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Abstract

Plastic pollutionhas emerged as a global environmental challenge, prompting theneed for inno-
vative strategies to address themounting accumulation of plastic waste, such as bioremediation
through living organisms like bacteria, fungi, or plants to break down or neutralize pollutants
in the environment. This thesis explores the promising avenue of plastic degradation through
microbial action, focusing on the search for microbial enzymes capable of breaking down plas-
tics, with a particular emphasis on polyethylene terephthalate (PET). The goal of this work is
to developmachine learning models able to identify enzymes for PET degradation in a pool of
available proteins. Protein sequence and structure serve as complementary sources of informa-
tion for creating numerical representations for each protein under analysis. These numerical
representations are then used to train semi-supervised classi昀椀cation models capable of distin-
guishing PET-degrading proteins from others. Experimental validations on a representative
protein set yield high performances for all the tested models, particularly those that incorpo-
rate sequence information. The results suggest that these methods can detect crucial molecu-
lar markers associated with the ability to degrade PET in both information sources, allowing
the prediction of unknown PET-degrading enzymes coming frommicroorganisms adapted in
heavily plastic-polluted environments.
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1
Introduction

In the last few years, the handling of plastic waste problem became more and more important
since the usage of that material increases rapidly because of its low cost, versatility, and dura-
bility. The mass production of plastics began in the 1950s and annual production levels now
exceed 380 million tons[5].
Plastic often has short service lifespans and, unfortunately, only a small fraction is recycled
(roughly 9%), the remaining part is incinerated(12%) or is accumulated in land昀椀lls and nat-
ural environments (79%)[5]. The vast majority of monomers used to make plastics, such as
propylene and ethylene, are derived from fossil hydrocarbons. The most commonly used plas-
tics are not biodegradable, as a result, they accumulate rather than decompose in the natural
environment[6]. It is today clear that plastic causes adverse e昀昀ects in all ecosystems[7].

Environmental bio degradation of most conventional plastics, including polyethylene (PE),
polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET) has not been ob-
served to any signi昀椀cant degree[7], therefore the scienti昀椀c community is trying to discover
new microorganisms and enzymes capable of biodegrading plastics, in fact for the past several
decades there has been considerable interest in identifying plastic-degrading microorganisms
and plastic-degrading enzymes. Exposure to plastic is a new occurrence for microorganisms, as
these chemical compounds have only been introduced to bacteria in recent times, despite their
evolution over millions of years. In particular, this thesis project is focused on the discovery of
new proteins associated with PET degradation.
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Figure 1.1: Although a por琀椀on of plas琀椀c is e昀케ciently recycled an important of it reach the environment where it can be
degraded by both bio琀椀oc and abio琀椀c factors.

1.1 Plastic degradation

As we can see from the Figure 1.1, plastic degradation takes into account abiotic and biotic fac-
tors. Any physical or chemical change in polymer as a result of environmental factors such as
light, heat, moisture, chemical conditions, or biological activity processes inducing changes in
polymer properties. Most plastics tend to absorb high-energy radiation in the ultraviolet por-
tion of the spectrum (∼ 295-400nm), which activates their electrons to higher reactivity and
causes oxidation, cleavage, and other degradation[8]. It is important to distinguish between
deterioration of the bulk plastic (e.g. fragmentation resulting in microplastics) and depoly-
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merization (degradation of the polymer at the molecular level). Normally, degradation trials
involve the incubation of polymers in situ to investigate how plastics behave and/or degrade in
di昀昀erent environments over time, which is largely dependent on polymer properties and envi-
ronmental conditions[8].
A signi昀椀cant drawback of abiotic factors such as sunlight and rainfall is their slow rate of plas-
tic degradation, regard to that it has been estimated that the degradation of a plastic bottle
takes around 100 years[8]. Biodegradation is the process by which organic substances are bro-
ken down by living organisms. The term is often used in relation to ecology, waste manage-
ment, and environmental remediation (bioremediation). Plastics are biodegraded aerobically
in nature, anaerobically in sediments and land昀椀lls, and partially anaerobically in composts and
soil[7]. Carbon dioxide (CO2) and water are produced during aerobic biodegradation. Car-
bondioxide,water andmethane (CH4) are insteadproducedduring anaerobicbiodegradation[9].
Generally, the breakdown of large polymers into carbon dioxide (mineralization) requires sev-
eral di昀昀erent organisms, with one breaking the polymer into its constituent monomers, one
using the monomers and excreting simpler waste compounds, and one able to use the excreted
wastes. Standardized tests are used to certify polymers as biodegradable or compostable, in par-
ticular, plastic must reach a 90% conversion toCO2 under speci昀椀ed conditons within 6moths
to be considered compostable[10].
Degradation studies can be black-box with no attempt to characterize the microbial commu-
nity involvedor canbepairedwithmicrobial community to identify plastic degraders, quantify-
ing plastic degradation is important for the characterization of plastic degradation enzymes and
can be done simultaneously with microbial community pro昀椀ling in situ or under controlled
laboratory conditions.
The identi昀椀cation of new plastic degradation agents has the speci昀椀c goal of 昀椀nding and charac-
terizing new enzymes and/or microbial lineages that mediate plastic degradation.

1.2 Biodegradation of plastic

Somemicrorganisms such asbacteria, fungi, and algae, are involved in synthetic plastic degradation[9],
the biodegradation of plastics proceed di昀昀erently according to di昀昀erent soil conditions because
the microorganisms responsible for the degradation di昀昀er from each other and they have their
own optimal growth conditions in the soil.
Biodegradation is in昀氀uenced by di昀昀erent factors that include polymer characteristics, type of
organism, and nature of pretreatment[9]. During the degradation, the polymer is 昀椀rst con-
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verted to its monomers, and then theese monomers are mineralized. Because most polymers
are too large to pass through cellular membranes, they must 昀椀rst be depolymerized to smaller
monomers before they can be absorbed and biodegraded within microbial cells[8].
Generally, an increase in molecular weight results in a decrease in the degradability of the poly-
mer by microorganisms, in contrast, monomers, dimers and oligomers of the repeating units
of a polymer are much easier to degrade and mineralize[8].

1.3 PET and its possible biodegradation

Polyethylene terephthalate (PET) is a polymer synthesized from repeating units of ethylene
terephthalate. Each molecule of PET consists of two main monomer units :

1. Ethylene Glycol (EG): which is a diol compound (e.g. it contains two hydroxyl func-
tional groups–OH) with chemical formula : C2H6O2.

2. Terephtalatic Acid (TPA): which is an aromatic dicarboxylic acid with a chemical for-
mula:
(C6H6(COOH)2).

The most important features of this material are the following[11] :

• Property : PET o昀昀ers several desirable properties for industrial applications, such as :

1. Transparency : PET is transparent, allowing consumers to see the contents of the
packaging.

2. Strength : PEThas excellentmechanical strength, making it suitable for packaging
products that require protection during handling and transportation.

3. Barrier Properties : PET provides good barrier properties against moisture, oxy-
gen, and other gases, helping to extend the shelf life of packaged products. These
characteristics result in minimal natural degradation of PET over time.

4. Recyclability: PET is highly recyclable and can be recycled into newPETproducts
or other materials, such as 昀椀bers for textiles and classical plastic bottles.

• Biodegradability : Enzymatic degradation : Enzymes such as PETase and MHETase,
discovered[12] in bacteria Ideonella sakaiensis, have been found to catalyze the break-
down of PET into its constituent monomers, ethylene glycol (EG) and terephtalic acid
(TPA), which can then be metabolized by microorganisms as a source of energy.
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In recent decades, research activity onbiodegradationhas increased a lot. There are several bi-
ological organisms involved in this process, in particular bacteria, fungi, and microalgae. It has
been proved[8] that the species belonging to the genus Bacillus are particularly good at degrad-
ing PET e昀케ciently respect other microorganisms. In particular, Bacillus cereus and Bacillus
gottheilii have been shown to adapt to other polymers, such as polyethylene (PE), polypropy-
lene (PP), and polystyrene (PS). Together, the results[8] indicate that these microorganisms
possess speci昀椀c enzymatic mechanisms for the transformation of polymers into simpler forms
that are ideal as an energy source for them. The ability of Bacillus sp. to utilize these substrates
as a source of carbon and energy is evident in its adaptation to PET-contaminated environ-
ments.
During polymer degradation, microbes 昀椀rst adhere to the polymer surface, thereby exposing
it to microbial colonization. Polymer colonization is followed by the secretion of extracellu-
lar enzymes, which bind to the polymer and cause hydrolytic cleavage, The polymer is sub-
sequently degraded into low-weight polymers and mineralized to carbon dioxide (CO2) and
water (H2O), which are used by the microbe as an energy source.

1.3.1 Identification of PET-degrading enzymes

In an era where data acquisition and storage is exponentially increasing, a revolution in data
accessibility is underway in the biological 昀椀eld. In particular, instruments like nucleic acid
sequencers are becoming much more e昀케cient. A sequencer is an instrument that is used to
determine the precise order of nucleotide in a DNA or RNAmolecule or the order of amino
acids in a protein. The continuous development of these instruments allows researchers to
obtain sequences of an unknown protein rapidly and economically. For this reason, a large
number of amino acid sequences are available but with unde昀椀ned functions. Databases such
as UniProt[13] contain manually reviewed protein sequences, where roles and functions are
well de昀椀ned, and unreviewed proteins whose functions remain unde昀椀ned or predicted but not
experimentally validated. Often, function prediction is based on sequence similarity to the re-
viewed proteins through the use of alignment search tools like blast[14]. The consideration
of only sequence similarity often leads to the exclusion of proteins that diverge in sequence
but share a similar function. To address this limitation, novel approaches for characterizing
the functions of unknown proteins have emerged. In particular, natural language processing
(NLP) methods have gained traction. These techniques exploit the capability of representing
amino acids in protein sequences through one-hot encoding with a single letter. By training
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these models, numerical vectors can be assigned to encapsulate various protein characteristics
ranging from sequence to structure and function. With these approaches, ideally, proteins
with similar functions exhibit similar vectors, and those vectors with proper labeling can be
used for classi昀椀cation tasks. Therefore, in such a scenario, unknown PET degrading proteins
can be inferred using a classi昀椀cation model trained on a custom build dataset.

