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Ai miei genitori,



“Now this is not the end.
It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.”

Winston Churchill, 1942
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Abstract

The study hereafter was aimed at the comprehension of water desorption from
metal vacuum chambers. This phenomenon is considered the main obstacle for a
fast achievement of UHV (Ultra High Vacuum) pressures in the LHC injectors. Al-
though they have been studied for more than 40 years, water molecules interactions
with metal vacuum chambers are still poorly understood. In this thesis, a numerical
model for the calculation of pressure evolution has been analysed. This model sim-
ulates water desorption through the implementation of three different adsorption
isotherms (Freundlich, Temkin and Sips) and hydrogen outgassing using a diffusive
model. A set of experimental measurements at different temperatures have been
performed on four stainless steel chambers. These have been differently treated:
cleaned for UHV, air-baked, silver-palladium coated, vacuum fired followed by elec-
tropolishing.

Furthermore, the opportunity of improving the vacuum by adding five NEG
lump pumps in the most radioactive sector of the SPS (LSS1) has been analysed.
To do this, a numerical model based on electrical network analogy has been created.
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Sommario

L’obiettivo dello studio seguente è la comprensione del desorbimento del vapore
acqueo da parte di camere da vuoto metalliche. Questo fenomeno è ritenuto il prin-
cipale ostacolo all’ottenimento di pressioni di Ultra Alto Vuoto negli iniettori del
Large Hadron Collider (LHC). In questa tesi, viene proposto un modello numerico
per simulare la discesa di pressione nei sistemi da vuoto. Tale modello include il des-
orbimento di acqua, simulato attraverso tre isoterme di adsorbimento (Freundilich,
Temkin e Sips) ed il degassaggio di idrogeno, simulato come processo diffusivo.

È stata eseguita una campagna sperimentale, con misure a diverse temperature,
in quattro camere di acciaio austenitico trattate differentemente: una pulita per ap-
plicazioni di Ultra Alto Vuoto, una air-baked, una vacuum fired e successivamente
elettropulita, una rivestita di palladio-argento.

Infine è stato analizzato l’effetto dell’aggiunta di cinque pompe NEG nel settore
più radioattivo dell’SPS, tramite un modello numerico basato sul metodo della rete
elettrica equivalente.
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Chapter 1

Introduction

This thesis is the result of the work carried out during one-year project at
the European Organization for Nuclear Research (CERN) in Geneva, Switzerland.
At CERN, the world’s largest particle accelerator is used by physicists to study
the basic constituents of matter - the fundamental particles. The particles are
accelerated close to the speed of light and their collision is studied in the detectors.
The process gives clues about how the particles interact each other, and provides
insights into the fundamental laws of nature.

Figure 1.1: Model of the LHC tunnel and, on the map, the position of the accelerator (the
tunnel is more than 100 meters below the surface).

In Fig. 1.2 an overview of CERN accelerators and detectors is shown. The
particles follow different paths depending on the experiment they are allocated. For
example, in case of particles for ATLAS and CMS experiments, the protons are
created and accelerated in the linear accelerator, LINAC 2. They pass through

1



CHAPTER 1. INTRODUCTION 2

the BOOSTER, the PS and the SPS rings, where their velocity approaches more
and more the light speed. Finally the protons enter the LHC, the Large Hadron
Collider, where they reach their maximum energy before colliding in the detectors.
The design energy is 7 TeV.

Figure 1.2: Scheme of CERN accelerators complex.

To build and test the machines and systems the physicists rely on, teams of
engineers working on several sciences and techniques.
Among these engineering branches, vacuum technology plays a crucial role. To get
an idea, more than 104 kilometres of vacuum chambers are kept under vacuum, at
a pressure 1’000 billion times lower than atmosphere, in the LHC accelerator.

Vacuum at CERN

In particle accelerators, the main aim of vacuum is to avoid gas interaction with
the circulating beam. The degrees of vacuum needed to circulate the beam, as well
as the techniques to obtain it and to keep it, are different from one machine to the
other.
In the SPS for example, the operating pressure (10−8 mbar) is reached in two steps:
first an external pumping group acts until 10−5 mbar; then ion pumps are switched
on obtaining and keeping the desired vacuum level. The entire process of pressure
decrease (called pump-down) takes between 12 and 48 hours, depending on the
surface area and available pumps of the vacuum sector.
Conversely, in the LHC arcs, the operating pressure must be lower than 10−9 mbar.
This value is obtained by cryogenic pumping for the refrigerated sectors (48 km
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long); in fact, as the magnet cold bores are cooled to extremely low temperatures
(1.9 K), the gases condense and adhere by cryosorption. For the long straight
sections (at room temperature) a procedure called bake-out, consisting in heating
all components at 300◦C from the outside, is implemented to achieve pressures lower
than 10−10 mbar. That level is needed to reduce the background in the particle
detector. Two families of pumps are used: Non Evaporable Getter (NEG) coating
that absorbs residual molecules after activation and 780 ion pumps needed to pump
the gases that NEG cannot absorb (noble gases and methane).

The reason of the long pumping time in the injectors and of bake-out use on
the LHC is the presence of water vapour on the surfaces of the vacuum chambers.
These molecules are adsorbed on the walls of vacuum chambers every exposure to
the atmosphere. If water didn’t present this behaviour, Ultra High Vacuum would
be achieved much faster and in a much cheaper way. A small overview of the costs
linked to water presence in CERN accelerators vacuum chambers is presented in
next section.

Costs linked to water desorption for CERN accelerator complex

CERN accelerators, during their operation, undergo several unforeseen stops.
From 2010 tens of interventions were needed to repair, replace or upgrade elements
in the beam lines [25]. Each time, vacuum needs to be re-established before running
again the machine. This long operation, delayed by water outgassing or by bake-out,
implies a series of costs. These can be classified as follows:

• Non-exploitation costs. In 2012, the interventions took nearly 500 hours in
total. In average, half of this time is lost in obtaining again low pressures
in the line. The whole LHC accelerator complex, a 1.5 billions e machine is
blocked 250 hours each year because of pump-down or bake-out.

• Intervention costs: costs linked to the equipement and man-power needed to
reduce water outgassing. For example, nearly 20 sectors per year need to be
baked for technical stops, representing a cost of 300’000 e/year [39].

• Design costs. In order to be able to undergo bake-outs, LHC vacuum chambers
require a dedicated design. For example, the copper used for the 6 km room
temperature beam lines, is doped with silver in order to obtain higher thermal
conductivity, resulting 40% more expensive then usual OFHC (Oxygen free
high thermal conductivity) copper [10].

From what exposed above it is evident how much the water outgassing influences
LHC and injectors operations as soon as they are exposed to atmospheric pressure.
For this reason, a study to understand how water molecules behave on metal vacuum
surfaces was developed. A model to simulate water vapour behaviour was proposed
and compared with dedicated experimental results.
In addition, by exploiting this model, a sector of SPS injector in the long straight
section 1 (LSS1) was simulated. The aim was to analyse how vacuum can be
improved by lump NEG pumps.



Chapter 2

Introduction to vacuum systems

Vacuum technology finds application in many fields: from food processing and
wood drying to medical, aerospace and coating science. Among these applications,
vacuum plays a crucial role in accelerators technology.
In this context, the main goal of vacuum is to avoid the gas-beam interaction leading
to a series of unwanted phenomena as beam size increase, beam life-time reduction,
etc. [30]. In addition, vacuum protects high-voltage equipment and provides ther-
mal insulation for cryogenic systems [3].

2.1 Basic notions on vacuum technology

In the framework of vacuum technology for particle accelerators, a rarefied gas
in equilibrium is always described by the ideal gas equation of state [19]:

pV = NkBT (2.1)

or
p = nkBT (2.2)

where p, V and T are the gas pressure, volume and temperature, respectively; kB
is the Boltzmann constant (1.38 10−23J/K); N is the total number of molecules in
the gas and n is the gas density.

The most common pressure units are mbar and Torr which are related to Inter-
national System of Unit, the Pascal 1 Pa=1 N/m2, by the following relations:

1 mbar = 102 Pa = 0.75 Torr

1 Torr = 133.32 Pa = 1.33 mbar

The number of molecules of gas can be expressed as pressure-volume (p × V )
values at a given temperature. Pressure-volume quantities are converted to number
of molecules dividing them by kBT as given in the equation of state. For example,
1 mbar · ` at 293 K is

N =
1[mbar · `]

1.38 10−23[J/K] 293[K]
=

0.1[Pa ·m3]

1.38 10−23[J/K] 293[K]
= 2.47 1019 molecules

4



CHAPTER 2. INTRODUCTION TO VACUUM SYSTEMS 5

In vacuum systems, pressures span several orders of magnitude. Degrees of
vacuum are defined by upper and lower pressure boundaries. Different degrees
of vacuum are characterized by different pumping technologies, pressure gauges,
materials and surface treatments. For example, ion sources operate in the degrees
of vacuum that are usually called medium and high vacuum, while in the LHC
experimental beam pipes the unltra high vacuum range is attained.

Definition Pressure Boundaires [mbar]

Low Vacuum LV 103 − 1

Medium Vacuum MV 1− 10−3

High Vacuum HV 10−3 − 10−9

Ultra High Vacuum UHV 10−9 − 10−12

Extreme Vacuum XHV < 10−12

Table 2.1: Degrees of vacuum and their pressure boundaries from Lafferty [19].

2.2 Knudsen Number

In any physically limited vacuum system, molecules collide between each other
and with the walls of the vacuum envelope. In the first case, a characteristic pa-
rameter is defined as the average length of the molecular path between two points
of consecutive collisions, i.e. the mean free path λ̄. It is inversely proportional to
the number density n = p

kBT
and the collision cross section σc [19]:

λ̄ =
1√

2πnσc
(2.3)

For elastic collisions between hard spheres, Eq. 2.3 can be written in terms of the
molecular diameter δ:

λ̄ =
1√

2πnδ2
=

kBT√
2πPσc

(2.4)

The ratio of λ̄ and the characteristic dimension of a vacuum system (D), called
Knudsen number is a key parameter for the gas dynamic regime definition [19]:

Kn =
λ̄

D
(2.5)

In fact, when the mean free path is very small, like at atmospheric pressure, the
collisions between particles have big influence on the gas flow. When the path is
in the range of the dimensions of the vacuum vessel, molecular collisions with the
wall become preponderant. For even longer λ̄, the gas dynamic is dominated by
molecule-wall collisions: intermolecular interactions lose any effect on the gas flow.
Typical beam pipe diameters are of the order of 10 cm. Therefore, free molecular
regime is obtained for pressures in the low 10−3mbar range or lower. Except for ion
sources, vacuum systems for accelerators operate in free molecular regime. [3]
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Kn range Regime Description

Kn > 0.5 Free molecular flow Gas dynamics dominated

by molecule-wall collisions

Kn < 0.01 Continuous (viscous) flow Gas dynamics dominated

by intermolecular collisions

0.01 < Kn < 0.5 Transitional flow Transition between molecular and

viscous flow

Table 2.2: Gas dynamic regimes defined by Knudsen number.

2.3 Gas kinetics

The kinetics of ideal-gas molecules are described by Maxwell-Boltzmann distri-
bution [19]. For an isotropic gas, the model provides the distribution of the molec-
ular speed magnitudes. The average speed of molecules v̄ in a Maxwell-Boltzmann
distribution is given by:

v̄ =

√
8kBT

πm
=

√
8RT

πM

[m

s

]
(2.6)

where m is the mass of the molecule, M is the molar mass, R is the ideal gas
constant, T the temperature and kB in the Boltzmann constant. Tab. 2.3 shows
the mean speed for common gas at room temperature.

N2 H2 H2O CH4

v̄ 470 1761 588 622

Table 2.3: Mean speed according Maxwell Boltzmann distribution for common gases at
293 K.

