N
π(Aij) +

(
1− c

N

)
δ(Aij) (2.27)

where c is the average connectivity, and π(x) is the distribution of nonzero edge weights.
As a first example we consider the bimodal distribution:

π(Aij) = 1
2δ(Aij − 1) + 1

2δ(Aij + 1) (2.28)

The language used for the implementation of the iterative equations, in this work, is
Python. The complete code for the analysis is reported in Appendix D.
IN order to compare the spectral density computed with the method to the one obtained
from a direct diagonalization of the matrices, a regularised form of the empirical spectral
density has been used. This allows to have Lorentzian peaks instead of Dirac’s delta.
Must be noted that an equivalent regularised form for non-hermitian matrices is not possible
to obtain through standard operations.

For a fixed N ×N matrix X, the resolvent R is defined by:
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R(z;X) = (X − z)−1 (2.29)

The resolvent is a functional and is defined for all complex numbers z outside of the
spectrum of X. The Green’s function associated to the resolvent is its normalised trace:

G(z;X) = 1
N
TrR(z;X) (2.30)

The Green’s function is also related to the spectral density of X by the formula:

G(z;X) =
∫ 1
µ− z

ρ(µ;X) dµ (2.31)

This expression is known as Stieltjes trasform of the density ρ. For a Hermitian X, it can
be possible to verify the following properties:

1. The Green’s function is a closed analytic map on C+={z : Im z > 0}.

2. The empirical spectral density can be recovered from the Green’s function by the
inverse Stieltjes transform:

ρε(λ;X) = lim
ε→0

1
π

ImG(λ+ iε;X) (2.32)

3. Neglecting the limit ε → 0 the equation 2.32 becomes a Chauchy probability density
with width parameter ε:

ρε(λ;X) = 1
π

ImG(λ+ iε;X)

= 1
π

∫
ε

ε2 + (λ− µ)2 ρ(µ;X) dµ (2.33)

Using the basic definition 2.1 the empirical spectral density can be written as:

ρε(λ;X) = 1
πN

N∑
i=1

ε

ε2 + |λ(X)
i − λ|2

. (2.34)

This last equation has been used to have a regularised spectral density to compare with
the one obtained from the cavity method. One of the results for the above case is shown
in figure 2.2 which illustrate how the increase of the ensemble’s matrices number yields the
empirical spectral density to be closer to the one obtained by the cavity’s method.
The results obtained with this approach are an improvement in respect to the approximation
scheme of the spectral density used in the absence of more powerful mathematical tools, as
the effective medium approximation (EMA), or the single defect approximation (SDA)[16]-
[17].

The Lorentzian peaks width as shown in figure 2.2 is given by the small value of ε which
is present both in the cavity equations and the analitycal form for the spectral density. These
peaks are an approximation of the Dirac’s δ which are characteristic of the spectrum of this
type of ensembles [18][19].
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Figure 2.2: Along the horizontal axis the values of λ are placed. In green: the regularised
empirical spectral density ρε(λ;A) of a Poissonian random graph of size N=100 with c=2
at ε=0.005, averaged over 20 samples. In red: same empirical spectral density but averaged
over 100 samples. In blue: the result of the spectral density solved by belief propagation,
leaving a small value of ε in the cavity equations, which implies approximating Dirac ’s δ by
Lorentzian peaks.

It is evident that the parameter ε used to obtain a regularised function for the spectral
density is in a close relation with the one used in the cavity method. For a better under-
standing, the regularised spectral density can be compared with the histogram built with
the eigenvalues gotten by direct diagonalization (the same used to obtain ρε). The result
is shown in fig.2.3 and the figure on the left has been obtained by setting the bins of the
histogram equal to ε. It is noticeable that the ρregε is a good analitycal function of ρbinε , since
the deviations are relative to the tallest bins because the height of the peaks is associated to
the number of the eigenvalues that fall in a range equal to ε and the ε itself.

The analisys confirmed the validity of the comparison between the spectral density ob-
tained by the cavity method and the regularised empirical spectral density.
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𝝀

𝝆(𝝀)

Figure 2.3: Comparison between ρregε and ρbinε . Both obtained considering matrices of size
100 with c=2 and the result is averaged over 1000 matrices. The bin size has been chosen
equal to 0.1.

2.6 Large-c limit: The Wigner semicircle law

In this section the cavity method approach will be verified by studying the set of equations
2.22 and 2.23 in the full-connected limit. In the last section the studied ensembles have been
built by choosing every nonzero element on the basis of a given probability. This probability
depends on the parameter c, which represents the average number of nodes to which a single
node is connected. By defining with ki the number of nodes close to the i-node, the average
connectivity c (also called sparsity parameter) is:

c = 1
N

∑
i

ki (2.35)

The full-connected limit can be done by performing first the limit ki → c and then c→∞
under the assumption that the graph is already ”infinitely” large. A second option would
be to first perform the limit c → N and then N → ∞. In a full-connected graph (c = N)
the cavity equations are still valid but the reason for the decorrelation is statistical rather
than topological. Before demonstrating the relation between the cavity equations in the
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full-connected limit, we remind the well known Wigner semicircle Law:

Theorem 1 (Wigner’s Law). Let {AN} be a sequence of N×N random matrices such that
for each N the entries of AN are indipendent random variables of unit variance, draw from
symmetric distributions with bounded moments. Then for fixed λ,

lim
N→∞

Eρ(λ;AN/
√
N) = 1

2π
√

4− λ2I[−2,2](λ). (2.36)

The Wigner’s Law shows a statistical result for a specific class of matrices. Therefore, it
can be thought of as the analogue of the central limit theorem, in which an ever increasing
number of random variables of an unknown type combine to produce a known deterministic
limit.
The entries of the matrix A have been taken as Aij = Jij/

√
c, where Jij(= Jji) is a Gaussian

variable with zero mean and variance J2. For large c the equations 2.22 and 2.23 show that
∆(j)
i (z) = ∆i(z) +O(c−1). So, in this limit it can be obtained:

lim
c→∞

∑
l∈∂i

A2
il∆

(i)
l = lim

c→∞
1
c

∑
l∈∂i

J2
il∆

(i)
l = J2∆ (2.37)

where:
∆ = lim

c→∞
1
c

∑
l∈∂i

∆l. (2.38)

The Eq. 2.23 provides the relation:

∆ = 1
z − J2∆ (2.39)

which gives a ρA different from zero in the interval [−2J ; 2J ] and equal to:

ρA(λ) = 1
2πJ2

√
4J2 − λ2. (2.40)

In figure 2.4 is reported a numerical result of the average distribution of the eigenvalues
for a Gaussian symmetric ensemble and its expectation value according to the Wigner’s Law.

To verify the method implementation and to study, numerically, how the average spectral
density of an ensemble composed by sparse random matrices tends to the fully-connected
law when c,N → ∞, we performed some calculations for Gaussian ensembles where the c
parameter increases.

Figure 2.5 show the results of the calculations and it is immediate to observe that as
c increases the central peak in λ = 0 lowers and the form of the spectral distribution ap-
proaches the Wigner’s Law. Therefore, each figure has been realized considering Gaussian
distributions with mean zero and variance 1/c for the random entries of the matrices dif-
ferent from zero with probability c/N . The size of the matrices is not very large (N = 20)
and the ensemble is composed by only 10 matrices for the spectral density obtained with
the cavity method (blue line), while the result of the regularised empirical spectral density
(orange line) is obtained by averaging over 1000 matrices.
An important consideration, concerning figure 2.2 and figure 2.5, is that the statistical fluc-
tations are dominant in the empirical spectral density. In order to have a good comparison
between the two methods it has been considered a large number of matrices for the eigen-
values obtained from the standard diagonalization algorithm in Python.
The results obtained show that the cavity method can be efficiently used in the statistical



2.6. LARGE-C LIMIT: THE WIGNER SEMICIRCLE LAW 23

Figure 2.4: The figure illustrates the comparison between Wigner’s Law and the normalized
histogram of the eigenvalues obtained from an ensemble of 2000 symmetric matrices of size
100 where the entries are extracted by a Gaussian distribution with µ = 0 and J = 1/N .

limit N →∞ for the sparse random matrices built in different ways even if relatively small
matrices (N=20) have been used. Another consideration about figure 2.5 is that the compu-
tational time of the code which implements the cavity method, for the same matricial size,
increases by increasing the value of the average connectivity parameter c. This is expected
because the method is based on a treelike network structure for any size of the matrix, but
when the size is big enough and the connectivity is not low the method leads to an exact
result but in an indefinite time.
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Figure 2.5: The figures have been obtained by generating symmetric matrices with N=20
and their coefficients have been taken different from zero with probability c/N and drawn
by a Gaussian distribution with zero mean and variance 1/c. Moving from left to right and
from top to bottom, c assumes value: 5,7,10 and 15. The blue line is the result for the cavity
method averaged over 10 matrices while the orange line is the spectral density obtained by
exact numerical diagonalization and averaged over 1000 samples.

2.7 Conclusion

In this chapter it has been examined the spectral density of ensembles of sparse random sym-
metric matrices. The generalization of the applicability of the cavity method to Hermitian
matrices is performed replacing in the eq. 2.22 and in eq. 2.23 the elements A2

il with |Ail|2.
This work has been inspired by Edwards and Jones [15] and following their work the purpose
of obtaining the spectral density has been moved to the study of a system of interacting parti-
cles on a sparse graph, which was then analyzed by the cavity approach. In this framework a
set of coupled cavity equations has been derived and then interpreted as a belief-propagation
algorithm on single instances, which has then been easily implemented. Finally, the spec-
tral density has been obtained from the recursive equations for the cavity distributions,
parametrized by their variances.
It has been demostrated that the method can be a valid approach with new theoretical and
practical advantages: it offers an alternative and maybe an easier processing to (re)derive
the spectral density compared to previous works based on approximative schemes, as well as
an improvement on the agreement with numerical diagonalization.
It has been shown, also, that the Dirac’s δ, which is typical of the spectrum associated to a
particular ensemble, may be approximated by Lorentzian peaks [20]. In previous works the
averaged spectral density was obtained by using the replica approach, or in [21][22] by using



2.7. CONCLUSION 25

supersymmetric methods. It is well known that cavity and replica methods are equivalent,
for instance, for diluted spin glasses [23]. For this type of interacting systems, with contin-
uous dynamical variables, one expects an infinite number of cavity fields to parametrize the
cavity distribution and so it is necessary to perform a series of approximations in order to
apply the cavity method [24] [16] [25][17].
On the other hand, for general sparse matrices (low and moderate values of c) this replica
method fails to provide an accurate description of the spectral density. With this work has,
instead, been demonstrated that for Gaussian cavity distributions, the problem can be solved
exactly by self-consistently determining their variances.
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Chapter 3

Cavity method for the
Non-Hermitian case

In this chapter it is shown the extension of the analysis performed on the spectral density of
the random Non-Hermitian (asymmetric for real numbers) matrices ensemble reintroducing
the concept of both the circular and elliptical law.
In the first section the elliptic law is studied using the analogy between the spectral density
and electrostatic density. Using the correlation between the two densities, it is possible to
derive the spectral density of asymmetric matrices starting from an electrostatic potential
[26] and extend our knowledge to a broader context.
In the later sections it is presented a technique to extend the cavity method to sparse
Non-Hermitian matrices compared to the specific approach to sparse Hermitian matrices
introduced in the previous chapter. In the latter, the spectral density can be written in
terms of (convergent) Gaussian integrals as well as an N -independent regularization through
a unique Green function, where N is the size of the matrix. Moreover, the analytic form
of the Green function allows to freely swap between the limit N → ∞ and the limit ε → 0
hence obtaining the spectral density as the Green function’s limit evaluated away from the
real numbers axis.
A similar analysis cannot be applied to Non-Hermitian matrices because of the presence
of complex eigenvalues invalidating equation 2.32. However, the ’Hermetization’ technique
allows to use an alternative formalism to tackle the problem as well as obtaining a simple
closed set of equations whose solutions characterize the spectral density of a given ensemble
of matrices in the statistical limit of N →∞.

3.1 Random Asymmetric Matrices

The study of the distribution of eigenvalues of an ensemble of large real asymmetric matrices
has been performed using matrices with entries Jij having a Gaussian distribution with zero
mean and correlations defined as:

[J2
ij ]J = 1/N, [JijJji]J = τ/N

for i 6= j and −1 ≤ τ ≤ 1 where τ defines the degree of correlation among the symmetric
elements of a single matrix and the brackets [...]J denote the ensemble average. The limit case
τ = 1 corresponds to an ensemble of symmetric matrices while τ = −1 to the anti-symmetric
matrices. It is worth noticing that the fully asymmetric ensemble where the elements Jij

27
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and Jji are completely independent can be recovered for the τ = 0 case.
It is well known that the average density of eigenvalues (ω) when ω = x + iy in the limit
N →∞ is given by:

ρ(ω) =
{

(πab)−1, if (x/a)2 + (y/b)2 ≤ 1
0, otherwise;

(3.1)

where a = 1 + τ and b = 1 − τ . In other words, the average density of eigenvalues for this
ensemble is uniform within an ellipse, in the complex plane, centred on zero with semi-axes
a (along the real direction) and b (along the imaginary direction). For τ = 0 the ellipse
degenerates into a unit circle (circular law).
It is possible to see from fig. 3.1, the strong agreement between the numerical diagonalization

Figure 3.1: Numerical results for the distribution of 200 eigeinvalues ω for N=100. The left
figure is obtained for τ = 3

5 while the right figure for τ = −3
5 . The red line shows the ellipse

predicted by Eq. 3.1.

and the analytical predictions for large values of N apart from minor deviations near the
real axes where the observed density of states is higher than the average density. It can be
demonstrated that this non uniformity is due to the finite-size of the value N and the effect
decreases as the size increases ultimately vanishing as N → ∞. As a matter of fact, when
N is finite, the repulsion level of the eigenstates near the real axis becomes lower than the
average repulsion level [26].
Associated with the matrix J, it is feasible to define the Green function as:

G(ω) = 1
N

[
Tr 1

1ω − J

]
J

(3.2)

where 1 is the identity matrix. This function is defined for all complex numbers ω, except
for the eigenvalues of J. By choosing a particular set of eigenvectors, it is possible to
rewrite eq. 3.2 to provide a better understanding of the analogy between the spectral and
electrostatic density. rα and lα are the right and left eigenvectors of the matrix J respectively,
which satisfy the following relations:

Jrα = λαrα

lαJ = λαlα
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for each α = 1, ...N . If the following orthonormalization proprieties:

lα · rβ = δβα with α, β = 1, ..., N (3.3)
N∑
α=1

liαl
α
j = δij (3.4)

N∑
α=1

riαr
α
j = δij (3.5)

are satisfied, the elements Jij can be written as:

Jij =
N∑
α=1

lαi rαjλα (3.6)

Then the elements of a function which depends by J can be written as:

(f (J))ij ≡
N∑
α=1

lαi rαj f (λα) (3.7)

and its trace as:

Tr(f (J)) =
∑
i,α

lαi rαif (λα) =
∑
α

f (λα) =
∑
α

∫
δ2(λ− λα)f (λ)d2λ = N

∫
d2λρ(λ)f (λ) (3.8)

where it has been used the definition of spectral density in the complex field. As the Green
function (eq. 3.2) is defined by the trace of a matrix depending by J, the previous passages
lead to the new equation:

G(ω) = 1
N

[∑
λ

1
ω − λ

]
J
=
∫
d2λ

ρ(λ)
ω − λ

. (3.9)

