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ABSTRACT

This thesis is based on the works [4] and [15]. We firstly give a presentation of the

state of the art of the bathymetry reconstruction problem. Secondly we introduce,

in a geometrical setting, the Shallow water model, known for its many applications

(dynamics of the athmosphere, geophysical phenomena and more). Furthermore, we

use the SW model to derive a novel intrinsic model for the bathymetry reconstruction.

More specifically, we find a second order approximation of the Navier-Stokes equations

based on the SW model. Finally, employing the Discontinuous Galerkin method, we

perform the first steps towards the experimental validation of our model.
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Introduction

In this thesis we are going to derive a novel intrinsic Shallow water model for the

bathymetry reconstruction of e.g. rivers. Elena Bachini Ph.D. thesis [4] has provided

a solid terrain and has been fundamental for the development of this work: the present

has its roots there.

How can the bottom of a river be reconstructed from its surface data? This ques-

tion seems to have no answer at a first sight. Surprizingly, it is possible to translate

this problem into a mathematical language and to give raise to mathematical-physical

models, which complexity is proportional to their distance to the real phaenomenon.

In choosing such a model, it is necessary to do a compromise between its fidelity and

the ease of dealing with it theoretically. The Shallow water model does exactly this:

it furnish a good approximation of the Navier-Stokes equations in the hyphothesis of

a thin fluid layer and large wave-length. Its ease of use and versatility lead the SW

model itself to a wide applicability: dynamics of the atmosphere (tsunami prediction,

hurricane modeling), geophysical phaenomena (dam breaks, debris flows, river flows,

avalanches) as well as oceanografic modelling and many others.

Dealing with these complex models one may need to take into consideration also the

shape of for example a river bed. The evolution of the Mathematics of the past century

brought to light ,among the others, the theory of Differential Geometry: this provides

a useful toolbox in dealing with surfaces. Our aim is to employ this theory in the

study of the bathymetry reconstruction.

This thesis is structured in the following way. In the first chapter, Preliminar-

ies, can be found some basic results such as topics in Continuum Mechanics and the

theory of Surface PDEs. Here we give a presentation of geometrical objects such as
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atlas, transition maps, coordinate curves. Moreover we introduce the notion of reg-

ular surface, the Local Coordinate System (LCS) and the Global Coordinate System

(GCS), important concepts that will be enconutered in the main following chapters:

the LCS will allow us to do explicit computations on a regular surface. Identifying

points in the fluid domain from the perspective of the LCS set-up requires to work

with the so called tubular neighborhood, also presented in this chapter. Furthermore,

is given the definition of the differential operators acting on function, vector fields and

tensors defined on a regular surface. Finally the well-known Green’s formula and the

divergence theorem are recalled: they will become handy in building the numerical

formulation of our bathymetry model.

In chapter 2, the Shallow water equations are introduced and derived, starting

from the Incompressible Navier-Stokes equations written with respect to the LCS, and

thus called curvilinear NS equations. Restrictions on the dimension of the system and

its simplification are possible thanks to the employment of the Kinematic Boundary

Conditions, which are a very natural constraint that we impose on the system itself,

and some algebraic manipulations. This process, that involves the normal depth-

integration of the system’s equations, brings the system dimentionality back from 4

to 3. Under the assumption of a thin fluid layer, i.e. the Shallow water hyphothesis,

some approximations lead us to a second order approximation of the Navier-Stokes

equations. For each point in the bottom surface, trying to solve this system means

seeking for the height of the water, measured along the normal attached to the bot-

tom itself aswell as the depth-averaged velocity vector first two components. In this

problem formulation, the bottom surface is a known, fixed in time, data.

Chapter 3 contains the Shallow water model treated in [15], that will be compared

with ours in the Bathymetry reconstruction chapter, further on.

Chapter 4, Bathymetry reconstruction with intrinsic geometry, forms the core of

the present thesis. Here the perspective is overturned and we are interested in the

opposite problem of finding the shape of the bottom surface, given the top one. Thus,
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we derive a new set of equations starting from the definition of a tensor that includes

in itself both the Continuity equation terms and the ones related to the Momentum

equations. The simplest situation is found assuming that the bottom is not eroding,

i.e. it doesn’t vary in time, nevertheless this model also considers the case of a time-

dependent bottom surface. Theorically, with little modifications, our inverse model

formulation can also be used to study the direct problem of finding the top surface

of a river given a bottom that does depend on time. Finally, we will briefly compare

the non-intrinsic direct and inverse models in [15] with the intrinsic ones derived in [4]

and in the present thesis.

In the chapter Numerical set-up for the bathymetry reconstruction model we will

derive the fully discrete Discontinuous Galerking formulation. The paper of G. Dziuk

and C. Elliot [14] will furnish a concrete help to arrive at the final result.
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Chapter 1

Preliminaries

In the present chapter, we are going to recall some theorical results and notions that

will be useful in the future development of the thesis. In the first part, we start from

a Continuum Mechanics setup that involves spatial and material coordinates. Then

we present the well-known Reynold’s (or transport) theorem, the relation between

the Continuity equation and isochoric motion. Finally, we also recall the Momentum

equations and Cauchy’s Tetrahedron theorem.

Furthermore, the second part involves the presentation of our geometric setting, at the

basis of Surface PDEs.

1.1 Continuum Mechanics: overview

In this section, we recall basic concepts and results of Continuum Mechanics that are

at the very basis of the Navier-Stokes equations, see [10]. Let B the set of all particles

at a certain time such that the external normal on ∂B exists almost everywhere. For

each particle, we call x the space coordinate, X the material coordinate (particle label)

i.e. the initial position of the particle, and x−X =: d the displacement of X.

Definition 1.1. A deformation of B is a smooth map

x : R3 ⊇ B 3 X 7−→ x(X) ∈ R3

such that
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a) x(·) is a diffeomorphism on x(B)

b) ∂xi
∂XL

(X) = FiL(X) displacement gradient has det(F (X)) > 0 ∀x ∈ B.

Definition 1.2. The motion of B in [0, T ] is a map

x : B × [0, T ] 3 (X, t) 7−→ x(X, t) = x ∈ R3

such that X 7−→ x(X, t) is a deformation ∀t.

Let Γ = {(t, x) ⊂ R4
∣∣ t ∈ [0, T ], x ∈ Bt = x(B, t)} be the space-time trajectory, we

can write a scalar field Φ in material or spatial coordinates using the map x and its

inverse: Φm(X, t) = Φ(x(X, t)) = Φ ◦ x and Φ(x, t) = Φm(x−1(x, t)) = Φm ◦ x−1. Note

that we use the subscript m to underline the reference to the material coordinates.

Theorem 1.1. (Transport thm. (or Reynold’s thm.))

Denote with Φ̇ the total derivative in time of Φ and let F (x) be the jacobian matrix

of the coordinate transformation x. Using the theorem of change of variables and

divergence theorem, the following algebraic manipulations hold:

d

dt

∫
x(B,t)

Φ(t,x) dx =
d

dt

∫
B

Φ(x(X, t), t)detF (t,X) dX =

=

∫
B

[
d

dt
(Φm)detF + ΦmdetF (∇ · u)m

]
dX =

∫
x(B,t)

[(
d

dt
Φm

)
+ Φ∇ · u

]
dx =

=

∫
Bt

[
Φ̇ + Φ∇ · u

]
dx =

∫
Bt

(Φ′ +∇xΦ u + Φ∇ · u) dx =

∫
Bt

[Φ′ +∇ · (Φu)] dx =

=

∫
Bt

Φ′dx+

∫
∂Bt

Φ u · n dxσ .

This series of algebraic manipulations is very important for many results in Con-

tinuum Mechanics. For example, recalling that

∂

∂t
detF (t,X) = detF (t,X)(∇ · u)m ,

we can write the rate of change of volume of the body Bt (Φ ≡ 1) as:

d

dt
vol(Bt)

d

dt

∫
Bt

dx =
d

dt

∫
B

detF dX =
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=

∫
B

detF (∇ · u)m dX =

∫
Bt
∇ · u dx =

∫
∂Bt

u · n dxσ . (1.1)

From this computations we can see that the motion is isochoric, i.e. vol(Bt)=vol(B)∀ t,

if and only if ∇ · u = 0. This is exactly the incompressibility condition we will use in

the (incompressible) Navier-Stokes equations. An equivalent condition, which can be

derived employing a simple change of variables, would be to impose detF=1.

If we now assume that the Principle of Mass Conservation holds, i.e. ∀P ⊆ B, ∀t, we

ask that m(Pt) = m(P), we can derived the following proposition.

Proposition 1.1. (Continuity Equation for mass density)

Let ρ : Γ→ [0,+∞) be the mass density written in spatial coordinates, using theorem

(1.1) we have

0 =
d

dt

∫
Pt
ρ dx =

∫
Pt

(ρ̇+ ρ∇ · u) dx =

∫
Pt

[ρ′ +∇ · (ρu)] dx ∀Pt ∈ Bt

⇒ ρ̇+ ρ∇ · u = ρ′ +∇ · (ρu) = 0 (1.2)

Observe that this is just a way of writing the Continuity Equation: we chose it

because it is often employed in fluid dynamics.

Conservation laws of physical quantities (mass, charge, etc.) can be seen as a special

case of balance laws, which are more general and can be used to describe more complex

phaenomena. Consider Ψ(x, t) scalar function, we can write the associated balance law

as

d

dt

∫
Pt

Ψ dx =

∫
Pt

[
Ψ′ +∇ · (Ψu)

]
dx =

∫
Pt
r dx−

∫
∂Pt

Φnc · n dxσ ∀Pt

⇒ Ψ′ +∇ ·
(
Ψu + Φnc

)
= r (Balance Law) (1.3)

where r is the source (or production) term, Φnc is the non-convective flux, n is the

external normal of ∂Pt. The minus sign on the right hand side is justified because we

think that the convective flux gives a positive contribution when it enters the body

(when Φnc · n < 0). Setting Φnc := −c∇xΨ, with c > 0 diffusion coefficient, we can

write Ψ′ +∇ · (Ψu) = r + c∆Ψ.

Definition 1.3. (Tensor product)
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Given v,w ∈ R3 vectors, we call v ⊗w ∈Mn×n(R) the tensor product between v and

w. For every u ∈ Rn we have:

(v ⊗w)u := v(w · u) ∈ Rn .

Moreover, the element (v ⊗w)ij is given by the intersection of row i and column

j, i.e. using the definition :

(ei)
T (v ⊗w)ej = ei · (v(w · ej)) = viwj ,

so (v ⊗w)ij = viwj ∀i, j = 1, . . . , n .

We are ready now to write the Balance Law for vector fields. Let Ψ(t,x) ∈ R3 be a

vector field, then we have

d

dt

∫
Pt

Ψidx =

∫
Pt

[
Ψ′i +∇ · (Ψiu)

]
dx =

∫
Pt

[
Ψ′i +

∑
j

∂

∂xj
(Ψiuj)

]
dx =

=

∫
Pt

[
Ψ′i +

∑
j

∂

∂xj
(Ψ⊗ u)ij

]
dx =

∫
Pt

[
Ψ′i + div(Ψ⊗ u)i

]
dx , (1.4)

where divT denotes the divergence of a tensor: (divT)i =
∑

j ∂/∂xj Tij. This is the

left hand side of the Balance Law for vector fields in integral form; the right hand side

is totally analogous to the scalar field case seen previously.

Forces acting on a body. We distinguish the forces acting on the continuous body

Bt in external and internal forces. They can be of the following types:

• Volume forces (external): they depend on the volume of the body, for example

gravitational or elecromagnetical forces.

• Surface forces (external): they act on the boundary of the body, for example

pressure forces.

• Close-contact forces (internal): they may depend on the deformation of the body,

so they are unknown, and are given by the reciprocal action between internal

points of P that are in contact.
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Note that in the case of a particulate body, while we assume it continuous, all the

forces are of distant action type. The definitions of the momentum Q(t) and the

angular momentum MO(t) for a region P ∈ B are:

Q(t) =

∫
Pt
µe and MO(t) =

∫
Pt
x× µe.

In order to recall fundamental tool for describing internal contact forces we need

Conservation of Momentum and Conservation of Angular Momentum equations:

d

dt
Q =

∫
Pt
µė dxv =

∫
Pt
b(x, t) dxv +

∫
∂Pt

s(x, t, n(x)) dxσ , (1.5)

d

dt
MO(t) =

∫
Pt
x× µė dxv =

∫
Pt
x× b(x, t)dxv +

∫
∂Pt

x× s(x, t, n(x)) dxσ , (1.6)

where s(x, t, n) = dR/dσ is the internal superficial density of contact forces acting on

an infinitesimal area dσ, and b,Σ : Γ −→ R3 are given functions and P is an internal

part of body B. These balance equations’s validity is postulated in Continuum Me-

chanics, because they are not invariant with respect to a rigid transformation of the

reference frame.

Theorem 1.2. (Cauchy Tetrahedron)

Let (b, s) be the solicitation along the motion x of B. Balance equations (1.5),(1.6)

are satisfied along the motion of B if and only if there exists a smooth tensorial field

T : Γ −→ Lin called Cauchy stress tensor such that, for every (x, t) ∈ Γ it holds

a) ∀n ∈ S2, s(x, t, n) = T (x, t)n ,

b) µ(x, t)ė(x, t) = divT (x, t) + b(x, t) ,

c) T (x, t) ∈ Sym .

Condition b) is the local form of Momentum Balance Law.

Observation. The coupling of the Continuity equation and the Balance Laws

forms a system of 7 equations. Nonetheless, in the NS system we will consider only

4 unknowns and drop te Angular Momentum’s Balance Law. Then, in the Shallow

8



Water model we will reduce to 3 unknowns, assuming the standard SW hyphothesis

(see Chapter 3). Finally, we would like to remark that further analysis is possible in

order to reduce the system, thanks to the theory of Constitutive Equations, although

we will not enter in details.
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1.2 Surface PDEs

In this section, we are going to recall some geometrical concepts, such as atlas, transi-

tion maps, coordinate curves. Most importantly, we are going to encounter the notion

of Global Coordinate System (GCS) and Local Coordinate System (LCS) aswell as

the one of regular region. The first two will be encountered many times in the fol-

lowing chapters; in particular, the second will be modified in the chapter about the

bathymetry reconstruction, while the latter will be important in the numerical ap-

proximation of a regular surface.

This thesis finds its fundations in the work of Elena Bachini’s Ph.D. thesis [4], so we

will give a general overview of [4] initial main points, presenting them step by step.

So this section starts with the notion of tubular neighborhood and the definition of

the intrinsic differential operators acting on functions, vector fields and tensors defined

on a regular surface. Then, two well-known results in PDEs theory are recalled: the

divergence theorem and the Green’s formula.

1.2.1 Geometric setting

We introduce now some of the main geometrical objects we will deal with. For example,

the notion of regular surface, central in this thesis: a subset of R3 in which, for every

point, there exists a local parametrization with domain R2 that respects the topology

and that has differential of maximum rank. Formally, the definition reads:

Definition 1.4. A Ck regular surface is a subset S ⊂ R3 such that for every point

p ∈ S there exists a neighborhood V ⊂ R3 and a map φp : U → V ∩ S of an open set

U ⊆ R2 onto V ∩ S ⊂ R3 such that:

i) φp(U) ⊆ S is an open neighborhood of p ∈ S (i.e. there exists V open neighbor-

hood of p, V ⊂ R3 such that φp(U) = V ∩ S);

ii) φp is a homeomorphism with its image;

iii) the differential dφp : R2 → R3 is injective for all q ∈ U (or equivalently it has a

maximum rank).

