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Riassunto esteso 
Introduzione	

Sempre più spesso in questi ultimi dieci anni scienziati e ricercatori hanno 
iniziato a considerare nei loro lavori la componente umana (human factors). Ciò 
ha permesso loro di avere risultati più vicini alla realtà aziendale e, di 
conseguenza, di predire con maggiore precisione il comportamento di tutti i 
sistemi industriali dove l’essere umano è il “motore”. Questi risultati più accurati 
permettono di prendere più agevolmente e con maggiore velocità le decisioni 
aziendali e rendono il sistema più affidabile, veloce e preciso.	

E’ da qui che viene l’idea di considerare l’effetto della fatica degli operatori in un 
sistema di picking in un magazzino. In particolare, sarà studiato il tema del 
bucket brigade che verrà applicato ad un sistema di order-picking. Un bucket 
brigade è “un nuovo modo di coordinare i lavoratori che stanno 
progressivamente assemblando (prelevando) un prodotto da una linea (da uno 
scaffale), nel quale gli operatori sono in minoranza rispetto alle stazioni (alle 
postazioni di picking) (Bartholdi and Hackman, 2017).	

Il lavoro inizia con una spiegazione sui concetti di base dei magazzini e 
sull’order-picking (capitolo 1); i successivi due capitoli sono dedicati a un 
riassunto dei principali articoli riguardanti il bucket brigade, prima sulle linee di 
assemblaggio (capitolo 2) e poi sull’order-picking (capitolo 3). Il successivo 
capitolo (capitolo 4) parla di una nuova funzione da me elaborata, che modellizza 
il rallentamento degli operatori durante un turno di lavoro di otto ore a causa 
della fatica muscolare. Nell’ultimo capitolo (capitolo 5), infine, vengono 
considerate quattro differenti tipologie di bucket brigade, facendo variare la 
velocità massima degli operatori e la velocità con cui questi si stancano a 
seconda del lavoro che devono svolgere. Tutti i risultati numerici, che sono stati 
ottenuti con simulazioni su MATLAB, sono presentati con grafici che spiegano il 
comportamento del sistema studiato. Per garantire la correttezza dei risultati, allo 
studio numerico è stato affiancato il calcolo analitico, eseguito con carta e penna.	

Con questo lavoro si dimostrerà che il bucket brigade applicato all’order-picking 
funziona bene, anche considerando l’effetto che la fatica fisica ha sugli operatori. 
Lo scopo dell’elaborato è quello di studiare il comportamento di tutti i possibili 
tipi di bucket brigade che rientrano nelle ipotesi sopra citate e decidere quale di 



questi è il più performante. Inoltre, si studierà come l’effetto della fatica faccia 
rallentare il sistema e i risultati così ottenuti verranno confrontati con quelli 
ottenuti da Bartholdi and Eisenstein (1996a, 1996b), che non considerano 
l’affaticamento. Alla fine del lavoro, oltre a presentare (sia in maniera estesa che 
schematica) i risultati ottenuti, sono fornite anche delle istruzioni che il manager 
deve seguire per innalzare la performance di qualsiasi tipo di bucket brigade.	

!
Capitolo 1 - Scienza del magazzino 	

Lo scopo del primo capitolo è quello di dare al lettore una conoscenza di base sui 
magazzini. Dopo avere presentato brevemente i differenti tipi di scorta e i costi 
del magazzino, l’attenzione passa sul flusso di materiale nel magazzino. Questo 
viene diviso in varie parti (ricevere, mettere via, stoccare, fare picking, 
impacchettare e spedire). La sezione che verrà maggiormente approfondita sarà 
quella sull’order-picking, perché è l’attività più critica nei magazzini. Alla fine 
del capitolo, sono spiegate alcune idee di base per fare picking con maggiore 
efficacia prima in un magazzino low-volume, poi in un magazzino high-volume. 

!
Capitolo 2 - I bucket brigade 

In questo capitolo il tema dei bucket brigade sulle linee di assemblaggio viene 
approfondito tramite la spiegazione dei più importanti articoli scritti dal 1996, 
partendo da quello di Bartholdi e Eisenstein, i primi a studiare questo sistema. 
Tramite questo articolo, viene spiegata la matematica di un sistema bucket 
brigade. Queste regole saranno valide sia per le applicazioni sulle linee di 
assemblaggio sia per quelle sull’order-picking. Il capitolo prosegue dando una 
rassegna di tutti i più importanti articoli riguardanti il bucket brigade dal 1996 ad 
oggi. In questi papers è spiegato come reagisce il sistema se sono modificate 
alcune ipotesi di base o se sono aggiunte ulteriori ipotesi. 

!
Capitolo 3 - I bucket brigade in un sistema di order picking 

In questo terzo capitolo è illustrato il tema del bucket brigade in un sistema di 
order-picking. La spiegazione è presentata seguendo come linea guida ciò che 



Bartholdi e Eisenstein hanno scritto nel loro articolo Bucket brigades: a self-
balancing order-picking system for a warehouse (1996b), dove hanno analizzato 
il fenomeno dell’order-picking nei magazzini di una catena di negozi. Dopo aver 
spiegato quali sono la scaffalatura e il sistema ottimale per lavorare con questa 
tipologia di magazzini, i due scienziati danno alcuni consigli per rendere più 
performanti i bucket brigade in un sistema di order picking. Successivamente, 
vengono mostrati i risultati ottenuti da Bartholdi e Eisenstein (1996b) nel loro 
articolo, partendo dall’ipotesi di lavoro esponenzialmente distribuito. Alla fine 
del capitolo, sono spiegati i vantaggi dell’utilizzo del bucket brigade in un 
sistema di order-picking. 

!
Capitolo 4 - Componente umana nell’order picking: modelli di 
fatica ed ergonomia 

Lo scopo di questo capitolo è quello di dare al lettore una conoscenza di base 
sulla fatica e su come la fatica abbia a che fare con i sistemi di order picking, in 
particolare con i sistemi bucket brigade nell’order picking. Il concetto di fatica è 
strettamente legato a quello di ergonomia, che può essere usata per migliorare 
l’efficienza di un sistema, riducendo la fatica. Alla fine del capitolo, è descritto 
un modello matematico che descrive come il livello di fatica cresca nel tempo in 
un sistema di order-picking. 

!
Capitolo 5 - Bucket brigade e fatica 

Lo scopo di questo capitolo è di connettere i precedenti articoli sul bucket 
brigade (capitoli 2 e 3) con i modelli di fatica (capitolo 4). E’ presentato, prima 
di tutto, un nuovo modello di mia ideazione che descrive il rallentamento della 
velocità di picking nel tempo. Usando questo modello, è possibile descrivere 
matematicamente la dinamica di un bucket brigade di due operatori in un sistema 
di order picking, dove i lavoratori rallentano durante un turno di lavoro di otto 
ore. Utilizzando la matematica è stato possibile scrivere alcuni programmi in 
MATLAB: grazie a questi è stato possibile simulare il comportamento di vari 
bucket brigade in un turno lavorativo di otto ore. Nelle simulazioni vengono 
considerate diverse combinazioni di velocità massime degli operatori e di 
velocità con cui questi si stancano a seconda del lavoro che devono svolgere.  



Risultati e possibili sviluppi 

Il lavoro conferma che un bucket brigade composto da due operatori in un 
sistema di picking è efficace, anche considerando la componente umana. Sia 
analiticamente sia numericamente è stato dimostrato che gli effetti che si hanno 
considerando la fatica muscolare degli operatori sono molteplici. I più importanti 
sono una riduzione del throughput nelle otto ore del turno lavorativo (gli 
operatori rallentano) e uno spostamento della posizione di hand-off lungo la linea 
durante  il turno (cambia il rapporto di velocità tra gli operatori). Inoltre, vengono 
forniti importanti consigli che un manager deve mettere in atto per migliorare la 
performance del bucket brigade.	

Nel particolare, ho ideato una nuova funzione che modellizza l’affaticamento 
degli operatori durante le otto ore del turno di lavoro. Una volta fatto ciò, sono 
state eseguite diverse simulazioni con il software MATLAB. I risultati numerici 
sono stati confrontati con quelli teorici ottenuti con carta e penna. I risultati, 
infine, sono stati riassunti in una unica tabella (tabella 5.5). Tutti i risultati 
ottenuti rappresentano con ottima approssimazione ciò cha accade nella realtà, 
poiché si è partiti da ipotesi più precise, considerando, ad esempio, l’ 
affaticamento.	

Il lavoro svolto è il primo a collegare (analiticamente e numericamente) il bucket 
brigade con la componente umana. Per questa ragione, l’argomento risulta molto 
ampio e difficile da comprendere, così che non è stato possibile approfondire 
alcune parti del lavoro. La vastità del tema lascia aperti alcuni quesiti.	

• Come si comporta il sistema se gli operatori sono più di due? 

• Come cambiano i risultati se si considera tutto il magazzino e non solo un 
corridoio? 

• Cosa succede se non si considera solo l’effetto della fatica, ma si considera 
anche quello dell’apprendimento? 

• La funzione utilizzata per descrivere il rallentamento degli operatori è 
esponenziale. Alcuni autori, però, suggeriscono altri tipi di funzioni. Qual è la 
funzione che dà risultati più vicini alla realtà? 

• Una delle ipotesi di lavoro è quella di considerare il lavoro ugualmente 
distribuito lungo le postazioni di picking e gli ordini tutti uguali. Cosa succede 
se il lavoro viene considerato non equamente distribuito e gli ordini tutti 
diversi? 



• Alcuni importanti risultati sono stati ottenuti solamente in maniera numerica 
grazie a simulazioni con MATLAB. E’ possibile dimostrare matematicamente 
tutto ciò che è stato trovato? 
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Contents 
More recently in these last ten years, many scientists and researchers are starting 
to consider human factors in their works and in their papers. This allows them to 
have results closer to reality and therefore to predict better the behavior of all the 
kinds of systems where the “engine” is the human being. Having more precise 
results facilitates the managerial work and makes the system more reliable, fast 
and flawless.	

From here comes the idea of taking into account the effect of fatigue in order-
picking system and, in particular, in order-picking bucked brigade systems. A 
bucket brigade is “a way of coordinating workers who are progressively 
assembling (picking) product along a flow line (aisle) in which there are fewer 
workers than stations” (Bartholdi and Hackman, 2017).	

The work starts with an explanation of the basic principles of warehouses and 
order-picking (chapter 1) and a summary of the most important papers about 
bucket brigade both on assembly lines (chapter 2) and on order-picking (chapter 
3). Then, the following chapter (chapter 4) talks about a new function that takes 
into account the slowdown of the pickers because of muscular fatigue. In the last 
chapter (chapter 5), four different kinds of bucket brigades are considered, each 
changing the maximum speed of the pickers and their level of effort. All the 
numerical results we obtained in the MATLAB simulations are presented with 
plots that clarify the behavior of the system. To have more guaranteed results, 
everything we obtained with the simulation is confirmed by analytical 
calculations.	

With this work, we will prove that an order-picking bucket brigade system can 
perform well, even if the effect of fatigue is considered. Our aim is to compare 
the different kinds of bucket brigades we have studied and then to decide which 
one performs better. Moreover, we will show how this effect will change the 
results that the other researchers found without taking into account the effect of 
fatigue. At the end of the work, not only the results are presented, but also some 
advice that a manager can use to improve the performance of the system are 
given.	

!
!



 	

 	

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!



Index 
Acknowledgements  

Riassunto esteso 

Contents 

List of figures  

List of tables 

Introduction 

1. Warehouse science 
      1.1 Classification of stocks 
      1.2 Costs to maintain a warehouse  
      1.3 Warehouse flow 
             1.3.1 Generalities 
             1.3.2 Receiving 
             1.3.3 Put away 
             1.3.4 Order-picking 
             1.3.5 Checking and packing 
             1.3.6 Shipping  
      1.4 Order-picking 
             1.4.1 Phases and categories of order-picking 
             1.4.2 Low-volume distribution 
             1.4.3 High volume distribution 
!
2. Bucket brigades  
      2.1 How does a bucket brigade work? 
      2.2 Mathematical model of bucket brigade 
      2.3 Dynamics of bucket brigade with two or three workers 
      2.4 Bucket brigades when worker speed do not dominate each other 

uniformly 
      2.5 Deterministic chaos in a model of discrete manufacturing 
      2.6 Performance of bucket brigade when the work is stochastic 
!
3. Bucket brigade in order-picking systems 
      3.1 A self-balancing order-picking system for a warehouse 

�I



      3.2 Sequential zone-picking vs bucket brigade 
      3.3 How to improve a bucket brigade system 
      3.4 The effectiveness of bucket brigade 
      3.5 Conclusions  
!
4. Human factors in order-picking: fatigue models and ergonomics 
      4.1 What is fatigue? 
      4.2 Human factors in order-picking bucket brigade 
      4.3 Ergonomics 
      4.4 A mathematical model to describe fatigue 	
      4.5 Easy, average or hard work?	
!
5. Bucket brigade and fatigue 
      5.1 Taking into account fatigue in bucket brigade order-picking systems 
      5.2 Fatigue model to describe the slowdown of workers’ pick rate 
             5.2.1 Mathematical formulation 
            5.2.2 Setting the value of vmax 
            5.2.3 Setting the value of µ 
       5.3 Working hypothesis 
       5.4 Mathematics of the system 
             5.4.1 Pickers’ speed varying with v(t) = vmax * e-µt  over time 
             5.4.2 Linear approximation of v(t) between two consecutive hand-offs 
             5.4.3 Pickers’ speed constant between two consecutive hand-offs 
      5.5 Simulations 
            5.5.1 Hypothesis to set up the simulations 
            5.5.2 Pickers with same vmax and same µ 
            5.5.3 Pickers with different vmax and same µ 
            5.5.4 Pickers with same vmax and different µ 
            5.5.5 Pickers with different vmax and different µ 
      5.6 Conclusions and techniques to improve 
!
Results 
!
Appendices 
      A.1 Proof of fixed point convergence theorem 
      A.2 Two operators bucket brigade numerical example 
!
!

�II



Codes is MATLAB 
      C.1 “MyScript_mu.m” 
      C.2 “stepwise_function_mu.m” 
      C.3 “continuous_function_mu.m” 
!
References 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

�III



!

�IV



List of figures 
Fig 1.1 - Disassembly of the products in a warehouse 
Fig 1.2 - Warehouse flow 
Fig 1.3 - Different kinds of picking 
Fig 1.4 - Pick path optimization 
!
Fig 2.1 - Flow line 
Fig 2.2 - Two workers bucket brigade assembly line 
Fig 2.3 - Dynamics of a 2 workers bucket brigade 
Fig 2.4 - Asymptotic behavior of a three workers bucket brigade line 
Fig 2.5 - The dynamics map of a chaotic bucket brigade 
Fig 2.6 - Locations of hand-offs under a stable bucket brigade and a chaotic one 
!
Fig 3.1 - Flow rack 
Fig 3.2 - Faster to slower: position of the second, slower, of two pickers 

immediately after walk back 
Fig 3.3 - Slower to faster: position of the second, faster, of two pickers  

immediately after walk back 
Fig 3.4 - Different behavior of a two operators bucket brigade under the 

hypothesis of exponentially distributed work 
Fig 3.5 - Difference in pick rate between zone picking and bucket brigade 
Fig 3.6 - Difference in WIP and time between zone picking and bucket brigade 
!
Fig 4.1 - Fatigue over time 
Fig 4.2 - Fatigue level with different values of λ 
Fig 4.3 - Exponential fatigue model in a work shift 
!
Fig 5.1 - Exponential fatigue accumulation in a work shift 
Fig 5.2 - Fatigue level in function of time. 
Fig 5.3 - Speed slowdown in a work shift, varying the value of vmax, with a 

constant value of  µ 
Fig 5.4 - Speed slowdown in a work shift, varying the value of µ, with a constant 

value of vmax 
Fig 5.5 - Dynamics of a 2 operators BB system when workers’ speed varies with 

v(t) = vmax * e-µt  between two hand-off 
Fig 5.6 - Fatigue approximation 

�V



Fig 5.7 - Dynamics of a 2 operators BB line when workers’ speed is constant 
between two hand-off 

Fig 5.8 - Speed of the operators over time in a work shift in the case of vmax1 = 
vmax2 = vmax = 0,006 aisles/s and µ1 = µ2 = µ = 7,7480*10-6 

Fig 5.9 - Cumulated time vs hand-off positions when vmax1 = vmax2 = vmax = 0,006 
aisles/s, µ1 = µ2 = µ = 7,7480*10-6 and x(0) = (0,5797; 0,8693) 

Fig 5.10 - Cumulated time and steps vs time between hand-offs when vmax1 = 
vmax2 = vmax = 0,006 aisles/s, µ1 = µ2 = µ = 7,7480*10-6 and 

x(0)=(0,5797; 0,8693) 
Fig 5.11 - Speed of the operators over time in a work shift in the case of vmax1 = 

0,003 aisles/s vmax2 = 0,006 aisles/s and µ1 = µ2 = µ = 7,7480*10-6 
Fig 5.12 - Cumulated time vs hand-off positions when vmax1 = 0,003 aisles/s, 

vmax2 = 0,006 aisles/s, µ1 = µ2 = µ = 7,7480*10-6 and x(0) = (0,8147; 
0,9058). 