The Green function has now become an integral over the eigenvalues λ of a second function
which depends on the average density of the eigenvalues of J in the complex plane. This
expression clearly suggests a possible analogy with a two-dimensional classical electrostatic
field. In order to show this relation, the eq. 3.9 can be integrated around a region R which
contains the eigenvalues λ, assuming that no eigenvalues lie on the border ∂R:∫

∂R

dω

2πiG(ω) = 1
N

[∑
λ

∫
∂R

dω

2πi
1

ω − λ

]
J
= 1
N

[∑
λ∈R

1
]
J
=
∫
R
d2ωρ(ω). (3.10)

The integration has used the residue theorem to evaluate the line integral of the analytic
function f(ω) = 1

ω−λ over the closed curve ∂R.
In order to solve the line integral it is necessary to choose a convenient parametrization
of the curve in the complex plane. The coordinates of the curve’s points are functions
of a new variable τ , therefore, the points on the border of R assume the following form:
ω(τ) = x(τ)+iy(τ) where d~ω(τ)

i = dy(τ)−i dx(τ) = n̂|d~r| with |d~r| =
√
ẋ(τ)2 + ẏ(τ)2dτ ≡ dl

as the infinitesimal length of the curve and n̂ as the unitary vector normal to the curve ∂R.
The new integral can be resolved by applying the Gauss theorem using a vector field defined
as the product between an arbitrary constant vector field ~a and the scalar field G(ω). By
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applying the divergence propriety to the vector field: ∇ · (G~a) = ~a · (~∇G) , the integral of
the vector field ~J ≡ G~a over the region R can be written as:∫

R
d2ω ∇ · ~J =

∫
∂R
dl n̂ · ~J =⇒

∫
R
d2ω

(
∂G

∂x
+ i

∂G

∂y

)
=
∫
∂R

dω

i
G (3.11)

where the last passage is allowed because ~a is chosen arbitrarily. Exploiting the relation
expressed in eq. 3.10, it is possible to obtain the following relation:∫

R
d2ω

(
∂G

∂x
+ i

∂G

∂y

)
= 2π

∫
R
d2ω ρ(ω). (3.12)

Equating the functions being integrated and considering that the right-hand side of eq. 3.12
is defined over real values because of the definition of spectral density, the following equations
can be obtained:

∂ReG
∂x

− ∂ImG
∂y

= 2πρ (3.13)

∂ImG
∂x

+ ∂ReG
∂y

= 0. (3.14)

Thanks to a clever redefinition of the Green function in terms of the electric field ~E:

Ex ≡ 2ReG , Ey ≡ −2ImG (3.15)

the eq. 3.13 becomes the Gauss’ law relating the distribution of an electric charge to the
resulting electric field, while eq. 3.14 becomes ~∇× ~E = 0. The last consequence permits to
associate a scalar potential Φ to the electric field ~E satisfying the following relations:

2ReG = −∂Φ
∂x

, −2ImG = −∂Φ
∂y

(3.16)

where Φ obeys the Poisson’s equation:

∇2Φ = −~∇ · ~E = −4πρ. (3.17)

In order to evaluate ρ(ω) it is necessary to know G(ω) in the region where ρ is not zero,
however, G(ω) is defined outside this region and in general it is not possible to estimate it
by analytic evaluation from outside the region. This fact can be explained in the language
of electrostatics: the charge distribution is not completely determined by the value of the
electric field outside the charged region. For this reason, it is possible to show that G(ω)
cannot be calculated even using perturbative methods outside the region where ρ = 0.
Expanding eq. 3.9 as a power series of J,

G(ω) = 1
N

∑
i

[ 1
ω

+ λi
ω2 + λ2

i

ω3 + ...
]
J
= 1
ω

[
1 +

∑
i Jii
Nω

+
∑
ij JijJji

Nω2 + ...
]
J
, (3.18)

where for the fully asymmetric case in which [JijJji]J = 0 , the expansion yields G(ω) = 1/ω
in the limit N → ∞, to all orders in J. This result, however, is not valid on all complex
plane. In fact eq. 3.1 implies that for τ = 0, G(ω) becomes:

G(ω) = 1
π

∫
|λ|≤1

d2λ

ω − λ
. (3.19)
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Following the electrostatic analogy, it is possible to consider the components of the electric
field and G(ω) with components equal to its real and imaginary part, in the complex plane:

E(ω) = 2G(ω)∗. (3.20)
Rearranging G(ω) as follows:

G(ω) = 1
π

∫
|λ|≤1

d2λ
(ω − λ)∗

|ω − λ|2
(3.21)

it is straightforward to associate the electric field E in the complex plane to the integral over
a charged region:

E(ω) = 2
π

∫
|λ|≤1

d2λ
ω − λ
|ω − λ|2

. (3.22)

This expression is clearly similar to that of the electric field evaluated at a point ω in the
bi-dimensional space generated by the presence of uniformly distributed electrical charges
when the Gauss Law is valid. By applying these considerations, the integral becomes:∫

S

~E · ~n = 2πQ in convenient units (3.23)

where S is a 1-D sphere, ~n is the unitary vector normal to S and Q is the total charge enclosed
by S.
If |ω| ≥ 1 the electric field becomes:

|E(ω)| 2 π |ω| = 2 π 2
π
π =⇒ E(ω) = 2 ω

|ω|2
hence G(ω) = 1

ω
(3.24)

while, when |ω| ≤ 1 the electric field in ~ω is due to the contribution of the charge inside the
circle of radius ω:

|E(ω)| 2 π |ω| = 2 π 2
π
π|ω|2 =⇒ E(ω) = 2ω hence G(ω) = ω∗ (3.25)

The result of eq. 3.24, 1/ω, which decreases as the inverse of the distance, corresponds to
the two-dimensional Coulomb law, while the result of eq. 3.25, ω∗, corresponds to a linear
electric field inside an homogeneously charged disk. These results have clearly demonstrated
that the perturbative method, which assumes the possibility of expressing J as a power series
(see eq. 3.18), is not valid inside the disk but only in the region where ρ = 0 and where G(ω)
is an analytic function. It should also be noted that for symmetric matrices the charge Q
is concentrated on a line and therefore analytic derivation can be used to obtain G(ω) and
ρ(ω) over the entire complex plane [14].

In conclusion, for λ along the real axis (where the eigenvalues of Hermitian matrices are
confined), the Green function is analytic and its imaginary part gives a smooth and N -
independent regularization of the spectral density (as it has been demonstrated in 2.33).
But if the matrix is non-Hermitian, the eigenvalues invade the complex plane and the Green
function provides no such regularization. In order to evaluate the analytical form of the
spectral density of sparse Non-Hermitian random matrices, it is imperative to find a new
approach in order to apply the same analogy used for the Hermitian case, or some related
artefact as the electrostatic potential introduced in [2]. The goal is to write the spectral
density in a way that allows to obtain a convergent Fresnel integral as with the case of
Hermitian matrices.
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3.2 Hermitization

Hermitization is a process introduced by Feinberg and Zee [27][28] in which they worked with
matrices of double the size of the ones initially defined. A similar approach has been intro-
duced by Janik, Nowak, and collaborators [29] proposing a similar block structure extension
technique. They have obtained a generalization of the Green function with a quaternionic
structure yielding many interesting results, including a specific application concerning the
study of ecological communities as it has been shown in Chapter 4.

It has been considered an ensembleM of N ×N complex, sparse non-Hermitian random
matrices. If A is a non-Hermitian matrix, its eigenvalues are complex. For a point z = x + iy
in the complex plane, the spectral density of A at z is:

ρA(z, z̄) = 1
N

N∑
i=1

δ(x− ReλAi )δ(y − ImλAi ) (3.26)

The spectral density can be also written as1:

ρA(z, z̄) = 1
πN

lim
κ→0

∂z̄∂z ln detĤ (3.27)

where Ĥ is a 2N × 2N Hermitian matrix:

Ĥ ≡ Ĥ(z, z̄;κ) =
(

κ1N A− z1N
A† − z̄1N κ1N

)
(3.28)

and 1N is the identity matrix N × N . The Ĥ matrix is the one originally introduced by
Feinberg and Zee.
The eq. 3.27 can be written as:

ρA(x, y) = −1
πN

lim
κ→0

1
4

(
∂

∂x
+ i

∂

∂y

)(
∂

∂x
− i ∂

∂y

)
ln detĤ = −1

4πN lim
κ→0
∇2 ln detĤ. (3.29)

To solve eq. 3.29 it has been used the work of Sylvester for block matrices [30] that can be
explained as follows. Let X be a block matrix consisting of four N × N blocks, i.e. A, B, C
and D, arranged in the following way:

X =
(
A B
C D

)
.

If A and D are proportional to the identity matrix 1N , because of the decomposition of the
determinant of the matrix X using Shur’s complements, the formula gives:

det X = det(κ21N −BC). (3.30)

Therefore, Ĥ, working in the limit κ = 0, becomes:

detĤ(x, y) = (−1)Ndet[(A− z1N )(A† − z̄1N )].

1It has been used the notation conventions ∂z = 1
2

(
∂
∂x
− i ∂

∂y

)
, ∂z̄ = 1

2

(
∂
∂x

+ i ∂
∂y

)
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It is now possible to introduce another non-Hermitian matrix H, which leads to the same
spectral density of eq. 3.28, later on used to apply the cavity method:

H ≡ H(z, z̄, κ) =
(

κ1N i(z1N −A)
i(z1N −A)† κ1N

)
. (3.31)

The equivalence between the two matrices can be observed using the following relation:

ln detĤ = ln(−1)N + ln detH = iπN + ln detH for κ = 0 (3.32)

and considering that applying ∇2 to eq. 3.32 both Ĥ and H yield the same results. By
substituting H with Ĥ in eq. 3.29 the problem has shifted to proving the following relation:

ρA(x, y) = −1
4πN∇

2 ln det[(A− z1N )(A† − z̄1N )] (3.33)

where it has been changed the action of ∇2 with the limit κ→ 0 permitted by the analytic
nature of the equation.2
Using the identity:

ln detV = Tr lnV

eq. 3.33 reduces to:

ρA(x, y) = −1
4πN∇

2
N∑
i

[ln(λi − z) + ln(λ̄i − z̄)] = −1
4πN∇

2
N∑
i

ln|λi − z|2 (3.34)

= 1
4πN∇

2
N∑
i

ln[(xi − x)2 + (yi − y)2],

where xi and yi are the real and imaginary part of λi respectively. To solve eq. 3.34, it is
needed to compute:

∇2ln(x2 + y2).

without considering the divergence at
(x
y

)
=
(0
0
)
. In order to avoid this divergence, the

parameter ε is introduced and the expression is regularized as follows:

∇2ln(x2 + y2 + ε) = 4ε
(x2 + y2 + ε)2 . (3.35)

This expression leads to two different conclusions:

1. If
(x
y

)
6=
(0
0
)

and ε→ 0 the result is null.

2. If
(x
y

)
=
(0
0
)

the function assumes the value 4
ε , and for ε→ 0 the result diverges.

Therefore it is expected that the weak convergence of conclusion 2 leads to a distribution of
this form:

2The presence of the parameter κ is important to ensure the convergence of the integrals when the technique
of the cavity method will be used in the following sections where the change will not be allowed in a rigours
way.
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C δ(x)δ(y).

Matching the integrals on R2 of eq. 3.35 and of the delta functions in the limit ε = 0, produces
a value for the constant C of 4π. Applying all these information, the following relation is
obtained:

∇2ln(x2 + y2) = 4πδ(x)δ(y) =⇒ (eq. 3.34) = 1
N

N∑
i

δ(xi − x)δ(yi − y) = ρA(x, y) (3.36)

At this point it is straightforward to confirm the interpretation of ρA in the context of elec-
trostatics in two dimensions: ρA(z, z̄) in eq. 3.27 can be interpreted as the density of the

electrical charges, all equal to 1/N , placed at the position ~ri =
(
xi
yi

)
in the bi-dimensional

space. Furthermore, it has been clarified the correctness of the Hermitization process that
has allowed to confirm the analogy of the spectral density with the one for the electrical
charges considered in the previous section.

3.3 Preparation

Analogously to the Hermitian case, this section analyses the case of a disordered system which
is treatable by statistical mechanics as a multitude of interacting particles.3 Considering
eq. 3.27 it is noticeable that all the eigenvalues of H, assuming that κ is positive, have a
strictly positive real part. Introducing 2N complex integration variables organized into N -
vectors φ and χ, it is possible to write the inverse of the determinant of H as a convergent
Fresnel integral:4

1
det[H(z; z̄;κ)] =

( 1
π

)2N∫
exp

{
−
(
φ† χ†

)
H(z; z̄;κ)

(
φ
χ

)}
dφdχ. (3.37)

where dφ =
∏N
i=1 dReφidImφi and dχ =

∏N
i=1 dReχidImχi.

The form of the matrix H has been allowed to arrange the bi-linear form 2N × 2N in the
exponential as a sum of N terms rearranging the 2N variables in N pairs of complex variables:

ψi =
(
ui
vi

)
, i=1,...,N

introducing the Hamiltonian

H(ψ, z; z̄;κ) =
N∑
i

ψ†i [κ12 + i(xσx − yσy)]ψi − i
N∑

i,j=1
ψ†i (A

h
ijσx −Asijσy)ψj , (3.38)

where σx and σy are the usual Pauli matrices and Ah and As are Hermitian matrices which
allows to rewrite A as A = Ah + iAs. Now, introducing a distribution P :

P (ψ) = 1
Z
e−H(ψ,z;z̄;κ) (3.39)

3It is important to stress that this analogy has been made only to better understand the implication of
the cavity method and has no physical equivalent with a many-body interacting system.

4Note that κ is associated with the real part of the eigenvalues of H and this guarantees the convergence
of the integral.
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and the definition of average < ... >:

< ... >=
∫
DψP (ψ)(...), (3.40)

where Z is a normalizing constant, it is possible to clearly present the analogy of the system
to statistical mechanics.5 Ultimately, the spectral density of eq. 3.27 can be written as6:

ρA(z; z̄) = lim
κ→0

1
πN

N∑
l=1
−i∂z̄ < ψ†l σ

+ψl >, (3.41)

where σ+ = (σx + iσy)/2.
In order to evaluate these averages, it is sufficient to consider the local marginals Pi(ψi) and
calculate them by applying the cavity method.
The regularised spectral density of a non-Hermitian matrix, as defined by:7

ρκA(x, y) = −1
4πN∇

2 ln det[(A− z1N )(A† − z̄1N ) + κ21N ], (3.42)

is not so easily exploited to obtain rigorous results for the unregularized density as in the
Hermitian case. Although it is certainly true that for any fixed, finite size matrix A the
following relation is valid:

ρA(x, y) = limκ→0 ρ
κ
A(x, y),

there is in general no simple convolution identity such as eq. 2.34. Even when the regularized
spectral density of random matrix ensemble is known for N →∞, the unregularized density
is not straightforward to obtain.
Simply put, if the matrices involved are not normal, there may be parts of the complex plane
far from the spectrum where the Green function is very large. In practical terms, this causes
great difficulty in justifying the swapping between the N → ∞ and κ → 0 limits [31]. The
general approach has been used to justify the exchange of the limits taking into account the
necessity to prove bounds on the least singular values of the matrices involved, though this
method has the drawback that it must be completed on an ad-hoc basis for each ensemble.
Under particular type of random perturbations it is possible to offer a remarkable relation
between the regularized spectral density of a non-Hermitian matrix and the mean spectral
density of the same matrix.