10



The map φp is called parametrization and is an important tool to be intrinsic to the

surface. It defines a system of coordinates centered in p. Following this terminology,

the neighborhood V ∩ S of p in S is called a coordinate neighborhood, while the

coordinates (x1
p, x

2
p) = φ−1

p are called local coordinates of p. Recall also that φ−1
p

is called the local chart in p. If we fix a canonical basis vector ej of R2, the curve

λ 7→ φp(o +λej) is naturally defined and called the j-th coordinate curve through the

point p = φp(o). This is simply the projection of the straight R2 line λ 7→ o + λej

onto the surface S ⊆ R3 through the parametrization φp. Given two points p and q on

S, as well as their local parametrizations φp, φq, if Up ∩ Uq 6= ∅, we must require that

the transition map φp ◦φ−1
q is a Ck diffeomorphism, so that the local parametrizations

are compatible. Ultimately, a family {φα}α∈A of compatible local parametrizations

φα : Uα → S that fully covers all the surface S, i.e. S =
⋃
α φα(Uα) is called an atlas

for the surface S ⊂ R3. Among many possible examples of regular surfaces, will be

useful for us to consider the graph of a smooth scalar function.

Example 1.2.1. Let U open subset of R2, f : U 7→ R an arbitrary smooth function.

The graph of f is the set of points of R3 given by

Graph(f) := {(x1, x2, f(x1, x2))|(x1, x2) ∈ U} ,

and is a regular surface. In fact, we can check that the conditions in the definition

above are satisfied by the map φ : U → R3 given by φ(x) = (x1, x2, f(x1, x2)), which is

a single local parametrization. Condition i) is satisfied because φ is continuous. The

inverse of φ is simply the restriction of the Graph(f) to the projection on the first two

coordinates, which is a continuous function, so item ii) is satisfied aswell. Finally,

Jφ(x) =


1 0

0 1

∂f
∂x1

(x) ∂f
∂x2

(x)


has rank maximum rank (2) everywhere, so the third condition is satisfied.

Let us recall also the following definition of critical and regular points, that will

be useful in the next proposition.
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Definition 1.5. Let V ⊂ R3 be an open set, f : V → R a C∞ function. If the

differential df : R3 → R is surjective in p then p is a regular point for f . On the

countrary, if the differential is not surjective we say that p is a critical point for f .

If p is a critical point, f(p) is a critical value, otherwise in an analogous way we say

that f(p) is a regular value, if p is a regular point.

Proposition 1.2. Let V ⊆ R3 be an open set and f a smooth function in V . If q is

a regular value of f , then every connected component of the level set f−1(q) = {p ∈

V |f(p) = q} is a regular surface.

This result is very well known in differential geometry and can be proved using the

implicit function theorem. The following proposition says that every regular surface

can be seen as the graph of a differentiable function, at least locally.

Proposition 1.3. If S ⊂ R3 is a regular surface and mathbfp ∈ S, then there exists

a local parametrization φ : U → S in p that takes one of the following forms:

φ(x1, x2) =


(x1, x2, f(x1, x2)), or

(x1, f(x1, x2), x2), or

(f(x1, x2), x1, x2),

for a certain function f ∈ C∞(U). Local parametrizations allow us also to naturally

extend the concepts of continuity and differentiabilty on regular surfaces. In fact,

through the parametrization, one can bring back these concepts to the more natural

setting R2, as shown in the following definition.

Definition 1.6. Let S ⊂ R3 be a regular surface with a point p ∈ S. A function

f : S → R is of class C∞, or smooth, at p if there exists a local parametrization

φ : U → S at p such that f ◦ φ : U → R is of class C∞ in a neighborhood of

φ−1(p) ⊂ R2.

The smoothness of a function is a property that does not depend on the local

parametrization, thanks to the fact that we assumed the transition maps to be C∞, as

the following theorem states.
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Theorem 1.3. Let S be a surface and φ : U → S, ψ : V → S two local parametriza-

tions, with their intersection W = φ(U) ∩ φ(V ) 6= ∅. Then, the map φ−1 ◦ ψ
∣∣∣
ψ−1(W )

:

ψ−1(W )→ φ−1(W ) is a diffeomorphism.

Consider now the tangent space TpS os a surface: it is a 2-dim vector space inde-

pendent from the parametrization. An important result is

Proposition 1.4. Let V ⊆ R3 an open set, and q ∈ R a regular value of a function

g ∈ C∞(V ). If S is a connected component of g−1(q) and p ∈ S, the tangent plane

TpS is the subspace of R3 orthogonal to ∇g(p).

Let us consider p ∈ S, if S = Graph(f) with φ : U 3 x 7−→ φ(x) = (x1, x2, f(x1, x2)) ∈

S and p = φ(0), we can define a level function g = x3 − f(x1, x2) and S = g−1(0).

Basically, S = {x ∈ R3
∣∣ g(x) = 0}, with g : R3 → R defined above. Consider now the

set of all curves γ(t) : R→ R3 such that γ(t) ⊆ S ∀t and let p = γ(t0), with p, t0 fixed.

Since γ is in S, it holds that g (γ(t)) = 0 ∀t, but this implies that ∇g(p) · γ̇(t0) = 0.

Recall that the tangent space TpS can be defined as the set of all vectors γ̇(t0) with γ

curve passing through p at t = t0. This means that the gradient vector

∇g(p) =


∂1|pg

∂2|pg

∂3|pg


is orthogonal to the tangent plane TpS. Furthermore, TpS can be seen as the (local)

linear approximation of the regular surface, by means of a Taylor expansion, i.e., fixed

q ∈ φ(U):

g(q) = g(p) + (q− p) · ∇g(p) +O
(
(q− p)2

)
.

Note that p and q belongs to S, so 0 = g(p) = g(q). Intuitively, the idea is that

dividing everything by ‖ (q− p) ‖, and taking the limit as q approaches p, we obtain

0 = lim
q→p

(q− p)

‖ (q− p) ‖
· ∇g(p) ,

finding once again the orthogonality property presented before. In this sense we will

think about the tangent space as the linear approximation of a neighborhood W of p
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in S :

W = TpS +O
(
diam(W )2

)
.

The differential dφx0 establish a relation between subsets of the plane R2 and the

surface. Explicitly the following proposition holds:

Proposition 1.5. Let S ⊂ R3 be a surface, p ∈ S, and φ : U → S a local parametriza-

tion at p with φ(x0) = p, x0 ∈ U . Then, the differential dφx0 is an isomorphism

between R2 and TpS.

We recall also that the local parametrization enduces a natural basis for the tangent

plane. In fact, considering {e1, e2} the canonical basis of R2, we can define:

∂i
∣∣
p

=
∂

∂xi

∣∣∣
p

= dφ0(ei) =
∂φ

∂xi
(o) i = 1, 2 .

Clearly, the set {∂1|p, ∂2|p} identyfies a basis for the tangent plane TpS and thus it is

called the basis induced by the local parametrization.

We are interested in two ways of describing a (curved) surface:

1) Embedded approach (as an exterior observer). Using the ”straight” coordinate

system of R3 every point can be written as a linear combination of the canonical

basis vectors R3 3 p = x1e1+x2e2+x3e3. We call this system Global Coordinate

System (GCS).

2) Intrinsic approach (as an observer ”on” the surface). We describe every point

using the local curvilinear system in the coordinates (s1
p, s

2
p) that is derived from

the local parametrization. Note that the definition of the local curvature sys-

tem depends on the chosen parametrization: different parametrizations provide

different basis.

It is crucial in our analysis to consider intrinsic geometric objects, since their prop-

erties are not influenced on the specific reference frame or the space in which they

are immersed: for this reason we will focus on the local curvilinear system and in

particular on the concept of metric. The latter takes its concrete form in the first

fundamental form, which contains all the infomation needed to practically compute

lenghts of tangent vectors to the surface, areas of regions of the surface and so on.
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Definition 1.7. The first fundamental form Ip is the positive definite quadratic form

associated with the scalar product:

Ip : TpS → R , Ip(v) = 〈v,v〉p ≥ 0 .

Scalar product 〈·, ·〉p information is the same as knowing the first fundamental form

Ip. In fact, given two vectors v,w it holds that

〈v,w〉 =
1

2

(
〈v + w,v + w〉 − 〈v,v〉 − 〈w,w〉

)
which is equivalent of writing

〈v,w〉p =
1

2
[Ip(v + w)− Ip(v)− Ip(w)] .

Consider a local parametrization φ : U → S at a point p ∈ S; thus we can use the

induced basis of TpS to write in coordinates the scalar product as

〈v,w〉p = v1w1〈∂1, ∂2〉p + (v1w2 + v2w1)〈∂1, ∂2〉p + v2w2〈∂2, ∂2〉p .

Definition 1.8. The metric coefficients of S with respect to φ are the functions

E,F,G : U → R given by

E(x) = 〈∂1, ∂2〉 , F (x) = 〈∂1, ∂2〉 , G(x) = 〈∂2, ∂2〉p ,

for all x ∈ U .

These coefficients, in the case of a regular surface, are C∞ functions and they

contain all the information related to the first fundamental form, in fact Ip(v) can be

written as

Ip(v) = E(x)(v1)2 + 2F (x)v1v2 +G(x)(v2)2 =

=
[
v1 v2

] E(x) F (x)

F (x) G(x)

v1

v2

 = vTGv = 〈v,v〉G ,
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for all p = φ(x) ∈ φ(U) and v ∈ TpS. All the important geometric quantities such as

lenghts of curves, areas of regions etc. can be computed using the first fundamental

form. In fact the knowledge of Ip(·) is equivalent to that of a scalar product operation,

as we have seen previously, that induces a norm that we can use to compute distances.

Regular regions. We now introduce the notions of regular region and partition

of a region R ⊆ S, that will be useful also later in the numerical section.

Definition 1.9. A regular region R ⊆ S is a connected compact subset of S obtained

as the closure of its interior R◦ and whose boundary is parametrized by finitely many

curvilinear polygons with disjoint supports. If S is compact, then R = S is a regular

region without boundary.

Definition 1.10. Let R ⊆ S be a regular region of a surface S. A partition of R is

a finite family R = {R1, . . . , Rn} of regular regions contained in R, such that R =

∪iRi and the intersection of two regions is contained in their boundaries intersection:

Ri∩Rj ⊆ ∂Ri∩ ∂Rj, for i, j = 1, . . . , n and i 6= j. The diameter diamR of a partition

is the maximum of the diameters of the elements of R.

A pointed partition of R is a pair (R,P) given by a partition R of R and a n-tuple

P = {p1, . . . ,pn} of points of R such that pi ∈ Ri, for i = 1, . . . , n.

Consider a set of points in the region, with the tangent planes associated. The area

of a region R, intuitively, can be computed summing over all the infinitesimal areas

of the projections on the affine tangent planes of every regular region contained in the

region R itself.

Definition 1.11. Let R ⊆ S be a regular partition of a regular surface S and (R,P)

a pointed partition of R. For all Ri ∈ R, denote by πi(Ri) the orthogonal projection of

Ri on the affine tangent plane pi + TpiS. The area of the pointed partition is defined

as:

Area(R,P) =
∑
i

Area(πi(Ri)) .

The region R is said to be rectifiable if the limit

AR = lim
diamR→0

Area(R,P)
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exists and is finite. In this case, the limit is the area of R.

Theorem 1.4. Let R ⊆ S be a regular region contained in the image of a local

parametrization φ : U → S of a surface S. Then, R is rectifiable and its area is

AR =

∫
φ−1(R)

√
EG− F 2 dx .

Let’s recall also the following

Lemma 1.1. Given a local parametrization φ : U → S of a surface S, then:

‖ ∂1 ∧ ∂2 ‖=
√
EG− F 2 ,

where the simbol wedge ∧ denotes the vector product in R3. Moreover, if ψ : V → S is

another local parametrization with W = ψ(V ) ∩ φ(U) 6= ∅, and if f = ψ−1 ◦ φphi(U)−1,

then

∂1 ∧ ∂2

∣∣
φ(x)

= det(Jf)(x)∂̃1 ∧ ∂̃2

∣∣
ψ◦f(x)

for all x ∈ φ−1(W ), where {∂̃1, ∂̃2} is the basis induced by ψ.

It is possible to show that this lemma ensures that the integral does not depend

on the local parametrization, so that we can define the integral of a function f over

a surface R. This definition make use of the local chart φ−1, i.e. the inverse of the

parametrization φ. Indeed, the idea is to transport every calculation to the domain

U ⊂ R2: in a more general setting, we speak about the pull-back and the push forward.

We have

Definition 1.12. Let R ⊆ S be a regular region contained in the image of a local

parametrization φ : U → S of a regular surface S, and f : R → R a continuous

function. The integral of f on R is given by

∫
R

f =

∫
φ−1(R)

(f ◦ φ)
√
EG− F 2 dx .

Without entering too much in details, let’s just recall the Stokes theorem for dif-

ferential forms:
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Theorem 1.5. Let S ⊂ R3 be a surface with smooth boundary ∂S and w a 1− differ-

ential form with compact support on S. Then:

∫
∂S
w =

∫
S

dw .

1.2.2 PDEs on surfaces

Given a local parametrization φ : U → S of S centered at p, with local coordinates

(s1
p, s

2
p), and the induced reference basis vectors t1 and t2, ∈ TpS. We can define the

associated metric GS , which corresponds to the first fundamental form of S at p:

GS :=

〈t1, t1〉 〈t1, t2〉

〈t2, t1〉 〈t2, t2〉

 .

Note that we use the subscript to indicate that the first fundamental form is related

to the surface S and to distinguish it from the 3× 3 metric tensor that we will define

in the next paragraphs.

What we need is to fix a three-dimensional local system of curvilinear coordinates

spanning a neighborhood Np ⊂ R3 of a point p belonging to the surface. The notion

of tubular neighorhood Np is introduced through the next proposition with the aim of

finding a proper region in which our (LCS) will live.

Proposition 1.6. Let S be a regular surface and φ : U → S a local parametrization

centered at p ∈ S. Then there exists a neighborhood W ⊂ φ(U) of p ∈ S and a number

ε > 0 such that the segments of the normal lines passing through points p ∈ W , centered

at q and with length 2ε, are disjoint.

The tubular neighborhood Np of W is just the union of all the segments with lenghts

2ε of the normal lines passing through points q ∈ W . All points in the local neighbor-

hood Np can be described using a 3-dim reference frame, called the Local Curvilinear

System (LCS) formed by the local basis {t1, t2} of the tangent plane TpS extended

with a vector t3. The coordinates associated to this reference frame will be denoted

by (s1, s2, s3). A result allows us to say that, for every p ∈ Np, the 3-dim coordinate

transformation Φp : R3 3 xp 7−→ sp ∈ R3 that goes from the GCS to the LCS is a

diffeomorphism, when restricted in the tubular neighborhood of p.
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In the following sections, we could be more specific making the distinction between

physical and contravariant components.

Remark. Every point q ∈ Np can be expressed in the LCS in the following way.

Consider the line passing through q parallel to t3, in parametric form in the GCS.

Then, if we indicate with r = γ(λ̄) the intersection γ ∩ S, the local coordinates of q

will result

(s1(q), s2(q), s3(q)) = (x1(r), x2(r), λ̄).

One of the main tools in our further theoretical development is the following proposi-

tion.

Proposition 1.7. Let (s1, s2) be the curvilinear coordinates on S and GS the associated

metric tensor. Let f : S −→ R a scalar differentiable function on S, X : S −→ R2

a vector field on S and T : Ω −→ R3×3 a rank-2 contravariant tensor given by T =

{τ ij}. Then, the intrinsic differential operators on S expressed in the local curvilinear

coordinate system are given by the following expressions:

• the intrinsic gradient of f is:

∇Gf = GS−1∇f = gij
∂f

∂si
; (1.7)

• the intrinsic divergence of X is:

∇G ·X =
1√

det(GS)
∇ ·
(√

det(GS)X
)

=
∂X i

∂si
+ ΓiijX

j, (1.8)

• the j-th component of the divergence of T is:

(∇G · T)j = ∇Giτ ij =
1√

det(GS)

∂

∂si

(√
det(GS)τ ij

)
+ Γjikτ

ik, (1.9)

where ∇G · τ (·j) identifies the divergence of the j-th column of T, and Γkij denote the

Christoffel symbols;

• the intrinsic Laplace-Beltrami operator of f is:

∆Gf = ∇G · ∇Gf =
1√

det(GS)

∂

∂si

(√
det(GS)gij

∂f

∂sj

)
. (1.10)
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We recall here two important classical results involved in the study of PDEs, i.e.

the divergence theorem and the well known Green’s formula, stated in intrinsic form.