Another important result of Maxwell-Boltzmann theory is the calculation of the
molecular impingement rate ν on a surface, i.e. the rate at which gas molecules
collide with a unit surface area exposed to the gas. Assuming that the density of
molecules all over the volume is uniform, it can be shown [19] that:

ν =
1

4
nv̄

[
molecules

unit area · unit time

]
(2.7)

Usually ν is expressed in mbar · ` cm−2s−1.
Numerical values as a function of pressure, at room temperature are shown in
Tab. 2.4.
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Gas Pressure [mbar] ν

[
molecules

s cm2

]
N2 10−3 2.9× 1017

10−8 2.9× 1012

H2 10−3 1.1× 1018

10−8 1.1× 1013

10−14 1.1× 107

H2O 10−3 3.6× 1017

10−8 3.6× 1012

Table 2.4: Impingement rate for common gases at room temperature at some selected
pressures.

2.4 Conductance in free molecular flow

In free molecular regime, the net gas flow Q between two points of a vacuum
system is proportional to the pressure difference (p1 − p2) at the same points:

Q = C(p1 − p2) (2.8)

C is called the gas conductance of the vacuum system between the two points. In free
molecular regime, the conductance does not depend on pressure. It depends only on
the mean molecular speed and vacuum system geometry. If the gas flow units are
expressed in terms of pressure-volume (for example mbar · `/s), the conductance is
reported as volume per unit time, i.e. `/s.

2.4.1 Conductance of an orifice

The conductance is easily calculated for the simplest geometry, i.e. a small
orifice of surface A and infinitesimal thickness dividing two volumes of the same
vacuum system (see Fig. 2.1) in isothermal condition.

The net molecular flow from one volume to the other may be calculated by the
molecular impingement rate given by Eq. 2.7. The number of molecules of volume
1 that goes into volume 2 (ϕ1→2) is:

ϕ1→2 =
1

4
An1v̄

while from volume 2 to volume 1 is:

ϕ2→1 =
1

4
An2v̄

The net molecular flow is given by the difference of the two contributions:

ϕ1→2 − ϕ2→1 =
1

4
Av̄(n1 − n2)
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Figure 2.1: Schematic drawing of two volumes at different pressures p1 and p2 divided by a
small orifice of surface A.

and from Eq 2.2,

ϕ1→2 − ϕ2→1 =
1

4

v̄

kBT
A(p1 − p2)

[
molecules

unit time

]
Expressing the flux in pressure-volume units we finally obtain:

Q =
1

4
v̄A(p1 − p2) (2.9)

Comparing Eq. 2.8 and 2.9, it is clear that the conductance of the orifice is pro-
portional to the surface area of the orifice and the mean speed of the molecules:

C =
1

4
v̄A ∝

√
T

m
(2.10)

In particular the conductance of the orifice is inversely proportional to the square
root of the molecular mass:

C1

C2
=

√
m2

m1
(2.11)

As an example, CN2 =
√

2/28 CH2 = 0.27 CH2 . Table 2.5 collects conductance
values for an orifice C ′, per unit surface area at room temperature for common gas
species.

Gas H2 He CH4 H2O N2 Ar

C ′
[

`
s cm2

]
44 31.1 15.5 14.7 11.75 9.85

Table 2.5: Unit surface area conductances for common gas species.
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2.4.2 Conductance in a complex geometry

For geometries more complex than orifices, the transmission probability τ is
introduced. If two vessels, at the same temperature, are connected by a duct
(see Fig. 2.2), the gas flow from V1 to V2 is calculated multiplying the number
of molecules impinging on the entrance section of the duct by the probability τ1→2

for a molecule to be transmitted into vessel 2 without coming back to vessel 1:

ϕ1→2 =
1

4
A1n1v̄τ1→2 (2.12)

�, �� �, ��
��

��

Figure 2.2: Schematic drawing of two vessels connected by a complex duct.

Similarly, the gas flow from V2 to V1 is written as:

ϕ2→1 =
1

4
A2n2v̄τ2→1 (2.13)

In absence of net flow ϕ2→1 = ϕ1→2 and n1 = n2, then:

A1τ1→2 = A2τ2→1 (2.14)

When n1 6= n2 a net flow is set up. It can be calculated taking into account Eq. 2.12,
2.13, 2.14 and 2.2:

Q =
1

4
A1v̄τ1→2(p1 − p2) = C ′A1τ1→2(p1 − p2) (2.15)

where, C ′ is the conductance of an orifice. Finally for a complex geometry it has
been found that:

C = C ′A1τ1→2 (2.16)

These results show that the conductance depends only on the speed of molecules and
on the transmission probability, which depends on the geometry of the connecting
duct. One of the main goals of vacuum computation is to find the value of τ1→2.

2.4.3 Evaluation of the transmission probability

The transmission probability depends only on the geometry of the vacuum com-
ponents. It may be calculated analytically for simple geometries by means of rela-
tively complex integral equations (Clausing equations, see Ref. [5]).
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For the very common case of tubes of uniform circular cross section of length
L and radius R the Santeler equation [31] gives transmission probability with less
than 0.7 % error.

τ = τ1→2 = τ2→1 =
1

1 + 3L
8R

(
1 + 1

1+ L
7R

) (2.17)

For long tubes, i.e. L/R� 1, this equation can be simplified:

τ ≈ 1

1 + 3L
8R

≈ 8R

3L
(2.18)

Combining Eq. 2.18 with 2.16 gives the conductance for long circular pipes. For N2

it can be written as:

C ≈ 11.75
πD2

4

4D

3L
= 12.3

D3

L

[
`

s

]
As a result, the conductance of a tube is strongly dependent on its diameter.

Conductances of more complicated components are calculated by Test-Particle
Monte Carlo methods (TPMC). The system is first modelled in three dimensions,
then TPMC codes generate molecules at the entrance of the component, pointing in
”random” directions according to the cosine distribution. When molecules impinge
on the internal wall of the component, they are re-emitted again randomly. The
program follows the molecular traces until they reach the exit of the component.
The transmission probability is given by the ratio of number of ”escaped” particles
and ”injected” molecules [6]. Many simulated molecular trajectories are needed to
reduce the statistical scattering.

The reference TPMC software at CERN is Molflow+ [17]. This powerful tool
imports 3D drawing of vacuum components and generates ”random” molecules on
any surface of interest. During this thesis it has been widely used for SPS pressure
profile studies. Fig. 2.3 shows an example of a kicker magnet in the LSS1 section
simulated by Molflow+.

Figure 2.3: Meshes used for Monte Carlo simulation of the MKQVL kicker of SPS BA1.
The second picture shows molecular tracks (in green) generated by Molflow+ code.
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2.4.4 Combination of conductances

Elementary vacuum components are installed either in series, i.e. traversed by
the same net gas flow, or in parallel, i.e. with equal pressures at the extremities.

�� �� ��

��
��

��

��
�� ��

Figure 2.4: Schematic drawings of components installed in series (top) and parallel (bot-
tom).

With reference to Fig. 2.4, the net gas flow in the two components connected in
series is given by the following eqations:

Q = C1(p1 − p2)

Q = C2(p2 − p3)

A total conductance CTOT equivalent to C1 and C2 is introduced in a way that:

Q = CTOT (p1 − p3)

The resulting conductance is:

1

CTOT
=

1

C1
+

1

C2
(2.19)

In general for N components in series:

1

CTOT
=

N∑
i=1

1

Ci
(2.20)

In the same way it can be shown that for N components installed in parallel the
total conductance is the sum of the conductances of all components:

CTOT =

N∑
i=1

Ci (2.21)

2.5 Pumping speed

In vacuum technology, a pump is any component that removes molecules from
the gas phase. A vacuum pump is characterised by its pumping speed S, which is
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defined as the ratio between the pumped gas flow Qp (pump throughput) and the
pump inlet pressure p.

S =
Qp
p

[
`

s

]
(2.22)

The pumping speed unit is volume over time, thus the same unit as conductance.
In a more general way, S can be defined as the derivative of the pump throughput
with respect to the pump inlet pressure:

S =
∂Qp
∂p

The pump throughput can be written as the gas flow ϕ through the cross section of
the pump inlet (surface area Ap) multiplied by the capture probability σ, i.e. the
probability for a molecule that enters the pump to be definitely removed and never
reappear in the gas phase of the vacuum system.

Qp = ϕApσ =
1

4
Ap nv̄σ

Considering Eq. 2.10 and 2.2, we obtain that:

Qp = ApC
′nσ = ApC

′σ
p

kBT

From the definition of pumping speed and converting in pressure volume units:

S = ApC
′σ (2.23)

Therefore, the pumping speed is equal to the conductance of the pump inlet cross
section multiplied by the capture probability. The maximum theoretical pumping
speed of any pump is obtained with

σ = 1

and it is equal to the conductance of the pump inlet cross section.

The pumping speed given by the suppliers is called nominal pumping speed;
it refers to the pump inlet. The effective pumping speed Seff is the one acting
directly in the vacuum vessel of interest. The effective pumping speed is lower than
the nominal due to gas flow restrictions interposed between the pump and the vessel.

The effective pumping speed is calculated considering the gas flow from the
vessel to the pump. Taking into account Eq. 2.10 and Eq. 2.22

Q = C1(p1 − p2) = Sp2 = Seffp1

1

Seff
=

1

S
+

1

C
(2.24)

As a result, for C � S, Seff ≈ C. In other words, the effective pumping speed does
not depend on the installed pump if the conductance of the interposed connection
is very low.



CHAPTER 2. INTRODUCTION TO VACUUM SYSTEMS 13

��

��

�

Vacuum
Vessel

Pump

Figure 2.5: Schematic drawings of component of a gas flow restriction of conductance C
interposed between a pump of pumping speed S and a vacuum vessel.

2.6 Pressure profile calculation

The calculation of the pressure profile is an essential task for vacuum system de-
sign. In general, the contributions to the total pressure of localized and distributed
gas sources are considered separately and finally added. This is possible because in
most of the cases the equations that describe pressure profiles are linear [3]. This
may not be true if the pumping speed is pressure dependent.

Examples of pressure profiles generated by localized gas sources

The pressure in a vacuum vessel is obtained by taking into account Eq. 2.22 and
the intrinsic limitation p0 of the installed pumping system:

p =
Q

S
+ p0 (2.25)

The base pressure p0 can be expressed as the pressure attained by the system
without any gas load [3].

When many vessels are interconnected, the flow balance is written (node analysis
[3]). This analysis leads to a system of linear equations from which the pressure
values in each vessel are calculated. As an example, with reference to Fig. 2.6, in
the first vessel, the injected gas flow Q is either pumped p1S1 or transmitted to
the second vessel C(p1 − p2). This latter flow is pumped in the second vessel or
transmitted in the third vessel and so on.

Q = p1S1 + C1(p1 − p2)
C1(p1 − p2) = C2(p2 − p3) + p2S2
C2(p2 − p3) = C3(p3 − p4) + p3S3
C3(p3 − p4) = p4S4

(2.26)

When a second localised gas flow is settled, the node analysis is repeated. The
contributions of each localised gas flow to the pressure values are then added.
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Figure 2.6: Schematic drawing of 4 interconnected vacuum vessels.

Equivalent electrical network

Looking at some of the equation studied (Eq. 2.8, Eq. 2.21, Eq. 2.20) it’s possible
to realise that there is an analogy between vacuum systems and electrical networks
[3, 19]. For example the following equation:

Q = C(p1 − p2)

can be related to the electric equation

I = C(V1 − V2)

where I represents the electric current, C the electrical conductance and V the
potential. It is possible to correlate each vacuum component and variable with
electrical elements and characteristics. The ground potential is equivalent to zero

Vacuum element Electrical element

Pressure p Voltage V

Gas Flow Q Current I

Conductance C Conductance C or Resistance 1/C

Volume V Capacitance C connected to the ground

Pump Conductance or resistance (inverse) connected to the ground

Gas source Current generator

Constant pressure source Voltage supply

Table 2.6: Electrical analogy for vacuum components and variables.

pressure. A vacuum chamber of a given conductance and volume corresponds to
two resistances and a capacitance. For symmetry, the capacitance is placed into the
middle of two resistances. If a local gas source and a pump are added, a current
generator and a resistance to ground are connected to the circuit.
An example of electric analogy is shown below. The simple pumping element shown
in Fig. 2.5 can be translated in the electrical network shown in Fig. 2.7.