3.4 Treelike Matrices

Treelike sparse matrices have been considered to find the marginal probability necessary to
obtain the final spectral density. As in the Hermitian case, it has been associated a directed
graph GA with the matrix A and the feature treelike is assumed if short loops are rare. The
interaction of variables ψi and ψj have been moved to the edges between i and j. In this
analogy if the element Aij or Aji is not null, then the pair of vertices (i, j) are neighbors, ∂i

5Because the integration measure is complex, it is clearly not a real stochastic measure, however, many of
the mathematical derivations remain valid allowing the probabilistic analogy.

6it is obtained by eq. 3.27 remembering that the determinant of H is proporzional to the partition function
Z.

7The parameter κ > 0 is necessary to keep the argument of the logarithm strictly positive in this relation.
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indicates the set of all neighbors of i, ki denotes the number of neighbors of i (the degree of
i) and c = N−1∑

i ki defines the average degree.
In the hypothesis that A is treelike, the elimination of a vertex of the graph associated to
the variable ψi changes the marginal distributions of the neighboring variables ψl (l ∈ ∂i),
which is denoted by P (i)

l (ψl). Therefore, the joint distribution of the neighbors of the vertex
i is now factorized as:

P (i)({ψl}l∈∂i) =
∏
l∈∂i

P
(i)
l (ψl). (3.43)

This approximation is exact on trees and graphs which remain treelike in the limit N →∞.
The cavity marginals

{
P

(j)
i

}
obey simple recursive relations

P
(j)
i (ψi) = e−Hi

Z (j)
i

∫
D(ψ∂i/j)e

−
∑

l∈∂i/j Hil
∏

l∈∂i/j
P

(i)
l (ψl) (3.44)

where Z (j)
i is a normalizing constant. The Hamiltonian in eq. 3.38 has been separated in a

contribution of single variables Hi and a contribution associated to pairs of variables Hij .
Once the cavity distributions are known, the actual marginal distribution of vertex i can be
recovered by the combination of those of the neighbors through the following relation:

Pi(ψi) = e−Hi

Zi

∫
D(ψ∂i)e

−
∑

l∈∂iHil
∏
l∈∂i

P
(i)
l (ψl). (3.45)

The set of recursive equations in eq.3.44 is self-consistently solved by distributions of a
bivariate Gaussian type. Then for all i = 1, ..., N and all j ∈ ∂i the distribution P (j)

i can be
written as:

P
(j)
i (ψi) = 1

Z (j)
i

exp
(
−ψ†i

[
C(j)
i

]−1
ψi
)

(3.46)

where C(j)
i is a 2 × 2 matrix. Inserting this form in eq. 3.44, it can be obtained a set of

recursive equations for the matrices {C(j)
i }. Thus, the system in eq. 3.44 has now become:

e−ψ
†
i

[
C(j)
i

]−1
ψi =

e−Hi
∫
D(ψ∂i/j) exp−

∑
l∈∂i/j [−iψ

†
i (Ahilσx−A

s
ilσy)ψl−iψ†l (Ahliσx−A

s
liσy)ψi] ∏

l∈∂i/ j

1
Z (i)

l
e
−
∑

l∈∂i/j ψ
†
l

[
C(i)
l

]−1
ψl

(3.47)
In order to solve the previous equation, it has been necessary to apply a series of variables’
changes. By fixing the indices l and i, the exponential shows two bilinear forms with a
matrix which is a combination of Pauli matrices. It is also important to stress that it has
been done a unitary transformation to diagonalize the matrix [C(i)

l ]−1 and defined
B = Ahilσx −Asilσy
B′ = Ahliσx −Asliσy.

to simplify the integral of eq. 3.47. The new variables φl = U−1
l ψl allow to rewrite eq. 3.47

as follow: ∫ ∏
l∈∂i/ j

Dφl
Z (i)
l

exp
[
+iψ†iBUlφl+iφ

†
l
U†
l
B′ψi−φ†lU

†
l

[C(i)
l

]−1Ulφl
]

(3.48)

The next step has required to define two new variables:
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Ji = ψ†iB
J ′i = B′ψi

and use a different notation for the diagonal matrix, D(i)
l ≡ U

†
l [C(i)

l ]−1Ul. The relation which
connect Ji and J ′i is:

J ′i = J†i .
because B′ = B†. The variable φl incorporates two complex variables which have been called
ul and vl. Then eq. 3.48 has been written as:∫ ∏

l∈∂i/ j

Dφl
Z (i)
l

e
∑

α
[iJ ′†iαU

l
α1ul+iJ

′†
iαU

l
α2vl+iu∗l U

l†
1αJ
′
iα+iv∗l U

l†
2αJ
′
iα−d

(i)
l1 |ul|

2−d(i)
l2 |vl|

2] (3.49)

where the numbers d(i)
l1 and d

(i)
l2 are the diagonal elements of D(i)

l . The quantities in the
exponential now shows the following relations:

b∗ = [
∑
α U

l†
1αJ

′
iα]∗ =

∑
α J
′†
iαU

l
α1

c∗ = [
∑
α U

l†
2αJ

′
iα]∗ =

∑
α J
′†
iαU

l
α2.

which have been exploited to rearrange eq. 3.49:

∫ ∏
l∈∂i/ j

duldvldu
∗
l dv
∗
l

4Z (i)
l

exp

{
−d(i)

l1

(
|ul|2−i b

∗

d
(i)
l1

ul−i b

d
(i)
l1

u∗l

)
−d(i)

l2

(
|vl|2−i c

∗

d
(i)
l2

vl−i c

d
(i)
l2

v∗l

)}
. (3.50)

Since the integrals in the variables (ul, u∗l ) and (vl, v∗l ) are similar, it has been possible to
limit the analysis to only one of them still retaining the validity of the method. Changing
variables and replacing the real and imaginary part:

uRl = 1√
2(ul + u∗l )

uIl = −i√
2(ul − u∗l ).

it has been possible to obtain the following relation:∫ ∏
l∈∂i/ j

duRl du
I
l

4Z (i)
l

exp

(
−
d
(i)
l1
2 u2

lR+i b
∗
√

2
uRl +i b√

2
uRl

)
exp

(
−
d
(i)
l1
2 u2

lI−
b∗√

2
uIl + b√

2
uIl

)
=

∫ ∏
l∈∂i/ j

duRl du
I
l

4Z (i)
l

e

(
−
d
(i)
l1
2 u2

lR+i
√

2(Re b)uRl −
d
(i)
l1
2 u2

lI+i
√

2(Im b)uIl

)
.

Thanks to the Hubbard-Stratonovich formula:∫ +∞

−∞
e−

1
2ax

2+iJxdx =
(2π
a

)1/2
e−

J2
2a

it has been possible to compute the integral of eq. 3.50:

∏
l∈∂i/ j

1
4Z (i)

l

(
2π
d

(i)
l1

)(
2π
d

(i)
l2

)
e
− |b|

2

d
(i)
l1

− |c|
2

d
(i)
l2 =

∏
l∈∂i/ j

e
−
∑

α,β
J ′†α U

l
α1

(
1
d
(i)
l1

)
U l†1βJ

′
β−
∑

γ,δ
J ′†γ U

l
γ2

(
1
d
(i)
l2

)
U l†2δJ

′
δ

=
∏

l∈∂i/ j
e

−J ′†U l

 1
d

(i)
l1

0

0 1
d

(i)
l2

U l†J ′
(3.51)
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It is important to stress that the following relation has been extensively used:

Z (i)
l = π2

det
[
C(i)
l

]−1

Realisign that the matrix in the exponential is the inverse matrix of D(i)
l , it has been possible

to write: [
D

(i)
l

]−1
=
[
U †l

(
C(i)
l

)−1
Ul
]−1

= U †l C
(i)
l Ul.

and through this relation, eq. 4.8 has now become:∏
l∈∂i/ j

eJ
′†
α U

l
αβU

l†
βσ

[C(i)
l

]σλU lλδU
l†
δγ
J ′γ =

∏
l∈∂i/ j

eJ
′†
σ [C(i)

l
]σλJ ′λ (3.52)

Finally, the recursive equations in eq. 3.44 have become a set of recursive equations for the
matrices C(j)

i :
C(j)
i =

[
κ12 + i(xσx − yσy) + F

(
C(i)
∂i/j

)]−1
(3.53)

for all i = 1, .., N and all j ∈ ∂i, where F is the matrix field :

F
(
C(i)
∂i/j

)
=

∑
l∈∂i/j

(Ahilσx −Asilσy)C
(i)
l (Ahliσx −Asliσy). (3.54)

Eq. 3.45 has now given the “true” covariance matrices:

Ci =
[
κ12 + i(xσx − yσy) + F

(
C

(i)
∂i

)]−1
(3.55)

for all i = 1, .., N .
Performing the inverse of H in block form, it has been possible to hypothesize a tentative
form for the structure of the matrices {C(j)

i }:

C
(j)
i ≡

(
a

(j)
i ib̄

(j)
i

ib
(j)
i d

(j)
i

)
a

(j)
i , d

(j)
i ∈ R+

b
(j)
i ∈ C

.

This form allows to obtain the spectral density in terms of the function bi ≡ bi(z, z̄, κ) as the
mean value of eq. 3.41 has been computed using techniques of Quantum Field Theory [32].
By inserting different sources in the partition function Zl and exploiting the following relation:

Zl =
∫
Dψ exp−ψ

†
l
[C−1
l

]ψl+ψ
†
l
J+J†ψl = (detCl) expJ†ClJ

the mean value < ψ†lαψlβ > has been computed as:

∂2

∂Jα∂J
†
β

lnZl

∣∣∣∣∣
J=0=J†

= −Cβαl . (3.56)

Considering the specific case of < ψl1ψl2 >, the result for the spectral density has become:

ρA(z, z̄) = − 1
πN

lim
κ→0

N∑
i=1

∂z̄bi(z, z̄, κ). (3.57)
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In order to compute the spectral density it is now necessary to deal with the partial deriva-
tives ∂z̄, therefore, it is crucial to formulate a set of recursive equations for the partial
derivatives of the covariance matrices {∂z̄C(j)

i }. Using the set of relations in eq. 3.44, it has
been possible to obtain:8

∂z̄C(j)
i = −C(j)

i

[(
0 0
i 0

)
+ F (∂z̄C(i)

∂i/ j)
]
C(j)
i . (3.58)

In a similar way, considering the equation 3.55, the derivative of the “true” covariance matrix
at i is given by:

∂z̄Ci = −Ci

[(
0 0
i 0

)
+ F (∂z̄C(i)

∂i )
]
Ci. (3.59)

To synthesize the entire procedure, it can be said that the eq. 3.44 and eq. 3.58 represent
the principal results associated to the application of the cavity method to a random non-
Hermitian matrix A, which has an underlying network structure that can be considered
treelike when many of its entries are equal to zero. The absence of loops guarantees the
convergence of these equations in a short time, i.e. in a number of steps equal to the
diameter of the tree, because the method has been built on a graph that share this feature.
This ascertainment does not prevent the application of the method to graphs which are not
trees, however, in this case it is necessary to halt the iterations when a pre-determined level
of convergence has been reached.
In a more practical way, one iterates both sets of equations until the convergence is obtained
and once the cavity covariance matrices and their derivatives for each node and neighbors
are known, the “true” marginals are then recovered by eq. 3.55 and eq. 3.59 for each vertex.
Finally the spectral density is obtained by the use of eq. 3.57.

3.5 The fully connected limit - Girko’s Elliptic Law

To verify the correctness of the cavity approach also for ensembles with non-Hermitian ran-
dom matrices, it has been derived the generalized Girko’s law of Ref. [26]. A matrix A which
obeys this law is characterized by having its elements Aij drawn by a Gaussian distribution
with zero mean and a correlation between the symmetrical elements, i.e. E(Aij) = 0 and
E(AijAji) = τ/N . The parameter τ ∈ [0, 1] controls the degree of hermiticity: for τ = 1,
A is completely Hermitian and obeys Wigner’s Law, whereas, for τ = 0 A is maximally
non-Hermitian. With these information it is possible to rewrite the matrix A in terms of
statistically independent Hermitian matrices Ah and As in the following form:

Aij =
√

1 + τ

2 Ahij + i

√
1− τ

2 Asij , (3.60)

where the entries of Ah and As are random variables satisfying:

E(|Ahij |2) = E(|Asij |2) = 1/N .

for each i and j. As in the fully connected limit for the previous chapter, it has been
taken c → N and N → ∞ which imply C

(j)
i = Ci + O(1/c). Under these assumptions and

8It has been used the common relation for the derivative of the inverse matrix of A : ∂z̄(A−1) =
−A−1(∂z̄A)A−1
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considering eq. 3.44, it is straightforward to obtain an equation for the mean single-spin
variance matrix ∆:9

∆−1 = i(xσx − yσy) + 1
2(1 + τ)σx∆σx + 1

2(1− τ)σy∆σy. (3.61)

A possible form for ∆, which can solve the previous relation, corresponds to the usual
structure of the covariance matrix: (

a ib̄
ib d

)
.

Therefore, the equation for ∆ can be equivalently written as a system of equations for
a, b and d:


ad− τb2 − xb− iyb = 1
iax− ay + iab̄+ iτab = 0
ixd+ dy + id(b+ τ b̄) = 0

When d 6=0 the relation provides the following solutions:


a = d =

√
1−

(
x

1+τ

)2
−
(

y
1−τ

)2

b = −x
1+τ + i y

1−τ

which are defined inside the ellipse of equation
(

x
1+τ

)2+
( y

1−τ
)2
< 1.

When d = 0 and a 6= 0 the system does not have a unique solution for b as function of z
and z̄. Instead for a = d = 0 only the first equation of the system has to be solved and, by
assuming b = β(x − iy), two equations can be obtained for the real and imaginary part of
the first equation: {

τβ2(x2 − y2) + β(x2 − y2) + 1 = 0
β2 = 0

which, solving in z̄, produces:
(∂z̄β)z̄ + β = 0. (3.62)

From these results and eq. 3.57, the spectral density can be easily found to be:

ρA(z, z̄) = − 1
π
∂z̄b(z, z̄) =


1

π(1−τ2) when
(

x
1+τ

)2+
( y

1−τ
)2
< 1

0 otherwise

This exactly reproduces the Girko’s Elliptic Law. It is relevant to point out that when τ = 0
all correlations among the entries of the matrix A vanish and the Circular Law is retrieve as
a special case of the Girko’s Law.

9The parameter κ has been set to zero in order to simplify the analysis although still retaining the full
validity of the method.
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3.6 Numerical results

In order to prove the validity of this approach for ensembles of sparse random Non-Hermitian
matrices, the cavity method has been used to analyze two different cases: (i) symmetri-
cally connected Poissonian random graphs with average connectivity c and with asymmetric
Gaussian edge with zero mean and variance 1/c and (ii) asymmetrically connected Poisso-
nian graphs with edge weights drawn uniformly from a circle of radius 1/

√
c. In fig. 3.2a it

is shown the result for a given matrix built according to (i) and obtained using the belief
propagation algorithm. Eq. 3.44 and eq. 3.58 have been iterated together until reaching the
convergence and then the spectral density has been computed using eq. 3.55, eq. 3.59 and
eq. 3.57.
It has been used “small” matrices of S = 40 size and the spectral density has been obtained
averaging over 20 samples. 900 points have been used to build the bi-dimensional surface
of fig. 3.2a. In fig.3.2b is shown the two-dimensional histogram for the eigenvalues obtained
by direct diagonalization of a certain number of matrices with size S = 40. The histogram
has been divided by the number of samples and the height of each bin specifies the average
number of the associated eigenvalues. In the figure at the top left can be seen the histogram
associated to the eigenvalues of 20 matrices. It is emphasized the presence of the central bin
in (0,0) with a mean number of eigenvalues equal to the value of the peak obtained by the
cavity method at the same point. At the top right of the same figure, it is shown the same
histogram but the color map has been set to a lower set of values in order to enhance the
small difference in the number of eigenvalues associated to each bi-dimensional bin. This
figure shows how the histogram which should reconstruct the spectral density associated to
a single matrix, in the statistical limit with S very large, is characterized by having many
statistical fluctuations. It is also possible to point out that the support of the spectral dis-
tribution obtained by the cavity method coincides with the collocation of the eigenvalues
extracted by the numerical diagonalization but shows that their changes over the distribu-
tion are not clear.
Subsequently, it has been considered an ensemble of 1000 matrices of size S = 40 to build
the histogram of the averaged eigenvalues. Looking at the bottom of fig.3.2b, it is evident
that the statistical fluctuations are far less dominant and the histogram of the averaged
eigenvalues is comparable with the spectral density obtained by the cavity method. The
comparison is very positive and shows excellent agreement between the two simulations. On
a different note, this type of ensemble (with a certain sparsity parameter) clearly shows the
high location of eigenvalues for the bi-dimensional bins associated with the real part of the
eigenvalues equal to zero. This feature has been explained in the section 1.1 as an effect of
the finite size of the matrices.