This is done using the definitions of the intrinsic differential operators of proposition

1.7.

Lemma 1.2. Let S ⊂ R3 be a surface with smooth boundary ∂S and X be continuously

differentiable vector field. Then:

∫
S
∇G ·X ds =

∫
∂S
〈X,µ〉 dσ

where µ : S → R2 denotes the vector tangent to S and normal to ∂S with components

written with respect to the local reference frame (i.e. µ = µ1∂1 +µ2∂2), and ds and dσ

are the surface area measure and the curve length measure, respectively.

Another familiar result is the so called Green’s formula, that reads:

Lemma 1.3. Let S ⊂ R3 be a surface with smooth boundary ∂S and f, g ∈ C2(S̄) be

continuously differentiable functions over S̄. Then it holds:

∫
S
〈∇Gf,∇Gg〉G ds = −

∫
S

∆Gf g ds +

∫
∂S
〈∇Gf, µ〉Gg dσ

where µ : S → R2 denotes the vector tangent to S and normal to ∂S with components

written with respect to the local reference frame, and ds and dσ are the surface area

measure and the curve length measure, respectively.
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Chapter 2

Shallow water equations

Here starts the procedure for the derivation of the Shallow water system: we re-

write the Incompressible Navier-Stokes equations in the LCS, we describe the free

top surface and the bottom in terms of zero’s of functions and derive the Kinematic

Boundary conditions. Then we integrate along the normal direction all the equations,

starting from the Continuity equation and the Momentum equations. Moreover, with

the information given by the integrated equations and some algebraic manipulation,

we find the hydrostatic pressure condition that is useful to reduce the dimension of

the system from 4 equations to 3, yielding to te final Intrinsic Shallow Water system.

2.1 Intrinsic shallow water equations

Shallow Water models are 2-dim models for fluid dynamics, characterized by a strong

simplification of the Navier-Stokes equations after a process of depth average along

a specific direction. This decreases the complexity and the numerical cost of three

dimentional models at large scales. The main assumptions governing Shallow Water

models is that the fluid waves have an amplitude which is negligible with respect to

wave lenght. Many physical phaenomena can be studied using this type of tecnique,

such as meteorologic, atmospheric, or oceanografic ones, aswell as avalanches, debris

fows, landslides and others. In all these application one must take into account a

general topography, such as mountain landscapes or, in our case, the bottom of a river.

A rigorous investigation is required to derive the equations that take into account the
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geometric setting.

A new geometrically intrinsic formulation of the SWE will be derived here on general

topography, called Intrinsic Shallow Water Equations (ISWE).

2.1.1 Incompressible Navier-Stokes equations

Consider an open domain Ω ⊂ R3, the Navier-Stokes system reads

∇ · ~u = 0

∂~u

∂t
+∇ · (~u⊗ ~u) = −1

ρ
∇p+

1

ρ
∇ · T + ~g,

(2.1)

where ~u : Ω × [0, tf ] → R3 is the fluid velocity, ρ its density assumed constant,

p : Ω× [0, tf ]→ R is the fluid pressure, T : Ω→ R3×3 the deviatoric stress tensor, and

~g the gravity acceleration. The relation ∇ · ~u⊗ ~u = ~u · ∇~u+ ~u∇ · ~u holds. For clarity,

we explicit (2.1) in a general coordinate system y1, y2, y3 by writing:


∂y1

∂y2

∂y3

 ·


u1

u2

u3

 = 0 , (2.2)

while the following holds for i = 1, 2, 3

∂ui

∂t
+


∂y1

∂y2

∂y3

 ·


u1ui

u2ui

u3ui

 = −1

ρ
∂yip+

1

ρ


∂y1

∂y2

∂y3

 ·


τ1i

τ2i

τ3i

+ gi . (2.3)

Our hyphothesis is that the boundary ∂Ω is smooth and it is given by the union

of the bottom surface, the free surface (the ”top”) and the lateral surfaces: ∂Ω =

SB ∪ SF ∪ SL. Smoothness assumption is exploited to simplify the analysis of the

problem and identify the surfaces introduced above as graphs of some functions. We

describe the bottom surface as the graph of B : U × R → R, U ⊂ R2 open and with

respect to a global cartesian coordinate system x1, x2, x3 (GCS), with x3 aligned with
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~g (but having opposite sign), we write

SB :=
{

(x1, x2, x3, t) ∈ R3 × R such that x3 = B(x1, x2)
}
.

We can write SB := F−1
B (0), where FB(x1, x2, x3) := x3 − B(x1, x2). The fluid free

surface SF̂ can be defined using the function F̂ : U × [0, tf ] −→ R in the same way.

Then we build the (LCS) requiring the two conditions:

• the first two coordinates run along the bottom surface SB, their tangent vectors

belong at each point p ∈ SB to the tangent plane TpSB;

• the third coordinate crosses the surface orthogonally so a vector tangent to SB
is everywhere orthogonal to N, the surface normal vector.

The construction of the induced reference frame, which is not orthonormal, is done

via Gram-Schmidt orthogonalization of the Monge parametrization. Neglecting the

normal direction, the vectors t1 and t2 form the final orthogonal coordinate system.

In practice, we have that

t̂i(p) = dΦp(ei) =

(
∂x1

∂si
,
∂x2

∂si
,
∂x3

∂si

)
, i = 1, 2, (2.4)

where dΦp is the Jacobian matrix of the coordinate transformation. Then we obtain

t1 and t2, the orthogonal frame on TpSB, with Gram-Schmidt, while the last vector t3

is chosen to be orthogonal to the previous two and unitary, i.e. ‖ t3(p) ‖= 1.

Remark. Vectors t1 and t1 cannot be normalized, since they carry an important

information: the curvature of SB. A normalization would imply zero curvature.

The associated metric tensor is accordingly the diagonal matrix

G :=


‖ t1(p) ‖2 0 0

0 ‖ t2(p) ‖2 0

0 0 ‖ t3(p) ‖2

 =


h2

(1) 0 0

0 h2
(2) 0

0 0 1

 . (2.5)

The last step before the derivation of the new (ISWE) formulation consists in
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the geometric definition of the differental operators that appear in the Navier-Stokes

equations: the gradient of a scalar function ∇Gf , the divergence of a vector field, and

the divergence of a tensor field. Now that we have defined the metric tensor, recalling

proposition (1.7), we have:

• the gradient of a scalar function f is:

∇Gf =

(
1

h2
(1)

∂f

∂s1
,

1

h2
(2)

∂f

∂s2
,
∂f

∂s3

)
; (2.6)

• the divergence of a contravariant vector field ~u = u1t1 + u2t2 + u3t3 is:

∇G · ~u =
1

h(1)h(2)

(
∂(h(1)h(2)u

1)

∂s1
+
∂(h(1)h(2)u

2)

∂s2
+
∂(h(1)h(2)u

3)

∂s3

)
; (2.7)

• the j-th component of the divergence of a 3 × 3 rank-2 contravariant tensor

T = {τ ij} is:

(∇G · T)j = ∇G · τ (·j) +
1

h(j)

(
2τ 1j ∂h(j)

∂s1
− τ 11h(1)

h(j)

∂h(1)

∂sj

)
+

+
1

h(j)

(
2τ 2j ∂h(j)

∂s2
− τ 22h(2)

h(j)

∂h(2)

∂sj

) (2.8)

where ∇G · τ (·j) identifies the divergence of the j-th column of T. Since in some cases

we will be interested only on what happens on the bottom surface, we will reduce our

system to a 2-dim local system. For this reason, we indicate with GSB the reduced

metric tensor, and the same notation will apply to all the operators. Moreover, note

that in the following we will use Einstein summation convenction.

2.1.2 Curvilinear Navier-Stokes equations.

System (2.1) can be written using LCS as:

∇G · ~u = 0 (2.9)

∂~u

∂t
+∇G · (~u⊗ ~u) = −1

ρ
∇G p+

1

ρ
∇G · T + ~g. (2.10)

Observe that, for example, in the GCS the representation of the vector field ~g evaluated

in an arbitrary point of R3 is (0, 0,−g)T , i.e. in components we can write ~g

∣∣∣∣
P

=

24



0∂x1
∣∣
P

+ 0∂x2
∣∣
P
− g∂x3

∣∣
P

. In order to write this in the LCS, we only need to apply

the chain rule:

−g
(
∂x3

∂s1
∂s1 +

∂x3

∂s2
∂s2 +

∂x3

∂s3
∂s3

)
.

We can now explicit the same quantity in terms of the differential of φ, which in

our setting is represented by the jacobian of φ. Note that vector ~g is contravariant:

coefficients have upper indeces, and for this fact, we have to left multiply the vector to

the Jacobian (or, equivalently, right multiply the vector with the transposed Jacobian):

dφ(~g) = (~g)TJφ = [0, 0,−g]


∂x1

∂s1
∂x1

∂s2
∂x1

∂s3

∂x2

∂s1
∂x2

∂s2
∂x2

∂s3

∂x3

∂s1
∂x3

∂s2
∂x3

∂s3

 = −g
(
∂x3

∂s1
,
∂x3

∂s2
,
∂x3

∂s3

)
=

= −g
(
∂x3

∂s1
ds1 +

∂x3

∂s2
ds2 +

∂x3

∂s3
ds3

)
.

We have just found a covector, i.e. the expression of the differential of φ. At this

point we have to raise the indeces with G−1, the inverse of the metric, using the

isomorphism TM ' T ∗M . Recalling that G−1 = gij∂i ⊗ ∂j, where ∂i = ∂
∂xi

, we obtain

~gLCS = −g∇Gx3, in fact:

[
gij∂i ⊗ ∂j

]
(−g)

∂x3

∂sk
dsk ⊗ ∂j(·) = (−g)gijδki

∂x3

∂sk
∂j = (−g)gij

∂x3

∂si
∂j = −g∇Gx3 ,

when in the last step we employed that the matrix associated to G is diagonal:

(−g)gij
∂x3

∂si
∂j = δij(−g)gij

∂x3

∂si
∂j = (−g)gii

∂x3

∂si
∂i .

From an algebraic point of view, we built a linear transformation l : GCS −→ LCS

that sends the canonical basis ER3 = {e1, e2, e3} to the local basis SR3 = {t1, t2, t3}.

This linear transformation is exactly dΦ with the associated matrix αSE(l) ≡ JΦ. Re-

calling the expression (2.4), we can see that for example in the first column of matrix

JΦ we find exactly the coordinates of dΦ(e1) ≡ l(e1) with respect to the arrival basis

of S.

Surfaces description. Through the eyes of an observer in the Local Coordinate
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System (LCS), bottom and free surfaces can be written:

SB :=
{

(s1, s2, s3) ∈ R3 such that s3 = B(s1, s2) ≡ 0
}
,

SF :=
{

(s1, s2, s3, t) ∈ R3 × [0, tf ] such that s3 = F(s1, s2, t) ≡ η(s1, s2, t)
}
,

where η(s1, s2, t) = F(s1, s2, t) − B(s1, s2) denotes the fluid depth along direction s3.

Our hypothesis are that

• the bottom is impermeable and not eroding, i.e. it is a fixed, time invariant,

surface;

• the fluid surface is a function of time.

Recall now that we can express regular surfaces as the graph of some function: in our

case, the bottom is FB = s3 − B(s1, s2) and the free surface FF = s3 − F(s1, s2, t).

Observe that the function FF = FF(s(t), t) depends directly on time, while FB =

FB(s(t)) does not.

The so called Kinematic Boundary Conditions hold:

dFM
dt

=
∂FM
∂t

+ ~u · ∇GFM
∣∣∣∣
M

= 0,

where M = B or F .

Remark. Here the scalar product is meant in terms of the metric G, i.e. · ≡ ·G.

Focusing on the bottom B and on the free surface F , and recalling the expression

of the intrinsic gradient of a scalar function ( eq.(1.7)) we obtain:

dFB
dt

= ~u

∣∣∣∣
B
· ∇GFB = ~u · ∇GFB

∣∣∣∣
s3=0

= 0, (2.11)

dFF
dt

= −∂η
∂t

+ ~u · ∇GFη
∣∣∣∣
s3=η

= −∂η
∂t
−
(
u1 ∂η

∂s1
+ u2 ∂η

∂s2
− u3

) ∣∣∣∣
s3=η

= 0. (2.12)

Observe that ∇GFη
∣∣∣∣
s3=η

= −∇F
∣∣∣∣
s3=η

. Furthermore, we will assume that the external

actions on the fluid surface are negligible. This implies that at the fluid-air interface
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we are imposing a zero-stress boundary condition:

TF ·NF = 0, NF =
∇F
‖ ∇F ‖

, (2.13)

where NF is the unit normal vector on the free surface F . On the other hand, the bed

boundary condition reads

TB ·NB = fB = τ 1
b t1 + τ 2

b t2 + pBt3, (2.14)

where pB indicates the bottom pressure.

Depth integration. We finally employ the principal idea of Shallow Water models,

performing a depth integration along s3 direction locally normal to the bottom surface,

spanning a region between the terrain and the free surfaces: s3 ∈ [0, η(s1, s2, t)] ≡

[B(s1, s2), F(s1, s2, t)]. We assume η small enough to be in the region where φ is in-

vertible, i.e. in the previously defined tubular neighborhood. The first equation of the

system of curvilinear Navier-Stokes equations, eq. (2.9), after depth integration along

s3, yields to the continuity equation, while the second eq. (2.10) yields to the momen-

tum equation. These two, coupled together form the normally integrated Navier-Stokes

equations :

∂η

∂t
+∇G ·

∫ η

0

~u = 0 , (1− dim) (2.15)

∂

∂t

∫ η

0

~u+∇G ·
∫ η

0

~u⊗ ~u = −1

ρ

∫ η

0

∇Gp− g
∫ η

0

∇Gx3 +
1

ρ
∇G ·

∫ η

0

T +
1

ρ
TB ·NB (2.16)

where ~u := [u1, u2]T and the curvilinear divergence operator ∇G· is adapted to the

two-dimensional setting.

Considerations on length scales. It can be shown that the classical SW hypoth-

esis (fluid depth smaller than the characteristic wavelength) is equivalent to assume

a small normal velocity. Exploiting eq. (2.9) and using the regularity of the bottom
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surface, we have that:

W0 ∼ max

{
ε,H0

∂h(1)

∂s1
, H0

∂h(2)

∂s1
, H0

∂h(1)

∂s2
, H0

∂h(2)

∂s2

}
V0 = εGV0 ,

where W0 is the scaling of the s3− velocity, i.e. u3 ∼ W0, ε = H0/L0 � 1 is the ratio

between the depth and the lenght (this corresponds to the classical SW assumption).

Note that we assume to have no information on the order of magnitude of the deriva-

tives of these metric coefficients. This result allows us to define a geometric aspect

ratio εG that depends on the global length scale parameter ε as well as the information

on the local curvatures, given by the derivatives of the metric coeffients. Hence, we

can see that the latter ones are of the order of 1/L0, with the assumption εG � 1.

SW Approximation. We apply now the SW approximation to reduce the system.

We consider u3 = εGu
i, i = 1, 2, εG � 1, then also that the component of ~u(s, t) and

the stress tensor T(s, t) can be expanded in the following way:

ui = ui(0) + εGu
i
(1) + ε2Gu

i
(2) +O

(
ε3G
)

i = 1, 2 , (2.17)

u3 = εGu
3
(1) + ε2Gu

3
(2) +O

(
ε3G
)
, (2.18)

τ ij = τ ij0 + εGτ
ij
(1) + ε2Gτ

ij
(2) +O

(
ε3G
)

i, j = 1, 2, 3 . (2.19)

Note: these assumptions will be totally analogous to the one of the next chapter:

we write them also here for clearness.

Neglecting the details, we are finally able to state the following theorem.