In case of uniformly distributed outgassing and lump pumps, the pressure pro-
files are calculated analytically for simple geometries [3, 19].
For more complex systems numerical solutions are needed. For example, long beam
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Figure 2.7: Electric network of a simple pumping unit as in Fig. 2.5.

pipes are subdivided into small units to calculate the axial pressure distribution; the
small units are considered as single vacuum chambers (volume and conductance) in
series. The conductance of a single small unit is equal to the conductance of the
entire vacuum chamber times the number of units [3]. Distributed outgassing is
taken into account by inserting a current generator on each unit.

The electrical network is solved by dedicated software, for example LTSpice
[8]. The time evolution and pulsed sources are easily included in the calculation.
Non-linear electric components are used to simulate pressure and time dependent
conductances and pumping speeds. A clear application of this analysis method is
shown in Chap. 5 with the study of the pressure profile of one SPS sector.

2.7 Pumps description

The vacuum pumps can be classified according to the physical principle they
use to empty the vessels. A simplified overview on existing vacuum pumping tech-
nologies is shown on Fig. 2.8. In particular, a distinction is made between gas-

Figure 2.8: Scheme of the main types of vacuum pumps. In every family are highlighted
only the ones used in this thesis.

displacement vacuum pumps and gas-binding (capture) vacuum pumps. In capture
vacuum pumps the molecules remain inside the pump itself by chemical bonds (Get-
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ter Pump, Ion Pump) or cryopumping. The Gas Transfer Pumps instead displace
gas from the vacuum side to an exhaust side, thanks to a mechanical action on gas
molecules [27].

2.8 Outgassing in vacuum systems

Several gas sources contribute to the total gas load in a vacuum system. Inten-
tional gas injections may be the main source of gas in beam-gas interaction monitors
and ion sources [3]. Air leaks due to loss of tightness of components, welds and gas-
kets can be eliminated by an appropriate design and choice of materials. Finally, the
release of molecules from materials represents, in most of the cases, the dominant
source of gas when the system is in free molecular regime. This gas release can be
defined as [3]:

• Outgassing: when the gas removal is spontaneous, i.e. provoked by thermal
vibration at standard temperature of the apparatus;

• Degassing: when gas molecules are freed by deliberate action, for example
heating at high temperatures or bombarding the surface with particles (pho-
tons, electrons, ions);

Different phenomena can explain outgassing, like gas dissolution and diffusion (see
Fig. 2.9). Outgassing properties depends on the nature of materials, and on the
applied surface and thermal treatments.

Figure 2.9: Fluxes for a general surface.

2.8.1 Water outgassing in metals

Widely recognised experimental results [7, 13, 16, 21] show that water vapour
dominates the outgassing process of metals in vacuum. For smooth metals, the
outgassing rate is inversely proportional to the pumping time t. The outgassing
rate for stainless steel at room temperature can be empirically described by the
following equation [3]:

QH2O ≈
3× 10−9

t[h]

mbar`

cm2s
(2.27)

Such behaviour determines the pressure-time evolution of unbaked metallic vacuum
systems.
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Figure 2.10: Water vapour outgassing rate of stainless steel and aluminium after four dif-
ferent surface treatments as measured by Dylla [7].

The average time that a molecule spends on the surface before being desorbed is
defined as mean sojourn time τ . This term is dependent on the surface temperature
T and on the molecule binding energy E [19]:

τ = τ0e
E
RT (2.28)

with τ0 the nominal period of vibration of an adsorbed molecule, of the order of
10−13 s [19] and R the gas constant.
In Tab. 2.7 are reported some values of τ as function of the binding energy at
room temperature. In the case of water vapour, the sojourn time varies between
some minutes to several hours (see Fig. 2.10). Thus, at room temperature, water
binding energies during a pump-down varies in a window between 15 kcal/mole and
25 kcal/mole [28].

Binding energy: E Mean sojourn time τ
[kcal/mole]

10 2.6 µs
15 13 ms
20 66 s
22 33 min
23 3.1 h
24 17 h
25 92 h

Table 2.7: Mean sojourn times for different energies, τ0 = 10−13 s, T = 295 K [28].

Water vapour outgassing rate may be reduced by acting either on molecules
binding energies (changing the surface nature) or on the system temperature. The
latter may be divided in two alternative solutions [3]:

1. Heating in situ during part of the pump-down time (bakeout). The bakeout
is very effective for metals if it is carried out of at least 12h at temperatures
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higher than 120◦C. Water molecules are removed (since τ decreases at higher
T ) and are pumped out faster during the heating time. A much lower pressure
is obtained when the system is cooled down again to room temperature, see
Fig. 2.11.

Figure 2.11: Pressure evolution in aluminium chamber [16]. The pressure increase represents
the beginning of the bakeout. The pressure drop follows the system cooling down to room
temperature.

2. Permanently cooling the vacuum system to cryogenic temperature during op-
eration: water molecules have a longer sojourn time and lower pressures are
quickly achieved. Note that the molecules are still on the surface, but the
temperature is too low for them to be desorbed.

2.8.2 Hydrogen outgassing

When water vapour desorption is strongly reduced, the outgassing process is led
by H2. This gas is dissolved in metals as single H atoms. Its diffusion is relatively fast
and, after recombination on the surface, it can be released as molecular hydrogen [3].
As for water vapour, hydrogen-outgassing rate is reduced by heating the vacuum
components. Higher temperatures increase the H atoms mobility and, as a result,
accelerate the depletion of the residual hydrogen content. However, there is a crucial
difference between water vapour and hydrogen. Each time the vacuum system is
exposed to air, water molecules re-adsorb on the surface, while hydrogen is not
recharged in the bulk of the metal [3, 7].
Typical values of hydrogen outgassing are shown in Tab. 2.8. As for an activated
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Material Bakeout T[◦C× 24h] QH2 [mbar`/s/cm2]

Austenitic st. steel 150 3× 10−12

Copper Silver added 150 3× 10−12

Beryllium 150 < 10−14

Al alloys 150 < 10−13

Table 2.8: Typical hydrogen outgassing rates after bakeout of metals used in particle accel-
erators [3].

process, QH2 depends exponentially on temperature [3]:

QH2 ∝ e
− E
kBT (2.29)

where E is the activation energy for the diffusion process (about 0.52 eV for austenitic
stainless steel, [14]).

2.8.3 Pump-down of metal vacuum chamber

The pressure over time curve for a vacuum chamber from atmospheric pressure to
any degree of vacuum is called the pump-down curve [3]. During this descent, after
the evacuation of atmospheric gases, the pressure level is determined by the wall
outgassing (desorption of adsorbed layers or diffusing molecules) and the pumping
surfaces (pumps, wall itself).
In any vacuum chamber, the mass balance equation can always be set as:

V

kBT

dp

dt
+

S

kBT
p+

dNa

dt
= 0 (2.30)

where p is pressure in the gas phase in mbar, Na the number of adsorbed molecules.
The term V

kBT
dp
dt represents the change of number of molecules in the gas phase.

S
kBT

p is the flow leaving the gas phase, pumped-out by the pump.

The third term (dNdt ) represents the change of molecules adsorbed on the surfaces
of the vacuum system. It can be defined as the net flow to the surface from the gas
phase [28]:

dNa

dt
= Qads −Qdes (2.31)

where Qads and Qdes represent the flow of molecules respectively adsorbed and
desorbed by the surface exposed to vacuum. At the beginning of the pump-down
the main contribution to the pumped flux is given by the atmospheric gases present
in the volume. In this situation, the influence of the desorbed flux is negligible [19].
The mass balance becomes:

V
dp

dt
+ Sp = 0 (2.32)

The solution of this differential equation gives an exponential decay seen in the first
part of the pump-down curve in Fig. 2.12 :

p = p0e
− t
τp (2.33)
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Figure 2.12: Pump down for a SS 316L chamber at 293 K.

where τp = V
S is the characteristic pumping time.

The second part of the pump-down is governed by water vapour outgassing.
Fig. 2.12 shows the 1/t behaviour described in Eq. 2.27. Horikoshi [13] and Kanazawa
[16], demonstrated that water vapour desorption can be described as a quasi-static
solution of the mass balance (Eq. 2.30).
The concept of quasi-static solution lies on considering the adsorption/desorption
process fully reversible, i.e. the gas and the surface phases are in equilibrium with
a reaction time that is short compared to the time for an observable change in
pressure. This implies that the number of adsorbed molecules adapts quickly to
pressure changes [28].
This condition is verified for water desorption. In fact, at the beginning of the
pump-down, when observable changes in pressure occur in seconds, molecules with
E ≈ 15 kcal/mole are desorbed (mean sojourn time is of the order of millisecond
for these energies, see Tab. 2.7). At the end of the pump-down, when measurable
changes in pressure occur in hours, the molecules with E = 22 ÷ 23 kcal/mole are
desorbed (τ = 30 min ÷ 3 hours, see Tab. 2.7). Due to their energy during the
pump-down, the sojourn time of the water molecules is lower than the time it takes
for observable changes in pressure.

The comprehension of the variation of the number of adsorbed water molecules
dNa/dt is the key for the pump-down understanding and simulation. The next
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chapter is focused on this term and on how it can be written in the frame of the
quasi-static model.



Chapter 3

Adsorption isotherm model for
water

3.1 Choice of the model: Diffusion vs Adsorption

As shown in Fig. 2.9, outgassing can be the result of different phenomena. In
the literature, two main theories have been developed in order to model water
desorption: one based on diffusion-limited outgassing and the other described on
the basis of adsorption isotherm. Li and Dylla [21–23] assume that desorption from
the adsorbed phase occurs so rapidly that the process is governed only by the rate
of diffusion of molecules along pores or grain boundaries of the oxide layer [28].
Redhead [28], Kanazawa [16] and Horikoshi [13] assume that molecular diffusion is
either non-existent or occurs very fast so that the outgassing is regulated only by
the rate of desorption.

At the beginning of the project it has been decided to follow adsorption isotherm
models, ignoring the possible diffusion of water on the surface. Adsorption studies
have a generic approach: the geometric arrangement of molecules on the surface and
the species distribution are not detailed. The only necessary information for such
models is the order of the desorption process and the binding energy distribution of
molecules on the surface. The good agreement with experimental data makes these
models the most developed in the literature [4, 13,16,28].

3.2 Adsorption isotherm model

The adsorption isotherm model, proposed first by Horikoshi [13], and devel-
oped by Kanazawa [16] and Redhead [28] is based on the following hypothesis and
definitions:

1. The surface is seen as an ensemble of Nsites sites. Each site is considered filled
with only one molecule, without dissociation [16]. The ratio of the number
of filled sites Na to the total number of available sites Nsites is called surface
coverage θ:

θ =
Na

Nsites
=

na
nsites

(3.1)

22
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where na represents the surface density of filled sites and nsites the total surface
density of sites;

2. The surface has a sticking probability s (i.e. the probability that an impinging
molecule is captured by a site) equal and constant for all water sites [28].

3. The quasi-static solution and the reversibility condition are fulfilled (see Sec. 2.8.3).
Kanazawa [16] showed that these hypothesis are verified if:∣∣∣∣1p dpdt

∣∣∣∣� s
A

V

v̄

4
(3.2)

where v̄ is the average molecular velocity, A and V the surface and volume of
the system. Considering a standard 1 meter long SPS chamber (diameter of
159 mm), with A = 4.995× 103 cm2, V = 19.86 `, and taking v̄ = 5.94× 104

cm/s for water at 300K: ∣∣∣∣1p dpdt
∣∣∣∣� s 3.7× 103 s−1.

When p = 10−8mbar (with s = 0.1) dp/dt� 3.7× 10−6 mbar/s.
When p = 10−4mbar (with s = 0.1) dp/dt� 3.7× 10−2 mbar/s.
During the pump down of a typical vacuum system the change rate of pressure
is far below these limits: the quasi static solution is applicable.