Considering the type of ensemble as (ii), it has been implemented matrices of size S = 20
with unitary weights and average connectivity c = 2. The results of the cavity method has
been averaged over 50 samples. In fig. 3.3a is shown the comparison between the results ob-
tained by the implementation of the cavity method and the bi-dimensional histogram of the
eigenvalues extracted by the direct diagonalization. The central peak is well reconstructed as
it is evident in the top left of fig. 3.3a. In order to enhance the contrast of the lower section
of the histogram, fig. 3.3a (bottom) shows the same graph limiting the peak’s height to a
maximum value of 2. The same ensemble has been used to obtain the bi-dimensional his-
togram shown in fig. 3.3b (top right) limiting the values to a maximum 0.10 value. Similarly
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to case (i), the results of the discrete distribution associated with the computed eigenvalues
have not shown clearly the trend of the variation of the (discrete) spectral density.
However, increasing the statistic by averaging over 1000 matrices, the behavior of the discrete
distribution becomes more evident as well as comparable with the spectral density obtained
by the cavity method. The central bin has a significant high value and the resolution of the
eigenvalues distribution shows a clearer contrast when considering the color map up to a
maximum value 0.10. The high density of the eigenvalues with real part equal to zero is an
effect of the finite size of the matrices which is not evident in the cavity approach results.
The Python code implemented for this analysis is reported in Appendix D.
It is possible to notice that the ensembles of both cases satisfy the conditions for Girko’s law
in the limit c → ∞. However, it is evident from fig. 3.2 and fig. 3.3, for finite c, that the
spectral densities are dramatically different among each other and deviate from the limiting
case of Girko’s law.

3.7 Conclusion

In this section it has been answered the question of determining the mean spectral density
of an ensemble of sparse non-Hermitian random matrices. The cavity method has been used
to this aim following the same steps used for the Hermitian case. In fact, the problem of
considering non-Hermitian matrices has only complicated the mathematical tools necessary
to obtain a Gaussian integral which is a fundamental part of obtaining a correct spectral
density evaluation.
The cavity method implemented by belief propagation leads to a fast convergence of the
mean spectral density for matrices of a given size whose results are in good agreement with
those obtained by direct diagonalization.
In the case of dense matrices (both Hermitian and non-Hermitian), past studies who have
used techniques of supersymmetry and replica analysis have found noticeable success, how-
ever, applied to sparse matrices, these approaches have not been so fruitful, leading to a set
of saddle-point equations which have resisted computational solution for over 17 years. In
the study of ensemble average, the cavity and replica methods are known to be equivalent
and the solutions obtained are common to all approaches and can also be derived through a
careful treatment of the aforementioned saddle-point equations.
The power of the methods is evident for the good analytic form of the mean spectral density
in comparison to the histogram of the eigenvalues obtained computationally.
In the following chapter it is shown how to exploit this approach in order to obtain some
direct information about the spectral distribution dependent on the characteristics of the
random matrices. The analytic results of the cavity method permit to understand how the
location of the rightmost eigenvalue(s) is influenced by the assumed values of the parameters
which characterize the structure of the random matrix.
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a)

b)

Figure 3.2: Fig.a shows the result obtained by the cavity approach for the spectral density
of symmetric Poissonian graphs of size S = 40 with asymmetric Gaussian edge weights (with
zero mean and variance 1/c) averaged over 20 samples. The X axis is relative to the real part
of the eigenvalues and the Y axis to its imaginary part. Fig.b represents a sequence of bi-
dimensional histograms created with the eigenvalues obtained by numerical diagonalization.
The top left figure shows that the central bin has the same height as the value of the peak
in fig.a. The top right figure underlines the preponderant statistical fluctuations for a small
relative ensemble of matrices used to obtain the distribution of averaged eigenvalues (equal
to that used to average the spectral density obtained by each matrix). The bottom figure
represents the results obtained considering an ensemble of 1000 matrices clearly depicting a
good accordance with fig.a.
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a)

b)

Figure 3.3: Fig.a shows the results obtained by the implementation of the cavity method
for the spectral density of asymmetric Poissonian graphs with unitary edge weights and
average connectivity c = 2. The edges are drawn uniformly from the circle of radius 1/

√
c.

Fig.b shows the results of the direct diagonalization where the top figures represent the bi-
dimensional histograms for an ensemble of 50 matrices of size S = 20. The image at the
bottom shows the results obtained averaging over 1000 matrices.



Chapter 4

An application to the ecological
communities

In the previous chapters, it has been shown that the cavity method is a helpful tool to study
the statistical limit of an ensemble of large matrices built through parameters which charac-
terize its randomness, average connectivity and the relation between its simmetrical elements.
The close connection between the values of these parameters, the size of the matrices and
the shape of distribution of the eigenvalues, captures a wide interest in the scientific com-
munity for a large range of applications, which includes epidemiology [33], neuroscience[34]
and complex system in general[35].
A problem of particular interest in the ecological field is to study the effect of modularity on
local stability of ecological dynamical systems. The goal of this research is to investigate how
a block structure of the community matrix influences the dynamics of the system and to un-
derstand which parameter have effects on the stability of ecological networks. Unfortunately,
a systematic classification of the different effects generated by the possible complexities of
the matrix is still lacking, also because the analysis is made more complicated by the combi-
nation of many contributions. In literature there are opposite results which do not simplify
the analysis of the issue.
In this context the cavity method has provided a valid contribution thanks to a slightly
different notation of the cavity equations based on quaternions, rather than Pauli matrices
[36].
This approach guarantees the correctness of the mathematical passages used to search the
spectral density of large block-structured matrices because many entries are null and for
sparse matrices the method is a good approximation of the statistical limit of spectral dis-
tribution.
In this thesis, thanks to the cavity method, it has been possible to study, in an alternative
way, the spectrum of a random matrix. This has allowed to obtain an analytic result in
two particular cases concerning the modular organization. The explicit solutions for the
support of the spectrum of the matrix have permitted to justify the qualitative behavior of
the simulations, giving a direct relation between the parameters of the construction and the
information about the stability of the block-structured random matrix.

45
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4.1 Building community matrices

The aim of this chapter is to study the stability of a community matrix M , describing a
continuous-time, dynamical ecological system composed by S populations, resting at a fea-
sible equilibrium point. The matrix is the result of the multiplication element-by-element
between a matrix of interaction strengths W , in which its elements Wij represent the influ-
ence of species j on species i around equilibrium, and the adjacency matrix of an undirected
graph K. In symbolic term M = W ◦K.
It can be demostrated that setting Mii = 0 the investigated qualitative results do not change.
Since the diagonal elements of M are nothing but the self-interactions, the study can be re-
stricted to the inter-species effects.
The pair of elements (Wij ,Wji) is drawn from a bivariate distribution, with identical marginals,
determined by the mean µ = E[Wij ] = E[Wji], the variance σ2 = E[(Wij−µ)2] = E[(Wji−µ)2]
and the correlation ρ = (E[WijWji]−µ2)/σ2. The range of the possible values of these param-
eters covers all types of interactions between the species from preponderantly predator-prey
to predominated by competition or mutualism[37].
The matrix K is composed by elements equal to 1 or 0, depending on whether the species i
and j are connected by an interaction or not. So, the interactions in W are active for a pair
of elements in symmetrical positions with respect the diagonal if Kij = Kji = 1.
In this study it has been assumed that K is a particular block-structured matrix: there are
two subsystems (this means that the S populations are grouped in two ecological commu-
nities) of sizes αS and (1 − α)S respectively (with α ≤ 1/2). The species which are in the
same subsystem interact with probability Cw, called within-subsystem connectance, while
the species which are in different subsystems interact with probability Cb, called between-
subsystem connectance.
Hence, the values of Cw and Cb define how much the structure is modular or anti-modular.
For example, it is defined modular (or anti-modular) structure whenever Cw > Cb (or
Cb > Cw) and are expected more (or less) interactions between species of the same group
than of different groups.
It is intuitive to understand that Cw = Cb falls into the well-studied case of random ecolog-
ical community that is the ’unstructured’ system analyzed by May et al.[38][37]. With this
parameterization it is possible to distinguish easily between two extreme cases: Cb = 0 for
a perfectly modular network (the interactions accur exclusively within the same subsystem)
and Cw = 0 for a perfectly anti-modular or bipartite network (only interactions between
species belonging to different subsystems are present). See figure 4.1.

It is convenient to define a parameter which incorporates the degree of modularity asso-
ciated to a network [39][40] as follows:

Q = Lw − E[Lw]
Lw + Lb

(4.1)

where Lw is the observed number of interactions within the subsystems, Lb the observed
number of between-subsystem interactions and E[Lw] is the number of interactions between
species belonging to the same subsystems in an unstructured random network. Values of
Q > 0 (Q < 0) indicate that more (less) interactions within-subsystem are observed than
expected by chance. To calculate E[Lw] it is necessary to select a reference model for network
structure and it has been chosen the Erdős-Rényi random graph[41]. The range of acceptable
values for Q depends on the reference model, on α and on the overall connectance C (that
is the overall density of interactions in K).
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Figure 4.1: The modularity parameter incorporates the effects, on the network structure,
of the within-group connectance Cw and the between-group connectance Cb. It is possible
to obtain different community matrices by changing the modularity: matrices where the
interactions occur mostly between species in different groups (Q < 0,a), completely randomly
(Q = 0,b) or mostly within the same subsystem (Q > 0, c). The colours represent, in
this example, the type of interactions distinguishing between negative coefficients (red) and
positive coefficients (blue). The intensity of the colour is proportional to the coefficient
values, that have been drawn in pairs from a bivariate distribution with similar marginal
defined by µ = 0, σ = 1/2 and correlation ρ = −3/4.

In order to study the effect of the stability on a community matrix it is necessary to dis-
tinguish from the effect on the stability of a block structure (described by K through α,C
and Q) and the effect due to the interaction strengths (modelled by W). The case Q = 0
has been greatly studied and for this type of random matrices the stability can be gotten
analytically.

4.2 Effect of modularity on stability

The stability parameter, associated to a community matrix, is described by the real part of
the ’rightmost’ eigenvalue of M that must to be compared with the same value found for
M̃ , a matrix with exactly the same coefficients but re-arranged to create a random network
structure(Q = 0). Re(λM,1) is a measure of stability, since it expresses the amount of self-
regulation necessary to stabilize the equilibrium[38][37].
The effect of the modularity Q on the community stability can be measured as the ratio:

Γ = Re(λM,1)
Re(λM̃,1) , (4.2)

for a given choice of α, ρ and C and without loss of generality σ2 has been set equal to 1.
Values Γ < 1 are obtained when the block structure helps stabilizing the community, while
Γ > 1 means a destabilizing effect. A study on how the modularity influences the stability
was shown in [42] in which the same modularity Q, with the parameters α, ρ, σ2 and overall
connectance C fixed, can have a completely different effect on the stability, depending on
the value of µ.
The analytical approach, used to understand how the stability depends on the construction
parameters of the block-structured matrix, is based on the study of the distribution of
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eigenvalues in the complex plane. If there are two subsystems, the spectrum ofM is composed
of a ”bulk” of eigenvalues and up to two ’outlier’ real eigenvalues.
The presence of the outliers depends on the sign of the interaction strength. In the following
sections it will be shown the locations of these outliers in the particular case of α = 1/2.
Anyway, the considerations about these approximate positions are valid for every α < 1/2.
Despite this, the others parameters affect in different ways the resultant stability according
to the combination of the values of α, ρ and µ.
This important consideration, that has emerged from both simulations and mathematical
analysis, has brought to consider that the relantionship between network structure and local
stability is much more complex than previously hypothesized[38][43]. A given structure is
not stabilizing or destabilizing per se but it is so only under certain specific conditions.

4.3 Methods

In the community matrix M the elements are functions of the population densities of an
unknown dynamical system around a feasible equilibrium point. Let us consider the case of
random ecological networks with block structure. The pairs (Wij ,Wji) are drawn indepen-
dently from a bivariate normal distribution with means (µ, µ)T and covariance matrix:

Σ = σ2
(1 ρ
ρ 1

)
.

The matrix K is characterized by four parameters: S, α,C e Q. What we aim for is
to have the pair (Kij ,Kji) to be (1,1) with probability Cw if γi = γj and with probability
Cb if γi 6= γj in function of α , Q and C (density of the nonzero elements). The overall
connectance C is:

C = 2L
S(S − 1) = 2(Lw + Lb)

S(S − 1) (4.3)

which is then associated to a matrix with a fixed number of non null entries.
The type of random graph in which is fixed only the number of vertices(S) (in this context
correspondent to the number of populations) and the number of edges (L) is indicated by its
mathematical name G(S,L). Another entirely equivalent definition of the model is obtained
when the network is created by choosing uniformly random among the set of simple graphs
with exactly n vertices and L edges.
The model used to describe the ensemble of matrices with Q = 0 is the ”Erdős-Rényi random
graph” which is called G(S, p). In G(S, p) is fixed the probability, rather than the number,
of the edges between vertices. Again there are S vertices, but now an edge is placed between
each distinct pair with independent probability p.
When S →∞ the two type of ensembles are the same if p = 2L

S(S−1) = C → 2L/S2. With nw
is indicated the total number of matrix elements which can be linked with another element
of the same group and with nb is indicated the number of species, belonging to a different
species, that can interact. In this limit:

nw = S2α2 + S2(1− α)2

2 , nb = S2α(1− α) (4.4)

Knowing that E(Lw) = Cnw and E(Lb) = Cnb, and using the definition of modularity,
can be obtained as follow:
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Cw = Lw
nw

=
C(QS

2

2 + nw)
nw

= C

(
1 + Q

α2 + (1− α)2

)
(4.5)

Cb = Lb
nb

=
L− Cnw − QCS2

2
nb

= C

(
1− Q

2α(1− α)

)
(4.6)

which represent the probability to find a link within the diagonal blocks for Cw and the
probability to find a link within the non-diagonal blocks for Cb. Note that, given the Erdős-
Rényi reference model, the values of Q that are attainable depend on both α and C:

max(C − 2α(1− α), 0)− C(α2 + (1− α)2)
C

≤ Q ≤ min(C,α2 + (1− α)2)− C(α2 + (1− α)2)
C

4.3.1 Spectrum of block-structured matrices

In this section it is presented the mathematical treatment about the preliminary preparation
of the spectrum study of block-structured matrices.
To do the subsequent derivations it has been adopted a slightly more general notation.
The matrix M is considered, with the diagonal coefficients Mii = 0 and the off-diagonal
coefficients independently sampled in pairs as:

(Mij ,Mji) ∼


Zw

((
µw

µw

)
, σ2

w

(
1 ρw

ρw 1

))
if γi = γj

Zb

((
µb

µb

)
, σ2

b

(
1 ρb

ρb 1

))
if γi 6= γj

(4.7)

Equation4.7 shows that the pairs (Mij ,Mji) have been taken by two different distribution:
Zw when i and j belong to the same subsystem and Zb when i and j belong to different
subsystems, instead of considering, as done previously, that the pairs (Mij ,Mji) are zero
with probability 1 − Cw (case γi = γj) or probability 1 − Cb (case γi 6= γj) and that the
nonzero pairs are sampled from a bivariate distribution defined by the parameters µ, σ2 and
ρ.
It is not necessary to specify the entire form of the distributions Zw and Zb because of the
’universality’ property[9][44]: once fixed the mean and the covariance matrices of Zw and
Zb, and provided that the fourth moment of each distribution is bounded, any choice of
distributions yields the same result for S →∞.
The parameters of these distributions can be calculated in relation to the parameters of the
originary parameterization and the connectances between and within subsystems [10]:
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µw = Cwµ (4.8)
µb = Cbµ

σ2
w = Cw(σ2 + (1− Cw)µ2)
σ2
b = Cb(σ2 + (1− Cb)µ2)

ρw = ρσ2 + (1− Cw)µ2

σ2 + (1− Cw)µ2

ρb = ρσ2 + (1− Cb)µ2

σ2 + (1− Cb)µ2 .