Theorem 2.1. The intrinsic shallow water equations, written with respect to the LCS

are given by:

∂η

∂t
+∇G · ~q = 0 , (2.20)

∂~q

∂t
+∇G ·

(
1

η
(~q ⊗ ~q) +

(
gη2

2

∂x3

∂s3

)
G−1
sw

)
(2.21)

+
gη2

2
∇G
(
∂x3

∂s3

)
+ gη∇G(x3)− 1

ρ
(∇G ·Tsw + fB) = 0.

They provide an approximation of order O
(
ε2G
)

of the Navier-Stokes equations, under
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the assumption of thin fluid layer, η = O (εG).

Notation.
(
~U(s1, s2, t),T

)
are the depth-averaged velocity vector and tensor T:

we can also split the velocity vector and the stress tensor

~u = ~U + ũ, where ~U(s1, s2, t) =
1

η

∫ η

0

~u(s, t) ds3 ,

∫ η

0

ũ(s, t) ds3 = 0 , (2.22)

T = T + τ̃ , where T(s1, s2, t) =
1

η

∫ η

0

T(s, t) ds3 ,

∫ η

0

τ̃(s, t) ds3 = 0 . (2.23)

Moreover ~q := [ηU1, ηU2] will be the vector containing our main unknowns. The

tensor Tsw is the principal 2-minors of T. Vector fB = [τ 1
b , τ

2
b ]T contains bed friction

information.

Main steps of the proof of Theorem (2.1). Let us recall momentum equation, seen

previously:

∂

∂t

∫ η

0

~u+∇G ·
∫ η

0

~u⊗ ~u = −1

ρ

∫ η

0

∇Gp− g
∫ η

0

∇Gx3 +
1

ρ
∇G ·

∫ η

0

T +
1

ρ
TB ·NB (2.18)

Here we choose to skip writing all the details: the computations are very similar to

the ones that we will find in the following chapter and can be found in [4].

Integrating the third component of the momentum equation and employing some

approximations, one reaches the following

1

ρ

∫ η

0

∂p

∂s3
+ g

∫ η

0

∂x3

∂s3
= O (εG) .

This expression can be further manipulated as follows. Observe that we are neglecting

the effects of surface tension and wind on the free surface, for this reason we can set

p

∣∣∣∣
s3=η

= 0, to find by direct integration:

p

∣∣∣∣
0

= ρgη
∂x3

∂s3
+O (εG) . (2.24)

Notice also that ∂x3/∂s3 is constant in s3, since the direction s3 is assumed rectilinear.

We would like to remark that η∂x3/∂s3, evaluated at a point P ∈ SB is exactly the

vertical height of the water measured above point P itself (see [8]). The expression
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(2.24) tells us that, in a first order approximation, the fluid pressure varies linearly

along the s3 direction. Furthermore, neglecting terms of order (εG), here we can find

the hydrostatic pressure condition applied to the bottom of the surface, along its nor-

mal direction: the pressure on a point in SB depends only on the weight of the water

above it. Now the idea is to simplify also the s1 and s2 components of the Momentum’s

equation with our approximations and use the pressure condition.

In the end we arrive at a form of the Momentum equation intrinsic to the bottom

surface:

∂~q

∂t
+∇G ·

(
1

η
(~q ⊗ ~q) +

(
gη2

2

∂x3

∂s3

)
G−1
sw

)
+
gη2

2
∇G
(
∂x3

∂s3

)
+ gη∇G(x3)− 1

ρ
(∇G ·Tsw + fB) = 0.

Remark. Some mathematical properties of the model can be proven, like in-

variance under rotation, the existence of an energy equation and well-balanceness

(preserved lake-at-rest steady state): see [4] for details.

2.1.3 Balance law formulation of ISWE

System (2.20),(2.21) can be written in a more compact form which will be useful in

the next sections:
∂U

∂t
+ divG F (s,U) + S(s,U) = 0, (2.25)

where U = [η, ηU1, ηU2]T = [η, q1, q2]T is the conservative variable, η : Γ × [0, tf ] −→

R, and q = [q1, q2] ,q : Γ× [0, tf ] −→ R2.

The flux function is given by

F (s,U) =


q1 q2

(q1)2

η
+

gη2

2h2
(1)

∂x3

∂s3

q1q2

η

q1q2

η

(q2)2

η
+

gη2

2h2
(2)

∂x3

∂s3

 =


Fη

F q

 . (2.26)

30



We will see that also in the bathimetry formulation, this term will have the same

form. F depends on s because of the presence of metric coefficients and bottom

slope ∂x3/∂s3. We write divG to have a more compact notation: divG := [∇η
G·,∇

q
G·]T .

Finally, the source function S reads

S(s, η) =


0

gη2

2h2
(1)

∂

∂s1

(
∂x3

∂s3

)
+

gη

h2
(1)

∂x3

∂s1
− 1

ρ
[∇G ·Tsw](1,·) − τ 1

b

ρ

gη2

2h2
(2)

∂

∂s2

(
∂x3

∂s3

)
+

gη

h2
(2)

∂x3

∂s2
− 1

ρ
[∇G ·Tsw](2,·) − τ 2

b

ρ

 =


Sη

Sq

 . (2.27)

Note the presence of the bottom slope and its derivatives, of the metric terms, the

two-dimensional averaged stress tensor Tsw, the bottom friction parameter τb and the

conserved variable η. Both the flux and the source terms are uniformly continuous

with respect to s thanks to the regularity assumption on the bottom surface.

2.2 Intrinsic Finite Volume Scheme

Starting from a surface triangulation we solve the ISWE system by means of Finite

Volume scheme. In order to obtain the standard FV scheme, we test eq. (2.25) with

a piece-wise constant (in space and time) function vi for all regions Ri ∈ R(Γ):

∫
Ri

∂U

∂t
vi +

∫
Ri

divG F (s,U)vi +

∫
Ri

S(s,U)vi = 0. (2.28)

Note that, for every i, the function vi is constant in the region Ri, so dividing every

term by ARi we can write

d

dt

(
1

ARi

∫
Ri

U

)
+

1

ARi

∫
Ri

divG F (s,U) +
1

ARi

∫
Ri

S(s,U) = 0.

Now if we define the following cell-averaged quantities, in R(Γ) as

Ui =
1

ARi

∫
Ri

U ds , Fij =
1

lij

∫
σij

〈F , νij〉G dσ , Si =
1

ARi

∫
Ri

S ds, (2.29)
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we can apply divergence theorem, obtaining

d

dt
Ui +

1

ARi

Nσi∑
j=1

lijFij(U) + Si(η) = 0 ,

observing that ∂Ri =
⋃Nσ(i)
j=1 σij where Nσ(i) is the number of edges of the region Ri.

Explicit integration with respect to t ∈ [tk, tk+1] yields finally to

Uk+1
i = Uk

i −
1

ARi

Nσ(i)∑
j=1

lij

∫ tk+1

tk
Fij(U) dt−

∫ tk+1

tk
Si(η) dt. (2.30)

The main idea here to reach the approximation of the finite volumes scheme is to

mantain the exclusive use of geometrically intrinsic quantities, and approximate the

flux function using a Riemann solver tecnique.

32



Chapter 3

State of the art of the bathymetry

reconstruction problem

In this chapter, we will go through the main steps of the two-dimensional SWE model

described in [15], and based on the works [16],[17],[18]. For simplicity we will keep the

original notation of [15] and only later compare the results to our model.

3.1 Set up and notation

Consider a flow domain Ω(t) ∈ R3 at a certain time t ∈ (t0, tend) having a moving free

surface ζ, and a bathymetry function zb. Both of the variables are expressed by means

of the canonical coordinate system of R3 and they depend only on their position in the

x, y-plane, i.e. they are independent of the vertical coordinate. To model the physical

phaenomenon given by the flow (for example of water), we consider the incompressible

Navier-Stokes equations. The system reads:

ρ∂tv + ρ(v · ∇)v − µρ∆v +∇p = ρF , (3.1)

∇ · v = 0 , (3.2)

where v = [u v w]T is the velocity vector, p is the pressure, µ is the constant kinematic

viscosity coefficient (or diffusivity) and F denotes the body forces acting on Ω(t). The

second equation is the incompressible condition while the first, even if slightly different

from our first equation of system (2.1), is equivalent to the momentum equation. In

33



fact, neglecting the viscosity term, µρ∆v can be incorporated into our term 1
ρ
∇ · T.

Note that F includes the Coriolis force fc, gravity force and the remaining forces

represented by term f̂ , so

F = −fce3 × v +

 f̂

−g

 .

As we have seen in this thesis, we have the assumption

domain’s depth

domain’s length
� 1

that ensures that we are dealing with a shallow water model. This hyphothesis im-

plies that the vertical velocity magnitude is much less relevant then its horizontal

components. At this point, the hydrostatic pressure assumption is brought into our

model: as we saw, it states that the vertical component of the pressure gradient at a

certain point in our domain depends only on the weight of the fluid column above it.

Translated into mathematical language, this can be written as

∂p(x)

∂z
= −g ρ . (3.3)

In this construction, we have a cartesian coordinate system’s origin that is set on

the zero surface level with its third coordinate pointing upwards, as the negative sign

above reminds.

Hydrostatic pressure assumption. The next steps play the role of bringing the

pressure gradient term in equation (3.1) on the right hand side. In fact, by integrating

along the vertical direction equation (3.3), from a certain vertical height z of the point

x = (x, y, z) to the point xf = (x, y, ξ) on the top free surface of vertical height ξ, we

have

p(ξ(t, x, y))− p(t, x, y, z) =

∫ ξ(t,x,y)

z

∂p

∂ξ
(t, x, y, ζ)︸ ︷︷ ︸

=−gρ

dζ

so

p(t, x, y, z) = pa(t, x, y) + gρ(ξ(t, x, y)− z) (3.4)

where pa(t, x, y) is the atmospheric pressure, which coincides with p(ξ(t, x, y)). From
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this expression we can easily compute the components of the pressure gradient ∇p:

∂p

∂x
=
∂pa
∂x

+ gρ
∂ξ

∂x
, and

∂p

∂y
=
∂a
∂y

+ gρ
∂ξ

∂y
.

The terms
∂pa
∂x

and
∂pa
∂y

are given data, thus will join the right hand side of equation

(3.1), while the terms
∂ξ

∂x
and

∂ξ

∂y
, that form the gradient of the water height ξ, are

unknown and we will deal with them with the Kinematic Boundary Conditions anal-

ysis.

3.1.1 Kinematic Boundary Conditions.

The top and bottom boundaries of our domain, at time t, are described by the func-

tions zb(t, x, y) and ξ(t, x, y). Note that zb is also depending on time, thus taking care

of the effects of bottom erosion that may be of interest in many applications.

Consider a point P of coordinates (x, y, z), it belongs to

• the top surface where z = ξ if • the bottom surface, where z = zb, if

ξ(t, x, y)− z = 0 , zb(t, x, y)− z = 0 .

If we compute the material derivative of these equations, we obtain exactly the

boundary conditions that we need:

∂ξ

∂t
+ u
∣∣∣
ξ

∂ξ

∂x
+ v
∣∣∣
ξ

∂ξ

∂y
− w

∣∣∣
ξ

= 0,
∂zb
∂t

+ u
∣∣∣
zb

∂zb
∂x

+ v
∣∣∣
zb

∂zb
∂y
− w

∣∣∣
zb

= 0 . (3.5)

Using the notation

∇x,y =

 ∂
∂x

∂
∂y

 v =


u

v

w

 u =

u
v

 ,

and recalling that

∇x,yp = ∇pa + gρ∇ξ ,
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we manipulate equation (3.1) dividing by ρ and introducing in the first two components

of the momentum equation the expression of ∇x,yp written above. We get the system

∂u

∂t
+ (v · ∇)u− µ∆u + g∇x,yξ + fc[e3 × v]1,2 = f , (3.6)

∇ · v = 0 . (3.7)

The unknowns here are the velocity term v and ξ, aswell as the bathymetry zb. The

term f is given by

f = f̂ − 1

ρ
∇x,ypa .

3.1.2 Integration along the height of the water.

At this point, integration along the height of the water is performed employing the

Kinematic Boundary Conditions. The height of the water is defined as

H := ξ − zb ,

and the depth-averaged components of the horizontal velocity as

ū :=
1

H

∫ ξ

zb

u dz v̄ :=
1

H

∫ ξ

zb

v dz .

Note that from now on we change notation into: (u1, u2) := (u, v) and (ū1, ū2) :=

(ū, v̄) .

Finally, the nonlinear advective term is rewritten using the continuity equation

(v · ∇)u = (v · ∇+∇ · v) · u = ∇ · (uvT ) ,

that reminds of our term ∇ · ~u⊗ ~u . Terms τb,i with i = 1, 2 are modelled by

τb,i :=
η

µ

√
u2 + v2ui .
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In conclusion, considerations on the shallow water assumption brings to some simpli-

fication of the advective terms, leading to the following system of depth-integrated

equations:

∂H

∂t
+∇ · (uH) = 0 , (3.8)

∂(uH)

∂t
+∇ · (uuH − µ∇(uH)) + gH

∂ξ

∂x

+η
√
u2 + v2u− fcvH = Hf1 , (3.9)

∂(vH)

∂t
+∇ · (vuH − µ∇(vH)) + gH

∂ξ

∂y

+η
√
u2 + v2v − fcuH = Hf2 . (3.10)

with unknowns given by the averaged velocity vector u = [u v]T , and the water

height H.

3.1.3 Conservative form.

With an appropriate change of unknowns, i.e. using the momentum instead of the

velocity, as seen in this thesis, everything can be written in a more suitable way.

Indeed the old main variables (H, u, v) given by the height of the water and the first two

components of the velocity vector u are replaced by (H, uH, vH), with the following

notation

cT :=
[
H (uH)T

]T
=: [H U V ]T .

Due to this change of variable, we need to rewrite also the advective terms, that will

now read

∇ · (uuH) = ∇ ·
(
uHuH

H

)
, ∇ · (vuH) = ∇ ·

(
vHuH

H

)
,

and the bottom friction term

tbf := η

√
(uH)2 + (vH)2

H2
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then

η
√
u2 + v2ui = τbfuiH , i ∈ {1, 2} .

3.2 Forward and inverse problems

In this setup, what really determines the difference between the forward and inverse

problem is the primary unknown:

• for the forward problem the primary unknown is the surface elevation ξ. This

unknown can be related to the parameter zb and the height H via the simple

relation

ξ = H + zb .

• for the inverse problem the surface elevation ξ is a given data, while the bathymetry

zb becomes the unknown, computed by

zb = ξ −H .

Analogous relations can be written for the gravitational term gH∇ξ. We have

gH∇ξ = gH∇(H + zb) =
g

2
∇(H2) + gH∇zb . (3.11)

3.2.1 Forward system

In the forward problem the zb term is given, and so its gradient, so the last term in

eq. (3.11) can be incorporated into the source of our main equation, while the term

g
2
∇H2 is part of the advective term. The following system of equations can be written

as:

∂tc +∇ ·
(
Af (c)− B(∇c2,3)

)
= Zf (c) in the domain (t0, tend)× Ω (3.12)
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where

Af



H

U

V


 =


U V

U2

H
+ g

2
H2 UV

H

UV
H

V 2

H
+ g

2
H2

 , B
(
∇c2,3

)
= µ

 0T

∇c2,3

 ,

Zf



H

U

V


 =


0

Hf1 − gH∂xzb − τbfU + fcV

Hf2 − gH∂yzb − τbfV − fcU

 .

3.2.2 Inverse system

For the inverse problem the gravitational term gH∇ξ is kept now as it is, since ξ is not

an unknown anymore in this setting, and thus this term becomes part of the source.

So, the problem in a conservation form reads

∂tc +∇ ·
(
Ai(c)− B(∇c2,3)

)
= Zi(c) in the domain (t0, tend)× Ω , (3.13)

with

Ai



H

U

V


 =


U V

U2

H
UV
H

UV
H

V 2

H

 , B
(
∇c2,3

)
= µ

 0T

∇c2,3

 ,

Zf



H

U

V


 =


0

Hf1 − gH∂xξ − τbfU + fcV

Hf2 − gH∂yξ − τbfV − fcU

 .