The first consequence of reversible adsorption assumption is that surface cover-
age may be expressed as a function of pressure by a suitable adsorption isotherm [28].
This is represented in general as

θ =
Na

Nm
=
na
nm

= f(p, T ) (3.3)

where m indicates monolayer coverage 1.

Substituting Eq. 3.3 in Eq. 2.30,

1

p

dp

dt
+
NmkBT

V

1

p

dθ

dt
= − 1

τp
(3.4)

where τp is the characteristic pumping time.
In isothermal conditions:

1

p

dp

dt

(
1 +

NmkBT

V

dθ

dp

)
= − 1

τp
(3.5)

1The term monolayer refers to a single, closely packed layer of atoms or molecules [26]. In
metal surfaces one monolayer has a density of the order of 1015 molecules per square centimeter of
geometrical area [21]. For 1 meter-long SPS vacuum chamber

1 ML u 4955 cm2 × 1015 molecules

cm2
≈ 5 × 1018 molecules
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For variable temperature:

1

p

dp

dt

(
1 +

NmkBT

V

∂θ

∂p

)
+

1

p

NmkBT

V

∂θ

∂T

dT

dt
= − 1

τp
(3.6)

then

dp

dt
= −

p
τp

+ 1
p
NmkBT

V
∂θ
∂T

dT
dt(

1 + NmkBT
V

∂θ
∂p

) (3.7)

From this general form, specific solutions on pressure evolution can be found once
the isotherm expression θ(p, T ) and temperature evolution dT/dt are known. In the
next section are detailed some relevant isotherms and the influence they have on
the pump-down model.

3.3 The adsorption isotherms

The adsorption isotherms are functions that describe the equilibrium between
adsorbed and gas phases at a constant temperature [15]. For the simplest case of a
single adsorption energy (E) in sub-monolayer coverage, the Langmuir isotherm is
obtained [16,24].

From a generic energy distribution ρ(E) of adsorption sites, supposing that every
energy site has a Langmurian behaviour (θL), it’s possible to obtain the following
isotherm expression:

θ(p) =

∫
ρ(E)θL(p,E)dE (3.8)

Fig. 3.1 shows the energy distribution as a function of the surface coverage for
four isotherms: Langmuir (constant energy for every coverage), Temkin (linear
dependence on coverage), Freundlich (logarithmic dependence on coverage) and
Sips (similar to Freundlich with finite energy boundaries).
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Figure 3.1: Diagrams of binding energy E vs coverage θ (left), and density of adsorption
sites ρ vs binding energy, for the four considered isotherms. [28]
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3.3.1 Langmuir isotherm

Langmuir isotherm [20] assumes that the rate of adsorption is proportional to
the number of empty sites, and the rate of desorption is proportional to the number
of filled sites. The binding energy Ed is assumed constant for any coverage. The
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Figure 3.2: Coverage as a function of pressure for a system following Langmuir adsorption
isotherm. Parameters: Ed = 19 kcal/mole, nm = 3 × 1015 molecules/cm2, τ0 = 10−13 s,
s0 = 1.

mathematical expression of this isotherm can be derived from the first degree reac-
tion equilibrium [15]. According to the hypothesis above, the desorbed flux can be
expressed as:

Qdes =
θnm
τ

and the adsorbed flux can be obtained from [19]:

Qads = (1− θ)s0pν

with s0 the sticking probability for an empty site. Imposing the equilibrium of
adsorption/desorption reaction, the two fluxes are equivalent:

Qads −Qdes = 0

θnm
τ
− (1− θ)s0pν = 0 (3.9)

This lead to the expression of Langmuir isotherm [20,28]:

θL =
ap

1 + ap
(3.10)

The parameter a is expressed as:

a =
τ0s0ν

nm
e
Ed
RT (3.11)
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Applying Eq. 3.10 in Eq. 3.5 and solving the differential equation,

ln
p

p0
+
aNm

KV

[
1

1 + ap0
− 1

1 + ap
+ ln

(
1 + ap

p

p0
a+ ap0

)]
=

t

τp
(3.12)

where p0 is the initial pressure of the pumpdown for a monolayer coverage (usually
p0 = 3 Torr [28]).

This equation allows to calculate the pump-down of a surface obeying Langmuir
isotherm. Fig. 3.3 shows the influence of binding energy on the pump-down curve.
It can be seen that the lower the energy of adsorption, the faster the decrease of
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Figure 3.3: Pressure vs time for a vacuum system with a reversibly adsorbed layer obeying
the Langmuir adsorption isotherm for different heats of adsorption from 11 to 21 kcal/mole.
[28]. Other parameters: nm = 3×1015 molecules/cm2, τ0 = 10−13 s, s0 = 1, A = 4740 cm2,
V = 16.7 `, pumping speed for nitrogen S = 4.7 `/s and T = 295 K.

pressure. Note that, for high Ed, the linear portion of the curves has a slope of
-0.5 in the log p-log t plot. The convolution of the curves for different values of Ed
approximates a straight line with slope -1 [28]. This observation is fundamental: it
shows that 1/t behaviour (i.e. the experimental one) can be simulated by taking
into account a density ρ(E) encompassing more than one energy.
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3.3.2 Freundlich isotherm

Freundlich isotherm [9] may be derived by taking Langmurian assumptions and
using a binding energy which varies logarithmically with coverage as [28]

E = −E′ ln θ (3.13)

or [16],
ρ(E) = αe−αE (3.14)

where E′ is the adsorption energy for θ = 0.37 and α = 1/E′.

Recalling Eq. 3.8

θF (p) =

∫
ρ(E)θL(p,E)dE

θF (p) =

∫
αeαE

p τ0s0νnm
e
E
RT

1 + p τ0s0νnm
e
E
RT

dE

After some calculations (see Ref. [16] for details) the obtained solution is:

θF =
παRT

sinπαRT

(
p

p∗

)RT
E′ ∼=

(
p

p∗

)RT
E′

(3.15)

where,

p∗ =
nm
νs0τ0

(3.16)

In the calculation p/p∗ � 1 is assumed. For typical values of nm = 1015molecules/cm2,
ν = 104cm/s , s0 = 1, τ0 = 10−13s this gives the condition p� 108 mbar [16], which
is always respected.
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Figure 3.4: Coverage evolution as function of pressure for a surface following Freundlich
adsorption isotherm. Parameters: E′ = 16.7 kcal/mole, nm = 1.54 × 1016 molecules/cm2,
τ0 = 5× 10−11 s, s0 = 1.

The function for typical parameters is shown in Fig. 3.4. It is worth noting that
this isotherm is unrealistic for coverage equal 1 or 0. In fact (see Fig. 3.1) in the
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Freundlich isotherm, for θ = 1 the binding energy is zero and for θ = 0 it goes
to infinity, which is not realistic. Thus, Freundlich isotherm is useful only over a
limited range of coverages.

Recalling the mass balance equation 3.6

1

p

dp

dt

(
1 +

Nm

KV

∂θ

∂p

)
+

1

p

Nm

KV

∂θ

∂T

dT

dt
= − 1

τp

and substituting Freundlich expression for θ(p, T ), a differential equation is ob-
tained, and its solution is showed in Fig. 3.5. The slope of pressure vs. time in
the log p-log t plot for an outgassing surface following Freundlich isotherm is almost
-1 [28].
The most important parameters in this isotherm are E′, nm, s0, τ0. Their variations
(except for the density of sites) have very little influence on the pump down curve.
For example, Fig. 3.5 shows reference energy variation between 50 kcal/mole (very
strong bonds) and 10 kcal/mole (nearly water condensation energy).
Changing the density of sites nm have an important effect in pump down curve
(see Fig. 3.6). Finally the temperature dependence of the pump down is shown in
Fig. 3.7.
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Figure 3.5: Pressure vs time with Freundlich isotherm with change of E′ parameter at 293
K. Kanazawa paper [16] values are used for this graph: nm = 4.6 × 1016molecules/cm2,
τ0 = 5× 10−11s, s0 = 1, V = 5.1 `, A = 2600 cm2, pumping speed for nitrogen S = 3.3 `/s,
T = 295 K.
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3.3.3 Temkin Isotherm

Temkin isotherm [35,36] can be derived from Langmuir isotherm with a heat of
adsorption decreasing linearly with increasing coverage [28], i.e.

Ed = E0(1− αθ). (3.17)

or,

ρ(E) =

{ 1
E0−E1

if E1 < E < E0

0 if E < E1 and E > E0
(3.18)

The isotherm may be derived, for a non-uniform surface, by dividing it into a number
of uniform elements di, on each of which the heat of adsorption is constant, each
element is assumed to obey a Langmuir isotherm [28]. The value of θ can be found
from 3.8:

θT (p) =

∫ E0

E1

1

E0 − E1

p τ0s0νnm
e
E
RT

1 + p τ0s0νnm
e
E
RT

dE

θT =
RT

E0 − E1

[
ln

(
1 + p

τ0s0ν

nm
e
E
RT

)]E0

E1

finally,

θT =
RT

E0 − E1
ln

(
1 + p

p∗
e
E0
RT

1 + p
p∗
e
E1
RT

)
(3.19)

where p∗ = nm/νs0τ0, E1 is the heat fo adsorption at θ = 1, E0 is the heat of
adsorption at θ = 0.
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Figure 3.8: Coverage evolution as function of pressure for a surface following Temkin
adsorption isotherm. Parameters: E0 = 23 kcal/mole, E1 = 12 kcal/mole, nm =
2.9× 1015 molecules/cm2, τ0 = 10−13 s, s0 = 1.

Temkin isotherm gives a 1/t behavior once inserted in equation 3.7. Main pa-
rameters for this isotherm are the energy boundaries E0, E1 and the density of
sites nm (s0 and τ0 variations have no effect). Unlike Freundlich isotherm, energy
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boundaries change can give big variations on the pump down curve when Temkin
isotherm is used.

Fig. 3.9 shows the effect of the E0 variation. With increasing E0, the pump
down becomes less steep. This trend is due to additional sites with higher binding
energy and so with longer mean sojourn time.
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Figure 3.9: Variation of pump-down curve following the change of E0 energy. Data for
calculations are the same as Redhead [28]: nm = 2 × 1016 molecules/cm2, E1 = 10.6
kcal/mole, τ0 = 10−13 s,s0 = 1, A = 4740 cm2, V = 16.7 `, S = 4.7 `/s.

With the variation of E1 a different effect is obtained (see Fig. 3.10). The major
change is seen on the first part of the pump-down, while in the end all curves tend
to the same slope. The term E1 set the lowest energy of adsorption. If it increases,
so does the minimum mean sojourn time.

Finally, the variation of the density of sites is analyzed (Fig. 3.11). The effect of
an increase of nm is a translation of the pump-down curve toward higher pressures.
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Figure 3.10: Variation of the slope of pump-down curve following the change of E1 energy.
Data for the calculations are the same as for Fig. 3.9 with E0 = 23 kcal/mole.
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Figure 3.11: Variation of pump-down curve following the change of nm density of sites. Data
for the calculations are the same as for Fig. 3.9 with E0 = 23 kcal/mole and E1 = 10.6
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3.3.4 Sips isotherm

Sips isotherm is an evolution of Freundlich isotherm. The main limit of Fre-
undlich isotherm is that the area below its energy distribution is infinite [32].
Sips [32, 33] combined Langmuir isotherm with Freundlich isotherm, obtaining the
following expression:

θS(p) =
Ksp

α

1 +Kspα
(3.20)

where

Ks =

(
s0τ0ν

nm

)RT
E′

=

(
1

p∗

)RT
E′

and α =
RT

E′
(3.21)

The energetic distribution as proposed by Kumar et al. [18] for this isotherm is:

ρ(E) =

(pS
p∗

)RT
E′ e−

E
E′((pS

p∗

)RT
E′ e−

E
E′ + 1

)2

E′
(3.22)

where pS is the vapour pressure of water at temperature T , E′ the reference energy,
p∗ = s0τ0ν/nm.
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Figure 3.12: Coverage evolution as function of pressure: Sips and Freundlich comparison
with Ks = 1 and α = 0.4 (left), and Ks = 0.5263 and α = 0.0352 (right, values compatible
with water pump-down).

