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Preface

The problem of the slow chaotic diffusion in Hamiltonian systems is very well known

since the pioneering work of Arnol’d [Arn64]. In systems with d=2 degrees of free-

dom, the presence of 2-dimensional KAM tori constitutes a topological barrier pre-

venting long excursions of the orbits in the phase space. On the contrary, when

d > 2, the structure of the phase space in principle allows the dynamics to explore

the whole energy shell in a sufficiently long time. In this work we face the problem

of the diffusion near the separatrices of a resonance model with 3 degrees of freedom,

inspired by the model of mean motion resonance in celestial mechanics. As pointed

out by Chirikov [Chi79] long-term instabilities in near-integrable systems have in fact

a diffusive character. The diffusion coefficient can be estimated using, for example,

Melnikov estimates. Our approach in the present work is based on a combination of

two methods proposed by Benettin et al in [BCF97] and by Guzzo et al in [GEP19].

In particular, we remark the fact that the diffusion along a guiding resonance does

not proceed uniformly, but rather by a sequence of impulsive ”kicks” or ”jumps” at

each homoclinic loop. Computing the size of the jumps allows then to quantify the

rate of diffusion.

Thesis structure

In this work, we propose to study the speed of the slow chaotic diffusion of the adi-

abatic actions near the separatrices of a non-linear Hamiltonian dynamical system,

corresponding to the so-called ”second fundamental model of resonance”. In particu-

lar, we develop an analytical procedure for computing the rate of diffusion, exploiting

rigorous estimates of Melnikov-type integrals via a stationary phase approach. We
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finally compare the estimates obtained by this procedure with numerical estimates of

the size of the jump in the evolution of the adiabatic action variables in an example

of the 3:2 mean motion resonance in the spatial elliptic restricted three-body problem.

The structure of the thesis is as follows:

Chapter 1 contains mathematical definitions related to the notion of fundamental

model of resonance. In particular, in this work we deal with the second fundamental

model, described by the well-known Andoyer Hamiltonian [HL83]. We analyse the

general features of this Hamiltonian and we present an analytical solution for the

motion equation along the separatrices. Such an analytical solution is an essential

ingredients in the subsequent estimates.

Chapter 2 performs an analysis of weakly perturbed Hamiltonians, following the

Jeans-Landau-Teller approach(see [BCF97] for a review or the original work of Lan-

dau et al. [Lan36]), originally implemented for the study of energetic exchanges

between fast internal degree of freedom (say, vibrational) and slow translational mo-

tions. The Hamiltonians we consider have the general form

H(S, J1, J2, σ, α1, α2) = H0(S, σ) +K1(S, J1, J2) +K2(S, J1, J2, σ, α1, α2) (1)

where

H0 = aS2 + bS + c
√

2S cos s (2)

is the Andoyer Hamiltonian,

K1 = η1SJ1 + η2SJ2 + η3J1J2 + . . .

are coupling terms between the adiabatic action variables J1, J2 and

K2 =
∑
k,j,l

Ck,j,l(S, J1, J2) cos(kσ + jα1 + lα2)

is the Fourier expansion of the perturbing function.

Following the idea of Chirikov [Chi79], the main step consists of substituting the
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motion near the separatrix of the resonance by the Fourier transform of the associated

explicit solution. The method leads to the evaluation of Melnikov-type integrals.

Taking profit of Poincaré variables and substituing the Fourier representation of the

separatrix, we arrive at an explicit rigorous expression that measures the size of the

jump

∆Ji =
∑
k,j,l

∫ T

0

Ck,j,l sin(fk,j,l(t)± ωt)dt

Each integral is estimated via a stationary-phase method as in [GEP19]. The method

allows to identify those terms in the remainder the Hamiltonian which give the largest

contributions, namely those which satisfy a stationary phase condition.

Chapter 3 provided all needed estimates on Melnikov integrals used in the above

analysis. As in [GEP19], such estimates are derived on the basis of the well-known

stationary phase approximations.

Chapter 4 is devoted to an application of our analysis to a model taken from

celestial mechanics. Thus, we construct a hamiltonian model for the problem of

first order mean motion resonances in a restricted three-body system. Moreover, we

recall some basic notions from celestial dynamics used in the process. A key remark

regards the need to perform a normalisation process via an algebraic manipulator, in

order to eliminate the so-called ”deformation” effect [Nek77]. This procedure allows

to identify clearly the diffusive chain of the adiabatic variables. In particular, we

are interested in the evolution of the adiabatic action variables in an example of the

3:2 mean motion resonance. We compare the analytical estimates developed in the

previous chapters with the results of numerical integrations. In this chapter we also

discuss briefly the phenomenology of the slow chaotic diffusion in the phase space,

by means of numerical simulations of ensembles of trajectories.
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1 Second fundamental model of

resonance

In this chapter we discuss the general notion of fundamental model of resonance[HL83].

We study in details the so-called Andoyer Hamiltonian, which provides a basic model

of the so-called second fundamental model of resonance.

1.1 Fundamental models

In a variety of problems arising in celestial mechanics one has to deal with resonances,

i.e. commensurabilities between two or more orbital frequencies of the interacting

bodies. Generally speaking, resonances lead to particular features for the phase

space and one wonders if is it possible to model it in a proper but simple way. The

notion of fundamental model answers this type of question. A fundamental model is

a one dimensional Hamiltonian of the form H(I, φ), in which I is an action variable

(see [AKN07]), while the canonically congiugate angle φ represents the resonant

combination of the original angles.

A widely applicable model of resonance is the pendulum Hamiltonian, H = a
2
I2 −

b cosφ. It is quite simple and it has been extensively used in many contexts, but it

presents some drawbacks we will enlight in a while. To overcome such issues, Henrard

and Lemaitre introduced a second class of models [HL83], i.e the second fundamental

model, that deal with the d’Alemebertian properties of the Hamiltonian. One can

consider also some extensions of the second fundamental models, able to describe

some important behaviour, for example separatrix bifurcation. These are reffered to

as them as extended, or third, fundamental models [Bre03].

5



6 CHAPTER 1. SECOND FUNDAMENTAL MODEL OF RESONANCE

1.1.1 The first fundamental model: the pendulum

The procedure reducing a problem to a fundamental model is quite general. Suppose

we are given a N-degree of freedom Hamiltonian of the form

H(A,α) = H0(A) + εH1(A,α) (1.1)

with A ∈ D ⊂ RN , α ∈ TN The model (1.1) is called simply-resonant when there is

a canonical transformation

(
A,α

)
→
(
S, J1, . . . , JN−1, s, φ1, . . . , φN−1

)
(1.2)

with s = m̄ · ᾱ, m̄ ∈ ZN , |m̄| 6= 0, such that, in the new variables
(
S, J̄, s, φ̄

)
the

Hamiltonian assumes the form

K = K0(S, J̄) + εK1(S, s, J̄) (1.3)

Suppose now that for S = 0 we have ∂K0

∂S
≈ 0. Rescaling the variables (S, s) through

the canonical transformation

S = mΦ (1.4)

s =
φ

m
(1.5)

and performing a Taylor expansion, we get the Hamiltonian

K = K0(0) +mK ′0(0)Φ +
m2

2
K ′′0 (0)Φ2 + εK1(0) cosφ+ . . . (1.6)

that is, for suitable constants β, γ, δ and neglecting higher order terms

K = βΦ + γ Φ2 + δ cosφ (1.7)

A straightforward translation, namely Φ− β
2γ

, leads to the usual form of pendulum

Hamiltonian. With a bit of calculation, it is possibile, via suitable rescaling, to show
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that in fact the model is free of parameters,

K = Φ2 − cos φ (1.8)

This is the form of the first fundamental model of resonance.

1.1.2 The second fundamental model

A Hamiltonian of the form (1.3) is said to be D’Alambertian (or to possess the

D’Alambertian characteristic) if its expansion in Poincaré variables

x =
√

2S cos s y =
√

2S sin s (1.9)

is analytic at the origin. Formally, its amplitude function must be of the form

K1(S, s) = a1S
m
2 + a2S

m+1
2 + . . . (1.10)

with m > 0 and odd, in order to guarantee the analyticity in the variables x, y.

A difference emerges with respect to the previous case: translating momentum and

rescaling the angle would destroy the form of the expansion, so the D’Alambertian

property would fail. In order to preserve such a property, we can expand directly

around S∗ = 0, getting the Hamiltonian

K = b S2 + aS + ε c (2S)
m
2 cosms (1.11)

This defines a family of fundamental models, according to the integer m, and we can

refer to it as the family of second fundamental models, SFMm. A detailed description

of the cases m > 1 can be found in [Fer07]. In the sequel, we will focus instead in

the case m = 1, which naturally arises in problems of celestial mechanics, pertinent

to the so-called ”first order mean motion resonances” (see [Fer07]). As in the case of

pendulum, it is always possible to proceed with time and length rescaling in order

to reduce the number of parameters, up to one[HL83]. Also, varying the parameter

from negative to positive produce a so-called saddle-node bifurcation.
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1.2 Andoyer Hamiltonian

The Hamiltonian describing the second fundamental model of resonances is the so-

called Andoyer Hamiltonian. As in the case of pendulum Hamiltonian, an analytic

solution of the equations of motion is possible, along the separatrices of the model

(1.11). We briefly discuss its features in the following paragraphs.