Fig 5.13 - Cumulated time and steps vs time between hand-offs when vmax1 = 
0,003 aisles/s, vmax2 = 0,006 aisles/s, µ1 = µ2 = µ = 7,7480*10-6 and 

x(0) = (0,8147; 0,9058) 
Fig 5.14 - Speed of the operators over time in a work shift in the case of vmax1 = 

0,003 aisles/s vmax2 = 0,006 aisles/s and µ1 = µ2 = µ =3,6584*10-6 
Fig 5.15 - Cumulated time vs hand-off positions when vmax1 = 0,003 aisles/s, 

vmax2 = 0,006 aisles/s, µ1 = µ2 = µ = 3,6584*10-6 and x(0) = (0,0975; 
0,6324) 

Fig 5.16 - Cumulated time and steps vs time between hand-offs when vmax1 = 
0,003 aisles/s, vmax2 = 0,006 aisles/s, µ1 = µ2 = µ = 3,6584*10-6 and 

x(0) = (0,0975; 0,6324) 
Fig 5.17 - Speed of the operators over time in a work shift in the case of vmax1 = 

vmax2 = 0,006 aisles/s, µ1 = 3,6584*10-6 and  µ2 = 0  
Fig 5.18 - Cumulated time vs hand-off positions when vmax1 = vmax2 = 0,006 

aisles/s, µ1 = 3,6584*10-6, µ2 = 0 and x(0)  = (0,1576; 0,9706) 
Fig 5.19 - Cumulated time and steps vs time between hand-offs when vmax1 = 

vmax2 = 0,006 aisles/s, µ1 = 3,6584*10-6, µ2 = 0 and x(0)  = (0,1576; 
0,9706) 

Fig 5.20 - Cumulated time vs hand-off positions when vmax1 = vmax2 = 0,006 
aisles/s, µ1 = 12,3850*10-6, µ2 = 0 and x(0)  = (0,1419; 0,4218) 

Fig 5.21 - Cumulated time and steps vs time between hand-offs when vmax1 = 
vmax2 = 0,006 aisles/s, µ1 = 12,3850*10-6, µ2 = 0 and x(0)  = (0,1419; 
0,4218) 

�VI



Fig 5.22 - Speed of the operators over time in a work shift in the case of vmax1 = 
vmax2 = 0,003 aisles/s, µ1 = 12,3850*10-6  and  µ2 = 0  

Fig 5.23 - Cumulated time vs hand-off positions when vmax1 = vmax2 = 0,003 
aisles/s, µ1 = 12,3850*10-6, µ2 =0 and x(0) = (0,0357; 0,6557) 

Fig 5.24 - Cumulated time and steps vs time between hand-offs when vmax1 = 
vmax2 = 0,003 aisles/s, µ1 = 12,3850*10-6, µ2 =0 and x(0)  = (0,0357; 
0,6557) 

Fig 5.25 - Cumulated time vs hand-off positions when vmax1 = vmax2 = 0,003 
aisles/s, µ1 = 12,3850*10-6, µ2 =0 and x(0) = (0,3028; 0,8326) 

Fig 5.26 - Cumulated time and steps vs time between hand-offs when vmax1 = 
vmax2 = 0,003 aisles/s, µ1 = 12,3850*10-6, µ2 =0 and x(0)  = (0,0357; 
0,6557) 

Fig 5.27 - Speed of the operators over time in a work shift in the case of vmax1 = 
0,003 aisles/s, vmax2 = 0,006 aisles/s, µ1 = 12,3850*10-6  and  µ2 = 
3,6584*10-6 

Fig 5.28 - Cumulated time vs hand-off positions when vmax1 = 0,003 aisles/s, 
vmax2 = 0,006 aisles/s, µ1 = 12,3850*10-6, µ2 = 3,6584*10-6 and x(0) = 
(0,1869; 0,4898) 

Fig 5.29 - Cumulated time and steps vs time between hand-offs when vmax1 = 
0,003 aisles/s, vmax2 = 0,006 aisles/s, µ1 = 12,3850*10-6, µ2 = 
3,6584*10-6 and x(0) = (0,1869; 0,4898) 

Fig 5.30 - Speed of the operators over time in a work shift in the case of vmax1 = 
0,003 aisles/s, vmax2 = 0,006 aisles/s, µ1 = 3,6584*10-6 and µ2 = 
12,3850*10-6  

Fig 5.31 - Cumulated time vs hand-off positions when vmax1 = 0,003 aisles/s, 
vmax2 = 0,006 aisles/s, µ1 = 3,6584*10-6, µ2 = 12,3850*10-6 and x(0) = 
(0,7094; 0,7547). 

Fig 5.32 - Cumulated time and steps vs time between hand-offs when vmax1 = 
0,003 aisles/s, vmax2 = 0,006 aisles/s, µ1 = 3,6584*10-6, µ2 = 
12,3850*10-6 and x(0) = (0,7094; 0,7547) 

Fig 5.33 - Speed of the operators over time in a work shift in the case of vmax1 = 
0,005 aisles/s, vmax2 = 0,006 aisles/s, µ1 = 3,6584*10-6 and µ2 = 
12,3850*10-6 

Fig 5.34 - Cumulated time vs hand-off positions when vmax1 = 0,005 aisles/s, 
vmax2 = 0,006 aisles/s, µ1 = 3,6584*10-6, µ2 = 12,3850*10-6 and x(0) = 
(0,1190; 0,4984) 

�VII



Fig 5.35 - Cumulated time and steps vs time between hand-offs when vmax1 = 
0,005 aisles/s, vmax2 = 0,006 aisles/s, µ1 = 3,6584*10-6, µ2 = 
12,3850*10-6 and x(0) = (0,1190; 0,4984) 

Fig 5.36 - Speed of the operators over time in a work shift in the case of vmax1 = 
0,005 aisles/s, vmax2 = 0,006 aisles/s, µ1 = 0 and µ2 = 12,3850*10-6  

Fig 5.37 - Cumulated time vs hand-off positions when vmax1 = 0,005 aisles/s, 
vmax2 = 0,006 aisles/s, µ1 = 0, µ2 = 12,3850*10-6 and x(0) = (0,5060; 
0,6991) 

Fig 5.38 - Cumulated time and steps vs time between hand-offs when vmax1 = 
0,005 aisles/s, vmax2 = 0,006 aisles/s, µ1 = 0, µ2 = 12,3850*10-6  and 
x(0) = (0,5060; 0,6991) 

Fig 5.39 - Speed of the operators over time in a work shift in the case of vmax1 = 
0,0055 aisles/s, vmax2 = 0,006 aisles/s, µ1 = 0  and µ2 = 12,3850*10-6 

Fig 5.40 - Cumulated time vs hand-off positions when vmax1 = 0,0055 aisles/s, 
vmax2 = 0,006 aisles/s, µ1 = 0, µ2 = 12,3850*10-6 and x(0) = (0,1869; 
0,4898) 

Fig 5.41 - Cumulated time and steps vs time between hand-offs when vmax1 = 
0,0055 aisles/s, vmax2 = 0,006 aisles/s, µ1 = 0 (no effort), µ2 = 
12,3850*10-6 (hard work) and x(0) = (0,1869; 0,4898) 

Fig 5.42 - Possible behaviors of the bucket brigade when vmax1 ≠ vmax2 and µ1 ≠ 
µ2 

Fig 5.43 - Hand-off position vs instantaneous speed ratio r = v1/v2 !
Fig A2.1 - Convergence of the time between two consecutive hand-offs in the 

numerical example 
Fig A2.2 - Convergence of the positions of workers during the hand-offs in the 

numerical example 
!
!
!
!
!

�VIII



List of tables 
Chart 1.1 - Division of costs in order-picking 
!
Chart 5.1 - Comparison between the results obtained with exponential speed and 

the results obtained with constant speed between two consecutive 
hand-offs 

Chart 5.2 - Behavior of the bucket brigade system when pickers have different 
vmax and same µ 

Chart 5.3 - Comparison between the 6 possible kind of µ combinations (always 
under the hypothesis µ1 > µ2), considering first vmax1 = vmax2 = vmax = 
0,006 aisles/s and then vmax1 = vmax2 = vmax = 0,003 aisles/s 

Chart 5.4 - Comparison between four different behavior that a bucket brigade 
system could have under the hypothesis of different vmax (always 
under the hypothesis vmax2 > vmax1) and different values of µ 

Chart 5.5 - Summary of the behavior of an order-picking bucket brigade system, 
when the speeds of the pickers are not constant over time 

!
Chart A2.1 - Results of a two operators bucket brigade numerical example 
!
!
!
!
!
!
!
!
!

�IX



!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!



Introduction 
According to Bartholdi and Hackman (2017), “order-picking is the most labor-
intensive activity in warehouses”. It includes 55% of the whole warehouse 
operating costs. This cost can be divided further: traveling takes the 55% of the 
time (and so of the cost), searching takes the 15%, extracting the 10% and 
paperwork and other activities the 20%. Because of its paramount importance, 
order-picking is always an important topic to work on. Working and 
understanding the phenomena which regulates the behavior of the order-picking 
system can allow companies to fulfill costumers’ orders faster, with better quality 
and, as a result, to gain more money, increasing the level of service offered to the 
customer.  

An innovative way to deal with order-picking in high-volume distribution 
warehouses of a chain retailer  is bucket brigade. This assembly system was first 1

invented by Bartholdi and Eisenstein in their paper “A production line that 
balances itself” (1996a) and generalized for order-picking in their paper “Bucket 
brigades: a self-balancing order-picking system for a warehouse” (Bartholdi and 
Eisenstein, 1996b). In the latter they analyzed the phenomenon of order-picking 
in chain retailers. In the two papers mentioned, they explain the basic principles 
of bucket brigade and how it works. Bucket brigade is a “new style of order-
picking in which the work is reallocated by the independent movements of the 
workers. If the bucket brigade is configured properly, the order-pickers will 
balance the work amongst themselves and so eliminate bottlenecks. Moreover, 
this happens spontaneously, without intention or awareness of the workers. This 
means that the order-picking can be more effective than if planned by a careful 
engineer or manager” (Bartholdi and Hackman, 2017).  

A lot of other papers about bucket-brigade have been written in the following 
years, both about assembly lines and order-picking systems. The dynamics of 
two and three operators in bucket brigade production lines has been deepened by 
Bartholdi, Bunimovic and Eisenstein in their paper “Dynamics of two- and three-
worker bucket brigade production lines” (1999). Armbruster and Gel (2002) 
studied the behavior of a two workers bucket brigade, where one worker has a 
constant speed over the whole production line and the other is slower over the 
first portion and faster over the second portion of line. Bartholdi, Eisenstein and 
Foley (2001) studied the behavior of a bucket brigade system when the work is 
stochastic, which is in presence of variability in the work content. Bartholdi, 
Eisenstein and Lim (2003, 2009) proved that, under certain conditions, a bucket 
brigade systems can be chaotic, even if the starting data are deterministic. 
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All of these papers consider the bucket brigade system to be a “perfect machine”, 
in which fatigue is not taken into consideration. Therefore, all the results are not 
exactly in accordance with what happens in a real warehouse, where the pickers 
get tired along the work shift. These last ten years have been used to obtain more 
precise results. In fact, researchers now consider the human factors in their paper, 
obtaining results that are closer to reality. According to Grosse, Glock and 
Neumann (2016), in fact, “human factors can have a great impact on the 
performance of the overall system” and, because of this, it is of paramount 
importance to consider them. From here comes the idea to include human factors 
in the mathematics of order-picking bucket brigade systems.  

Then, the aim of this work is to find new mathematical and analytical formulae to 
model the behavior of a bucket brigade order-picking system. These formulae 
take into account the effect of muscular fatigue on the pickers. In particular, this 
work deals with all the different possible cases that a manager could face, 
considering the slow down of the pickers (thanks to a new formula) and 
considering different levels of work effort. All of these cases are also studied 
numerically with MATLAB. We used this software to confirm the correctness of 
the results and to find some other results that are impossible to find analytically. 
At the end of the work, all the different possible cases are compared to find 
which kind of bucket brigade performs best. Moreover, also some important 
strategies that the manager should use to improve the performance of the system 
are given.   

Down here, a schematic diagram is used to describe the structure of the work and 
how the chapters are linked between each other. 

!
!
!
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Chapter 1 

Warehouse science 
The aim of this first chapter is to give the reader the basic knowledge on 
warehouses. After we have given a quick overview of the different kinds of 
stocks and of the costs in a warehouse, we will bring our attention on the flow of 
items in a warehouse, dividing the flow in different sections (receive, put-away, 
storage, pick, pack and ship). The section that we will deepen more is the one 
about order-picking, because it is the most labor-intensive activity in warehouses. 
At the end of the chapter, we will give some basic ideas to deal with low-volume 
and high-volume distribution warehouses. 

!
1.1 Classification of stocks 

The first question we have to answer is “why do we need a warehouse?”. A 
warehouse requires labor, capital and information systems, all of which are 
expensive. Can we avoid this expense? The answer is no, because we need a 
warehouse to match supply with customer demand. The main problem is that 
demand can change quickly, but supply takes longer to change. This is one of the 
most challenging problems to solve in every factory and, to solve it, we can use 
warehouses, that allow us to respond quickly when demand changes. 

From here on, in particular in this paragraph, we will explain deeply which kinds 
of stock exist and which are their aim; then, in the next paragraph, we will 
deepen the theme of warehouse costs. 

To classify the different kinds of stock, we will divide them in six categories. For 
each category we will describe the reasons why to use that kind of stock, how the 
stock works and, at the end, which is the aim of the stock that we are taking into 
account. This list of stocks will give the reader a quick overview on the different 
kinds of stocks that it is possible to find. The six categories are presented deeply 
in the text De Toni, Panizzolo and Villa (2013) and in the notes from the lectures 
of the course “Organizzazione della Produzione e dei Sistemi Logistici” held by 
Panizzolo R. (2017). 

!
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The six stock categories are: 

• Cycle stock: they are used when orders are bigger than costumer’s demand. 
Using them, companies can take advantage of economies of scale. Some 
reasons why cycle stock exists are discounts when a lot of material is 
purchased, setups and fixed shipping costs. The aim of this stock is to use 
economic order quantity as much as possible.  

• Decoupling stock: they are used when it is necessary to decouple different part 
of the production chain. Some examples are different speeds of consecutive 
machines, different criteria of order aggregation, bottlenecks. The aim of this 
stock is to maximize the efficiency of the productive factors. 

• Transit or pipeline stock: they are linked with material handling and 
transportation between different areas of the production chain or between 
suppliers and customers. This kind of stock is used when distribution and 
supply times are long. The goal of this stock is to guarantee a high service 
level. 

• Safety stock: they are used to avoid delays caused by uncertainty of demand 
and supplies; for example, if a customer orders more than it is expected, if 
there are delays in the production of if a line gets stuck. The aim of this stock is 
to protect from this uncertainty. 

• Seasonal or anticipation stock: they are used for products which have a 
seasonal demand. In general, this kind of stock is used when a factory cannot 
produce enough during the season when there is a surplus of demand. In these 
cases, it is better to produce smoothly all year long, keeping stock when the 
demand is low and using the stock when the demand is higher. The goal of this 
stock is to balance capacity and load.   

• Speculation stock: they are linked to expectations of rising costs of supply 
materials (for example gold, grain, …). Generally, the daily price of these 
supply materials is decided by a particular entity (for example the price of gold 
is decided in London). The aim of this stock is to minimize purchase costs. 

!
Now that it is clear what are the advantages of a warehouse and why it is 
necessary to have it, we will discuss about its cost, which are of different nature. 
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1.2 Costs to maintain a warehouse 

A good overview of the costs to maintain a warehouse is given in the book 
“Gestione della produzione” (De Toni, Panizzolo and Villa, 2013) and in the 
notes from the lectures of the course “Organizzazione della Produzione e dei 
Sistemi Logistici” (Panizzolo, 2017) and in the notes from the lectures of the 
course “Logistica Industiale” (Battini, 2018).  

The costs of a warehouse are: 

• Cost of issuing of the order: it is the cost that has to be payed when an order 
has been done. It can be divided in two main parts: cost to order raw materials 
from a supplier (10-80 €), composed by administrative costs + shipping cost 
and cost to order material needed for production, composed by preparation cost 
+ setup cost (10-1000 € due to the stop of the machine, long times).  

• Cost of maintenance: it is the cost that comes from the material which is in the 
warehouse; this cost is directly proportional to the size of the warehouse. It can 
be divided in cost of fixed assets in the warehouse (the fixed assets could be to 
invest in something more profitable; it is usually the 5% of the warehouse 
value), maintenance cost, insurance and tax costs, obsolescence or senescence, 
raw material depreciation cost. The cost of maintenance can be calculated as 
the 15-30% of the warehouse value (the most used value today is 20%); for 
example, if inside a warehouse there are materials which are worth 1000000 €, 
the cost of maintenance can be valued around 200000 €. 

• Cost of stock-out: it is linked to the money that is not gained when a customer 
order a product missing in the warehouse. The cost is generated by the inability 
to supply the customer. Furthermore, the name of the brand is going to be 
damaged. The stock-out cost is very difficult to calculate. 

The warehouse is necessary, but it costs a lot and, like all the costs, we have to 
reduce them. One of the main ideas of lean production is to reduce as much as 
possible the size of the warehouse to lower the costs. The aim of every company 
should be reducing the size of the warehouse as much as possible, but having a 
warehouse for all the reasons explained above. 

!
!
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1.3 Warehouse flow 

1.3.1 Generalities 

In general, warehouse reorganizes and repackages products. In a warehouse, the 
product typically arrives packaged and leaves the warehouse packaged, but in a 
smaller scale: a warehouse disassembles products together in smaller quantities, 
as it is shown in figure 1.1.  

 

!
Fig 1.1 - Disassembly 
of the products in a 
w a r e h o u s e . T h e 
p r o d u c t s u s u a l l y 
arrive in a warehouse 
together in a lot. 
Inside the warehouse 
they are separated in 
s m a l l e r l o t s , 
sometimes eaches, 
ready to be shipped. 
(from Bartholdi III 
J.J. and Hackman S., 
2017) 

!
!
!

!
For example, if a pallet is shipped in a warehouse, it will be divided in the 
warehouse and shipped out as eaches. The reason why the products arrive in a 
warehouse in lot is that it is faster and simpler to handle lots than eaches. A 
golden rule, suggested by Bartholdi III and Hackman (2017) is: “The smaller the 
handling unit, the greater the handling cost”. In fact, it is simpler to ship or 
handle products packed together than eaches. For example, if 1000 products has 
to be handled, it is faster and simpler (it is cheaper as well) to handle them in 100 
lots of 10 products and it is even better to handle them in 20 lots of 50 products. 
Therefore, when it is possible, it is better to handle as many products together, 
because it costs less. 
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More or less in every warehouse, there is a common flow of materials: 
warehouses receive bulk shipments and stage them for quick retrieval; then, in 
response to a customer’s order, products are picked automatically or by an 
operator and they are shipped to the customer as soon as possible. The flow of 
material in a warehouse can be summarised in two parts: inbound processes and 
outbound processes. In inbound processes the two main activities are receiving 
and put-away. In outbound processes the main activities are order-picking and 
checking, packaging, shipping. Between inbound and outbound processes there is 
storage, where products are stocked. This material flow is summarized in figure 
1.2. 

Fig 1.2 - Warehouse flow. After the materials are received and put away in the storage, they are 
picked and then packed and shipped depending on the order of the customer. Receive and put-
away are inbound processes, while pick and pack, ship are outbound processes. In this work we 
will deepen in particular the picking part, circled in red. (from Bartholdi III J.J. and Hackman 
S., 2017) 

!
A product must flow continuously along the process as fast as possible and 
without interruptions, because each time a product is put down, it means it has to 
be picked up again later: double-handling is a loss of time, energy and money. 
Transportation is one of the waste of lean production as and therefore it has to be 
eliminated. The effect of double-handling is wider if we think that we have to 
handle thousand of skus  per hour; that is another reason why it is better to 2

handle materials in lots and not in eaches. In conclusion, it is possible to say that 
when it is possible to avoid double handling, it is better to do it to save money 
and therefore to gain more. 
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From here on, we will explain widely the four part of the flow we mentioned 
before. After that, we will focus more on picking, which is the most labor-
intensive activity in most warehouses. 

!
1.3.2 Receiving 

Material is received after an order has been done. Receiving begins with a list, 
which shows the schedule of arrivals; this list lets the warehouse to know exactly 
when the trucks are arriving and in which order. Trucks usually arrive within 
30-60 minutes time windows. As soon as a product arrives, it is registered in the 
database, it is checked and it is stocked. Products are usually shipped in pallets: it 
means they are held together on a platform 800x1200 (European pallet), 
1016x1219 (American pallet) or 1165x1165 (Australian pallet); the main 
advantage to use pallets is that loads and unloads of trucks are faster. Along the 
flow these pallets will be disassembled is smaller groups of products.  

The cost of receiving is around the 10% of the whole cost.  

