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Abstract

The very first successful application of tensor network methods (TNMs) to the

solution of the dose optimization problem in radiotherapy is presented. The

particular case of the inverse planning optimization in Intensity Modulated Ra-

diation Therapy (IMRT) is considered. This technique provides a method to

modulate the local beam intensities, dividing the beam into smaller beamlets.

This allows to reduce the radiation toxicity for healthy organs and deal with ir-

regular and inhomogeneous tumors. Plan’s goals are encoded as mathematical

constraints into a cost function expressing the distance between the prescribed

and delivered dose. Aim of the optimization is to minimize the function associ-

ating to each beamlet the optimal weight xj. In this thesis a classical quadratic

cost function is mapped into an Ising-like Hamiltonian, where the beamlets

weights are described by a system of long-range interacting qubits. The aim of

the work is to solve the dose optimization problem using a binary tree tensor

network (bTTN) to find the Hamiltonian’s ground-state and show the applica-

bility of TNM to the IMRT dose optimization problem.





1 I N T R O D U C T I O N

At the end of 2018 the Internation Agency for Reasearch on Cancer (IARC) re-

leased the latest estimates on the global burden of cancer [38], providing results

about incidence and mortality of 36 types of cancer in 185 different countries.

The data are baffling: one in five men and one in six women worldwide de-

velop cancer during their lifetime; one in eight men and one eleven women

die from the desease. The general increasing trend may be due to different

factors from population growth to social and economic developement. On the

other side, an incredible effort has been made in the past years, expecially in

developed countries, in order to provide new tools to detect cancers in their

early stages and to treat it effectively .

In this thesis, we’ll focus our attention on a specific kind of cancer treatment:

the radiotherpy, which aims at killing cancer cells by means of ionizing radi-

ation. Radiotherapy plays a key role in many treatments and it has become

fundamental in about the 50% of cancer treaments wordwide [10].

The most difficult task of treating patients with ionizing radiations, which is

the focus of most of nowadays studies in this particular field, is to reduce

as much as possible the radiation toxicity for healthy tissues. Critical organs

placed in proximity of the tumor to treat could get damaged if exposed to

too high radiation doses. This issue becomes particularly crictial when the ra-

dioactive source is placed outside the patient body, a technique called external

radiotherapy.

The particle beam (electrons, photons or adrons) produced by means of a par-

ticles accelerator has to pass through the patient’s body, potentially inducing

a damage on the healthy tissues’ cells it finds on its path. This calls for to the

necessity of performing an accurate planning procedure in order to maximize

1



2 introduction

the damage to cancer cells, while sparing healthy tissues.

Among the different kind of radiotherapy treatments, the most promising from

this point of view is the so-called Intensity Modulated Radiation Therapy (IMRT)

[45]. It is an evolution of the standard 3D conformal radiotherapy, providing

control also on the local beam intensity (beam fluence). Thanks to its high

precision, it’s very suited to treat tumors with very irregular shapes and very

close to organs whose radiosensitivity is a critical parameter to account for in

the treatment.

In IMRT, each beam is subdivided into grid of pencil-beams, called beamlets.

Each beamlet’s intensity can be tuned independently from all the others’ in or-

der to produce the optimal fluence map, a process called fluence map optimization

(FMO). Unfortunately due to the high number of beamlets typically involved

in a treatment optimization, this cannot be done by hand. For this reason,

the other main feature distinghuishing IMRT from other techniques is that the

former is inverse planned: the treatment goals are encoded as mathematical con-

straints into a cost function expressing the distance between the prescribed and

the delivered dose. The optimization of a treatment plan becomes the problem

of optimizing a cost function, being the beamlets intensity xj the variables.

In nowadays cilinal applications, this is done by means of classical algoriithms

based on different techniques [49, 39, 17, 7, 50, 11, 25]. In 2015, D.P. Nazareth

and J.D. Spaans [28] tried to reformulate the problem and solve it exploiting

quantum annealing on a quantum annealer with 512 qubits produced by D-

Wave System. They compared the result to those obtained using simulated

annealing and Tabu search, pointing out that quantum annealing could out-

perform classical techniques in terms of time performances, even though non

definitive results were provided because of the limited number of beamelts

used.

In this thesis, we attack this problem using Tensor Network Methods (TNMs),

a widespread class of algorithms used to simulate quantum many-body sys-

tems on classical computers. TNMs give systematic methods to compress the

information contained in a quantum state in order to transform, when possible,
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exponentially scaling problems into polinomial ones.

We started from a classical quadratic cost function describing the difference

between the prescribed and the delivered dose and implemented ex-novo a

method to adapt it to the TNM algorithm architecture. In particular, the cost

function was mapped into an Ising-like Hamiltonian describing a system of

long-range interacting qubits. Each beamlet’s weight is represented by NQ
qubits in the lattice and the classical dose-optimization problem becomes the

problem of finding the Hamiltonian’s ground state, a task which typically can

be efficiently solved with tensor networks.

The final aim of the work is to investigate the applicability of TNM to the so-

lution of the dose optimization problem in IMRT in order to probe if it can be

considered as a potential alternative to standard optimization methods.

In the following lines, a brief outline of the chapters is reported, in order to

help the reader to follow the thread of the discussion through the pages.

chapter 1 - radiotherapy. A general introduction to is presented, in

order to provide all necessary information to follow the following chapters.

Particular attention is put on the treatment planning process, in order to un-

derline which are the difficulties it hides. In the last part, a detailed description

of the IMRT and the inverse planning technique is provided, focusing on the

particular cost function used in this work.

chapter 2 - quantum many-body systems. It presents a brief overview

on the essential concepts of many-body theory related to tensor network meth-

ods. In the first section quantum-lattice systems are described, while in the

second an introduction to the description of entanglement in many-body quan-

tum systems we’ll be provided. In particular, we’ll focus on key role it plays in

the description of many-body states in the tensor networks framework.

chapter 3 - tensor network methods. Tensor network methods are

described from a very general point of view, with the aim of highlighting how
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the can be used to efficiently represent operations among tensors. The pro-

cess of the Hamiltonian’s ground state search via tensor networks is described.

In the last part, an introduction to the binary tree tensor networks anstaz is

presented, since it is the one implemented in the algorithm used in this work.

chapter 4 - study and results. Starting from the mapping of the clas-

sical quadratic function into an Ising-like Hamiltonian we’ll pass through all

the several intermediate steps of the study. The final aim of the chapter is to

accurately describe all the results which come out from this study and show

that TNMs can be used to solve the dose optimization problem in IMRT.



2 R A D I OT H E R A P Y

2.1 the complexity behind radiotherapy

Radiotherapy is a technique used to cure or control solid tumor by means of

different kind of ionizing radiation. The dose released into the cancer tissue

by the interaction of the ionizing radiation with the matter damages the DNA

of the tumor cells leading them to death or slowing down their growth [4, 47,

3]. Radiotherapy is often used in combination with other therapy like surgery,

chemiotherapy or immunotherapy in order to improve the global efficacy of

the therapy.

• Internal radiotherapy. A radioactive source is placed directly inside the

patient’s body. The source can be either solid (brachytherapy) or liquid

(systemic therapy). The former consists in the placement of seeds, capsules

or ribbons containing the radioactive source inside or very close to the tu-

mor. This placement can be either temporary or permanent. Brachyther-

apy is part of the so-called local methods, which are all the methods involv-

ing only the specific part of the body where the tumor is situated. On the

other end, with systemic therapy a liquid radioactive source travels in the

blood or tissues, seeking out and killing cancer cells. This method is not

local.

• External beam radiotherapy (EBT). External particles beam are produced

by a linear accelerator (LINAC) and directed towards the region where

the tumor is. The particles used may be either electrons or high energy

X-rays (photons). In general, the patient is irradiated from multiple direc-

5



6 radiotherapy

tions, in order to increase as much as possible the damage to the tumor,

while sparing the sorrounding healty tissues. This is a local method too.

The choice of the most suitable radiotherapy treatment depends on many dif-

ferent factors: the type of cancer, the size of the tumor, the tumor’s location

in the body, how close the tumor is to normal tissues whose radiosensitivity

cannot be neglected, the health and medical history of the patient, the concom-

intance with other therapy treatments and other factors, such as the age and

the medical conditions.

It follows that scheduling a radiotherapy treatment is not a trivial task: dif-

ferent figures are involved, from the oncologist to the medical physicist to the

radiology technician. The number of beams, their intensity and spatial geome-

try, the number of part the treatment is subdivided are only some of the several

factors that one has to accounts for a correct execution of the treatment. In the

following pages, an introductive discussion to the typical workflow of a radio-

therapy treatment we’ll be presented, focusing on the LINAC treatment with

photons beams.

2.2 external beam radiotherapy (ebt)

EBT is a branch of radiotherapy treating patients by the use of a radiation beam

external to the body. Althought a LINAC generates both electrons than photon

beams in the following we’ll focus on radiotherapy with photons, which is the

most used technique nowadays. EBT is a well structured process including:

patient immobilization, dose prescription , treatment planning and treatment

delivery. The treatment planning, object of this work, plays a crucial role in the

radiotherapy worflow. It can be divided into five main steps: images acquisi-

tion, volumes contouring, dose prescription, plan optimization and evaluation

of the quality of the plan. They are all discussed in this section; a brief discus-

sion on the LINAC treatment delivery is also included.
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2.2.1 Image acquisition

Patient 3D images must be acquired both for the identification of the target vol-

umes and for carrying out an accurate dosimetric calculation. Three different

acquisition modalities may be applied: Computed Tomography (CT), Magnetic

Resonance (RM) and Positiron Emission Tomography (PET). Morphological in-

formation of the target volume and surrounding healthy organs are gathered

from CT and MR while functional and biochemical ones from RM and PET.

Today CT is the scan used in treatment planning as it is the only one measuring

the electronic tissue density needed to characterize the interaction of radiation

with matter and to accurately calculate the dose.

MR measures the orientation of protons in a magnetic field, produces images

at very high resolution and enhances the soft-tissue tumor contrast.

PET measures the concentration of a radiopharmaceutical (e.g. FGD) inside the

tissues given information about the cellular activity , the main limit of the PET

is its low spatial resolution. PET and RM are often combined with CT to char-

acterize area of different aggressiveness inside the tumor as well as hypoxic

area. Indeed the identification, by means of PET and RM, of the so called Bi-

ological Target Volume (BTV) is of great importance in defining the treatment

dose.

Each 3D medical image is made up of hundreds or thousands of elementary

constituents, called voxels, which are the equivalent of pixels in 2D images. We

introduce this concept since it will be used in the following. Medical images

are stored in a specific format named DICOM, which is more than a standard

image compression algorithm: DICOM files includes also several about the

patient and the scan ifself.

2.2.2 Volumes contouring

Contouring is the act of defining the volume of the tumor and healthy organs

around it, called Organs At Risk (OAR). This a very crucial part of the plan-
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ning procedure: determining tumor location, its dimension and phenotype is

crucial for the dose prescription. In order to guarantee the safety of the patient

during the radiotherapy treatment, as well as guarantee the repetibility of the

treatments, different region need to be identified around the tumor itself. The

main two are the followings:

• Gross Tumor Volume (GTV): this is the volume which can be seen by

eye (or feel by palpation) either on the patient itself or with the help of

imaging techniques.

• Clinical Target Volume (CTV): it’s the volume containing the GTV and/or

other subclinical malignant disease which has to receive a curative dose.

This volume has to be treated adequatelly in order to achieve the aim of

the therapy, either cure or palliation. The definition of the CTV is not

unique and depends mainly on the ability of the oncoligist.

In Figure 1 an example of the difference between the GTV and the CTV for a

lung cancer is shown. We see that it’s not difficult to identify the GTV by eye,

while the detection of the CTV is not trivial; combination of different images

modality could help in defining the CTV. In order to account for all possible

Figure 1: Example of the difference between the GTV (orange line) and the CTV (pink
line) for a lung cancer.
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source of uncertainty during the radiotherapy treatment, like organ motions or

error in the patient positioning, two other volumes are defined:

• Internal Target Volume (ITV): it is obtained by adding to the CTV the

so-called internal margin (IM), which accounts for the motion of the CTV

(e.g. motion of the lung during the respiration cycle).