1.2.1 Critical points and bifurcations

Consider the Andoyer Hamiltonian

K = b S2 + aS + c
√

2S cos s (1.12)

Using Poincaré variables

x =
√

2S cos s y =
√

2S sin s (1.13)

allows to investigate the position of critical points and detect the presence of bifur-

cations, to varying the value of the parameters. Without loss of generality we can

always assume b > 0, c > 0. In Poincaré variables the Hamiltonian reads

H =
a

2
(x2 + y2) +

1

4
b (x2 + y2)2 + cx (1.14)

so critical points lay on the x-axis, with abscissas given by the solutions of the cubic

equation

a x+ b x3 + c = 0 (1.15)

This equation has one, two, or three real solutions, according to the value of a, b and c,

that in principle may be expressed via classical algebraic formulas. However, it is

possible to find a boundary value a∗ imposing the critical point of the polynomial,

x =
√
− a

3b
, to be a root of the polynomial. Namely

a
(
− a

3b

) 1
2 + b

(
− a

3b

) 3
2 + c = 0 (1.16)
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y

(a) a = −1

x

y

(b) a = a∗ = −3
2

3
√
2

x

y

(c) a = −2.5

Figure 1.1: An illustration of the sequence of bifurcations in the phase space, for
different values of a and fixed b, c.

implies

a = a∗ = −3

2

3
√

2b c2 (1.17)

In summary:

� if a > a∗ there is one equilibrium. It is stable and the motion is a rotation with

a noise.

� if a = a∗ = −3
2

3
√

2b c2 there are two equlibria: one is stable and one is a

degenerate saddle-point.

� if a < a∗ there are three equilibria. The cusp splits in a stable point and a

saddle. Two homoclinic curves stem from the saddle point and inviduate a

resonance zone.

With simple calculations one finds that the saddle lays in the interval
(√
− b

3a
,
√
− b
a

)
.

1.2.2 Integration along the separatrix

It is possible to integrate explicitly the equations of motion, exploiting the properties

of Weierstrass elliptic function. Following [Fer07], the preliminary step consists of a

reparametrization of the system, reducing the equations of motion to a one-parameter
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problem. Fixing the constants

K∗ =
1

4
b

(
4c

b

) 4
3

, α =
a

a∗
(1.18)

and after the rescaling

H =
K

K∗
, J = S

(
b

4c

) 2
3

, t′ = −1

3
a∗ t (1.19)

the equations read

H = −3αJ + 4J2 +
√

2J cos s (1.20)

and

J̇ =
√

2J sin s (1.21)

ṡ = −3α + 8J +
1√
2J

cos s (1.22)

Combining these equations with the conservation of energy,
(
H = H1 = constant

)
,

the problem reduces to a straightforward integration and an inversion

t′ − t′0 =

∫ J

J0

d J

P (J)
(1.23)

where P (I) is a quartic polynomial

P (I) =

(
d J

d t′

)2

= 2 J − (H1 + 3αJ − 4 J2)2 (1.24)

The inversion of this integral is given by an appropriate Weierstrass elliptic function

(see [WW96] for a complete review )

J − J0 =
1

4
P ′(J0)

(
℘(t′ − t′0, g2, g3)− 1

24
P ′′(J0)

)−1

(1.25)
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where

g2 =
1

3

(
8H1 +

9

2
α2

)2

− 12α (1.26)

g3 =
1

27

(
8H1 +

9

2
α2

)3

− 2α (8H1 +
9

2
α2) + 4 (1.27)

In order to study the solution of P (J) = 0 one introduces the discriminant ∆ =

g3
2 − 27 g2

3. The sign of ∆ separates the zone of librations from the zone of circula-

tions, namely, the inner and the outer part with respect to the separatrix homoclinic

curves. The value ∆ = 0 corresponds to the solution of the separatrix. In this

case the integral turns out to be pseudo-elliptical: the solutions can be written via

trascendental functions.

In fact, for ∆ = 0 we get

℘(t′ − t′0) = c+
3c

sinh2
(√

3c(t′ − t′0)
) (1.28)

with

c = −3 g3

2 g2

(1.29)

Thus, in view of (1.25), the solution asymptotic to the saddle is

J − J0 =
A sinh2

(√
3c(t′ − t′0)

)
1−B sinh2

(√
3c(t′ − t′0)

) (1.30)

where

A =
P ′(J0)

12c
(1.31)

B =
P ′′(J0)

72c
− 1

3
(1.32)

For ∆ = 0, P (J) = 0 has three solutions: the doubly-degenerate one gives the

position of the saddle, while the lowest and the greatest individuate the intersection

between, respectively, the inner and the outer separatrix with the x-axis. Since all the

parameterizations are explicit, eventually one can always proceed backward getting

an expression in terms of original parameters a, b and c. It remains to calculate
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the explicit expression for the motion of the angle s(t). It can be recovered by

straightforward derivation from the equation of motion for J :

sin s =
1√
2J
· dJ

dt′
=

d

dt′
√

2J (1.33)



2 Jeans-Landau-Teller

approximation

As pointed out in [GEP19], in certain systems the evolution of the adiabatic action

variables does not proceed uniformly. Rather, the slow-time diffusion motion is

produced by subsequent ”jumps” in correspondence with the resonant action-angle

pair completing a sequence of succesive homoclinic loops. We will discuss numerical

examples of this behavior in chapter 4. In the present chapter, instead, we discuss

the so-called ”Jeans-Landau-Teller approximation”, which can be exploited in order

to arrive at analytical estimates of the size of the typical jump. Exploiting the

explicit expression of the motion along the separatrices in the second fundamental

model, it is possible to express the one-period dynamics of adiabatic variables by

means of some Melnikov-type integrals. In particular, profiting of the simmetries of

the systems (namely, the D’Alambertian character of the Hamiltonian), we develop

a Fourier decomposition of each Melnikov integral appearing. We deal with such

integrals in the chapter 3, via a classical stationary-phase approach.

2.1 Landau-Teller approximation

In their celebrated paper [Lan36] about the theory of sound dispersion, Landau and

Teller implemented a rigorous method to derive an exponential law, ∆E ≈ Ke−aω, for

energy exchanges between vibrational and rotational molecular degrees of freedom.

Later on, this method was revised by Rapp [Rap60] and by Benettin, Carati et al.

[BCS93], for studying the evolution of adiabatic invariants, for example, in a system

of coupled rotators [BCF97]. Following this pathway we propose a similar approach,

13
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leading to analytical estimates for the evolution of action-variables as forced by the

terms in the remainder of the Hamiltonian. The main idea of our approach consists of

substituing the motion near the separatrices produced by the non-linear resonance

with the motion along the separatrices. A similar idea, in the case of pendulum

resonance model, was proposed by Chirikov [Chi79]. Our work can be interpreted as

an extention of this idea, in the case of the second fundamental model of resonance.

2.1.1 Impulsive homoclinic dynamics

We consider a general Hamiltonian model with three degrees of freedom of the form

H(S, J1, J2, σ, α1, α2) = H0(S, σ) +K1(S, J, F1, J2) + (2.1)

+R(S, J1, J2, σ, α1, α2)

where

H0 = aS + bS2 + c
√

2S cos σ (2.2)

K1 = η1SJ1 + η2SJ2 + η3J1J2 + γ1J1 + γ2J
2
1 + . . . (2.3)

and

R =
∑

n̄=(l,m,n)

Cl,m,n(
√
S, J1, J2)ein̄·Φ, Φ = (σ, α1, α2) (2.4)

The remainder function R contains the coupling terms producing the dynamics of

the variables J1, J2.

The dynamics produced by these Hamiltonians can be qualitatevely predicted from

the one-dimensional dynamics of the second fundamental model. For suitable values

of the initial data, the six-dimensional phase space is characterized by the presence

of a hyperbolic point. The position of this unstable point is indeed predicted by the

same condition undergoing for the one dimensional Andoyer Hamiltonian H0.

For an initial datum near the unstable point, that is, inside the stochastic layer pro-

duced by the splitting of the separatrices, the dynamics has an impulsive behavior.

It remains very close to the unstable equilibirum for a long time, then, following
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the unstable manifold stemming from the hyperbolic point, the dynamics perform

a relatively fast pulse. Eventually, the orbit comes back towards the saddle, driven

by the stable manifold. Thus, the motion is quasi-periodic, since the process repeats

with a stochasticity due to the varying of the starting point. The clue of this anal-

ysis is to substitute such a quasi-periodic motion with the exact solution along the

separatrices of the Andoyer Hamiltonian.