!
1.3.3 Put away 

Put away is a very important issue in warehouses. Before doing it, it is very 
important to decide the location to stock pallets. The place where they are 
stocked determines how quickly products can be reached and the later cost of 
products handling. The location of products is essential to write the picking list, 
which shows the order-pickers or the machines where retrieving the product 
when a customer asks for it. As soon as a product is put away, it has to be 
registered on a software, which creates the picking list.  

Put away typically accounts the 15% of the warehouse costs, but this cost can be 
reduced if the locations to stock pallets are chosen well. 

!
1.3.4 Order-picking 

Order-picking is the most labor-intensive activity in warehouses. It also 
determines the service seen by the customers. It must be flawless and fast. It can 
be done by a person or by a machine. 

Once a customer orders some products, it is checked if these products are 
available in the warehouse; if they are, the order can be accepted. As soon as the 
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order is accepted, a large software called warehouse management system  (WMS) 
creates a picking list to guide order-pickers. The software produces all the 
shipping documentation and the shipping schedule and coordinates all the 
different activities in the warehouse.  

Order-picking includes 55% of the whole warehouse operating costs. Therefore, 
as we said before, it is the most labor-intensive activity in the warehouse. This 
cost can be divided further: traveling takes the 55% of the time (and so of the 
cost), searching takes the 15%, extracting the 10% and paperwork and other 
activities the 20%. The division of the cost is shown in chart 1.1. 

!
Chart 1.1 - Division of costs in order-picking. The costs of order-picking includes 55% of the 
whole warehouse operating costs and can be divided in traveling (55%), searching (15%), 
extracting (10%) and paperwork and other activities (20%). (from Bartholdi III J.J. and 
Hackman S., 2017) 

!
The object that catches the eye immediately is the cost of traveling, which is the 
major cost. This means that, to reduce dramatically the cost of a warehouse, the 
first thing to do is to reduce the traveling cost, because it is the biggest one. To 
reduce the traveling cost it is important to optimize the layout of the warehouse, 
to reduce travel (problem of pick-path optimization) and then to have an efficient 
picking list. Is it also important to notice that picking is not an action which adds 
value to the product, because it is an action that is not requested by the customer. 
In other words, the customer is not willing to pay for transportation and picking. 
In lean production philosophy, all the actions that are not adding value to the 
product can be considered waste (muda) and they have to be reduced to a 
minimum or eliminated.  

The part of the flow which concerns picking starts when a customer places an 
order: his order can be seen as a shopping list. The warehouse management 
system (WMS) collects all the orders and checks if the material is available in the 
warehouse. If it is, the WMS creates the picking list, taking into account the 
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layout of the warehouse and the present operations. With this list, pickers know 
the number of products they have to pick, where to go and in which order pick 
products. Putting different orders together, it is possible to make the order-
pickers concentrate themselves only on one area of the warehouse, so that they 
can reduce travel and be faster. The picking list is usually a piece of paper, but it 
can be also written on labels, communicated by lights, RF or vocal transmission. 

The most labor-intensive type of picking is picking of less-than-cartoon 
quantities (broken-case or split-case), that means to pick products which are not 
held together by a cartoon or a box. This kind of picking is more difficult than 
cartoon-picking (picking full cartoons), because it requires handling of small 
units such as pieces or eaches. Broken-case picking cannot be automatized, 
because every each has a different shape and volume; on the contrary, cartoon-
picking can, because of the uniformity in shape and dimension of cartons, which 
are almost always rectangular and equal. Collecting products in a carton can also 
be useful because cartons protect products from damages. At the end, also pallet 
can be moved; if they go directly from receiving to shipping, the operation is 
called crossdock. All the possible kind of picking are shown in figure 1.3. 

!
!
Fig 1.3 - Different kinds 
of picking. It is possible 
to pick pallets, cartoons 
or eaches, depending on 
what arrives from the 
receiving department. If 
eaches are picked, they 
should be put together 
in pallets to be shipped 
easily. If a pallet goes 
directly from receiving 
t o s h i p p i n g , t h e 
operat ion is cal led 
c r o s s d o c k . ( f r o m 
Bartholdi III J.J. and 
Hackman S., 2017) 

!
!

In conclusion, there are different kind of level of picking, depending on the 
dimension of the picking unit. 
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It can be useful to define some parameters which help to understand how is the 
picking in a warehouse. The first one is sku density, which counts the number of 
skus available per unit of area on the pick-face, which is the 2-dimensional 
surface from which skus are extracted. The second one is pick density, which is 
correlated with sku density. Pick density is the number of picks achieved per unit 
of area on the pick face. In general, if a warehouse has a high sku density it 
means it has a high pick density as well and therefore it means the travels are 
shorter. Then a good strategy to save money could be to have a high sku density 
and a high pick density. Another important and more useful parameter is picks 
per unit of distance along the aisle traveled by an order-picker. If it is high, it 
means the order does not require much travel per pick and it means picking is 
cheap, because we are paying only for retrieval and not for travel. If it is low, it 
means the order-picker has to travel for a long distance to reach all the products 
he needs, therefore the cost of picking is higher. Pick density is usually high for 
big orders and low for small orders. A huge advantage in picking can be obtained 
increasing pick density; but pick density depends on the order of the customer, so 
we can’t raise it as we like. A good strategy, then, could be to ensure high sku 
density: as it is written before, if sku density raises, pick density will raise as 
well. There are a few ways to do it, but the most common is to store the most 
popular skus together, so that they can be reached at the same time and with 
shorter traveling distance; moreover, order-pickers can fulfill the customer’s 
order faster because of the short travel. A second way to increase the pick density 
is to batch orders. It means to assign more than one order at the same time to an 
order-picker, so that he can retrieve many orders in one trip. Doing this, pick 
density is increased, but it creates some problems: more organization is needed 
and pickers must bring with them a container for each order. This slows down the 
process and gives the pickers more possibilities to make mistakes; furthermore, 
more space is required. A good trade-off could be batch single-line orders only: 
this means batch order only if they are in the same aisle. 

The most difficult challenge is to accept medium-size orders: more than two 
picking lines are taken into account, but picking lines are too few to amortize the 
cost of walking. In their book Bartholdi III and Hackman (2017) give some 
general rules to decide how to fulfill orders: 

• It is better to batch orders when the costs of work to separate the orders plus 
the cost of additional space are less than the extra walking incurred if orders 
are not batched. 

• It is almost always better to batch single-line orders, because no sortation is 
required. 

• It is never better to batch large order, because the pick density it is high. 
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• Decisions have to be taken time after time with medium size orders.  

Another problem of order-picking is that the products which are picked must be 
replenished. Operators who are dedicated to the replenishment of the shelves 
(restockers) usually take lots and divide them in skus. Because of this, the 
number of restockers must be lower than the number of order pickers: the general 
rule is to have one restocker to every five pickers. The cost of replenishment is 
generally higher than the cost of picking, because restockers retrieve lots from 
bulk storage and they split them to obtain skus ready for picking. 

The last important decision to take is how many pickers have to be dedicated to 
an order. There are three possibilities that can be chosen: 

• One operator per order. 

• Many operators per order, operators pick one at a time. 

• Many operators per order, operators pick together. 

The key factor to decide which kind of strategy is better to use is flow time. The 
question that has to be answered is: “How can we reduce at a minimum the flow 
time?”. The answer will give us the right way to proceed. Reducing flow time 
means that orders flow quickly and that the request of the customer can be 
fulfilled as fast as possible: this means that the level of service is also as high as 
possible. A strategy to shorten flow time is to create a fast-pick area, which is a 
“warehouse within the warehouse”: the most popular skus are stocked together in 
this area. This means that for most orders, traveling distances are reduced to a 
minimum, therefore the time to fulfill an order is shorter and the flow is fast. The 
disadvantage of this area is that it needs replenishment from bulk storage.  

!
1.3.5 Checking and packing  

In general, after all the products of an order have been picked, every order has to 
be checked to control if it is complete and accurate. Order accuracy is one of the 
most useful indicators to measure the level of service given to a customer. 
Inaccurate orders lead to problems: the customer can be annoyed and he could 
send the products back, generating a return, which is very expensive to handle 
(up to 10 times the cost of normal shipping). Because of this, it is very important 
to be sure that every order is perfect. If it is possible, then, it is always better to 
pack all the parts of an order together. The customer often requires it, because he 
can shorten the time of shipping, unloading and handling.  
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1.3.6 Shipping 

When the products are ready and packed together, they can be shipped. In 
general, shipping works with larger units than picking, because all the items are 
consolidated in few containers (cases, pallets). Depending on the type of pallet 
and on the type of truck, a different number of pallet can be shipped. As soon as 
the truck leaves the factory, the departure is registered and the customer is 
warned about the departure.  

!
1.4 Order-picking 

1.4.1 Phases and categories of order-picking 

As it has been told in the previous chapter, order-picking is the most labor-
intensive activity in warehouses. It takes around the 55% of the whole warehouse 
operating costs and it also determines the level of service seen downstream by 
the customer; for all this reasons it must be flawless and fast. 

According to Bartholdi and Hackman (2017), the action of picking can be 
divided in three phases: 

• Travel to the storage location: the operator, thanks to the picking list, has to 
reach the right storage location; this is the most expensive action in terms of 
time and money and the activity is non-value-adding, so that it can be 
considered a waste. 

• Local search: once the operator has reached the right location, he has to find 
the exact each or product. The smaller is the product, the more difficult is the 
operation, because it takes more time and requires more accuracy. That is the 
part of picking in which is simpler to make mistakes, so the operator has to pay 
a lot of attention not to pick the wrong sku. This activity is non-value-adding as 
well. 

• Reach, grab and put: it is when the operator takes and put in the container the 
products requested by the customer. It is the only part of picking which is 
value-adding. These actions can be automatized to speed up the process. 

Order-picking can be divided in two main categories: 

• In low-volume distribution customer orders are small, urgent and different from 
each other. Therefore it is normal that an order-picker has to travel long 
distances to fulfill an order; there are a lot of choices about traveling routes. 
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The aim is to find the fastest way (the shortest way) to visit and pick all the 
requested items. The name of this problem is “problem of pick-path 
optimization”. 

• In high-volume distribution customer orders are typically large and of similar 
products. Each order-picker makes a lot of picks in a short distance and it is 
typical that order-pickers follow a common path, such as along an aisle of flow 
rack. The challenge here is to find a way to balance the flow, keep it smooth 
and eliminate bottlenecks. A solution of this problem is bucket brigade, which 
is the main theme of this work and it will be deepened widely in the next 
chapters. 

!
1.4.2 Low-volume distribution 

As it has been told before, in high-volume distribution order-pickers have to 
travel long distances and becomes crucial the problem of pick-path optimization 
(traveling Salesman Problem - TSP), which is to find the shortest travel (shortest 
time) to pick all the items to fulfill an order. This has to be done, because travel 
time is a waste: it does not add value to the product. 

The TPS problem is difficult to solve, because: 

• For the general problem there is not a general solution yet. 

• Even if the problem is small, the time to solve it could be very long. 

• The optimal solution can be very hard to find. 

Then, the difficulty to find the solution is due to the layout of the warehouse: it is 
pretty easy to find quickly a solution when the travel is constrained by aisles, but 
it is not when the warehouse has a more complicated layout. In general, WMSs 
do not support pick-path optimization, because they do not have the information 
of distances between locations where material is stocked. Then, even if a WMS 
supports pick-path optimization, it can tell the picker only in which order he has 
to visit locations, but not the path he has to follow; the operator has to decide 
which path is the fastest one and he can make the wrong choice, because he does 
not have a global vision of the warehouse, but only a limited one. The most 
developed WMS can tell the pickers which is the right path to follow, but they 
are very expensive and they require a lot of time to calculate the optimal solution. 
Because of the difficulty to find the optimal solution, it is preferred to use 
heuristic methods to find a good solution. With this kind of methods the solution 
is not the best one, but the time to find it is shorter. The idea of this kind of 
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methods it to find a good global path, which visits all the locations of a 
warehouse and then shorten it depending on the order: if the global path is 
efficient, even the sub-path has to be efficient as well. For a simple layout, the 
global path could be the serpentine along the aisle, as shown in figure 1.4; every 
time the customer makes an order, it has to be evaluated if and how to change the 
general path. 

Fig 1.4 - Pick path optimization. The picture shows a heuristic method used to find a good 
solution. The basic idea under this heuristic method is to find a good global path, which visits 
all the locations of a warehouse and then shorten it depending on the order. For a layout of 
parallel aisles a good global path could be a serpentine. Every time the customer makes an 
order, some parts of the path can be cut. (from Bartholdi III J.J. and Hackman S., 2017) 

!
One of the most used heuristic methods to optimize pick-path is due to Ratliff 
and Rosenthal (see Ratliff and Rosenthal, 1983). The algorithm generates near-
optimal pick paths, with the constraints that the aisles cannot be revisited and that 
the aisles cannot be visited out of their natural sequence. Because of these 
restrictions the solution could be slightly longer than the optimal one. With this 
constraints, when a picker picks an item he has two choices: return back from the 
same way or continue his travel along the aisle. The WMS has the task of giving 
the operator the right instruction: the algorithm tells the picker what he has to do 
in every situation.  

How much is optimization worth? If an order is composed by 1-3 items 
optimization is useless, because it is very simple to find the best traveling path. If 
an order is composed by a lot of items, it optimization does not worth as well, 
because order-pickers have to visit nearly every location of the warehouse. The 
only case in which pick-path optimization worths a lot it the case in which in a 
warehouse there are many slow-moving items and customer orders are medium-
sized. 

!

�15



1.4.3 High-volume distribution   

A well known lean principle is to reduce inventories as much as possible, in 
order to save money and underline and discover problems and inefficiencies of 
the system. Therefore, this need of a small inventory has led to more frequent 
shipments of smaller quantities. In high-volume distribution only a little travel is 
required, because pick density is very high. Because of this, the most non-value-
adding activity is not anymore traveling as in low-volume distribution, but it is 
work due to local search. A common way to reduce the time due to common 
search is pick-to-light, which is a system mostly used America: a computer 
switches on a light to indicate to the order-picker where the right product is. The 
challenge of high-volume order-picking is to get workers to where they are most 
needed, so that everyone remains busy every time. To reach this aim, a lot of 
organization is needed. The best strategy to succeed is to use a self-organizing 
system that balances itself, without the need of a centralized authority, who 
coordinates the system. This self-organizing system is called bucket brigade and 
it will be the main topic of this thesis. According to Bartholdi and Hackman 
(2017), bucket brigades “can function as a self-organizing system that 
spontaneously achieves its own optimum configuration without conscious 
intention of the workers, without guidance from management, without any model 
of work content, indeed without any data at all. The system in effect acts as its 
own computer”. 

!
!
!
!
!
!
!
!
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Chapter 2  

Bucket brigades 
In this chapter, the theme of bucket brigade in assembly lines will be deepened 
through the explanation of the most important papers written since 1996, when 
Bartholdi and Eisenstein wrote the first paper. We will start from the basic rules 
and mathematics of bucket brigade: this rules will be valid for both bucket 
brigade in assembly lines and in order-picking. We will continue the chapter 
explaining what happens when some of the basic hypothesis are modified or 
some more hypothesis are added.  

!
2.1 How does a bucket brigade work? 

The first paper about bucket brigade is “A production line that balances itself”, 
written by Bartholdi and Eisenstein (1996a). The paper explains the basic 
principles of bucket brigade and how it works; it is mainly focused on bucket 
brigade in assembly lines. 

According to Bartholdi and Eisenstein (1996a), traditional assembly lines are 
inflexible, because each worker has his workspace and he cannot move from it. 
In general, the number of stations is equal to the number of workers. There are 
two ways to change production rate: change number of the shift (only coarse 
adjustments) or redistribute tasks, tools and parts over different stations 
(expensive and disruptive). 

Particularly in the last 20 years and always more, the production system has to be 
flexible, because of seasonalities or short life-cycles. A good strategy to increase 
the flexibility of an assembly line is to have less workers than stations and 
workers are allowed to walk along the stations to continue work on an item. 
There is no manager that tells the workers what to do, because the system 
balances itself. Furthermore, there are no buffers for work-in-process inventory. 
To obtain this, each worker independently follows a simple rule that determines 
what to do next, as suggested by Bartholdi and Eisenstein (1996a). In their paper, 
they use the example of “Toyota Sewn Products Management System” (TSS). 
Let’s see how TSS works.  

!
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Let’s consider a flow line with m stations as in figure 2.1. 

Fig 2.1 - Flow line. A simple flow line in which each item requires processing on the same 
sequence of workstation. The generic station is station n. (from Bartholdi and Eisenstein, 1996a) 

!
A station can process at most one item per time and only one worker can work in 
one station. Each worker carries an item from station to station, processing it at 
each station, until passing it off (take over, hand-off) to a subsequent worker. The 
workers can be numbered from 1 to n, according with their sequence on the line 
(following the direction of the product flow).  

The last worker, once finished with his task, walks back to the worker behind 
him and continues with his task. This worker does the same to the picker behind 
him. Finally, as this process continues, the first worker is reached and he must 
walk back to the depot to receive a new amount of work. Workers are not 
allowed to pass each other, so a worker can be blocked when he is faster than the 
one who is preceding him. The operator who is blocked can start working again 
only when the station is free. 

Bartholdi and Eisenstein (1996a) proved that if the operators are allocated from 
the slowest to the fastest then, during the natural operation of the line, the work 
content of the product will be spontaneously reallocated among the workers to 
balance the line. The result, then, is a pure pull system without unattended work-
in-process (WIP) between the stations. The throughput of the line depends only 
on the number of operators and their speed. The difference between a TSS and a 
bucket brigade is that in a bucket brigade the workers are ordered from slowest to 
fastest and in a TSS no ordering is imposed. This leads to a system which 
balances the workload of each worker automatically (Bartholdi et al. 1996a). 
Balance means that a stable partition of work has emerged, so that each worker 
performs the same portion of work content from item to item. For the TSS 
workload balance has to be enforced manually. 

!
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2.2 Mathematical model of bucket brigade 

It is difficult to understand the behavior of a bucket brigade on paper, because it 
is a dynamic system which evolves through the time. Moreover, the speed of the 
operators are different. The easiest way to represent the system is the vector x of 
the worker’s position. If the numbers of the workers is n, the vector will be x = 
⎨(x1, …, xn)⎬, dove 0 ≤ x1 ≤ … ≤ xn ≤1, because the operators cannot overtake 
each other and because the length of the line is normalized at 1.  

Another important parameter is the instantaneous speed of each worker i, which 
is vi(x). To avoid complications we will consider the speed of the operators 
constant through the time and along the line and of finite value (not 0 and not ∞). 
Hence, it is possible to build the vector of workers velocities v = ⎨(v1, …, vn)⎬, 
which is constant through the time and along the line. Another important 
assumption is that the velocities of moving backwards can be considered ∞, 
because the time to walk back is much shorter than the time requested to 
assembly (pick) an item, so the time to walk backwards can be neglected. This 
leads to an important conclusion: the line resets itself at such an instant. It means 
that when the last worker finishes an item, then, at the same instant, worker n 
takes over from worker n-1, who takes over from n-2, …, who takes over from 
worker 1, who introduces a new item into the system. 