1.3.2 Engineering of hydrolase for PET depolymerization

The advent of genetic engineering o昀昀ers unprecedented opportunities for the precise manipu-
lationof biological systems. With this new technology, researchers can engineer organismswith
tailored functionalities, unlocking novel pathways to address environmental challenges. In the
future, the convergence of genetic engineering with other cutting-edge technologies, such as
synthetic biology and machine learning, holds immense promise for accelerating progress in
plastic degradation. Using interdisciplinary approaches fromdi昀昀erent scienti昀椀c disciplines, the
development of newplastic-degrading proteinswill be faster andmore e昀케cient. An example of
using a hybrid approach for the development of an engineered protein is MutCompute[15].
MutCompute employs an algorithm that understands the speci昀椀c chemical surroundings of
amino acids by utilizing a self-supervised 3D convolutional neural network (CNN) trained on
a dataset of 19000 protein structures sourced from the ProteinData Bank (PDB). Essentially, it
predicts the locations within a protein where wild-type amino acids are not optimized for their
immediate surroundings. It can be used to confront wild-type proteins with modi昀椀ed ones to
identify positions where wild-type amino acid residues 昀椀t less well than potential substitutions.
An example ofMutCompute application is theHongyuan Lu et al. paper[16]where they tried
to perform an enigneering of a hydrolase for PET depolymerization. In that paper, they found
four mutations that resulted in the highest improvements, both singly and in combination for
the PETdegradation. Using these fourmutations across three PETase the researchers were able
to produce a mutated enzyme called FAST-PETase that emerged as an excellent canditate for
PET degradation.

1.4 Aim of the work

The central intuition of this research is based on the fact that microorganisms that live in a
plastic-contaminated environment are subject to evolutionary pressure. This claim stems from
the emergence of modern materials, such as plastic-based products, that have become ubiq-
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uitous in contemporary society, but were absent or scarce during the evolutionary history of
thesemicroorganisms. Unlike natural organicmatter, plastics possess unique chemical compo-
sitions and degradation pro昀椀les, making them di昀케cult to metabolize by traditional microbial
degradation processes [17], consequentlymicroorganisms residing in land昀椀lls encounter novel
selective pressures imposed by the in昀氀ux of plastic-derived nutrients. Furthermore, the rapid
proliferation of plastic-based products in recent decades intensi昀椀es the magnitude of this evo-
lutionary pressure[8] since the global environment is faced with an unprecedented abundance
of these synthetic materials.
Evolutionary pressure leads to the adaptation of microorganisms that inhabit such speci昀椀c en-
vironments. Due to the high levels of plastic contamination in these habitats, microorganisms
are pushed to evolve proteins that were originally meant to degrade biological substances, such
as a cutin, into proteins capable of breaking down syntheticmaterials such as plastic. Analyzing
the sequence and structure of proteins is crucial to understanding their functionality. These
characteristics can be utilized to predict the function of an unclassi昀椀ed protein by comparing
its sequence and structural features to those of already classi昀椀ed proteins. Given the very large
number of proteins that need to be analyzed to identify the common sequence and structural
characteristics linked to a particular function, a computational method is essential to detect
these patterns.
Theobjective of this thesiswork is todevelop a classi昀椀cationmodel capable ofpredictingpromis-
ing PET degradation proteins. The microorganisms from which these proteins can be ex-
tracted may have evolved in environments such as land昀椀lls with high concentrations of plastic
products. Given that scenario, we think they can be hypothesized to have evolved to utilize
plastic as an additional carbon source. The aim of the work is to identify and characterize these
proteins, o昀昀ering insight into bioengineering solutions for plastic waste management.
Themain objective is thus to develop amachine learningmodel for classi昀椀cation using a dataset
that includes proteins related to PET degradation and proteins that may or may not be related
to it. By including proteins from both categories, the model can learn to distinguish between
features characteristic of PET degradation proteins and those that are not. Additionally, given
the strict relationship between protein sequence, structure and function, this work explores
the information value of the former two in predicting the latter. This approach enables the
identi昀椀cation of key molecular signatures or patterns indicative of PET degradation capability,
facilitating the prediction of unknown promising PET degradation proteins.
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2
Data andMethods

As introduced in the previous chapter, the idea is to build a classi昀椀cation model capable of
identifying proteins that can perform PET degradation. The diagram in Figure 2.1 illustrates
the 昀氀ow of the process that aims to identify distinctive features linked to PET degradation.
The objective is to extract these features in a numerical format. As depicted in the initial step
of Figure 2.1, a crucial stage involves converting the proteins into numerical vectors to facilitate
the training of a classi昀椀cation model. To that end, as we will see in the next Sections, we tested
three approaches :

1. Sequence-based approach : Since proteins are composed of 20 di昀昀erent amino acids
that can be encoded by single letters, a natural language model can be built to produce
a numerical representation for each protein.

2. Structure-based approach : Using coordinates of the atoms that compose a protein, we
can build a graph for each one, and through a graph embedding model transform each
graph into a second numerical representation.

3. Combined approach : By concatenating the vector representations coming from the
sequence and structure approach, we can obtain a numerical protein representation that
takes into account both types of information.

Then, after proper labeling of those vectors, the idea is to train a classi昀椀cationmodel able to
predict if proteins with unknown function can be associated to PET degradation.
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Figure 2.1: The 昀椀rst step is to build a dataset that contains either PET degrada琀椀on proteins and either non PET degrada琀椀on
proteins, then from the amino acid sequence use a model that assign to each protein a numerical vector. Using these vectors
train a classi昀椀ca琀椀on model able to dis琀椀nguish PET degrada琀椀on proteins from the others. Finally use that model to predict
which of the land昀椀ll extracted sequences can be associated to PET degrada琀椀on
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2.1 Data

The main data used for this thesis work were obtained from three di昀昀erent databases :

1. The proteins associated to PET degradation were obtained from a database named Plas-
ticDB[18] which ismanually curated and containsmost of the known proteins that can
be associated to plastic degradation. Since in this work we are interested on working on
PET degradation we have selected only those related with this type of plastic. At the
time of the data extraction (December 2023), 73 PET degrading proteins were available.

2. Generic proteins were obtained fromUniProt[13], which is a comprehensive database
for protein sequence and functional information. It is maintained by a collaboration be-
tween the European Bioinformatics Institute (EBI), the Swiss Institute of Bioinformat-
ics (SIB) and the Protein Information Resource (PIR). UniProt provides a centralized
repository of protein sequences, annotations, and curated informationonproteins from
various organisms. In this work, we have used proteins from the theUniProt/Swiss-Prot
section since it contains high-quality manually curated and annotated proteins with in-
formation on sequence, function, and structure. During the work period (December
2023), in the SwissProt section 571,282 annotated proteins were present.

3. The atomic coordinates that compose a protein are encapsulate in Protein Data Bank
(PDB) 昀椀le. A PDB 昀椀le is a standard 昀椀le format used to store the three-dimensional coor-
dinates of atoms in a molecule or complex molecular structure. These 昀椀les are obtained
from the AlphaFold database[19] and in that work are used to extract structural infor-
mation from proteins.

Given the extremely high number of protein entries in the SwissProtDatabase, we randomly
under-sampled 10,000 proteins. In this way, computational costs were kept reasonable for the
available resources while drawing information from a representative protein set. Therefore,
昀椀nally we obtained a dataset composed of 10,000 functionally variable proteins and 73 PET-
degrading proteins. For each of these proteins, the information that we collected includes : the
entry identi昀椀er, the amino acidic sequence and the EC number. Speci昀椀cally :

• In the two databases we utilized, each entry as a unique alphanumerical identi昀椀cation
key. However, the nomenclature for the entries di昀昀ers between the databases. To pre-
vent hidden duplicate proteins, we excluded proteins that share the same amino acid se-
quence. In the cases of clonesbetween the twodatabases,we retained theprotein sourced
from the PlasticDB database. After that 昀椀ltration, 9,983 proteins remained.
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• The amino acid sequence refers to the speci昀椀c order in which amino acids are arranged
within a protein or peptide molecule. Proteins are composed of long chains of amino
acids linked together by peptide bonds. There are 20 standard amino acids that can be
found in proteins, each with its own unique chemical structure and properties. This se-
quence is critical for the protein’s structure and function, as it dictates how the protein
will fold into its three-dimensional shape and how it will interact with other molecules
in the cell.

• The Enzyme Commission (EC) number is a hierarchical classi昀椀cation system for cat-
egorizing proteins based on the type of reaction they catalyze or in which are involved.
Each protein is given a distinct EC number, which consists of a series of four numbers
separated by periods. These numbers cover speci昀椀c information about protein function
and the type of chemical reaction that it facilitates.
The structure of an EC number is as follow :

EC number = a.b.c.d.

where a,b,c,d are the classes of the EC number.

– Class a : the 昀椀rst digit (a) refers to the type of reaction in which the protein is in-
volved. For example, that digit can refer to a hydrolase which is a type of enzyme
that catalyzes the hydrolysis reaction, involving the cleavage of chemical bonds
through the addition of a water molecule.

– Subclass b : the second digit (b) provides more speci昀椀c information about the
type of reaction. This digit further re昀椀nes the classi昀椀cation, helping to distinguish
between di昀昀erent types of reactions that enzymes catalyzewithin the same enzyme
class, for example, given class a = 2 that is related to transferases, then subclass b
can be :
1 : Transferases transferring one-carbon groups.
3 : Acyltransferases.
4 : Glycosyltransferases.
6 : Transferases transferring nitrogenous groups.

– Subsubclass c : the third digit (c) provides more detailed information on the
substrate or the chemical group involved in the reaction. This level of classi昀椀cation
allows for a 昀椀ner distinction between enzymes that catalyze similar reactions but
act on di昀昀erent substrates or chemical groups.

– Serial number d : The fourth digit (d) uniquely identifying proteins within each
subclass and subsubclass, facilitating precise classi昀椀cation and organization of pro-
tein data.
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2.2 AlphaFold2

The accurate prediction of protein structures from amino acid sequences has long been amajor
challenge in computational biology, with implications that range from a fundamental under-
standing of biological processes to drug discovery and design.
Prediction of protein structures is crucial to discovering the mechanism underlying biological
functions.Experimental methods such as X-ray crystallography and cryoelectron microscopy
have traditionally been used to determine protein structures, but these approaches are often
time consuming, labor intensive, and costly. AlphaFold2[1] outperforms its predecessor, demon-
strating groundbreakingperformance in theCriticalAssessmentof StructurePrediction (CASP)
competition, de昀椀ning that model as the state of the art of protein structure prediction from se-
quence. The general scheme on howAlphaFold2 works can be visualized in that image2.2 and
can be divided into 3 main blocks :

1. First of all AlphaFold2 query the input amino acid sequence through di昀昀erent databases
of protein sequences and constructs a multiple sequence alignment (MSA). Multiple
Sequence Alignment (MSA) is a bioinformatic technique used to align three or more
biological sequences (such as DNA, RNA, or protein sequences) to identify similarity
regions that may be functional, structural, or evolutionary related. This enables us to
determine the parts of the sequence that tend to mutate more and enables us to detect
the correlations between them. AlphaFold2 also tries to identify proteins that may have
a structure similar to the input (template), and constructs an embryonic representation
of the structure called “pair representation”.This is, in essence, a model in which amino
acids are likely to be in contact with each other.