This approximation is meaningful provided that the perturbation due to coupling

terms is small. In the example we present in the results of chapter 4, this is assured

by the theory of solar sistem dynamics.

The presence of coupling terms depending on α1 and α2 forces the evolution of J1

and J2. If, as we are assuming, such perturbation is small, the evolution can be

considered slow. This fact descents directly from the hamiltonian motion equations

J̇k =
∂

∂αk

∑
n̄=(l,m,n)

Cl,m,n(
√
S, J1, J2)ein̄·Φ (2.5)

So, we refer to the variables J1 and J2 as the ”adiabatic” variables. Such a ter-

minology generally indicates an observable whose evolution is slower with respect to

the dynamics involed in the system. The aim of this work is to provide an analytical

estimate for their rate of dffusion.

We first deal with the impulsive evolution of the variable S, profiting of the explicit

expression discussed in the chapter 1. Then, defining a mean period for the quasi-

periodic near the separatrices, we discuss its Fourier representation, in the spirit of

the Landau-Teller approach. This procedure leads to a Melnikov-type expression for

the evolution of the adiabatic variables.

2.1.2 Mean period of circulation

The small perturbation, due to the presence of the coupling terms, produces a chaotic

layer in the vicinity of the separatrices. A quite natural question is to characterize the

finite period of a single circulation within the stochastic layer. The period circulation

depends very sensitively on initial data, namely on the position within the layer;

however, we can define a circulation mean period, parametrized by the initial energy.

So, since by continuity we can assume that, for η << 1, the unstable equilibrium
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(J∗η , uη) is close to the saddle point of the unperturbed fundamental model, the

equation

H0 + ηK1 = E(1 + κ) (2.6)

is solved for η = 0, to obtain the function

sin σ =

√
1−

(
E(1 + κ)− aS2 − bS

c
√

2S

)2

(2.7)

Using the equation of motion dS
dt

= −∂H
∂σ

, and fixing E, the value of the energy at the

saddle point, the half-period of a circulation in the stochastic layer can be estimated,

for any κ > 0 by

Tκ
2

=

∫ S∗

S0

dS

c
√

2S sin σ
= (2.8)∫ S∗

S0

dS√
2c2S −

(
M(1 + κ)− aS2 + bS

)2
(2.9)

where S∗ and S0 are, respectively, the unstable equilibrium and the middle-point

of the pulse. Considering the norm of the coupling terms as the effective energy

perturbation, we can define the mean period of an homoclinic circulation.

Definition 2.1. Fixing κ = ‖R‖, ”mean period of circulation in the stochastic layer”

is called the quantity

Tκ =

∫ S∗

S0

2 dS√
2c2S −

(
M(1 + κ)− aS2 + bS

)2
(2.10)

The latter integral can be evaluated via cumbersome elliptic functions or by

numerical integration. However, even a straightforward approximation, suggested

by Chirikov for the case of pendulum,

T ≈ 2
log
(

32
|w|

)
ω0

(2.11)
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where w is the relative energy, turns out to be sufficiently precise, at least at an euris-

tical level, for the estimate of the typical circulation time in the second fundamental

model. In particular, the latter approximation is quite in agreement with numerical

experiments, as shown in chapter 4.

Remark 2.2. The mean period Tκ →∞ as the size of the remainder terms goes to

zero. That is, we recover the asymptotical evolution along the separatrices.

2.1.3 Fourier analysis of the pulse

In (2.1) we defined a mean period for a circulation in the stochastic layer, while in

earlier paragraphs we discussed the impulsive dynamics within the homoclinic layer.

We describe this dynamics with the pulse along the separatrix of the second funda-

mental model. An explicit expression for this function is given in (1.30). Fixing Tκ, it

is possible to represent the pulse along the separatrices via its Fourier decomposition.

Namely

Sj =
1

2T

∫ T

0

S(t) e−ijΩt dt, Ω =
2π

Tκ
(2.12)

However, as shown in the following paragraphs, we are more interested in the carte-

sian representation of the pulse. So, introducing Poincaré variables, namely

x(t) =
√

2S cos σ (2.13)

we model the pulse with a Gaussian function, following the idea in [BCF97],

x̃(t) = x0 + Ce−δ2 t2 (2.14)

In particular, the parameters x0, δ and τ are fixed such that:

• the asymptotical limit is x̃(t)→ x∗, the coordinate of the saddle point.

• the second derivatives at the top of the pulse coincide.

• the height of the peaks coincide.
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Figure 2.1: The homoclinic pulse, dashed, modellized by a Gaussian function, in
black.

Hence, the Fourier coefficient of x(t) can be estimated, analytically computing stan-

dard Gaussian integrals of the form

Xj =
1

2Tκ

∫ Tκ
2

−Tκ
2

x̃(t) cos(jΩt)dt (2.15)

That is, after a straightforward calculation

Xj = C
√
π

δ
e−

(Ωj)2

4δ2 erf

(
δ T

2

)
for j > 1 (2.16)

Remark 2.3. The latter calculation assures the fast decay of Fourier coefficient

as the wave number j grows up. Such a behavior of Fourier coefficient of smooth

function may be predicted by Paley-Wiener theorem, see [Tre96] for details. This

fact allows us to introduce a cut-off in the analysis of the Fourier decomposition.

2.2 One-period adiabatic evolution

We now exploit the Landau-Teller approach for describing, via Melnikov integrals,

the one-period evolution of J1 and J2.
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2.2.1 Melnikov integrals

In the context of the Landau-Teller approach, the one-period evolution of the adi-

abatic actions can be deduced by a straightforward integration of the Hamiltonian

equations. Thus, the evolution of adiabatic variables Fj forced by the coupling terms,

rigorously estimated by Melnikov-type integrals.

Remark 2.4. The real evolution S(t) is substitued by the a finite time cut-off of

the asymptotical pulse along the separatrices of the fundamental model,

S(t) = S(0) +
A sinh2(t)

1−B sinh2(t)
(2.17)

The cut-off time is defined by the mean circulation period Tκ.

Remark 2.5. Assuming J1, J2 to be constant along an homoclinic loop and dropping

out higher order terms of coupling, the normal form of the Hamiltonian produces

the following motion equations for the angle variables,

α̇1 = η1S(t) + η3J2 + γ1 + 2 γ2J1 (2.18)

and

α̇2 = η2S(t) + η3J1 + γ3 + 2 γ4J2 (2.19)

Thus, the approximate evolution of the angle variables associated to adiabatic actions

is given by two straightforward integrations, namely

α1(t) = α1(0) + ω2t+ η1W (t) (2.20)

α2(t) = α2(0) + ω3t+ η2W (t) (2.21)

where

W (t) =

∫
S(t) dt =

A

B

(
arctan

(√
1 +B tanh(t)

)
√

1 +B

)
(2.22)
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and

ω2 = η3J2 + γ1 + 2 γ2J1 + η1S(0) (2.23)

ω3 = η3J1 + γ3 + 2 γ4J2 + η2S(0) (2.24)

Thus, the one-period evolution of the adiabatic action variable is provided by

several contributions described by Melnikov integrals, of the form

∆Jk = Jk(T )− Jk(0) =

=
∑
l,m,n

∫ T

0

n̄k, Cl,m,n
(
I(t)

)
sin(lσ(t) + mα1(t) + nα2(t)) (2.25)

2.2.2 Fourier decomposition of Melnikov integrals

In a wide class of systems, one can assume the perturbing function must respect the

so-called D’Alambertian rules. In particular, it means that the coupling terms may

be written in a polynomial form, profiting of the Poincaré variables

x =
√

2S cos σ (2.26)

y =
√

2S sin σ (2.27)

That is, the coefficient Cl,m,n
(√

2S
)

of each Melnikov integrals in (2.25) can be

expressed as a polynomial in x(t), y(t).