All this simplification gives us the possibility to describe the behavior of the 
system considering only the hand-off positions. The only thing we have to do is 
now consider the vector of vectors ⎨(x(0), x(1), x(2), …, x(t),…)⎬ of workers 
positions at the instant immediately after the line resets. The vector x(0) is the 
vector composed by the initial positions of the workers. It is important to notice 
that in each vector x(t) the first component x1(t) = 0 (everywhere except for the 
vector of starting position x(0), where it is possible to have x1(0) ≠ 0). Therefore, it 
is possible to study the behavior of a bucket brigade system studying the 
evolution of the vector x(t), which depends on the starting vector x(0) and on the 
speed vector v.  

The bucket brigade system is a dynamic system. In terminology of dynamical 
system x(t) is the tth iterate of the system and the sequence of worker position is 
the orbit beginning at x(0). For each time the system evolves following the 
function x(t+1) = f(x(t)). In conclusion, it is possible to study the behavior of a 
bucket brigade studying its orbits. 
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Bartholdi and Eisenstein (1996a) worked on bucket brigades starting from the 
following assumptions and restrictions. 

Assumptions: 

• Total ordering of workers by velocities: each worker is characterized by a 
distinct, constant work velocity vi. 

• Insignificant walking time: the total time to assemble a product is significantly 
greater than the time to walk the length of the (assembly) line. 

• Smoothness and predictability of work: the nominal work content of the 
product is a constant (which is normalized to 1); and the work content is spread 
continuously and uniformly along the assembly line. 

Restrictions:  

• The workers are ordered from slowest to fastest along the flow line. 

• The workers are not allowed to pass one another. If a worker is blocked by 
another worker, he must wait until the other worker is finished. 

The model with this assumptions and restrictions is called normative model. 

A dynamical system, and in particular a bucket brigade can be balanced or not. 
According to Bartholdi and Eisenstein (1996a), a bucket brigade production line 
is balanced if each worker repeats the same interval of work content on 
successive items. Moreover, a balanced line produces at a steady rate and each 
worker can concentrate on a subset of the work content. Bartholdi and Eisenstein 
(1996a) shown that in a bucket brigade line could exist a fixed point and it means 
that, under certain conditions, the system can be balanced after a few iterations. 
They proved that if workers are sequenced from the slowest to the fastest (v1 < 
… < vn), the fixed point is unique and it does not depend on the starting position 
of the workers x(0); furthermore, in this case there are no blocks. If workers are 
not sequenced from the slowest to the fastest, multiple fixed point could exist, so 
the system could not converge (see 2.2).  

It is interesting to show how a bucket brigade evolves during the time. Let’s 
consider a two operators bucket brigade line of normalized length 1, as in figure 
2.2. The initial data we need are the speed vector v = (v1, v2) where v2 > v1 and 
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the vector of starting position x(0) = (x1(0), x2(0)), which gives the position of 
workers at time t0 = 0.  

Fig 2.2 - Two workers bucket brigade assembly line. At the time t the 2 workers are in the 
positions x1 and x2 and their velocities are v1 and v2. The length of the production line is 
normalized at 1 unit (l = 1). 

!
After the first step (at time t1, after the first hand-off): 

the dynamic of the first worker is x1(0) + v1 * t1 = x2(1) 

the dynamic of the second worker is x2(0) + v2 * t1 = 1 

and it is possible to obtain t1 from the second equation: t1 = (1 - x2(0)) / v2  

replacing t1 in the first equation we obtain  x2(1) = x1(0) + v1 * t1 

then, we know that x1(1) = 0 and, more in general x1(t) = 0 ∀t - ⎨t = 0⎬. 

From here x(1) = (x1(1), x2(1)) = (0, x2(1)) and t1 come. 

!
After the second step (after t2 more, so immediately after the second hand-off):  

x1(1) + v1 * t2 = x2(2) , where x1(1) = 0, so v1 * t2 = x2(2) 

x2(1) + v2 * t2 = 1 

and we know that x1(2) = 0. 

From the second equation it is possible to obtain t2 = (1 - x2(1)) / v2  and replacing 
t2 in the first equation it is possible to obtain x2(2) = v1 * t2. 

From here x(2) = (x1(2), x2(2)) = (0, x2(2)) and t2 come. 

!
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After the third step (after t3 more, so immediately after the third hand-off):  

x1(2) + v1 * t3 = x2(3) , where x1(2) = 0, so v1 * t3 = x2(3) 

x2(2) + v2 * t3 = 1 

and we know that x1(3) = 0. 

From the second equation it is possible to obtain t3 = (1 - x2(2)) / v2  and replacing 
t3 in the first equation it is possible to obtain x2(3) = v1 * t3. 

From here x(3) = (x1(3), x2(3)) = (0, x2(3)) and t3 come. 

!
After the tth step:  

x1(t-1) + v1 * tt = x2(t) , where x1(t-1) = 0, so v1 * tt = x2(t) 

x2(t-1) + v2 * tt = 1 

and we know that x1(t) = 0. 

From the second equation it is possible to obtain tt = (1 - x2(t-1)) / v2  and replacing 
tt in the first equation it is possible to obtain x2(t) = v1 * tt. 

From here x(t) = (x1(t), x2(t)) = (0, x2(t)) and tt come. 

!
After the t+1th step:  

x1(t) + v1 * tt+1 = x2(t+1) , where x1(t) = 0, so v1 * tt+1 = x2(t+1) 

x2(t) + v2 * tt+1 = 1 

and we know that x1(t+1) = 0. 

From the second equation it is possible to obtain tt+1 = (1 - x2(t)) / v2  and 
replacing tt+1 in the first equation it is possible to obtain x2(t+1) = v1 * tt+1. 

From here x(t+1) = (x1(t+1), x2(t+1)) = (0, x2(t+1)) and tt+1 come. 

!
!
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The dynamics of the line is shown in figure 2.3. 

Fig 2.3 - Dynamics of a 2 workers bucket brigade. When the second worker reaches the end of 
the line (l = 1) he walks back and takes over the work of the first operator; simultaneously, the 
first operator returns at the beginning of the line and starts a new item. x1(0) and x2(0) are the 
starting positions of the workers, while their speed (constant during the time) is given from the 
slope of the function. It is possible to notice how the system converges after a few iterations. 

!
Let’s take into consideration the tth step. After a few calculations, it is possible to 
write the succession of x2. That is (v1/v2) * (1-x2(t-1)) = x2(t) ; and from simple 
algebra it is possible to write: x2(t) = v1/v2 - (v1/v2) * x2(t-1). It is easy to recognize 
that it is a fixed point equation x = g(x). It is possible to find the fixed point with 
an iterative method xk+1 = g(xk). To demonstrate the existence of the solution it is 
possible to use Bolzano’s theorem, while to demonstrate the uniqueness we have 
to prove that the first derivative of the function g(x) is < 0 or > 0 ∀x. Another 
important information we need is to have a method to understand when the fixed 
point converges. 

THEOREM: Given g(x) : I → R and ξ ∈ I, g(x) ∈ C1 (continuous and derivable). 

                      If ∃m: |g’(x)| ≤ m < 1 (sufficient condition, but not necessary),  

                      then the fixed point method converges ∀ x0 ∈ I. 

Proof: see appendices (A.1).  
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The bucket brigade function is (v1/v2) * (1-x2(t-1)) = x2(t), where g(x) = (v1/v2) * 
(1-x) and x = x. Hence, it is possible to write (v1/v2) * (1-x) = x and, from here 
f(x) = (v1/v2) * (1-x) - x = 0. This equation has at least one solution because of 
Bolzano’s theorem: f(0) = v1/v2 > 0, f(1) = -1 < 0. To demonstrate  the uniqueness 
of the solution we have to calculate the first derivate: f’(x) = -(v1/v2) - 1, which is 
always negative, so the function is always decreasing and the fixed point (the 
solution) is unique. To demonstrate that the fixed point method converges, we 
have to prove that ∃m: |g’(x)| ≤ m < 1; in bucket brigade systems |g’(x)| = |-(v1/
v2)| = v1/v2 and because of the hypothesis v2 > v1, v1/v2 < 1 and it is possible to 
find a number m: |g’(x)| ≤ m < 1, so the fixed point method converges and the 
solution is unique.  

Practically, it means that in bucket brigade systems, if worker’s velocities are 
constant, operators are ordered from the slowest to the fastest and if workers are 
never blocked, after some iterations, the line balances itself. It means that it 
converges exponentially fast to a unique fixed point at which worker i repeatedly 
executes the same interval of work in the same time. 

Hence, at convergence x2(t-1) = x2(t) = x2* and tt-1 = tt = t*.  

It follows that:  

(v1/v2) * (1-x2*) = x2* 

and after easy algebra: 

x2* = v1 / (v1+v2) 

It means that the point of hand-off depends only on the operators’ speeds and, 
more in particular, from their ratio. Another fact that is important to notice is that 
the vector x(0) of initial positions does not affect the final results when the bucket 
brigade system converges. 

It is also possible to obtain t*, which is the time between two consecutive hand-
offs when the system converges. From the tth step we obtained:  

tt = (1 - x2(t-1)) / v2 

at convergence: 

t* = (1 - x2*) / v2 
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and substituting x2* = v1 / (v1+v2) in the formula, after a few simple algebra: 

t* = 1 / (v1+v2)   

which is the cycle time (CT) of the bucket brigade system. 

Therefore, the throughput (TR) of the bucket brigade is TR = 1/CT =  v1+v2 . 

More in general, Bartholdi and Eisenstein (1996a) proved that in a system with n 
operators, if workers velocities are constant with v1 < … < vn (from slowest to 
fastest) and there is no blockage, then the line converges exponentially fast to a 
unique fixed point. Moreover, every operator does always the same interval of 
work, the production rate is the summation of all the velocities TR = v1 + v2 + … 
+ vn and it is the largest possible, so the system automatically optimizes itself. 

For two operators the solution is: 

TR = v1 + v2; x* = (0, v1 / (v1+v2)) 

For three operators the solution is: 

TR = v1 + v2 + v3; x* = (0, v1 / (v1+v2+v3), (v1+v2) / (v1+v2+v3)) 

For five operators the solution is: 

TR = v1 + v2 + v3 + v4 + v5;  

x* = (0, v1 / (v1+v2+v3+v4+v5), (v1+v2) / (v1+v2+v3+v4+v5), (v1+v2+v3) / 
(v1+v2+v3+v4+v5), (v1+v2+v3+v4) / (v1+v2+v3+v4+v5)) 

For n operators the solution can be obtained inductively: 

• The production rate is the largest possible and it is: 

!
!

• Worker i repeatedly executes the interval of work content:    

!
!
!
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And it is easy to see that the results do not depend on the starting position of the 
workers x(0). 

For a simple two operators numerical example see appendix A.2. 

!
What does it happen, if the workers are not sequenced from the slowest to the 
fastest? Bartholdi and Eisenstein (1996a) shown that if workers are not 
sequenced from slowest to fastest, there can be a structural tendency toward 
persistent imbalance in the line. The solution of the problem with 2-3 operators, 
for every different combination of worker’s speed, has been given by Bartholdi, 
Bunimovich and Eisenstein (1999) (see paragraph 2.2). 

If the workers are not order from the slowest to the fastest, the system could 
behave differently and in an anomalous way. An example is that adding a worker 
to the line can decrease the production rate, if workers are not sequenced from 
the slowest to the fastest; this anomalous behavior happens because the fastest 
worker can be blocked by slower operators. Another strange behavior of a 
system, in which slowest-to-fastest sequence is not respected, is that increasing 
the velocity of a worker can decrease the production rate; this is always due to 
blockage between operators. If workers are sequenced from the slowest to the 
fastest, complicated or anomalous behavior cannot be possible: in particular, 
adding or speeding up a worker will never decrease the production rate. In 
conclusion, given a certain set of operators, the maximum theoretical throughput 
is always obtained sequencing them from the slowest to the fastest. 

Something more has to be said about workers’ speed. In general, the speed of an 
operator to complete a task can vary significantly, because of the inevitable small 
noise, because of small variations and so on. The best procedure to follow is to 
take a lot of observations of an operator who is doing his task, always taking the 
time and, then, calculate the average of the measurement: the result will be the 
speed of that operator.  

Another important problem to take into consideration is how to decide the 
ranking of speeds. The first paper on this theme has been written by Trego; 
according with him, workers can be ranked considering a single measure that will 
predict their productivity (Trego, 1981, 1989). Then, Bartholdi and Eisenstein 
(1996a) shown that it is always possible to define a speed ranking between 
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operators and people that usually work together agree on the ranking. The best 
strategy to follow is to ask the operators to vote secretly about the ranking of 
their speeds and gather the results by secret ballot. Looking at the votes, it is 
possible to decide the speed ranking of the workers. 

!
In conclusion, a bucket brigade line balances itself without the need of a 
manager. It means that if a worker takes a break, in a few cycle the bucket 
brigade system will find a new equilibrium point, because work will be 
reallocated among the remaining workers. The throughput can be varied working 
on the numbers of operators and their speed. If the workers are sequenced from 
the slowest to the fastest along the line, adding workers never reduces the 
production rate and removing workers never increases it. Then, the only data that 
is important to know to understand how a bucket brigade system will work is the 
relative speed between the workers, not even their value; knowing the values of 
the speeds, it is always possible to calculate the theoretical production rate of the 
line. 

!
2.3 Dynamics of bucket brigade with two or three workers 

The dynamics of two and three operators in bucket brigade production lines has 
been deepened by Bartholdi, Bunimovic and Eisenstein (1999). They decided to 
study two and three operators systems, because they are very common in both 
apparel manufacturing (Bartholdi and Eisenstein, 1996a) and distribution 
warehousing (Bartholdi and Eisenstein, 1996b). They studied a bucket brigade 
system where operators are not allowed to pass each other. The main idea of 
Bartholdi, Bunimovic and Eisenstein (1999) is to study the dynamics of a three 
workers line and, then, simplify the model to obtain results for two workers. This 
model could be extended to n workers, but with some more problems. They 
worked with the hypothesis of normative model (see 2.2): the work to assemble 
an item is deterministic and it is spread continuously and uniformly along the 
line (rather than concentrated in work stations).  
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The behavior of a three-worker bucket brigade can be explained with figure 2.4.  

Fig 2.4 - Asymptotic behavior of a three workers bucket brigade line. This picture shows all the 
different combinations between workers speed in a three workers bucket brigade assembly line. 
The ratio r1 = v1 / v3 is the ratio between the velocities v1 and v3, while the ratio r2 = v1 / v3 is the 
ratio between the velocities v2 and v3. Each possible three workers bucket brigade can be 
described with a point on the chart, depending on the velocities of the three workers. For every 
different combination, the bucket brigade system has a different behavior. (from Bartholdi, 
Bunimovic and Eisenstein, 1999) 

!
This figure classifies all three-worker lines and it is based on the relative 
velocities of the workers: r1 = v1 / v3 is the ratio between v1 and v3, while r2 = v2 / 
v3 is the ratio between v2 and v3. In general, ri = vi / v3, where v3 is the speed of 
the worker closest to the end of the line. Every single point (r1, r2) in the figure 
represents a different bucket brigade flow line. In general, in real assembly lines 
or picking systems the values of r1 e r2 are between 1/3 and 3, so the figure well 
summarize all the possible behaviors of a three-worker bucket brigade. As it has 
been written before, the figure also contains all possible behavior of two-workers 
line: to see it, it is enough to restrict the velocity of the first worker to be v1 = 0, 
so that r1 = 0. Therefore, it is possible to understand the behavior of a 2-worker 
line using only the y-axis of the Cartesian plane in figure.  

Let xi be the position of worker i (i = 1, 2, 3) immediately after walkback. The 
time between the completion of tth and (t+1)st items is (1 - x3(t)) / v3, and it does 
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not depend on the speed order of the workers. Operator 1 and 2 proceed with 
their own speed or, if blocked, they will proceed with their successor’s velocity, 
because passing is not allowed. This means that the dynamic function x(t+1) = 
f(x(t)) that describes the behavior of the system is piecewise-linear and its form 
depends on the relative speeds of workers, which can catch up and be blocked by 
their successor.  

Bartholdi, Bunimovic and Eisenstein (1999) studied this problem simulating the 
different combinations between workers’ speeds. They found that changing the 
ratio between the workers’ velocities, the system can converge to one (1-cycle) or 
more (2-cycle, 3-cycle, k-cycle) fixed points: this means that there could be one, 
two, three, k possible positions of hand-off. Let’s see it more precisely, taking 
into account figure 2.4. 

In region 1 (shaded, 0 < r1 < 1 and 0 < r2 < 1) the system converges to a single 
fixed point (1-cycle) corresponding to a perfectly balanced line and an optimal 
production rate (TR = v1+v2+v3). In their first paper about bucket brigade (see 
4.1), Bartholdi and Eisenstein (1996a) worked only on the heavily shaded region 
of the diagram, where v1 < v2 < v3 (r1 < r2 < r3). In this area, the system is solid; in 
other words, it means that the system responds quickly and well to every 
perturbation, without changing qualitative behavior. The novelty of the paper 
written by Bartholdi, Bunimovic and Eisenstein (1999) is that, in the whole 
shadowed surface in region 1, the system is balanced and there is only one fixed 
point; che convergence is slower than if v1 < v2 < v3, but after more iteration the 
fixed point is going to be reached anyhow. Another thing to notice is that 
whenever worker 3 is the fastest one, the system converges to the fixed point, so 
the bucket brigade system balances itself. This last conclusion is not true if we 
have to deal with bucket brigade systems with more than three operators. In 
general, with more than 3 operators, the following condition is effective: if the 
last worker is faster than the first worker, the bucket brigade will be balanced. 

In region 2 (0 < r1 < 1, r2 > 1) and 3 (r1 > 1, r2 > 1) the operators are not 
sequenced from the slowest to the fastest, so the faster workers tend to be 
blocked by slower workers. In region 2 the operators’ speeds are v1 < v3 < v2: 
after walkback the positions of operators can be (0, r1 / (r1+r3), 1) or (0, 0, r1 / 
(r1+r3)), with the result of a suboptimal rate of production TR = 2*(v1+v3). In 
region 2 the bucket brigade has two fixed points (2-cycle) or, in other words, 
there are two possible position of hand-off. On the other hand, in region 3 the 
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speeds of workers are v3 < v2 < v1 or v3 < v1 < v2, so the slowest worker is always 
the one at the end of the line, therefore he will block the other two workers. The 
workers’ positions after walkback can be (0, 1, 1), (0, 0, 1) and (0, 0, 0) and the 
production rate is TR = 3*v3, so that everyone is reduced to the velocity of the 
slowest worker. In this case, the bucket brigade has 3 fixed points (3-cycle). 

In region k (r1 > 1, 0 < r2 < 1) the speeds of operators are v2 < v3 < v1, so the first 
worker is the fastest and the second is the slowest. The behavior of the system, 
unlike the other regions, depends not only on the value of r1 and r2, but also on 
the initial positions of the workers x(0). Consequently, the dynamic of the system 
in this region is very complicated, because the number k of cycle depends also on 
the initial positions of workers x(0). 

It could happen that the workers’ speed changes during the work shift: in this 
case the behavior of the system can change heavily, in particular if the system  
goes from a region of figure 2.4 to another one. The result of this changing can 
be very different, depending on a lot of variables. 