2. In the secondpart of the image2.2,Alphafold2 takes the alignmentofmultiple sequences
and templates andpasses them through a transformer (that is an architecture thatwewill
see in the next Section 2.3.1) that can identify which pieces of information are more in-
formative. The objective of this part is to re昀椀ne both the representations of the MSA
and pair interactions and also exchange information between them.

3. In the last part of the diagram, both the re昀椀ned MSA representation and the pair rep-
resentation are leveraged through another neural network in order to construct a three-
dimensional structure of the input protein sequence.

One last piece is that the model works iteratively, after generating the 昀椀nal structure, it will
take all the information (MSA representation, pair representation, and predicted structure)
and pass it back to the beginning of the Evoformer blocks2.2, this allows themodel to re昀椀ne its
predictions. After that overview on how AlphaFold2 works, we will go deeper into the details.
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Figure 2.2: Diagram of AlphaFold2 published in the o昀케cial Nature paper[1].

Preprocessing :
AlphaFold2 is equipped with a pipeline to query di昀昀erent databases to produce anMSA and a
list of templates from an input sequence. In Multiple Sequence Alignment (MSA) the amino
acid sequence is compared across a large database (likeUniProt[13]) producing an outputwith
all the aligned sequences that share a portion with the input sequence given a threshold, e.g.,
in the output consider a protein only if it shares at least a threshold value of sequence identity,
that value can be, for example, 70%. The underlying idea on why MSA is used in AlphaFold2
is that : when two amino acids are in close proximity, mutations in one of them are likely to
be promptly followed by mutations in the other in order to preserve the structure, this phe-
nomenon is called coevolution. An example of coevolution can be the following one : When
a protein contains an amino acid with a negative charge (such as glutamate) in close proximity
to an amino acid with a positive charge (such as lysine), the interaction between them can play
a crucial role in determining the protein’s structure. Thus, if the 昀椀rst amino acid changes to
one with a positive charge, the second amino acid will likely undergo a mutation to acquire a
negative charge. This evolutionary pressure is necessary for proper protein folding; otherwise,
the proteinmay lose its function. A visual explanation of this phenomenon is illustrated in the
Figure 2.3. Finding templates follows a di昀昀erent but cloesly related principle. The idea behind
template construction is that proteins tend to mutate and evolve but their structure tends to
remain similar despite changes, we can see that for example in the image 2.4 where four di昀昀er-
ent types of myoglobin proteins correspond to 4 di昀昀erent organisms are displayed. Although
these proteins appear quite similar, some pairs of proteins exhibit unexpectedly low sequence
similarity. For example, the protein in the lower right corner only shares approximately 25%
of its amino acids with the protein in the upper left corner. In most cases, however, conserva-
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Figure 2.3: Schema琀椀c of how co‐evolu琀椀on extract informa琀椀on about protein structure from aMSA. Image taken fromMarks
DS et al. [2]

tion occurs on a smaller scale, where pieces of the protein(like the active center of an enzyme)
remain unchanged while their surrounding evolve. Using the right method It is possible to
identify some of these conserved fragments and use them as a guide to construct the structure.
The Evoformer (evolutionary transformer) model :

The task of the Evoformer is to extract information from themultiple-sequence alignment and
the templates. The central behind idea of the Evoformer is that the information 昀氀ows back and
forth through the network, at every cycle the model leverages the current structural hypothesis
to improve the assessment of themultiple sequence alignment, which turns to a new structural
hypothesis. The evoformer architecture uses two transformers[20], each head is specialized for
the particular type of data it is looking at, either a multiple sequence alignment or a representa-
tion of pairwise interaction between amino acids. The two transformers are as follows :

1. The MSA transformer computes attention over a large matrix of protein letters. To
reduce what would otherwise be an impossible computational cost, the attention is fac-
torized in the ‘row-wise’ and ‘column-wise’ components. That is, the network 昀椀rst com-
putes attention in the horizontal direction, allowing the network to identify which pairs
of amino acids are more related; and then in the vertical direction, determining which
sequences are more informative. The most important feature of the AlphaFold2 MSA
transformer is that the row-wise (horizontal) attention mechanism incorporates infor-
mation from the ‘pair representation’. When computing attention, the network adds a
bias term that is calculated directly from the current pair representation. This trick aug-
ments the attention mechanism and allows it to pinpoint interacting pairs of residues.

2. The other transformer that acts on the pair representation works in a similar manner,
but focusing on di昀昀erent details. The key feature of this network is that the attention is
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Figure 2.4: Protein structures of human myoglobin (top le昀琀), african elephant myoglobin (top right, 80% sequence iden琀椀ty
with human myoglobin), black昀椀n tuna myoglobin (bo琀琀om right, 45% sequence iden琀椀ty with human myoglobin) and pigeon
myoglobin (bo琀琀om le昀琀, 25% sequence iden琀椀ty with human myoglobin)

arranged in terms of triangle of residues, the intuition is to enforce the triangle inequal-
ity. The triangle inequality is a fundamental concept which states that in a metric space,
the distance between two points is always less than or equal to the sum of the distance
between those two point and a third point. Formally given 3 points A,B,C in an eu-
clidean space the triangle inequality can be expressed as :

d(A,B) ≤ d(A,C) + d(C,B) (2.1)

After 48 iterations the network has built a model of the interactions within the proteins.
The structure modelUntil now the model has generated two representations :

• A representation of the multiple sequence alignment (MSA) which captures sequence
variation.

• Representation of the pair residues, which captures which residues are likely to interact
with each other.

In the structure model every amino acid is modelled as a triangle (as we can see in the Fig-
ure 2.5) representing the three atoms of the backbone. These triangles 昀氀oat around in space
and are moved by the network to form the structure. These transformations are parameterised
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Figure 2.5: Graphical representa琀椀on on which is visualized how each aminoacid is modeled as a triangle, the triangle ver‐
tex are : carbon‐alpha, amine group and carboxylic group. Those elements are the fundamental building block of each
aminoacid.Image taken from the Open Fold 2 webpage

as a昀케ne matrices, which are a mathematical way to represent translations and rotations in a
single 4x4 matrix. In the initial phase of the structure module, the residues are initially posi-
tioned at the origin of the coordinates. During each iteration, AlphaFold 2 generates a series
of a昀케ne matrices to translate and rotate the residues in space. This representation does not
re昀氀ect any physical or geometrical assumptions and, as a result, the network has a tendency to
generate structural violations. Since any rotation or translation of the data yields the same re-
sult, a newly attentionmechanism called ”Invariant Point Attention” (IPA) is introduced. IPA
is invariant to rotations and translation, and requires signi昀椀cantly less data to discern inaccu-
rate models, consequently enhancing its learning capacity. Finally, after multiple iterations the
model obtains the protein structure prediction.

2.3 From sequence to vector

For converting an amino acids sequence into a vector, the idea is to use a natural language pro-
cessing (NLP) model. We used that type of model because the 20 possible di昀昀erent amino
acids can be encoded by a single letter and proteins can be seen as pieces of text and converted
by a NLP model into a vector. In this Section, we present and provide an explanation of the
underlying intuition behind the chosen model.
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2.3.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a state-of-the-art NLP
model introduced in 2018 [21]. BERT is based on the transformer architecture, which is a type
of arti昀椀cial neural networkutilizing self-attentionmechanisms to e昀昀ectively capture contextual
information from both left and right contexts in a sentence.
One of the key innovations of BERT is its pre-training strategy, where the model is 昀椀rst

trained on large amounts of unlabeled text data in an unsupervised manner. During this pre-
training phase, BERT learns to predict missing words in sentences based on the surrounding
context. This process enables BERT to capture rich semantic representations of words and
sentences, which can then be 昀椀ne-tuned for downstream NLP tasks such as text classi昀椀cation
and question answering. BERT’s bidirectional nature allows it to understand the context of a
word by considering all of its surrounding words, leading to more accurate representations of
word. This is done through the self-attention step that will be described below. Additionally,
BERT can be 昀椀ne-tuned on speci昀椀c tasks with relatively small amounts of labeled data, making
it highly versatile and applicable to a wide range of NLP task.
In the following, we present the main steps that comprise the BERTmodel.
Tokenization :

In the 昀椀rst step, tokenization, the words are converted into numerical vectors. In the case
of amino acid sequences, where each amino acid is represented by a one-hot encoding letter,
this process involves converting each letter into a numerical vector or embedding representa-
tion. This numerical representation allows the model to process and manipulate the input
data mathematically, facilitating further analysis and processing by subsequent layers in the
neural network. Returning to the more intuitive analogy of a sentence, the tokenization pro-
cess comprises distinct elements that are summarized creating a unique vector for each word.
These elements are as follows :

• token embeddings : text is subdivided into tokens i.e. uniform blocks that make up the
sentence.

• sequence embeddings : codify each sentence as a unique vector.

• position embeddings : codify the position of the words in the sentences. This is an
important information since intuitively the position of word in a sentence can change
its meanings. The positional encoding of each word is calculated as follows :

PEpos,2i = sin(pos/10000
2i

dmodel )
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PEpos,2i+1 = cos(pos/10000
2i

dmodel ),

where pos is the position of each word and i is used to map the column indices of the
embeddings.

Figure 2.6 shows an example of tokenization of two sentences.