Example 2.6. Fixing l=3, we have

(2S)
3
2 cos(3σ +mα1 + nα2) =

(2S)
3
2

[(
cos3(σ)− 3 cos(σ) sin2(σ)

)
cos(mα1 + nα2) +

+
(

sin3(σ)− 3 cos2(σ) sin(σ)
)

sin(mα1 + nα2)

]
=

=
(
x3 − 3x y2

)
cos(mα1 + nα2) +

(
y3 − 3x2y

)
sin(mα1 + nα2)

So, exploiting this observation, in fact a direct consequence of the symmetries of

the problem we are dealing with, we pass to a cartesian representation of equations.
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Then, through trigonometric relations as those in the last example, we re-write the

Melnikov integrals in the form

∆Jk =
∑
l,m,n

∫ T

0

{
n̄k Cl,m,n(J1, J2)× (2.28)

×
[
P
(
x(t), y(t)

)
sin
(
mα1(t) + nα2(t)

)
+D

(
x(t), y(t)

)
cos
(
mα1(t) + nα2(t)

)]}
dt

where P are suitable even polynomials and D are odd polynomials. Profiting of the

Fourier decomposition (2.15), we proceed with a decomposition of each Melnikov

integral, namely

∆Jk =
∑
l,m,n

∫ T

0

{
n̄k Cl,m,n(J1, J2)× (2.29)

×
∑
j

[
Pj sin

(
mα1(t) + nα2(t)

)
+Dj cos

(
mα1(t) + nα2(t)

)]
· eıjΩt

}
dt (2.30)

Further expanding trigonometric functions, eventually each Melnikov integral de-

composes along the Fourier expansion of the homoclinic pulse

∆Jk =
∑
m,n

∫ T

0

n̄k Cm,n(J1, J2)×

×
∑
j

1

2
Pj
[

sin
(
jΩt+mα1(t) + nα2(t)

)
− sin

(
jΩt−mα1(t)− nα2(t)

)]
+

+
1

2
Dj

[
sin
(
mα1(t) + nα2(t) + jΩt

)
− sin

(
mα1(t) + nα2(t)− jΩt

)]
dt (2.31)

Inspired by the analysis in [GEP19], in the following chapters we develop and imple-

ment a procedure capable to identify those terms responsible of the greatest contri-

butions among all terms in 2.31. This methodology allows also to arrive at analytical

estimates for the size of each contribution.
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3 Analytical estimates

The aim of this chapter is to develop a methodology to identify the harmonics in

the Fourier decomposition of the remainder that give the major contributions to the

evolution of the adiabatic variables. This procedure leads quite naturally to an algo-

rithm, inspired by [GEP19], one can implement in practical applications. The main

analytical tool is based on the well-known principle of the stationary phase. The first

part of the chapter is devoted to a review of classical asymptotical analysis through

the stationary phase method. For a complete treatment of stationary phase asymp-

totical developments, one can refer for example to [BH86] or [Won01]. Moreover,

such an approach produce naturally analytically estimates of all the contributions of

Melnikov integrals. A similar approach to Melnikov integrals via stationary phase

method, in the more usual context of separatrices splitting, is presented in [ELP19].

3.1 Principle of stationary phase

The principle of stationary phase applies to integrals of the form

I(λ) =

∫ b

a

f(t) eiλg(t)dt (3.1)

Since for g′(t) 6= 0, in the limit λ >> 1, rapid oscillations compensate each other, one

can infer that major contributions to the integral 3.1 come from stationary points of

the phase, i.e. points such that g′(t0) = 0.

I(λ) ≈
∫ t0+ε

t0−ε
f(t) eiλg(t) (3.2)

23
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In the non-stationary case, the value of 3.1 simply depends on end points a, b. A

straightforward integration by parts produces an asympotical expansion. The first

step of the development comes from

I(λ) =

∫ b

a

f(t) eiλg(t) · g
′(t)

g(t′)
=

=
eiλg(b)

iλg′(b)
f(b)− eiλg(a)

iλg′(a)
f(a)− 1

iλ

∫ b

a

eiλg(t) · d

dt

f(t)

g′(t)
dt (3.3)

But now the second part of 3.3 is again of the form 3.1. So iterating this procedure,

higher order terms in 1
λ

can be recovered. At order one, one gains an explicit estimate

for the integral, namely

I(λ) =
eiλg(t)

iλg′(t)
f(t)

∣∣∣∣b
a

+O(
1

λ
) (3.4)

Suppose now the phase has a non-degenerate stationary point t0 . For the sake of

simplicity, let assume g(t) has one stationary point, t0 6= a and t0 6 b. At an heuristic

level, we can assume that the stationary point gievs the major contribution. A

straightforward calculation then shows that

I(λ) ≈ f(t0)

∫ t0+ε

t0−ε
eiλ
[
g(t0)+

g′′(t0)
2

(t−t0)2
]
dt =

= f(t0)

√
2π

λ|g′′(t0)|
ei
[
λg(t0)±π

4

]
(3.5)

according to sign of g′′(t0). A rigorous deduction of a such estimates is presented in

following paragraphs.

3.2 Estimates for Melnikov integrals

Definition 3.1. For any triplet of wave numbers of the remainder’s Fourier decom-

position (2.31)

Ij,m,n :=

∫ T

0

sin
(
gj,m,n(t)

)
dt (3.6)
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with

gj,m,n(t) = jΩt+mu2(t) + nu3(t)

= g0 + ωt+MW (t) (3.7)

and

W (t) =
A

B

(
arctan

(√
1 +B tanh(t)

)
√

1 +B

)
(3.8)

Remark 3.2. It is worthwhile to notice that the constants ω andM can be derived

directly from the coefficient of the hamiltonian model, as follows by equations (2.21).

The coefficient A,B come from the integration of the fundamental model of resonance

performed in (1.30).

3.2.1 Detection of stationary phases

The first lemma allows to characterize the stationary phases in terms of the mean

period of circulation and the fixed parameters of the Hamiltonian.

Lemma 3.3. Suppose we are given Ω = 2π
Tκ
, ω2 and ω3 fixed and

uk(t) = uk(0) + ωkt+ ηkW (t) (3.9)

Then the phases gj,m,n(t), whose wave-numbers satisfy

ω

−ωB −MA
> 0 (3.10)

have two stationary points, symmetric with respect to Tκ
2

.

Here

S(t) =
A sinh2(t)

1 +B sinh2(t)
(3.11)

is the analytic expression of the homoclinic pulse and dW
dt

= S(t).

Proof. The stationary phase points are solutions of

d

dt
gj,m,n(t) = ω +MS(t) = 0 (3.12)
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Now, S(t) is an even-simmetric impulsive function, so it is clear that the solutions

of equation 3.12 must be simmetric, as pointed out by figure 4.1. Thus, the number

of solutions depend just on the constant value of ω. A straightforward computation

allows to identify the critical values.

ω +M A sinh2(t)

1 +B sinh2(t)
= 0 ⇐⇒ sinh2(t) =

ω

−ωB −MA
(3.13)

That is, the equation has two solution if and only if

ω

−ωB −MA
> 0 (3.14)

Figure 3.1: A graphical solution of the equation 3.12

3.2.2 Analytical estimates

We consider, at the outset, integrals whose phases are non-stationary. According to

the stationary phase principle, these provide negligible contributions.

Proposition 3.4. Consider an integral of the form Ij,m,n, such that its phase func-

tion does not satisfy the condition in (3.3), namely such that

ω

ωB −MA
< 0 (3.15)
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Then,

Ij,m,n = −Pj
cos
(
gj,m,n(t)

)
ω +MW (t)

∣∣∣∣T
0

+O
(

1

ω2

)
(3.16)

Proof. Since condition (3.15) assures g’(t) to be non-zero in the whole integration

path, the thesis follows from a straightforward integration by parts

Ij,m,n =

∫ T

0

sin(gj,m,n(t))dt =

= −cos(gj,m,n(t))

g′j,m,n(t)

∣∣∣∣T
0

+

∫ T

0

cos(gj,m,n(t))S ′(t)(
ω + S(t)

)2 dt (3.17)

But since S > 0, ∣∣∣∣ ∫ T

0

cos(gj,m,n(t))S ′(t)(
ω + S(t)

)2

∣∣∣∣ < T · K
ω2

(3.18)

where

K = max|S ′(t)| (3.19)

For the estimate of stationary-phase integrals, we need two lemmas we come to

state. The proofs are straightforward calculations of complex-variable integrals. We

refer to [Olv97] for the details.

Lemma 3.5. If 0 < α < 1 and x > 0, then∫ ∞
0

eixννα−1 dν =
e
απi
2 Γ(α)

xα
(3.20)

Proof. It follows by the clockwise integration along the path in figure 4.2, letting

r → 0 and R→∞.
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Figure 3.2: The path for the integration in 3.20

Lemma 3.6. If α < 1 and β > 0, then∫ ∞
β

eixννα−1 dν = O(
1

x
) (3.21)

Proof. It suffices to integrate by parts∣∣∣∣ ∫ ∞
β

eixννα−1 dν

∣∣∣∣ =

∣∣∣∣[eixν

ix
να−1

]∞
β

− α− 1

ix

∫ ∞
β

eixννα−1 dν

∣∣∣∣ ≤
≤ 2βα−1

x
(3.22)

Exploiting the last computations, we provide a estimate for the integrals with a

stationary phase. The proof in the general case, is based on the so-called neutralization,

see [Olv97].

Proposition 3.7. Fix ε > 0 and suppose

0 < ω < −MA

B
(3.23)

then gj,m,n(t) has two non-degenere stationary points t1,20 .