• Planning Target Volume (PTV): this volumes accounts for errors in the

patient positioning, mechanical accuracy of the equipment and human

error. It’s obtained by adding to the ITV the so-called set-up margin (SM).

The PTV is used to choose the appropriate beam size and arrangements

to ensure that the prescribed dose is actually and correctly delivered to

the whole CTV.

In Figure 2 an example of the contouring of the ITV and PTV is shown.

Once the tumor’s volumes have been defined, particular care has to be given

the organs at risk (OARs), whose radiation sensitivity is such that the dose

received during the treatment should be less than their tolerance.

In Figure 3 a schematical summary of the different volumes discussed above

and their reciprocal relation is shown.

Figure 2: Example of the ITV (red line) and the PTV(blue line) for a lung cancer.
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Figure 3: Representation of the different volumes which can be countoured around
the GTV.

2.2.3 Dose prescription and plan optimization

The main goal of the radiotherapy is to treat the tumor sparing the surround-

ing healthy tissue and OAR as much as possible. To this aim it is mandatory

to optimize the dosimetric plan. A dosimetric plan is computed on a patient

CT by a medical physicist and represent the distribution of the dose inside the

patients as delivered by different photon beam that affect patients from differ-

ent angles or entry points This opens to the necessity to optimize the plan, in

order to cause the largest damage to the tumor, while sparing healty tissues.

The goodness of a dosimetric plan depends on several factors: accuracy of the

imaging and contouring, reliability of the dose calculation, delivery technique,

number and geometry of the beams. The optimization process concerns the

number and geometry of the beam and specifically the fluence of the beams.

There are two different optimization procedure which are used in practice: for-

ward planning and inverse planning. The forward planning procedure is a sort of
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trial and error approach, where the planner chooses a particular beam geome-

try to deliver the prescribed dose and evalutes the outcomes. If the latter are

not satisfied, some parameter is changed and the new plane evaluated, until

a good result is reached. This procedure is particular apted in case of tumor

with simple shapes and far from critical organs.

For all the other cases, an inverse planning procedure is required. This proce-

dure is much more complex than the previous one. Instead of starting from

a configuration and evaluating the results, the desired treatment outcomes are

codified in terms of mathematical constraints into an objective function. The

optimization process , based on a cost function, modified the fluences of the

planned beams to reach the prescribed dose and satisfy the clinical constraints.

The results of the process is a delivery technique called intensity modulated

radiation therapy (IMRT) .In section 2.3 all the details concerning the mathe-

matical formulation of the problem inMRT will be discussed.

An optimizer is used to minimize the cost function and extrapolate the correct

values of the parameters. This is in general an expensive procedure from the

computational point of view, but allows to deal with tumors with very complex

shapes and very close to critical organs.

2.2.4 Plan’s quality evaluation

Provided a adiotherapy plan, it’s necessary to have some criteria to evaluate its

quality in terms of agreement with the clinical needs and contraints. The dose-

volume histogram (DVH) is the tool used in the plan evaluation activity. Defined

for each volume it gives a global information about the dose distribution inside

it. We have two version of the DVH, both used in practice:

• Differential DVH: it is an histogram relating the radiation dose to tissues’

volume; it represents the percetage volume which received a given dose

value, in a range defined by the minimum and maximum dose.
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• Cumulative DVH: it’s the cumulative of the previous one, namely the

percentage volume which receives at least a defined dose.

Analysing these histograms, it is possible to verified whether the constraints

imposed on the different organs are satisfied. In relation to the different types

of organs, the constraint can be expressed as an average value , Dose max,

Dose min or ,more commonly, as the maximum volume receiving a defined

dose or the maximum dose delivered to certain fraction of volume. For the

tumor constrains generally describe the coverage and the dose uniformity.

2.2.5 Treatment delivering: the LINear ACcelerator (LINAC)

Once the optimal plan has been obtained and approved, the next step is to

deliver it to the patient using a LINear ACcelerator (LINAC) [21], which is a de-

vice that uses high Radio-Frequency (RF) electromagnetic waves to accelerate

charged particles (i.e. electrons) to high energy in a linear path, through a tube-

like structure called accelerator waveguide, which is a resonating cavity whose

typycal frequency is around 3 GHz. Electrons energies range from 6 to 22 MeV,

depending either on the machinary and on the clinical needs. This is the other

bottelneck of radiotherapy treatments based on X-rays: LINAC is responsible

of the accurate production, monitoring, control and conformation of the radia-

tion beam to the plan target . The success of a radiotherapy treatment depends

on the ability of the linear accelerator to deliver the prescribed dose to the

tumor, while ensuring minimum radiation to normal tissues. It follows that,

and we’ll see it later in the discussion about inverse planning technique with

IMRT, any software aimed at improving the quality of a radiotherapy treat-

ment, must be able to interface with this very powefull machinary. In Figure 4

a schematic representation of the outer and inner components of a LINAC is

shown. The two main external components are the stand, which is a large rect-

angular cabinet secured to the treatment floor, and the gantry, which rotates on

the horizontal axis bearings located inside the stand, allowing to irradiate the

patient on the treatment coach from different angles. In particular, it can rotate
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Figure 4: Schematic representation of the main components of a LINAC used for ra-
diotherapy.

360
◦ around a point called isocenter. The stand also contains a radiofrequency

generator, a RF waveguide and an electron gun. Other geometries are possi-

ble, with the electron gun placed inside the gantry. Radiofrequency waves are

pulsed into the waveguide by the RF generator. This process is syncronized

with the injection of electrons into the waveguide by the electron gun. They

are accelerated by the radiofrequency waves into the accelerator waveguide, at

a speed which is more than 99% of speed of light, and transported along the

waveguide toward a tungsten target situated at the exit of the gantry’s treatment

head. In the interaction between the electrons and the target, an X-rays beam

is produced via Bremmstrahlung. The energy of the final X-rays is determined

by the power and frequency of the radiofrequency waves, which are controlled

by the RF generator, and they typically range from 1 MeV to 25 MeV. It’s inter-

esting to notice that about the 94% of the electrons energy goes into heat in the

interaction with the target. The number of electron injected into the waveguide,

and thus the final intensity of the X-rays beams produced via Bremstrahlung,

is determined by the electron gun. The latter consists in a tungsten filament

crossed by a current where the electrons are boiled out by thermionic emis-

sion. The tipical temperatures of the filaments are over 1000◦C. A pulsed DC

voltage between the gun’s electrod accelerates the electrons toward the acceler-

ation wave guide to a speed of about 1/4 the speed of light and a convergent

electric field allows to form a pencil beam. The higher the temperature of the
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filment is, more electrons are produced. The accelerator waveguide is made

up of series of copper cells, each one connected to its neighbour cells by holes

which allow the electrons to travel through them. The presence of the holes

also helps to focus the beam along the waveguide axis. In addition to that, the

correct beam focus is guardanteed by quadrupole magnets placed along the

waveguide. In order to increase the mean free path of the electrons, a vacuum

is created. Furthermore, the whole system is cooled by water in order to allow

the components to work at a proper constant temperature. In case of electron

energies greater than 6 MeV, a bending magnet, whose function is to focus

the beam, is placed the end of the accelerator waveguide. The key role of this

component is to focus electrons with slightly different energies onto the same

point on the target plan, a property called achromatic behaviour.

The X-ray beam produced is typically forward peaking shaped in the direction

of the patient’s tumor, meaning that the distrubution of the photons across the

beam section is not uniform. In order to solve this issue, a flattening filter is

placed after the target: it is a conical shaped metal absorber which absorbes

more photons in the central region of the beam than in the edges, allowing to

produce a uniform photons distribution. The effect of the flattening filter is

shown Figure 5. Another important contribution to the beam shaping is given

Figure 5: Effect of the flattening filter on the beam’s photons distribution. (Left) Before;
(Right) after.

by the collimators, which are jaws made up of high Z number elements, such
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as tungsten or lead. Typically there are two collimators, called primary and sec-

ondary collimator, respectively. The primary collimator allows only the forward

travelling X-rays to pass through, producing a cone shaped beam. In this way,

it minimizes leakages by absorbing scattered photons travelling in the lateral

directions. The combination of the primary and secondary collimators allows

to define the maximum area of the resulting clinical radiation beam, which is

typically a (40 × 40) cm2 rectangle, as shown in Figure 6a.

(a) (b)

Figure 6: (a) Resulting clinical radiation beam produced by the combined action of
the primary and secondary collimators. (b) Example of multi-leaf collimator
used in IMRT treatments.

In order to measure the dose delivered to the patient as well as the beam

quality, a system made up of two ionization chambers is placed at the exit of

the gantry’s treatment head. They are called primary and secondary dosime-

ters, respectively, they are sealed together but power supplied and read in-

dependently. In Figure 7 a representation of how the two chambers work is

shown. The first chamber (the upper one) has the role of monitoring the dose

delivered to the patient and stopping the beam once the desired dose has been

delivered. The lower one works as a backup, controlling the correct functioning

of the first one and stopping the beam in case of a failure of the latter. At the

end of all this chain, a further mechanical collimator can be placed between the

grantry exit and the patient in order to conform the beam shape to that of the
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tumor. A typical choice in case of IMRT treatments is the multi-leaf collimator

(MLC), which is a device made up of individual leaves of a high atomic num-

bered material, usually tungsten, that can move independently in and out of

the path of a radiotherapy beam in order to shape it and vary its intensity. An

example is shown in Figure 6b. We’ll see in next section the way an optimizer

can interface with the MLC in order to produce the desired dose distribution.

Figure 7: Representation of the primary and secondary ion chambers of a LINAC.
(Left) In case of correct functioning, the two chamber measure the same dose;
(Center) The first chamber may fail, therefore the two dose measurements
become different; (Right) The difference in the two measurements triggers
the beam stop.

2.3 intensity modulated radiation therapy (imrt)

External beam radiotherapy treatments can be subdivided into 2D and 3D [29],

according to the planning procedure. Thanks to the evolution of CT in the

last years, it has been possible to move from conventional 2D treatments to

the so-called 3D conformal radiotherapy. This because unless x-ray images, those

obtained with CT are 3D and allow a well definition of the target volume. The

use of the MLC placed at the exit of the gantry’s treatment head allow to con-

form the beam to the tumor’s shape in order not to irradiate the sorrounding

tissues. In Figure 8 a comaparison between the planning on a 2D and 3D im-

age is shown. The introduction of the 3D conformal therapy has lead to the

possibility both to increase the dose delivered to the tumor and reduce the tox-
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icity for the sorrounding OARs at the same time [13]. An advanced form of 3D

Figure 8: Comparison between 2D (left) and 3D conformal (right) beam shaping. The
3D planning technique allow to conform the beam to the tumor shape.

conformal radiotherapy is the so-called Intensity Modulated Radiation Therapy

(IMRT), one of the most promising treatments methods used nowadays. This

technique is very suitable in case of tumors having very irreguar or concave

shapes, strong inhomogeineities or situated very close to vital organ (OARs).

The great improvement provided by IMRT relies in the possibility to modulate

the local beam fluence by means of the MLCs, in contrast with the uniform beam

intensity obtained with other techniques. From the practical point of view, the

beam is divided into a number of smaller pencil-beams, called beamlets and a

real weight xj > 0 is associated to each of them.The main advantages of using

this techniques are of dosimetric nature: improvement of target conformity,

production of intentional dose inhomogeneities (dose-painting), increase of nor-

mal tissue sparing, dose escalation. On the other end, the main disadvantages

are related to the increase of the planning and delivering time: clinician time

for target and organ outlining, use of extensive quality assurance programme,

machine treatment time. Furthermore, even the problem of an increased total

body irradiation dose is not negligible.

IMRT differentiates from all other techniques also in the planning procedure:

conformal therapy is forward planned, while IMRT is inverse planned: the desired
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dose map is encoded in terms of constraints and priorities into a cost-function of

the beamlet weights xj, expressing the distance between the delivered and the

prescribed dose. The aim of the planning procedure is to exploit the power

of an optimization algorithm in order to minimize the cost function with re-

spect to the xjs, a process which should provide the optimal configuration of

the beamlets weights, i.e. the one which optimizes the fluence according to the

prescribed dose. In Figure 9 a schematic representation of the main steps of an

IMRT treatment planning is shown. In general, the choice of the cost function

is neither simple nor unique and its definition is strictly rrelated to the kind of

constraints introduced.