As for Freundlich isotherm, the main parameters are E′ and nm. The variation
of the parameters of Freundlich and Sips isotherms, applied to a vacuum system,
have the same effect on its pump-down curve, as the two isotherms behaviour tends
to coincide for very low pressures (see Fig. 3.13 and Fig. 3.14).
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tions are the same as for Fig. 3.5.
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Chapter 4

Measurements and results

The experimental activity was developed in order to reach the following goals:

1. Demonstrate the validity of isotherm model for water desorption on untreated
metal chambers;

2. Explore the pump-down of metal vacuum chambers that underwent various
treatments: air-bake, vacuum firing and electropolishing, palladium/silver
coating.

4.1 Experiments on small untreated chamber

Different experiments were performed in order to understand if the isotherm
model predicts the pump-down curves of the unbaked vacuum chamber.

4.1.1 Pump-down at room temperature

This experiment consists in the pump-down of as cleaned stainless steel vac-
uum vessel. The experimental set-up, installed in the laboratory with controlled
temperature of 20± 2◦C, is shown in Fig. 4.1.

Figure 4.1: Vessel 1: in the scheme are highlighted the installed pressure gauges.

The chamber (V1) is made of stainless steel 304L, with volume V1 = 11.3 ` and
surface A1 = 3946 cm2. After cleaning (see App. B.1), four pressure gauges were

35
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installed on it: a Penning gauge, a Pirani gauge, a Process Ion gauge and a Spinning
Rotor Gauge. For details see App. A.
The system was connected to the pumping group through an all metal right-angle
valve. An orifice1 was installed between that valve and the chamber, resulting in
an effective pumping speed for water at 20◦C of 16.7 `/s. A controlled leak valve
allowed to vent the system to air.

The pump-down curve at 20◦C, as recorded by the Penning and Pirani gauges,
is shown in Fig. 4.2. Since our interest is focused on water vapour desorption, only
the range of pressure of Penning gauge will be considered, the rest being the residual
atmospheric gas. In addition, all pump-down curves will be expressed in terms of
outgassing rate, i.e. mbar · `/s/cm2. The conversion from the pressure signal is
obtained through Eq. 4.1:

Q = p
S

A

[
mbar · `
s cm2

]
(4.1)
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Figure 4.2: Experimental data for the pump-down of V1 at 20◦C.

The isotherm model, as described by Eq. 3.7 has been implemented in Matlab for
different isotherms.

dp

dt
= −

p
τp

+ 1
p
NmkBT

V
∂θ
∂T

dT
dt(

1 + NmkBT
V

∂θ
∂p

) (3.7)

1The orifice is made of a copper disc with a central circular hole of 1.2 cm diameter. The
pumping speed for water at 20◦C is

S = C′Ac = 14.7 × π1.22

4
= 16.65

`

s

with C′ value taken from Tab. 2.5.
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Tab. 4.1 resumes the equations and parameters for the three selected isotherms.

Isotherm Equation θ(p, T )] Parameters

Freundlich θF =

(
p
p∗

)RT
E′

nm, E′, s0, τ0

p∗ = nm/νs0τ0

Temkin θT = RT
E0−E1

ln

(
1+ p

p∗
e
E0
RT

1+ p
p∗
e
E1
RT

)
nm, E1, E0, s0, τ0

p∗ = nm/νs0τ0

Sips θS = Kspα

1+Kspα
nm, E′, s0, τ0

Ks =

(
s0τ0ν
nm

)RT
E′

and α = RT
E′

Table 4.1: Equations and parameters of the considered isotherms (in bold are the most
important, i.e. the ones used as degrees of freedom in the optimization problem).

After imposing the boundary conditions (pumping speed, volume, surface, tem-
perature, etc.), the fitting was obtained by least square optimisation on isotherm’s
parameters (see Fig. 4.3 for Temkin).
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Figure 4.3: Pump-down of V1 at 20◦C with optimized Temkin isotherm simulation.
Simulation 1 is obtained for nm = 1.7 × 1016 molecules/cm2, E1 = 10.6 kcal/mole,
E0 = 23 kcal/mole (values similar to Redhead paper [28]). Simulation 2 is obtained for
nm = 3.3× 1016 molecules/cm2, E1 = 10.6 kcal/mole, E0 = 35 kcal/mole.
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The fitting code couldn’t find a unique solution since the simulation presented too
many degrees of freedom with respect to the data acquired. For example, the same
fitting for the Temkin isotherm is obtained if the number of sites nm or the energy
boundaries (E0 and E1) are changed accordingly(see Fig. 4.3). To reduce this lim-
itation, it was decided to conduct a set of measurements at different temperatures
to obtain a unique set of parameters for best fitting.

4.1.2 Bake-out

As explained in Sec. 2.8.1, the bake-out consists in heating the vacuum chamber
for a certain time in order to degas the adsorbed molecules. Heating at 120◦C is
considered enough to remove the molecules from the walls, so when the system
is cooled down at room temperature, the chamber pressure is no more limited by
water desorption.
An example of bake-out at 140◦C for 24 hours is shown in Fig. 4.4.
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Figure 4.4: Bake-out at 140◦C in V1 chamber. In the box is shown the temperature variation
with time.

In order to fully calculate a pump-down curve that includes a bake-out cycle, hy-
drogen outgassing has been added to the model. It is presumed that H2 outgassing
assumes Arrhenius behaviour at constant hydrogen concentration. The hydrogen
flux leaving the surface at 20◦C (QH2,20◦) is set as an additional parameter, while
the outgassing dependence on temperature is obtained from Eq. 2.29

QH2(T ) = Ae
− E
kBT (2.29)
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where

A =
QH2,20◦

e
− E
kB293

and E = 0.52eV, kB = 8.617× 10−5eV/K [14].
QH2,20◦ is obtained from outgassing measurements after bake-out. In fact, since
water has been removed by heating, the outgassing rate is considered to be deter-
mined only by hydrogen.

Kanazawa [16] showed that the pressure curve during a bake-out in aluminium
chambers can be simulated with Freundlich isotherm using 4 parameters (E′ = 16.7
kcal/mole, nm = 4.6 × 1016 molecules/cm2, s = 1 and τ0 = 5 × 10−11 s, see
Fig. 2.11). For 304L stainless steel chamber, a good fitting with Freundlich isotherm
was obtained with data shown in Tab. 4.2.

nm E′ τ0 s0 QH2,20◦

5.6× 1016 molecules
cm2 16.7 kcal

mole 5× 10−11 s 1 5× 10−12mbar`
cm2s

Table 4.2: Values for Freundlich isotherm and hydrogen model fitting V1 bake-out between
40◦C and 140◦C.

10
3

10
4

10
5

10
6

10
−12

10
−11

10
−10

10
−9

10
−8

 

 

O
ut

ga
ss

in
g 

ra
te

 [m
ba

r 
l/s

/c
m

2 ]

Time [s]

Experimental
Simulation w/o H

2

Simulation

Freundlich isotherm:

n
m

 = 5.61 x 1016  molecules/cm2

E’ = 16.7 kcal/mole

Q
H2

 = 5 x 1012 mbar l/s/cm2

Figure 4.5: Freundlich fitting of a bake-out outgassing rate curve (bake-out temperature:
140◦C).

Freundlich model seems to simulate well the experimental data, except for the final
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part of the baking at 140◦C. Even adding hydrogen outgassing, the model cannot
describe that experimental behaviour (see Fig. 4.5).

Using Temkin isotherm, similar results are obtained (see Fig. 4.6) with the
parameters shown in Tab. 4.3. These are consistent with one of the solutions for a
pump-down at 20◦C (see Fig. 4.3).

nm E1 E0 τ0 s0 QH2,20◦

3.3× 1016 molecules
cm2 10.6 kcal

mole 35 kcal
mole 10−13 s 1 5× 10−12 mbar`

cm2s

Table 4.3: Values for Temkin isotherm with hydrogen outgassing best fitting the bake-out
curve of V1.
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Figure 4.6: Temkin fitting of an outgassing rate curve during a bake-out at 140◦C in V1
chamber.
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4.2 Effect of temperature on the pump-down of un-
treated vacuum chambers

The pump-down curves have been measured at different temperatures after a
modification of the experimental set-up. After cleaning (see App. B.1), a 3 meter-
long 316L stainless steel chamber has been installed on Vessel 1 (Fig. 4.7 and
Fig. 4.8). This vessel (V2) has a diameter of 100 mm, surface area 9425 cm2

and volume 23 `. A Penning gauge is installed at the extremity of vessel 2. The
effective pumping speed is equal to that of previous experiments. The total surface
and volume were A1+2 = 13371 cm2 and V1+2 = 35 `.

Figure 4.7: Drawing of the modified experimental set-up: a 3m chamber and a Penning
gauge have been added.

Figure 4.8: Picture of updated experimental set-up.
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4.2.1 Experimental details

Two types of measurements were performed: a pump-down at constant temper-
ature (A) and a bake-out between 50◦C and 150◦C (B).
The following steps have been performed for each type A measurement:

1. system venting at 20± 2 ◦C with atmospheric air for 30 min;

2. pump-down until p0 ≈ 10−1 mbar and pumping system valve closure;

3. heat-up until the desired temperature (50◦C, 100◦C, 120◦C, 150◦C) in static
conditions;

4. start the pump-down during a period between 24 and 48 hours;

5. bake the system at 120◦C for 12 hours;

6. cool down to 20± 2 ◦C and restart the process.

When the pump-down was performed at 150◦C the 120◦C bake-out was suppressed,
so the chamber was cooled directly to 20◦C. At each temperature, the process was
repeated several time to check the repeatability of the measurement.
The procedure of the measurement B is showed below:

1. system venting at 20± 2 ◦C with atmospheric air for 30 min;

2. pump-down until p0 ≈ 10−1 mbar and pumping system valve closure;

3. heat-up until 50◦C in static conditions;

4. start the pump-down; after 1 hour of pumping, start heating to 150◦C;

5. pump-down for 24 hours at the latter temperature

6. the system is cooled down again at 50◦C.

The humidity of the venting air was not controlled in the laboratory, varying
between 27 % and 60 %. At these values (see Dylla [21]) a stainless steel surface
adsorbs more than one monolayer of water molecules. Redhead [29] demonstrated
that a pump-down is not influenced (except for the first few seconds) by the number
of adsorbed layers. This means that, since the surface was covered by more than
one monolayer for each exposure, no effect of the uncontrolled humidity is seen,
apart from the beginning of the pump-down.

4.2.2 Results

In Fig. 4.9 the results of measurement A are shown. All pump-down curves
follow 1/t behaviour at all temperatures. At high temperature a change in the
slope can be seen, leading the outgassing rate to a stabilization, maybe due to
hydrogen outgassing. In Fig. 4.10 the outgassing rate during bake-out is shown
in comparison with the pump-down curves performed at constant temperature at
50◦C and 150◦C.
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Figure 4.9: Pump-down curves for the untreated chamber at four different temperatures.
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Figure 4.10: Pump-down curve during bake-out at 50◦C and 150◦C for the untreated cham-
ber. The isothermal pump-down curves at 50◦C and 150◦C are reported as in Fig. 4.9
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4.2.3 Results vs. Isotherm model

The isotherm model, was used to fit the experimental curves. The analysis has
been conducted for three isotherms: Temkin, Freundlich and Sips.
The fitting code has been created in order to best fit all the pump-down curves
(50◦C, 100◦C, 120◦C and 150◦C). Then, using these best-fit parameter values the
bake-out curve at 50◦C and 150◦C was calculated to cross-check the validity of the
model.
Note that for the fitting, only the final part of each pump-down was considered (see
Fig. 4.11 ).
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Figure 4.11: Data used for RMS minimization code.
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Temkin isotherm fitting

The results of the optimization are shown in Fig. 4.12.