Moreover, if ω is bounded away from zero, |ω| > ε, then

Ij,m,n = I1 + I2 +O
(

1

ω

)
(3.24)
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where

Ik = sin

(
gj,m,n(tk0)± π

4

)
·
√

2π

|g′′j,m,n(tk0)|
(3.25)

Proof. From lemma 3.3, it is clear that if (3.23) holds, then gj,m,n has two stationary

points. In particular, a straightforward calculation assures they are non-degenere, or

of order one. So, for t→ t0, one has

g(t)− g(t0) ∼ G(t− t0)2 (3.26)

The idea is to split the integral, namely

Ij,m,n =

[ ∫ t10

0

+

∫ T
2

t10

+

∫ t20

T
2

+

∫ T

t20

]
sin
(
gj,m,n(t)

)
dt (3.27)

such that in each interval we can assume the derivative goes to zero just at one

extreme of integration.

So, we are dealing with an integral of the form∫ b

a

eix p(t)dt (3.28)

such that, without loss of generality,

� for t→ a+, p(t)− p(a) ∼ P (t− a)µ

� p′(t) > 0 in the interior of the range of integration

So, introducing the change of variable

ν = p(t)− p(a) (3.29)

we find

I(x) =

∫ b

a

eix p(t)dt = eixp(a)

∫ β

0

ei xν f(ν)dν (3.30)
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where

β = p(b)− p(a) (3.31)

and

f(ν) ∼ ν
1−µ
µ

µP
1
µ

(3.32)

as t→ a+ (that is, ν → 0∗).

It is worthwhile to notice that since the derivative of p(t) is not zero in the whole

range, the change of variable is in fact a one-to-one correspondence. Now we write

I(x) =
1

µP
1
µ

(∫ ∞
0

eixνν
1
µ
−1dν −

∫ ∞
β

eixνν
1
µ
−1dν

)
=

1

µP
1
µ

(
A+ B

)
(3.33)

The first term can be computed through the lemma 3.5, namely

A =
e
πi
2µ Γ( 1

µ
)

x
1
µ

(3.34)

The second term can be estimated by means of the lemma 3.6, giving an error of

order O
(

1
x

)
. Eventually, coming back to our function,

P =
1

2
g′′j,m,n(t1,20 ),

µ = 2

x = ω (3.35)

and summing up all the contribution in 3.27, we deduce

Ik = sin

(
gj,m,n(tk0)± π

4

)
·
√

2π

|g′′j,m,n(tk0)|
(3.36)

where the sign of ± depends on the sign of the second derivative at the stationary

points.



3.3. ANALYTICAL ESTIMATE FOR THE SPEED OF DIFFUSION 31

Remark 3.8. By means of lemma 3.3, each Melnikov integral Ij,m,n lies in one of

the two possible cases and thus can be evaluated by means of the last propositions.

However, in the transitions between stationary and non-stationary phases, the relia-

bility of such estimates must be discussed and it is maybe necessary to introduce an

intermediate class of quasi -stationary terms. We will come back to this problem in

the next chapter.

Remark 3.9. In any case, such a procedure is indeed useful, since it allows to

reduce drastically the amount, in principle very large, of terms in 2.31 we have to

compute. In fact, many of them, namely those with non-stationary phase, give

negligible contributions that can be estimate via lemma 4.2, or simply ignored. This

allows, for example, to cut significately the time required for numerical checks.

3.3 Analytical estimate for the speed of diffusion

Profiting of analytical tools we developed in the previous paragraphs, we come back to

discuss Melnikov integrals, responsible of the evolution of adiabatic action variables.

Recalling (2.31), we write, for example for k=2,

∆F2 =
∑
m,n,j

PjCm,n(F2, F3) Ij,m,n =

∑
m,n

Cm,n
∑
j

Pj

∫ Tκ

0

sin
(
gj,m,n(t)

)
dt (3.37)

Thus, for any fixed harmonic labelled by the couple m,n, we check condition 3.15 at

the varying of the value of j.

Remark 3.10. The coefficients in the remainder Cm,n drop down for the harmonic

order |m + n| getting larger. So, in the application, it is possible to fix a proper

cut-off and consider harmonics with |m+ n| < L.

It remains to deal with the constant coefficient PJ . As shown in (2.30), they

result from the Fourier decomposition of polynomial in Poincaré variables x(t), y(t).

Thus, they can be estimated by suitable combinations of the coefficient of the Fourier
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representation of the homoclinic pulse. Following (2.16), they decay exponentially

fast,

Pj ∼ bje
−cjj2 (3.38)

Remark 3.11. Such an exponentially fast decay of coefficients Pj suggests to intro-

duce another cut-off, in practical applications, and consider just the first terms in

the devolpement. Namely, we fix Ĵ sufficiently large and we consider

Ĵ∑
j=0

Ij,m,n (3.39)

Eventually, it is possible to sum up the results of this discussion in following

proposition.

Proposition 3.12. The value of the jump of the the adiabatic action variable F2

∆F2 =
∑
m,n,j

PjCm,n(F2, F3) Ij,m,n (3.40)

is well-approximated, in the Landau-Teller approach, by

∆F2 ≈
∑
j,m,n

Cm,ne−cjj
2(E1 + E2

)
(3.41)

where E1 contains all the stationary-phase terms, estimated by

Ij,m,n = sin

(
gj,m,n(tk0)± π

4

)
·
√

2π

|g′′j,m,n(tk0)|
(3.42)

and E2 contains all the non-stationary-phase terms.



4 Numerical results

In celestial mechanics, mean motions resonances (MMR) of celestial bodies play

a central role and a variety of observations can be explained by the presence of

resonances. A typical example is the presence of Kirkwood gap in the main asteroidal

belt in our solar system (see [Moo96] or [FNM98] for a review), observed for the

first time in 1866. These gaps in the distribution of the semi-major axis of main-

belt asteroids arise exactly in correspondence of some resonances with Jupiter mean

motion. However, such a mechanism of expulsion by resonance seems to be not

generic. Indeed, groups of bodies can be observed in resonant zones: for example the

so called Hilda’s group is located at 3:2 resonance with Jupiter, that corresponds to

a semi-major axis a ≈ 3.97 AU. In this chapter we present numerical results on the

slow chaotic evolution of the orbital elements in the case of the 3:2 asteroidal MMR,

implementing the estimates computed in previous chapters.

4.1 Restricted three-body problem

The three-body problem is a cornerstone of celestial dynamics (see [MD99] for a

complete review). Consider three bodies, say for example the Sun, Jupiter and a

sufficiently small body, such that its gravitational potential does not affect the dy-

namics of the others, while itself being subject to their gravitational force. Newton’s

33
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equations, with respect to a fixed reference system, are

m~̈R = − GMm

||~R− ~R�||3
(~R− ~R�)− Gm′m

||~R− ~R′||3
(~R− ~R′) (4.1)

m′ ~̈R′ = − GMm′

|| ~R′ − ~R�||3
( ~R′ − ~R�)− Gm′m

||~R− ~R′||3
(~R− ~R′) (4.2)

M ~̈R� = − GMm

||~R− ~R�||3
(~R− ~R�)− GMm′

|| ~R� − ~R′||3
( ~R� − ~R′) (4.3)

where the symbol � stands for the primary body (Sun) and the prime for the sec-

ondary body (say Jupiter). Passing to a heliocentric system, the equation for the

negligible mass reads:

~̈r = −GM
r3

~r − Gm′

∆3
~∆− Gm′

r′3
~r′ (4.4)

where ~r = R − R� and ~R′ + ~∆ = ~R. Before moving to an hamiltonian description

we fix unity of time and length in terms of the keplerian orbit of the primaries:

aJ = 1; the semi-major axis of Jupiter

ηJ =

√
G(M +m′)

a3
J

= 1; the mean motion frequency

Gm′

G(M +m′)
= µ; the reduced mass parameter of Jupiter

Gm′ = µ GM = 1− µ

The equations of motion follow from the Hamiltonian [Mor02])

H =
~p2

2
− GM

r
− Gm′

∆
+
Gm′

r′3
~r′ · ~r =

~p2

2
− 1

r
− µ

(
1

∆
−
~r′ · ~r
r′3
− 1

r

)
(4.5)
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where, in the Hamiltonian, we distinguish the Keplerian part and the disturbing

function R:

H0 =
~p2

2
− 1

r
(4.6)

R = µ

(
1

∆
−
~r′ · ~r
r′3
− 1

r

)
(4.7)

At this point, it is useful to introduce an appropiate set of coordinates used to

settle the position and the motion of a celestial body. Relative motion of bodies are

commonly described by orbital parameters and the position of the orbital plane with

respect to a fixed orthonormal frame of references. These spatial coordinates are

called orbital elements. A detailed description can be found in [Gio] or in [Mor02].

The usual orbital elements (see figure 4.1 and 4.2) are

� a, the semi-major axis of the ellipse.

� e, the eccentricity of ellipse.

� ω, the argument of pericenter. It defines the angular position of the pericenter

with respect to the ascending node.

� f , the true anomaly, or E, the eccentric anomaly. They define the position of

the body along the orbit, or its projection on the circle tangent to the ellipse.

� i, the inclination of the orbital plane with respect to the fixed plane.

� Ω, the longitude of nodes. It orients the ascending node with respect to the

reference fixed plane.