Let’s suppose to have a 3D image with R OARs and a PTV. Let’s consider a

number Nbeams of radiation fields, each one divided into a N(b)
B beamlets, with

b running over the radiation fields. If we refer with ai(r)j(b) to the elementary

dose contribution per unit intensity of the jth beamlet of the bth field on the ith

voxel of the rth OAR (or PTV), the total dose delivered to the same voxel can

be obtained as:

Di(r) =

Nbeams∑
b=1

N
(b)
B∑

j(b)=1

ai(r)j(b)xj(b) (1)

where r = 0 refers to the PTV.

In order to simplify the notation, we can define the total number of beamlets NB
as:

NB =

Nbeams∑
b=1

N
(b)
B (2)

so that Equation (1) becomes:

Di(r) =

NB∑
j=1

ai(r)jxj (3)

which states that the total dose delivered to the ith voxel of the rth object (OAR

or PTV) is given by the sum of the elementary dose contributions from all the

beamlets acting on it, each one rescaled by the corresponding weighting fac-
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tor xj. The set of all the ai(r)js form a matrix called influence matrix, with the

row and columns indices running over the voxels and the beamlets, respec-

tively. This matrix can be be either very sparse or very dense, depending on

the interaction between different beamlets. The entries of the influnce matrix

are calculated by dose calculation algorithm, generally based on montecarlo

methods. In general, what can make the density matrix more or less dense is

the scattering of the particles inside the body.

The xjs are the set of variables to optimize and their final configuration form

the so-called optimized fluence map. This particular approach to the dose

optimization thrugh the optimization of the fluence is called fluence map op-

timization (FMO). Just for completeness, it’s important to tell thath this is not

the only optimization scheme used in IMRT: optimization of the beam angles

as well as direct aperture optimization (DAO) are used in practice [8].

Focusing on the FMO problem, the next step is the definition of an objective

function, whose general form is given by:

F(x1, . . . , xNB
) =

R∑
r=0

∑
i∈R
γi(r) ×D

[
Di(r)(x1, . . . xn),D

P
i(r)

]
(4)

where DPi(r) is the prescribed dose to the ith voxel of the rth object and D [A,B]

indicates an arbitrary distance-function between the two arguments; γi(r) quan-

tifies the priority of a given objective, namely the importance of satisfying a

given prescription for a given voxel with respect to all the others. Some of the

most used distance functions are the following:

• (A - B)2: the square of the difference between the arguments; it’s the sim-

plest one from the mathematical point of view since it’s convex and it can

be optimized even through simple grandient descent methods. However,

since a penalty is added for any violation of a given constraint, either in

excess or in defect, working with this function could be not trivial.

• [max(0, A - B)]2: it adds a cost only if the delivered dose is higher than

the prediction. This kind of constraint is of fundamental importance in
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case of OARs which could get damaged if irradiated with a too much

high dose.

• [min(0, A - B)]2: it works in the opposite way than the maximum; it’s

usually important to deliver at least a given dose inside the PTV it in

order to achieve the treatment aims, thus a positive cost is added if this

condition is violated.

• DVH-based constraints: they are usually refered as dose-volume constraints

and they are obtained from the DVH, either differential and cumulative.

They can be encoded in terms of maximum and minimum dose, as well

as in terms of mean dose or median dose. All optimization function used

in nowdays commercial systems are based on this kind of constraints.

Figure 9: Main steps of the IMRT treatment planning. First the beam is conformed to
the tumor’s shape (left); then the area is divided into sufficient number of
beamlets ((center). In the end, after the optimization procedure, a weight is
associated to each beamlet ((Right).

In this work a quadratic cost function was used whose final expression given

by:

F(x1, . . . , xn) =
R∑
r=0

∑
i∈R
γi(r) ×

NB∑
j=1

ai(r)jxj −D
P
i(r)

2 (5)
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We can further simply the notation by absorbing the obejct index r into the

voxel index i. This can alwat be done by creating a single influence matrix A

for all the obejcts. In the end, Equation (5) becomes:

F(x1, . . . , xn) =
∑
i

γi ×

NB∑
j=1

aijxj −D
P
i

2 (6)

The reasons behind this choice of the cost function are manily two: being the

first study of this kind we’ve decided to start from the simplest possible sce-

nario from the mathematical point of view; secondly, we’ll see in the following

that such a kind of function is very suitable to be converted into a quadratic

Ising-like Hamiltonian, without introducing any approximation.





3 M A N Y- B O DY Q U A N T U M S Y S T E M S

Many-body systems are ubiquitos in the world we live, from big planets and

stars populating the universe [32, 22, 6] to atoms and molecules in materials

[24, 19]. The complexity of providing a physical description of such systems

relies on the fact that they are made up of several elementary constituents in-

teracting non-trivially.

We can consider as a many-body system each system composed by a large

number of such elements, even though the definition is strongly related to

the particular scenario one is dealing with.1 The study of this class of sys-

tems in quantum mechanics has a strong impact on various disciplines such as

condensed matter [9], computational chemistry [43], material science [26] and

quantum information [30].

The aim of this chapter is to provide an introduction about a particular class of

many-body quantum systems, the so-called quantum lattice systems. After hav-

ing defined what they are, we’ll go into a description of the entanglement for

this systems, showing how it can be quantified starting from the description

of the wave-funciton in the density matrix formalism. At the end of the chap-

ter we’ll see how entanglement is at the base of the tensor network methods’

representation of a many-body wave function.

1 Usually one distinguishes between one-body, few-body and many-body. The boundary between
the last two is somehow blurry.

23
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3.1 quantum lattice systems

Quantum lattice systems are many-body quantum systems whose underlying

structure is a given graph G = (V ,E), with V representing the degrees of free-

dom of the system and E the interaction among them. Even though any under-

lying structure could be used to represent a quantum lattice systems, regular

graphs are mostly used. In particular, many lattice systems are described using

a cubic lattice V = LD, being D the dimension of the problem. The distance be-

tween two sites i, j is the graph distance d(i, j), i.e. the minimum number of sites

to walk through in order to reach i from j, and viceversa. A local Hilbert space

Hk is associated to each lattice site k and the global Hilbert space H for the

many-body quantum lattice is given by the product of single-particle spaces:

H = H1 ⊗ . . .⊗HN (7)

One of the easiest examples of such systems is the 1D Ising Model, a spin

model whose underlying structure is a one-dimensional chain where the quan-

tum degree of freedom associated to each site k is the spin of the occupying

particle. The local Hilbert space has dimension dim(Hk) = 2, which corre-

sponds to the spin configurations (up and down). According to Equation (7)

the global Hilbert space is given by the composition (C2)⊗N, whose dimension

is dim(H) = 2N, with N the number of sites. It exhibits an exponential scaling

in the number of constituents which is a general behaviour of any quantum

many-body system and the main challenge for simulating them on classical

computers.

The physics of the lattice is described by the system’s Hamiltonian, whose

general form is:

H =
∑
i∈V

hi (8)

where each hi is the Hamiltonian associated to the ith elementary constituent

which may be in general composed by local and interaction terms. For in-
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stance, in the particular case of the 1D Ising model in transverse field, the local

Hamiltonian hi takes the following form:

hi = −λ · σzi +
1

2

∑
j∈〈i,j〉

σxiσ
x
j (9)

where the σx(z)i s are the Pauli’s matrices, λ is the magnetic field and the symbol

〈i, j〉 means that the two-body interaction is limited to nearest-neighbor sites

only. The exponentially growing dimension of the associated global Hilbert

space can be extract from Equation (7) as follow. For a system of N sites the

formal representation of the nearest-neighbor interaction between sites i and

i+ 1 is given by:

σxiσ
x
i+1 ≡ I1 ⊗ I2 ⊗ . . .⊗ Ii−1 ⊗ σxi ⊗ σxi+1 ⊗ Ii+2 . . .⊗ IN (10)

which is a square matrix of dimension 2N, with I the identity matrix. The idea

behind Equation (10) remains valid also for the local term at site i, simply per-

forming the substitutions σxi+1 → Ii+1 and σxi → σzi .

Let’s now suppose we are interested in finding the ground state of such a sys-

tem: we would need to explore 2N configurations in order find the one which

fits our request. If we want to approach the problem numerically, we need an

algorithm which can do that efficiently. In quantum mechanics the situtation is

particularly complex because of the presence of matrix and vectors of order dN,

with d the generic single-particle space dimension, which are typically difficult

to manipulate and store as N increases.

This has lead to the developement of several algorithms such as Density Matrix

Renormalization Group (DMRG) [48] and Tensor Network Methods (TNMs)

[33, 40, 42] in the past years in order to perform numerical simulation of many-

body quantum systems. The main reason why these algorithms succeded in

solving different quantum many-body problems is that they provide a system-

atic way to represent a many-body wave function and to compress the informa-

tion contained in a quantum state, simplifying its representation but keeping a
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sufficiently high information content at the same time.

Given a many-body quantum state its complete representation contains all the

information available and is described by dN parameters. On the other side, a

description of the state in terms of mean-field approximation allows to reduce

the number of parameters to d, which is the lowest-dimensional possible repre-

sentation of a quantum state. TNMs interpolate between the two cases, which

is the reason why they have been so intensely studied during the last years.

In next section we’ll go deeper into the discussion, explaining the key role

played by entanglement in the representatation of a many- body state.

3.2 entanglement in quantum systems

From quantum mechanics we know that a generic single-particle state is de-

scribed by its wave function |ψ〉 ∈ H, with the normalization condition ||ψ||2 =

〈ψ|ψ〉 = 1. If we consider an orthonormal basis |α〉1 , . . . , |α〉n of H, |ψ〉 is given

by a coherent superposition of such basis states, namely:

|ψ〉 = α1 |α〉1 + . . .+αn |α〉n (11)

where {α1, . . . ,αn} ∈ C are the so-called probability amplitudes. It reads that

|αi|
2 is the probability that, after a measurement, the state |ψ〉 collapses onto

the state |α〉i. We can extend this argument to many-body state, saying that

all states whose representation can be performed in terms of bra- and -ket are

usually refered as vector states, or more in general as pure states, in order to

differentiate them from mixed states which are statistical mixtures of pure states.

We can represent a generic quantum state using the density matrix formalism,

a description which allows also to embody and extract information about the
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entanglement of the system.

Taking a generic pure state |ψ〉, the associated density matrix is defined as2:

ρ = |ψ〉 〈ψ| (12)

with the properties:

1. ρ = ρ†:

2. Tr(ρ) = 1

3. Tr(ρ2) 6 1

The connection of density matrix formalism to the system’s entanglement is all

contained in property 3. It can be shown that the equality holds for pure states

only [5].

Let’s now consider a system of two particles, A and B. Suppose now to have

them in a pure state |ψ〉AB whose density matrix is given by ρ = |ψ〉AB 〈ψ|AB
according to Equation (12). We can introduce the reduced density matrix for one

of the two dipartitions, A for example, which is:

ρA = TrB(ρAB) =
∑
k

〈Bk| ρAB |Bk〉 (13)

which corresponds to the partial trace computed with respect to particle B., with

the same properties defined before. If the system is entangled, we’ll find the

single particle in a statistical mixture of states, namely Tr[ρ2A] < 1.

All the previous description allows to introduce one most spread measures

of entanglement for pure quantum states, the so-called Von Neumann entropy

2 More formally, this is called density operator and the density matrix can be obtained from the
latter by choosing a basis in the underlying space. However, in practice the two terms are often
used interchangeably.
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or entanglement entropy. Let’s consider a generic state described by its density

matrix ρ, the entanglement entropy is defined as:

S(ρ) = −Tr[ρ log(ρ)] = −
∑
j

λjlog(λj) (14)

with λj the jth eigenvalue of ρ. If ρ describes a pure state, the entropy is vanish-

ing. In order to quantify the entanglement in a pure system we always need to

consider a bipartion of the system into two subsystems A and B, compute the

reduced density matrix of one them and evaluate its entanglement entropy in

order to quanfity whether the system is separable (S = 0) or entangled (S > 0).