Figure 2.6: Input embeddings are the sum of the token embeddings, the segmenta琀椀on embeddings, and the posi琀椀on embed‐
dings. Image taken from this paper [3]

Masking :
Normally, approximately 15% of the input elements aremasked, and the goal is to predict these
masked elements to optimize a log-likelihood function which is expressed as follows :

L(X, θ) = E
x∼X

E
mask

∑

i∈mask

logp(xi|xj /∈mask,θ) (2.2)

WhereX correspond to all input elements andmask contain the indices of masked elements.
Computing of the self attention similarity :

Three matrices, identi昀椀ed asQ,K, andV, are obtained as follows :

Q = X ·WQ

K = X ·WK

V = X ·WV

WQ,WK ,WV are the parameters learned through backpropagation, andX are the input vec-
tors of our model. Q,K, V ∈ R

n×m where n is equal to the number of elements in input, so
in the case of a protein, for example, it will be equal to the number of amino acids that compose
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a protein andm is the dimension of the embedding. Finally, a n× n similarity matrix that we
call S is obtained through the following matrix operation :

S = softmax(
QKT

√
d

) (2.3)

In order to obtain a similarity matrix, the model use the cosine similarity. Cosine similarity
is a measure of similarity between two non-zero vectors. It corresponds to the cosine of the
angle between the vectors, which is the dot product of the vectors divided by the product of
their lengths. The cosine similarity belongs to the interval [−1, 1]. For example, two propor-
tional vectors have a cosine similarity value of 1, two orthogonal vectors have similarity of 0 and
two opposite vectors have similarity of−1. Given two vectors A and B the cosine similarity is
mathematically de昀椀ned as :

SC(A,B) := cos(θ) =
A · B

∥A∥ ∥B∥ =

∑n
i=1 AiBi

√
∑n

i=1 A
2
i ·

√
∑n

i=1 B
2
i

(2.4)

After the similarity matrix is obtained the softmax is applied on it. Softmax function takes
as input a vector z ∈ R

K and normalized it into a probability distribution consisting of K
probabilities proportional of the input numbers. Mathematically, is de昀椀ned as :

softmax(z)i =
ezi

∑K
j=1 e

zj
(2.5)

i = 1, .., n and z = (z1, ..., zk) ∈ R
k

The softmax function is applied to the resulting n × n matrix 2.3, providing a probability
representation named similarity matrix which indicate the correlation between elements. This
considers their position and meaning within their speci昀椀c context. After softmax operation,
the resulting similarity matrix is multiplied by the V matrix, resulting in a matrix with a shape
of n × m, referred to as the attention value matrix. Each row of this matrix represents the
embedding of the input sequence, where in the case of text, it corresponds to the embedding
of each word and, in the case of a protein, to the embedding of each amino acid. A general
scheme on how the attention matrix of the sentence “I am a student” is obtained can be seen
in Figure 2.7. Thematrices Q and K are updated with backpropagation in order to 昀椀nd a good
embedding of input elements and obtain a good separation within elements that have distant
similarity values.
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Figure 2.7: Computa琀椀on of the a琀琀en琀椀on value matrix for the sentence ”I am a student”.

Intuition on how the attention mechanism works :
Aswe can deduce from the previous Section, the attentionmechanism is a key operation in the
BERTmodel. Essentially, its main concept revolves around assigning a weight to each element
of the input sequence based on its context. This is achieved through a weighted combination
of all other elements within the input. If we consider the input as a sentence, we can imagine
that each word is encoded as a vector (referred to as the word’s embedding). Using these em-
beddings, we can generate an n × nmatrix where n represents the number of words. In this
matrix, each position corresponds to the dot product between one word and another word in
the sentence. This matrix indicates the degree of correlation between each word and all the
others in the sentence. For example, the initial words in the sentence will possess a similarity
value to all the others, which can then be used to determine the new positioning of that word
within the embedding space. To give a better idea on how the attention mechanism works we
provide an example through the use of the two following sentences :
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“an apple and an orange”

“an apple phone”

Aswe can imagine theword ”apple” in the two sentences given the context has a di昀昀erentmean-
ing, using the attention mechanism we will show which that word can be discriminated based
on the context. For simplicity in that example, we assume that the embedding space isR3, the
x axis is related to the technology of a word, the y axis is related to the fruitiness, and the z axis
is related to others do not speci昀椀ed characteristics. The initial coordinates of the embedding
are in the following Table 2.1. A detail that we can notice is that the initial embedding of the
word apple has coordinate of [2, 2, 0] this points out his double meaning, later we will see how
the assigned embedding of the word “apple” change based on context. Starting from the initial

Technology Fruitiness Other
orange 0 3 0
phone 4 0 0
apple 2 2 0
and 0 0 2
an 0 0 3

Table 2.1: Coordinate of words embedding

embedding of the sentence “an apple and an orange” we compute a similarity matrix using co-
sine similarity. Following this, we apply the softmax function in order to obtain the resulting
matrix 2.2. From the similarity matrix referenced as 2.2, we observe that the similarity between

orange apple and an
orange 0.57 0.43 0 0
apple 0.43 0.57 0 0
and 0 0 0.5 0.5
an 0 0 0.5 0.5

Table 2.2: Table similarity

the words ‘apple’ and ‘orange’ is 0.43. Intuitively, this implies that the initial embedding vector
of the word ‘apple’ with coordinates [2,2,0] will be adjusted towards the embedding vector of
‘orange’ [0,3,0] by 0.43%, resulting in the new embedding coordinates for the word ‘apple’ as
[1.14, 2.43, 0]. This makes sense since in that context the word apple is more related to fruiti-
ness with respect to technology.
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If we compute with the same logic a table similarity of the other sentence “an apple phone” the
resulting embedding vector of the word ‘apple’ will be more shifted towards the embedding of
the word phone. This because intuitively in that context ‘apple’ is more related to technology
with respect to fruitiness.
In conclusion, the attentionmechanism enables the creation of embeddings where words shar-
ing similar contexts are positioned closely together in the embedding space.

2.3.2 ESM1b : a BERT-based model

ESM1b is a transformer protein language model based on BERT architecture (Section 2.3.1),
trained on protein sequence data without label supervision, developed by Rives et al. [22].
The model is pre-trained on Uniref50[13] with an unsupervised masked language modeling
(MLM) objective, meaning that themodel is trained to predict amino acids from the surround-
ing sequence context. This pre-training objective allows ESM1b to learn generally useful fea-
tures that can be transferred to downstream prediction tasks. UniRef50 is a database contain-
ing approximately 30 million protein sequences maintained by the UniProt Consortium[13],
which aims to provide clustered sets of protein sequences at a 50% sequence identity, e.g., set
that contains sequences that share at least 50% similarity in their amino acid sequence. This
clustering approach aims to minimize redundancy in the database. Training of that model is
obtained with the objective of modeling in masked language, randomly masking 15% of the
amino acids in the input sequence. For each protein, the model produces a numeric vector
with 1280 elements. The main advantage of using a NLP models like ESM1b is that they can
infer information about the structure and function of proteins without further supervision,
i.e. they are capable of zero-shot transfer to structure and function prediction, since the idea is
which the biological function and structure are recorded in the statistics of protein sequences
selected through evolution in millions of years.
In the speci昀椀c case of ESM1b, thanks to self attention layers the model can be interpreted as
way to consider all possible interactions between amino acid pairs. This is very valuable since
the proteins fold in a 3D structure, so amino acids that are distant in sequence can be near in
the space, for example, forming interactions that are very important for functional domains or
structure.
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2.4 From graph to vector

In this Section, we present the di昀昀erent graph embedding methods used in this work. Graph
embedding techniques enable us to convert complex graph structures into continuous vector
spaces, facilitating the application on them of traditional machine learning algorithms. These
vectors encapsulate meaningful information about the nodes, edges, and overall topology of
the graph.

2.4.1 Graph2vec

Problem statement :
Given a set of graphsG1, G2, ..., GN , theGraph2Vec[23]model intends to learn δ−dimensional

distributed representations for every graphGi ∈ G. The matrix representations of all graphs
is denoted asϕ ∈ R|G|×δ where |G| corresponds to the number of graphs and δ corresponds to
the dimension of each embedding. In particular, letG = (N,E, δ), represent a graph where
N is a set of nodes,E ⊆ (N ×N) be a set of edges, and λ is a function that maps the nodes to
a unique label λ : N → l if the graphG is labeled.
The goal of graph2vec is to learn an embedding (a numerical representation) of graphs using
the recently proposed embedding techniques in NLP.

Background : SkipgramWord and document embedding models :
New neural embeddingmethods such as word2vec[24] use a simple and e昀케cient feed-forward
neural network called skipgram to learn embedding representations of words.
word2vec works based on that intuition :

words that appear in similar contexts tend to have similar meanings and hence should have
similar vector representations.

To achieved that word2vec model try to learn a target word representation given a context de-
昀椀ned as昀椀xednumberofwords surrounding it. Given a sequenceofwords{w1, w2, ..., wt, ..., wT},
the target word wt has to be learned given a context window of size c, the objective is to mini-
mize the following log-likelihood :

T
∑

t=1

logPr(wt−c, ..., wt+c|wt) (2.6)
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Figure 2.8: Doc2vec and Graph2vec analogy,basically di昀昀erent subgraphs compose graphs in a similar way that di昀昀erent
words compose sentence or document.

wherewt−c, ..., wt+c are the context of the targetwordwt. TheprobabilityPr(wt−c, ..., wt+c|wt)
is computed as :

Pr(wt−c, ..., wt+c|wt) =
∏

−c≤j≤c,j ̸=0

Pr(wt+j|wt) (2.7)

Since the context words and the target word are assumed to be independent Pr(wt+j|wt) is
de昀椀ned as :

Pr(wt+j|wt) =
exp(w⃗ · w⃗′

t+j)
∑

w∈V exp(w⃗ · w⃗) (2.8)

where w⃗ and w⃗′ are the input and output vectors of wordw and V is the vocabulary of all the
words. The posterior probability in equation 2.7 is obtained through negative sampling. This
implies selecting a small subset of words at random that are not in the target (wt) context and
updates their embeddings in every iteration instead of considering all words in the vocabulary.
So if a word w appears in the context of another word w′ then the vector embedding of w is
closer to w′ compared to any other random word in the vocabulary. Recently, doc2vec which
is a straightforward extension to word2vec is introduced, basically it is able to learning embed-
ding representation of arbitrary length word sequences such as sentences, paragraphs and even
whole large documents.

Intuition of Graph2Vec :
The idea presented before on word and document embedding can be extended to graphs. We
can imagine a graph as a document and the rooted subgraphs surrounding every node in the
graph as words that compose the document. So, basically, a graph G is divided into di昀昀erent
rooted subgraphs with a 昀椀xed number of neighbors within a certain degree. We can see an
analogy of the Doc2vec and Graph2Vec methods in the following Figure 2.8.
Extraction of Rooted Subgraphs :
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Let H be a non-negative integer parameter which de昀椀nes the maximum height of rooted sub-
graphs. For every node v in a graph G, Graph2vec generated (H+1) rooted subgraphs whose
roots are v. For 0 ≤ t ≤ H , the t-th subgraph rooted at v describes the surrounding nodes
within the t hops. After all, if G consists of n nodes, Graph2vec creates n(H + 1) rooted sub-
graphs.