Many boundary conditions are used for both of the problems on the boundary domain

∂Ω = ∂ΩF ∪ ∂ΩL ∪ ∂Ω0 ∪ ∂ΩR ∪ ∂ΩS (disjoint union). The following are taken into

consideration in [15]:

flow boundaries on ∂ΩF : uH = (uH)D ,

land boundaries on ∂ΩL : uH · ν = 0, ∇(uH)ν = 0

outflow boundaries on ∂ΩO : ∇(uH)ν = 0 ,

river boundaries on ∂ΩR : H = HD , uH = (uH)D ,

sea boundaries on ∂ΩS : H = HD ∇(uH)ν = 0 .
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3.2.3 Regrouping of the forward and inverse formulations

Inviscid (µ = 0) and viscous problems (µ > 0) are treated separately. For µ = 0,

the system becomes of the first order (it means that we find only first derivatives of

the unknown velocity) and can be written in a form that summarizes both forward

and inverse formulations. In fact, the inviscid forward problem is distinguished from

the inverse introducing a simple variable ζ, that will make appear or disappear some

terms: ζ ∈ {0, 1} with ζ = 1 for the forward problem and ζ = 0 for the inverse. The

general form reads

∂tc +∇ · Aζ(c) = Zζ(c) (3.14)

where we have that

Aζ(c) =


c2 c3

(c2)2

c1

+ ζ
g

2
(c1)2 c2c3

c1
c3c2

c1

(c3)2

c1

+ ζ
g

2
(c1)2

 ,

Zζ(c) =


0

c1f1 − gc1∂x(ζzb + (1− ζ)ξ)− τbfc2 + fcc3

c1f2 − gc1∂y(ζzb + (1− ζ)ξ)− τbfcc + fcc2

 .

For the numerical solution, the FESTUNG code is used and modified in [15].
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Chapter 4

Bathymetry reconstruction with

intrinsic geometry

In this chapter, we will try to reformulate the problem changing to our point of view.

We want to extend the (geometric) ISWE model of chapter 2 to be time-dependent,

and directly compatible with the idea presented in the previous chapter. Following

the idea of integrating along the normal direction with respect to the surface, we need

here to introduce a new time dependent-LCS, being the normal to the surface changing

every time. We derive a second order approximation of the NS equations intrinsic to

the top surface and finally compare our results with the ones in [15].

4.1 The Local time-dependent Coordinate System

(LCS-t)

Recall the incrompressible and homogeneous (ρ constant) Navier-Stokes equations:

∇ · ~u = 0

∂~u

∂t
+∇ · (~u⊗ ~u) = −1

ρ
∇p+

1

ρ
∇ · T + ~g

(2.1)

What we want to do is to express these equations in the new reference frame LCS-t.

To this purpouse, we are going to consider the space-time setting, following the idea

presented in [6], which seems suitable for our interest. We will introduce then a four
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dimensional time-dependent metric, that can be viewed as an extension of the metric

we used in chapter 2. Our aim is to derive the SWE in the curvilinear time dependent

coordinate system. As shown before, the direct and inverse problems derive directly

from the SWE, and differ only in the unknown function. For simplicity, we can think

about the inverse problem as a direct one, just having a moving bottom. We will

consider as SB the bottom of the river, while we will call SF the top of the river. Here

we introduce a new Local Coordinate System attached to the top having two axes

spanning the tangent space of the surface and the third one orthonormal with respect

to the others. In the new Local time-dependent Coordinate System (LCS-t), at time

t, we describe bottom and free surfaces as

SB :=
{

(s1, s2, s3, t) ∈ R3 × [0, tf ] such that s3 = B(s1, s2, t) ≡ η(s1, s2, t)
}
,

SF :=
{

(s1, s2, s3, t) ∈ R3 × [0, tf ] such that s3 = F(s1, s2, t) ≡ 0
}
,

where η(s1, s2, t) = B(s1, s2, t) − F(s1, s2, t) denotes once again the fluid depth along

direction s3. Notice that, despite being the real river bottom fixed and not eroding

in the GCS, using general curvilinear coordinates it could happen that its represen-

tation changes in time. In fact, as it will be more clear in the following sections, in

the LCS located to the top surface we can represent the bottom as a function of the

height measured in the direction orthogonal to the top surface itself, i.e. along s3.

In particular, its representation will indeed change in time, and we represent it by a

time-dependent function. It will be clear in the following sections that the Kinematic

Boundary Conditions will cancel out in the process of depth integration, no matter the

time-dependancy. Following the steps of the direct problem, we define SB as the set of

points that belongs to the pre-image of 0 according to the function FB = s3−B(s1, s2, t)

and analogously FF = s3 − F(s1, s2, t). Differently from the direct problem, we have

now that both functions FF = FF(s(t), t) and FB = FB(s(t), t) depend directly on time

and once again s = s(t) describes the position of a moving point, or fluid particle.

Monge Parametrization. The construction of a LCS-t vector basis is analo-

gous to the previous one: we consider a particular parametrization, called the Monge
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parametrization, defined by

φ :I × U ⊆ I × R2 −→ I × R3

(t, s1, s2) 7−→ (t, x1(s1, s2), x2(s1, s2), x3(s1, s2, t)) := (t, s1, s2,F(s1, s2, t))

The basis for the tangent plane can be computed in the following way.

∂φ

∂s1
=

(
∂t

∂s1
,
∂x1(s1, s2)

∂s1
,
∂x2(s1, s2)

∂s1
,
∂x3(s1, s2)

∂s1

)
= (0, 1, 0,Fs1) ,

and
∂φ

∂s2
=

(
∂t

∂s2
,
∂x1(s1, s2)

∂s2
,
∂x2(s1, s2)

∂s2
,
∂x3(s1, s2)

∂s2

)
= (0, 0, 1,Fs2) ,

where Fsi = ∂F/∂si, for i = 1, 2. Finally, we can compute

∂φ

∂t
=

(
∂t

∂t
,
∂x1(s1, s2)

∂t
,
∂x2(s1, s2)

∂t
,
∂x3(s1, s2)

∂t

)
=

(
1, 0, 0,

dF
dt

)
=

= (1, 0, 0,F ′) . (4.1)

This last vector will play an important role in the evolving surface finite element

method formulation. Starting from the induced vectors

t̂i(p, t) = dφp(ei) =

(
0,
∂x1

∂si
,
∂x2

∂si
,
∂x3

∂si

)
i = 1, 2 ,

where dφ is the Jacobian matrix of the coordinate transformation, we can now orthog-

onalize vector t̂2 with respect to t̂1 via Gram-Schmidt, obtaining the desired t1, t2 on

TpSF . Then, we complete the frame with vectors t3 and t0, imposing the orthogonality

condition with respect to previous ones, joint with ‖ t3(p, t) ‖=‖ t0(p) ‖= 1. In a

fixed point p, t of SF × I, our LCS-t takes the explicit form

t0 = (1, 0, 0, 0) , (4.2)

t1(p, t) = (0, 1, 0,Fs1) , (4.3)

t2(p, t) = t̂2 −
t̂2 · t1

‖ t1 ‖2
t1 =

(
0,− Fs1Fs2

1 + (Fs1)2
, 1,

Fs2
1 + (Fs1)2

)
, (4.4)
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t3(p, t) = N(p, t) =
t1(p, t) ∧ t2(p, t)

‖ t1(p, t) ‖‖ t2(p, t) ‖
=

(0,−Fs1 ,−Fs2 , 1)

‖ t1(p, t) ‖‖ t2(p, t) ‖
. (4.5)

Remark. If we look at the components of vectors t1 and t2, we can see that the

projection of the first vector on the < x, y > plane is simply (1, 0), while the projection

of the latter is in general not parallel to x axe. This can be used to think about the

form of the coordinate lines.

It is easy to compute the norm of the vectors, for example

h2
(1)(t) :=‖ t1(p, t) ‖2= 1 + Fs1 ,

h2
(2)(t) :=‖ t2(p, t) ‖2=

1 + F2
s1 + F2

s2

1 + F2
s1

.

Let us now define the metric G : {F × I} × {F × I} −→ R as

G =


1 0 0 0

0 h2
(1)(t) 0 0

0 0 h2
(2)(t) 0

0 0 0 1s

 , (4.6)

so that G(v,v) = 〈v,v〉G = dt2 + gijdx
idxj, where gij = Gij is the same metric we

used for the direct problem, with the difference that here the terms depends also on

the time: ti(p) = ti(p, t), i = 1, 2 and so gii = gii(t) with i = 1, 2.

4.2 Kinematic Boundary Conditions

As seen in the previous chapters we have to couple the Navier-Stokes equations with

some Kinematic Boundary Conditions. Recalling that SF is now the top surface of

the river, and SB the bottom surface, we can describe them, in the GCS, as

SF :=
{

(x1, x2, x3, t) ∈ R3 × [0, tf ] such that x3 = F(x1, x2, t) ≡ 0
}
,

SB :=
{

(x1, x2, x3, t) ∈ R3 × [0, tf ] such that x3 = B(x1, x2, t) ≡ η(x1, x2, t)
}
.
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If we define FM = s3 −M(s1, s2, t), with M = F or B, the following holds

dFM
dt

=
∂FM
∂t

+ ~u · ∇GFM
∣∣∣∣
M

= 0 .

Remark. Here scalar product is meant in terms of the metric G restricted to the

space generate by t1, t2, t3, that we call G, i.e. · ≡ ·G.

Focusing on the top surface F , and then on the bottom B, and recalling the ex-

pression of the intrinsic gradient of a scalar function (eq.(1.7)), we obtain:

dFF
dt

=
∂FF
∂t

+ ~u · ∇GFF
∣∣∣∣
s3=0

= −∂F
∂t
−
(
u1 ∂F
∂s1

+ u2 ∂F
∂s2
− u3

) ∣∣∣∣
s3=0

= 0 , (4.7)

dFB
dt

=
∂FB
∂t

+ ~u · ∇GFη
∣∣∣∣
s3=η

= −∂η
∂t
−
(
u1 ∂η

∂s1
+ u2 ∂η

∂s2
− u3

) ∣∣∣∣
s3=η

= 0 . (4.8)

Observe that ∇GFF
∣∣∣∣
s3=0

= −∇F
∣∣∣∣
s3=0

and ∇GFη
∣∣∣∣
s3=η

= −∇B
∣∣∣∣
s3=η

. Now we will

make the assumption that external actions on the fluid surface F are negligible. This

implies, as for the direct problem, that at the fluid-air interface we are imposing a

zero-stress boundary equation:

TF ·NF = 0, NF =
∇F
‖ ∇F ‖

, (4.9)

where NF is the unit normal vector on the free surface F . On the other hand, the bed

boundary condition reads

TB ·NB = fB = τ 1
b t1 + τ 2

b t2 + pBt3, (4.10)

where pB indicates the real-bottom pressure.

4.3 Curvilinear Navier-Stokes equations (LCS-t)

The first step in the developments of ISWE will be to re-write NS with respect to the

LCS-t.
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4.3.1 Main ideas

We start presenting the main ideas that brought to the development of the time-

dependent ISWE.

In order to re-write eqns. (2.1) in our new LCS-t, we follow the idea in [6]. In the

particular case of a scalar quantity u, the integral form of our equations reads

d

dt

∫
P
u dV +

∫
∂P
g(f(u), n∂P) dV∂P for a fixed P ⊂ Ω. (4.11)

Note that u : Ω× I −→ R is the conserved quantity transported according to the flux

function f(·): it undergoes to compression and rarefaction due to the time-dependence

of g(·). Observe that in the case of our Navier-Stokes equations, we will have to modify

this because we work with a vector quantity and not a scalar.

Now we have to take care of the fact that the element of volume dV does depend on

time. Thus, we can write

d

dt

∫
P
u dV =

∫
P
∂tudV +

∫
P
u∂tdV ,

where dV =
√

det(gij)dr, in positive oriented coordinates r ∈ Rd, with i, j = 1, 2, 3.

Furthermore, we have that

∂tdV = ∂t

√
det(gij)dr =

1

2

1√
det(gij)

det(gij)C
1
1(gik∂tgkl)dr =

1

2
gij∂tgijdV .

With C1
1(gik∂tgkl) we indicate the contraction tensor operation, i.e. the trace of the

matrix G−1∂tG. Since eqn. (4.11) holds for an arbitrary region P , the following holds:

∂tu+ λu+ divf(u) = 0 in Ω× [0, tf ] , (4.12)

with

λ =
1

2
gij∂tgij =

1

2

(
1

h2
(1)

2h(1)∂th(1) +
1

h2
(2)

2h(2)∂th(2)

)
=
∂th(1)

h(1)

+
∂th(2)

h(2)

. (4.13)
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Observe that this can also be written as

DivF (u) = 0 , (4.14)

where, F (u) := u∂t+f(u) is a vector field on Ω× I and Div is the divergence operator

with respect to the spacetime metric dt2+gijdx
idxj (see [6]). Let us write it in vectorial

form

F (u) =


u

0

0

0

+


0

f(u)1

f(u)2

f(u)3

 .

If we apply the formula (1.8) to u∂t and notice that det(G) = det(G), we have

DivG(u∂t) =
1√

detG

[
∂

∂t

(√
detGu)

)]
=

∂

∂t
u+ λu .

At this point it is clear that if we want to write equations (2.1) in our time-dependent

Local Coordinate System LCS-t attached to a surface, in an analogous way we need

to write an additional term, similar to λu. A very intuitive explanation of why the

equations change form can be found by the curious reader in [9], in the case of the

heat equation.

4.3.2 Continuity equation

Let ρ = ρ(t, x) be the density. Following the idea just presented, we derive the Conti-

nuity equation in the LCS-t as follows:

∇G ·


ρ

ρu1

ρu2

ρu3

 = 0 , (4.15)
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which gives

0 =
1√

det(g)

∂

∂t

(√
det(g)ρ

)
+

1√
det(g)

∂

∂si

(√
det(g)ρui

)
= (i = 1, 2, 3)

= ∂tρ+ ρλ+∇G · (ρu) (4.16)

In the case of constant density, we have

λ+∇G · u = 0 . (4.17)

4.3.3 Momentum equation(s)

We want now to derive the three components Momentum equation using formula (1.9)

applied to the non-symmetric 4× 4 contravariant tensor

F :=


0 u1 u2 u3

0 f 11 f 12 f 13

0 f 21 f 22 f 23

0 f 31 f 32 f 33

 , (4.18)

where the f ij terms incorporate all the terms that appear in the Navier-Stokes equa-

tions, which we can write in tensor form:


f 11 f 12 f 13

f 21 f 22 f 23

f 31 f 32 f 33

 := ~u⊗~u+
1

ρ


p

h2
(1)

0 0

0
p

h2
(2)

0

0 0 p

−


g1

h2
(1)

0 0

0
g2

h2
(2)

0

0 0 g3

−
1

ρ


τ 11 τ 12 τ 13

τ 21 τ 22 τ 23

τ 31 τ 32 τ 33

 .

(4.19)

In fact it can be proved that, for example, the term involving the pressure provides

the same result, once we apply to it the tensor divergence ∇G. In other words, this is

just the equivalent tensorial way of writing ∇Gp. Let us call P := pG−1; using formula

(1.9) and keeping in mind that P is symmetric, we have:

(∇G · P)j =
1

h(1)h(2)

∂
(
p
√

det(g)gjj
)

∂sj
+

1

h(j)

(
2Pjj

∂h(j)

∂sj
− Pjj

h(j)

h(j)

∂h(j)

∂sj
− Pj̄j̄

h(j̄)

h(j)

∂h(j̄)

∂sj

)
=
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(j̄ is defined as: j = 1⇒ j̄ = 2; j = 2⇒ j̄ = 1)

=
1

h(1)h(2)

∂
(
p
√

det(g)gjj
)

∂sj
+

1

h(j)

(
pgjj

∂h(j)

∂sj

)
− p 1

h2
(j̄)

h(j̄)

h(j)

∂h(j̄)

∂sj
. (4.20)

So for j = 1, other components being analogous, this expression yields

(∇G · P)1 =
1

h(1)h(2)

∂

(
h(1)h(2)
h2
(1)

p

)
∂s1

+
1

h(1)

(
p

1

h2
(1)

∂h(1)

∂s1

)
− p 1

h2
(1)h(2)

∂h(2)

∂s1
=

=
1

h2
(1)

∂p

∂s1
+

1

h(1)h(2)

p
∂h(2)

∂s1

h(1)

h2
(1)

− 1

h(1)h(2)

p
h(2)

h2
(1)

∂h(1)

∂s1
+

1

h3
(1)

∂h(1)

∂s1
− p 1

h2
(1)h(2)

∂h(2)

∂s1
=

=
1

h2
(1)

∂p

∂s1
= (∇Gp)1 , (4.21)

as we expected (see formula (1.7)). In the same way, we can compute ∇G · F, being

careful on the definitions of the divergence of a generic tensor (F is not symmetric).