This concept can be further extended if we consider the so-called Schmidt de-

composition of the state. Given a many-body state |ψ〉 describing a system of

N particles, we can always apply a Liouville transformation and write it in a ma-

tricial form L with respect to a given bipartition H = HA ⊗HB of the Hilbert

space. The Schmidt decomposition of the state consists in performing the Sin-

gular Value Decomposition (SVD) of L, as:

L = S× V ×D (15)

where S(D) is a unitary matrix whose columns (rows) are the left (right) singu-

lar vectors {|αA〉}({〈αB|}), which form an orthonormal basis for the space A (B)

and V is a diagonal matrix whose entries are the singular values Λα > 0. The

Schmidt decomposition of the state |ψ〉 thus becomes:

|ψ〉 =
∑
α

Λα |αA〉 |αB〉 (16)

where the index α runs over all non-zero coefficients Λα. The number of non-

zero Schmidt coefficients is also refered to as Schmidt rank.

The connection with the density matrix formalism is that the complete set

of {Λ2α} corresponds to the eigenvalues of the reduced density matrix of the

bipartition (Equation 13) and takes the name of entanglement spectrum.
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In general, TNM representations of quantum states exploits Equation (16) and

introduce a cutoff χ in the representation of the state to approximate it in a

lower-dimensional subspace, which is:

|ψ〉 = 1

Z

χ∑
α=1

Λα |αA〉 |αB〉 (17)

with Z =
√∑χ

i=1Λ
2
i a normalization constant and χ the so-called bond dimen-

sion. This is done by cutting off the n lowest singular values Λα, which has

been proven [20] to be the best possible lower-rank approximation in term of

the Frobenius norm ||.||F:

||M−Mχ||
2
F =

SR∑
α=χ+1

Λ2α (18)

with SR being the Schmidt rank.

The introduction of a bond dimension allows to compress the representation of

the state, interpolating between a mean-field approximation and the complete

description, as it was already discussed in the previous section. For example,

the Matrix Product State (MPS) [34], one of the most frequently used tensor

networks astantze, can be obtained by applying iteratively Liouville transfor-

mations followed by Schmidt decompositions to a given state [27].

In the next chapter we’ll go on with the discussion, introducing the basics

about TNM and showing how they can be exploited to look for the ground

states of many-body quantum lattice systems.
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In this chapter, we’ll provide a general introduction to TNM for the numerical

simulations of quantum lattice systems. First, we’ll briefly describe how they

can be used to represent tensors and their operations.

In the second part, we’ll discuss in more detail how the problem of ground-

state search through TNM can be approached. In particular, we’ll first de-

scribe mean-field approximation for 1D systems, showing how the latter can

be thought of as a special case of TNM, with the bond dimension χ = 1.

Finally, we’ll conclude with a general description of the tree tensor network

ansatz, which is the one used in this work.

4.1 tensors definition and representation

Tensor calculus is a technique that can be regarded as an extension of linear

algebra. In linear algebra we usually deal with vector and matrices: tensors

have to be thought of as a generalization of such concepts, owning all their

properties and adding new very powerfull features at the same time. A tensor

can be defined as follow:

Definition 1 (Tensor) Given a finite set {H1, . . . ,HN} of vector spaces over a com-

mon field F one can form a new vector space H as the result of the tensor product

operation, as follow:

H = H1 ⊗ . . .⊗HN (19)

The generic element of H this space is called tensor.

31



32 tensor network methods

(a) (b) (c) (d)

Figure 10: (a) Generic tensor representation; (b) representation of a scalar; (c) repre-
sentation of a vector; (d) representation of a matrix.

From a very general point of view, a tensor is a container of numbers, where

each of the latter can be addressed by a set of indexes. The total number of

indexes equals the number N of vector spaces H is made up of. The total

number of indexes is called rank of the tensor and their dimension is equal to

the dimension of the vector space they originated from. A generic tensor can

be represented as follow:

Tα1,...,αN (20)

For a detailed description of all mathematical properties of tensor see [14].

For our purposes, we can think of the vector spaces {H1, . . . ,HN} as the single-

particle Hilbert spaces associated with each lattice site of a quantum lattice

system.

Using a graphical notation, an N-rank tensor can be thought of as a round box

representing all numbers, with a number of legs equal to the rank, as shown in

Figure 10a. It follows that a scalar, which is a 0-rank tensor, will be represented

as a circle with no indexes, as shown in Figure 10b. In the same way a vector

(1-rank tensor) and a matrix (2-rank tensor) will be represented as boxes with

one and two legs respectively, as it is shown in Figure 10c and 10d.

Manipulating tensors with many indexes is not a trivial task in general, but

it can become quite simple if we imagine to represent each operation among

them as a tensor network, where connections indicate contractions.
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(a) (b)

(c)

Figure 11: Representation of some basic operation among tensor. (a) Scalar product
between two vectors; (b) Matrix-vector multiplication; (c) Contraction of
four tensors leading to a rank 2 tensor as final result.

For example, in Figure 11a the following scalar product is represented:

〈φ|ψ〉 =
∑
i

φ∗iψi (21)

where the resulting tensor has no free links, meaning that it is a scalar, as it

was expected. In the same way, in Figure 11b a representation of the following

contraction for a matrix-vector multiplication is given:

(Oψ)i =
∑
j

Oijψj (22)

where the final tensor has rank 1, meaning that it is a vector. One can gener-

alize the previous arguments to any number of tensors with arbitrary ranks,

obtaining a real network of tensors, where the number of free indexes deter-

mines the rank of the resulting tensor after the indicated contractions. An

example is shown in Figure 11c, where it’s quite easy to see that the complex

contractions involving four tensors lead to a rank 2 tensor (i.e. a matrix) as

final result.
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Figure 12: Representation of the index fusion procedure.

4.2 tensors manipulation

Let’s now show how it is possible to reshape the representation of a tensor to

a lower (higher) rank tensor by fusing (splitting) its indexes. Suppose we have a

4-rank tensor Tα1,α2,α3,α4 . We can group the first two indexes into one single in-

dex as {α1,α2} � J and the other two as {α3,α4} � K. The meaning of this index

fusion process can be easily understood if we turn to the graphical notation.

Looking at Figure 12 we see that the initial 4-rank tensor gets transformed

into a 2-rank one, which is a matrix. What we are practically doing is to

change the way information is stored. In fact, the dimension of the new in-

dex is given by the product of the dimension of the fused indexes, namely

dim(α1(3))× dim(α2(4)) = dim(J(K)).

However, the immediate consequence of this procedure is that we can apply

all the powerfull tools provided by linear algebra even to tensors, simply re-

shaping them into matrices and going back to the initial representation at the

end of the computation by splitting the indexes if needed. All previous manip-

ulations have a computational cost, but it’s in general very convenient to face

the problem from this point of view [42].

If we now recall the discussion of Section 3.2 about the Liouville transformation

of an N-particle wave function, we see that it’s exactly the process of splitting

the indexes with respect to a given bipartition of the system in order to reshape

the vector into a matrix.
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(a)

(b)

Figure 13: (a) Representation of a many-body state using the mean-field ansatz. (b)
Energy expectation value in the mean-field approximation for the Ising in
transverse field with λ = 0.

4.3 ground states via tensors networks

When TNMs are used for the ground-state search, they work as variational

algorithms, meaning that they aim at solving the following variational problem:

EGS = min
ψ
〈ψ|H |ψ〉 (23)

where H is the system Hamiltonian. One of the main features related to the

use of tensor network methods is that they provide different possible ansatze

through which the wave function ψ can be represented. The method we’ll

show in a moment is very general and can be adapted to any tensor network.

Let’s suppose we want to use tensor network method to find the ground state

of the 1D Ising model in transverse field in the mean-field approximation. To be

more general, we can relax the translational invariance and consider a generic

product-state. This is the simplest tensor network ansatz, where the bond

dimension is χ = 1. Working in the graphical notation, the state can be repre-

sented as shown in Figure 13a where all tensor are equal in case of mean-field

approximation.

Without loss of generality, refering to Equation (9), we can set hi = 0 for sim-
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plicity, obtaining the following Hamiltonian, where only the two-site nearest-

neighbour interactions are present:

H =

N−1∑
i=1

Jii+1σ
x
iσ
x
i+1 (24)

The minimization problem in Equation (23) correspond to minimize the energy

rpresented in Figure 13b, where the blue tensors represent the particles, while

the red ones the σx matrices.

If we now move to a more general description, any two-site operator can be de-

scribed as a tensorH
α ′iα

′
j

αi,αj acting between particles at sites i and j. The minimiza-

tion problem in case of nearest neighbour interactions can be now expressed

using the method of the Lagrange multipliers to impose the normalization of the

state as follows:

L(ψ1,ψ2, . . . ,ψN,ψ∗1,ψ
∗
2, . . . ,ψ

∗
N) = 〈ψ|H |ψ〉− λ (〈ψ|ψ〉− 1) ≡ E− λ(N− 1)

(25)

with:

〈ψ|H |ψ〉 =
N−1∑
i=1

H
α ′iα

′
i+1

αiαi+1
ψ∗αiψ

∗
αi+1

ψα ′i
ψα ′i+1

(26)

where the sum over the tensors’ components is implied. Equation (25) has to

be minimized with respect to the components of each tensor in the network, as

follow:

∂L

∂ψ∗i
= H

α ′i−1α
′
i

αi−1,αiψ
∗
αi−1

ψα ′i−1
ψα ′i

+H
α ′iα

′
i+1

αiαi+1
ψ∗αi+1

ψα ′i
ψα ′i+1

− λψα ′i
= 0 (27)

The effect of the differentiation of the network with respect to one of its ten-

sor is to remove that tensor from the network. If we now define an effective

Hamiltonian H̃ as:

H̃
α ′i
αi ≡ H

α ′i−1α
′
i

αi−1,αiψ
∗
αi−1

ψα ′i−1
+H

α ′iα
′
i+1

αiαi+1
ψ∗αi+1

ψα ′i+1
(28)
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we see that Equation (27) can be expressed as:

H̃
α ′i
αiψα ′i

= λψα ′i
(29)

which is a local eigenvalue problem for the effective Hamiltonian H̃α
′
i
αi and the

tensor ψα ′i . This procedure can be applied iteratively to all tensors in the net-

work, updating their entries with the result from the minimization at each step,

until convergence is reached.

As it’s already been said at the beginning of the discussion, this procedure

is very general and can be extended to any operator, provided its expression.

TNM provides two very powerfull ansazte for an efficient representation of

many-body operators. They are the Matrix Product Operator (MPO) [37] and

the Tensor Product Operator (TPO) [42]. The former is very suited in case of

MPS representation of the wave function, while the second can be regarded as

a generalization of the first to different network structures.

Starting from this very general introduction to tensor network methods in the

next section we’ll present the essentials about the binary tree tensor network

ansatz, the one used in this work.

4.4 binary tree tensor networks (bttn)

4.4.1 Introduction to bTNN representation

Let’s consider a one dimensional lattice with N = 2L sites, where each site has

an associated local Hilbert space of dimension d and L is the number of layers.

A binary tree tensor network (bTTN) [16, 42, 27] is a loopless structure built on

the top of a one dimensional lattice and it’s fully composed by tensors with

three links. We see from Figure 14a, the nth tensor of the lth layers is refered to

as Λ[l,n]; layers are enumerated from the top to the bottom. The links in the last

layer (the lowest one) are the so-called physical links, they represent the sites of
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(a)
(b)

Figure 14: (a) Example of binary tree tensor network for a system of eight sites. (b)
Graphical representation of the energy expectation value computation with
bTTN.

the lattice and their dimension equals the local dimension of the associated

single-particle Hilbert space. All other links are called virtual links.