The well-known Kepler equation√
G(M� +m′)

a3
· (t− t0) = E − e sin E (4.8)

allows to determine all coordinates along the planar ellipse as a function of time.

This can further parametrized in terms of the mean anomaly

M =

√
G(M� +m′)

a3
· (t− t0) (4.9)
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Figure 4.1: Definition of true anomaly and eccentric anomaly.

Figure 4.2: Spatial disposition of orbital plane described by inclination and longitude
of nodes.
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4.1.1 The disturbing function in Delaunay variables

A straightforward application of Arnold-Liouville-Jost theorem [Arn13] to the inte-

grable two-body problem permits to define a set of action-angle variables depending

on orbital elements. Since they present singularities, often they are replaced by the

so-called modified Delaunay variables. The entire construction of these variables via

Arnold-Jost theorem can be found, for example, in [Mor02]. The modified Delaunay

variables are

λ = M + ω + Ω Λ =
√
a (4.10)

−ω̄ = γ = −ω − Ω Γ =
√
a(1−

√
1− e2) (4.11)

θ = −Ω Θ =
√
a(1−

√
1− e2)(1− cos i) (4.12)

These variables represent the most natural way to deal with N-body gravitational

problems.

In order to arrive at an expression for the disturbing function in terms of the

Delaunay action-angle variables, one usually expands the disturbing function in terms

of the orbital elements i and e, considered small. See for example [MD99, chapter

6].

After the expansion in series, eventually one gets an expression of the very general

form

R =
∑
m,s

c(Λ,Λ′)es1(sin i)s2e′s3(sin i′)s4 cos(m1λ+m2λ
′ +m3ω̄ +m4ω̄

′ +m5Ω +m6Ω′)4.1.1

(4.13)

The expression () obey the following rules, known as D’Alambert rules.

� R is invariant under rotation around z-axis. Since any rotation affects each

angle, it must be
∑6

i=1 mi = 0.

� a simultaneous change of sign of the inclinations does not affect the system, so

s2 + s4 must be even.

� the Hamiltonian must be analtyic in Poincaré (cartesian) variables, say e.g.

x = e cos γ. In other words, s1 ≥ |m3| and they must have the same parity.

Same restrictions go also for any si.
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As we will see, this observations are very useful in practical computations involving

the disturbing function. The problem naturally involves two timescale, namely a

fast dynamics, represented by the mean motion, M , and a secular dynamics, much

slower. By an averaging argument it is possible to remove, with a small error, all

terms with fast evolution. Practically, one can pick up any term that has λ or λ′ in

the harmonics , taking care about non-resonance condition, since λ ≈ M , namely

the mean motion frequency. We discuss this fact in the next paragraph.

4.1.2 Mean motion resonances

A number of results and techniques in the theory of quasi-integrable systems, start-

ing with the work of Lagrange and Laplace for orbital dynamics [Lap99], go under

the name of averaging methods (see for example [Arn13] or [AKN07]). If a system

contains an angular variable evolving much faster than the others, in principle it

is possible to decompose the dynamics in fast oscillations (say, mean motions) and

a slow evolution (say, secular evolutions). Performing a suitable time average, fast

oscillations can be eliminated with a small enough error.

To fix ideas consider the following system with single periodic motion

φ̇ = ω(I) + εf(I, φ), φ ∈ S1 (4.14)

İ = εg(I, φ), I ∈ U ⊂ Rn (4.15)

and the average

ḡ(J) =
1

2π

∫ 2π

0

g(J, φ)dφ (4.16)

Following the averaging principle, the original evolution is substituted by the aver-

aged evolution, namely

J̇ = εḡ(J) (4.17)

Under suitable hypothesis, see for example [Arn13], one can prove that, for small

enough ε, in the time interval 0 ≤ t ≤ 1
ε

|I(t)− J(t)| < Cε (4.18)
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Figure 4.3: A toy illustration of the averaging principle.

Averaging methods can be applied in 2n-dimensional Hamiltonian systems, leading

to rigorous statements. See for example the Anosov’s Averaging Theorem [Ano60]

or a possible extension in [DGL94]. Analogous results can be obtained introducing

a normal form for the Hamiltonian via canonical perturbation theory, leading to so-

called secular normal form (see [Mor02] for a review).

Recalling the general form of terms in the perturbing function

c(Λ,Λ′)es1(sin i)s2e′s3(sin i′)s4 cos(m1λ+m2λ
′ +m3ω̄ +m4ω̄

′ +m5ω +m6ω
′)

(4.19)

the frequencies of the mean motions, λ ≈ M and λ′ ≈ M ′, correspond to the fast

ones. So, in the study of the dynamics, the terms that depend on these angles can

be formally ignoreted (or normalized). However, the resonant combinations of mean

motions can not be normalized.

If mean motion frequencies are commensurable, namely

n1λ+ n2λ
′ ≈ 0 (4.20)

for fixed integers n1, n2, their evolution must be considered as slow, and so it can not

be eliminated by averaging arguments or by normalization processes. Since λ ≈ M

represents the orbital mean motion, fixing a particular resonance corresponds to

fixing the distance of the small body with respect to the orbital center (third Ke-

pler’s law). For example, considering the three-body restricted system Sun-Jupiter-

asteroid, the 3:2 resonance corresponds to a semi-major axis of a ≈ 3.97 AU.

Summing up, two class of terms can appear:
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� purely secular, terms that do not depend on λ and λ′

� resonant terms that depend on 2λ− 3λ′ or multiple combinations.

while the other terms are ignoreted by averaging.

4.2 The Hamiltonian model

Before presenting the general form of the model, a proper change of variables is

very useful to enlight some features of the problem. Via the second-type generating

function

S = (3λ′ − 2λ+ γ) · JR + (3λ′ − 2λ+ θ) · F2 + (−3λ′ + 2λ) · F3 + λ · Fp (4.21)

we introduce the following variables

λ→ u3

2
+

3up
2

dΛ→ −2F2 + 2F3 − 2JR

γ → u3 + uR Γ→ JR

θ → u2 + u3 Θ→ F2

λ′ → up Λ′ → 3F2 − 3F3 + Fp + 3JR

Remark 4.1. New variables have a straightforward interpretation in term of orbital

elements. For example:

F2 = Θ =
√
a(
√

1− e2)(1− cos i) =
√
a
i2

2
+O4 (4.22)

at where O4 denotes terms of degree four in the eccentricity and inclination.

Thus, summing up, we have to study Hamiltonians of the form

H(JR, F2, F3, uR, u2, u3) = H0(JR, uR) +K1(JR, F1, F2) + (4.23)

+K2(JR, F2, F3, uR, u2, u3) (4.24)

where

H0 = aJR + bJ2
R + c

√
2J cos uR (4.25)
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is the second fundamental model of resonance,

K1 = η1JRF2 + η2JRF3 + η3F2F3 + . . . (4.26)

are coupling terms and

K2 =
∑
k,j,l

Ck,j,l(
√
JR, F2, F3) cos(kuR + ju2 + lu3) (4.27)

are the terms coming from the expansion of perturbing function. Thus, we recover

an Hamiltonian dealing with the general model (2.1.1). We propose to apply our

methodology to this concrete example. Before doing that, a further consideration

involving the so-called normal form of the Hamiltonian is to be discussed.

4.3 Canonical perturbation theory

For many inital conditions, the one-period evolution of the action variables is dom-

inated by the so-called ”deformation” effect, namely rapid oscillations around the

drift motion, as shown for example in figure 4.4. In order to reduce deformation

effects, we implement a standard Lie series normalisation algorithm. Regardless

the optimal order in the perturbative analysis, actually a single step in normalising

process resulted to be sufficient to identify clearly the feature of the dynamics, for a

collection of initial data nearby the unstable point. We give here a short review about

canonical perturbation theory via the Lie series method. A complete description can

be found for example in [Fer07].