With these replacements the ’effective’ parameters have been obtained. These dictate
the distribution shape of the eigenvalues of M because the connectances are absorbed. For
the pairs (Wij ,Wji) it is chosen a bivariate normal distribution.
The next goal is to obtain the distribution of the eigenvalues of M when S is very large.
Following the study of Allesina et al.[45], the matrix M can be written as a sum of two
matrices, M = A+B, where A is a matrix with block structure whose elements are

Aij =
{
µw if γi = γj

µb if γi 6= γj

and B is obtained as the difference B = M − A. The diagonal elements of B are Bii = µw,
while the off-diagonal elements are characterized by E[Bij ] = 0, and E[BijBji] = ρwσ

2
w (when

γi = γj) or E[BijBji] = ρbσ
2
b (when γi 6= γj).

This separation of the matrix M permits to obtain a bulk of eigenvalues from the spectrum
of B, while the outlier eigenvalues of M are given by the nonzero eigenvalues of A modified
by a small correction[46]. Based on the values of S, α, µw, µb the only two eigenvalues that
can be different from zero, are easily computed (for more details refer to the C.1):

λA,1−2 = S

2
(
µw ±

√
(1− 4α(1− α))µ2

w + 4α(1− α)µb
)

(4.9)

They are both zero when µ = 0 and thus the stability is determined, independently by
Q, by rightmost eigenvalue(s) in the bulk. They are one zero and the other nonzero when
Q = 0 and then µw = µb = µ 6= 0 (if µ < 0 the outlier lies to the left of the bulk and has
limited effects on stability; if µ > 0 the outlier lies to the right of the bulk and therefore it
determines stability).
In the case Q > 0 the spectrum presents two outliers, both lie either to the right (µ > 0) or
the left (µ < 0) of the bulk.
In the bipartite case, for any µ 6= 0 there is an outlier to the right and one to the left of the
bulk.
Then these are the approximate locations of the two outlier eigenvalues of M . Since the
exact location depends also on B, the spectrum of B has been studied in full generality
using the cavity method.

4.4 Spectral distribution of B

The aim of this section is to find the spectral density of B characterized by the parameters
specified above in an analytic form and then to understand how the distribution of eigenvalues
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is influenced by the variations of these parameters. In the context of large S and high
connectivity, the cavity solution is expected to be exact. The advantage of the application
of this approach is to obtain a simple set of equations for the diagonal entries of Green’s
function of B through its quaternionic parameterization. Thanks to specific approximations,
it is possible to get analytic expressions, for some particular cases, for the study of the spectral
density.
The spectral density in the case of Non-Hermitian random matrices, can be defined (writing
λ = x+ iy) as:

ρ(x, y) = 1
S

S∑
i=1

δ(x− Re(λi))δ(y − Im(λi)) (4.10)

While for Hermitian matrices the resolvent is a complex function since the eigenvalues
are real values, in the non-Hermitian case the eigenvalues are complex and the resolvent is
a quaternion function:

G(q) = 1
S

∑
i

(λi − q)−1 (4.11)

where q is a quaternion (for more details about the quaternions refers to C.2). The
resolvent can be expressed in terms of the spectral density:

G(q) =
∫
dxdy ρ(x, y)(x+ iy − q)−1 (4.12)

and the spectral density can be easily obtained from the resolvent (the proof of this
procedure is in C.3):

ρ(x, y) = − 1
π

lim
ε→0+

Re
(
∂

∂λ̄
G(λ+ κj)

)∣∣∣∣∣
λ=x+iy

(4.13)

where it has been used the notation:

∂

∂λ̄
:= 1

2

(
∂

∂x
+ i

∂

∂y

)
(4.14)

In order to prepare the framework for the mapping between Pauli matrices and quater-
nions, it has been introduced the resolvent matrix:

G = (B− q)−1 (4.15)

where q is the quaternion in the matricial rapresentation:

q = λ+ κj =
(
λ iκ

iκ λ̄

)
(4.16)

which derives from a more general matricial representation:

q = z + wj =
(

z iw
+iw̄ z̄

)
(4.17)

Meanwhile B is a 2SX2S block-matrix with structure:
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Bij =
(
Bij 0
0 Bji

)
(4.18)

In the end, the resolvent can be written as:

G(q) = 1
S

∑
i

Gii(q). (4.19)

The entries Gii can be connected, in their quaternionic form, to the covariance cavity
matrices 3.4 which provide a solution to the recursive set of equations 3.44 and 3.54. The
following mapping between Pauli matrices and quaternions has been used (see the matricial
representation in 4.17): 

i : iσx
j : iσy
k : iσz

and with these substitutions it is possible to make the identification:

κ12 + i(xσx − yσy) =
(
κ iλ

iλ̄ κ

)
≡ κ+ λj (4.20)

and by using the identity:

κ+ λj = i(λ+ κj)j (4.21)

the equations 3.44 and 3.54 become:

C
(j)
i =

[∑
l 6=i,j

( 0 Ail
Ali 0

)
C

(i)
l

( 0 Ali
Ail 0

)
+i q j

]−1
(4.22)

where Ali = Āli = Ahil − iAsil due to the fact that in this case the community matrix has
real entries. The equation 4.22 can be rewritten in the following form:

C
(j)
i =

[
i
{∑
l 6=i,j

i
( 0 Ail
Ali 0

)
C

(i)
l

( 0 Ali
Ail 0

)
j + q

}
j
]−1

(4.23)

and by noting that: ( 0 Ail
Ali 0

)
= −i i

(
Ail 0
0 Ali

)
j (4.24)

it becomes:

C
(j)
i =

[
i
{∑
l 6=i,j

Bil j
(
−C(i)

l

)
i Bli + q

}
j
]−1

= j−1
[∑
l 6=i,j

Bil j
(
−C(i)

l

)
i Bli + q

]−1
i−1 (4.25)

Finally, leading i and j to the first member of equation and multiplying all for −1 , the
final expression is obtained:

− j C(j)
i i = −

[∑
l 6=i,j

Bil

(
−j C(i)

l i
)

Bli + q
]−1

. (4.26)
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The direct connection between the diagonal entries of G(i), resolvent of the matrix ob-
tained by removing row and column i from B, and the covariance matrix is:

G(j)
ii = −j C(j)

i i. (4.27)

By solving iteratively:

G(j)
ii = −

(
q +

∑
l 6=i,j

BilG
(i)
ll Bli

)−1
(4.28)

the diagonal entries of G of the matrix B can be obtained:

Gii = −
(

q +
∑
l 6=i

BilG
(i)
ll Bli

)−1
(4.29)

and, finally through 4.13, it is possible to evaluate the spectral density.

4.5 Cavity equations for block-structured matrices

In the large S limit several semplifications of the equations 4.28 and 4.29 can be considered.
In this way, the calculation of the diagonal entries of G becomes analytical, in the meaning
that it is possible to get a closed equation and, therefore, equation 4.28 is not necessary
anymore.
These approximations are:

1. At the leading order in S the right side of 4.28 is identical for every l in the same
group (because they are drawn by the same probability distribution) and, therefore,
Gll = Gγl can be written.

2. By removing a single node i, the leading order behavior of the system does not change
because its size is large and so the relations G(i)

ll = Gll = Gγl can be used.

3. By applying the law of large numbers, the terms of the sum in 4.29 can be approximated
by the mean value: ∑

l 6=i
BilG

(i)
ll Bli ≈ E

(∑
l

BilGγlBli

)
(4.30)

By using these approximations and the matrix representation of quaternions with the
notation Gγ = rγ + βγ j, it can be obtained:

BilGγlBli =
(
Bil 0
0 Bli

)(
rγl βγl
β̄γl r̄γl

)(
Bli 0
0 Bil

)
=
(
BilBlirγl B2

ilβγl
B2
liβ̄γl BilBlir̄γl

)
. (4.31)

In the case of two blocks, γl can assume only two values and according to the membership
to the first group (γl = 1) or the later group (γl = 2), the element Bil represents the
interaction between species belonging to the same group or to different groups. In order
to simplify the evaluation of the mean values of the elements in the matrix 4.31, it can be
considered an arbitrary vector with components zγl , which encodes rγl and βγl . This vector
can have only two distinct values z1 and z2 depending on the membership of the species
taken into account.
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E
(∑

l

B2
ilzγl

)
=
∑
l

E(B2
il)zγl =

∑
l

(
δγi,γlσ

2
wzγl + (1− δγi,γl)σ

2
bzγl

)
(4.32)

Considering γi = 1, the result is:

E
(∑

l

B2
ilzγl

)
= S α σ2

wz1 + S (1− α)σ2
bz2 if γi = 1 (4.33)

where α is the fraction of elements belonging to the first block. For γl = 2 it can, instead,
be obtained:

E
(∑

l

B2
ilzγl

)
= S (1− α)σ2

wz2 + Sασ2
bz1 if γi = 2. (4.34)

Similarly, knowing the expectation value of BilBli, it can be found:

E
(∑

l

BilBlizγl

)
= Sαρwσ

2
wz1 + S(1− α)ρbσ2

bz2 if γi = 1,

E
(∑

l

BilBlizγl

)
= S(1− α)ρwσ2

wz2 + Sαρbσ
2
bz1 if γi = 2. (4.35)

By making use of these informations, the expectation value of the sum over l of equation
4.31 elements, can be written as:

E
(∑

l

BilGγlBli

)
= Sασ2

w

(
ρwr1 β1
β̄1 ρwr̄1

)
+S(1− α)σ2

b

(
ρbr2 β2
β̄2 ρbr̄2

)
if γi = 1 (4.36)

By introducing the relations:

Σw = Sσ2
w(ρw + j) and Σb = Sσ2

b (ρb + j) (4.37)

where ρw + j, and similarly ρb + j, corresponds to a quaternion with matricial form:(
ρw 1
1 ρw

)

the previous expression can be written in a compact way by using the Hadamard product
(element by element product) between matrices:

E
(∑

l

BilGγlBli

)
= αΣw ◦G1 + (1− α)Σb ◦G2 if γi = 1. (4.38)

A similar expression can be obtained in the case of γi = 2:

E
(∑

l

BilGγlBli

)
= (1− α)Σw ◦G2 + αΣb ◦G1 if γi = 2 (4.39)

These calculations and simplifications lead the equation 4.29 to:
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G1 = −(q + αΣw ◦G1 + (1− α)Σb ◦G2)−1 (4.40)
G2 = −(q + αΣb ◦G1 + (1− α)Σw ◦G2)−1. (4.41)

The resolvent is then given by G = αG1 + (1 − α)G2 and through this, the spectral
density can be obtained by using equation 4.13. G1 and G2 are quaternions that can be
written in the general form:

G1 = r1 + β1j , G2 = r2 + β2j (4.42)

where r1, r2, β1, β2 are generally complex numbers by definition.
The study of the spectral density, in terms of quaternions, demonstrates that the region
where the spectral distribution is defined depends on the existence of a solution with real
and positive values of β1 and β2. Following this analysis is possible to extrapolate the
maximum real part of the eigenvalues of B. In the general case, the equations 4.40 and 4.41
can not be solved, but there are particular cases where this is allowed. The case of α = 1/2 is
studied in details in the next section and an explicit solution for the support of the spectrum
of B is obtained.

4.6 An explicit solution

When the size of the subgroups is equal, an analytical solution can be obtain. In this
particular case, the equations 4.40 and 4.41 correspond to a single equation where:

G1 = G2 =: G = r + βj (4.43)

with G solution of:

G = −
(
q + Σw + Σb

2 ◦G
)−1

. (4.44)

To simplify the notation, is suitable to introduce:

Σ̃ := Σw + Σb

2 = Sσ̃2(ρ̃+ j) (4.45)

where

σ̃2 = σ2
w + σ2

b

2 , ρ̃ = ρwσ
2
w + ρbσ

2
b

σ2
w + σ2

b

. (4.46)

The equation 4.44 can now be rewritten as:

G(−q − Σ̃ ◦G) = 1 , (4.47)

By setting ε = 0 and using the equivalence:

q = λ , and G = r + βj

the following equation can be obtain:

(r + βj)(−λ− Sσ̃2(ρ̃r + βj)) = 1 (4.48)
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This can be reduced to two equations by separating the factor multiplied by j from the
other part:

r(−rSρ̃σ̃2 − λ) + S|β|2σ̃2 = 1 (4.49)

and

β(−rSρ̃σ̃2 − λ− Sr̄σ̃2) = 0. (4.50)

The spectral density is then given by:

ρ(λ) = − 1
π

Re ∂r
∂λ̄
. (4.51)

If β = 0 the equation 4.49 is reduced to:

r(−λ− rSσ̃2ρ̃) = 1 (4.52)

and by taking the derivative of both sides in respect to λ̄, the equation is solved by
∂r/∂λ̄ = 0. The solution β = 0 corresponds to values of λ outside the support of the
spectral density. In the case of β 6= 0 by subtracting the complex conjugate of the eq. 4.50
with the eq. 4.50 itself , the result for r is:

r = 1
Sσ̃2

(
− x

1 + ρ̃
+ iy

1− ρ̃
)
. (4.53)

By substituting this solution inside eq.4.49, it can be found the solution for |β|2:

|β|2 = 1
Sσ̃2

(
1− x2

S(1 + ρ̃)2σ̃2 −
y2

S(1− ρ̃)2σ̃2

)
. (4.54)

Since |β|2 is a positive real value, a solution for β 6= 0 exists only if the right side of the
previous equation is positive. Then, it is necessary to impose:

x2

S(1 + ρ̃)2σ̃2 + y2

S(1− ρ̃)2σ̃2 < 1, (4.55)

which represents the equation of an ellipse in the complex plane. Only in this region the
spectral density is different from zero, and it can be obtained from eq. 4.51. The result is:

ρ(λ) = − 1
π

Re ∂r
∂λ̄

= 1
πSσ̃2(1− ρ̃2) . (4.56)

In the case of α = 1/2, the spectral density is, therefore, uniform inside an ellipse with
semi-axis:

rx =
√
S

2 σ̃(1 + ρ̃) , ry =
√
S

2 σ̃(1− ρ̃). (4.57)

Note that this would also be the limiting distribution for the eigenvalues of the unstruc-
tured matrix with -µw on the diagonal, and with the others entries sampled indipendently
in pairs from the bivariate normal distribution with mean (0, 0)T , correlation equal to a
weighted average of the correlations in B and variance equal to the arithmetic mean of the
variances in B(4.46). These relations are a generalization of the case studied in the first
section of Chapter 3 in which the variance has been choosed equal to 1/S.
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In order to make more clear the role of modularity in controlling the stability, it is conve-
nient to express σ̃2 and ρ̃ in terms of µ, σ2, ρ, C and Q. In this case the relations can then
be written as:

Cw = C(1 + 2Q) and Cb = C(1− 2Q) (4.58)

and by using the relations 4.8, the final result is:

ρ̃ = ρσ2 + (1− C − 4CQ2)µ2

σ2 + (1− C − 4CQ2)µ2 (4.59)

σ̃2 = C(σ2 + (1− C − 4CQ2)µ2).