The tree structure has the property of mapping two sites of the (l+ 1)th layer

into one coarse-grained site of the lth layer. The full Hilbert spaces of the sites

at layer l have dimension M(l) = d2
L−l

, which increases exponentialy with the

number of physical sites which are blocked together in layer l. An efficient

numerical representation of the many-body state requires to introduce a cutoff

in the dimension of the virtual links. It’ can be done by setting a maximum

bond dimension χmax in way that all virtual links must have a dimension χl 6

min (χmax,d2
L−l

). The number of variational parameters in a bTTN scales as

O(Nχ3).

4.4.2 Ground state search with bTTN

It’s now interesting to see how bTTN can be used to find the ground state

of the system. The procedure explained below can be thought of as a more
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Figure 15: Introduction of the effective Hamiltonian for the local optimization of the
tensors in the network.

efficient version of the one explained in Section 4.3 and which is also the one

implemented in the algorithm. The complete description of this procedure can

be found in [42]; here we’ll provide only general details to give to the reader

the essential knowledge.

For the bTTN, the variational problem in Equation (23) aims at minimizing

the energy in Figure 14b with respect to each tensor. Even in this case, the

underlying idea is to solve local optimization problems for each tensor in the

network, defining an effective Hamiltonian. Let’s look at Figure 15 and sup-

pose we want to solve the variational problem for the red tensor. It means that

all other tensor entires are kept fixed. In this way we can contract the Hamil-

tonian with all other tensors in the network, obtaining the new tensor network

on the right hand side of the figure, which represents an eigenvalue problem

for the red tensor and the effective Hamiltonian Heff. Once it has been solve,

the red tensor gets replaced by the eigenvector corresponding to the lowest

energy eigenvalue. This is done for all tensors in the network and a single

optimization of all tensors is called a sweep. This procedure can be applied

iteratively until convergence to the global ground state is reached.
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Figure 16: Computation of the expectation value of a local observable for the generic
site i of the lattice. The introduction of the isometries in the network allows
to reduce the number of relevant contractions.

As already mentioned in the remarks at the end of previous section, all this pro-

cedure can be performed very efficiently if the Hamiltonian H is represented

using the TPO anstatz.

4.4.3 Computation of expectation values

Once all tensors in the bTTN have been optimized, we can use the ground

state in order to compute the expectation values of observables. As we’ll see

in next chapter a case of particular interest for the purposes of this work is the

computation of the expectation value of a local observable with support only

on the ith single-particle space, as shown in Figure 16.

An efficient way to perform this operations is to isometrise (gauge) the network

with respect to the red tensor, a concept in a way that the large part of the

contractions lead to identities, resulting that only those represented one the

right hand side of Figure 16 are actually relevant [42].

A bTTN can be isometrised with respect to any of its tensor and this results
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in the fact that the number of contractions to perfom in order to compute the

expectation value of local observables is O(1).





5 S T U DY A N D R E S U LT S

In this chepter the whole process done in order to apply TNM to the solu-

tion of the dose optimization problem in IMRT will be discussed. In the first

part the mathematical procedure implemented to convert the classical objec-

tive function into an Ising-like hamitonian we’ll be presented. This procedure

we’ll be validated using an algorithm to perform classical iterative search along

the diagonal of the Hamiltonian. The toy-model we built to this aim will be

described. Finally, in the second part the results obtained with the bTTN algo-

rithm both on the toy-model and on two more realistic cases will be presented.

5.1 mathematical description of the problem

In Section 2.3 the mathematical details about the formulation of the IMRT treat-

ment’s goals in terms of mathematical constraints have been discussed. In this

section discuss how the quadrati cost function in Equation 6 can be converted

into an Ising-like model Hamiltonian. We know from discussion in Section 2.3

that the beamlets weights are real valued and such that xj > 0. In this study

they will be always normalized in order to have xj ∈ [0; 1].

A description in terms of real values doesn’t fit the one in terms of descrete

spin orientations, thus we need to convert the xj into a discrete representation.

The procedure we implemented is based on the decimal-binary conversion:

xj ≈
1

(B/2)

L−1∑
l=0

2lb
(j)
l (30)

43
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with L the bit-depth, i.e. the maximum number of bits used to represent the

number, bjl = {0, 1} and B
2 =

∑L−1
l=0 2

l a normalization constant needed to keep

xj in the interval [0; 1]. The number L is very critical in this context, since it

represents the resolution in the representation of final weights. 2L corresponds

to the number of discrete levels the interval [0; 1] si subdivided into.

In real clinical applications, after any optimization procedure performed with

classical algorithm, the final real-valued beamlets weights are converted into

descrete numbers too. Therefore, L is always a critical number, independently

from the optimizer used. Typical values range from L = 3, 4 or 5.

In order to describe the model as a spin system, each b(j)l has to be mapped

into s(j)l = {−1,+1}, as:

s
(j)
l = 2b

(j)
l − 1 ⇐⇒ b

(j)
l =

s
(j)
l + 1

2
(31)

giving the correspondence b(j)l = 0←→ s
(j)
l = −1 and b(j)l = 1←→ s

(j)
l = +1.

Let’s now go back to Equation (6) and expand the square:

F(~x) =
∑
i

γi


∑

j

aijxj

2
︸ ︷︷ ︸

H1

+D
2(P)
i − 2D

(P)
i

∑
j

aijxj︸ ︷︷ ︸
H2

 (32)

We’ll consider H1 and H2 separately. For compactness of notation, we’ll negletc

the sum over the number of voxels i in the calculations. It’ll be considered only

in the final results.

computation of H1 . This term can be rewritten as:

H1 =

∑
j

aijxj

2 = ∑
j

(
aijxj

)2
︸ ︷︷ ︸

HA
1

+ 2
∑
j<k

aijaikxjxk︸ ︷︷ ︸
HB

1

(33)
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If we insert Equation (30) and (31) into the expression for H1, we obtain:

H1 =
∑
j

aij
∑N−1
n=0 2

n
(
s
(j)
n + 1

)
∑N−1
n=0 2

n+1

2+
+ 2

∑
j<k

aijaik

∑N−1
n=0 2

n
(
s
(j)
n + 1

)
∑N−1
n=0 2

n+1

∑M−1
m=0 2

m
(
s
(k)
m + 1

)
∑M−1
m=0 2

m+1


(34)

Let’s simplify the notation by setting:

M−1∑
m=0

2m+1 =

N−1∑
n=0

2n+1 ≡ B (35)

In this way, we have that:

HA1 =
∑
j

a2ij

B2

N−1∑
n=0

(
2ns

(j)
n

)2
+ 2

∑
n<m

2n2ms
(j)
n s

(j)
m +

(
N−1∑
n=0

2n

)2
+B

(
N−1∑
n=0

2ns
(j)
n

)
(36)

where two constant terms are present:

∑
i

γi

∑
j

a2ij

B2

N−1∑
n=0

(
2ns

(j)
n

)2 ≡ C1 (37)

∑
i

γi

∑
j

a2ij

B2

(
N−1∑
n=0

2n

)2 ≡ C2 (38)
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Since in the ground-state search the constants don’t play any role, they can

be neglected in the final expression of each term. For this reason, the final

expression for HA1 becomes:

HA1 =
∑
i

γi

∑
j

a2ij

B2

(
2
∑
n<m

2n2ms
(j)
n s

(j)
m +B

N−1∑
n=0

2ns
(j)
n

) (39)

Using the procedure, HB1 is given by:

HB1 = 2
∑
j<k

aijaik

B2

[
N−1∑
n=0

M−1∑
m=0

2n2ms
(j)
n s

(k)
m +

B

2

N−1∑
n=0

2ns
(j)
n +

B

2

M−1∑
m=0

2ms
(k)
m +

B2

4

]
(40)

Even in this case, we can rename the constant as:

∑
i

γi

1
2

∑
j<k

aijaik

 ≡ C3 (41)

obtaining that the final expression for HB1 is:

HB1 =
∑
i

γi

2∑
j<k

aijaik

B2

(
N−1∑
n=0

M−1∑
m=0

2n2ms
(j)
n s

(k)
m +

B

2

N−1∑
n=0

2ns
(j)
n +

B

2

M−1∑
m=0

2ms
(k)
m

)

(42)

computation of H2 . The first term of H2 is a constant and it can be rede-

fined as:

∑
i

γi

[
D
2(pred)
i

]
≡ C4 (43)
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Therefore, we obtaind the following expression for H2:

H2 = −
2D

(pred)
i

B

∑
j

aij

[
N−1∑
n=0

2ns
(j)
n +

N−1∑
n=0

2n

]
(44)

If we now introduce the constant term:

∑
i

γi

−D(pred)
i

∑
j

aij

 ≡ C5 (45)

the final expression for H2 becomes:

H2 = −
∑
i

γi

2D(pred)
i

B

∑
j

aij

(
N−1∑
n=0

2ns
(j)
n

) (46)

Finally, the resulting Hamiltonian is:

H = HA1 +HB1 +H2 + c (47)

with c the sum of all constant terms previously defined. H describes a two

dimensional system, with NB columns and NQ rows. NB corresponds to the

number of beamlets, while NQ to the number of qubits1. In other words, we

are representing each beamlet’s weight xj with the spin configuration of NQ
qubits, and the two are connected by a binary-decimal conversion. Interactions

are typically long-range, but the number of terms is determined by the way the

beamlets physically interact inside the tissues, as we’ll see in the following.

1 It is the analogue of the bit in classical information theory and identifies a particle with two
possible states.
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Figure 17: Representation of the two dimensional lattice described by the Ising-like
Hamiltonian obtained from the conversion of the quadratic objective func-
tion.

We now need to rearrange the terms in such a way the final Hamiltonian

takes an Ising-like form, such as:

H({hn(j)}, {Jn(j),m(k)}) =
∑
j

∑
n

hn(j)s
(j)
n +

∑
j,k

∑
n,m

Jn(j),m(k)s
(j)
n s

(k)
m (48)

where j and k run over theNB beamlets, while n andm over theNQ qubits. The

notation n(j) and m(k) stands for the nth(mth) qubit of the jth(kth) beamlet. In

other words, we need to find an expression for the cuplings ({hn(j)}, {Jn(j),m(k)}).

As far as the single-particle terms are concerned, they can be rearranged in the

following way:

HSP =
∑
j

∑
n

[∑
i

γi
B

(
aij

∑
k

aik − 2D
(P)
i aij

)
2n

]
︸ ︷︷ ︸

hn(j)

s
(j)
n (49)
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On the other end, the two-body interaction term becomes:

H2B =
∑
j 6=k

∑
n,m

[∑
i

γi
aijaik

B2
2n2m

]
︸ ︷︷ ︸

Jn(j)m(k)

s
(j)
n s

(k)
m

︸ ︷︷ ︸
Qubits of different beamlets

+
∑
j

∑
m 6=n

[∑
i

γi
a2ij

B2
2n2m

]
︸ ︷︷ ︸

Jn(j)m(j)

s
(j)
n s

(j)
m

︸ ︷︷ ︸
Qubits of the same beamlet

(50)

where we have split H2B into two terms representing interactions of qubits be-

longing to different beamlets and the same beamlet, respectively. The coupling

coefficients are represented by the terms in the square brakets.

The final procedure one needs to apply in order to solve the optimization prob-

lem once the classical objective function has been provided, is the following:

1. Fix the bit-depth NQ;

2. Find the expression of the couplings ({hn(j)}, {Jn(j),m(k)});

3. Search the ground state of the system with the desired algorithm (e.g.

TNM);

4. Read the final state of the qubits in the system, which will have the gen-

eral form: 
s
(1)
1 s

(2)
1 . . . s

(NB)
1

s
(1)
2 s

(2)
2 . . . s

(NB)
2

...
... . . . ...

s
(1)
NQ

s
(2)
NQ

. . . s
(NB)
NQ

 (51)

5. Decodify the weights xj using Equation (30) and (31).

We see that the problem has been formulated in a very general algorithm-

independent form, where the optimization algorithm enters at step 3 only. In

the following we’ll first discuss an entry-level approach based on the iterative

search of the lowest energy eigenvalue through the iteration over the diago-

nal(ized) Hamiltonian. It will be usefull to validate the procedure illustrated

so far as well as to show the scaling of the computational time for inceasing
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numbers of qubits and the necessity to change approach. Finally, in the second

part we’ll discuss the application of TNM.