Note that the first column of F is zero, and has no physical meaning: its purpouse

is just to form a square tensor. The explicit computation of divF can be found in

Appendix.

Finally, the j−th component of the Momentum equation is given by (∇G ·F)j = 0 , j ∈

{1, 2, 3}. Direct computations yield

∂t~u+ λ~u+ ~u ◦ ~h+∇G · (~u⊗ ~u) +∇G ·
(
P
ρ
−H

)
− 1

ρ
∇G · T = 0 , (4.22)

with ~h :=


∂th(1)
h(1)
∂th(2)
h(2)

0

 , P := pG−1 , H := gHG−1 .

Remark. It is reasonable to treat the Continuity equation and the Momentum

equations separately, since they describe two different physical phaenomena.
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4.4 The normally integrated Navier-Stokes equa-

tions

We are now able to perform depth integration along the top surface normal.

Continuity equation. We apply Leibnitz rule (we are assuming enough regularity of

the bottom and free surfaces, as well as of ~u), and substituting the Kinematic boundary

conditions (4.7), (4.8) we derive:

∫ η

0

∇G · ~u+

∫ η

0

λ =

∫ η

0

1

h(1)h(2)

(
∂(h(1)h(2)u

1)

∂s1
+
∂(h(1)h(2)u

2)

∂s2
+
∂(h(1)h(2)u

3)

∂s3

)
+ λη =

=
1

h(1)h(2)

∂

∂s1

∫ η

0

h(1)h(2)u
1 +

1

h(1)h(2)

∂

∂s2

∫ η

0

h(1)h(2)u
2 + λη+

+ u3
∣∣∣
s3=η
− u1 ∂B

∂s1

∣∣∣
s3=η
− u2 ∂B

∂s2

∣∣∣
s3=η

− u3
∣∣∣
s3=0

+ u1 ∂F
∂s1

∣∣∣
s3=0

+ u2 ∂F
∂s2

∣∣∣
s3=0

=

=
∂η

∂t
− ∂F

∂t
+ λη +∇G ·

∫ η

0

~u , (4.23)

where ~u = [u1, u2]T and the operator ∇G· is adapted to the two dimensional setting.

Observe that η and ~u are unknown, while the rest is given.

Momentum equation. An equivalent form of equation (4.22) is

∂~u

∂t
+∇G · (~u⊗ ~u) + ~uλ+ ~u ◦ ~h = −1

ρ
∇Gp+ ~g +

1

ρ
∇G · T (4.24)

where ◦ denotes the component-wise product (Hadamard product).

We can now perform depth integration along the normal direction s3 of the top surface,

which gives

∫ η

0

∂~u

∂t
+

∫ η

0

∇G ·(~u⊗~u)+

∫ η

0

~uλ+

∫ η

0

~u◦~h = −1

ρ

∫ η

0

∇Gp−g
∫ η

0

∇Gx3 +
1

ρ

∫ η

0

∇G ·T .

(4.25)

• Employing Leibnitz rule to the LHS we find

∂

∂t

∫ η

0

~u− ~u∂η
∂t

+ ~u
∂F
∂t

+∇G ·
∫ η

0

~u⊗ ~u− (~u⊗ ~u)∇GB
∣∣∣
s3=η

+
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+ (~u⊗ ~u)∇GF
∣∣∣
s3=0

+

∫ η

0

~uλ+

∫ η

0

~u ◦ ~h ,

that reduces to

∂

∂t

∫ η

0

~u+∇G ·
∫ η

0

~u⊗ ~u+

∫ η

0

~uλ+

∫ η

0

~u ◦ ~h ,

with the Kinematic BCs.

• For the RHS, we have

−1

ρ

∫ η

0

∇Gp− g
∫ η

0

∇Gx3 +
1

ρ
∇G ·

∫ η

0

T− T
ρ
∇GB

∣∣∣
s3=η

+
T
ρ
∇GF

∣∣∣
s3=0

=

= −1

ρ

∫ η

0

∇Gp− g
∫ η

0

∇Gx3 +
1

ρ
∇G ·

∫ η

0

T− 1

ρ
TB ·NB ,

where we used aswell Kinematic BCs. Observe that the form of the RHS is very similar

to the one found in chapter 2, i.e. for the time-independent problem.

SW Approximation. As in chapter 2, we postulate u3 = εGu
i, i = 1, 2, εG � 1

and employ an expansion of the scalar components of the velocity vector ~u(s, t) :

ui = ui(0) + εGu
i
(1) + ε2Gu

i
(2) +O

(
ε3G
)

i = 1, 2 , (4.26)

u3 = εGu
3
(1) + ε2Gu

3
(2) +O

(
ε3G
)

(4.27)

and the stress tensor T(s, t):

τ ij = τ ij0 + εGτ
ij
(1) + ε2Gτ

ij
(2) +O

(
ε3G
)

i, j = 1, 2, 3 (4.28)

and again, in particular, we assume that the terms containing u3 can be expanded in

the following way:

τ 3i = εGτ
3i
(1) + ε2Gτ

3i
(2) +O

(
ε3G
)

for i = 1, 2 and τ 33 = ε2Gτ
33
(2) +O

(
ε3G
)
.

At this point, we split the velocity vector and stress tensor as

~u = ~U + ũ, where ~U(s1, s2, t) =
1

η

∫ η

0

~u(s, t) ds3 ,

∫ η

0

ũ(s, t) ds3 = 0 , (4.29)
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T = T + τ̃ , where T(s1, s2, t) =
1

η

∫ η

0

T(s, t) ds3 ,

∫ η

0

τ̃(s, t) ds3 = 0 . (4.30)

Basically, we have switched from the variables ~u and T to their normal depth-

averages: ~U and T, and define

~q = [ηU1, ηU2] denotes the depth-averaged velocity vector. The tensor

Tsw = η

T 11 T 12

T 21 T 22


is the principal 2-minors of T, and vector fB = [τ 1

b , τ
2
b ]T is the vector field that contains

bed friction information.

After having seen the approximations that we are going to employ and the notation

set-up, we are going to derive a second order approximation of the Navier-Stokes

equations. The first step is to recall the Continuity and Momentum depth-integrated

equations; coupled together they form the normally integrated Navier-Stokes equations :

∂η

∂t
− ∂F

∂t
+ λη +∇G ·

∫ η

0

~u = 0 , (4.31)

∂

∂t

∫ η

0

~u+∇G ·
∫ η

0

~u⊗ ~u+

∫ η

0

~uλ+

∫ η

0

~u ◦ ~h =

= −1

ρ

∫ η

0

∇Gp− g
∫ η

0

∇Gx3 +
1

ρ
∇G ·

∫ η

0

T− 1

ρ
TB ·NB (4.32)

4.4.1 Hydrostatic pressure condition

The first step is re-writing the momentum equations component wise. Using the

operators defined in eqs. (2.6) to (2.8) and recalling that the terms ∂h(1)/∂s
3, ∂h(2)/∂s

3

vanish and h(3) is a constant, noticing also that
∫ η

0
~u⊗~u is a tensor, the third momentum

equation reads:

∂

∂t

∫ η

0

u3+
1

h(1)h(2)

(
∂

∂s1

∫ η

0

h(1)h(2)u
1u3 +

∂

∂s2

∫ η

0

h(1)h(2)u
2u3 +

∂

∂s3

∫ η

0

h(1)h(2)

(
u3
)2
)

+

∫ η

0

u3λ =
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(where we used that the third component of ~u ◦ ~h is simply zero)

= −1

ρ

∫ η

0

∂p

∂s3
− g

∫ η

0

∂x3

∂s3
+

1

ρh(1)h(2)

(
∂

∂s1

∫ η

0

h(1)h(2)τ
13 +

∂

∂s2

∫ η

0

h(1)h(2)τ
23

+
∂

∂s3

∫ η

0

h(1)h(2)τ
33

)
+
pB
ρ

Note : ~u =


u1

u2

u3

 , ~u⊗~u =


u1u1 u1u2 u1u3

u2u1 u2u2 u2u3

u3u1 u3u2 u3u3

 , TB·NB = fB = τ 1
b t1+τ 2

b t2+pBt3 ,

∇Gp =

(
1

h2
(1)

∂p

∂s1
,

1

h2
(2)

∂p

∂s2
,
∂p

∂s3

)
, T =


τ 11 τ 12 τ 13

τ 21 τ 22 τ 23

τ 31 τ 32 τ 33

 .

Notice that ~u ⊗ ~u and T are simmetric tensors. Before we perform the next step,

recall that: ∫ η

0

~u⊗ ~u = η~U ⊗ ~U +

∫ η

0

ũ⊗ ũ =: ♣ ,

while U3 = εGU
3
(1) +O

(
ε2G
)

and U i = U i
(0) + εGU

i
(1) +O

(
ε2G
)
, i = 1, 2.

Observe that ♣ is a 3× 3 tensor and that we are interested in its third column, ♣(·3),

and we neglect the
∫
ũ⊗ ũ contribution. Employing the above given approximations,

we have for example that

♣(13) = ηU1U3 = η

(
U1

(0) + εGU
1
(1) +O

(
ε2G
))(

εGU
3
(1) +O

(
ε2G
))

=

= ηεGU
1
(0)U

3
(1) +O

(
ε2G
)
.

Now, if we introduce the expanded velocity and tensor components using the ap-

proach mentioned in eq.(4.26) and recalled right above here, we obtain

1

ρ

∫ η

0

∂p

∂s3
+ g

∫ η

0

∂x3

∂s3
+

+εG

[
∂

∂t

(
ηU3

(1)

)
+

1

h(1)h(2)

(
∂

∂s1

(
ηU1

(0)U
3
(1)h(1)h(2)

)
+

∂

∂s2

(
ηU2

(0)U
3
(1)h(1)h(2)

))
+ ηU3

(1)λ
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− 1

ρh(1)h(2)

(
∂

∂s1

∫ η

0

τ 31
(1)h(1)h(2) +

∂

∂s2

∫ η

0

τ 32
(1)h(1)h(2)

)
+
pB,(1)

ρ

]
+O

(
ε2G
)

= 0 ,

(4.33)

where pB,(1) is a first order approximation of the s3-component of the shear stress

TB ·NB thus assumed to be proportional to εG.

Indeed, the approximation of the third component of the new terms

∫ η

0

~uλ+

∫ η

0

~u ◦ ~h (4.34)

is given by (recall that the third component of the right term is simply zero):

ηU3λ = η
[
εGU

3
(1) +O

(
ε2G
)]
λ = εG

[
ηU3

(1)λ
]

+O
(
ε2G
)

and thus is a second order term, in the hyphothesis that η is small, that does not

contribute to a change in form of eq. (4.35).

Let us go back to equation (4.33). The zero-order terms (i.e. that are proportional

to ε0G) are:
1

ρ

∫ η

0

∂p

∂s3
+ g

∫ η

0

∂x3

∂s3
= O (εG) .

We neglect the effects of wind and surface tension to set p
∣∣∣
0

= patm = 0 and we employ

the approximations introduced in section 2.1.2 to get:

p
∣∣∣
η

= −ρgη∂x
3

∂s3
+O(εG) . (4.35)

Notice that ∂x3/∂s3 is constant in s3, since the direction s3 is assumed rectilinear.

Remark. In this case, expression (4.35) has a slightly different meaning then the

one found in chapter 2. In fact, in the present situation we are performing a measure-

ment starting from a point P on the top surface. In the LCS-t attached to the point

P, the latter has an associated height η = 0, while if we follow s3 direction for η steps

we encounter another point Q belonging to the bottom surface. Nevertheless, in this

case we have that expression η∂x3/∂s3 is not the vertical water below point P, but
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instead is a portion of the water above point Q. If we call HQ the height of the water

above point Q, we assume that HQ − η∂x3/∂s3 = O(εG).

4.4.2 System reduction

It is exactly the pressure condition that allows us to reduce dimentionally our ISWE

system from four to three equations, as in the classical SWE derivation. In fact, our

idea is to transport the information we just obtained from the third component of

the momentum equation, which has just led us to the hydrostatic pressure condition

(4.35), to the other two components of the momentum equation itself.

Putting our attention now on the s1-component of eq. (4.32), the other (s2-component)

being analogous, we write (using (2.8) with j = 1):

∂

∂t

∫ η

0

u1 +
1

h(1)h(2)

[
∂

∂s1

∫ η

0

h(1)h(2)

(
u1
)2

+
∂

∂s2

∫ η

0

h(1)h(2)u
1u2 +

∂

∂s3

∫ η

0

h(1)h(2)u
3u1

]
+

∫ η

0

u1λ+

∫ η

0

u1∂th(1)

h(1)

+

∫ η

0

(
u1
)2

h(1)

∂h(1)

∂s1
+ 2

∫ η

0

u1u2

h(1)

∂h(1)

∂s2
−
∫ η

0

(
u2
)2 h(2)

h2
(1)

∂h(2)

∂s1
=

= −1

ρ

∫ η

0

1

h2
(1)

∂p

∂s1
− g

∫ η

0

1

h2
(1)

∂x3

∂s1
+

1

ρh(1)h(2)

[
∂

∂s1

∫ η

0

h(1)h(2)τ
11 +

∂

∂s2

∫ η

0

h(1)h(2)τ
12

+
∂

∂s3

∫ η

0

h(1)h(2)τ
13

]
+

1

ρ

(∫ η

0

τ 11

h(1)

∂h(1)

∂s1
+ 2

∫ η

0

τ 21

h(1)

∂h(1)

∂s2
−
∫ η

0

τ 22h(2)

h(1)

∂h(2)

∂s1

)
+
τ 1
b

ρ
.

Now we employ expansions seen above focusing on the left-hand side of the previous

equation:

∂ηU1
(0)

∂t
+

1

h(1)h(2)

∂

∂s1

(
η
(
U1

(0)

)2
h(1)h(2)

)
+

1

h(1)h(2)

∂

∂s2

(
ηU1

(0)U
2
(0)h(1)h(2)

)
+ ηU1

(0)

(
2
∂th(1)

h(1)

+
∂th(2)

h(2)

)
+

+ η
(
U1

(0)

)2 1

h(1)

∂h(1)

∂s1
+ 2ηU1

(0)U
2
(0)

1

h(1)

∂h(1)

∂s2
− η

(
U2

(0)

)2 h(2)

h(1)

∂h(2)

∂s1
+O(εG) ,

and in particular the new terms (4.34) produce:

∫ η

0

u1λ+

∫ η

0

u1∂th(1)

h(1)

=

∫ η

0

2u1∂th(1)

h(1)

+

∫ η

0

u1∂th(2)

h(2)

= 2ηU1∂th(1)

h(1)

+ ηU1∂th(2)

h(2)

=
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= ηU1

(
2
∂th(1)

h(1)

+
∂h(2)

h(2)

)
= η

(
U1

(0) + εGU
1
(1) +O(ε2G)

)
=

= ηU1
(0)

(
2
∂th(1)

h(1)

+
∂th(2)

h(2)

)
+O(εG) . (4.36)

Then on the right-hand side:

− η

ρh2
(1)

∂p

∂s1
− ηg

h2
(1)

∂x3

∂s1
+

1

h(1)h(2)

[
∂

∂s1

∫ η

0

τ 11
(0)h(1)h(2) +

∂

∂s2

∫ η

0

τ 12
(0)h(1)h(2)

]
+

1

ρh(1)

∂h(1)

∂s1

∫ η

0

τ 11
(0) +

2

ρh(1)

∂h(1)

∂s2

∫ η

0

τ 12
(0) −

h(2)

ρh2
(1)

∂h(2)

∂s1

∫ η

0

τ 22
(0) +

τ 1
b ,(0)

ρ
+O(εG).