4.3.1 Lie series canonical transformation

The general aim of the canonical perturbation theory is the construction of suitable

canonical transformations, such that the dynamics of the system in the new variables

is somehow simpler. The idea, undergoing the so-called Lie series method, consists

of producing a canonical transformation solving, by means of a Taylor series, the

motion equations given by a suitable function χ. Indeed, as it is well known in the

theory of hamiltonian systems, for every time t the flow Φt generated by a certain
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Hamiltonian χ is a canonical transformation. Recalling the definition of the Poisson

bracket operator

Lχf =
df

dt
=
{
f, χ

}
=

N∑
i=1

(
∂f

∂qi

∂χ

∂pi
− ∂f

∂pi

∂χ

∂qi

)
(4.28)

the canonical flow generated by χ is formally expressed by the so-called Lie series

operator

p(t) = exp(tLχ)p = p0 +
(
Lχp0

)
t+

1

2

(
L2
χp0

)
t2 + . . . (4.29)

q(t) = exp(tLχ)q = q0 +
(
Lχq0

)
t+

1

2

(
L2
χq0

)
t2 + . . . (4.30)

where the dots stand for higher order terms in the definition of the exponential

operator

exp(x) =
∞∑
n=0

xn

n!
(4.31)

Thus, the last expression defines an explicit canonical transformation, for every fixed

t,

p = exp(tL)p′ q = exp(L)q′ (4.32)

It is worthwhile to recall that, by Grobner exchange theorem, it is possible to express

a function f(q, p) in terms of the new variables (q′, p′) without performing substi-

tutions. Rather, one can apply the exponential operator directly on the function,

namely,

f(q, p)
∣∣
p=exp(tL)p′, q=exp(L)q′

= exp(tL)f
∣∣
p=p′, q=q′

(4.33)

It remains to explain how the choose of a suitable function χ is performed, by means

of the so-called homological equation. Let consider, for the sake of simplicity, an

Hamiltonian of the form

H = Z0 + λH1 (4.34)
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and suppose we want to normalize it up to order one in the parameter λ. By the

exchange theorem, we have

H ′ = exp(L)H = Z0 + λH1 + {Z0, χ}+ λ{H1, χ}+
1

2
{{H,χ}, χ}+ . . . (4.35)

That is, just the second and the third term are of order one in λ. Thus, the following

equation must be solved, in order to eliminate them. This is the so-called homological

equation

λH1 + {Z0, χ} = 0 (4.36)

It is possibile to iterate the procedure to get an higher order normal form for the

Hamiltonian, taking care of the appeareance of small denominators produced by

resonances. However, in the study of the model we are interested in, a first order

normalisation turns out to be sufficient.

4.3.2 First order normalisation of the model

We apply a single step of the normalisation process to our model describing mean mo-

tion resonances in the restricted three-body system. So, considering the Hamiltonian

discussed in the chapter 1

H = Z0(I) +K1(I, uR) +K2(I,Φ) (4.37)

where

Z0 = ω · ~I, ~I = (JR, F2, F3) (4.38)

and

K2 =
∑

n̄= (l,m,n)

Cn̄(I) cos n̄ · Φ, Φ = (uR, u2, u3) (4.39)
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and solving the homological equation

{Z0, χ1}+K2 = 0 (4.40)

one produces an explicit canonical transformation generated by the flow of

χ1 =
∑
n̄

Cn̄(I) sin n̄ · Φ
n̄ · ω

(4.41)

That is, the new Hamiltonian, given by

H ′ = exp(Lχ1)H = H + {H,χ1}+
1

2
{{H,χ1}, χ1}+ . . . (4.42)

takes the form

H ′ = Z0(I ′) +K1(I ′, u′R) +R(I ′,Φ′) (4.43)

where the terms of the remainder R are of the form

R =
∑
n̄

C ′n̄(I ′)rl,m,n cos(n̄ · Φ′) (4.44)

It is worthwhile to observe that the coefficient rl,m,n are explicitly known as a result

of the normalisation process. This fact assures that the size of the remainder is con-

trolled. The Lie series method provides also straightforward formulas for computing

the evolution of new variables in terms of the evolution of the old ones

I ′i = exp(−Lχ1)Ii, i = 1, 2, 3 (4.45)

Φ′i = exp(−Lχ1)Φi, i = 1, 2, 3 (4.46)

In principle, after the normalisation process, the remainder terms is composed by a

finite, but large, amount of terms. In the following, we will develope a methodol-

ogy for picking up most relevant contributions that force the slow evolution of the

adiabatic action variables.
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Figure 4.4: An example of the evolution of F2 along an homoclinic loop, before and
after one step of the normalisation process. The ”jump” is clearly visible after one
normalisation step.

4.4 Results

We now apply the methodology developed in the previous chapters to a realistic

model arising from the study of mean motion resonances in the context of the well-

known three-body restricted problem in celestial mechanics. For the description of

the construction of such a model, we refer to chapter 1. In particular, we are in-

terested in the 3 : 2 mean motion resonance, that coincides, in the Main Belt of

asteroids, with the so-called Hilda’s group.

We focus on the diffusive behavior of the action-variable F2. Recalling the meaning

of the coordinates we introduce in chapter 1 (see, 4.1), this variable is proportional

to the inclination of the orbital plane. So, a spread in the value F2 produces a spread

also in the positions of the celestial body. In particular, large excursions of the dy-

namics in the phase space may modify significately the eccentricity of the orbits,

so that the small body can approach the gravity center and be expulsed from the

orbit. Thus, the knowledge of the speed of diffusion allows to predict, for example,

the mean life of asteroidal groups within the Main Belt. Results of this type are

obtained for example in [CCF10]. A detailed analysis about a possible theoretical

explanation of Kirkwood gaps in the Main Belt by the diffusion along mean motion

resonance in the restricted three-body problem can be found in [Fej+16].

In the first part of the paragraph we discuss, profiting of some numerical simulations,
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the effective diffusive character for the long-time dynamics of F2. In particular, we

point out clearly the non-uniformity of the evolution. The evolution, rather, pro-

ceeds by kicks, as already highlighted in [GEP19]. This impulsive behavior is far to

be a peculiarity of the model we are considering. On the contrary, the generality

of such a character of the diffusion was predicted by Chirikov in [Chi79], suggesting

the definition of a diffusion rate. We also discuss the essential difference elapsing

between the circular and the elliptical problem, essentially due to some topological

consideration involving KAM tori.

Then, we implement the methodology for computing the rate of diffusion we devel-

oped in chapters 3 and 4 and we compare the analytical estimates with numerical

predictions.

4.4.1 Evidences of a slow chaotic diffusion

Already Poincaré showed that the separatrices associated to integrable systems near

simple resonances split under the effect of small perturbation, that we can identify

with the remainder in the normalised Hamiltonian. Within the so-called stochastic

layer, the chaotic motion ensures an appreciable slow diffusion in the evolution of

the adiabatic action variables. Apart from that, the presence of KAM tori renders

the diffusion very slow, and then hard to detect numerically. A crucial observation

regards the character of the diffusive evolution. In fact, the spread turns out to

be non-uniform in time. Rather, the diffusion is forced by a periodic sequence of

impulsive ”kicks”, in correspondence to each homoclinic loop. Assuming the diffusion

to have a normal character, it is possible to deduce the typical excursion from the

knowledge of the typical size of the one-period impulse (see [EH13], [KK89] for a

discussion of the assumption of normal diffusion).

The motion in original variables is affected by the so-called deformation effect, that

completely dominates over the feature of the jump. Thus, it is necessary to introduce

new variables through a standard normalisation method, discussed in the chapter 4.3.

Putting aside questions about order optimality, a single step in the normalisation

process turns out to be quite sufficient to clearly identify the one-period jump in the

one period evolution of F2, as shown by figure 4.6 for a couple of homoclinic loops.
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Figure 4.5: Poincarè section, at plane u2 = 0, of the stochastic layer for the spatial
elliptical problem.

Figure 4.6: Numerical evolution of F2 after eight homoclinic loops in the spatial
elliptical RTBP. The dynamics proceed by subsequent impulses. The equation of
motion are integrated in the original non-normalised variables. Then, through explicit
formulas given by the Lie series normalising process, it is possible to achieve the
normalised dynamics. The black line represents the dynamics after the normalisation.
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Figure 4.7: Diffusive behavior for a swarn (18) of initial data in the spatial elliptic
model. Again, black lines stand for the normalised dynamics.

It is worthwhile to notice that, due to the ergodic nature of the dynamics inside

the stochastic layer, the long-time evolution strongly depends on initial data. In

particular, the dynamics is strongly affected by a change, even small, in initial phases,

as shown in figure 4.8.

Figure 4.8: Long-time evolution of F2 for three different initial phase u2(0).

4.4.2 Comparison between the circular and the elliptic RTBP

As known since the original work of Arnol’d [Arn64], in systems with two degrees of

freedom, the motion in the phase space can not transit from one unstable zone to

another one. In fact, the presence of two dimensional KAM tori acts as a topological

barrier on diffusion. These topological barriers prevent significant excursions in a

long time evolution. On the contrary, if a system has three or more degrees of

freedom, the connection between unstable zones, surrounded by the KAM tori, in
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principle allows large excursion for the evolution of adiabatic variables.

We illustrate such essential difference by means of figure 4.9. The circular model,

obtained assuming the eccentricity of the primar body’s orbit to be zero, is a two

dimensional system (that is, F3 is a constant of motion). On the contrary, the elliptic

model has three degrees of freedom. As clearly shown by the figure, the evolution

of F2 in the circular model is clearly restricted and no large excursion seems to be

possible.

Figure 4.9: Diffusion of F2 for a swarn of initial data. Red lines stand for the circular
problem, black lines for the elliptic.