The goal of this analysis is to understand the qualitative behavior of the numerical
simulations and then to have an explanation on how the stability is affected by the values
of the system parameters, in particular the modularity. In order to study the case α = 1/2,
it has been set S = 100, C = 0.2, σ = 1 and µ = 0 (green), µ = −1 (red) and µ = 1 (blue)
for three different values of ρ : -0.75, 0 and 0.75 . The parameter Q is varied in ten equally
sized from -0.50 to 0.50. For each set of parameters, 50 block-structured matrices M and
50 unstructured matrices M̃ , obtained in the case Q = 0 (considering an ensemble of Erdős-
Rényi matrices), have been considered. Figure 4.2 shows the ratio Γ = Re(λM,1)/Re(λM̃,1)
obtained by computing the average over the replicates. The implemented code is reported
in Appendix D and can be used to obtain general results for every α.
When µ < 0 there are no effects of modularity on stability; when µ ≥ 0 a bipartite structure
is highly destabilizing, while a modular structure is moderately stabilizing. Both effects are
more evident in the case of negative correlation.

From the equations in 4.59, it is clear that the radius of B is always lower or equal than
the one that it would find by setting Q = 0. As a matter of fact, σ̃2 is smaller than that the
one without the term −4CQ2 and ρ̃ is a strictly decreasing function of 4CQ2 when ρ ≤ 1.
For µ = −1 the stability changes according to the sign of Q and this means that to define it
there are eigenvalues of different nature for Q > 0 and Q < 0 (as the bulk of B is independent
by the sign of Q).
The two outlier eigenvalues for α = 1/2 are:

λ1 = SµC (4.60)
λ2 = 2SµCQ

For µ < 0 and Q > 0 it is valid λ2 > λ1. In the definition range of Q both values lie on
the left of the bulk of B and, therefore, the stability is determined by the rightmost eigen-
values of the bulks (in the unstructured network there are only outlier eigenvalues which lie
to the left of the bulk if µ < 0). In this case the stability is justified. This stabilizing effect
is stressed when ρ is negative because ρ̃ decreases faster at the increase of Q.
For µ < 0 and Q < 0 the greatest outlier of B is positive and lies on the right of the bulk in
the unstructured case. Therefore, the destabilizing effect in this case has been clarified. In
the case of µ > 0, if Q > 0 both λ1 and λ2 are positive and they lie on the right of the bulk
of B. If Q < 0, λ2 lies on the left the bulk and λ1 on the right.
These considerations about the effect of the stability, obtained varying Q, tell that large
effect of Q on stability are found when varying Q changes the type of eigenvalues determing
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Figure 4.2: Effects of modularity on stability for matrices of size S=100, C=0.2 and σ2 = 1
averaged over 50 matrices at different values of ρ. In each figure µ = 0 corresponds to
green line, µ = −1 to one red and µ = 1 to one blue. The y-axis is the log2 of the ratio
Re(λM,1)/Re(λM̃,1).

the stability (case µ < 0). While when these eigenvalues does not depend on Q the effect
will be moderate (case µ > 0).

The case µ ≈ 0 is characterized by the absence of outliers in all cases and the stability is
determined by the rightmost eigenvalues in the bulk. The parameters of spectrum of B are,
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then, reduced to:

ρ̃ = ρ, σ̃2 = Cσ2 (4.61)

Therefore, the dependence by Q is eliminated and it is expected that the structured
network is slightly more stable than the unstructured, because σ̃2 < σ2. These analytic
considerations are in good agreement with the result in figure 4.2.
An more general numerical analysis which takes in consideration also others values of α can
be found in [42]. In fig. 4.3 it is shown the results of this analysis. An analytic explanation

Figure 4.3: For each value of α and ρ, varying Q it has been obtained the ratio Γ. 20
equally spatially points between the minimum and maximum Q have been considered for
each configuration. It has been set C = 0.2, S = 1000 and σ2 = 1. The case µ = 0
corresponds to the green line, µ = −1 to the red one and µ = 1 to the blue one. The dots
represent numerical simulations, obtained by averaging over 50 replicates. The open circles
are the corresponding analytic predictions.

for all the possible cases it is not yet accessible but the qualitative behavior of these system
can be understood quite simply remembering the distribution of the eigenvalues of the block-
structured matrices in the complex plane, explained in the Methods section.
The strong destabilizing effect of a bipartite structure when µ < 0 is understood by the fact
that the stability of the unstructured network is determined by the bulk of eigenvalues, while
that of the block-structured network by the outlier to the right of the bulk.
When both Re(λM,1) and Re(λM̃,1) are determined by the bulk (for example, modular case
with µ < 0 or any structure with µ ≈ 0), the either stabilizing or destabilizing effect is going
to be moderate. Moderate effects are also observed when both Re(λM,1) and Re(λM̃,1) are
associated with an outlier lying to the right of the bulk (µ > 0). Furthermore when both
Re(λM,1) and Re(λM̃,1) are determined by the same type (bulk, outlier) of eigenvalue, the
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precise stabilizing or destabilizing effects depends non-linearly on the parameters α,C,Q, µ, σ
and ρ.
In the fig.4.3 it is evident this last consideration for µ ≈ 0 when the structure is bipartite
and the correlation is negative the stability increases when decreasing α. But for positive
correlations this stability effect disappears and the system can be also destabilizing. Also
when the structure is modular and µ < 0, the stabilizing effect presents for α = 1/2 could
change for small α or for a positive ρ. For all the other cases, the effect of a block structure
ranges from neutral to highly destabilizing.



Chapter 5

Conclusion

In this thesis, it has been analytically and numerically developed a statistical approach for
the study of the mean spectral density associated to sparse random matrices. This method
is the cavity approach, introduced in this context of random matrices by Timothy Rogers
[47].
The sparsity (property of the matrix with many entries equal to zero) complicates enormously
the mathematical tools used to obtain an analytic form of the mean spectral density. The idea
of this method is to move the problem from the search of the spectral density to a problem
of interacting particles in statistical mechanics. The number of these particles is equal to
the matrix size and they are located in nodes on a weighted graph. The interaction between
the pair of particles (i, j) depends on the elements of the matrix (Aij). An appropriate
Gibbs-Boltzmann distribution has been introduced. Therefore, the randomness of the non-
null entries of the matrix A represent the coupling strength between stochastic variables of
the probability distribution, associated to each node. The problem is reduced to find the
mean value of some object related to the marginal probability of these variables. When the
matrix has an underlying treelike structure, the method leads to exact results.
It has been extended the May’s work about the stability of a large ecological system, to more
complex cases by introducing some basic tools of Random Matrix Theory (RMT).
The cavity approach to the spectral density of sparse symmetric random has been developed.
Furthermore, the numerical results of the computational implementation has been compared
with the results obtained by the direct diagonalization. The agreement is very good even
for relatively small matrix like these considered. The method provides the statistical limit
of the spectral density just considering an ensemble much more small than that necessary to
direct diagonalization to obtain comparable results.
This approach has been extended to Non-Hermitian sparse random matrices, through more
complex mathematical tools. Similarly to the Hermitian case, a simple closed set of equations
is uncovered, whose solution characterizes the spectral density of a given matrix. Also in
this case the numerical analysis has been very satisfactory.
For small matrices it is more convenient to use the direct diagonalization but when the
matrix size is about 104 the current practical size limit for numerical diagonalization is close.
Then an efficient implementation of belief propagation can handle matrices many orders of
magnitude larger using the same hardware.
The cavity approach provides an analytic derivation of the spectral density for sparse random
Hermitian and non-Hermitian matrices and this has allowed to develop a specific analysis by
using the quaternionic parametrization of the cavity method. This study has provided valid

61
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results which justify numerical simulations of how the modularity influences the stability in
ecological communities.
The cavity method is applicable to more realistic systems, such as technological, social,
biological and information networks. By varying the weights associated to the interactions,
this method can analyze the spectral properties of different type of networks. In this way
it is possible to extrapolate more information from the results, which can then be directly
connected with the type of interactions and topological characteristics of the network.



Appendix A

The determinant of a symmetric
matrix as Fresnel integral

To begin it is necessary to do a consideration about how to write the determinant of a general
matrix as gaussian integrals: in the case of an N × N symmetric real positive definite matrix
A is linear to obtain the following relation:

(detA)−
1
2 = (2π)−N/2

∫
RN

N∏
i=1

dxie
− 1

2
∑N

i,j=1 xiAijxj (A.1)

because this integration is convergent if all eigenvalues of A are strictly positive. In the
case of a symmetric, but not real, matrix, its eigenvalues are not in general positive and
real, hence it is not straightforward to demonstrate a similar formula in terms of Fresnel
integrals. The problem is that the convergence is not guaranteed for complex eigenvalues.
For this reason, it can be used a convenient integral of exponentials with an imaginary unit.
The condition that z = λ− iε has negative imaginary part is important for the convergence
because in the considered integral is the real part of the exponential.
The goal is to resolve the following integral and demonstrate that for a matrix of form
(z1−A)N , with A symmetric and real matrix, it is possible to write a similar expression to
A.1.

I =
∫ ∏

i

dxi√
2π
e
− i

2
∑

i,j
xj((λ−iε)1−A)jixi (A.2)

By making an orthogonal transformation, the matrix (z1−A)N is diagonalized and the
result is:

I =
∫ ∏

k

dyk
2π e

− 1
2y

2
k(ε+i(λ−λk))

with ~y = ST~x, where S is the matrix of the transformation.
Considering the expression ε+ i(λ− λk) = ρεke

iθε(k), it can be done a variables substitution
in order to move the axis of integration from real to that of zk = yke

iθε(k)/2, and the integral
is given by:

I =
N∏

zk=1
e−iθε(k)/2

∫
↖↗

dzk√
2π
e−

1
2ρεkz

2
k
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The different directions of the arrows indicate that the line of integration depends on the
sign of θε(k)/2 and, therefore, of (λ − λk). In both cases, the demonstration leads to the
same result and the steps to get to the solution are similar.
So, it will be demostrated only the case θε(k)/2 < 0.
The fig.A.1 shows the simple closed path of a simply-connected region where the Chauchy

Figure A.1: The lines γ1, γ2, γ3 and γ4 compose the path along which it is performed the line
integration.

theorem is applicable for the analytical function in I. To demostrate that the line integral
on γ2 and γ4 are null, the parameterization γ2 : z = Re+iφε(k) with φε(k) ∈ [0;−θε(k)/2] is
used and the steps are the following:

I2 =
∫
γ2
e−

1
2ρεkz

2
k dzk = −i

∫ −θε(k)/2

0
Reiφε(k)e−

1
2ρεkR

2e2iφε(k)
dφε(k)

=⇒ |I2| ≤
∫ −θε(k)/2

0
Re−

1
2ρεkR

2 cos(2φε(k)) dφε(k) ≤
∫ −θε(k)/2

0
Re−

1
2ρεkR

2 cos(θε(k)) dφε(k)

= R(−θε(k)/2)e−
1
2ρεkR

2 cos(θε(k)) R→∞
= 0

The same is valid for the line γ4 integration. Hence the line integral on γ1 is minus the
line integral on γ3 and the axis of integration becomes the real one:

I =−
N∏
k=1

∫ +R

−R

1√
2π
e−iθε(k)/2e−

1
2ρεkz

2
kdzk =R→∞

=
N∏
k=1

e−iθε(k)/2
∫ +∞

−∞

1√
2π
e−

1
2ρεkz

2
k dzk =

N∏
k=1

e−iθε(k)/2 1
√
ρεk

=
N∏
k=1

e−iθε(k)/2 eiθε(k)/2√
ρεkeiθε(k)

=
N∏
k=1

1√
ε+ i(λ− λk)

=
N∏
k=1

e−i
π
4

1√
z − λk

= e−i
πN
4

1√
det(z1−A)

Therefore, the equation 2.7 has been demostrated.



Appendix B

Iterative equations for the cavity
variances

The Gaussian cavity distributions is substituted in equation 2.19:

e
−

x2
i

2∆(j)
i = e

−zx2
i

2

∫
dx∂i/ j

∏
l∈∂i/ j

1√
2π∆(i)

l

exp
[
xi

∑
l∈∂i/ j

Ailxl −
x2
l

2∆(i)
l

]

= e−
zx2
i

2
∏

l∈∂i/ j

1√
2π∆(i)

l

{∫
dxlexp

[
xiAilxl −

x2
l

2∆(i)
l

]}

by completing the square in the exponential, it is added and subtracted the term −A2
ilx

2
i∆

(i)
l

2 :

= e−
zx2
i

2
∏

l∈∂i/ j

1√
2π∆(i)

l

{
e
A2
il
x2
i
∆(i)
l

2

∫
dxlexp

[
−
(

xl√
2∆(i)

l

−

√
∆(i)
l

2 Ailxi

)2]}
.

The variable substitution xl 7−→ yl = xl√
2∆(i)

l

−
√

∆(i)
l
2 Ailxi leads to the easy integrals:

= e−
zx2
i

2
∏

l∈∂i/ j

1√
2π∆(i)

l

{
e
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∆(i)
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√
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∫
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√
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Appendix C

Supplementary notes

C.1 Search of eigenvalues of A matrix

The entries of the matrix A can be written as:

Aij = µw(vivj + wiwj) + µb(viwj + wjvi), (C.1)
where ~v is a vector in the S-dimensional space with the first αS components equals to

1 and the (1 − α)S remaining components equals to 0, while for the vector ~w the first αS
components are equal to 0 and the others equals to 1.
By considering a vector φ orthogonal to the plane defined by the vectors ~v and ~w, it is easy
to verify that:

A ~φ = 0

then the matrix A has S − 2 degenerate eigenvalues equal to 0 associated to the orthog-
onal complement subspace of the bidimensional space {~v, ~w}. The search of the non-null
eigenvalues occurs in this space by using the eigenvalues equation and by considering as a
generic eigenvector ψ = a~v+ b~w: (for semplicity it has been used the redefinitions : αS = n
and (1− α)S = m)

A ~ψ = µw a n ~v + µw b m ~w + µb b m ~v + µb b n ~w = λ a ~v + λ b ~w (C.2)
This equation is solved by the system:{

a(µw n− λ) + µb bm = 0
b(µwm− λ) + µb an = 0

which admits solutions for a and b when:∣∣∣∣∣µw n− λ µbm
µb n µwm− λ

∣∣∣∣∣ = 0

Finally, the equation to be solved in λ is:

λ2 − µw λS − µ2
b nm+ µ2

w nm = 0 (C.3)
which admits the solutions:

λ1−2 = S

2
(
µw ±

√
µ2
w − 4α(1− α)µ2

w + 4α(1− α)µ2
b

)
. (C.4)
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C.2 Quaternions

The quaternions are a number system that extends the complex number. The quaternion
units which represent basis elements are i,j and k satisfying the relation:

i2 = j2 = k2 = ijk = −1. (C.5)

A quaternion can be specified by the linear combination q = α + βi + γj + δk, where
α, β, γ, δ ∈ R As k = ij the generic quaternion may just as well be specified by a pair of
complex numbers a and b ∈ C by q = a+bj. Operations on quaternions have a close relation
to those of matrices, in fact, there is an isomorphism between the algebra of quaternions and
a certain group of 2x2 matrices. For a generic quaternion q = a+ bj can be introduced the
matrix representation:

M(q) =
(a ib

ib̄ ā

)
and this matrix can be written in terms of certain products of Pauli matrices:

M(q) =
(
α+ iβ i(γ + iδ)
i(γ − iδ) α− iβ

)
= αI + βσxσy + γσyσz + δσxσz.