As it has been told before, thanks to the figure is it also possible to predict the 
behavior of a two operators bucket brigade line. It is possible to describe a two 
operators line like a three operators line by restricting the speed of the first 
worker to be v1 = 0. Hence the two operators system is described by the y-axis of 
the figure. As we have already discussed, the system has one fixed point with the 
maximum throughput when the second operator is faster than the first, while the 
system has a period two orbit with suboptimal production rate if the second 
operator is slower than the first. 

The higher is the number of the workers, the more difficult is to predict the 
behavior of the system. In general, a unique necessary and sufficient condition to 
say if a bucket brigade balances itself (converges to a 1-cycle) does not exist, but 
there is one necessary condition: the last worker must be faster than the first 
worker. 

In conclusion, the best strategy is to deal with a bucket brigade system is to order 
the operators from the slowest to the fastest; then, a bucket brigade works better 
when composed by workers of a wide spectrum of velocities. Ordering operators 
from the slowest to the fastest means to have the maximum production rate and 
the greatest stability. It means that asymptotic behavior will assert itself more 
quickly and will be more resistant to disruption. 
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2.4 Bucket brigades when worker speed do not dominate each 
other uniformly 

It could be interesting to see what happens if workers change their speed along 
the production line. Armbruster and Gel (2002) studied the behavior of a two 
workers bucket brigade, where one worker has a constant speed over the whole 
production line and the other is slower over the first portion and faster over the 
second portion of line. All the systems in which workers have varying levels of 
specialization at different tasks are taken into account with this paper. In 
particular, in all this systems the speed of the workers at a particular task depends 
more on the type of task, rather than the worker’s skill profile. There are different 
systems in real life where workers have different speeds in different parts of the 
line: systems with stations that requires high specialization or training, systems 
with high labour turnover etc. Armbruster and Gel (2002) tested the performance 
of this system for both the passing case and the case in which workers are 
blocked. The main output of their research is the throughput of the system: if it is 
high the system performs well, if it is not the system does not perform well. 

The modeling assumptions of Armbruster and Gel (2002) are similar to those 
made by Bartholdi and Eisenstein (1996a): workers are cross-trained, the task 
and the work are continuous along the line, the processing times are deterministic 
and workers walk back with infinite velocity (zero walk back time). The only 
difference is that the velocity of one worker does not dominate that of another at 
every point along the production line. 

The bucket brigade proposed by Armbruster and Gel (2002) also converges to a 
self-balancing system although with more than one fixed hand-over point 
between the workers. In particular, they found that the bucket brigade always 
organizes itself; the bucket brigade may not always balance itself on one fixed 
point but may also self organize to a stable period-two orbit: it means that 
workers hand over jobs at exactly two fixed locations that they visit periodically. 

!
2.5 Deterministic chaos in a model of discrete manufacturing 

Some simple deterministic systems can generate surprisingly complicated 
behavior that has been called “chaotic”. According to Bartholdi, Eisenstein and 
Lim (2003, 2009), under certain conditions, bucket brigade systems can be 
chaotic. A chaotic system is a system which has long-term behavior that can be 
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hard to describe, to predict and even harder to simulate. Long term behavior of 
chaotic systems seems to be deeply connected to randomness (see Alligood, 
Sauer and Yorke, 1996; Devaney R.L., 1989; Martelli M., 1999). 

In their paper, Bartholdi, Eisenstein and Lim (2003, 2009) expanded the 
normative bucket brigade model. As it has been explained before, the idea of 
bucket brigades is that workers have to follow this simple rule: each worker 
carries work forward, from work station to work station, until either completes an 
item or it is taken by a downstream colleague; then, he walks back to get more 
work, either from an upstream colleague or from a buffer at the start of the line. 
Till now, the hypothesis of insignificant walking time has been always 
considered, so that the walk back time of all the workers could be considered 0, 
according to the fact that the walk back velocity of each operator was wi = 0. 
Bartholdi, Eisenstein and Lim (2003, 2009) considered both the forward velocity 
vi and the backward velocity wi arbitrary and constant. This model approximates 
well the behavior of low density picking systems, where workers may walk a lot 
between to picks, so the time between pick is comparable with the time to return 
back. Furthermore, in this case, workers are allowed to overtake each others both 
when walking forward and backward; then, when a worker is walking back, he 
can pass a worker who is working in the forward direction. Because of this 
possibility, blockage is no longer possible; therefore the production rate is as 
large as possible, regardless of how the workers are sequenced. We will say that a 
worker overtakes another worker when the first one catches up and passes 
another worker, when they are both walking forward or backward. We will say 
that a worker passes another worker when the first one, who is going backward 
to get more work, walks past a successor who is working forward.  

Considering also the walk back velocities wi, the pattern of hand-offs becomes 
more complex. The main consequence is that hand-offs are no longer 
contemporaneous, because of the finite velocities of walk back. Furthermore, 
there can be multiple completions before the next hand-off or before the next 
start. In same cases, it is possible to have no hand-offs at all, as when workers 
have velocities v1 = 2, w1 = 1, v2 = 1, w2 = 2: in this case workers work 
independently and there are no hand-offs.  

It is easy to see that the effective production of each worker i of a n workers 
bucket brigade, considering the walk back velocities wi, is ψi = (1/vi + 1/wi)-1. 

Therefore, considering all the workers together, the long term behavior of the 
system gives an average production rate of:  

!
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In their paper, Bartholdi, Eisenstein and Lim (2003, 2009) gave a convergence 
condition to know if the bucket brigade converges to a stable allocation of work.  

Convergence condition: the workers on the bucket brigade assembly line should 
be indexed so that: 

!
!

In other words, workers should be ordered from the most slowed to the least 
slowed. It is surprising, because a worker who is slower in both directions could 
have a higher index of a worker who is faster in both directions. The convergence 
condition tells us to make the least slowed worker work more downstream than 
the most slowed worker. For example, the two workers described by v1 = 3, w1 = 
6, v2 = 2, w2 = 1 satisfy the convergence condition. 

According to Bartholdi, Eisenstein and Lim (2003, 2009) “the bucket brigade 
assembly line is balanced if each worker invests the same clock time and repeats 
the same interval of work content for each item produced and, moreover, those 
intervals are non-overlapping”. Let the balance point at which worker i hands off 
work, given as a fraction of work content completed, be xi* and let x* = (x1*, x2*, 
…, xn-1*). 

They proved that: 

• For any bucket brigade the point  

!
!

   is a fixed point with respect to the map that relates successive points of hand-
off and is, moreover, the unique point of balance. This means that if the line is 
balanced, if there are no perturbations, the line remains balanced. 

  NB: there could be other fixed points, but the point of balance (work is    
partitioned among the workers) is unique. 

• If workers are sequenced on the assembly line from the most slowed to the 
least slowed (the convergence condition is verified) then x* is an attractor. This 
means that when the bucket brigade is close enough to balance, then it will 
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converge to balance. The point of balance is a local attractor: it means that the 
system restores his balance if there are some perturbations which are not too 
disruptive.  

• If the convergence condition is true, the point of balance is an attractor: it 
means that after some iterations the system will always balance itself. 

• A two operators bucket brigade could have a chaotic behavior under certain 
conditions. It means that the sequence of hand-off positions is chaotic, if the 
convergence condition fails to hold.  

Let’s focus on the last point and let’s take into account a bucket brigade with the 
following velocities: v1 = 1, w1 = 1/3, v2 = 1, w2 = 1. This bucket brigade fails to 
satisfy the convergence condition and it is easy to prove that the dynamic 
function that shows the position of consecutive hand-offs is xk+1 = 1 - (2xk mod 
1), where xk is the position of the kth hand-off. It is easier to understand the 
sequence of hand-offs looking at figure 2.5. 

Fig 2.5 - The dynamics map of a chaotic bucket brigade. If work is handed off at position xk, 
then the next hand-off will occur at position xk+1. (from Bartholdi, Eisenstein and Lim, 2003, 
2009) 

!
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The function showed in figure 2.5 is an expanding map; this means that it has 
slope of absolute value strictly greater than 1, where defined (it has 
discontinuities at 1/2 and 1). An expanding map is a map in which the orbit of all 
nearby starting points eventually separate (Devaney,1989): the system will 
remain stable only if we start exactly from the stable points; if not, the system is 
going to diverge chaotically. It is easy to notice that the function has two fixed 
points: the point 1/3 is the unique point of balance, but it is a repelling fixed 
point, which means that the system spontaneously avoids balance. The point 2/3 
is another repelling fixed point. 

According to Martelli (1999), the dynamic function xk+1 = 1 - (2xk mod 1) is very 
similar to the Bernoulli map xk+1 = 2xk mod 1. Since Bernoulli map has a chaotic 
behavior (it is an expansive map), it is possible to conclude that the dynamic 
function xk+1 = 1 - (2xk mod 1) of the bucket brigade we described before has a 
chaotic behavior as well (it is an expansive map too). 

A chaotic bucket brigade is capable of some strange behaviors. For example, its 
long term behavior depends a lot on the initial conditions of the system; it means 
that the long term behavior of the bucket brigade system depends mainly on the 
starting positions x(0) of the workers. The conclusion is that when the 
convergence condition is not true, it is impossible to predict the future state of the 
bucket brigade, due to unavoidable inaccuracy of initial conditions. In other 
words, the computer cannot handle the non periodic numbers that comes out 
from the calculation, because it works in binary and it has to approximate 
necessarily, losing precision. This lack of precision becomes wider iteration by 
iteration, so the computer gives wrong results. 

In figure 2.6, an example of two different bucket brigades is shown. The behavior 
of a stable bucket brigade is shown above; on the contrary, the behavior of a 
chaotic bucket brigade is shown under. In the first case (above) the convergence 
condition holds, so the system converges to a single point after a few iterations 
and products are produced at regular intervals. When the convergence condition 
does not hold (under), it is impossible to predict the behavior of the system, 
because it is completely chaotic: it means that the time between the production of 
two consecutive products is not constant and hand-offs are not distributed 
uniformly along the interval of work content. 

!
!
!
!
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Fig 2.6 - Locations of 
hand-offs under a stable 
bucket brigade (above) 
and a chaotic one (under). 
When the convergence 
condition holds (above),  
the hand-off locations 
quickly converge to a 
single point and products 
are completed at regular 
in te rva l s . When the 
convergence condition is 
violated (under), the 
hand-offs appear to be 
distributed uniformly 
throughout the interval of 
w o r k - c o n t e n t a n d 
completion times are 
erratic. (Above, worker 
velocities are v1 = w1 = 
1 and v2 = 1, w2 = 1/3. 
Under the workers are 
s w a p p e d ) . ( f r o m 
Bartholdi, Eisenstein and 
Lim, 2003, 2009) 

!
!
!
!

!
In figure 2.6, a bucket brigade with velocities v1 = w1 = 1, v2 = 1 and w2 = 1/3 is 
shown above: the velocities satisfy the convergence condition, so the system 
balances itself after a few iterations; a bucket brigade with velocities v1 = 1, w1 = 
1/3 and v2 = w2 = 1 is shown under: the velocities do not satisfy the convergence 
condition and the hand-offs seem to be randomly distributed in space and time. 

In conclusion, it has been proved that a deterministic system could have a chaotic 
behavior under certain conditions. In particular, if the time to return back is not 
considered 0 and if the convergence condition fails to hold, the behavior of the 
bucket brigade can be chaotic. It is very uncomfortable to have a production 
system which behaves chaotically, because it will complete products randomly, 
even if the assembly line is completely deterministic. Therefore, the cost of 
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production increases, because safety stock increases and downstream and 
upstream processes are more difficult to coordinate. Moreover, the fact that hand-
offs can happen in every part of the line can slow down the learning process, 
because workers would not experience a stable assignment of work (see Muñoz 
and Villalobos, 2002; Armbruster, Gel, and Murakami, 2007 for discussions of 
bucket brigades under models of learning); because of this reason each worker 
has to learn every subinterval of work content. The possible chaotic behavior of 
deterministic systems is a new challenge that managers have to deal with. When 
possible, it is better to avoid chaotic systems, because a central goal of 
manufacturing systems control is the reduction of variability and chaotic system 
are not stable. 

!
2.6 Performance of bucket brigade when the work is 
stochastic 

Another important question that has to be answered is how bucket brigade works 
even in the presence of variability in the work content. Bartholdi, Eisenstein and 
Foley (2001) answered this question, extending previous analysis to a stochastic 
model of work content and shown that the dynamics and production rate will be 
similar to those of the deterministic model when there is “sufficient work” 
distributed among “sufficiently many” work stations. Because of the variability 
of customer orders, the work content may be imagined to be stochastic.  

The main assumption to set up a bucket brigade are: 

• Insignificant walking time: the total time to assemble a product is significantly 
greater than the time to walk the length of the flow line. Therefore all hand-offs 
occur, for all practical purposes, simultaneously, synchronized by item 
completions of the last worker. 

• Total ordering of workers by velocity: each worker i=1, …, n is characterized 
by a distinct, constant work velocity vi.  

• Smoothness and predictability of work: the nominal work content of the 
product is a constant (which we normalize to 1), and the work content is spread 
continuously and uniformly along the flow line of normalized length 1. 

Under these hypothesis the bucket brigade follows the normative model (see 
paragraph 2.2): these conditions are sufficient to guarantee that the bucket 
brigade achieves the maximum possible throughput. 
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Assumptions 1 and 2 are uncontroversial. Assumption 3 tends to be true for a lot 
of cases, but in some very important economic contexts, such as order-picking in 
a warehouse, this last assumption cannot be always true. 

In their paper, Bartholdi, Eisenstein and Foley (2001) changed assumption 3 in 
“exponentially distributed work”: let the work to assemble a product consist of m 
discrete task primitives at m successive work stations. The nominal work-content 
at each station is independent and follows an exponential distribution with 
common mean normalized to 1.  

This leads to the fact that the time required for the ith worker to complete a task 
follows an exponential distribution with mean 1/vi. This means that there will be 
greater variance at each work station than one would expect to find in practice. 
This unrealistically large variance reduces the throughput of bucket brigades 
because it increases the chances of blockage. Therefore the theoretical solution of 
the problem will give as a result a lower throughput than the real one. 

After working on the stochastic dynamics of the system, Bartholdi, Eisenstein 
and Foley (2001) proved that, as the number of stations increases, the moment-
to-moment behavior of the stochastic line will increasingly resemble that of the 
normative model. Moreover, this resemblance will assert itself with great 
uniformity. 

This hypothesis of exponentially distributed work is well suited to the context of 
order-picking in warehouses, where the work content is stochastic because of the 
variability of customer orders. In chapter 3, this topic will be explored. 

!
!
!
!
!
!
!
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Chapter 3 

Bucket brigade in order-picking systems 
In this third chapter, we will explore the theme of bucket brigade in order-picking 
systems, following what Bartholdi and Eisenstein wrote in their paper “Bucket 
brigades: a self-balancing order-picking system for a warehouse” (1996b), where 
they analyzed the phenomenon of order-picking in chain retailers. After speaking 
about flow rack and after explaining the differences between zone picking and 
bucket brigade, we give some hints to improve the performance of a bucket 
brigade in an order-picking system. After that, we show the results obtained by 
Bartholdi and Eisenstein (1996b), starting from the hypothesis of exponential 
distributed work. At the end, the advantages to use bucket brigade also in 
warehouse and, more in particular, in order-picking are explained. 

!
3.1 A self-balancing order-picking system for a warehouse 

According to Bartholdi and Eisenstein (1996b), bucket brigades are not only very 
efficient in assembly lines, but they are also a new way of sharing work among 
pickers in a warehouse. The result is increased pick rates, without conscious 
intention of the workers, without guidance from management, without any model 
of work content, without any computation, indeed without any data-gathering at 
all. The result of implementing order-picking by bucket brigade in the 
warehouses is that pick rates increased more than 30%. Moreover, bucket brigade 
can replace zone-picking as the standard method of picking orders in high-
volume retail trade. All this advantages are cost-free. 

All the ideas that we analyzed in the context of manufacturing (Bartholdi and 
Eisenstein, 1996a) could be translated into ideas to pick better in warehouses. 
Bartholdi and Eisenstein (1996b) analyzed the phenomenon of order-picking in 
chain retailers, where the space to stock material is severely limited, and the skus 
have to be replenished frequently and in small, less-than-caseload amounts. A 
typical store orders a lot of skus, but a small number each. Picking this many 
skus in small amount is very labor intensive. 

!
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The best layout to deal with these circumstances is, generally, flow rack (figure 
3.1). 

Fig 3.1 - Flow rack. A team picking from an aisle of flow rack to a conveyor (from “Warehouse 
Modernization and Layout Planning Guide,” Department of the Navy, Naval Supply Systems 
Command Publication 529, March 1985, p. 8–17). The “passive” conveyor (closer to pickers) 
holds partially completed orders. The powered “take-away” conveyor transports completed 
orders to the shipping department. 

!
A picking team is picking products from an aisle of flow rack to a conveyor.  The 
flow rack is unidirectional: the order-pickers pick products from one side and the 
flow rack is replenished by the opposite side. The racks are slanting and divided 
into bays; within each bay there are shelves with rollers, which help the product 
to slide down, because of the force of gravity. Thanks to this system each sku is 
can slide down towards the operator; skus are stored as a lane of cases, so the 
skus can be picked separately. Then, there are two conveyors: the passive one, 
which is the one closest to the pickers, holds partially completed orders; the 
active one transports completed orders to the shipping department.  

According to Bartholdi and Eisenstein (1996b), an order is a list of skus for a 
single customer together with quantities to be picked. All the orders that have to 
be picked wait at the start of the aisle. In every list there is written how many 
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skus of each type have to be picked and their position along the aisle. Once 
workers have the list with them, they move along the aisle, they pick products 
and they put them into totes (cartoons), which travel on the conveyor. The aisles 
work in parallel to pick the orders of a common set of customers. It is very 
important that the time of picking is synchronized with the time of departure of 
every truck. An important thing to remember, then, is to keep orders in sequence 
to have them in order, when they are at the shipping dock, where trucks are 
loaded in reverse order of delivery. 

!
3.2 Sequential zone-picking vs bucket brigade 

The most common way of organizing picking in warehouses is to divide the bays 
into contiguous zones and to restrict each picker to his zone. The picker in the 
first zone takes a new order and starts to fill the tote with the requested items, 
while pushing it on the passive conveyor. As soon as he reaches the end of the 
zone, he leaves the order on the passive conveyor for the next worker and returns 
back to start a new order. The second worker picks the requested item in his zone 
and pass the tote to the third worker when he reaches the end of the zone. The 
system goes on like this, till the last picker pushes the tote of a complete order 
onto the take away conveyor, which brings the tote to the shipping department. 
This kind of order-picking is called sequential zone-picking. The idea is that all 
workers will remain busy for the same amount of time, if their work is more or 
less the same. Zones are fixed in advance of picking and they are based on the 
distribution of the work along the flow rack; they require continuous 
readjustment to maintain balance, because: 

• The work could be distributed in such a way that there is no perfect solution to 
divide the work between operators equally. 