Learning Embedding of entire graphs :
After extracting the rooted subgraphs of a graphG, Graph2vec uses the skip-grammodel 2.4.1
to learn the embedding of the graph.
Given a set of graphsG1, G2, ..., GNand their subgraphs c(G1), c(G2), ..., c(GN), Graph2vec
learns δ−dimensional embedding f(Gi) forGi and δ−dimensional embedding for eachmem-
ber subgraph in c(Gi). Themodel considers the probability that the j-th subgraph sgj in c(Gi)

occurs inGi and maximize the following log-likelihood :

ni(H+1)
∑

j=1

logPr(sgj|Gi) (2.9)

Where ni denotes the number of nodes inGi, and the probability Pr(sgj|Gi) is de昀椀ned as :

Pr(sgj|Gi) =
exp(f(Gi) · f(sgj))

∑

sg∈VOC
exp(f(Gi) · f(sg))

(2.10)

Where VOC denotes the vocabulary of subgraphs across all the graphs. After the training con-
verges, graphs which share many common rooted subgraphs are mapped to similar positions
in the vector space. The skip-grammodel can be trained e昀케ciently with negative sampling.

2.4.2 GL2vec

GL2vec[25] is inspired by Graph2Vec, addresses its limitations by implementing speci昀椀c pre-
cautions. It overcomes Graph2Vec’s inability to handle edge labels and prevent loss of struc-
tural information crucial for evaluating structural similarity. For avoiding those limitations
GL2vec introduces the line graph concept.

Line Graph :
Given a graph G = (V,E), its line graph L(G) = (LV, LE) represents the adjacency rela-

26



tionship between edges inG. To constructL(G), the edges of G are converted to the nodes in
L(G). In L(G) two vertices v(ei) and v(ej) are connected by an edge if ei and ej share a com-
mon endpoint in G. For example, look at the Figure 2.9 since edge (v1, v2) and edge (v1, v4)
share the same endpoint v1 in G, an edge connects the node (v1, v2) and the node (v1, v4) in
L(G). The line graph has an attractive property that the edge features of a graph G can be-
come the node labels in L(G). Furthermore, because L(G) does not remove the node labels
inG,L(G) is suitable to treat the structural information aboutG independently of the node
labels inG. The GL2vec woking operations are as follows :

1. Given a set of graphsG1, G2, ..., GN , we construct their line graphsL(G1), L(G2), ..., L(GN).
We change the node labels in L(Gi), depending on whether the graph data set has edge
labels or not.

2. By applying Graph2vec toG1, G2, ..., GN , the embedding f(Gi) of eachGi is derived.

3. By applyingGraph2vec toL(G1), L(G2), ..., L(GN), the embedding g(L(Gi))of each
L(Gi) is derived.

4. By concatenating f(Gi) to g(L(Gi)) the 昀椀nal embedding ofGi is obtained.

Figure 2.9: GraphG and its line graphL(G).

2.4.3 FeatherGraph

The main idea of FeatherGraph[26] is to describe the distribution of node features in a neigh-
borhoodusing characteristic functions obtainedby randomwalk. The correlationof attributes
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is known to decrease with the decrease in tie strength and with increasing distance between
nodes. FeatherGraph uses a random-walk based to tie strength. Where tie strength at the
scale r between source and target node pair is the probability of an r-length randomwalk from
the source node ending at the target. From that intuition we de昀椀ne the r-scale random walk
weighted characteristic function as the characteristic function weighted by these tie strength.
The goal of Feather graph algorithm is to e昀케ciently evaluate this function formultiple features
on a graph.

Node feature distribution characterization :
We assume that we have an attributed and undirected graphG = (V,E). The nodes ofG have
feature described by the random variableX , speci昀椀cally de昀椀ned as the feature vector x ∈ R

|V |.
We are interested in describing the distribution of this feature in the neighborhood of u ∈ V .
The characteristic function ofX for the source node u can be de昀椀ned as follows :

E[eiθX |G, u] =
∑

w∈V

P (w|u) · eiθxw (2.11)

Where the a昀케liation probability P (w|u) describes the strength of the relationship between
the source node u and the target node w ∈ V . It is important to remember that the source
node u and the target nodes cannot necessarily be directly connected and

∑

w∈V P (w|u) = 1

holds ∀u ∈ V . Using the Euler identity, we can obtain the real and imaginary part of the
function 2.11. Since the a昀케liation probability P (w|u) between the source u and target w is
parameterized, we introduce a parametetrization which uses random walk transition probabil-
ities. Suppose that the neighborhood of u at scale r consists of nodes that can be reached by a
randomwalk in r steps from the source node u. We are interested in describing the distribution
of the feature in the neighborhood of u ∈ V at scale r with the real and imaginary parts of the
characteristic function, which are :

Re(E[eiθX |G, u, r]) =
∑

w∈V

P (vj+r = w|vj = u)cos(θxw) (2.12)

Im(E[eiθX |G, u, r]) =
∑

w∈V

P (vj+r = w|vj = u)sin(θxw) (2.13)

Where P (vj+r = w|vj = u) = P (w|u) is the probability of a random walk starting from
source node u, and reaching the target node w in the rth step. From these characteristic func-
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tions (one for eachnode), we canobtain amatrix that describes the features distribution around
nodes. That representation can be seen as node embedding. For a whole graph representa-
tion those matrices are pooled with a permutation invariant aggregation function such as the
mean,maximum, and minimum.

2.4.4 Wavelets-Based graph embedding

Wavelet[27] is a graph embeddingmethod that considers node features as randomvariables and
examines the distribution of node features in subgraphs.
Given a graph G = (V,E,A) be an undirected and unweighted graph, where V is a set of
vertices, E ⊆ V × V is the set of unweighted edges between vertices V and A ∈ R

N×m de-
scribes the attributes of each node in the network. The goal is to represent the entire graph as
one d-dimensional vector X ∈ R

d. The idea is to calculate the topological similarity of the
nodes based on di昀昀usion wavelets and use that mathematical tool to capture the distribution
of the node features in subgraphs. Finally, aggregating the characteristic functions of k-hop
subgraphs representative points are picked and concatenated in order to get the graph-level em-
bedding representation.

Topological Wawelet Similarity :
The Laplacian matrix L is the di昀昀erence between the adjacency matrix and the degree matrix
of a graph, from which it is possible to obtain an eigenvalue of the temporal frequencies of
a signal on the graph. To obtain larger eigenvalues and smooth the signals, a 昀椀lter kernel gt
with scaling parameter t is introduced. In that case, it used the spectral kernel gt = e−λt. The
spectral wavelet coe昀케cient matrixΨ is de昀椀ned as :

Ψ = Udiag(gt(λ1), ..., gt(λN))U
T (2.14)

For a given node vi the elementΨij represent how much energy comes from node vj to node
vi, therefore each column of Ψ describe the distribution of energy from the other nodes. It
has been proven that nodes with similar energy distribution patterns have similar structural
roles in the network. So we can assume that the di昀昀erence between wavelet distributions of
two nodes represents their topological distance. The minimum di昀昀erence of pair assignment
(MDPA) can quickly measure the distance between two histograms, that measure can be used
to calculate the distance between pair of nodes vi and vj , and the topological node similarity
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can be de昀椀ned as follows :
s(vi, vj) = e−MDPA(ψi,ψj) (2.15)

Sub-graph Feature Distribution
Assuming that the features of node vi is a randomvector a⃗i ∈ R

m. The distribution of features
in subgraphs is used to recover the characteristic function of a⃗i. Since the correlation between
attributes is negatively related to the distance from the node, for a given node vi , we consider
the distribution of the characteristics in the k-hop subgraphGk(vi). The characteristic func-
tion of a⃗i inGk(vi) is de昀椀ned as :

ϕvi
(k)(t) =

∑

vj∈Gk(vi)

P (vj|vi)eitaj (2.16)

The transition probability P (vj|vi) is proportional to two factors : the similarity between
nodes vj and vi and the in昀氀uence of node vi. By aggregating the characteristic function over
all nodes, we can obtain a graph embedding.
The 昀椀nal embedding is constructed by concatenating the embedding with transition proba-
bility using normalized topological similarity and the embedding with transition probability
using normalized node in昀氀uence.

2.5 Semi-supervised learning : label propagation

Semi-supervised learning is a branch of machine learning that combines supervised and unsu-
pervised learning using labeled and unlabeled data to improve model training for classi昀椀cation
and regression tasks. Therefore, semi-supervised learning is generally employed for the same
scenario on which supervised learning is used, it is distinguished by various techniques that
incorporate labeled and unlabeled data into model training. Semi-supervised methods are es-
pecially useful in situations where obtaining a su昀케cient amount of data is prohibitively di昀케-
cult or expensive, but large amounts of unlabeled data are relatively easy to acquire. In more
specialized machine learning use cases, like drug discovery, genetic sequencing, or protein clas-
si昀椀cation, data annotation is not only extremely time consuming but also requires very speci昀椀c
domain expertise. Our case 昀椀ts this situation; in fact, in a real-word scenario, we havemany pro-
teinswith no available labels. As shown in Figure 2.10, it is evident that the use of the canonical
supervisedmethod does not produce an optimal separation boundary between the two sets. In
contrast, a semi-supervised approach, which leverages both labeled and unlabeled data, o昀昀ers a
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broader perspective of the complete dataset, enabling a more e昀昀ective separation between the
two sets.
A necessary condtion of semi-supervised learning is that the underlying marginal data dis-

tributinp(x)over the input space contains information about theposterior distributionp(y|x).
If this hold true, one might be able to use unlabeled data to gain information about p(x), and
thereby about p(y|x). If, on the other hand, this condition is not met, and p(x) contains no
information about p(y|x), it is inherently impossible to improve the accuracy of predictions
based on the additional unlabelled data [28]. Fortunately, the previouslymentioned condition
appears to be satis昀椀ed in most learning problems encountered in the real world, as is suggested
by the successful application of semi-supervised learning methods in practice. However, the
way in which p(x) and p(y|x) interact is not always the same. This has given rise to the semi-
supervised learning assumptions :

1. Smoothness assumption : if two samples x and x′ are close in the input space, their
label y and y′ should be the same.

2. Low-density assumption : thedecisionboundary shouldnotpass throughhigh-density
areas in the input space.

3. Manifold assumption : data points on the same low-dimensional manifold should
have the same label.

Figure 2.10: Comparison of the op琀椀mal decision boundary, accoun琀椀ng for both labeled and unlabeled samples, with the one
obtained through supervised learning. Image taken and modi昀椀ed from van Engelen et al [4]
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After that brief introduction on semi-supervised learning on what are the general idea be-
hind it and why we decide to use it we start with an explanation of the classi昀椀cation semi-
supervised learning model chosen : label propagation.