4.4.3 Jeans-Landau-Teller approach

In chapter 3 we deduced an analytical estimate for the value of ∆F2 through suitable

Melnikov integrals. The deduction, referred to as a Jeans-Landau-Teller approach,

is based on the following assumption: it is possible, with a meaningful error, to

substitute the motion in the stochastic layer with a proper cut-off of the asymptotic

solution of the second fundamental model of resonance. The proper period, identified

with the ”mean circulation period” in 2.1 and depending on the size of the remainder,

is in also good agreements with numerical observation. In this paragraph, we discuss

the reliability of this approach by comparison with numerical experiments.
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Figure 4.10: A comparison between the homoclinic pulse computed numerically, in
red, and the analytical solution of the second fundamental model, dashed in black.

Figure 2.5 shows the level of error in dropping out the effect of the remainder

on the one-loop evolution of the angle variables congiugate to the adiabatic actions

F2, F3. Figure 4.11 shows the analytic prediction for the one-loop evolution of the

action F2 by the Jeans-Landau-Teller approach, compared with the numerical evo-

lution.

Figure 4.11: One-period evolution angle variables u2, u3 computed numerically, in
red, and approximately deduced in the JLT approach, dashed.
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Figure 4.12: A typical jump of F2 computed numerically, in red, and the same jump
deduced by the JLT approach, dashed.

4.5 Semi-analytical estimates for the speed of dif-

fusion

The following paragraphs are devoted to implementing the procedure, described in

chapter 3 and 4, that leads to analytical estimates for the variation of action variables

during a one-period evolution. That is, we implement an algorithm via an algebraic

manipulator, such that:

1. for each fixed m,n, the correspondent Melnikov integral is decomposed on the

Fourier series of the Poincarè representaiton of the pulse, producing the integral

Ij,m,n = Cj,m,n

∫ T

0

sin
(
jΩt+mu2(t) + nu3(t)

)
for j = 0, 1. . . , Ĵ (4.47)

2. via the condition in lemma 3.3, the algorithm recognizes the stationary-phase

terms,

3. depending on this condition, each integral is substitued with the suitable esti-

mated given in propositions 3.4 and 3.7,

4. after a ”term-by-term” numerical comparison, the procedure collects all the

contributions to reconstruct the effective size of the jump.
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It should be stressed that, since the phase depends linearly on j, stationary-phase

terms appear for j sufficiently small. Thus, combining this observation with the

exponentially fast decay of the coefficient of the Fourier representation, only a couple

of integrals give in fact the real effective contribution. Thus, in principle, the analysis

can be restricted to a small portion of the whole amount of integrals.

4.5.1 Spatial circular RTBP

In the case of non-planar circular problem, the system has two degree of freedom,

since F3 is a constant of motion. Even if, as discussed in (4.4.2), broad excursions for

the long time dynamics of F2 are topologically prevented, it is still possible to study

the evolution along a single homoclinic loop applying the methodology we developed.

For gaining the circular problem one fixes the eccentricity of the primar body’s orbit

to be zero. Thus, it amounts to exclude in the remainder all the harmonics depending

on the angle u3.

So, each term in the Fourier decomposition of Melnikov integrals, defined in 2.31,

assumes the form

Ij,m = Cj,m

∫ T

0

sin
(
jΩt±mu2(t)

)
dt (4.48)

and the size of the jump is estimated, in this setting, by the sum

∆F2 =
∑
j,m

Ij,m (4.49)

Thus, for every term in the remainder (that is, for every fixed value of n), the

algorithm verifies the condition stated by lemma 3.3 at the varying of j, to detecet

those terms whose phase is stationary. The coefficients Cj,m depends on suitable

products of Fourier coefficient of the homoclinic pulse and coefficients rj,m,n coming

from the remainder of the normal form. Since they decay exponentially fast (see

2.16) as the wave-number j grows up, it is possible to fix a proper finite cut-off in

the development. In this example, we choose Ĵ = 20. A larger value for the cut-off

does not affect the results appreciably.

We recognize two groups of integrals, depending on conditions 3.3:
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i
)

non-stationary-phase terms, estimated via the proposition 3.4

ii
)

stationary-phase terms, estimated via the proposition 3.7. They produce, as

theoretically predicted by the principle of stationary phase, the major contri-

butions.

It is wortwhile to notice that the considerably fast evolution of the angle u2 ensures

the transition from the case i) to the case ii) not to produce quasi -stationary, or

degenere, phases. Thus, the analytical estimates result to be quite in agreement

Figure 4.13: An example of the transition of the phase from stationary to non-
stationary, for j=1,2,10,11,12,15 and n=2. For j=11 the phase has two stationary
points.

with numerical computations. In particular, we report an explicative result of such

an analysis in the case of maximal jump with respect to initial data. The size of the

effective jump computed via analytical estimates results to be

∆F2 = 3.80938 · 10−7 (4.50)

to be compared with the numerical prediction

∆F2 = 4.16845 · 10−7 (4.51)



54 CHAPTER 4. NUMERICAL RESULTS

Figure 4.14: A comparison, for n=2, between numerical, in black, and analytical
value of the Fourier decomposition of a Melnikov integral for the circular problem.
One stationary-phase term is identified at j=10 and it produces the major contri-
bution. Similar results are found in the analysis of Melnikov integrals labelled by
different value of the wave-number n.

4.5.2 Spatial elliptic RTBP

The same procedure can be applied to the most general case of the problem, namely

the spatial, elliptic, restricted three-body problem, so for decomposition of Melnikov

integrals of the form

∆F2 =
∑
j,m,n

Ij,m,n = Cj,m,n

∫ T

0

sin
(
jΩt±mu2(t)± nu3(t)

)
dt (4.52)

We first notice that, beacuse of the form of the canonical transformation involved

in the normalisation (see 4.3), the coefficient Ij,m,n in the remainder converge to

zero for increasing values |m+ n|. Thus, in addiction to the cut-off Ĵ in the Fourier

development, one is allowed to consider harmonics such that |m+n| < N̂ , for a priori

fixed N̂ . Moreover, it turns out that very few harmonics produce in fact relevant

contributions.

A further consideration regarding the stationarity condition should be pointed out.

Since the angle u3, introduced in the three degree of freedom problem, evolves much

slowly with respect to u2, the transition from stationary to non-stationary terms

involves terms for which a stationary-phase approach is arguable. The presence of

those terms, in fact, affects the reliability of the analytical estimates for a few terms.

As for the circular problem, we test our methodology for computing the size of the

maximal spread of F2 with respect to the initial phase u2(t). The analytical estimate
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for the size of the jump result to be

∆F2 = 5.48584 · 10−7 (4.53)

quite in agreement with the numerical prediction

∆F2 = 6.7796 · 10−7 (4.54)

Figure 4.15 shows a comparison of the analtyical versus numerical estimates for the

most relevant terms in the above analysis.

Figure 4.15: An example of some out of the most relevant integrals, analytically
estimated, in black, with a numerical comparison, in red.
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5 Conclusions

In the present thesis, we combined estimates obtained via the Jeans-Landau-Teller

approximation with those of the method of stationary phase in order to provide

upper bounds for the rate of slow chaotic diffusion in models of so-called ”second

fundamental model of resonance”. Furthermore we applied these results in a nu-

merical example corresponding to the asteroidal 3:2 mean motion resonance in the

spatial elliptic restricted three body problem. Our main conclusions are the following.

In chapter 1 we perform a complete analysis of the second fundamental model. In

particular, following [Fer07], we express the solution of the equation of motions in

terms of explicit trascendental functions.

In chapter 2 we implement the Jeans-Landau-Teller approximation. Profiting of the

available analytical expression for the separatrix solution, we describe the dynam-

ics within the stochastic layer produced by a small perturbation. By means of the

Fourier representation of the separatrices, we are able to express the size of the one-

period homoclinic jump of the adiabatic action variables in terms of Melnikov-type

integrals.

In chapter 3 we state the propositions providing analytical estimates for the Mel-

nikov integrals. Those estimates are based on the well-known method of stationary

phase. We also provide a condition able to identify those integrals which give larger

contributions, namely those which present a stationary phase.

In chapter 4 we apply our results to the slow chaotic diffusion of the orbital ele-

ments in the case of the 3:2 asteroidal mean motion resonance. First, we construct a

hamiltonian model describing mean motion resonances in the restricted three-body

problem. We find that the second fundamental model naturally arises in this con-

text. The impulsive character of the diffusion is explicitly revealed by a canonical
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transformation produced via the Lie series method, which allows to remove all de-

formation effects in the time series yielding the evolution of the adiabatic action

variables. The slow chaotic diffusion proceeds by subsequent ”jumps” of stochastic

nature. Thus, the rate of diffusion is provided by the size of the typical one-period

jump. Evidence of KAM tori’s bounding effect in the two dimensional systems are

also pointed out via numerical integrations. Eventually, we implement the analytical

methodology developed in the chapter 2 and 3 for the study of an example of a 3:2

resonant orbits. Thus, we are able to measure the size of the one-period jump of

the adiabatic action variable F2, for a given inital datum. The results are quite in

agreement with numerical predictions, in both cases of the circular and of the elliptic

three-body problem.
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