• The model of work content is unavoidably inaccurate: in addition to the 
number and location of the skus that has to be picked, we should consider also 
their weight, their shape and the height of their location. Then, we should 
consider the opening of new cases, empty cases, sealing totes, putting and 
pushing cases on the conveyors. In conclusion, there are to many inputs to take 
into consideration to calculate exactly an equal distribution in zones. 
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• Zones are static: they could balance only the total work, but they fail to 
maintain balance from order to order. So, it could happen that, at the end of the 
day, every picker has picked the same amount of work, but they were not fully 
utilized. 

A lot of solutions to this problem have been tried, but none of this strategies 
overcome the inherent inefficiencies of zone-picking. In summary, zone-picking 
requires continuous supervision to reach balance, which is impossible to reach. 
The cost of this imbalance is reduced pick rates due to incompletely utilized 
pickers and due to work-in-process, which interferes with picking. 

To solve these problems, Bartholdi and Eisenstein (1996b) suggest bucket 
brigades: each picker follows the rule “pick forward until someone takes over 
your work; then go back for more”. When the last picker completes an order, he 
returns back and take over the order of his predecessor, who returns back and 
take over and so on, until the first picker starts a new order. The mathematics and 
the dynamics of the system are exactly the same as chapter 2, about bucket 
brigade in assembly lines. Workers are no more restricted to zones, but the zones 
are flexible. There are no buffers, so the only work-in-process inventory is that 
on the hands of the pickers. Pickers must maintain their sequence: no passing is 
allowed. If pickers are sequenced from the slowest to the fastest, pickers will 
spontaneously migrate where there is more work, pick rates will increase and no 
management will be required, because the system will balance itself. The idea of 
Bartholdi and Eisenstein (1996b) is to use the same ideas of bucket brigade in 
manufacturing (Bartholdi and Eisenstein, 1996a) and use them in warehousing, 
with some little differences. For example, a deterministic model of work is 
appropriate for assembly lines, while in order-picking the location and the 
amount of work vary from order to order. In both cases, if workers are sequenced 
from the slowest to fastest, the bucket brigade line will spontaneously balance 
itself, while improving its throughput. 

It is easy to improve the picking system changing from zone picking to bucket 
brigade, because no special equipment and no changes to a typical warehouse 
management system are required. Moreover, no changes in the layout are 
required. Bartholdi and Eisenstein (1996b) support the idea that it is possible to 
configure a bucket brigade system in only one morning. In fifteen minutes the 
general idea is described to the workers, then they have to be ordered from the 
slowest to the fastest and, within half an hour, they can pick comfortably. 
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3.3 How to improve a bucket brigade system? 

According to Bartholdi and Eisenstein (1996b), there are two main wastes under 
bucket brigade: time lost when a worker is blocked and time spent to walk back 
to get more work. As lean production teaches, the waste must be eliminated. The 
natural way to do this is increase the side of the bucket: it means that every 
worker carries a larger number of orders at the same time. Working with larger 
buckets means fewer walk back to start new orders and reduced variance in the 
amount and location of work; this makes possible to use the hypothesis of 
normative model, even if in warehouses work is not equally distributed. In other 
words, using larger bucket size makes the work more smooth along the aisles 
and, therefore, between the workers. Reduced variance also mean less 
opportunities for a faster but busy worker to block a slow one. If the bucket is too 
large, the conveyor will be congested. The workers could find their totes pushed 
downstream by those of their predecessors and so they have to walk to reach the 
right tote: the probability to make mistakes is higher and this walking reduces the 
pick rate and, so the throughput. To find the right size of a bucket brigade system 
has to be found considering the statistics of the order stream and differs from 
case to case.  

Another big waste is the time lost by a worker to seek the item that has to be 
picked in a flow rack. A strategy to shorten the searching time is a pick-to-light 
system, by which a central computer switches on a light to point out the item 
which has to be picked by the operator. Thanks to this light the worker knows 
exactly where, which and how many items he has to pick. This reduces both 
searching time and paper-handling. Moreover, because all the locations to be 
picked within a bay are lighted at the same time, two workers can pick 
simultaneously, side-by-side, on the same order. 

One other strategy to improve the functioning of bucket brigade in order-picking 
is to allow any picker who completes an order to push his order directly onto the 
take-away conveyor and go back to take the order of his predecessor. This allows 
to reduce inactivities, because no picker who has completed his order has to wait. 
Doing like this, orders will not maintain their sequence, so this modification is 
useful when order sequence is not important and when picks for each order are 
not well distributed along the aisle, but concentrated in only one spot.  
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It is possible to obtain another advantage from a bucket brigade picking system if 
workers are not allowed to pass each other. The advantage is that aisles could be 
narrowed to the width of a single cart. This gives the possibility to build the 
warehouse in a more compact area; because of this reason walking spaces are 
reduced and walking times are shortened as well: this leads to increased pick 
rates and higher throughput. 

!
3.4 The effectiveness of bucket brigade 

On their paper, Bartholdi and Eisenstein (1996b) considered a simple model of 
bucket brigade in picking, where the amount and location of works varies.  

They started from 4 assumption: 

• Total ordering of position: let’s describe every discrete picking position with a 
number j between 1 and m (j = 1, …, m); the position could correspond to the 
bays of flow rack. For any given order, every pick of position j must be 
completed before all the picks which are in a position after (more towards the 
end of the line) j.  

• Iid orders, exponentially distributed work: orders are independent and 
identically distributed random vectors, the components of which are 
independent; the jth component of each vector represents the standard work at 
location j and it follows an exponential distribution with common mean 1/µ. 

• Total ordering of the workers by velocity: each picker i (i = 1, …, n) has his 
own velocity vi, so the time that a picker needs to complete a pick is 
exponentially distributed with mean 1 / (µ*vi). This assumption does not work 
well for order-picking, because the pertinent skills are simply dexterity and 
motivation. According to Bartholdi and Eisenstein (1996a), it is easy to rank 
the workers velocities. 

• Insignificant walking time: the time to pick an order is significantly grater then 
the time to walk along the whole aisle. 

Starting from these hypothesis, Bartholdi and Eisenstein (1996b), described the 
behavior of a two pickers bucket brigade system in order-picking. They proved 
that the bucket brigade line perform at its best if the pickers are sequenced from 
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the slowest to the fastest, as it happens in assembly line bucket brigade 
(Bartholdi and Eisenstein, 1996a). This is very intuitive, because ranking the 
workers in this way reduces the probabilities of blockage. Solving the equations 
of the system, it is possible to observe that the randomness of the orders does not 
qualitatively change the dynamics of a bucket brigade from those of the 
deterministic model analyzed by Bartholdi and Eisenstein (1996a) and Bartholdi, 
Bunimovic and Eisenstein (1999). The asymptotic behavior remains the same, 
but the variance of work among orders makes the system less predictable.  

The distributions of hand-off positions are presented in figures 3.2 and 3.3. On 
one hand, in figure 3.2 the two pickers are ordered from the faster to the slower, 
on the other hand, in figure 3.3 the two pickers are ordered from the slower to the 
faster.  

When pickers are sequenced from the faster to the slower, the faster one tends to 
be blocked repeatedly by the slower one and thus hand-offs alternate between 
positions near the end of the line or near the start of the line, as shown in figure 
3.2. 

Fig 3.2 - Faster to slower: position of the second, slower, of two pickers immediately after walk 
back. In the deterministic model of work, the second picker alternates between the first and last 
position (dashed vertical lines). (from Bartholdi and Eisenstein, 1996b) 

!
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In figure 3.3, instead, shows the distribution of hand-offs when pickers are 
ordered from slower to faster.  

Fig 3.3 - Slower to faster: position of the second, faster, of two pickers immediately after walk 
back. In the deterministic model of work, the second picker repeatedly returns to the position 
marked by the dashed vertical line. (from Bartholdi and Eisenstein, 1996b) 

!
How good is the performance of a bucket brigade picking system, generally 
speaking? Is it possible to keep always all the operators busy? The answer, if the 
work is probabilistic, is no; but strategies to improve the performance of the 
system can be found. The first strategy to set up to increase the performance of a 
bucket brigade picking system is to try to reduce as much as possible blockage 
between operators. Figure 3.4 shows all the possible behaviors (production rate) 
of a two pickers bucket brigade, taking into account all the different pair of 
workers velocities. The production capacity remains constant, so v1 + v2 = 1 and 
µ = m, but the ratio between the two velocities changes along the x-axis, where 
the velocity of the second worker (the one which is working closer to the end of 
the line) is taken into account. With this hypothesis, the maximum production 
rate of the system is 1 (the horizontal dashed line). 
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!
Fig 3.4 - Different behavior of a two operators bucket brigade under the hypothesis of 
exponentially distributed work. The production rate increases with the contribution of the 
second picker. The velocity of the team remains constant (v1 + v2 = 1), but the velocity of the 
second picker increases continuously from 0 to 100% of the total work velocity of the team. The 
most important thing to notice is that slower to faster order gives always the highest production 
rate, so the best result. (from Bartholdi and Eisenstein, 1996b) 

!
Thanks to figure 3.4, it is easy to see that the production rate increases, if the 
velocity of the second worker v2 increases; in particular, the system works better 
(higher production rate) when the pickers are ordered from slower to faster, 
because there is no blockage. In general, a bucket brigade picking system works 
at its best if the velocities of the workers are different between themselves. All 
this discussion is consistent with the deterministic model of Bartholdi, 
Bunimovic and Eisenstein (1999). 

Another strategy it is possible to use to increase the effectiveness of bucket 
brigade picking systems is to reduce the variance of the work, because this leads 
to a minor chance of blockage. As the variance decreases, the behavior of the 
bucket brigade approaches that of the deterministic model described by Bartholdi 
and Eisenstein (1996a) and Bartholdi, Bunimovic and Eisenstein (1999), where 
the work is the same order by order, distributed uniformly and continuously 
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along the space. It is possible to reduce the variance of the work by increasing 
the bucket size (aggregating groups of orders for batch picking). 

A last advice to reduce the number of blockages is to reduce the number of 
pickers, so the velocities of workers will tend to be more different between them. 

!
3.5 Conclusions  

Also in order-picking, bucket brigades work well. According to Bartholdi and 
Eisenstein (1996b), picking bucket brigades are more productive than zone 
picking for a lot of reasons:  

• The production rate of bucket brigade is higher (+30%) than production rate of 
zone picking (figure 3.5). 

Fig 3.5 - Difference in pick rate between zone picking and bucket brigade. The average pick rate 
is shown as a fraction of standard work. Zone picking was replaced by bucket brigade in week 
12. The continuous line represents best fit to weekly average pick rates before and after the 
introduction of bucket brigade. It is important to notice how bucket brigade performs better than 
zone picking. (from Bartholdi and Eisenstein, 1996b) 

!
• Bucket brigades constantly and spontaneously seek balance. 

• Balance is based on actual, realized work content and not on previsions made 
by a manager (no need for a management intervention). 
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• The bucket brigades are around 85% faster than order-picking and WIP in 
bucket brigade is around 50% less than in zone picking (figure 3.6). 

Fig 3.6 - Difference in WIP and time between zone picking and bucket brigade. The diagram is 
the result of a simulation by Bartholdi and Eisenstein (1996b). It shows that bucket brigade has 
in average less work in process and it is faster than zone piking. (from Bartholdi and Eisenstein, 
1996b) 

!
• Reducing the level of WIP, the mistakes are less, because there are less totes on 

the conveyor. 

• The synchronization of multiple aisles becomes easier. 

• The pickers are more satisfied because they prefer working in teams.  

!
!
!
!
!
!
!
!
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Chapter 4 

Human factors in order-picking: fatigue 
models and ergonomics 
The goal of this chapter is to give to the reader a basic knowledge about what is 
fatigue and how fatigue deals with order-picking systems, more in particular with 
order-picking bucket brigade. The concept of fatigue is strictly linked with 
ergonomics, which can be used to improve the efficiency of a system, reducing 
fatigue. At the end of the chapter, a mathematical model to describe how the 
fatigue level grows over time in an order-picking system is described. 

!
4.1 What is fatigue? 

To improve the performance of picking systems, it is important to consider more 
carefully human factors. One of the human factors that worths more is 
accumulation of fatigue during the work shift. Fatigue can have a bad long term 
impact on workers’ physical conditions, reducing the productivity during the 
work shift and making absenteeism more frequent. According to Grosse, Glock 
and Neumann (2016), taking into account that order-picking is usually carried 
out by operators rather than robots, human factor can have a great impact on the 
performance of the overall system. 

The first thing to understand is what fatigue is. According to Gawron, French and 
Funke (2001), fatigue is defined as “every loss caused by an effort, and it is 
classified in psychological and physiological fatigue”. Psychological fatigue is 
the mental fatigue of an operator who is performing a task for a long time and it 
is very subjective. Physiological fatigue is the fatigue that comes out when a 
worker is doing a physical effort for a long time with a predetermined force; this 
kind of fatigue lead to a reduction in generating force or to an increased reaction 
time (Battini, Calzavara, Persona, Sgarbossa, Visentin, 2017). 

Fatigue leads to tiredness and lack of energy, physical exertion, physical 
discomfort, lack of motivation and also sleepiness. All this factors contribute to 
create performance problems: the workers are slower, less productive and the 
possibility to have quality problems is higher. When fatigue become excessive or 
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chronic, it reduces the quality of life of a worker and this can increase the 
percentage of absenteeism. When an operator performs a task, muscle force 
capacity is reduced over time, up to a threshold value (maximum endurance time) 
due to the muscle fatigue. This means that an operator can work until his muscle 
force capacity reaches its limit. The fatigue can be alleviated by a break or by the 
time that the worker spends to move from a place to another. In our work we will 
consider only physiological fatigue, because it is the easiest one to model. 

Unfortunately, there is no study available that demonstrates the mathematical 
relation between worker fatigue and production outputs such as production time 
and volume, even if there are a lot of paper in which the authors tried to describe 
the function that describes the fatigue of workers during the time. Moreover, 
there are only a few papers in which the correlations between fatigue and order-
picking is described. One of them, is a paper written by Grosse and Glock 
(2013), where they observed the presence of workers learning and fatigue in 
order-picking system through an experimental study. We will describe a new 
mathematical model to describe fatigue over time in order-picking bucket 
brigade in paragraph 4.4. 

!
4.2 Human factors in order-picking bucket brigade 

The next question to answer is why and how the activity of picking in a 
warehouse deals with fatigue. It is important to consider the effect of fatigue in 
our analysis to have results closer to reality, because neglecting the effects of 
fatigue can lead to a complete different set of results, which are often wrong.  

Fatigue in order-picking exists because picking activities are typically repetitive 
and physically demanding. Different are the actions that a worker have to 
perform when he is working in an order-picking system and, more in particular, 
in a bucket brigade order-picking system. Down here, we will describe the most  
common physical  factors that can increase the level of fatigue of a worker 3

during his work (see Grosse, Glock, Jaber and Neumann, 2015): 
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• Set up: set up workstation. 

• Travel: travel between depot and pick locations, carry items and push/pull 
trolleys. 

• Search: neck flexion/extension. 

• Pick: stretch, bend, reach for items and extract, grab, pick, put down items. 

Excessive manual handling may manifest in muscle fatigue and discomfort, 
which may decrease performance and quality. Unfortunately, not a lot of papers 
have been written on this theme. The only authors who dealt with this theme 
were Landers, Beavers, Sadiq and Stuart (1994) and Gong and De Koster (2011), 
who noted a relationship between physical tasks in OP and performance. This 
authors mentioned, for example, that pick time can depend on the size, weight 
and number of items per pick and ergonomic issues such as accumulated fatigue, 
but did not elaborate how. As we already said, all this factors can decrease the 
performance of the system and can also make wrong the results of a simulation; 
therefore, considering human factors in order-picking is of paramount 
importance. 

In addition to the small amount of paper about human factors and order-picking 
systems, there are no papers which links human factors and fatigue with bucket 
brigade in order-picking systems and that is what we are going to develop at the 
end of this chapter (4.4) and in chapter 5.  

Now, it is important to understand if there are different human factors between a 
bucket brigade and a simple order-picking system and, if yes, what they are. It is 
easy to notice how an order-picking bucket brigade system requires less 
demanding work then a normal picking system, both physically and mentally. 
First of all, the fact that the workers work always on the same fraction of aisle 
makes the picker more comfortable with his work and this leads to less errors and 
higher quality. With bucket brigade, then, the WIP is reduced and this allows the 
operators to deals with less totes along the aisle. Speaking about the physical 
part, on the other hand, the conveyor helps the workers to handle easier and 
effortless the totes. Moreover, workers have to walk shorter distances than in a 
normal picking system, because each worker is limited to his “zone”; in addition 
to this, workers always travel along the aisle without carrying totes, because of 
the conveyor: the travel is no more an effort, but it is time to recover energy, in 
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particular during the backward travel. In conclusion, for all this reasons, bucket 
brigade order-picking systems are less demanding than normal picking system. 

Once we explained what are the reasons which make a worker tired, it is 
important to reduce at minimum his fatigue over the work shift, so that he can 
pick faster, without mistakes. It is possible to reduce the level of effort of the 
pickers, working on the ergonomics of the system. Some examples to make a 
bucket brigade order-picking system  works better, using ergonomics, are: 4

• Presence of two conveyors: it is possible to add a second conveyor which 
brings directly the finished orders into the shipping area. This second conveyor 
gives the operators the possibility to travel always without lifting and bringing 
totes. This reduces the number of back injuries and make the flow faster. (see 
paragraph 5.3 for more) 

• Pick-to-light system: a central computer switches on a light to point out the 
item which has to be picked by the operator. Thanks to this light the worker 
knows exactly where, which and how many items he has to pick. This reduces 
the mental effort to search and identify items and to remember item locations; 
moreover it reduces the physical effort due to neck movements. (see paragraph 
3.3 for more) 

Ergonomics is the main strategy to reduce fatigue in a system, improving its 
general performance. For this reason, paragraph 4.3 is dedicated entirely on 
ergonomics. 

!
4.3 Ergonomics 

When an engineer is designing a work station or a warehouse, ergonomics is 
always of paramount importance. Both when assembling and picking, the worker 
has to be comfortable. According to Sgarbossa (2017), ergonomics extremely 
influences both production and picking rate. Working ergonomically and 
improving ergonomics is a win-win approach, because not only the operators 
produce better, but also they are less tired at the end of their work shift: this leads 
to a higher production rate, to higher quality and to less absenteeism. Hence, 
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when an engineer designs a work station or a warehouse, he has to consider 
ergonomics as well. 

!
The basic principles of ergonomics are: 

• Worker’s height: it is important to let the operator work on or pick products 
which are in the optimal area; to do this, it is possible to assembly the products 
on variable height desk, or use shelves of average height in picking. 

• Picking range control: the operator should reach everything he needs with his 
hands, without making strange or unnatural movements. 

• Optimization of pieces/products position and material flow: it is very important 
to refill the warehouse, stocking the products in the best location and to have a 
continuous flow within the warehouse or along the assembly line. A good 
strategy could be to add an operator who has to think only about this 
operations. 

• Avoid picking and assembling above the height of the heart: it is very tiring to 
pick or work on something keeping the hands up. The working desk should be 
at the right heigh and the picking shelves should be lower than the heigh of the 
heart. 