Substituting in the right-hand side term the value of the pressure p

∣∣∣∣
η

found in equation

(4.35) we have

+
η

h2
(1)

∂

∂s1

(
ηg
∂x3

∂s3

)
− ηg

h2
(1)

∂x3

∂s1
+

1

ρ

(
∇G ·Tsw,(0)

)1
+
τ 1
b, (0)

ρ
+O(εG). (4.37)

With the idea to write the blue term in an equivalent way, recalling that g is a constant,

observe that (if we assume η and ∂s3/∂s3 to be differentiable functions):

η

h2
(1)

∂

∂s1

(
ηg
∂x3

∂s3

)
=

ηg

h2
(1)

∂η

∂s1

∂x3

∂s3
+
gη2

h2
(1)

∂

∂s1

(
∂x3

∂s3

)
, while

g

h2
(1)

∂

∂s1

(
η2

2

∂x3

∂s3

)
=

ηg

h2
(1)

∂η

∂s1

∂x3

∂s3
+

gη2

2h2
(1)

∂

∂s1

(
∂x3

∂s3

)
;

so we can write, finally:

η

h2
(1)

∂

∂s1

(
ηg
∂x3

∂s3

)
=

g

h2
(1)

∂

∂s1

(
η2

2

∂x3

∂s3

)
+

gη2

2h2
(1)

∂

∂s1

(
∂x3

∂s3

)
.

Finally, after substitution of (4.35) in the RHS and denoting with ~q :=
[
ηU1

(0), ηU
2
(0)

]
,

we can write the Momentum equation in compact form intrinsic to the top surface:

∂~q

∂t
+ ~qλ+ ~q ◦ [h1, h2]T +∇G ·

(
1

η
(~q ⊗ ~q) +

(
gη2

2

∂x3

∂s3

)
G−1
sw

)
+
gη2

2
∇G
(
∂x3

∂s3

)
+ gη∇G(x3)− 1

ρ
∇G ·Tsw +

fB
ρ

= 0 . (4.38)

Collecting the Continuity equation and the Momentum equations in a system, we have
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the following theorem.

Theorem 4.1. The intrinsic shallow water equations, written with respect to the LCS-t

are given by

∂η

∂t
− ∂F

∂t
+ λη +∇G · ~q = 0 , (4.39)

∂~q

∂t
+ ~qλ+ ~q ◦ [h1, h2]T +∇G ·

(
1

η
(~q ⊗ ~q) +

(
gη2

2

∂x3

∂s3

)
G−1
sw

)
+
gη2

2
∇G
(
∂x3

∂s3

)
+ gη∇G(x3)− 1

ρ
∇G ·Tsw +

fB
ρ

= 0 . (4.40)

Under the hyphothesis of thin fluid layer η = O(εG), they are an approximation of

order O(ε2G) of the Navier-Stokes equations.

4.4.3 Balance law formulation of time-dependent ISWE

The final step before proceeding with the numerical approximations is to write every-

thing as a compact balance law that will be very useful later on:

∂U

∂t
+ divG F (s,U) + S(s,U) = 0 . (4.41)

The conserved quantity is U = [η, ηU1, ηU2]T = [η, q1, q2]T , where η : Γ× [0, tf ] −→ R

and q = [q1, q2], q : Γ× [0, tf ] −→ R2. The flux function is the same:

F (s,U) =


q1 q2

(q1)2

η
+

gη2

2h2
(1)

∂x3

∂s3

q1q2

η

q1q2

η

(q2)2

η
+

gη2

2h2
(2)

∂x3

∂s3

 =


Fη

F q

 . (4.42)
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Recall that divG = [∇η
G·,∇

q
G·]T , while the term S(s, η) is given by

S(s,U) =


−∂F
∂t

+

(
∂th(1)

h(1)

+
∂th(2)

h(2)

)
η

q1

(
2
∂th(1)

h(1)

+
∂th(2)

h(2)

)
+

gη2

2h2
(1)

∂

∂s1

(
∂x3

∂s3

)
+

gη

h2
(1)

∂x3

∂s1
− 1

ρ
[∇G ·Tsw](1,·) +

τ 1
b

ρ

q2

(
∂th(1)

h(1)

+ 2
∂th(2)

h(2)

)
+

gη2

2h2
(2)

∂

∂s2

(
∂x3

∂s3

)
+

gη

h2
(2)

∂x3

∂s2
− 1

ρ
[∇G ·Tsw](2,·) +

τ 2
b

ρ


=


Sη

Sq

 .

(4.43)

4.5 Comparison of the intrinsic and standard ap-

proaches

In this section, we are going to compare our intrinsic formulation of the direct and

inverse problem to the standard setting in [15]. If written in a compact form, equations

(4.44) and (4.41) can be synthesized, as we saw, in the following form

∂U

∂t
+ divG F (s,U) + S(s,U) = 0 , (4.44)

where we recall that U = [η, ηU1, ηU2]T = [η, q1, q2]T , η : Γ × [0, tf ] −→ R, and q =

[q1, q2] ,q : Γ× [0, tf ] −→ R2.

Let us recall some variables’ definitions of [15]: ζ is the vertical height of the water, zb

is the bottom height and H denotes the vertical depth of water

H := ξ − zb .

Furthermore, v = [u, v, w] is the fluid velocity and ū, v̄ are the averaged velocity first

two components, respectively given by

ū =
1

H

∫ ξ

zb

u dz v̄ =
1

H

∫ ξ

zb

v dz .

The balance laws for the problem in [15] can be written, as seen in chapter 3 in the

form

∂tc +∇ · Aζ(c) = Zζ(c)
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with c = [H, ūH , v̄H] = [H U V ], while Aζ and Zζ denote the flux term and the source

term for the inviscid (µ = 0) forward (ζ = 1) and backward (ζ = 0) problems. Now,

for the purpouse of this section, i.e. being able to confront different models, let us try

to write everything with the notation used in this thesis. Thus the idea is to replace

H with η, ū with U1, v̄ with U2, c2 with q1, c3 with q2 and so on in the equations from

chapter 3. Notice that in the inverse problem formulation, ζ = 0, Zζ is such that the

variable ξ (the vertical height of water), that was an unknown of the direct problem

now becomes a known data and in our notation corresponds to F , while the bottom

zb could be written as F − η in our notation. Regrouping everything, we have

model of chapter 3 (intrinsic) model, chapter 2/ 4

ξ F

ū, v̄ U1, U2

H η

c = [H, uH, vH] U = [η, q1, q2]

The following table contains the flux and source terms of both the direct and inverse

problems formulation, governed by the conservation law (4.44).
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∂U

∂t
+ divG F (s,U) + S(s,U) = 0 F : forward problem, I : inverse problem

standard setting Intrinsic setting

F F (s,U) =


q1 q2

(q1)2

η
+
gη2

2

q1q2

η
q1q2

η

(q2)2

η
+
gη2

2

 F (s,U) =


q1 q2

(q1)2

η
+

gη2

2h2
(1)

∂x3

∂s3
q1q2

η

q1q2

η

(q2)2

η
+

gη2

2h2
(2)

∂x3

∂s3



S(s, η) =


0

−gη ∂

∂s1
(F − η) + ηf1 − τbfq1 + fcq

2

−gη ∂

∂s2
(F − η) + ηf2 − τbfq2 − fcq1

 S(s, η) =


0

gη2

2h2
(1)

∂

∂s1

(
∂x3

∂s3

)
+

gη

h2
(1)

∂x3

∂s1
− 1

ρ
[∇G ·Tsw]

(1,·) − τ1b
ρ

gη2

2h2
(2)

∂

∂s2

(
∂x3

∂s3

)
+

gη

h2
(2)

∂x3

∂s2
− 1

ρ
[∇G ·Tsw]

(2,·) − τ2b
ρ



I F (s,U) =


q1 q2

(q1)2

η

q1q2

η
q1q2

η

(q2)2

η

 F (s,U) =


q1 q2

(q1)2

η
+

gη2

2h2
(1)

∂x3

∂s3
q1q2

η

q1q2

η

(q2)2

η
+

gη2

2h2
(2)

∂x3

∂s3



S(s, η) =


0

−gη ∂

∂s1
F + ηf1 − τbfq1 + fcq

2

−gη ∂

∂s2
F + ηf2 − τbfq2 − fcq1

 S(s,U) =



−∂F
∂t

+

(
∂th(1)

h(1)

+
∂th(2)

h(2)

)
η

q1
(
2
∂th(1)

h(1)

+
∂th(2)

h(2)

)
+

gη2

2h2
(1)

∂

∂s1

(
∂x3

∂s3

)
+

gη

h2
(1)

∂x3

∂s1
− 1

ρ
[∇G ·Tsw]

(1,·) +
τ1b
ρ

q2
(
∂th(1)

h(1)

+ 2
∂th(2)

h(2)

)
+

gη2

2h2
(2)

∂

∂s2

(
∂x3

∂s3

)
+

gη

h2
(2)

∂x3

∂s2
− 1

ρ
[∇G ·Tsw]

(2,·) +
τ2b
ρ


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• For the forward problem

Focusing on the flux terms, we can notice that the intrinsic setting formulation,

if applied to the standard setting in which
∂x3

∂s3
= 1 and the metric coefficients

are h2
(1) = h2

(2) = 1, exactly gives the flux term on the left. Furthermore, if we

look at the source terms, note the similarity between

−gη ∂

∂s1
(F − η)︸ ︷︷ ︸

zb

and
ηg

h2
(1)

∂x3

∂s1
.

In the latter term, recall that the partial derivative
∂x3

∂s1
is being evaluated for

η = 0, i.e. on the surface bottom, in fact this term was born from the hydrostatic

pressure condition. Also the source term of the intrinsic scenario reduces to its

left term in the table, in the case of a standard setting, since for i = 1, 2

gη2

2h2
(1)

∂

∂si

(
∂x3

∂s3

)

vanishes because x3 and s3 directions are parallell.
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• For the inverse problem If the normal to the top surface is vertical, or in the

procedure of the Shallow water depth-integration we are integrating along the

vertical direction our equations, denoting with b := ξ−H ≡ F −η∂x
3

∂s3
, the term

∇x3 can be written as

∇x3 = ∇b = ∇F − ∂x3

∂s3
∇η − η∇

(
∂x3

∂s3

)
.

Remark. The bottom right square of the table contains the flux terms of the

bathymetry reconstruction. The problem to solve in this case has a time-dependent

top surface and a bottom fixed in time. Nevertheless, our model is so general that

can be theoretically used also in the case of an eroding bottom. On the countrary,

in analogous way, it is possible to see it as a direct model having the bottom surface

that is time dependent (as a known data) with the aim of determining the top surface

(unknown), also time-dependent. To find the formulation of the latter, one should be

careful about the sign of the terms arasing from the hydrostatic pressure condition,

since the roles of p
∣∣
s3=0

and p
∣∣
s3=η

will be clearly inverted. These two final cases, that

look possible in theory, do present many difficulties at a numerical level and could be

very problematic to deal with.
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Chapter 5

Numerical set-up for the

bathymetry reconstruction model

In this chapter we are going to derive the fully-discrete Discontinuous Galerkin (DG)

formulation of our model. To do so, we firstly have to approximate the top surface and

build the basis functions that will be employed to test our equations: this will be done

following the work of [4]. Notice that in this case our surface is time-dependent, so the

construction has to be done for every time-step. Consider a fixed time t̂ ∈ [0, T ]. The

introduction of the time parameter, apparently harmless, will introduce some issues

of linking one solution, computed at the time t̂ and associated to the basis space Vt̂,

to the solution at the time-step t̂+ 1, because Vt̂ 6= Vt̂+1. The paper of G. Dziuk and

C.Elliot [14] will be very helpful in traducing this problem to a form that is more direct

to solve and requires much less numerical effort. Finally, through this manipulation

we will be able to write the fully-discrete DG formulation.

5.1 Surface triangulation

Recall that at every time t we have a parametrization F(x1, x2, t) of the top surface that

allowed us to build the time-dependent Local Coordinate System. The construction

of the mesh surface follows the same steps of [4]. The basic ideas are that we have

Γ ⊆ S a regular region which can be divided into small triangles such that

• Γ =
⋃
i Ti;
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• the intersection of two arbitrary triangles is either empty, or consists of vertices,

or is a side;

• every vertex at the boundary of our region R, i.e. a partition of Γ, is a vertex of

at least one triangle of the triangulation T (Γ).

We have that T (Γ) =
⋃NT
i=1 Ti = Γ̄ and σij = Ti

⋂
Tj is an internal geodesic edge.

Furthermore, we will denote by Th(Γ) the approximate triangulation that form the

piece-wise linear surface, made up by the union of flat 2-dim triangles. An important

assumption is the constrain

rT
hT
≥ ρ ∀T ∈ Th(Γ) ,

which ensures the non degeneration of the mesh elements. The orthogonal projection

along the surface normal direction N(pr(q)) maps a point q ∈ Th to pr(q) ∈ T ⊂ T (Γ).

Proposition 5.1. Given the triangulations T (Γ), Th(Γ) and the map pr, the following

estimates hold:

• the distance between the approximate triangulation and the surface satisfies:

max
q∈Th(Γ)

∣∣∣ ~pr(q)q
∣∣∣ ≤ Ch2 ;

• the ratio δh between the area measures ds and dx of the surface and its approxi-

mation, defined by ds = δhdx, satisfies:

‖ 1− δh ‖L∞(Th(Γ))≤ Ch2 .

We assume all the relevant information, for example the tangent plane, to be

known at the vertices of the triangulation, while we use interpolated information at

quadrature points, i.e. the point where we perform computations.
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5.2 Basis functions

For simplicity, we work with first order affine functions on each cell of our domain.

At a fixed time t̂, the basis functions ϕ1, ϕ2, ϕ3 span VΓ
h satisfying the interpolation

property are defined by:

ϕj ∈ VΓ
h , ϕj(pi) = δij i, j = 1, 2, 3 ,

where pi ∈ Γare the vertices (the nodes) of the cell, for each cell of T (Γ). We need

to distinguish between global and local basis functions. Let us fix a point x ∈ T of

global coordinates x(p), we define the affine function φ̃j as a function in R3, expressed

in global coordinates as

ϕ̃j(x) = ã+ b̃x1 + c̃x2 + d̃x3 ,

where the coefficients ã, b̃, c̃, d̃ can be determined by solving 4-dim linear systems. For

example, in the case of ϕ1 the constrains to impose are

ϕ1(p1) = 1 , ϕ1(p2) = 0 , ϕ1(p3) = 0 , ϕ1(q) = 0 ,

with q = p1 + t3(p1) and t3(p1) the unitary normal to the surface in p1. Recalling

that Φ : LCS7−→GCS, the composition of φ̃j with the latter gives the basis function in

the local coordinates:

ϕj(s
1, s2) = ϕ̃j ◦ φ(s1, s2) .

Observe that only the tangent plane TpjΓ information is really necessary, in fact as-

suming that T ⊂ φpj(U) for some U open set of R2 we can approximate linearly the

surface: φpj(T ) = TpjΓ +O(h2). The local basis functions are obtained, accordingly,

by neglecting higher order terms.
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5.3 Evolving surface DG

Starting from the balance law equation found in the previous chapter,

∂U

∂t
+ divG F (s,U) + S(s,U) = 0 , (5.1)

we know that U = [η, q1, q2], now we want to test equation (5.1) with vh ∈ Vh(t) and

integrate in space, over every single cell T (t) of the triangulation T (Γ(t)):

∫
T (t)

∂U

∂t
vh ds +

∫
T (t)

divG F (s,U)vh ds +

∫
T (t)

S(s,U)vh ds = 0. (5.2)

Application of the divergence theorem yields

∫
T (t)

∂U

∂t
vh ds+

∫
∂T (t)

Fν
∗(s,U)vh dσ−

∫
T (t)

〈F (s,U),∇Gvh〉G ds+

∫
T (t)

S(s,U)vh ds = 0 ,

(5.3)

for every vh ∈ VΓ
h (t), with Fν

∗(s,U) the numerical flux at the cell boundary.