Label propagation :
The main idea of label propagation is based on the assumption that closer data points have
similar labels. As a result these class labels can be propagated to the unlabeled regions, for doing
that the main intuitively steps of the model are :

1. Create a graph : starting from the data points and considering them as nodes connect-
ing them with edges.

2. Determine weights : the edges weight that connect nodes is assigned based on the dis-
tance of the nodes, the more distant the nodes are, and the less weight of the edge.

3. perform a random walk : for each unlabeled node perform a random walk that pro-
duces a probability distribution of the path.

4. assign label : based on the probability distribution previously computed assign a label
to the unlabeled nodes and reiterate the randomwalk until the assigned label converges.

Problem formulation :
Let (x1, y1), ..., (xl, yl) be labeled data whereYL = y1, ..., yl contains all the labels of the data.
Let (xl+1, yl+1), ..., (xl+u, yl+u) the unlabeled data, generally l << u. LetX = x1, ..., xl+u

labeled and unlabeled data where xi ∈ R
D, the objective is to estimate YU (unlabeled data)

from X and YL. Intuitively, data points that are close should have similar labels, a fully con-
nected graph is created where nodes are all data points, both labeled and unlabeled, the edge
between any nodes i, j is weighted so that the smaller the Euclidean distance is and larger wij
will be. The weight between two nodes is computed as follows and is controlled by the σ pa-
rameter :

wij = exp(−
d2ij
σ2

) = exp(−
∑D

d=1(x
d
i − xdj )

2

σ2
) (2.17)

Larger edgeweights cause to a anhypothetical randomwalker that start fromanunlabelednode
to travel with more probability through them, regarding that a (l + u) × (l + u) probability
transition matrix T is de昀椀ned

Tij = P (j → i) =
wij

∑l+u
k=1 wkj

(2.18)
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Where Tij is the probability to jump from from node j to i. Also a (l+ u)×C label matrix is
de昀椀ned, where the ith row represents the label probability distribution of the nodexi, basically
the algorithm stops when the rows of that matrix reach the convergence.

2.6 Dimensionality reduction : t-SNE

T-distributed stochastic neighborhood embedding (t-SNE) is a method used to visualize data
from a high-dimensional space to a low-dimensional one. Themethod starts by converting the
high-dimensional Euclidean distance between points into conditional probability. The idea is
: given two points xj and xi if they are close in the Euclidean space the conditional probability
pj|i will be high, otherwise it will be low. That concept can mathematically be formulated as

pj|i =
exp(−||xi − xj||2/2σ2

i )
∑

k ̸=i exp(−||xi − xk||2/2σ2
i )

(2.19)

Where σi is the variance of the Gaussian distribution centered on datapoint xi. That de昀椀ni-
tion of conditional probability can cause problems when a xi point is an outlier, and we try to
map this point in the low-dimensional space. To avoid this, the joint probability pij is de昀椀ned
as pij =

pj|i+pi|j
2n

. In the low-dimensional space to convert distances into probabilities, a t-
distributionwith 1 degree of freedom is used since it hasmuch heavier tails than aGaussian dis-
tribution, facilitating amore e昀昀ective translation fromhigh-dimensional to lower-dimensional
spaces. Using this distribution, the joint capabilities qij are de昀椀ned as follows :

qij =
(1 + ||yi − yj||2)−1

∑

k ̸=l(1 + ||yk − yl||2)−1
(2.20)

Finally the divergence between the two joint probability distributions is minimized using as a
cost function the Kullback-Leibler divergence equation :

C = KL(P ||Q) =
∑

i

∑

j

pijlog
pij
qij

(2.21)

2.7 Metrics

In the idea of developing e昀昀ective models within any 昀椀eld, be it machine learning, statistics,
or computational modeling, it becomes imperative to assess the performance of these models
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rigorously. This assessment not only validates the e昀케cacy of the proposed models, but also
provides informationon their strengths and limitations. In the realmof computational biology,
where the utilization of various models is prevalent, the evaluation of model performance is a
critical step in order to ensure the reliability and applicability of the proposed solutions.
In this Section of the thesis, we dive into an exploration of the variousmetrics used for assessing
the performance of usedmodels. We examine the rationale behind the selectionof thesemetrics
and elucidate their mathematical formulations.

Precision :
Precision is a metric commonly employed in classi昀椀cation tasks; it quanti昀椀es the proportion
of correctly identi昀椀ed positive instances among all instances predicted as positive by themodel,
thus exploit the capability of themodel to discern relevant patterns fromnoise. Mathematically
the formula is :

Precision =
TruePositives

TruePositives+ FalsePositives
(2.22)

In the context of this thesis work this is an important metric since the False Positives can be
unknown PET degrading proteins that are for example wrongly labeled as negative during the
creation of the dataset used for training and test the models. That miss labeling is not due to
negligence in the dataset creation but only from the lack of information during its creation, in
fact it’s not guarantee that the plasticDB contains all known PET degrading proteins although
we assume that it contains most of them.

Recall :
Recall quanti昀椀es the proportion of correct identi昀椀cation of all positive instances within the
dataset. Mathematically the formula is :

Recall =
TruePositives

TruePositives+ FalseNegatives
(2.23)

This equation focus on maximizing the detection of true positive instances, irrespective of the
presence of false negatives. A high recall score means a low rate of false negatives, indicative of
the model’s robustness in identifying all relevant instances within the dataset.

F1 score :
F1 score is a compositemetric that harmonizes precision and recall into a singlemeasure, emerg-
ing as a valuable tool for gauging the overall e昀昀ectiveness of amodel. The F1 score is a harmonic
mean of precision and recall providing a holistic evaluation of a model ability to balance be-
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tween minimizing false positives and false negatives. Mathematically the formula is :

F1 score = 2× Precision×Recall

Precision+Recall
(2.24)

This formula encapsulates the essence of the F1 score, which emphasizes both precision and
recall. By harmonizing these two crucial aspects of model performance, the F1 score o昀昀ers a
balanced assessment that accounts for the interaction between false positives and false negatives.
Matthew’s correlation coe昀케cient :

The Matthew’s correlation coe昀케cient (MCC) takes into account true positives, true nega-
tives, false positives, and false negatives to provide a balanced assessment of classi昀椀cation per-
formance. Unlike metrics such as accuracy, which may be misleading in the presence of class
imbalance, MCC considers the complete confusion matrix in order to yield a more compre-
hensive evaluation. The mathematical formula is :

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.25)

TheMCCranges from -1 to+1,where+1 indicates perfect classi昀椀cation, 0 indicates random
classi昀椀cation, and -1 indicates total disagreement between prediction and observation. In our
case, MCC provides valuable insights into the performance of the models, since the used data
set is quite unbalanced.

2.8 Software

The entirety of the computational tasks in this thesis were performed using the Python pro-
gramming language. Speci昀椀cally, the subsequent libraries were utilized :

1. Scikit-learn[29] : used for the implementation of label propagation models and strat-
i昀椀ed 10-fold cross validation, computation of t-SNE, and performance metrics compu-
tation.

2. NetworkX[30] : used to obtain graphs from adjacency matrices.

3. Karate Club[31] : which contains di昀昀erent graph analysis tools. In particular, this was
used to implement four graph embeddingmethods : Graph2vec,GL2vec, FeatherGraph
andWavelet (see Section ??).

4. Pandas [32] andNumpy [33] : for data maninipulation.
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3
Results

In this chapterwepresent the results of classifyingPET-degradingproteins using three di昀昀erent
approaches (Figure 3.1) :

1. Sequence embedding approach: through the use of ESM1bmodel convert the protein
sequences into numerical vector. The idea in that approach is to use the amino acid se-
quence as a concatenation of letters in order to apply on it a natural language processing
model (ESM1b).

2. Graph embedding approach : after converting each protein structure into a graph as
we will see in the following section 3.2 through the use of a graph embedding model
we convert each graph into a numerical vector. The idea behind that is try to extract
structural information that is strictly associated to the function of a protein, assuming
that proteins with similar function probably share also a similar function.

3. Combined sequence and graph embedding approach: As a 昀椀nal step, we merge the
vectors from the sequence and structural approaches into a single vector. The idea be-
hind that is to consider either sequence and structural informations in order to obtain a
more comprehensive representation of the proteins.

As we saw in the data section2.1 our data set is composed of 9,883 proteins, 73 of which
are involved in PET degradation. Our initial dataset has the characteristics of the small sample
shown in Table 3.1, where in the 昀椀rst column we have the entry of the protein, in the second
the amino acid sequence, and in the third one the EC number(see 2.1 for an explanation of
that element).
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Figure 3.1: Di昀昀erent approaches used in order to obtain the embedding used to train classi昀椀ca琀椀on models for the iden琀椀昀椀‐
ca琀椀on of PET‐degrading proteins.

Entry Sequence EC number
Q9VP61 MPAEKSIYDPNPAI... 6.2.1.1
00073 MRGVWRYMPVYY... 3.1.1.74
A8G3E4 MVALRLIPCLDVA... 4.3.2.10
00083 MNFPRASRLMQA... 3.1.1.101
Q0AS12 MKEPAFWRTDGG... 2.7.1.130

Table 3.1: Star琀椀ng dataset. obtained from Plas琀椀cDB and UniProt One thing to note is that the PET‐degrading proteins have
di昀昀erent entry nomenclature assignment with respect to the generic ones (entries with both le琀琀ers and numbers) since they
are extracted from two di昀昀erent databases.
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In the upcoming sections, we will show the diverse classi昀椀cation outcomes achieved using
the three distinct approaches visible in Figure 3.1, and also compare them.