5.2 classical iterative search approach

Let’s consider Equation (48) and try to write it in a matricial form. This can be

done by making the substitution s(n)j → σz, with the latter the Pauli’s matrix in

the z direction, obtaining the following expression:

H ≡ H({hn(j)}, {Jn(j),m(k)}) =
∑
j

∑
n

hn(j)σ
z(j)
n +

∑
j,k

∑
n,m

Jn(j),m(k)σ
z(j)
n σ

z(k)
m (52)

where σz was chosen because it’s both diagonal and real valued, but in general

the same procedure could be applied also using σx(y). The only important fact

is that the same matrix needs to be used to represent each spin, since we are

dealing with a classical problem, which means that operators have to commute

one each other. Written in this form, the optimization problem becomes the

following:

H |ψ〉 = E |ψ〉 (53)

which is an eigenvalues problem. However, since the Hamiltonian depends

only on σz, it’s already diagonal. Therefore, finding the ground state reduces

to iterate the diagonal of H and take the smallest energy eigenvalue, whose

corresponding eigenvector should represent the solution to the initial problem.

Working in the so-called computational basis, the latter has all entries equal to

0, except for the one in the position corresponding to the position of its eigen-

value in the diagonal of H. For, istance if we consider the eigenvalue in the 4th

position, the corresponding eigenvector will be:
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ψ4 =



0

0

0

1

0
...


(54)

with the length of the vector equal to the dimension of the many-body Hilbert

space. Some remarks about this procedure:

• Equation 54 is a good representation of the generic ground state because

we’re solving a classical problem and we expect to end up with a product

state, meaning the the state of the qubits in the lattice at the end of the

optimization is well determined and no quantum uncertainty is present;

• It may happens that more than one configuration fit the constraints, lead-

ing to a degenerate ground state: we keep one since they have all the

same energy2. From the practical point of view, this degeneration arises

from the physical interaction between different beamlets;

• The solution is exact, meaning that no approximation is introduced in the

ground state research.

From this discussion, it looks like that this very basic approach is enough to

solve efficiently the problem. However if we consider again Equation (52), we

already know from our discussion in Chapter 3 that its dimension increases

exponentially with the number of qubits in the system. We know that the fi-

nal Hamiltonian is the result of the iterative application of the tensor product,

hence we our ability to solve the problems depends on the efficiency in the

representation of the final Hamiltonian. Furthermore as a consequence of the

exponential scaling of the dimension of the many-body Hilbert space, the time

the algorithm takes to iterate all the entries of the diagonal increases exponen-

tially too. Actually, as far as the first problem is concerned, we’re particularly

2 Within the numerical precision.
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lucky, since we’re using only σz to represent the spins, thus typically a recur-

sive formula can be found to compute a given entry of the diagonal without

the necessity of computing the tensor product and storing large matrices. We

implemented an algorithm which can do that. The real problem is related to

the second question: if the length of the diagonal increases exponentially, also

the time to iterate all its elements does. In Section 5.4 we’ll provide a quantita-

tive analysis of this fact, definitely pointing out the reason why it’s necessary

to change approach.

5.3 a toy-model: the 3d box

In order to validate the procedure discussed in Section 5.1 we built a toy-model.

It was realized with the aim of reproducing a simplified version of a 3D med-

ical image of the body, where the tumor and other regions of interest can be

identified. It was realized with the idea of simplifying as much as possible the

description of a real system, owning its basic properties at the same time. We’ll

see during the discussion that it is a useful tool to investigate on the properties

of the different algorithms used. The model consists in a 3D box of arbitrary

dimensions where the following parameters can be tuned:

• Number of voxels on the x, y and z directions;

• The number of region of interests in the box;

• The dose prescription DPi for each voxel in the box;

• The number of beams and their directions;

• The number of beamlets for each beam.

• The beamlets dose profile, i.e. the dose released by each beamlet j to each

voxel i as a function of the depth;

• The priority γi for each voxel.
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The following simplifications were introduced:

• The possible beam directions were limited to 0◦ and 180◦. This was done

in order to simplify the geometrical description of the beam propagation

in the box;

• The dose profile can be any analytical function of the distance, but we

always worked with an ideal beam whose dose deposit is the same for

each voxel;

• The number of voxel in a particular direction is always chosen as a mul-

tiple of the number of beamlets, in order to avoid the case of beamlets

hitting only part of voxels;

• The dose prescription were chosen in order to end up with a system

where the ground state is at EGS = 0. This can be done by choosing dose

values which are compatible with the number of discretization levels 2NQ

used. In practice, this condition is not fullfiled in general, but in this

first part of the study it was needed in order to check if everything was

working properly.

In the end, the information we can extract from this model are the following:

• The influence matrix aij;

• The list of priorities γi;

• The list of prescriptions DPi .

They are exactly the same information a real therapy planning system needs in

order to optimize the plan. These information were stored on separate .txt files,

in addition to a file where the bit-depth clould be specified, in order to make

them easily accessible to the optimization algorithm. In Figure 18a an example

of a slice on the (x,y) plane of a 3D dimensional made up of 48x48x48 voxels

where a bipartition into two regions of interest was created is shown. The

numbers (0 and 1 in this case), identify uniquely each region of interest.
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(a)

Figure 18: Example of a slice of the 48x48x48 voxels 3D box subdivided into two re-
gions of interest.

5.4 3d box optimization: iterative search

In this section we’ll show the main results obtained from the optimization

of the 3D box with the entry-level algorithm for iterative search discussed in

section 5.2. First, the results about the scaling of time with respect to the total

number of qubits in the system will be discussed. Then, a first optimization

result will be shown, in order to validate all the procedure explained so far.

5.4.1 Scaling of the computational time

We’ve already discussed about the pros and cons of the iterative-search of the

ground state, pointing out that the main limit of the procedure is that the

computational time is expected to increase exponentially as the total number

of qubits in the system increases. In order to investigate on this particular

behaviour, we collected samples (Nqubit, Time) for Nqubit between 4 and 20.

In particular, all the samples were collected on the bipartite box shown in

Figure 18a, by choosing different number of beamlets (1 or 2) and different
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(a) (b)

Figure 19: Computational time vs total number of qubits in the system for the
iterative-search algorithm. (a) Natural scale; (b) Logarithmic scale on the
y-axis.

values for the bit depth (3,4 or 5), depending on the total number of qubits

available. Two different doses were prescribed to the two sides the bipartition,

varying the values in order to fullfill the condition E = 0 for the ground state.

We perfomed time averages for each sample in order to obtained an extimate

of the computational time for each of them. After that we performed a fit

with an exponential function t(Nqubits) = aebNqubit . The results is shown in

Figure 19, either in natural and logarithmic scale. The fitting parameters are

a = (9.2± 0.8)× 10−8 and b = (0.847± 0.005). The optimizations were run on

ASUS X750J equiped with Intel i7 4
th gen., 8 GB RAM.

In Table 1 the values used for the fit are reported. The function obtained

was used to make a prediction of the computational time for higher system’s

dimension. We see from the table that simulating a system of 32 qubits would

take about 148 hours, while for 64 qubits about 1013 hours would be required.

As explained before when the algorithm was described, this is the main limit of

this entry-level approach and the main reason why a more efficient algorithm

needs to be used in order to deal with higher system dimensions.
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Nqubits Time [s]
4 (2.80± 0.30)× 10−5
6 (1.29± 0.04)× 10−4
8 (7.22± 0.05)× 10−4

10 (4.41± 0.04)× 10−3
12 (2.52± 0.01)× 10−2
16 (7.37± 0.03)× 10−1
18 (3.88± 0.02)× 100
20 (2.02± 0.06)× 101

32 ≈ 148 h
64 ≈ 1013 h

Table 1: Data points in Figure 19 and extrapolation of the computational time for sys-
tems of 32 and 64 qubits.

5.4.2 First optimization result

We show here the result of the optimization of the 3D bipartite box. In this

particular case two opposite beams of two beamlets each one were used. The

bit depth was set toNQ = 4, resulting in a system of 16 qubits, a number which

can be easily approached with the algorith for iterative-search. The dose for

the left hand side was set to DPleft = 6, while it was set to DPright = 14 for

the right hand one. Doses are expressed in arbitary units. The maximum dose

delivered by each beamlets was set toDmax = 15 In Figure 20a and 20c the final

configuration for each beamlet is shown, together with the final intensity map,

which results in xtotleft = 0.4 and xtotright = 0.933. If we multiply the two values by

Dmax we obtain precisely the dose prescription imposed at the beginning.

This simple example has a central importance, since it’s a proof of the fact

that the procedure we implemented for the convertion of the classical function

into an Ising-like Hamiltonian is correct. Now we’re ready to go on with the

discussion, focusing on the core of the work: the application of tensor network

methods to the solution of the problem.
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(a) (b)

(c)

Figure 20: Result of the optimization of the 3D bipartite box in with two opposite
beams of two beamlets each one. (a) Final beamlets’ values for the first
beam; (b) final beamlets’ values for the second beam; (c) final intensity
map as result of the sum of the other two.
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5.5 bttn algorithm: an overview

The algorithm used to find the GS of the Hamiltonian is very sophisticated and

its complete study and description goes beyond the aim of this thesis. However,

we want to give an idea about its functioning. The algorithm implements a

bTTN and it was coded in order to work either with 1D or 2D system.

The main elements needed to the algorithm to perform the optimization are

the following:

1. The dimensionality of the problem, namely the number of qubits in the

x and y directions in our case;

2. The coupling coefficients, both for the local and interaction terms, as well

as the operators involved (σz in our case);

3. The maximum bond dimension χmax, which determines the maximum

dimension of the virtual links;

4. A rule to stop the algorithm when convergence has been reached.

5. The observables to measure at the end of the computation (spin orienta-

tion for each qubit in our case).

As far as point 3 is concerned, the convergence can be set both in terms of max-

imum number of sweeps and in terms of relative error on the enery values over

a given number of sweeps. In other words, the algorithm is stopped for having

reached the convergence if the error on the last nconvsweeps sweeps is εrel 6 εthrrel .

The choice of both nconvswees and εthrrel depends on the specific problem. In partic-

ular, it turns out that the minimum εthrrel depends on the bond dimension: too

small values can lead to errors in the optimization routines.

There’s also a more practical consideration to be made for εthrrel . Its values de-

termines the accuracy on the final solution. Typically, dose prescriptions are

given with tolerances of the order of some percent, meaning that it might be use-

less to perform optimization with a threshold set to a very small value, since
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higher threshold could lead to equally good results, from the clinical point of

view. In other words, it might happen that a solution found by the algorithm

is sufficient even though it’s not the absolute minimum. This consideration is

very general, the mapping between the errors on the energy and on the dose

is not so straight forward, but it’s something which needs to be taken into ac-

count.

Another important feature provided by the algorithm, is the possibililty to

be run on multiple threads, in order to reduce the computational time. This

features becomes particularly usefull when high dimensional systems are con-

sidered, with a big number of interaction terms.

5.6 3d box optimization: bttn algorithm

In this section the application of the bTTN algorithm to the toy-model of the

3D box presented before will be discussed. The description will follow the

same structure as in Section 5.4. First, we’ll describe the scaling properties of

the algorithm as a function of the number of qubits in the system. The role

of the bond dimension will be then discussed, being it the central parameter

in any tensor network algorithm. In the last part, we’ll show an optimization

result on the bipartite box described before.

5.6.1 Scaling of the computational time

From the information provided in Section 4.4 about the solution of the vari-

ational problem in Equation (23) with bTTN, we know that the ground state

search is an iterative process. Tensors get optimized one after the other by solv-

ing local eigenvalues problem for the effective Hamiltonian at each position in

the tree. A single complete optimization of all tensors in the three is called

sweep, and the number of sweeps needed to reach the result depends on the

specific problem.
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NQ 16 64 256

Time [s] 6.7± 0.6 33± 1 175± 2
Table 2: Values of the points in Figure 21

The numerical complexity for the tree tensor network scale as O(NSχ4), with

N, S and χ the number of qubits in the physical sites, the number of sweeps

and the bond dimension, respectively. In other words, given a value for the

bond dimension, we expect the see a linear scaling of the computational time

as the number of physical sites increases. Furthermore, we can focus on the

single-sweep time, since the number of iterations acts as a multiplication factor

on it, leaving the general trend unthouched.