10
3

10
4

10
5

10
6

10
−11

10
−10

10
−9

10
−8

Time [s]

O
ut

ga
ss

in
g 

ra
te

 [m
ba

r 
l/s

/c
m

2 ]

 

 

50°C
100°C
120°C
150°C

n
m

=4.92 1015 molec/cm2

E
0
=28.42 kcal/mol

E
1
=10 kcal/mol

Q
H2

=6.6 10−12 mbar l/cm2/s

Figure 4.12: Results of the optimization for Temkin isotherm and diffusion model for H2:
simulations (dashed curves ) vs real data (continuous curves).

The best fitting parameters for Temkin isotherm are summarized in Tab. 4.4. As

nm E1 E0 QH2,20◦

4.92× 1015 molecules
cm2 10 kcal

mole 28.42 kcal
mole 6.6× 10−12 mbar`

cm2s

Table 4.4: Parameters obtained with Temkin isotherm optimization for pump-down data
at different temperatures.

can be seen, the fitting is in agreement with the experimental results, except in the
last part of the pump-down.

In order to check the optimized parameters we compared the calculated and
measured curves of the bake-out 50◦C/150◦C (Fig. 4.13). The simulation, although
in general good agreement with the profile, presents a limitation: the maximum
calculated outgassing rate (edge around 10−8 mbar) is higher than the measured one.
This could be justified by two explanations: not uniform temperature distribution
on the chamber; the Penning mode of operation switching at 10−5 mbar, so the
consequent difficulty to read the exact pressure at that level.
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Figure 4.13: Results of the optimization for Temkin isotherm and diffusion model for H2

on bake-out outgassing rate curve.

Freundlich isotherm fitting

For Freundlich isotherm, the same steps as before were performed.
The results are shown in Fig. 4.14 and Tab. 4.5.

nm E′ QH2,20◦

1.54× 1016 molecules
cm2 29.7 kcal

mole 5.8× 10−12 mbar`
cm2s

Table 4.5: Parameters obtained with Freundlich isotherm optimization for pump-down data
at different temperatures.

Note that the density of sites nm is increased by a factor three in comparison to
Temkin isotherm and the parameter E′ is outside Temkin energy interval, [E1, E0].
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Figure 4.14: Pump-down curves calculated by the Freundlich isotherm at different temper-
atures (50◦C, 100◦C, 120◦C, 150◦C).
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Figure 4.15: Results of the optimization for Freundlich isotherm and diffusion model for H2

on bake-out pressure curve.
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Sips isotherm fitting

As for Freundlich isotherm, Sips presents two main parameters: nm and E′. The
resulting fit and parameters are shown in Fig. 4.16, Fig. 4.17 and Tab. 4.6.
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Figure 4.16: Pump-down curves calculated by the Sips isotherm at different temperatures
(50◦C, 100◦C, 120◦C, 150◦C).

nm E′ QH2,20◦

3.72× 1016 molecules
cm2 30 kcal

mole 4.8× 10−12 mbar`
cm2s

Table 4.6: Parameters obtained with Sips isotherm optimization for pump-down data at
different temperatures.
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Figure 4.17: Results of the optimization for Sips isotherm and diffusion model for H2 on
bake-out outgassing rate curve.

Comparison between Temkin, Freundlich and Sips isotherms

In the literature various studies can be found on isotherm comparison [12, 15].
Ho [12] in particular, focuses his study on different error functions in order to analyse
isotherm’s fittings. For our project, it has been decided to consider the Root Mean
Square error function, as defined in Eq. 4.2.

RMS =

√√√√ N∑
i=1

1

N

(
preali − psimi

preali

)2

(4.2)

The results for the 3 isotherms are summarized in Tab. 4.7. It can be seen that

Temkin Freundlich Sips

RMShp50◦C 0.08 0.05 0.03

RMShp100◦C 0.09 0.06 0.03

RMShp120◦C 0.05 0.15 0.03

RMShp150◦C 0.08 0.12 0.04

RMSbake−out 0.15 0.17 0.25

Table 4.7: Summary of RMS for the three isotherms.
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Sips has the lowest RMS, except for outgassing curves during the bake-out. Temkin
gives the best average over all measurements.

4.2.4 Why all isotherms give 1/t behaviour?

As shown in previous sections, the three isotherms give 1/t pump-down curves,
that is:

p ∝ 1

t
(4.3)

Since the pressure evolution of a chamber in molecular regime is governed by walls
outgassing, Eq. 4.3 can be re-written as:

dN

dt
∝ 1

t
(4.4)

From N and θ definitions dN/dt we obtain:

dN

dt
= Anm

dθ

dt
∝ dθ

dt
=
∂θ

∂p

dp

dt
(4.5)

From Eq. 4.3:
dθ

dt
∝ −∂θ

∂p

1

t2

Finally, in order to satisfy 4.4 :

∂θ

∂p
∝ 1

p
(4.6)

This is the only requirement for an isotherm model to give 1/t behaviour during a
pump-down.
It can be seen that condition 4.6 is satisfied if two hypothesis are set:

• Langmurian assumption for a single site of energy E: the desorption reaction
is assumed to be of the first order;

• Energy density of sites ρ(E) ”almost” constant .

The demonstration comes from the evolution of the molecular density on the surface
phase, starting from isotherms definition:

θ(p) =

∫
ρ(E)θL(p,E)dE

Considering ρ(E) = cte in an interval [E1, E0] and recalling the definition of θL,
the integral gives:

θ(p) =

∫ E0

E1

cte

p
p∗
eE/RT

1 + p
p∗
eE/RT

dE

θ(p) = cte ∗RT
[

ln
(
1 +

p

p∗
eE/RT

)]E0

E1

θ = cte ∗RT ln

(
1 + p

p∗
e
E0
RT

1 + p
p∗
e
E1
RT

)
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It is clear that Temkin is an example of this isotherm type (replacing cte with
1/(E0 − E1)). Using a simplified version of Temkin isotherm [28]:

θ =
RT

E0 − E1
ln

(
p

p∗
e
E0
RT

)

θ =
RT

E0 − E1
ln(p)− RT

E0 − E1
ln(p∗) +

E0

E0 − E1

=⇒ ∂θ

∂p
=

RT

E0 − E1

1

p
∝ 1

p
(4.7)

This shows that starting from Langmuir isotherm and having a constant distribu-
tion it’s a sufficient condition to have 4.6 satisfied.

For Freundlich isotherm, the energy density follows an exponential behaviour
(see Eq. 3.14). Anyway, in the considered energy interval (between 10 kcal/mole,
to 50 kcal/mole), the distribution is almost constant. In fact, from Eq. 3.15:

θF =

(
p

p∗

)α

=⇒ ∂θ

∂p
∝ 1

p1−α
(4.8)

This means that to satisfy condition 4.6 we should have α � 1. Recalling its
definition:

α =
RT

E′

and using usual values of energy (29.7 kcal/mole) and temperature (295 K)

α = 0.0198� 1

The demonstration is not needed for Sips isotherm, since it’s the general case of
Freundlich, with the same behaviour at low pressures.
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4.3 Measurements on treated surfaces

The same measurements described in the last section have been performed on
three surface treated chambers: air-baked chamber, electropolished chamber and a
silver/palladium coated chamber. The measurements on these surfaces were made to
understand how water desorption changes with the surface composition/roughness/nature.
The set-up used for this campaign is the same as shown in Fig. 4.7, except for the
orifice position. The first 1.2 mm conductance has been removed, and a 7 mm
conductance (pumping speed of 5.65 `/s for water at 20◦C) has been installed be-
tween Vessel 1 and the treated chamber, as in Fig. 4.18. In this way V2 pressure is
influenced by the treated surface only.

Figure 4.18: Scheme of experimental set-up, showing the position of the 7-mm diameter
orifice.

4.3.1 Air baked chamber

The air baked surface was obtained with a heating treatment from the 3 meters
clean chamber (V2). The volume has been heated in air at 300◦C for 24 hours.
The considered surface and volume for the simulations are A2 = 9425cm2 and
V2 = 23.7 `/s. A picture of the chamber is shown in Fig. 4.19. The first pump-down,

Figure 4.19: Picture of the internal surface
after air-bake treatment.

10
2

10
4

10
6

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

Time [s]

O
ut

ga
ss

in
g 

ra
te

 [m
ba

r 
l/s

/c
m

2 ]

Figure 4.20: First pump-down curve at 20◦C.
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performed at 20◦C, showed that air-baked surface has 1/t behaviour (Fig. 4.20). The
results of the pump-down curves at different temperatures and during a bake-out
are shown in Fig. 4.21 and Fig. 4.22.
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Figure 4.21: Pump-down curves at 50◦C, 100◦C, 150◦C for air-baked chamber.
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Figure 4.22: Bake out curve: here the bake started after 15 hours of pumping. In the figure
are represented the pump-down curves at 50◦C and 150◦C.
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4.3.2 Electropolished chamber

Four pipes DN 100, 50 cm long, (AEP = 6361 cm2) underwent electropolishing
after vacuum firing treatment2. CERN procedure for this treatment is described in
App. B.2.
Fig. 4.23 shows the internal surface of the pipes after installation on the system.
Fig. 4.24 represents the outgassing rate at almost 26◦C (the laboratory cooling
system was out of order during this measurement).
The results of the pump-down curves at different temperatures and bake-out are
shown in Fig. 4.25 and Fig. 4.26.

Figure 4.23: Picture of installed electropolished pipes with mirror-like surface.
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Figure 4.24: First pump-down curve for vacuum-fired and electropolished chamber at 26◦C.

2Vacum firing treatment consists in heating in a vacuum furnace to temperature up to 1000◦C.
At CERN it is carried out at 950◦C for 2 hours in a vacuum better than 10−5 mbar at the highest
temperature. [3]
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Figure 4.25: Pump-down curves at 50◦C, 100◦C, 150◦C for vacuum-fired and electro-
polished chamber.
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Figure 4.26: Bake-out of a vacuum fired and electro-polished chamber. The thermal cycle
of the experiments is the same as in the untreated chamber.
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4.3.3 Silver palladium coated chamber

This treated chamber has been obtained from a 316L 3 meter long pipe (DN100)
after vacuum firing. The silver/palladium coating (250 nm thick) has been deposited
on the surface by magnetron-sputtering from a wire with 70% Pd ans 30% Ag.
The results for this chamber showed the presence of a memory effect on the surface.
In fact, if two equal measurements were repeated after a few bake-outs, a shift
toward lower pressures was observed. For example, the change of 100◦C curve is
shown in Fig. 4.27.
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Figure 4.27: Silver/palladium coating: memory effect on 100◦C pump-down curves. Be-
tween curve 1 and 2 the system underwent 5 bake-outs, while between 2 and 3 one bake-out.

For this reason, all measurements have been repeated three times. In Fig. 4.28
and Fig. 4.29 are shown the second set of experimental results.
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Figure 4.28: Pump-down curves at 50◦C, 100◦C, 150◦C for silver/palladium coated cham-
ber.
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Figure 4.29: Bake-out of a silver/palladium coated chamber. The thermal cycle of the
experiments is the same as in the untreated chamber.
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4.4 Discussion of the results of pump-down curves at
different temperatures

The desorption model proposed for the untreated stainless steel surface was
unable to simulate the behaviour of the three treated chambers. In fact, the model
implies that, when the temperature of the system is increased, the pump-down
curve shifts (in log-log scale) toward higher outgassing rates. All treated surfaces
instead presented an outgassing rate curve at 100◦C lower than the curve at 50◦C
during the whole pump-down. This behaviour, in opposite direction compared to
the isotherm model, prevented the achievement of a solution in the optimization
code.

Comparison of the studied vacuum chambers

The outgassing rate comparison for each temperature is shown in Fig. 4.30.
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Figure 4.30: Comparison of pump-downs curves for as-received, air-baked, vacuum-
fired/electropolished and silver/palladium coated chambers at different temperatures.

As can be noticed, all chambers follow 1/t behaviour at all temperatures, indepen-
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dently from the treatment.
High temperature pump-down curves show an interesting behaviour: the gap be-
tween the treated chambers and the untreated chamber increases with the tempera-
ture. The former present an outgassing 3 to 5 times lower than the latter at 150◦C.
One possible explanation for this behaviour could be the influence of hydrogen out-
gassing. In fact, it is known that for air-baked and for vacuum fired chambers, QH2

is more than 2 order of magnitudes lower than on untreated chamber [1, 37, 38].
At high temperature, the hydrogen flux could have a role in water outgassing by
reacting with surface oxides and hydroxides. Further investigations should be con-
ducted about water-hydrogen reactions on metal surfaces, in order to understand
this complex process.