3.1 Sequence embedding approach

From the data set of Table 3.1, the ESM1bmodel was applied as explained in theMethods Sec-
tion 2.3.2. Since each amino acids can be one hot encoded by a single letter a protein sequence
can be seen as a concatenation of letters. Therefore, the model converts amino acid sequences
into numerical vectors (embeddings). For each protein, we thus obtain an embedding that is a
one-dimensional numerical vector of 1,280 elements.
Initially, those vectors were used to produce a graphical idea of how sparse the data are and

the distribution of the two classes in the embedding space. Due to the high number of di-
mensions in these embeddings, a dimensionality reduction technique was utilized to trans-
form the data into a 2-dimensional form and create a graphical representation. Speci昀椀cally,
the t-distributed stochastic neighbor embedding (t-SNE - Section 2.6) was employed. The idea
behind that was to assess whether PET-degrading proteins are localized in a speci昀椀c region in
the embedding space. If it is true, then we expect that a classi昀椀cation model will discriminate
better the proteins of interest (the PET-degrading ones). In Figure 3.2, the colored points rep-
resent PET-degrading proteins, while the grey points represent generic proteins for which we
do not focus on their function. Since in PET degradation there are di昀昀erent types of proteins
with di昀昀erent functions, each color (which is based on ECnumber) represents a subset of PET
degrading proteins (see Section 2.1 for an explanation of what an EC number is). Therefore,
proteins with the same color in Figure 3.2 belong to the same function nomenclature speci-
昀椀ed by the EC number. Although PET-degrading proteins belong to di昀昀erent types of func-
tions we notice that most of them tend to cluster in the upper right of the plot, suggesting
that ESM1b assigns vectors to PET-degrading proteins that are near the embedding space and
thus they likely tend to present some common sequence characteristics. However, several pro-
teins depart from such a cluster, suggesting also that ESM1b identi昀椀es some latent sequence
heterogeneity among PET-degrading proteins.
Classi昀椀cation model evaluation:

We aim to utilize label propagation for classi昀椀cation purposes. The rationale behind opting for
a semi-supervised approach is that it is straightforward to acquire protein information such as
sequence, while obtaining their function, which serves as the label in this case, is challenging
and costly. Related to that, the 昀椀nal idea is to utilize unlabeled proteins obtained from heavily
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Figure 3.2: t‐SNE representa琀椀on of the embedding produced by ESM1b model. Proteins that are associated to PET degra‐
da琀椀on are colored based on their EC number, generic proteins are represented as grey points.

contaminated environments and incorporate their data for training the model, a task that is
not feasible in a typical supervised approach.
Since we want to simulate a real-world situation to assess the model’s performance on unla-
beled data, we deliberately designated 10 random proteins as unlabeled (e.g., label=-1): 5 PET-
degrading (true label=1) and 5 generic proteins (true label=0). Together, these samples repre-
sent the validation set used after the model hyper-parameter selection.
The concept is to assign a label of 1 to the vectors linked to PET degrading proteins, a label
of 0 to those known to be unrelated to PET degradation, and a label of -1 to the remaining
ones. Subsequently, a label propagation model will be trained to assign a 1/0 label to those
labeled as -1. However, a challenge arises as the number of generic proteins exceeds that of
PET-degrading proteins by a factor of 100. This signi昀椀cant class imbalance could lead to unre-
liable classi昀椀cation performance due to the unequal representation of the two classes. Another
issue that may occur is that, within the general dataset, information on the proteins not linked
to PET degradation is in general not available.
To solve these issues,we昀椀rst undersampledgeneric proteins coming fromtheSwissProt database.
In particular, for each PET degradation protein, we have extracted two random proteins. Sec-
ond, in order to avoid as much as possible wrong-assigned labels, we excluded from the under-
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sampled proteins those that share the 昀椀rst three digits of the ECnumberswith the ECnumbers
set of PET degrading proteins. This means that, for the negative set, we considered only pro-
teins with very distant biological functions with respect to PET-degrading proteins. In this
way we, collected ”likely negative” samples to form the negative set. Therefore, we considered
all the SwissProt undersampled proteins as generic ones (i.e. label=0) so that it is possible to
evaluate the models in a binary classi昀椀cation scenario. After those operations there were 214
proteins available, 73 PET degrading labeled as 1 and 141 generic ones labeled as 0.

Hyper-parameters tuning:
The amino acid sequences of the resulting dataset converted into vectors by the ESM1bmodel
were 昀椀rstly used to select the γ hyper-parameter of label propagation. We used scikit-learn[29]
Label Propagation model with radial basis function (RBF) kernels. RBF is used to compute
the edge weights between nodes in graph constructed by the model (for more details, refer to
label propagation section 2.5). RBF is de昀椀ned as :

K(xi, xj) = exp(−γ||xi − xj||2), (3.1)

where xi, xj are the data points in the embedding space, ||xi − xj||2 is the squared Euclidean
distance and γ is a parameter that de昀椀nes how much in昀氀uence each training example has. In
particular, γ is a hyper-parameter that determines the spread of the kernel : a small γ value pro-
duces a more restricted decision boundary while a large γ parameter produces a wider decision
boundary. Therefore, the value of γ helps determine the similarity between the data points,
which is crucial for propagating labels from labeled to unlabeled data during the training pro-
cess. In particular we have taken into account three di昀昀erent gamma values : 5, 10, and 20.

To assess the optimal γ value, we performed a strati昀椀ed 10-fold cross-validation for each pa-
rameter. We employ a strati昀椀ed approach to ensure that each fold maintains an equal propor-
tion of the two classes, enabling us to compare each foldwith the others. There are some details
that are important to point out about using label propagation in a 10-fold cross-validation sce-
nario. In particular, at each fold all the labeled samples in the test set are masked as unlabeled
(e.g. -1), then for the training of themodel both the labeled and unlabeled data are used. Perfor-
mance metrics are next calculated on the masked samples using their true and predicted labels.
Furthermore, precaution is taken when one or more of the proteins initially masked as unla-
beled are found in the test set of a fold. In such cases, we exclude their predicted labels from
the computation of performance metrics, this is done to mimic a real-world scenario where
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Figure 3.3: Boxplot of performance metrics resul琀椀ng from a 10‐fold‐cross valida琀椀on, using label propaga琀椀on model with
γ = 10 trained on vector resul琀椀ng from ESM1b model. Values in red represent the mean of the metric in the corresponding
box.

the true labels of these proteins are unknown. In Table 3.2 we can see the mean performance
metrics values resulting from the 10-fold cross-validation over the studied γ values.

γ = 5 γ = 10 γ = 20
mean MCC 0.90 0.96 0.91
mean F1 score 0.93 0.97 0.93
mean Recall 1 0.99 0.88

mean Precision 0.87 0.96 1

Table 3.2: Mean values of performance metrics resul琀椀ng from a 10‐fold‐cross valida琀椀on, using a label propaga琀椀on model
trained on vectors resul琀椀ng from ESM1b model. Notes: MCC stands for Ma琀琀hew’s Correla琀椀on Coe昀케cient.

As we can see from Table 3.2, the γ value that gives us the best performance based on the
Matthew’s Correlation Coe昀케cient (MCC) is γ = 10. MCC is the most robust metric among
those considered, as it takes into account both false positives and false negatives, as well as
dataset imbalances, thus it was used to select the optimal hyper-parameter. After selecting the
γ hyper-parameter, we further explored performance metrics by graphically visualizing the re-
sults of a 10-fold cross-validation using boxplots (Figure 3.3). The results in Figure 3.3 indicate
that the model shows outstanding performance in identifying PET-degrading proteins, as in-
dicated by the notably highMCC scores and F1 scores.
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What we can observe from the box plots 3.3 is that the values of all metrics are skewed toward
the upper part of the box plot. Therefore, the recall metric nearly reached perfection in each
fold (with a mean value equal to 0.99). This suggests that the classi昀椀cation model produces
very small number of false negatives. In this scenario, this is highly bene昀椀cial since we are sure
that we do notmiss out possible true positive e.g. PETdegrading proteins, which can be advan-
tageous for selecting and experimentally testing the potential degradation e昀케ciency of a large
number of proteins.
Model validation :

Finally, we validated sequence-based label propagation on the 10 proteins initially masked as
unlabeled. This allows us to asses the robustness of the model towards hypothetical unseen
data. In this phase, a new label propagationmodel was trained using the full labelling informa-
tion of the other 204 proteins and the determined optimal γ. The performance on that set can
be seen in the following table :

MCC F1 Precision Recall
Performance metric 1.00 1.00 1.00 1.00

Table 3.3: Performances of the sequence‐based model on the unlabeled test proteins.

As we can see, all the proteins are correctly predicted, con昀椀rming the excellent performance
observed in hyper-parameter tuning (Figure 3.3). Although this last result might su昀昀er from
an over-estimation due to the small test set size, it seems to con昀椀rm the success of the hyper-
parameter selection process.

3.2 Graph embedding approach

An alternative strategy to address this classi昀椀cation challenge involves adopting a structural
perspective on proteins. This is particularly relevant to plastic depolimerization, as degrading
enzymes require speci昀椀c conformations to attach and break long and complex carbon chains.
Speci昀椀cally, implementing this approach involves constructing a graph representation for each
protein and deriving a vectorized representation of the graph through the application of graph
embedding models, as described in the graph-to-vector Section 2.4.
To construct a graph for eachprotein, weusedPDB昀椀les containing the coordinates of all atoms
of the protein structure. All PDB 昀椀les used in this study were derived from AlphaFold predic-
tions, sourced mainly from the AlphaFold[19] database or PlasticDB[18], as they contain pre-
dictions for almost all proteins considered. For the remaining proteins without structure we
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used an available online Colab notebook of the AlphaFold model which allows us to predict
missing structures starting from their amino acid sequence. In the construction of a protein
graph representation (Figure 3.4), we decided to use amino acids as nodes, and physical con-
tacts between them as edges. So, letG = (V,E) be a graph representing a protein, where each
node v ∈ V is an amino acid (AA) and the interaction between amino acids is described by
and edge e ∈ E. We consider the existence of a contact between two AAs if they respect at the
same time two conditions :

1. sequence separation: two AAs are considered in contact if the sequence separation is
greater than a speci昀椀ed threshold. This is based on the fact that wewant to consider only
contacts that are due to interaction and not sequential proximity. In fact proteins are
3D objects, thus even if AAs seem far apart when we look at their order in the protein’s
sequence, they can actually be close together in the protein’s physical structure. Vice
versa, if they are too close in the sequence, their interaction is prevented by physical space
occupation.

2. distance: two AAs can be in contact if they are separated by an Euclidean distance that
is less than a threshold distance de昀椀ned in Angstrom (Å).

Each of these conditions de昀椀nes a hyper-parameter for the graph embedding models. As we
can see from Figure 3.4b, the general structure of an AA consists of three key components : an
amine group, a carboxylic group, and an alpha-carbon.

1. Amine group (NH2): the presence of this amine group is what gives amino acids their
basic properties, as it can accept a proton (H+) to become positively charged.

2. Carboxylic group (COOH): this group consists of a carbon atom double bound to
an oxygen and single bound to a hydroxyl group (OH). The carboxylic group provides
amino acids with acidic properties, since it can donate a proton (H+) to become nega-
tively charged.