This property was investigated using the toy-model of the bipartite 3D box. We

collected samples of 100 independent sweeps for three different system dimen-

sions3, 16, 64, 256, and χmax = 6. After the random initialization of the tree

we did just one sweep. This operation was repeated 100 times for each value

of N. In the end, the average and the standard error were computed for each

data point1. We set NQ = 4 and used two opposing beams. The dose delivered

by jth beamlet to the voxels on its path was set to Dj = 15. The dose prescrip-

tions were set to DPright = 14 and DleftP = 6. The beamlets grid for each beam

becomes thicker as the number of qubits in the system increases, as shown in

Figure 22. It means that each voxel is always hit by two beamlets. From the

result shown in Figure 21 we observe that in first approximation the expected

linear trend is fulfilled, up to the limited number of points available.

In Table 2 the values of the points in the plot are reported. The simula-

tion were run on an Asus X750J, Inteli/ 4
th gen., 8 GB RAM. Recalling the

results obtained for the iterative-search algorithm, it’s easy to notice the great

improvement introduced by bTTN algorithm. For example, the time required

to simulate a system of 64 qubits is Nsweeps × O(101 s), order of magnitued

smaller than the 1013 found before, on the same Asus x750j, Intel i7, 8 GB

RAM.

3 We were forced to work with N = 2K for computational reasons.
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Figure 21: Trend of the scaling of the single-sweep computational time vs the number
of qubits, bTTN algorithm

Figure 22: Beamlets grids for each beam for different number of qubits in the system.
(Left) 16 qubits, 2 beamlets per beam; (Center) 64 qubits, 8 beamlets per
beam; (Right) 256 qubits, 32 beamlets per beam.

In the end, bTTN looks like it is an effective choice in order to simulate high di-

mensional system. However, we’ll see that the price to pay in order to keep the

computational time low is that the convergence to the optimal solution is not

always guaranteed. From this point of view ground state search with bTTN is

a statistical process determined by the random intialization of the tensors.The

probability to get to the minimum increases with the bond dimension.

5.6.2 A zero-th order analysis

We want now to give an idea about the statistical nature of the ground state

search for increasing systems sizes. We collected samples of 60 independent
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Nqubits 16 64 256

f(EGS = 0) 60/60 2/60 0/60

Table 3: Frequency of EGS = for three system dimensions on samples of 60 indepen-
dent optimizations. χmax = 6.

and randomly initialized optimizations for each of the three system sizes and

counted the number of times the algorithm reaches the EGS = 0 ground state.

We set the threshold for the convergence to εthrrel = 10−5, requiring it to be

satisfyed for nconvsweeps = 10 sweeps. From Table Table 3 we see that the frequence

of EGS = 0 in the samples descreases as the the system size increases. The

values are listed in Table 3. There are two important fact to mention about this

procedure:

• 60 points in a sample is a very small number considering that we’re work-

ing with random initialization of the tree. The result simply gives an idea

of the complexity of reaching the GS when the system size increases

• The value found for 256 qubits, which is 0/60, doesn’t mean that it’s

impossible to reach the GS for a system of that size. Even in this case, the

number of points in the sample plays a crucial role: it may mean that the

probability is very low, thus more points are needed in order to see at

least once the EGS = 0 ground state.

5.6.3 The role of the bond dimension

In general, we solve a complex quantum spin system with long-range inter-

actions. Even though we expect a ”classical solution” (product state), the op-

timization may require to pass through complex quantum states with high

correlations. In the end, the product state is obtained by truncating all virtual

links in the tree to χmax = 1. The role of the bond dimension in the ground

state search was investigated by considering a fixed system size (64 qubits, the

same used before) and collecting samples of optimizations for different values

of χmax.
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Figure 23: Trend of the average GS energy returned by the bTTN algorithm for differ-
ent values of the maximum bond dimension χmax.

In Figure 23 the average energy 〈EGS〉 for different values of the bond dimen-

sion is shown. The global decreasing trend and it seems to be compatible with

a polynomial function. In Figure 24a a comparison between the distribution

of EGS for χmax = 6 and χmax = 50 is shown and we see that the latter is

visibly shifted towards smaller energy values. The statistical difference among

the two distributions was probed using the Mann-Whitney non-parametric sta-

tistical test for indepedent samples4. The null hypothesis is rejected with a

pvalue = 2.7× 10−13, which confirms that the two distributions are significantly

different for both α = 0.05 and α = 0.01, being α the threshold such that if

pvalue < α the null hypothesis is rejected. This means that the higher bond

dimension guarantees a smaller average error on the ground state EGS.

On the other hand, in the region form χmax = 30 to χmax = 60. the situation

is different. The results of the MW test between the distributions of EGS for

χmax = 60 and χmax = 30, 40 and 50 are reported in Table 4. No significant

differences arise from the test, showing that working with χmax = 60 doesn’t

give an siginificat improvement with respect to χmax = 30.

4 The null hypothesis H0 is that the two samples are not statistically different, while the alterna-
tive hypothesis H1 is that they are.
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(a) (b)

Figure 24: (a) Comparison of the distributions of EGS for χmax = 6 and χmax = 50;
(b) Frequency of the EGS = 0 for the different values of the bond dimension
χmax.

χmax 30-60 40-60 50-60
pvalue 0.25 0.25 0.42

Table 4: Result of the Mann-Whitney test between the EGS distribution for χmax = 60
and χmax = 30, 40 and 50.

In Figure 24b a plot showing the number of time EGS = 0 was found for each

sample is presented. We see the global trend increasing trend.

It is intuitively expected to observe better results for higher χmax. On the other

hand, we know that the numerical complexity in a bTTN scales as O(NSχ4),

thus we should work with the lowest possible value of the bond dimension to

keep the time as smaller as possible. It’s also true that higher bond dimension

could lead to the desired result in a lower number of iterations, as a signifi-

cantly higher subspace of the complete Hilber space is explored. It comes out

that specific consideration have to be made in each specific case. We’ll see for

example in Section 5.7.1 that a very good result can be obtained on the appar-

ently very complicated sphere, even with χmax = 2 and in a few iterations. In

next section we’ll go deeper into the problem showing that, in general, even

configurations with a slightly higher energy than EGS = 0 could lead to a good

result as far as the beamlets configuration is concerned.
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5.6.4 Optimization example

In Figure 25 the final beamlets configuration for the system of 64 qubits is

shown in the case of EGS = 0. As in the case of the iterative search, the results

show that the prescriptions are fullfilled. It is interesting to see also which are

(a) (b)

(c)

Figure 25: Resulting configuration of the beamlets for the first-lowest-energy EGS = 0
optimization result. (a) Beamlet at 0◦; (b) Beamlet at 180◦ (looking from
0◦); Final beamlets configuration.

the configurations corresponding to higher energy values. In Figure 26 and 27

example of configurations corresponding to E2nd = 0.13824 and E3rd = 0.55296

are shown, respectively. They correspond to the second-lowest and the third-

lowest energies in the sample. We observe for the former the configuration is

exactly the same as for EGS = 0, which is the prescribed one. The reason of this

fact is the following. There are cases where the algorithm doesn’t end up in a

product-state, even after cutting the bond dimension to χmax = 1. The state is
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(a) (b)

(c)

Figure 26: Resulting configuration of the beamlets for the second-lowest-energy
EGS = 0.13824 optimization result. (a) Beamlets at 0◦; (b) Beamlet at 180◦

(looking from 0◦); Final beamlets configuration.

in a superposition and the uncertainty is found also in the expectation value

of the local observables, which takes values in [−1, 1] and not exactly ±1. The

interesting fact is that if we choose the state with the highest probability by

rounding positive and negative values to +1 and −1 respectively, the solution

we find is the one corresponding to the closest product-state.

In the second case, we see that the prescription is not satisfied for one weight

only. In particular, the weights is x = 0.533 instead of x = 0.400. We already

know rom Section 5.1 that beamlets are discretized with NQ = 4. Refering

to Equation 51, the beamlets are decodifies using binary-decimal convertion

proceding from the top to the bottom. The difference between the two values

is ∆x = 0.133 = 2/(24 − 1), meaning that they differ only for the flip of one
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(a) (b)

(c)

Figure 27: Final configuration of the beamlets for the third-lowest-energy EGS =
0.55296 optimization result. (a) Beamlet at 0◦; (b) Beamlet at 180◦ (look-
ing from 0◦;) Final beamlets configuration.

qubit in the second position. This fact is very interesting, since it show that the

algorithm got extremely close to the best configuration. The are two important

remarks to do:

1. In general, we don’t know which is the value of EGS, and thus how much

far we are from the best configuration. Furthermore, we don’t know

if this trend is confirmed in general for more complex cases. If it were,

once the optimization has finished we could iterate the lattice and flip the

qubits in order to see whether the energy decreases. If only a few qubits

need to be flipped, this procedure will not be computational expensive

and we can get to the global minimum. The drawback is that the presence



68 study and results

of local minima for more complex functions could make things more

difficult.

2. What we need is an optimal radiotherapy plan. The result we obtain

can be evaluated with different tools, and in general a very good plan

(where good means compatible with the clinical requests) can be obtain even

if the global minimum has not been reached. This is one of the factors to

take into account in real cases, where typically the best plan is always a

compromise between accuracy and computational time.

In next section we’ll show two applications of bTTN algorithm to more realistic

cases.

5.7 application of bttn to real data

In this section we want to present and discuss two applications of the bTTN

algorithm to more realistic optimization problems. In 5.7.1 we’ll consider a

sphere made up of an homogeneous medium, while in 5.7.2 we’ll consider a

real medical image of a prostate cancer, where two organs at risk, the urinary

bladder and the rectum, have been countoured. There are two main features

of the procedure adpoted which make this study very different from that on

the toy-model:

1. The use of images in DICOM format, which is the standard format used

to store medical images;

2. The use of a therapy planning system.
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DICOM Beam Geometry Scattering
Toy-model No Ideal 0◦, 180◦ Yes
Real case Yes Real Arbitrary Yes

Table 5: Comparison between the main features of the toy-model and the real case.

The second element has to do mainly with the creation of the influence matrix

. We used CERR software [2], a free and open-source therapy planning system

based on Matlab. Even if its clinical use is forbidden, it works in the same

way as commercial therapy planning systems. For our purposes, the main

advantage provided by the use of this software are the following:

• It works with real medical images in DICOM format;

• It allows to create IMRT plans with different beam geometries, allowing

to set all typical parameters of interest.

• It works with real beams. The dose calculation can be performed using

different algorithms, which can also account for the scattering of the par-

ticles in the body.

• The optimal number of beamlets is computed by the software itself. What

can be set is the dimension of each beamlet in the x and y direction.

• It provides several tools for the visualization of the results, as well as for

the comparisons among different plans. Some of these tools wll be used

in the following.

In Table 5 a summary of the difference between the study on the toy-model

and the real case is reported.

5.7.1 The homogeneous sphere

The homogeneous sphere was realized with the aim of creating a connection

between the toy-model described before and real medical images acquired by

means of CT. For this reason, we implemented a procedure to store the sphere
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in DICOM format, as it were a real CT scan. This process was performed with

the help of three different software, whose role is described in the following

paragraphs.

matlab for volume creation. We created a 3D array of dimensions (100,

100,100). In real unit it will correspond to a (10,10,10) cm box. The array was

filled with all ones, and this is what makes the medium homogeneous. Using

Matlab built-in functions, we converted it into a DICOM structure, associating

to it all metastructures information needed to make it most possibly close to

a real image. This square box plays the role of the body. The next step is to

create contours for the regions of interest, the sphere in our case.

blender for 3d spherical region creation. Using Blender, a free and

open source 3D creation suite, we created a spherical surface of radius 2 cm

and stored it in a separate file. The last needed step is to connect this structure

to the image of the box, in order to make it ready for radiotherapy planning.