• Visual field: the worker should see the parts where he is working; the picker 
has to see all the products he needs to pick, to be faster and to lose less time. 

•  Light intensity: the operator has to see as well as possible the object he needs. 
In picking, as we have already said, the pick-to-light system, which uses a light 
to tell the operator where is the product he has to pick, is often used. 

• Adjustment of working equipment: everything should be adjusted to make the 
operator as comfortable as possible. 

!
In Italy, law 81-2008 chapter 6 speaks about manual handling of loads. Annex 33 
tells how employers should behave in relation to ergonomics. 

In addition, ISO speaks about: 
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• Lifting and transport. 

• Pushing and towing. 

• Handling of high frequency low weights.  

!
To know if ergonomics has been well designed by engineering, there are a lot of 
methods to measure the effort of an operator; the effort is directly linked to the 
ergonomics of the system. The main methods are: 

• Self assessment: ask the operator which is his effort (Borg scales). 

• Observational methods: stare at the operator and think about how is his effort 
(OCRA, …). 

• Simulation: study with a software on the PC the system. 

• Direct methods: EMG, O2 consumption, PMES. 

• Real time systems to evaluate the level of ergonomics: use of motion capture 
probe which are connected directly with the operator.   

!
4.4 A mathematical model to describe fatigue 

Now that it is clearer how fatigue is linked to bucket brigade order-picking 
systems and how it is possible to reduce fatigue with ergonomics, we will 
introduce a mathematical model used to describe fatigue in order-picking 
systems, that, in chapter 5, we will adapt to bucket brigade order-picking 
systems. 

The most appropriate fatigue model we found is the one presented by Jaber, Givi 
and Neumann, in their paper “Incorporating human fatigue and recovery into the 
learning-forgetting process” (2013). In their paper, they gave a mathematical 
model for muscular fatigue, which is defined as the inability of the body muscles 
to sustain a specific posture or force level required to perform a task (Ma, 
Chablat, Bennis and  Zhang, 2009). Jaber, Givi and Neumann (2013) developed a 
model to quantify the relation between worker’s fatigue and production outputs.  
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As it has been told before, not a lot of literature has been written about the 
mathematics of fatigue. Most of the paper we know assert that fatigue 
accumulates exponentially with time, but it has not been proved nether 
empirically nor experimentally (Lindstrom, Kadefors and Petersen, 1977; 
Bechtold and Sumners, 1988; Konz, 1998). For our work we will assume that 
fatigue accumulates exponentially as well.  

In particular Jaber, Givi and Neumann (2013) used the formula : 5

F(t) = 1 - e-λt  

where F(t) is the fatigue which the operator accumulates by the time t and λ is the 
fatigue accumulation index (figure 4.1). 

!
Fig 4.1 - Fatigue 
over time. The 
picture represents 
the exponential 
function that links 
the time with the 
f a t i g u e l e v e l , 
according to the 
formula F(t) = 1 - 
e -λ t , g i v e n b y 
Jaber, Givi and 
Neumann (2013). 

!
!

It is possible to calculate the first derivative F’(t) of the function: 

F’(t) = λ e-λt  

that is always positive, because λ is always positive end e-λt is always positive. 
This means that the slope of the function is always positive, according to the fact 
that fatigue is always increasing over time, if rest are not considered . 6
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considered, because we are considering the backward travel (nothing to carry) as rest.



It is also possible to calculate the second derivative F’’(t) of the function: 

F’’(t) = -λ2 e-λt 

that is always negative, because -λ2  is always negative and e-λt  is always positive.  
This means that a worker gets tired faster at the beginning of his activity and the 
more the times goes on, the more his fatigue level grow slower. This is in 
accordance with the fact that an operator can work faster when he is less tired 
and therefore, working faster, he gets tired faster. 

Another object which is very important is the fatigue accumulation index λ, that 
tells how fast an operator gets tired. If λ is low, it means slow fatigue 
accumulation, if λ is high, it means fast fatigue accumulation. Hence, the value of 
λ depends on the heaviness of the work. Jaber, Givi and Neumann (2013) set λ to 
three levels: slow, moderate and fast, corresponding respectively to λ = 0,01, λ = 
0,03 and λ = 0,05. Setting this three different values it is possible to obtain the 
functions in figure 4.2, where it is shown how the functions change when the 
value of λ is varying. 

Fig 4.2 - Fatigue level with different values of λ. In this picture it is shown how the functions 
change their positions, varying the value of the fatigue accumulation index λ. The higher is the 
value of λ, the more the function goes faster to the maximum level of fatigue (1). In the picture, 
three levels of fatigue are considered: easy work (λ = 0,01), average work (λ = 0,03) and hard 
work (λ = 0,05). 
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It is interesting to see how is the level of fatigue of a worker after 8 hours (the 
duration of a work shift) in the three cases described before. This value will be 
obtained starting from the formula given by Jaber, Givi and Neumann (2013) in 
their paper. We will use the values that we will obtain to set the value of µ in the 
next chapter (chapter 5).   

To find the values of F(t) for t = 8 hours is enough to substitute the value t = 8 in 
the three different formulas for each λ. The results are: 

• λ=0,01 (easy work)  —>  F(8) = 1 - e-0,01*8 = 0,07688 —> 7,688% 

• λ=0,03 (average work)  —>  F(8) = 1 - e-0,03*8  = 0,21337 —>  21,337%     

• λ=0,05 (hard work) —>  F(8) = 1 - e-0,05*8 = 0,32968 —> 32,968% 

The results are confirmed by figure 4.3. 

Fig 4.3 - Exponential fatigue model in a work shift. The figure shows how the fatigue level of 
one operator grows with different type of works: easy work (λ = 0,1), average work (λ = 0,3) 
and hard work (λ = 0,5). The higher is the value of λ, the more demanding is the work. After an 
eight hours work shift, the level of fatigue is 0,07688 for easy work, 0,21337 for average work 
and 0,32968 for hard work.  

�59



In a practical point of view and approximating, the level of fatigue after 8 hours 
is 10% for an easy work, 20% for an average work and 30% for a hard work . We 7

will use this values in chapter 5 to build our model of fatigue in an order-picking 
bucket brigade system. 

!
4.5 Easy, average or hard work?	

The next step is to find a way to decide if a work is easy, average or hard to 
decide the value of λ which is more appropriate . To do this, we need to consider 8

all the factors which could influence the fatigue level of a picker during his work 
shift. Down here, the most important are listed:	

• Dimension of an item: items of middle dimension are easy to pick (low value 
of λ), but very big items or very small items require more effort to be picked 
(high value of λ).	

• Weight of an item: the heavier is an item and the more effort it requires to be 
picked. Heavy items have a high value of λ, while light items have a low value 
of λ.	

• Shape of an item: an item with regular shape (ex. parallelepiped) is easier to 
pick than an object with a strange shape, because it can be difficult to grab it or 
to handle it. In general, on one hand, the more an item has a regular shape, the 
more the value of λ is lower; on the other hand, the more an item has an 
irregular shape and the more the value of λ is higher.	

• Number of items per pick: frequent and fast movements make workers tired 
faster. Because of this, if the number of items per pick is high, λ is high, if the 
number of items per pick is low, the value of λ is low.	

• Ergonomics of the warehouse and, more in particular of the flow rack: as we 
discussed in paragraph 4.3, ergonomics is one of the most important factor to 
determine if a picking system works well or not. The more ergonomically the 
flow rack is designed (ex. it allows the workers to never pick items above the 
height of the heart), the slower the workers get tired and, so, the value of λ is 
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low. If the flow rack is designed without thinking about ergonomics, the value 
of λ is high, because the operators have to spend more energies on picking.	

• Young / old worker: a young worker is considered to have more energy and 
resistance than an old worker. In general, young workers have a lower value of 
λ than old workers. 	

• Male / female worker: in general, men are stronger than women, so men get 
tired slower. For this reason it is usually true that male workers have a lower λ 
than female workers.	

• Trained / not trained worker: a worker who is trained physically and mentally 
better than another gets tired slower. Trained workers have a low value of λ, 
while not trained workers have a high value of λ. 	

• Physical and mental tiredness at the beginning of the work shift: if a picker is 
tired at the beginning of the work shift, for example because he has slept bad 
the previous night or he did a hard physical activity the day before, he will 
have a higher value of λ than a picker who is completely rested at the 
beginning of the work shift.	

There also are some papers that confirm the factors in the bulleted list. Two 
examples are the papers of Landers, Beavers, Sadiq and Stuart (1994) and Gong 
and De Koster (2011) who mentioned that pick time can depend on the size, 
weight and number of items per pick and ergonomic issues such as accumulated 
fatigue, but they did not elaborate how.	

In conclusion, to choose the correct value of λ, we need to consider all this 
factors, balance them and, only after a careful analysis, we can choose the right 
value of λ.	

!
!
!
!
!
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Chapter 5 

Bucket brigade and fatigue 
The aim of this chapter is to link the previous papers about bucket brigade (see 
chapter 2 and 3) with fatigue models (see chapter 4). A new model to describe  
the slowdown of the pick rate over time is given. Using this model, it is possible 
to describe mathematically the dynamics of a two workers bucket brigade system 
in order-picking, when the workers slow down over time in a work shift. Thank 
to the mathematics, then, we will write some codes on MATLAB to simulate the 
behavior of a bucket brigade in a work shift (8 hours), considering different 
maximum workers’ speeds and different levels of working effort. Interesting 
results will follow. 

!
5.1 Taking into account fatigue in bucket brigade order-
picking systems 

It is interesting to see what happens to bucket brigades, if a worker changes his 
speed during the work shift. Unfortunately, this field has been not deeply 
explored in literature. The only literature we know about this theme is the paper 
“Bucket brigades when worker speeds do not dominate each other uniformly”, 
written by Armbruster and Gel (2002), which speaks about a two operators 
bucket brigade line where the operators’ velocities change with different constant 
value along the line; in particular they studied the case in which the first operator 
has a constant speed along the line and the second one is slower in the first part 
of the line and faster in the second. Armbruster and Gel (2002) studied the 
behavior of this system first in the case of passing and then in the case of 
blockage (see 2.4); they did not speak about bucket brigade in order-picking, but 
they spoke about bucket brigade in assembly lines. At the end of their paper, they 
gave some hints to extend their work; one of them is to see what it would 
happen, if workers changed their speed dynamically over time.  

Our idea is to take into account the effect of fatigue in a bucket brigade order-
picking system: this means that the pickers decrease their speed during the work 
shift. To study this theme, we will use the equation about fatigue described in 
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chapter 4 and we will adapt it to the field of bucket brigade in order-picking 
systems. 

!
5.2 Fatigue model to describe the slowdown of workers’ pick 
rate 

5.2.1 Mathematical formulation 

The first step is to find an equation that describes how the speed of the workers 
changes over time. According to Jaber, Givi and Neumann (2013), the curve that 
describes muscular fatigue is  

F(t) = 1 - e-λt  

where F(t) is the fatigue level, λ is fatigue accumulation index and the t is the 
time. As shown in figure 5.1, the fatigue of a worker increases exponentially 
during the work shift. The maximum level of fatigue is 1: when F(t) = 0 (t = 0) 
the level of fatigue is the minimum and the worker can work at his maximum 
speed. When F(t) = 1 (t = ∞) the level of fatigue is maximum and the operator 
cannot work anymore.  

Fig 5.1 - Exponential fatigue accumulation in a work shift. According to Jaber, Givi and 
Neumann (2013), at the beginning of the work shift the fatigue level is 0 and is grows following 
the function F(t) = 1 - e-λt  during the work shift. The higher the fatigue level is and the more the  
slower workers produce. 
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The next step is to translate the function F(t) = 1 - e-λt  described by Jaber, Givi 
and Neumann (2013), in a new function, that describes the pickers’ speed during 
their work shift in a bucket brigade order-picking system. The function that 
seems more appropriate to describe the evolution of the speed of a picker over 
time on a bucket brigade order-picking system is: 

v(t) = a * e-µt  

where v(t) is the speed of the operator  over time, a is a constant that we will 9

define later, µ is the fatigue constant and t is the time in seconds  from the 10

beginning of the work shift.  

And we want that at time t = 0 the operator works at his maximum speed vmax, 
because at t = 0 he is not tired at all, so: 

v(0) = vmax = a * e-µ*0 = a*e0 = a  

then: 

 vmax = a 

The basic equation  that describes the changing of a worker’s speed in a bucket 11

brigade is, then: 

v(t) = vmax * e-µt  

It is important to notice that for t = ∞ the speed of the operator is v(∞) = 0, 
according to the fact that after a time ∞ a worker is so tired that he cannot pick 
anymore, so his speed is 0. 

Also for this function, it is possible to calculate the first and the second 
derivative, to obtain some important properties. 

�65

 The speed of the operator is measured in lines/s or aisles/s and, for the fact that we normalized 9

the length of the aisle (line) to 1, the most appropriate unit of measurement for v(t) is aisles/s or 
1/s. For example, if the speed of a worker is 0,5 m/s and the aisle (line) is 100 m long, then the 
worker’s speed is 0,5 / 100 = 0,005 aisles/s = 0,005 1/s.

 We will use seconds because we want that in the equation v(t) = a * e-µt the time has the same 10

unit of measurement of time between hand-offs in a bucket brigade.

 To write this equation we took a cue from F(t) = 1 - e-λt, used by Jaber, Givi and Neumann 11

(2013). The equation v(t) = vmax * e-µt  is not the only one that can be used to describe the 
slowdown of the workers over a work shift. Other authors, for example, suggest that a worker 
reaches his maximum speed after 1-2 hours, because he needs some time to “warm up”. 



The first derivative F’(t) of the function is: 

v’(t) = - vmax  * µ * e-µt 

that is always negative, because vmax and µ are always positive, e-µt is always 
positive and there is a minus. This means that the slope of the function is always 
negative, according to the fact that pickers pick items slower over time, if rests 
are not considered . 12

It is also possible to calculate the second derivative v’’(t) of the function: 

v’’(t) = vmax  * µ2 * e-µt 

which is always positive, because µ2  is always positive and e-µt  is always 
positive. This means that a worker gets tired faster at the beginning of his activity 
and the more the times goes on, the more his fatigue level grows slower. This is 
in accordance with the fact that an operator can work faster when he is less tired 
and therefore, working faster, he gets tired faster. 

The behavior of the function v(t) = vmax * e-µt  is confirmed by the plot in figure 
5.2. According to practice, the worker reduces his speed over time, because of 
fatigue. 

!
Fig 5.2 - Fatigue 
level in function 
of t ime. The 
picture shows 
the slowdown of 
a worker over 
time, according 
to the function 
v(t) = vmax * e-µt  

that we took as 
hypothesis. In 
this case, 1 is 
the maximum 
speed o f the 
worker.  

!
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 As we already told we will not consider rest.12



To use the function v(t) = vmax * e-µt  we need to set the value of vmax and of µ, 
which are constant. 

!
5.2.2 Setting the value of vmax 

The value of vmax is the maximum picking speed of a worker. In the model that 
we described and that we will use, vmax = v(0), which means that the maximum 
speed of a worker is reached only at the beginning of the work shift . 13

Before setting the value of vmax, we have to understand which are the reasons that 
makes a worker pick faster than another. The main reasons are: 

• Experience of a worker: if a worker has more years of experience than another 
one, the former is, in general, faster than the latter. The worker with more 
experience has a higher value of vmax than the worker with less experience. 

• Young / old worker: a young worker is considered to have more energy and 
resistance than an old worker. In general, young workers have a higher value of  
vmax than old workers. 	

• Male / female worker: in general, men are stronger than women, so men can 
pick faster. For this reason it is usually true that male workers have a higher 
vmax than female workers.	

• Trained / not trained worker: a worker who is trained physically and mentally 
better than another can pick faster. Trained workers have a high value of vmax, 
while not trained workers have a low value of vmax. 	

• Physical and mental tiredness at the beginning of the work shift: if a picker is 
tired at the beginning of the work shift, for example because he has slept bad 
the previous night or he did a hard physical activity the day before, he will 
have a lower maximum speed vmax, than a picker who is completely rested at 
the beginning of the work shift.	

• Ergonomics: sometimes is very difficult to design a warehouse taking into 
account all the principles that we mentioned in paragraph 4.3. For this reasons 
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 On the contrary, in the literature, it is possible to find also other models that support the fact 13

that the maximum speed is reached only after 1-2 hours from the beginning of the work shift, 
because workers need some time to “warm up”.



the ergonomics of the warehouse could be good for some operators, but bad for 
someone else. For example, if there are two operators, one of average height 
and one very short, and the flow rack is of average height, the ergonomics of 
the warehouse facilitates the average height operator: in this case, in general, 
the average height operator has a higher value of vmax, because he can pick 
items more easily.	

• Motivation: the more a picker is motivated and the higher his vmax will be.	

In conclusion, to choose the correct value of vmax, exactly like in the case of λ 
(see paragraph 4.5), we need to consider all these factors, balance them and, only 
after a careful analysis, we can choose the right value of vmax. 	

To find the precise numerical value of vmax for each picker, it is enough to ask 
each picker to pick the same items written on a list , starting from the beginning 14

to the end of the aisle, and time them with a stopwatch. Then, we have to convert 
the time t in seconds  and, knowing the length of the aisle l, we can obtain their 15

maximum normalized (length of the aisle l = 1) speed, calculating vmax = l / t . 
The unit of measurement of vmax is aisles/s or 1/s. 	

In general, the values of vmax are very small, because the length of the aisle is 
normalized to l = 1: the unit of measurement of vmax is aisles/s and not m/s. Just 
to give an idea, let’s take into account a 100 m long aisle in a warehouse and let’s 
say that a picker travels along all the aisle, picking the requested items, in 4 min 
30 s (= 270 s). Adding the 30%15, the time of the picker is 351 s; now, we can 
calculate vmax: 	

vmax = 100 / 351 = 0,285 m/s = 0,00285 aisles/s	

In our analysis we will use the value in l/s, because we will develop all the 
mathematics of bucket brigade starting from the hypothesis of normalized length 
of the aisle (l=1). In conclusion, the values of vmax are slightly small. 
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 The order in the picking list should be an average order. By average order, we mean an order 14

that requires an average time to be picked. In this way we are calculating the average vmax; it is 
impossible to calculate the real vmax, because the time t that a worker needs to pick an order 
depends on the number and kind of items requested by the customer: for this reason, also vmax 
depends on the number and kind of items requested by the customer in his order.

 In general is better to increase the time t of +20% or +30%, because the workers pick slower 15

during a normal work shift than during a single pick that they have to perform to show their 
maximum speed.



In figure 5.3, the behavior of two functions with two different values of vmax is 
shown. 

Fig 5.3 - Speed slowdown in a work shift, varying the value of vmax, with a constant value of  
µ=7,7480*10-6 (average work, see paragraph 7.2.3). The figure shows how the speed of one 
operator decreases during the work shift, according to the formula v(t) = vmax * e-µt. The starting 
maximum speed of the two pickers are v1 = 3*10-3 aisles/s and v2 =5*10-3 aisles/s. It is 
important to notice that, even if the value of µ is the same for the two workers, the picker with 
the lower vmax slows down less than the picker with a higher vmax, because the same value of µ 
indicates that both operators have to lose the same percentage (20% in this case) of speed at the 
end of the work shift. This is consistent with the fact that, if an operator picks faster, he will get 
tired sooner. 