5.3.1 Towards the time discretization

We recall the definition of appropriate time derivative, following [14]. Given the

parametrization

φ :I × U ⊆ I × R2 −→ I × R3

(t, s1, s2) 7−→ (t, x1(s1, s2), x2(s1, s2), x3(s1, s2, t)) := (t, s1, s2,F(s1, s2, t))

we denote with Γ(t) the surface at time t and we assume the function ϕ(·, t) : U 7−→

Γ(t) ∈ ([0, T ], C2(U)), and we say that the velocity of Γ(t) is given by

v(φ(·, t), t) =
∂φ

∂t
(·, t) . (5.4)

The appropriate time derivative of a function

f :
⋃

t∈[0,T ]

Γ(t)× {t} −→ R
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is defined as

∂•f =
∂f

∂t
+ v · ∇f . (5.5)

At this point, we discretize the time interval [0, T ] in N parts setting τ =
T

N
. So, we

have N + 1 time steps tn = nτ , for n ∈ {0, . . . , N}. Let’s focus for a moment on the

first term ∫
T (t)

∂U

∂t
ϕh ds .

If we use first order affine functions ϕk , k ∈ {1, 2, 3} and write for each cell T (tn) an

approximation of Uh in terms of the basis functions,

Uh(s, t) =
3∑
i=1

Uh,i(t
n)ϕi(s, t

n) (5.6)

we have that the first term becomes now

3∑
i=1

∫
T (tn)

∂Uh,i

∂t
ϕni ϕ

n
k ds =

3∑
i=1

∫
T (tn)

Un+1
h,i −Un

h,i

τ
ϕni ϕ

n
k ds , (5.7)

where the superscript n in ϕni denotes that the basis function ϕ is relative to time tn.

From the last integral, computed at the n−th time step, it clearly emerges that, roughly

speaking, one would need to express the solution Un+1
h as a linear combination of tn+1

basis functions living in the space VΓ
h (tn+1), to be able to perform the next time step

computation, and so on. For this reason, we follow the approach of G. Dziuk, C.Elliot

[14]. In this way, by manipulating that integral, the problem of the connection between

solutions at successive time steps can be traduced into the presence of additional terms

that are easier to treat numerically. We need to recall the definition of the mass matrix

m(ϕ(·, t), ψ(·, t)) =

∫
Γ(t)

ϕ(·, t)ψ(·, t) dA , (5.8)

and a couple of results.

Lemma 5.1. (transport property of the basis functions)

The basis functions satisfy the transport property

∂•hϕ = 0 .
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Lemma 5.2. Let Γh(t) be an evolving admissible triangulation with material velocity

Vh. Then it holds

d

dt

∫
Γh(t)

f dAh =

∫
Γh(t)

∂•hf + f∇Γh · Vh dAh ,

where ∇Γh is the intrinsic surface derivative. For a function ϕ ∈ Vh(t),Wh ∈ Vh(t),

d

dt
mh(ϕ,Wh) = mh(∂

•
hϕ,Wh) +mh(ϕ, ∂

•
hWh) + gh(Vh;ϕ,Wh) ,

with

gh(Vh;ϕ,Wh) =

∫
Γ(t)

ϕ(x, t)ψ(x, t)∇Γ · v(x, t) dA(x) .

Notice that ∇Γ · v(x, t) is equivalent to our term λ, i.e. the time derivative of the

determinant of the metric tensor. We can now go back to the first term of equation

(5.3): the idea is to add and subtract the terms gh and

∫
T (t)

v · ∇Uhϕ

to get a more suitable form of our equation. Explicitly we have

∫
T (t)

∂tUhϕh ds =

∫
T (t)

∂tUhϕh ds + v · ∇Uhϕh ds + gh −
∫
T (t)

v · ∇Uhϕh ds− gh =

= m(ϕh, ∂
•Uh) + gh −

∫
T (t)

v · ∇Uhϕh ds− gh =

=
d

dt
mh(ϕh,Uh)−

∫
T (t)

v · ∇Uhϕh ds− gh . (5.9)

Finally, the DG problem becomes

DG Problem . Find Uh ∈ VΓ
h such that

d

dt

∫
T (t)

ϕhUh ds−
∫
T (t)

v · ∇Uhϕh ds− λ
∫
T (t)

ϕhUh ds =

= −
∫
∂T (t)

Fν
∗(s,Uh)ϕh dσ +

∫
T (t)

〈F (s,Uh),∇Gϕh〉G ds−
∫
T (t)

S(s,Uh)ϕh ds = 0 ,

(5.10)

where ϕh belongs to VΓ
h (t).
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Notice that −λU can be incorporated into S, cancelling out some terms. Indeed, if

we define a new S as

S(s,U) =


−∂F
∂t

q1
∂th(1)

h(1)

+
gη2

2h2
(1)

∂

∂s1

(
∂x3

∂s3

)
+

gη

h2
(1)

∂x3

∂s1
− 1

ρ
[∇G ·Tsw](1,·) +

τ 1
b

ρ

q2
∂th(2)

h(2)

+
gη2

2h2
(2)

∂

∂s2

(
∂x3

∂s3

)
+

gη

h2
(2)

∂x3

∂s2
− 1

ρ
[∇G ·Tsw](2,·) +

τ 2
b

ρ

 =


Sη

Sq

 ,

(5.11)

we get a new

DG Problem . Find Uh ∈ VΓ
h such that

d

dt

∫
T (t)

ϕhUh ds−
∫
T (t)

v · ∇Uhϕh ds =

= −
∫
∂T (t)

Fν
∗(s,Uh)ϕh dσ +

∫
T (t)

〈F (s,Uh),∇Gϕh〉G ds−
∫
T (t)

S(s,Uh)ϕh ds = 0 ,

(5.12)

where ϕh belongs to VΓ
h (t).

5.3.2 Fully-discrete DG formulation

We can now substitute U with the approximate solution Uh, that we recall is defined

for each cell T ∈ T (Γ) as

Uh(s, t) =
3∑
i=1

Uh,i(t
n)ϕi(s, t

n)

where Uh,i(t) are the values of the numerical solution at the nodes at time t. So, we

obtain the so called semi-discrete formulation of our problem:

Semi-discrete DG Problem. Find Uh ∈ VΓ
h such that

∑
i

(
d

dt

∫
T

Uh,iϕiϕk

)
−Uh,i

∫
T (t)

v · ∇Gϕhϕk ds =
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= −
∫
∂T (t)

Fν
∗(s,Uh)ϕk dσ +

∫
T (t)

〈F (s,Uh),∇Gϕk〉G ds−
∫
T (t)

S(s,Uh)ϕk ds = 0 ,

(5.13)

where ϕh belongs to VΓ
h (t) and for simplicity we suppose that v is already expressed

in terms of VΓ
h ; instead, given v written analitically, one could use the L2-projection

of v on the function space VΓ
h .

Furthermore, for each i, k = 1, 2, 3 we define the local mass matrix, the advection

matrix and the right-hand side vector:

Mik =

∫
T

ϕiϕk ds ,

Aik =

∫
T

v · ∇Gϕiϕk ds ,

Rk = −
∫
∂T (t)

Fν
∗(s,Uh)ϕk dσ +

∫
T (t)

〈F (s,Uh),∇Gϕk〉G ds−
∫
T (t)

S(s,Uh)ϕk ds = 0 .

Recall that we divided the time interval [0, T ] in N parts setting τ =
T

N
and the time

steps are denoted with tn = nτ , for n ∈ {0, . . . , N}. Thus, we have the following

simple version of the fully discrete DG approximation:

∂τ (M
nun)−An+1un+1 = Rn+1 .

Equivalently, expliciting the ∂τ derivative, we have

(Mn+1 − τAn+1)un+1 − τRn+1 = Mnun , (5.14)

where u ≡ Uh,i are the solution coefficients.
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Conclusions

Through this thesis, we have derived a new intrinsic Shallow water model for the

bathymetry reconstruction of e.g. rivers. At the very basis, an application of the

tensorial calculus has given birth to the Continuity and Momentum equations: those

form the Navier-Stokes equations, written with respect to a local reference frame sit-

uated on the top surface. Shallow water equations are derived from the NS equations

after depth integration, following the directions of the local normals attached to the

top surface itself. Finally, a numerical set-up of the model has been built, using the

Discontinuous Galerkin (DG) method.

Future work

Efforts have been made of trying to derive the same equations in a different way. One

possible approach would be starting from a Lagrangian function of the NS equations,

although this idea seemed troublesome and beyond the purpose of this thesis. Search in

this direction seem possible and interesting: in general, something that would provide

a parallel way of deriving the same model equations, or showing their validy through

numerical experiments.

First steps have been attempted for the latter, the idea constisted in modifying the

bathymetry reconstruction part of the FESTUNG code, basically somehow inserting

the geometrical information arising from our model. See for example [12], FESTUNG

code is a robust code that can handle multiple boundary conditions. Nevertheless this

would have required a constistent amount of work, which was not archievable in the

time restrictions of this thesis. The work of [15] treated the non-intrinsic bathymetry
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model and gave raise to the version of the FESTUNG code about the bathymetry

reconstruction itself.

Both theoretically and numerically, the geometric nature of our model increases a

lot the complexity of the model itself thus keeping a lot of questions opened. The

future starting point remains to test numerically our model with experiments, thus

proceeding with further analysis of its properties.
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Appendix

Let us provide some computations for the Christoffel symbols used in formula (2.8)

and in the chapter 4.3.3. Further details or proofs can be found in [7], or [11].

.1 Check of formula (2.8)

Recall that

(∇G · T)j = ∇G · τ (·j) + Γjikτ
ik .

In general, for i, j, k = 1, 2, 3, Γjik forms 27 different coefficients, but the symmetry and

orthogonality of G reduce them by a good amount. Using the Levi-Civita connection,

we have

Γjik =
gjl

2

(
∂gkl
∂xi

+
∂gli
∂xk
− ∂gik
∂xl

)
,

so, noticing that l = j otherwise we have zero terms,

Γjik =
gjj

2

(
∂gkj
∂xi

+
∂gji
∂xk
− ∂gik
∂xj

)
.

• If i 6= j 6= k, Γjik = 0 because gkj = gik = 0; we have 6 components of this type.

• If k = j:

Γjij =
1

2h2
(j)

(
∂gjj
∂xi

+
∂gji
∂xj
− ∂gji
∂xj

)
=

1

2h2
(j)

2hj
∂hj
∂xi

=
1

h(j)

∂h(j)

∂xi

so

Γjijτ
ij =

1

h(j)

(
∂h(j)

∂x1
τ 1j +

∂h(j)

∂s2
τ 2j +

∂h(j)

∂s3
τ 3j

)
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and recalling that
∂h(j)

∂s3
τ 3j = 0 ∀j we have

Γjijτ
ij =

1

h(j)

(
∂h(j)

∂x1
τ 1j +

∂h(j)

∂s2
τ 2j

)
.

Analogous result for i = j.

• If k = i, (but 6= j):

1

2h2
(j)

∂gij
∂xi︸︷︷︸

0

+
∂gij
∂xi︸︷︷︸

0

−∂gii
∂xi

 =
1

h2
(j)

h(i)

∂h(i)

∂xj
,

so

1

h(j)

(
−
h(i)

h(j)

∂h(i)

∂xj

)
τ ii =

1

h(j)

−h(1)

h(j)

∂h(1)

∂xj
τ 11 −

h(2)

h(j)

∂h(2)

∂xj
τ 22 −

h(3)

h(j)

∂h(3)

∂xj︸ ︷︷ ︸
0

τ 33

 .

We have 6 components of this type.
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.2 Computations with the asymmetric tensor F

As we said in chapter 4.3.3, the formula (2.8) works only for symmetric tensors. Thus,

we need to do the computations starting from the more general (1.9). Recall that the

4× 4 contravariant tensor F is defined as

F :=


0 u1 u2 u3

0 f 11 f 12 f 13

0 f 21 f 22 f 23

0 f 31 f 32 f 33

 , and G =


1 0 0 0

0 h2
(1) 0 0

0 0 h2
(2) 0

0 0 0 1

 . (15)

Nevertheless, what we only need to see is how the new terms ΓjikF ik i = 0, 1, 2, 3; j =

0, 1, 2, 3 k = 0, 1, 2, 3 look like. First of all, notice that for k = 0 we have that F ·0 = 0,

so we can consider only k = 1, 2, 3. Let’s see cases j = 0 and j = 1, other being

analogous.

• For j = 0, we have that

Γ0
ik =

g00

2

(
∂gk0

∂xi
+
∂g0i

∂xk
− ∂gik

∂t

)
=

1

2

∂g00

∂x0︸︷︷︸
0

+
∂g00

∂x0︸︷︷︸
0

−∂gik
∂t

 =

= −1

2

∂gik
∂t

= −1

2

∂gii
∂t

(i = k, the rest is 0)

So we get

Γ0
iiF ii = −1

2

∂h2
(1)

∂t
F11 − 1

2

∂h2
(2)

∂t
F22 .

• For j = 1 instead the Christoffel symbols associated with the computations of

the first component of the tensor divergence (∇G · T) are

Γ1
ik =

g11

2

(
∂gk1

∂xi
+
∂g1i

∂xk
− ∂gij
∂x1

)
,

so that multiplying them by F ik we obtain (remember that k ∈ {1, 2, 3})

Γ1
ikF ik = Γ1

i1F i1 + Γ1
i2F i2 + Γ1

i3F i3 =

= Γ1
01F01 + Γ1

11F11 + Γ1
21F21 + Γ1

31F31+
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+ Γ1
02︸︷︷︸
0

F02 + Γ1
12F12 + Γ1

22F22 + Γ1
32︸︷︷︸
0

F32+

+ Γ1
03F03 + Γ1

13F13 + Γ1
23︸︷︷︸
0

F23 + Γ1
33F33 =

=
1

2
g11∂g11

∂x0
F01 +

1

2
g11∂g11

∂x1
F11 + 2

1

2
g11∂g11

∂x2
F12 − 1

2
g11∂g22

∂x1
F22 =

=
1

h(1)

∂h(1)

∂t
F01 +

1

h(1)

∂h(1)

∂s1
F11 +

1

h(1)

∂h(1)

∂s2
F12 −

h(2)

h2
(1)

∂h(2)

∂s1
F22 =

=
1

h(1)

(
F01∂h(1)

∂t

)
+

1

h(1)

(
F11∂h(1)

∂s1

)
+

1

h(1)

(
2F12∂h(1)

∂s2
−F22h(2)

h(1)

∂h(2)

∂s1

)
. (16)

As expected, the first term of the last row is not multiplied by a factor of 2: this is

due to the asymmetry of tensor F (its first column is made of zeros).

That being said, we have that the first component of the divergence of tensor F is

given by

(∇G · F)1 = ∇G ·


u1

f 11

f 21

f 31

+
1

h(1)

(
u1∂h(1)

∂t
− f 00h(0)

h(1)

∂h(0)

∂s1

)
+

1

h(1)

(
2f 11∂h(1)

∂s1
− f 11h(1)

h(1)

∂h(1)

∂s1

)
+

+
1

h(1)

(
2f 21∂h(1)

∂s2
− f 22h(2)

h(1)

∂h(2)

∂s1

)
.

Observe that the first term can be written as

∇G ·


u1

f 11

f 21

f 31

 =
1√

detG

[
∂

∂t

(√
detGu1

)
+

∂

∂si

(√
detGf i1

)]
.

This is employed to derive the Momentum’s equations.
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