Roughness influence

In order to characterize the surfaces, a roughness measurement with a stylus
instrument was performed on 4 samples. Each sample (2 cm×50 cm plate, 1.5 mm
thick) underwent the same treatments as the 4 experimental chambers: 316L as
received, 316 L air-baked at 300◦C, 316 LN vacuum fired and electro-polished, 316L
vacuum fired and AgPd coated.
To compare the results, the arithmetic average of absolute values Ra, was consid-
ered. For each sample, the measurements were taken in two directions, X and Y, in
5 different positions. The values are shown in Tab. 4.8.

Ra Vacuum Fired+ 300◦C Airbaked Untreated AgPd Coated

Electropolished

X [µm] 0.096 0.253 0.3064 0.346

Y [µm] 0.0768 0.2286 0.2206 0.276

Table 4.8: Ra values for the treated samples, averaged on X and Y directions.

Fig. 4.31 compares Ra with the outgassing of the surfaces after 10 hours of
pumping at 50◦C. As can be seen, there is no clear effect of the surface rough-
ness on the outgassing rate. The electropolished chamber doesn’t present a lower
outgassing, as already experienced by Dylla [7].
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Figure 4.31: Roughness influence on the outgassing after 10 hours of pumping for 50◦C
pump-down curve.

XPS measurements

Other 4 samples, treated in the same way as the studied vacuum chambers, were
analyzed by X-ray Photoelectron Spectroscopy (XPS). The samples were measured
under a pressure of 2×10−9 mbar.
The main difference in the studied surfaces is represented by the iron and chromium
proportions. For the untreated surface, iron was slightly higher than chromium.
The air-bake treatment enhanced Fe presence and reduces Cr level. Conversely,
the electropolishing increased the chromium content and decreases the iron peak.
These results are in agreement with previous analysis on the same treatments on
stainless steel surfaces [2].



Chapter 5

SPS vacuum improvement

The effect on a pressure profile of the addition of NEG lump pumps in LSS1
(Long Straight Section 1 of SPS) is evaluated in this chapter. The dumping system
of SPS is located in this section, making this area the most radioactive of the LHC
injectors. The high radiation level affects the insulation of ion pump cables, causing
pumps to fail, making the needed vacuum more difficult to achieve.
NEG cartridges were thought to be good candidates as additional pumping to mit-
igate this problem.
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Figure 5.1: SPS overview.
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5.1 Combination of ion pump with NEG

In LSS1, two third of ion pumps are connected to the beam line as shown in
Fig. 5.2. The sublimation pumps found in the VPTC element, are installed above
the VPSC ion pumps. Since these sublimators are no longer in use, the NEG
cartridges can be installed in this volume. A Molflow [17] model was created in

Figure 5.2: Pumping system schema for SPS pump VPICA.

order to calculate the influence on pressure and on the effective pumping speed of
NEG cartridge. Later, NEG saturation time was obtained with a time dependent
simulation using LTSpice software [8].
The analysis has been performed for different gases (N2, H2, H2O, CO) assuming
each was the only one present in the system.

5.1.1 Ion pump: Leybold IZ350

These ion pumps have a nominal pumping speed of 350 `/s for N2. A constant
value of SIPN2

= 150 `/s was assumed in our model.
The pumping speed, for gases other than N2, was obtained multiplying the speed
by the suitable factor kIP shown in Tab. 5.1.

Gas Air N2 H2 CO H2O

kIP 1 1 1.5-2 0.9 0.8

Table 5.1: Conversion factor for Ion Pump [3].
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5.1.2 NEG pump: CapaciTorr D1000

This pump, commercialised by SAES Getters presents NEG plates inserted in
a metal body (see Fig. 5.3). After its activation, i.e. when native oxide layer

Figure 5.3: NEG pump CapaciTorr D1000 by
SAES Getter, [11].

Figure 5.4: Pumping speed variation with
quantity of sorbed molecules, [11].

is dissolved in the NEG material [3], the pump has a decreasing pumping speed
dependent on the amount of adsorbed gas.
As can be seen in Fig. 5.4, the capacity is different for each gas. Note that when the
pump is saturated with a gas (except for H2), the pumping speed for other gases
is also reduced. For example, if NEG is saturated with water, hydrogen pumping
speed is also reduced.
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5.1.3 Molflow model and analysis

In order to compare the effective pumping speed with and without NEG, two
geometries have been studied in Molflow.
The first, without CapaciTorr D1000, is shown in Fig. 5.5 (case A). In order to

���������

	
������

Figure 5.5: Molflow model of VPIC connec-
tion pipe.

���������

	
�

�
������

Figure 5.6: Molflow model of VPIC con-
nection pipe with added NEG.

calculate the effective pumping speed on the beam pipe (surface 1), the following
steps have been performed:

1. A fixed flux has been imposed on surface 1. The transmission probability
τA (from surface 1 to the ion pump) was calculated in Molflow, obtaining
τA = 0.26;

2. The conductance of the pipe was determined from Eq. 2.16. For H2:

CAH2
=
v̄H2

4
A1τA = 2269

`

s
(5.1)

where v̄H2 = 1761 m/s at room temperature (from Tab. 2.3), and A1 is the
surface on the top of the vacuum chamber.

3. The effective pumping speed was calculated as the combination of SAH2
=

SIPN2
kIP,H2 = 300 `/s and CAH2

.

SA,effH2
=

S C

S + C
= 265

`

s

Tab. 5.2 summarizes the values obtained for different gases.
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SA,eff [`/s] N2 H2 CO H2O

Ion Pump 121 265 111 105

Table 5.2: Effective pumping speed for the ion pump.

The second simulation, with NEG and ion pump combined, is shown in Fig. 5.6
(case B). The NEG pump, inserted in the sublimation cavity was simulated as a
cylinder.
The effective pumping speed calculation for different gases needs the following in-
puts: the outgassing load from the beam line, the IP pumping speed and the NEG
pumping speed.
To evaluate the outgassing load, a pressure of 10−8 mbar for the ion pump alone
was assumed on surface 1 (in agreement with SPS experimental data).
For example, for hydrogen, the incoming flux is:

Q1,H2 = pA1 S
A,eff
H2

= 2.65× 10−6
mbar · `

s
(5.2)

The first result of the simulation is the pressure pB1 , that results lower than 10−8

mbar thanks to NEG pumping (see Tab. 5.3).

p1[mbar] N2 H2 CO H2O

A 10−8 10−8 10−8 10−8

B 3.3× 10−9 2.7× 10−9 2.3× 10−9 2.8× 10−9

Table 5.3: Pressure on surface 1 in cases A (ion pump alone) and B (ion pump combined
with NEG lump pump).

Since Q1 is imposed, the effective pumping speed for case B is directly calculated
from pB1 values:

SB,eff =
Q1

pB1

The results are shown in Tab. 5.4.

Seff [`/s] N2 H2 CO H2O

A 121 265 111 105

B 347 953 454 357

Table 5.4: Effective pumping speed on surface 1 in cases A (ion pump alone) and B (ion
pump combined with NEG lump pump).

Tab. 5.5 shows the percentage of molecules pumped by the two pumps in NEG
fully activated scenario. Note that the NEG cartridges pump more than 70% of
molecules for all gases. This is due both to the bigger pumping speed and to the
NEG position (closer to the beam pipe).
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Qpump/Qtot[%] N2 O2 H2 CO H2O

Ion Pump 26.2 26.8 22.7 15.9 21.9

CapaciTorr D1000 73.8 73.2 77.3 84.1 78.1

Table 5.5: Percentage of pumped molecules in Ion pump and NEG for different gases.

5.1.4 Conductance analysis

In order to verify the validity of the simulation, the problem was analysed using
a different approach, exploiting the electrical network analogy (see Sec. 2.6).
From the Molflow model, the transmission probabilities between the three surfaces
were obtained (τ beamIP or τ13, τ

beam
NEG or τ12 ,τNEGIP or τ23). The conductances between

the three surfaces were calculated and implemented in the electrical equivalent net-
work of Fig. 5.7.
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Figure 5.7: Electrical equivalent network for VPTC pumping group.

Where: 
RBeam to NEG = 1

CBeam to NEG

RIon Pump to NEG = 1
CIonPump to NEG

RBeam to Ion Pump = 1
CBeam to Ion Pump

IBeam = Q1

(5.3)

Operating a triangle-star conversion, the system was solved in order to find the
equivalent resistance, i.e. the inverse of the effective pumping speed. The results
are similar to the previous analysis (see Tab. 5.6). The difference between the

Seff [`/s] N2 H2 CO H2O

Electric network 339 932 428 330

Molflow pressures 347 953 454 357

Table 5.6: Comparison of the results obtained with the two approaches.
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two approaches, less than 10%, is due to statistical scattering of the Monte Carlo
simulation.

5.1.5 Time dependent simulation

A time dependent simulation in LTspice was performed to evaluate the pumping
speed variation and saturation time of the NEG lump pump.
In this model only the main gas sources of an unbaked system (water and hydrogen)
were considered. From Sec. 2.8.1, water outgassing can be calculated as:

QH2O =
3× 10−9

t[h]

mbar · `
s cm2

(5.4)

Hydrogen outgassing for stainless steel was obtained from Tab. 2.8:

QH2 = 3× 10−12
mbar · `
s cm2

(5.5)

The pumping speeds, SNEG and SIP , were modified following the pumps specifica-
tions. For the ion pump, H2 and H2O pumping speeds were obtained via kIP . For
NEG pump, hydrogen pumping speed was assumed to undergo a decrease due to
water saturation.

Figure 5.8: LTspice model for water outgassing. An equivalent model has been created for
H2 outgassing.

The simulations have been launched for different gas loads (surfaces of 1 m2, 10
m2, 50 m2 and 100 m2) and different delay from the beginning of the pump-down
and the NEG activation times (10 and 24 hours after the start of the pump-down).
The activation of the pump was simulated as the moment in which this has pumping
speed bigger than zero; the gas load due to the activation process was not included
in the model.
Fig. 5.9, shows how NEG activation affects the pump-down: when this pump is
activated, a ”jump” toward lower pressures is observed. The difference between the
pressure in the NEG-on and NEG-off scenario tends to decrease until the NEG no
longer contributes to the pump-down.

The improvement of the pressure after activation is bigger when the pump is
activated at lower pressures (see Tab. 5.7).
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Figure 5.9: Pressure evolution with (blue and black lines) and without (red lines) NEG
activation.

pIP [mbar] 1.6× 10−6 6.9× 10−7 4× 10−8 1.7× 10−8

p(IP+NEG)/pIP 3.8 4 4.6 5

Table 5.7: Pressure improvement variation: pIP and pIP+NEG are respectively the pressure
before and after activation. Their ratio increases as the pIN decreases.

The time until saturation was evaluated (Fig. 5.11) assuming that the pump was
activated after 10 hours of pumping. With this condition and after one year of
operation, the NEG is not saturated when the outgassing flux is lower than the
water outgassing of 37.5 m2 of stainless steel.
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Figure 5.10: Pressure evolution with NEG activation after 10 hours (blue lines) and 24
hours (green lines) with gas load from 1 m2 (dashed lines) and 50 m2 (solid lines).
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Figure 5.11: NEG effective pumping speed vs Time of pumping for 4 different gas loads:
37.5, 42.5, 50, 100 m2. These loads are equivalent to pIP of 1.1×10−6, 1.3×10−6, 1.6×10−6,
3× 10−6 mbar respectively.
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5.2 BA1 Simulation

In this section the LSS1 vacuum system is simulated. To simulate pressure
profiles in the beam line the following steps have been performed:

1. Calculation of transmission probabilities of every element of the beam line;

2. Development of an equivalent electrical network on LTspice software [8];

3. Update of pumping units with NEG pumps.

5.2.1 Transmission probability calculation for a component

To show how transmission probabilities are calculated, the analysis of MKPA
11955 (kicker magnet) is presented.
For each element, the 3D model of the volume under vacuum has been created using
Autodesk Inventor (see Fig. 5.12 and Fig. 5.13).