3d slicer for segmentations creation. 3D Slicer is an open source

software platform for medical image informatics, image processing, and three-

dimensional visualization. One of the tools provided by this software is the

possibility to import 3D structures in a proper format, such as those create

with Blender, and use them as segmentations5 for DICOM images. In the end,

they can be saved into DICOM format, ready to be used by a real therapy

planning system.

DP # Beams # Beamlets Beamlets dim Scattering method
1.0 Gy 2 opposing 64 (0.4× 0.4)cm QIB G+P+S

Table 6: List of the main properties of the IMRT plan for the homogeneous sphere.

5 It’s a synonim of contours
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Figure 28: Dose distribution in the sphere before the optimization

We created an IMRT plan with the features listed in Table 6. The compu-

tation of the dose in each voxels per unitary values of the beamlets, i.e. the

entries of the influence matrix, is computed using the CERR’s build-in QIB al-

gorithm [18], which accounts for the contribution of the primary beam as well

as for the scattering. In Figure 28 an image of a slice of the sphere on the three

planes before the optimization is show.

The dose prescription for each voxel was set to DPi = 1.0Gy. We’ll see also

in the following that in general it’s convenient to normalize the prescriptions

with respect to maximum prescription, keeping all values in the interval [0; 1].

This because we’re interested in finding the relative weights of each beamlet,

which is independent to the dose scale. Then, the dose can be rescaled to the

desired value, by keeping the same beamlets weights. Another things which

can help in general is to rescale the entries of the dose matrix so that xj ∈ [0; 1].

As in the previous cases, starting from these quantities, the coupling coeffi-

cients of the Hamiltonian can be computed. The final Hamiltonian describes

a system of 256 interacting qubits, where the number of interaction terms

amounts to Ninter = 32638, a huge number if compared with the ≈ 700 terms
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for the toy-model with 256 qubits. The reason of this big number can be com-

pletely found in the more dense structure of the influence matrix, due to the

presence of scattering. The scattering makes spreads particles in the volume

and makes them hitting also voxels which are not on their path.

In Table 7 a summary of the main parameters of the simulation with bTTN

# qubits # interactions εthrrel nconvsweeps

256 32638 10−5 4

Table 7: Main parameters of the bTTN algorithm for the optimization of the dose in
the sphere and computational time result.

algorithm are reported. In this case, the value of the ground state energy is

not known, thus other tools were needed in order to validate the quality of the

result.

The same optimization was performed using the Matlab built-in function quad-

prog. The convergence of this function is guaranteed in case of convex optimiza-

tion problems as in this case, thus it was taken as a reference. In particular, the

beamlets configuration returned by quadprog was used in order to compute a

reference energy to evaluate the performances of the bTTN algorithm. In Fig-

ure 29 the convergence of the algorithm of χmax = 2, 5 and 10 is shown. The

green dotted line represent the reference value computed with quadprog, and

we see that the bTTN solution converges to the reference as the χmax increases.

The final distribution of the xj for the quadprogfunction and the bTTN algo-

rithm are shown in Figure 30a and 30b, respectively. The two distribution are

very different, there are only a few beamlets having the same values.

However, if we look at the cumulative DVHs in Figure 32, we see that the

resulting dose distributions are very close each other, even though the two

Dmin Dmax Dmean
quadprog 0.95 1.05 0.99 ± 0.01

bTTN 0.95 1.05 1.01 ± 0.01

Table 8: Comparison betweenDmax,Dmin andDmean for the quadprog and the bTTN
algorithm.
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Figure 29: Convergence of the bTTN algorithm for different values of χmax compared
to the expected ground state energy computed with quadprog.

beamlets distributions are quite different. It’s important to remember that the

beamlets weights for the bTTN are descretized using NQ = 4, which means

that the interval [0, 1] is subdivided into steps ∆xj = 0.0666..7. The fact that the

bTTN algorithm works with discrete weights could be one of the reasons of

this difference. At the moment, the only drawback of using bTTN seems to be

the computational time. For the case of χmax = 2 the simulation took ≈ 2.5h on

the Cloudveneto cluster [35], while the one with quadprog only a few seconds

on an ASUS X750J personal computer with Intel i7, 4
th generation, GB RAM.

In Table 8 the values of Dmax, Dmin and Dmean in the two cases is reported.

The values confirm that the results obtained with the two algorithms are con-

sistent. The reason why the prescribed dose is not respected for all the voxels

but only on average is probably due to the particular geometry of the beams

used.

To conclude, in Figure 31 an example of the dose distribution on a slice of the

sphere after the optimization is shown. We observe that compared to the ini-
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(a) (b)

Figure 30: Final beamlets values for (a) the quadprog function and (b) the bTTN algo-
rithm.

Figure 31: Example of the dose distribution on one slice of the sphere after the opti-
mization with bTTN.



5.7 application of bttn to real data 75

Figure 32: Comparison of the cumulative DVHs obtained with quadprog (blue line)
and the bTTN (red line).

tial dose in Figure 28 the maximum is lower and the dose distribution is more

homogeneous.

5.7.2 Prostate with two OARs

After having probed the functioning of the algorithm with the homogenoues

sphere described in 5.7.1, we moved to the real case of a prostate cancer. The

data used were taken from the database of [46].

The prostate was consider as the target, while the urinary bladder and the

rectum as OARs. In Table 9 the main parameters of the treatment plan are re-

# Beams # Beamlets Beamlets dim Scattering method
θ1 = 90

◦, θ2 = −90◦ 64 (0.9× 0.9)cm QIB - G+P+S
Table 9: List of the main properties of the IMRT plan for the prostate with two organs

at risk.
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Figure 33: Trend of the ground state energy EGS obtained with bTTN on the prostate
cancer for different values of χmax

# qubits # interactions εthrrel nconvsweeps

256 32638 10−5 4

Table 10: Main parameters of the bTTN algorithm for the optimization of the dose in
the prostate and computational time result.

ported. The dose for the each voxel of the prostate was set toDPprostate = 1.0 Gy;

it was set to DOARs = 0.0 Gy for the two OARs. Even in this case, the QIB al-

gorithm to compute the influence matrix was used. In Table 10 the parameters

of the simulation are repored. The interesting fact is that nothing has changed

as far as the lattice is concerned with respect to the case of the sphere.

In Figure 33 the trend of EGS for varying χmax is shown. The three results

are very close each other and in this case a general descresing trend is not ob-

served. It’s probable that it could be observed by increasing χmax. In Figure

34 the resulting beamlets distributions the quadprog and bTTN algorithm are

shown. Even though the distribution aren’t equal, we observe that there are

group of beamlets which are activated in both the two cases. This happens,

for example, between 44 and 57, around 30 and before 10. The discretization



5.7 application of bttn to real data 77

(a) (b)

Figure 34: Final beamlets values for (a) the quadprog function and (b) the bTTN algo-
rithm.

could play some role even in this case.

In Figure 35 the resulting cumulative histograms are shown. The unmodu-

lated dose is compared to the results from quadprog and bTTN. For the urinary

bladder and the rectum the distribution coincide. Only small differences are

observed for the prostate. The two results are consistent, showing the well

functioning of the bTTN algorithm. Even in this case, the only drawback of

using bTTN has to do with the computational time. For χmax = 2 the optimiza-

tion took ≈ 3h on the Cloudveneto cluster. The optimization with quadprog

took a few second on an ASUS X750J, Intel i7 4th gen., 8 GB RAM.

The reason why the initial prescriptions are not exactly satisfied for both quad-

prog and bTTN is a limit of using this very simple function. The priorities for

the three organs were set all to γ = 1, meaning the all of them have the same

importance. This lead to a conflict between the different objectives and the

resulting dose is a compromise. In general, the use of more sophisticated cost

functions including Dmax, Dmin, Dmean or other different constraints, can help

to give to the distribution the desired shape. Furthermore, we are using two

opposing beam at θ1 = −90◦ and θ2 = 90◦. Different geometries as well as

using an higher number of beams could improve the quality of the result. In
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Figure 35: A comparison between the unmodulated dose distribution and those ob-
tained with quadprog and bTTN for the prostate cancer.

Figure 36 we see a comparison of the dose distribution on one slice before and

after the optimization. From the top to the bottom the urinary bladder, the

prostate and the rectum are shown.

The initial dose uniformity in the prostate is loss after the opimization, since

the unitary bladder and the rectum have to be spared. As a consequence, we

see that the dose inside both the rectum and the urinary bladder takes lower

values after the optimization. Furthermore, we observe a reduction of the high

dose contribution on the interface between the two OARs and the prostate.

This is a practical proof of the benefit introduced by using IMRT.
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(a) (b)

(c)
(d)

Figure 36: Dose distribution on one slice of prostate and the two OARS before and
after the optimization.





6 C O N C L U S I O N

This thesis aimed to investigate for the very first time the applicability of TNM

to the dose optimization problem in IMRT. We focused on simplest case, the

optimization of a quadratic function expressing the difference between the de-

livered and the prescribed dose.

A procedure to map the classical quadratic function into an Ising-like Hamil-

tonian was implemented, in order to adapt it to the architecture of the bTTN

algorithm. As shown, it was done by discretizing the beamlets weights xj and

exploiting the binary-decimal convertion.

In the first part of the study, we wrote an algorithm to perform iterative-search

of the lowest energy eigenvalue along the diagonal of the Hamiltonian, with

the aim of validating the mapping procedure from the classical to the quan-

tum framework. In particular, it was applied to the toy-model of a bipartite

box and the first successful results were obtained. However, the drawback of

the exponential scaling of the computational time for inceasing system dimen-

sions arose, showing the limited range of applicability of this method. It has

been found that a simulation on a system of 64 qubits would take O(1013 h).

For this reason, a more sophisticated algorithm implementing a bTTN was

used. The choice was validated by showing the great improvement in terms of

computational time introduced by the latter. For the same system of 64 qubits

it was shown to be O(101 s). However, from the first results, the statistical na-

ture of the ground state search with bTTN came out.

In addition to that, the role of the maximum bond dimension χmax was investi-

gated. From the study on the bipartite box for the system of 64 qubits, it came

out that the 〈EGS〉 has a decreasing trend up to a given value of χmax, reaching

a plateau after that. The results were valitated using the MW test.
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From a more detailed analysis on the final configurations, it resulted that in

general the first configurations in energy differs only for the filp of a few qubits.

This fact was considered as an hint of the fact that solutions slightly above the

ground state could also deal to acceptable configurations from the cilinical

point of view.

Finally, in the third part bTTN was applied to more realistic cases: the homoge-

neous sphere and the prostate cancer with the urinary bladder and the rectum

as OARs. The results were validated by comparing them to those obtained

with the Matab build-in function quadprog.

In both the two cases, the results have been found to be very close to the one

computed by quadprog, even with low values of χmax. Furthermore, the role of

the bond dimension was pointed out in this case too, showing how the bTTN’s

solution converges to the optimum solution as χmax increases. This was a fur-

ther hint that configurations which are close to the minimum could lead to

acceptable solutions and in principle those solution can be found even with

small χmax.

The only drawback of TNM with respect to the quadprog function is the com-

putational time. Both for the sphere and for the prostate cancer, the compu-

tation with quadprog takes only a few seconds, while bTTN requires some

hours.

However, the aim of the work was to probe the applicability of TNM to IMRT

dose optimization, and the results gave a positive response.

There are some interesting aspects which could be further investigated. First

of all, it would be very interesting to work with more realistic and sophisti-

cated cost functions, in order insert all the constraints typically used in cilincs.

The use of more complex cost functions would be also interesting in order to

check if TNM can outperform standard algorithms in the search of the global

minimum when many local minima are preent, a task that simple gradient

descent-based methods usually fails to solve.

Another possible direction to explore could be to test different ways to codify

the beamlets weights. One possibility might be to replace the NQ qubits repre-
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senting each beamlets with a single qudit with 2NQ possibile spin orientations.

This would reduce the dimension of the system, creating a 1-to-1 correspon-

dence between the number of sites in the lattice and the number of beamlets

in the beam.

To conclude, there’s still a lot of work do in order to apply all this machinary

to real IMRT treatments, but the results obtained are promising and gives a

glimmer of hope that one day TNM might be used in the fight against cancer.
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