Therefore, the algebra of quaternions is isomorphic to that generated by real linear com-
binations of the matrices I, (σxσy), (σyσz) and (σxσz).

C.3 Spectral density from the resolvent

The relation 4.13 is a general result which holds for any matrix A. It can written in a more
clear form:

ρ(λ;A) = − 1
π

∂

∂λ̄
G(λ;A) (C.6)

Proof. To prove the claim it can be introduced the generalised function:

Dµ(λ) = − 1
π

∂

∂λ̄
(µ− λ)−1

and it is necessary to demonstrate that Dµ(λ) is the Dirac delta δ(µ−λ). For this scope
it suffices to show the following:

1.Dµ(λ) = 0 for all λ 6= µ

2. For any a ∈ R+, over the µ-centred square S(a) = {x + iy : x, y ∈ [µ − a, µ + a]},
it is verified: ∫

S(a)
Dµ(λ)dλ = 1

For point 1, let us take λ = x + iy and µ = u + iv. By assuming λ 6= µ, the derivative
can be easily calculated:



C.3. SPECTRAL DENSITY FROM THE RESOLVENT 69

∂

∂λ̄
(µ− λ)−1 = 1

2

(
∂

∂x
+ i

∂

∂y

) 1
(u− x) + i(v − y)

= 1
2((u− x) + i(v − y))2 + i

(
i

2((u− x) + i(v − y))2

)
= 0.

For point 2, it can be made the variables substitution x̃ = x − u , ỹ = y − v and it is then
possible to compute:

∫
S(a)

Dµ(λ)dλ = − 1
2π

∫ u+a

u−a

∫ v+a

v−a

(
∂

∂x
+ i

∂

∂y

) 1
(u− x) + i(v − y)dxdy

= 1
2π

∫ +a

−a

∫ +a

−a

(
∂

∂x̃
+ i

∂

∂ỹ

) 1
x̃+ iỹ

dx̃dỹ

= 1
2π

∫ a

−a

[ 1
x̃+ iỹ

]x̃=a

x̃=−a
dỹ + i

1
2π

∫ a

−a

[ 1
x̃+ iỹ

]ỹ=a

ỹ=−a
dx̃

= 1
π

∫ a

−a

2a
a2 + x̃2dx̃

= 1
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Appendix D

Python Codes

The Python codes implemented to obtain the numerical results inserted in this thesis are
reported.

Code for the spectral density of symmetric random matrices

In this section is reported the code which implements the belief propagation algorithm for
ensemble of Poissonian graphs with a bimodal and Gaussian distribution of nonzero edge
weights. Additionally, it has been implemented the regularized function for the distributions
of eigenvalues obtained by computational found numerically through code of a python library.

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import s c ipy as sc
4 import sys
5 import random
6 import math
7 import pylab
8

9 S = i n t ( sys . argv [ 1 ] )
10 #S=s i z e o f the matrix
11 c = i n t ( sys . argv [ 2 ] )
12 #c=average connectance
13 E = i n t ( sys . argv [ 3 ] )
14 #number o f matr i ce s in the ensemble
15

16 #the idea o f the implementation o f the method i s to c o n s i d e r one matrix o f
s i z e S

17 #where each element ( i , j ) cor responds to cav i ty var iance f o r the node pa i r ( i , j )
.

18

19 De l ta o ld = (np . z e r o s (S ∗ S) ) . reshape (S , S) + 0 j
20 Delta new = (np . z e r o s (S ∗ S) ) . reshape (S , S) + 0 j
21 e i g e n v a l u e s = [ ]
22 de f rhocav i ty ( x ) :
23 D e l t a t o t = [ ]
24 ensemble1 = [ ]
25 rho ensemble = [ ]
26 #b u i l d i n g o f the ensemble o f matr i ce s
27 whi le l en ( ensemble1 ) < E:
28 ”””

71
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29 #po i s son i an ensemble with bimodal d i s t r i b u t i o n
30 A = np . z e r o s (S ∗ S) . reshape (S , S)
31 f o r i in range (S) :
32 f o r j in range (S) :
33 i f j < i :
34 i f random . uniform (0 , 1) <= c /S :
35 i f random . uniform (0 , 1) <= 0 . 5 :
36 A[ i , j ] = 1
37 e l s e :
38 A[ i , j ] = −1
39 e l s e :
40 A[ i , j ] = 0
41 f o r i in range (S) :
42 f o r j in range (S) :
43 A[ i , j ] = A[ j , i ]
44 ””” ””
45 # gauss ian po i s s on i an ensemble o f symmetric matr i ce s with mean=0 and

var iance=1/c
46 A = np . z e r o s (S ∗ S) . reshape (S , S)
47 f o r i in range (S) :
48 f o r j in range (S) :
49 i f j < i :
50 i f random . uniform (0 , 1) <= c / S :
51 A[ i , j ] = random . normalvar iate (0 , np . s q r t ( 1 . / c ) )
52 f o r i in range (S) :
53 f o r j in range (S) :
54 A[ i , j ] = A[ j , i ]
55 vals , vecs = (np . l i n a l g . e i g (A) )
56 v a l s = v a l s . r e a l
57 e i g e n v a l u e s . extend ( v a l s )
58 ensemble1 . append (A)
59

60 f o r e in range (E) :
61 De l ta o ld = (np . z e r o s ( ( S ∗ S) , dtype=np . complex ) ) . reshape (S , S)
62 Delta new = (np . z e r o s ( ( S ∗ S) , dtype=np . complex ) ) . reshape (S , S)
63

64 # we cons t ruc t a vec to r which has f o r e lements v e c t o r s ( one vec to r
65 # f o r each row ) which element are the p o s i t i o n s o f columns non n u l l .
66

67 v =[ ]
68 f o r i in range (S) :
69 v i =[ ]
70 f o r j in range (S) :
71 i f ensemble1 [ e ] [ i , j ] != 0 :
72 v i . append ( j )
73 v . append ( v i )
74

75 e p s i l o n = 0.005 j
76 errore max = 0 .1
77 con f ronto = 10∗ errore max ∗S∗S
78 c i c l o = 0
79 De l ta sum in i t = (np . z e r o s ( ( S ∗ S) , dtype=np . complex ) ) . reshape (S , S)
80

81 #c i c l o whi l e f o r the i t e r a c t i o n
82 whi le confronto>errore max :
83 Delta sum = np . copy ( De l t a sum in i t )
84 f o r l in range (S) :
85 f o r j in range (S) :
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86 i f j != l :
87 #we do the sum along one row only f o r the p o s i t i o n s o f

the matrix d i f f e r e n t from zero
88 f o r k in range ( l en ( v [ l ] ) ) :
89 i f v [ l ] [ k ] != j :
90 Delta sum [ l , j ] = Delta sum [ l , j ] + De l ta o ld [

l , v [ l ] [ k ] ] ∗ abs ( ensemble1 [ e ] [ l , v [ l ] [ k ] ] ) ∗∗ 2
91 f o r l in range (S) :
92 f o r j in range (S) :
93 i f j != l :
94 Delta new [ l , j ] = 1 . / (−x − e p s i l o n − Delta sum [ j , l

] )
95

96 con f ronto = sum(sum( abs ( ( Delta new ) − ( De l ta o ld ) ) ) )
97 De l ta o ld = np . copy ( Delta new )
98

99 De l ta s = 0 .
100 f o r i in range (S) :
101 D e l t a i = (((−x − e p s i l o n − sum( Delta new [ i , : ] ∗ abs ( ensemble1 [ e

] [ i , : ] ) ∗∗ 2) ) ∗∗ −1) . imag ) / E
102 De l ta s = De l ta s + D e l t a i
103 D e l t a t o t . append ( De l ta s )
104 D e l t a f i n a l e = sum( D e l t a t o t )
105 re turn 1 . / (math . p i ∗ S) ∗ D e l t a f i n a l e
106

107 #search o f e i g e n v a l u e s through d i r e c t d i a g o n a l i z a t i o n
108 e i g e nv a l ue s 1 = [ ]
109

110 f o r i in range (100∗E) :
111 ”””
112 #po i s son i an ensemble with bimodal d i s t r i b u t i o n
113 A = np . z e r o s (S ∗ S) . reshape (S , S)
114 f o r i in range (S) :
115 f o r j in range (S) :
116 i f j < i :
117 i f random . uniform (0 , 1) <= c /S :
118 i f random . uniform (0 , 1) <= 0 . 5 :
119 A[ i , j ] = 1
120 e l s e :
121 A[ i , j ] = −1
122 e l s e :
123 A[ i , j ] = 0
124 f o r i in range (S) :
125 f o r j in range (S) :
126 A[ i , j ] = A[ j , i ]
127 ””” ””
128 # gauss ian po i s s on i an ensemble o f symmetric matr i ce s with mean=0 and

var iance=1/c
129 A = np . z e r o s (S ∗ S) . reshape (S , S)
130 f o r i in range (S) :
131 f o r j in range (S) :
132 i f j < i :
133 i f random . uniform (0 , 1) <= c / S :
134 A[ i , j ] = random . normalvar iate (0 , np . s q r t ( 1 . / c ) )
135 f o r i in range (S) :
136 f o r j in range (S) :
137 A[ i , j ] = A[ j , i ]
138 vals1 , vecs = (np . l i n a l g . e i g (A) )
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139 va l s1 = va l s1 . r e a l
140 e i g e nv a l ue s 1 . extend ( va l s1 )
141

142

143 #d e f i n e the r e g u l a r i z e d func t i on f o r the d i s t r i b u t i o n o f e i g e n v a l u e s
144 e p s i l o n = 0.005
145 de f r h o r e g o l a r i z z a t a ( x ) :
146

147 rho = 0
148 f o r j in range (100∗E∗S) :
149 rho new=( e p s i l o n /( e p s i l o n ∗∗2+abs (x−e i g e nv a l ue s1 [ j ] ) ∗∗2) ) /(100∗E)
150 rho= rho + rho new
151 re turn rho /(math . p i ∗S)
152

153 #code to p l o t
154 X=range (−30 ,30)
155 t = [ ]
156 t1= [ ]
157 y = [ ]
158 y1= [ ]
159 f o r z in X:
160 temp=z /10
161 t . append ( temp )
162 t1 . append ( temp )
163 y1 . append ( rhocav i ty ( temp ) )
164 y . append ( r h o r e g o l a r i z z a t a ( temp ) )
165

166 f i g = p l t . f i g u r e ( )
167 pylab . p l o t ( t1 , y1 )
168 pylab . p l o t ( t , y )
169 p l t . x l a b e l ( ”$\ lambda$” , f o n t s i z e =10)
170 p l t . y l a b e l ( ”$\\ rho (\ lambda ) $” , f o n t s i z e =10)
171 p l t . show ( )

Listing D.1: symmetric matrices

Code for the spectral density of non-Hermitian random matri-
ces

In this section is reported the code which implements the set of recursive equations 3.53 and
3.58.

1 import numpy as np
2 import sympy
3 from sympy import ∗
4 from sympy import I
5 from sympy . phys i c s . matr i ce s import msigma
6 from numpy . l i n a l g import inv
7 import s c ipy . spar s e . l i n a l g
8 import sys
9 import random

10 import cython
11 from sc ipy . spar s e import c s r mat r i x
12 import math
13 import pylab
14 from IPython import ge t ipython
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15 ge t ipython ( ) . magic ( ’ r e s e t −s f ’ )
16 import time
17 from m p l t o o l k i t s . mplot3d import Axes3D
18 from numpy import exp , arange
19 from pylab import meshgrid , cm, imshow , contour , c l a b e l , co lo rbar , ax i s , t i t l e , show
20 from matp lo t l i b . t i c k e r import LinearLocator , FormatStrFormatter
21

22 import matp lo t l i b . pyplot as p l t
23 from numba import j i t , a u t o j i t
24 from j o b l i b import P a r a l l e l , de layed
25 s igma 2 =np . array ( [ [ 0 , −1 . j ] , [ 1 . j , 0 ] ] )
26 s igma 1 =np . array ( [ [ 0 , 1 ] , [ 1 , 0 ] ] )
27 S = i n t ( sys . argv [ 1 ] )
28 # S matr i ce s s i z e
29 c = i n t ( sys . argv [ 2 ] )
30 # c average c o n n e c t i v i t y
31 E = i n t ( sys . argv [ 3 ] )
32 s t a r t t i m e=time . time ( )
33 # E number o f samples
34 M = np . array ( [ [ 0 , 0 ] , [ 1 . j , 0 ] ] )
35 r=1/np . s q r t ( c )
36

37 PR=np . array ( [ ] )
38 PI=np . array ( [ ] )
39 ensemble1 =[ ]
40 ””” ””
41 whi le l en ( ensemble1 )<E:
42 A = np . z e r o s (S ∗ S) . reshape (S , S)
43 f o r k in range (S) :
44 f o r j in range (S) :
45 i f k < j :
46 i f random . uniform (0 , 1) <= c/S :
47 A[ k , j ] = random . normalvar iate (0 , s q r t ( 1 . / c ) )
48 A[ j , k ] = random . normalvar iate (0 , s q r t ( 1 . / c ) )
49 vals , vecs = np . l i n a l g . e i g (A)
50 PR = np . concatenate ( (PR, v a l s . r e a l ) , a x i s =0)
51 PI = np . concatenate ( ( PI , v a l s . imag ) , a x i s =0)
52 ensemble1 . append (A)
53 ””” ””
54 #b u i l d i n g o f the ensemble
55 whi le l en ( ensemble1 )<E:
56 A = np . z e r o s (S ∗ S) . reshape (S , S)
57 f o r k in range (S) :
58 f o r j in range (S) :
59 i f j !=k :
60 i f random . uniform (0 , 1) <= c /(S−1) :
61 a = random . uniform(−r , r )
62 b = random . uniform(−r , r )
63 i f a ∗∗ 2 + b ∗∗ 2 <= r ∗∗ 2 :
64 A[ k , j ] = 1 .
65 ensemble1 . append (A)
66

67

68

69 de f nonherm2 (x , y ) :
70 Gamma rho = 0
71 Gamma tot = [ ]
72 f o r e in range (E) :
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73 #i n i t i a l cond i t i on f o r the i t e r a t i o n s
74 k=0.07
75 C old = np . empty ( ( S , S) , dtype=np . matrix )
76 Gamma old = np . empty ( ( S , S) , dtype=np . matrix )
77 C new = np . empty ( ( S , S) , dtype=np . matrix )
78 Gamma new = np . empty ( ( S , S) , dtype=np . matrix )
79

80 #f o r each elements and each i t s ne ighbors , i t i s a s s o c i a t e d an array 2
x2 which corresponds to the matrix Cˆ{ j } i