Figure 5.12: Section view of 3D model.

Figure 5.13: Internal volume of MKPA.

This model was exported to Molflow [17] and the transmission probabilities (τ)
were calculated between all the open surfaces: in this example, between the entrance
and the exit of the beam and the apertures of the four pumps.
Complex elements were divided in several parts to have a better simulation using
the electrical network analysis. In this example MKPA was divided in four pieces
(Fig. 5.14).
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Figure 5.14: Molflow model for MKPA 11955. In the figure are highlighted the surfaces
used for transmission probabilities calculations.

5.2.2 LTspice model for a component

With the obtained transmission probabilities, the conductances were calculated
using Eq. 2.16:

C = C ′A1τ1→2

where A1 is the area of the outgassing surface, and C ′ is the conductance of an
orifice of unit surface area.
Finally, the equivalent electrical network was inserted in LTspice. For the kicker
MKPA, it is shown in Fig. 5.15.

Figure 5.15: LTspice model for MKPA 11955. The four parts represents the volumes
between surfaces shown in Fig. 5.14.
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5.2.3 Global LTspice model

Following the steps described in previous section, the entire sector was recreated
in LTspice (see Fig. C.1). The parameters of the simulation were chosen following
these assumptions:

1. Pumping system: 27 ion-pumps with sublimator (Leybold IZ350, eligible of
NEG adding), 12 ion pumps without sublimator (Leybold IZ400) and 10 small
ion pumps (20 `/s). The pumping speed for IZ350 and IZ400 was set at 150
`/s and 200 `/s respectively. NEG pumps installation has been simulated
only on 5 pumping groups, close to the most critical elements (dumps TIDH
and TIDVG);

2. Outgassing: in order to simulate water desorption of simple tubes, Temkin
isotherm model with optimized parameters for unbaked chambers was imple-
mented. For more complex elements (dumps or kickers) the following expres-
sion was used:

Q = kQTEMKIN (5.6)

with kKICK = 10 for kickers and kDUMP = 100 for dumps.

In order to validate the model, the pressure profile has been compared with real
data from SPS database (Fig. 5.16)

Figure 5.16: Pressure profile comparison between real data and LTspice model after 100
hours pump down.

The error between the simulation and the real data can be attributed to different
reasons:

• Error in 3D models due to old drawings that could be different from the actual
installed elements

• Presence of materials other than stainless steel in the beam line, as graphite,
copper, tungsten etc.

• Error in gauges and pumps real measurement: the installed equipment is old
and some gauges could be damaged.
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5.2.4 Upgrade using NEG cartridges

Five NEG pumps have been added in the beam line close to the dumps (TIDVH
and TIDVG): VPIC 11778, VPIC 11801, VPIC 11860, VPIC 11878 and VPIC
11902.
The analysis has been conducted for two different scenarios. In the first one (case
A), NEG pumps were activated after a fixed time. In the second (case B), after
NEG pumps activation, two ion pumps failure was simulated.

In scenario A, the pump-down was simulated for 1 year, with the ion pumps
working all the time, and NEG activated 15 hours after the beginning of pumping.
The aim of this simulation is to evaluate the saturation time of NEG cartridges.
The pressure profiles as recorded from the gauges between the two dumps are shown
in Fig. 5.17. Fig. 5.18 shows NEG pumping during 365 days. SNEG stabilizes after

Figure 5.17: Pump-down curves for the ion pumps and gauges in the considered beam-line:
NEG are activated after 15 days of pumping.

almost 100 days at a value between 40 and 50 `/s. NEG 11778 pumping speed is
lower than the others because of the higher flux at this location.

In scenario B, after NEG activation, two ion pumps (VPIC 11878 and VPIC
11902) were switched off after a time tOFF of 30 days. The aim of this simulation
was to understand if NEG cartridges can prevent the pressure increase due to ion
pumps failure, and which saturation time would they have in this case.
The pressure profile comparison between with and without NEG case is shown
in Fig. 5.19. NEG pumping lower the pressure ”jump” by a factor 2 in the two
considered ion pumps positions.
The pumping speed evolution of NEG cartridges is shown in Fig. 5.20. The higher
flux on NEG cartridge causes a faster decrease in the pumping speed (in comparison
with Fig. 5.18). For example, after 1 year, NEG 11902 pumps 26 `/s in case B,
instead of 43 `/s in case A.
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Figure 5.18: NEG pumping speed evolution (NEG are activated after 15 days of pumping).

Figure 5.19: Pump-down curves at the position of the ion pumps VPIC 11878 and VPIC
11902 in case of failure after 30 days, with (solid line) and without (dashed line) activated
NEG pump .
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Figure 5.20: Pumping speed evolution of NEG pumps: VPIC 11878 and VPIC 11902 are
switched off after 30 days of pumping.



Chapter 6

Conclusions

Water vapour desorption from metal vacuum systems has been studied through-
out this project.

A numerical model for the calculation of pressure evolution has been presented.
This model is based on the use of adsorption isotherms for water and on the dif-
fusion model for hydrogen. In particular, Temkin, Freundlich and Sips isotherms
have been analysed.
A set-up was built to compare experimental data with the numerical simulation.
The behaviour of an untreated 316L stainless steel chamber has been successfully
simulated for the subsequent experiments: constant temperature pump-down curves
(at 20◦C, 50◦C, 100◦C, 120◦C and 150◦C) and bake-outs at 150◦C. The three
isotherms showed similar results. It has been demonstrated that this similarity
is due to their common hypothesis of constant energy distribution of the adsorption
sites.

The behaviour of three differently treated stainless steel chambers has been com-
pared to the outgassing value of an untreated chamber. The chambers underwent
the following treatments: air-baking at 300◦C, vacuum firing followed by electro-
polishing and silver-palladium coating. All substrates showed a 1/t behaviour at all
temperatures. The difference between the outgassing values of the untreated and
treated chambers increases with increasing temperature.

In LSS1 analysis, the effect of the addition of NEG lump pumps (CapaciTorr
D1000) has been simulated in two situations: as an auxiliary pump during a pump-
down, and as a recovery pump in case of a sudden stop of the main pumping system.
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Appendix A

Vacuum equipment description

In this chapter are briefly described the main instruments used during the
project.

A.1 Pressure gauges

The measurement range of different gauges is show in Fig. A.1.

Figure A.1: Scheme of measurement ranges for main gauges [27].

A.1.1 Cold cathode gauge or Penning gauge

The pressure is measured through a gas discharge within a gauge head whereby
the gas discharge is ignited by applying a high tension. The resulting ion current
is output as a signal which is proportional to the prevailing pressure. The gas
discharge is maintained also at low pressures with the aid of a magnet. The range
of this gauges was 10−3 to 10−11 mbar.
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A.1.2 Pirani gauge

The Pirani gauge head is based around a heated wire placed in a vacuum system,
the electrical resistance of the wire being proportional to its temperature. At atmo-
spheric pressure, gas molecules collide with the wire and remove heat energy from
it (effectively cooling the wire). As gas molecules are removed (when the system is
pumped down) there are less molecules and therefore less collisions. Fewer collisions
mean that less heat is removed from the wire and so it heats up. As it heats up, its
electrical resistance increases. A simple circuit utilising the wire detects the change
in resistance and, once calibrated, can directly correlate the relationship between
pressure and resistance. This effect only works in the pressure region from atmo-
sphere to approx 10−3 mbar. That is why this kind of gauge is usually coupled with
a Penning gauge.

A.1.3 Hot cathod gauge or Process Ion Gauge

A hot cathode gauge is based on gas ionization. Electrons emitted by the hot
cathode ionize a number of molecules proportional to the pressure in the measure
chamber. The ion collector (IC) collects the generated ion current I+ and feeds
it to the electro-meter amplifier of the measuring instrument. The ion current is
dependent on the emission current Ie, the gas type and the gas pressure p according
to the following relationship:

I+ = IepC

with C the sensitivity of the gauge for a specific gas (it is 1 for N2). The measure-
ment range is between 10−2 mbar and 10−6 mbar.

A.1.4 Spinning Rotor Gauge

The Spinning Rotor Gauge (SRG) is a high-vacuum gauge that operates by
measuring the amount of viscous drag on a magnetically-levitated spinning ball,
which is directly related to the number of molecules in the chamber (i.e. pressure).
Its accuracy specification of 1 % of reading is guaranteed over the range of 10−2

mbar to 5 × 10−7 mbar, and it can operate with reduced accuracy up to 1 mbar.
Commonly it is used for calibration and metrology of other high-vacuum gauge
sensors such as cold cathode and hot-filament ionization tubes. In our application
the main goal was having a gauge that didn’t interact with the gas by release of
molecules (unlike cathode gauges) in order to not perturb the measured value of
pressure.

A.2 Heating system

It’s the system responsible of the experiment’s temperature control. It is made
by three parts:

• Rack for power supply and temperature control;

• Collars, jackets, heating stripes: all the objects that actually heat the chamber;
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• Thermocouples: necessary to measure the temperature and control the power
given to heating objects.

The insulation was granted by glass fiber blocked with aluminium paper.

A.3 Pumping system

Composed of a primary scroll pump and of a turbomolecular pump. The scroll
pump was exploited to go from atmospheric pressure to 10−3 mbar, while from 10−3

to XHV molecules were removed with the turbomolecular pump. The former is a
dry pump (no use of oil, i.e. no contamination) that uses two interleaving scrolls
to pump the gas from the chamber. The latter belongs to the category of kinetic
vacuum pumps. Their design is similar to that of a turbine. A multi-stage, turbine-
like rotor with bladed disks rotates in a housing. Interposed inversely between the
rotor disks are bladed stator disks having similar geometries. The particular system
used in the experiment was an Agilent TPS Mobile.



Appendix B

CERN surface treatments
procedures

B.1 Cleaning for UHV applications

Here below are the steps for CERN standard cleaning procedure for Stainless
Steel:

1. Chemical degreasing with detergent and ultrasonic. Temperature: 50-60◦C.
Time: 30-60 minutes;

2. Rinsing with water;

3. Pickling. Temperature: 20◦C. Time: 30-90 minutes;

4. Rinsing with water;

5. Neutralization with detergent and ultrasonic. Temperature: 50-60◦C. Time:
30-60 minutes;

6. Rinsing with water;

7. Rinsing with demineralised water and alcohol;

8. Drying with clean compressed air.

B.2 Electropolishing

Here below are the steps for CERN standard electropolishing procedure:

1. Ultrasonic cleaning in alkaline detergent at 50◦C for 30-60 minutes; the de-
tergent is NGL 17-40 (supplied by Cleaning Technologies) at concentration of
10 g/l;

2. Rinsing in tap water;

3. Electropolishing in Sulphuric Acid 210 ml/l + Phosphoric Acid 790 ml/l at
60◦C. Current density 20 A/dm2 (etching rate about 1.5 mm/min);
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4. Rinsing in tap water;

5. Light acid attack: Chromic Acid 80 g/l + Sulphuric Acid 3 ml/l, at room
temperature for about 10 seconds;

6. Rinsing in tap water;

7. Rinsing with deionised water (resistivity>= 1MΩcm);

8. Rinsing with ethylic alcohol

9. Drying in air at 80◦C.



Appendix C

Drawings and schemes for LSS1
model

Here are reported some of the drawings and figures used to model LSS1 section.
In Fig. C.2 the entire sector is represented.
In Fig. C.3 a focus is done on the dumps TIDVG and TIDH and on the pumps that
underwent NEG cartridge upgrade.
Finally, the model as seen by LTspice is shown in Fig. C.1.
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Figure C.1: BA1 network
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Figure C.2: BA1 global drawing: the simulated part is delimited by the red box.
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Figure C.3: Zoom on TIDH and TIDVG (red boxes), and on the 5 ion pumps upgraded
with NEG lump pumps (blue boxes).
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