3. Alpha-carbon (α-carbon): between the amine andcarboxylic groups lies theα−carbon.
This central atom is bound to four di昀昀erent groups: the amine group, the carboxylic
group, a hydrogen atom, and a variable ”R” group. The ”R” group, also known as the
side chain, is what distinguishes one amino acid from another. It can vary greatly in size,
shape, and chemical properties, determining the unique characteristics and functional-
ity of each amino acid.
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Figure 3.4: a) Transforma琀椀on from protein to graph. b) General structure of an amino acid. The alpha carbon is centrally
located and serves as a representa琀椀ve element in the structure for each amino acid.

Since theα-carbon atom is consistently present in all amino acids and has a central position,
we canutilize its coordinates as a representative point for each amino acid anduse it for comput-
ing the distance parameter. Once the interaction between all pair of amino acids that respect
the given conditions is determined, a contact matrix is constructed. This matrix has a shape
of n × n where n corresponds to the number of amino acids of the given protein. Each row
and column corresponds to a speci昀椀c residue in the protein sequence. The value at position
(i, j) of the matrix is set to 1 if residues i and j are in contact and to 0 otherwise. The contact
matrix so de昀椀ned provides the adjacency matrix of a graph. In Figure 3.5 a heatmap graphical
visualization of the adjacency matrix of a ribonuclease protein (SwissProt entry id:P23540).

Embedding model selection:
Among the existing graph embedding models, in particular we considered the following four
models: WaveletCharachteristich, FeatherGraph, GL2Vec and Graph2Vec. All these methods
were built in the KarateClub package[31]. Each of these models produces an alternative type
of embedding vector for each protein, with potentially di昀昀erent e昀昀ects on classi昀椀cation per-
formance. Therefore, we initially tested these embedding models to select the best performing
one. We thus built a graph for each protein from the same data set used in Section 3.1, con-
taining 214 proteins, using each of the four tested embeddingmethods. The hyper-parameters
used to built these graphs were kept 昀椀xed as: sequence separation≥3 AAs and distance≤6Å.
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Figure 3.5: Adjacency matrix displayed as heatmap, where rows and columns represent amino acid residues and colored dot
indicated the presence of contacts between residues.
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With the same logic of the previous section (Section 3.1) we performed a label propagation
evaluation through a 10-fold-cross validation, whose resulting averaged performance metrics
can be seen in Table 3.4. As we can see from Table3.4, Wavelet, FeatherGraph and GL2Vec

Wavelet FeatherGraph GL2Vec Graph2vec
mean Mcc 0.75 0.77 0.73 0.39
mean F1 0.82 0.83 0.81 0.47
mean Acc 0.86 0.89 0.88 0.74

Table 3.4: Mean values of performance metrics resul琀椀ng from a 10‐fold‐cross valida琀椀on, using a label propaga琀椀on model
trained on vectors resul琀椀ng from di昀昀erent graph embedding models. The parameters used for crea琀椀ng a graph are sequence
separa琀椀on≥ 3 amino acids and distance≤ 6 Angstrom

produce similar performances while Graph2Vec produces the worst performance. We selected
the FeatherGraph model since in all considered metrics it produced the highest performances.

Hyper-parameters tuning:
Following the selection of the graph embedding model, we 昀椀ne-tuned the hyper-parameters
used to build the graphs and the γ value used by the label propagation model for the classi昀椀-
cation task. This was carried out with the aim of enhancing the classi昀椀cation performance of
PET-degrading proteins. To focus on a reasonable number ofcombinations, we decided to use
three di昀昀erent values for each parameter, in particular:

• sequence separation≥ [2,3,4] AAs.

• distance≤ [6,7,8] Å.

• γ value=[5,10,20]

In total 27 possible combinations of these three parameters were explored. For each combi-
nation of sequence separation and distance, we produced a graph embedding representation,
the labeling of the graphs follows the logic seen in the previous Section 3.1. Ultimately, we also
conduct the classi昀椀cation using the label propagation model by choosing the optimal value of
γ. The 10-fold cross-validation follows the same rules presented in the previous section.
As before, the metrics considered in this scenario are : MCC, F1 score, precision and recall.
After performing all 10-fold cross-validation, the parameters that achieved best performance
results are sequence separation≥2, distance≤7 and γ = 20. By examining the boxplots in
detail (see Figure 3.6), we can observe the varying classi昀椀cation performance using graph em-
beddings as data. In particular, we observe that overall performances are considerably lower
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Figure 3.6: Boxplots of performance metrics resul琀椀ng from a 10‐fold‐cross valida琀椀on, using label propaga琀椀on model with
γ = 20 trained on vectors resul琀椀ng from FeatherGraph model. The parameters used for building each graph are: sequence
separa琀椀on≥2 and distance≤7. Values in red represent the mean of the metric in the corresponding box.

compared to those achieved with vectors derived from the ESM1b model. Speci昀椀cally, focus-
ing on the recall boxplot, we observe a notable spread, indicating a highly variable number of
false negatives generated at each fold of the cross-validation. Consequently, the model exhibits
limited robustness in identifying PET degrading proteins with respect to previously obtained
results (Section 3.3).

Model validation:
Like for the sequence-based model, we evaluated structure-based label propagation on the 10
proteins initiallymasked as unlabeled. The performances obtained on these unlabeled data can
be seen in Table 3.3.

MCC F1 Precision Recall
Performance metric 0.82 0.88 1.00 0.80

Table 3.5: Performances of the structure‐based model on the unlabeled test proteins.

From Table3.5 we can see the performance on the initially set as unlabeled proteins, which are
5 generic proteins (label=0) and 5 PET-degrading proteins (label=1). Looking at the precision
metric we can infer which all the generic proteins are correctly classi昀椀ed, while looking at the re-
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call metric we can infer that only one PET degrading protein was misclassi昀椀ed. Therefore, the
performances on that 昀椀nal test set are in line with those obtained in the hyper-parameter tun-
ing stage and can be considered as satisfactory, despite being lower than those of the sequence-
based model. The misclassi昀椀ed PET-degrading proteins is a cutinase with a PlasticDB entry of
“00075”. Cutinases are serine hydrolases that degrade cutin, a polyester of fatty acids that is
the main component of plant cuticle. Interest in this speci昀椀c group of enzymes has grown due
to the discovery of some enzymes within this group that possess the ability to alter and break
down PET.

3.3 Combinedsequenceandgraphembeddingapproach

Finally, we integrated the sequence and structure of the proteins to leverage the information
extracted from both approaches, to test whether it has complementarity bene昀椀cial to the clas-
si昀椀cation performance. We combined the embedding data matrices generated by two models,
ESM1b (Section 3.1) and FeatherGraph (Section 3.2), and then normalized them by column
to preserve the scale of the original values. Speci昀椀cally, we conducted a Min-Max normaliza-
tion to scale the values in each column to a range of 0 to 1. Then with the same logic and val-
ues seen in the previous Section 3.6, we performed a grid search of the hyper-parameters used
for constructing the graphs and the γ hyper-parameter to train label propagation. The hyper-
parameters that achieve the best performamces are : sequence separation≥4, distance≤6 and
γ=20. We can see in detail from the box plots in Figure 3.7 the performances obtained using
those parameters. We can notice that the mean MCC parameter did not change with respect
to the results obtained using only the ESM1b model (Section 3.1). In particular, we can no-
tice that the recall boxplot is widely spread, suggesting that the combined approach introduces
some noise, resulting in slightly worse performance than the sequence-only approach in the
identi昀椀cation of PET degrading proteins. However, another aspect that we can notice is that
the precision metric is always perfect at each fold of the 10-fold cross validation, and is supe-
rior to that of the other model types. This suggests that combining sequence and structural
information generates a more stringent decision boundary, potentially useful when requiring
a more stringent protein candidate set to test experimentally. Finally the performances of ini-
tially unlabeled set proteins are shown inTable 3.6. Aswe can see from the table, the combined
approach correctly predicted all the initiallymasked protein, with the same performances as for
the sequence embeddingmodel 3.1. Also in this case, some over-estimation is possibly present,
even though within the expected intervals based on the cross-validation results.
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Figure 3.7: Boxplots of performance metrics resul琀椀ng from a 10‐fold‐cross valida琀椀on, using label propaga琀椀on model with
γ = 20 trained on a dataframe obtained from concatena琀椀on of ESM1b resul琀椀ng vectors and FeatherGraph resul琀椀ng vectors.
The parameters used for create graphs are sequence separa琀椀on≥4 and distance≤6. Values in red represent the mean of
the metric in the corresponding box.

MCC F1 Precision Recall
Performance metric 1.00 1.00 1.00 1.00

Table 3.6: Performances of the combined approach on the unlabeled test proteins.
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4
Conclusion

In this work, we built and evaluated di昀昀erent machine learning models to predict the role of
proteins in PET degradation, with potential application in discovering unidenti昀椀ed degrada-
tion enzymes. The results presented in Chapter 3 indicate that we have likely succeeded in
meeting this goal : both the sequence and structural embedding approaches achieved good
classi昀椀cation performance, in particular the sequence embedding approach ESM1b achieved
excellent results. However, combining the two approaches did not improve these results, prob-
ably due to the minimal improvement margin and the limited validation set used.
Future development of the work can be to produce a larger training dataset containing addi-
tional PET-degrading proteins, some of whichmay not be validated, given the semi-supervised
scenario we are currently operating in. Additionally it would be interesting to consider pro-
teins that diverge in terms of structure and sequence with respect to the already known ones
to consider a wider range of possible characteristics associated with PET degradation. In this
way, a more robust assessment of the developed approach could be achieved.
Another line of investigation can be to consider a wider range of parameters for building the
graphs and also explore more graph embedding approaches in order to potentially obtain also
with that approach comparable performance of the one saw in the sequence approach (see Sec-
tion 3.1).
Regarding the combined use of sequence and structural information, a di昀昀erent data integra-
tion approach could be used and tested. In particular, when both the sequence and structural
approaches yield similar performance outcomes, instead of combining the resulting vectors
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into a single one, an idea can be to interpolate the label propagation predictions of the two ap-
proaches and see if themisclassi昀椀ed proteins overlap. If, as suggested by our recall and precision
results, the predictions have su昀케cient complementarity, then an ensmeble approach could be
implemented and applied on unseen data in order to cover up a wider range of proteins that
can be PET-degrading.
Finally, as a last step, trained classi昀椀cation models can be applied on unseen proteins extracted
from land昀椀lls or environmentswithhighPETcontamination andvalidate theprediction through
wet lab experiments, with the aim of discovering new PET-degrading proteins that, hopefully,
due to the high concentration of PET evolve in order to e昀케ciently degrade that material.
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