81 f o r i in range (S) :
82 f o r j in range (S) :
83 C old [ i , j ] = np . array ( [ [ 0 . , 0 . ] , [ 0 . , 0 . ] ] , complex )
84 C new [ i , j ] = np . array ( [ [ 0 . , 0 . ] , [ 0 . , 0 . ] ] , complex )
85 Gamma old [ i , j ] = np . array ( [ [ 0 . , 0 . ] , [ 0 . , 0 . ] ] , complex )
86 Gamma new [ i , j ] = np . array ( [ [ 0 . , 0 . ] , [ 0 . , 0 . ] ] , complex )
87

88 A h = np . z e r o s (S ∗ S) . reshape (S , S) + 0 . j
89 A s = np . z e r o s (S ∗ S) . reshape (S , S) + 0 . j
90 f o r i in range (S) :
91 f o r l in range (S) :
92 A h [ i , l ] = ( ensemble1 [ e ] [ i , l ] + ensemble1 [ e ] [ l , i ] . con jugate

( ) ) / 2 .
93 A s [ i , l ] = 1 . j ∗ ( ensemble1 [ e ] [ l , i ] . conjugate ( ) − ensemble1 [

e ] [ i , l ] ) / 2 .
94

95 A h = np . asmatr ix ( A h )
96 A s = np . asmatr ix ( A s )
97 A sum = A h + A s
98 NZ sum=[]
99 NZ sum = A sum . nonzero ( )

100

101

102 con f r = 100
103 c o n f r = 100
104 con f r p rova =100
105 c i c l o =0
106

107 #whi le con f r > 0 .001 or c o n f r > 0 .01 :
108 #c y c l e implemented to obta in the convergence o f the s e t o f r e c u r s i v e

equat ions
109 f o r q in range ( c ) :
110

111 F sum = np . empty ( ( S , S) , dtype=np . matrix )
112 Gamma sum = np . empty ( ( S , S) , dtype=np . matrix )
113 f o r i in range (S) :
114 f o r j in range (S) :
115 F sum [ i , j ] = np . array ( [ [ 0 , 0 ] , [ 0 , 0 ] ] , complex )
116 Gamma sum [ i , j ] = np . array ( [ [ 0 , 0 ] , [ 0 , 0 ] ] , complex )
117 #bui ld the matrix f i e l d F(Cˆ{ i } {\ p a r t i a l i \ j }) and f i e l d

a s s o c i a t e d to the d e r i v a t i v e p a r t i a l o f the cav i ty covar iance matr i ce s
118 con f r1 = [ ]
119 con f r2 = [ ]
120 f o r i in range (S) :
121 f o r j in range (S) :
122 f o r l in range ( l en (NZ sum [ 1 ] ) ) :
123 i f NZ sum [ 0 ] [ l ] == i :
124 i f NZ sum [ 1 ] [ l ] != j :
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125 F sum [ i , j ] = np . add ( F sum [ i , j ] , ( np . subt rac t
(np . mult ip ly ( A h [ i , NZ sum [ 1 ] [ l ] ] , s igma 1 ) , np . mult ip ly ( A s [ i , NZ sum [ 1 ] [ l
] ] , s igma 2 ) ) ) . dot ( C old [ i , NZ sum [ 1 ] [ l ] ] ) . dot (np . subt rac t (np . mult ip ly ( A h [
NZ sum [ 1 ] [ l ] , i ] , s igma 1 ) , np . mult ip ly ( A s [ NZ sum [ 1 ] [ l ] , i ] , s igma 2 ) ) ) )

126 Gamma sum [ i , j ] = np . add (Gamma sum [ i , j ] , ( np .
subt rac t (np . mult ip ly ( A h [ i , NZ sum [ 1 ] [ l ] ] , s igma 1 ) , np . mult ip ly ( A s [ i ,
NZ sum [ 1 ] [ l ] ] , s igma 2 ) ) ) . dot (Gamma old [ i , NZ sum [ 1 ] [ l ] ] ) . dot (np . subt rac t (
np . mult ip ly ( A h [ NZ sum [ 1 ] [ l ] , i ] , s igma 1 ) , np . mult ip ly ( A s [ NZ sum [ 1 ] [ l ] , i
] , s igma 2 ) ) ) )

127 #bui ld Cˆ{ i } {\ p a r t i a l i \ j }
128 f o r i in range (S) :
129 f o r j in range (S) :
130 i f j != i :
131 C new [ i , j ] = np . l i n a l g . inv (np . add ( F sum [ j , i ] , np . add

(np . mult ip ly (k , np . i d e n t i t y (2 ) ) , np . mul t ip ly ( 1 . j , np . subt rac t (np . mult ip ly (x ,
s igma 1 ) , np . mult ip ly (y , s igma 2 ) ) ) ) ) )

132 Gamma new [ i , j ] = np . mult ip ly (−1 , C new [ i , j ] . dot (np .
add (M, Gamma sum [ j , i ] ) ) . dot ( C new [ i , j ] ) )

133 con f r1 . append ( ( abs (np . subt rac t ( C new [ i , j ] , C old [ i , j ] ) ) ) .
max( ) )

134 con f r2 . append ( ( abs (np . subt rac t (Gamma new [ i , j ] , Gamma old [ i
, j ] ) ) ) . max( ) )

135

136 con f r = max( con f r1 )
137 c o n f r = max( con f r2 )
138 C old = np . copy ( C new )
139 Gamma old = np . copy (Gamma new)
140

141

142 F end = [ ]
143 C end = [ ]
144 Gamma end = [ ]
145 F gamma = [ ]
146

147 # bui ld the ” t rue ” covar iance matrix and i t s p a r t i a l d e r i v a t i v e s
148

149 f o r i in range (S) :
150 F end . append (np . array ( [ [ 0 , 0 ] , [ 0 , 0 ] ] , complex ) )
151 F gamma . append (np . array ( [ [ 0 , 0 ] , [ 0 , 0 ] ] , complex ) )
152 C end . append (np . array ( [ [ 0 , 0 ] , [ 0 , 0 ] ] , complex ) )
153 Gamma end . append (np . array ( [ [ 0 , 0 ] , [ 0 , 0 ] ] , complex ) )
154 f o r l in range ( l en (NZ sum [ 1 ] ) ) :
155 i f NZ sum [ 0 ] [ l ] == i :
156 F end [ i ] = np . add ( F end [ i ] , np . subt rac t (np . mult ip ly ( A h [ i ,

NZ sum [ 1 ] [ l ] ] , s igma 1 ) , np . mul t ip ly ( A s [ i , NZ sum [ 1 ] [ l ] ] , s igma 2 ) ) . dot (
C new [ i , NZ sum [ 1 ] [ l ] ] ) . dot (np . subt rac t (np . mult ip ly ( A h [ NZ sum [ 1 ] [ l ] , i ] ,
s igma 1 ) , np . mult ip ly ( A s [ NZ sum [ 1 ] [ l ] , i ] , s igma 2 ) ) ) )

157 F gamma [ i ] = np . add (F gamma [ i ] , np . subt rac t (np . mul t ip ly (
A h [ i , NZ sum [ 1 ] [ l ] ] , s igma 1 ) , np . mult ip ly ( A s [ i , NZ sum [ 1 ] [ l ] ] , s igma 2 ) ) . dot
(Gamma new [ i , NZ sum [ 1 ] [ l ] ] ) . dot (np . subt rac t (np . mult ip ly ( A h [ NZ sum [ 1 ] [ l ] ,
i ] , s igma 1 ) , np . mul t ip ly ( A s [ NZ sum [ 1 ] [ l ] , i ] , s igma 2 ) ) ) )

158 C end [ i ] = np . l i n a l g . inv (np . add ( F end [ i ] , np . add (np . mult ip ly (k , np
. i d e n t i t y (2 ) ) , np . mult ip ly ( 1 . j , np . subt rac t (np . mul t ip ly (x , s igma 1 ) , np .
mult ip ly (y , s igma 2 ) ) ) ) ) )

159 Gamma end [ i ] = np . mul t ip ly (−1. j , C end [ i ] . dot (np . add (M, F gamma [ i
] ) ) . dot ( C end [ i ] ) ) [ 1 ] [ 0 ]

160

161 Gamma mean = np . mean(Gamma end) /E
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162 Gamma rho+=Gamma mean
163 re turn ( 1 . / math . p i ) ∗Gamma rho . r e a l
164

165 # Make data .
166 X = np . arange (−1. , 1 . , 0 . 1 )
167 Y = np . arange ( −1 . , 1 . , 0 . 1 )
168

169 f=open ( ’ 20 c i r c l e 1 . txt ’ , ’w ’ )
170 Z=[ ]
171 Z = P a r a l l e l ( n j obs= −1, backend=” m u l t i p r o c e s s i n g ” ) \
172 ( de layed ( nonherm2 ) ( i , j ) f o r i in X f o r j in Y)
173 f o r i in range ( l en (Z) ) :
174 f . wr i t e ( s t r (Z [ i ] )+’ \n ’ )
175 f . c l o s e ( )

Listing D.2: Non-hermitian matrices

Stability

In this section is reported the code used to find the Γ values of the stability for different
values of the modularity Q.

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import s c ipy as sc
4 import sys
5 import random
6 import math as mt
7

8 S = i n t ( sys . argv [ 1 ] )
9 C = f l o a t ( sys . argv [ 2 ] )

10 ro = f l o a t ( sys . argv [ 3 ] )
11 mu = f l o a t ( sys . argv [ 4 ] )
12 a = f l o a t ( sys . argv [ 5 ] )
13 E = i n t ( sys . argv [ 6 ] )
14

15 # 1 Step : buind the matrix with a f i x e d modular ity
16

17 # d e f i n e the i n t e r v a l o f Q
18 Q MIN = ( f l o a t (max(C − 2 ∗ a ∗ (1 − a ) , 0) ) − C ∗ ( a ∗∗ 2 + (1 − a ) ∗∗ 2) ) / C
19 Q MAX = ( f l o a t ( min (C, a ∗∗ 2 + (1 − a ) ∗∗ 2) ) − C ∗ ( a ∗∗ 2 + (1 − a ) ∗∗ 2) ) /

C
20 Q TOT = np . l i n s p a c e (Q MIN, Q MAX, 20)
21

22 Q =0.50
23

24 #f i l l the matrix with f i x e d connectance a s s o c i a t e d to d iagona l b locks (C W) and
those not d iagona l ( C b ) accord ing to a p r o b a b i l i t y

25

26 C W = C ∗ (1 + Q / ( a ∗∗ 2 + (1 − a ) ∗∗ 2) )
27 C B = C ∗ (1 − Q / (2 ∗ a ∗ (1 − a ) ) )
28

29 ensemble =[ ]
30 whi le l en ( ensemble )< E:
31 A = np . z e r o s (S ∗ S) . reshape (S , S)
32 riga W = [ ]
33 colonna W = [ ]
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34 r iga B = [ ]
35 colonna B = [ ]
36 f o r i in range (0 , S) :
37 i f i < S ∗ a :
38 f o r j in range (0 , S ) :
39 i f j < i :
40 riga W . append ( i )
41 colonna W . append ( j )
42 i f i >= S ∗ a :
43 f o r j in range (0 , S ) :
44 i f S ∗ a <= j < i :
45 riga W . append ( i )
46 colonna W . append ( j )
47 i f j <= S ∗ a :
48 r iga B . append ( i )
49 colonna B . append ( j )
50

51 coppie W = [ [ R, C] f o r R, C in z ip ( riga W , colonna W ) ]
52 coppie B = [ [ R, C] f o r R, C in z ip ( r iga B , colonna B ) ]
53

54 # coppie= the t o t a l i n t e r a c t i o n in the matrix
55 # bui ld two array o f s i z e Link W e Link B ( number o f t o t a l l i n k s in the

d iagona l b locks and these out d iagona l )
56 N W = (S ∗ a ∗ (S ∗ a − 1) + S ∗ (1 − a ) ∗ (S − S ∗ a − 1) ) / 2
57 N B = S ∗∗ 2 ∗ a ∗ (1 − a )
58 Link W = [ ]
59 whi le l en ( Link W ) < C W ∗ N W:
60 r = random . uniform (0 , 1) ∗ N W
61 t = i n t ( r )
62 i f t not in Link W :
63 Link W . append ( t )
64 mean = (mu, mu)
65 cov = [ [ 1 , ro ] , [ ro , 1 ] ]
66

67 f o r k in Link W :
68 RO = np . random . mul t iva r i a t e norma l (mean , cov , 1)
69 A[ coppie W [ k ] [ 0 ] , coppie W [ k ] [ 1 ] ] = RO[ 0 ] [ 0 ]
70 A[ coppie W [ k ] [ 1 ] , coppie W [ k ] [ 0 ] ] = RO[ 0 ] [ 1 ]
71

72 #the b locks o f the matrix have been f i l l e d accord ing C W and the
c o r r e l a t i o n

73 Link B = [ ]
74 whi le l en ( Link B ) < C B ∗ N B :
75 r = random . uniform (0 , 1) ∗ N B
76 t = i n t ( r )
77 i f t not in Link B :
78 Link B . append ( t )
79

80 mean = (mu, mu)
81 cov = [ [ 1 , ro ] , [ ro , 1 ] ]
82

83 f o r k in Link B :
84 RO = np . random . mul t iva r i a t e norma l (mean , cov , 1)
85 A[ coppie B [ k ] [ 0 ] , coppie B [ k ] [ 1 ] ] = RO[ 0 ] [ 0 ]
86 A[ coppie B [ k ] [ 1 ] , coppie B [ k ] [ 0 ] ] = RO[ 0 ] [ 1 ]
87

88 ensemble . append (A)
89 vals , vecs = np . l i n a l g . e i g ( ensemble )
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90 Lamba=[ ]
91 f o r K in ( ensemble ) :
92 vals , vecs = np . l i n a l g . e i g (K)
93 Lamba . append (max( v a l s ) . r e a l )
94 #Lamba i s the vec to r o f maximum r e a l part o f e i g e n v a l u e s f o r each matrix o f

the ensemble with a c e r t a i n modular ity
95 #b u i l d i n g the ensemble o f Erdos−Renyi matrix
96 ensembleER = [ ]
97 whi le l en ( ensembleER ) < E:
98 B=np . z e r o s (S∗S) . reshape (S , S)
99 r i g a = [ ]

100 colonna = [ ]
101 f o r i in range (0 , S) :
102 f o r j in range (0 , S ) :
103 i f j < i :
104 colonna . append ( j )
105 r i g a . append ( i )
106 coppie = [ [ R, C] f o r R, C in z ip ( r iga , colonna ) ]
107

108 L=[ ]
109 whi le l en (L) < (np . f abs (C) ∗ S∗(S−1)/2) :
110 r = random . uniform (0 , 1) ∗(S∗(S−1)/2)
111 t = i n t ( r )
112 i f t not in L :
113 L . append ( t )
114

115

116 f o r k in L :
117 RO = np . random . mul t iva r i a t e norma l (mean , cov , 1)
118 B[ coppie [ k ] [ 0 ] , coppie [ k ] [ 1 ] ] = RO[ 0 ] [ 0 ]
119 B[ coppie [ k ] [ 1 ] , coppie [ k ] [ 0 ] ] = RO[ 0 ] [ 1 ]
120

121

122 f o r i in range (S) :
123 B[ i , i ]=0
124 ensembleER . append (B)
125

126 LambaER=[]
127 f o r K in ( ensembleER ) :
128 vals , vecs = np . l i n a l g . e i g (K)
129 LambaER. append (max( v a l s ) . r e a l )
130 #bui ld an array o f Gamma va lue s and computed the mean
131

132 RATIO=[ ]
133 f o r i in range (E) :
134 R=Lamba [ i ] /LambaER[ i ]
135 RATIO. append (R)
136

137 GAMMA = sum(RATIO) / l en (RATIO)
138

139 p r i n t (GAMMA)

Listing D.3: Stability and Modularity
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