!
All this calculation is possible only under the hypothesis of high sku density in a 
high-volume distribution warehouse of a chain retailer, so that we can consider 
valid the hypothesis written in paragraph 5.3.  

It could be interesting to generalize the solutions of the problem considering the 
work not uniformly distributed along the aisle. An idea could be to consider the 
work exponentially distributed. In our work we will not deepen this theme. 

!
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5.2.3 Setting the value of µ 

After we have defined the function v(t) = vmax * e-µt  and that we have explained 
how to set the value of vmax, the next step is to find the values of µ, which 
indicates easy work, average work and hard work. We will consider three 
different level of effort in work: 

• Easy work: it is the work that leads to a 10% speed slowdown after 8 hours (a 
work shift). 

• Average work: it is the work that leads to a 20% speed slowdown after 8 hours 
(a work shift). 

• Hard work: it is the work that leads to a 30% speed slowdown after 8 hours (a 
work shift). 

Now, it is possible to calculate the value of µ for all the three levels of effort . To 16

do it, it is enough to invert the formula v(t) = vmax * e-µt, finding the value of µ 
after 8 hours (8*60*60 = 28800 seconds) in the three different cases : 17

• Easy work —> v(8*60*60) = 90% vmax  —> 90 = 100*e-µ*8*60*60                            

—>  µ = 3,6584*10-6 

• Average work —> v(8*60*60) = 80% vmax  —> 80 = 100*e-µ*8*60*60                     

—> µ = 7,7480*10-6 

• Hard work —> v(8*60*60) = 70% vmax  —> 70 = 100*e-µ*8*60*60                            

—> µ = 1,2385*10-5 = 12,3850*10-6 
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 In reality, there are not only three different kind of work effort (easy, average and hard work), 16

but the effort of a work can vary from 0 effort (the speed of the workers remains constant for 8 
hours) to hard work (the speed of the workers decreases of 30% after 8 hours) continuously. 
Therefore, µ can assume each value between  µ = 0 and µ = 1,2385*10-5.

 The values of µ are calculated for a t in seconds, so it is possible to use this value of µ only if 17

the calculations are in seconds. We made this choice because all the times in the mathematics of 
bucket brigade are expressed in seconds.  
If the reader wants to obtain the values of µ in hours, he has to calculate v(8) in the three cases 
and not v(8*60*60) as we did.



The results we have just obtained with the calculation are represented in figure 
5.4. 

Fig 5.4 - Speed slowdown in a work shift, varying the value of µ, with a constant value of vmax = 
1*10-3. The figure shows how the speed of one operator decreases during the work shift, 
according to the formula v(t) = vmax * e-µt. The speed of slowdown depends on the type of work: 
easy work (µ = 3,6584*10-6, in 8 hours the worker’s speed decreases of 10%), average work (µ 
= 7,7480*10-6, in 8 hours the worker’s speed decreases of 20%) and hard work (µ = 
1,2385*10-5, in 8 hours the worker’s speed decreases of 30%). The higher is the value of µ, the 
more demanding is the work. 

!
To decide if a work is easy, average or hard, the procedure to follow is the same 
that the one we explained in paragraph 4.5: if the value of λ is low, also the value 
of µ will be low and if the value of λ is high, also the value of µ will be high. 

It is important to notice that the shape of the exponential function that we are 
using in a work shift (8 hours) can be approximated with a straight line (see both 
figures 5.3 and 5.4. We will use this fact in paragraph 5.4 to simplify the 
mathematics of the system. 
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5.3 Working hypothesis  

Now that we have explained how to use the formula v(t) = vmax * e-µt of our 
fatigue model and before talking about the mathematics of the system, it is 
appropriate to clarify the working hypothesis of a two operators bucket brigade 
in an order-picking system, where the pickers’ speeds slow down, because of 
fatigue, following the function v(t) = vmax * e-µt.  

The first assumptions that come to mind are the assumption of the normative 
model, used by Bartholdi and Eisenstein (1996a) in their paper “A production 
line that balances itself”, where they were studying bucket brigades in an 
assembly line (see paragraph 2.1 and 2.2). For reasons of clarity, we will write 
them again. 

Assumptions: 

• Total ordering of workers by velocities: each worker is characterized by a 
distinct, constant work velocity vi. 

• Insignificant walking time: the total time to assemble a product is significantly 
greater than the time to walk the length of the assembly line. 

• Smoothness and predictability of work: the nominal work content of the 
product is a constant (which is normalized to 1); and the work content is spread 
continuously and uniformly along the assembly line. 

Restrictions:  

• The workers are ordered from slowest to fastest along the flow line. 

• The workers are not allowed to pass one another. If a worker is blocked by 
another worker, he must wait until the other worker is finished. 

!
To make these hypothesis fit our model, we need to change something. First of 
all, we are working in a warehouse and not in an assembly line: in fact, in our 
analysis, we are working on a high-volume distribution warehouse. The 
warehouse that we are taking into account is a warehouse of a chain retailer, 
where the space to stock material is severely limited and the skus have to be 
replenished frequently and in small, less-than-caseload amounts. A typical order 
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consists in a lot of skus, but a small number each. Moreover, every order is 
different. The best layout to deal with these circumstances is, generally, flow 
rack, as suggested by Bartholdi and Eisenstein (1996b) in their paper “Bucket 
brigades: a self-balancing order-picking system for a warehouse” (see paragraph 
3.1). Second, we are considering fatigue, which makes the pickers slow down 
during the work shift, so that the speeds of the pickers are not constant over time. 

This reasoning suggests us to change the first and the third assumption: the first 
because the pickers’ speed decreases over time, so it is not constant and the third 
because in a warehouse the work content is not continuously spread along the 
aisle and all the customers’s orders are different. The second assumption and 
both restrictions can be considered still valid also in our case. This bring us 
towards the hypothesis that Bartholdi and Eisenstein (1996b) made in their paper 
“Bucket brigades: a self-balancing order-picking system for a warehouse”, where 
they considered a simple model of bucket brigade in picking, where the amount 
and location of works varies, but the speed is still constant. For the sake of 
clarity, we will write their assumption again (see paragraph 3.4): 

• Total ordering of position: let’s describe every discrete picking position with a 
number j between 1 and m (j = 1, …, m); the position could correspond to the 
bays of flow rack. For any given order, every pick of position j must be 
completed before all the picks which are in a position after (more towards the 
end of the line) j.  

• Iid orders, exponentially distributed work: orders are independent and 
identically distributed random vectors, the components of which are 
independent; the jth component of each vector represents the standard work at 
location j and it follows an exponential distribution with common mean 1/µ. 

• Total ordering of the workers by velocity: each picker i (i = 1, …, n) has his 
own velocity vi, so the time that a picker needs to complete a pick is 
exponentially distributed with mean 1 / (µ*vi). This assumption does not work 
well for order-picking, because the pertinent skills are simply dexterity and 
motivation. According to Bartholdi and Eisenstein (1996a), it is easy to rank 
the workers velocities. 

• Insignificant walking time: the time to pick an order is significantly grater then 
the time to walk along the whole aisle. 
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And in our case the third hypothesis cannot be used, because it doesn’t take into 
account fatigue. 

Starting from these assumptions, Bartholdi and Eisenstein (1996b) proved that 
the randomness of the orders does not qualitatively change the dynamics of a 
bucket brigade from those of the deterministic model analyzed by Bartholdi and 
Eisenstein (1996a) and Bartholdi, Bunimovic and Eisenstein (1999). The 
asymptotic behavior remains the same, but the variance of work among orders 
makes the system less predictable. Moreover, always working on the hypothesis 
of “exponential distributed work” , Bartholdi, Eisenstein and Foley (2001) 18

proved that, as the number of stations increases, the moment-to-moment behavior 
of the stochastic line will increasingly resemble that of the normative model. 
Moreover, this resemblance will assert itself with great uniformity. Another 
reason to make the two models closer is that the variance of the work is very 
small in a high-volume distribution warehouse of a chain retailer. As the variance 
decreases, the behavior of the bucket brigade approaches the one of the 
deterministic model described by Bartholdi and Eisenstein (1996a) and 
Bartholdi, Bunimovic and Eisenstein (1999), where the work is the same order 
by order, distributed uniformly and continuously. 

In other words, because of the fact that our model takes into account a high-
volume distribution warehouse of a chain retailer, where a typical order consists 
in a lot of skus, but a small number each, we can consider, approximating, the 
work continuously and uniformly spread along the aisle, just like in the third 
assumption of normative model. We will consider, then, all the customers’ order 
equal to further simplify the mathematics of the system.  
The last problem is to fix the assumption of constant workers’ speed.  

After all this reasoning, it is possible to write the assumptions and the restrictions 
of our model . 19

  

�74

 This assumption is well suited to the context of order-picking in warehouses, where the work 18

content is stochastic, because of the variability of customer orders.

 Our starting hypothesis (both assumptions and restrictions) are valid both in the case of 19

bucket brigade in assembly line and in bucket brigade in order-picking. This means that 
everything we will say from now on will be valid not only in warehouses, but also in assembly 
lines.



Assumptions: 

• Velocities decreasing exponentially : each picker is characterized by a distinct 20

picking velocity vi., which decreases over time, following the function                
vi (t) = vmax i * e-µt .  

• Insignificant walking time: the total time to pick the item written in the picking 
list and ordered by a customer is significantly greater than the time to walk 
backwards the length of the aisle. 

• Smoothness and predictability of work and orders: the nominal work content 
along the aisle is a constant (which is normalized to 1); and the work content is 
spread continuously and uniformly along the aisle. All the customers’ orders 
are equal. 

Restrictions:  

• The pickers are ordered from slowest to fastest along the aisle. 

• The pickers are not allowed to pass one another. If a picker is blocked by 
another picker, he must wait until the other picker finishes to pick items from a 
location of the flow rack. 

!
5.4 Mathematics of the system 

5.4.1 Pickers’ speed varying with v(t) = vmax * e-µt  over time 

Once we have clarified the working hypothesis, it is possible to build the 
mathematical model. The dynamics of the system is nearly the same of the one 
studied by Bartholdi and Eisenstein (1996a), but we have to take into account the 
fact that the speed of the pickers slows down with the function v(t) = vmax * e-µt  

where t is the time from the beginning of the work shift. In this case, we expect 
the time between two consecutive hand-offs to grow over time, because of the 
slowdown of the pickers’ speed.  
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 Considering the picking speed decreasing over time, it is not always possible to decide who is 20

the faster picker. For example, it could happen that vmax 1 > vmax 2, but µ1 > µ2: in this case, at 
the beginning, picker 1 is faster, but after a certain periof of time t° could happen that picker 2 
becomes faster, because picker 1 gets tired faster (he has a higher value of µ1). In this case the 
two function v1 (t) = vmax 1 *e-µt and v2 (t) = vmax 2 *e-µt are crossing each other and it is possible 
to find a point of intersection.



According to Bartholdi and Eisenstein (1996a, 1996b), a bucket brigade system 
perform at its maximum level when the workers are sequenced from the slowest 
to the fastest along the line; this happens because the chance of blockage is 
reduced, so the throughput is the maximum that we can obtain. Also if the 
picking speed of the pickers decreases over time, it is always convenient to order 
the pickers from the slowest to the fastest to reduce the chance of blockage. 
Ordering the pickers from the slowest to the fastest and considering the 
slowdown of the pickers, the dynamics of the system is the one in figure 5.5. 

Fig 5.5 - Dynamics of a 2 operators BB system when workers’ speed varies with v(t) = vmax * e-

µt  between two hand-offs. In the x axis the time is shown, while in the y axis the normalized 
length of the aisle is represented. The plot is similar to the one of figure 4.3, which represents 
the dynamics of a bucket brigade under the hypothesis of normative model. The difference 
between the two pictures is that in picture 4.3 the lines are straight and with the same slope (v is 
constant over time), while in this picture the lines are exponential, because v is not constant 
over time, but it decreases with the function v(t) = vmax * e-µt. This leads to an enlargement of 
the time between hand-off over time: in general, after the first few iterations, when the system is 
balanced, we will have tn+1 > tn > tn-1. Moreover the slope of the line immediately before and 
immediately after every hand-off is the same, because x’(t) is a continuous function, even if x(t) 
is not. 

!
The speed over time is not constant (the lines between hand-offs are not straight), 
so we need to integrate the function v(t) = vmax * e-µt  in the interval between two 
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consecutive hand-offs to find the function x(t), which tells us how the pickers 
move along the aisle. 

v = ds/dt 

vmax * e-µt  = ds/dt 

ds = vmax * e-µt  * dt 

 

!
  

!
!

sf  - si = - (vmax / µ) * e-µ*Σ from 1 to n (t)  + (vmax / µ) * e-µ*Σ from 1 to n-1 (t)  

sf  - si = - (vmax / µ) * (e-µ*Σ from 1 to n (t)  - e-µ*Σ from 1 to n-1 (t) ) =  

         = - (vmax / µ) * (e-µ*tf  - e-µ*ti )   (*) 

and, more in general, sf  = x(n) and si = x(n-1). 

The equation we found allows us to find the space travelled by a picker in the 
time interval between ti and tf (interval of time between two consecutive hand-
offs). 

!
It is interesting to find the formula which gives the final time tf  (time of the 
following hand-off), when the initial time ti (time of a hand-off) is given. To 
obtain it, it is enough to work on the formula that we found before. 

sf  - si = - (vmax / µ) * (e-µ*Σ from 1 to n (t)  - e-µ*Σ from 1 to n-1 (t) )  

sf  - si = - (vmax / µ) * (e-µ*tf  - e-µ*ti ) 

In general, the space si is always si = 0, because for each iteration x1(n) = 0. Only 
for the first iteration it can be si ≠ 0, because of the starting position of the first 
worker x1(0) ≠ 0. 
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- (sf - si) / (vmax / µ) = e-µ*tf  - e-µ*ti  

- (sf - si) / (vmax / µ) + e-µ*ti = e-µ*tf  

ln ( - (sf - si) / (vmax / µ) + e-µ*ti ) = -µ*tf  

!
!

where tf and ti can be written as summations: 

!
    (**) 
!
!

All the formulas that we found till now can be used for both the pickers. In 
particular, we will use directly (*) and (**). 

!
Now it is possible to study the dynamics of the system. 

In the first step: 

!
!

t1 = t1 - t0 = t1 - 0 = t1 

x1(1) = 0 

!
!

In the second step: 

!
!

t2 = (t1 + t2) - t1 = t2 
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x1(2) = 0 

 

!
In the third step: 

!
!

t3 = (t1 + t2 + t3) - (t1 + t2) = t3 

x1(3) = 0 

!
!

In the n step: 

!
 
!

!
x1(n) = 0 

!
!

!
In all these calculations the step (the number of the iteration) is indicated with the 
letter n, in particular with (n), and not with the letter t as in the previous chapters 
(chapter 2 in particular). This change has been done because in the formula v(t) = 
vmax * e-µt, t is already used to indicate the time from the beginning of the work 
shift so we could not use the same letter for the steps. 

!
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5.4.2 Linear approximation of v(t) between two consecutive hand-offs 

As we have already noticed at the end of paragraph 5.2.3, the shape of the 
exponential function is slightly linear in an 8 hours work shift (see figures 5.3 
and 5.4). This suggests that the function v(t) = vmax * e-µt  could be approximated 
with a straight line, more precisely with a piecewise linear function. The idea is 
to consider the speed of the pickers constant over the time between two 
consecutive hand-offs. The function v(t) = vmax * e-µt is used to determine the 
value of v at the beginning of the interval between two consecutive hand-offs; 
after each hand-off, a new value of v must be calculated, changing the value of 
t .  21

In other words, there are two ways to study the behavior of a two workers bucket 
brigade in an order-picking system, considering the slowdown of the pickers: 

• Considering the pickers’ speed varying with the function v(t) = vmax * e-µt   

between two hand-offs. This is the most precise way to calculate the final 
result. (see paragraph 5.4.1) 

• Considering the pickers’ speed constant between two hand-offs. Doing like 
this, the result will be approximated. (see paragraph 5.4.3) 

Both procedures give very close and precise results. This happens because, as we 
have told before, the shape of the exponential function we are considering can be 
approximated with a straight line and because the time because two hand-off is 
small (seconds), while the work shift is a lot larger (hours). Moreover, the value 
of µ is small (around 10-5, 10-6) and this leads to the fact that the exponential 
function is very flat . For these reasons it is possible to approximate the function 22

v(t) = vmax * e-µt  with small straight lines between hand-off. Therefore, the 
approximation that we are doing considering the pickers’ speed constant between 
two hand-offs leads to a result very close to the perfect one, obtained considering 
the pickers’ speed varying with the function v(t) = vmax * e-µt  between two hand-
offs. All the concepts that we have just explained are shown in figure 5.6. 

!
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 The value of t is the value of time from the beginning of the work shift.21

 The function v(t) = vmax * e-µt  is very flat because the very low value of µ. In fact, the first 22

derivative of the function is v’(t) = - vmax  * µ * e-µt  and both vmax and µ are very small, so also 
v’(t) is small and the function v(t) is flat.



Fig 5.6 - Fatigue approximation. The picture shows why it is possible to approximate the 
exponential fatigue model with a piecewise linear function. The approximation is better if the 
time is divided in a lot of subintervals (the hand-off are a lot, so that the time between hand-offs 
is short) and the value of µ is low (the function is flat). In our case, the total time (8 hours) is 
divided, in general, in more than 100 intervals (in 8 hours there are more than 100 hand-offs) 
and the value of µ is between 10-5 and 10-7: the approximation is nearly perfect.                        
For the sake of simplicity, we have normalized the speed of the picker to 1. 

!
It is interesting to notice that if the value of µ is µ = 0, then the worker is not 
tiring and we are returning to the case studied by Bartholdi and Eisenstein 
(1996a). In this case, the two ways to study the behavior of a two workers bucket 
brigade in an order-picking system give exactly the same results, because the 
speed of the workers is constant during the whole work shift and, therefore, 
between two hand-offs as well. 
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5.4.3 Pickers’ speed constant between two consecutive hand-offs 

For all the reasons we explained in the previous paragraph, it is possible to 
develop, with a very good approximation, the mathematics of the problem also 
considering the workers’ speed constant between two consecutive hand-offs. As 
we have already explained, the idea of this approximation is to consider the 
speed of the pickers constant over the time between two consecutive hand-offs. 
The function v(t) = vmax * e-µt is used to determine the value of v at the beginning 
of the interval between two consecutive hand-offs: this value of v will remain 
constant for all the time between two consecutive hand-offs; after each hand-off, 
a new value of v must be calculated, changing the value of t . Also in this case, 23

as we already told at the beginning of 5.4.1, it is convenient to order the pickers 
from the slowest to the fastest to avoid blockage and, so, to maximize the 
throughput. 

Here, we will show an example about how to calculate the speed of the pickers 
between two consecutive hand-offs, with the method of constant speed. 

Let’s say that after time t from the beginning of the work shift there is a hand-off. 
To calculate the constant speeds of the two pickers we have to calculate: 

v1 = vmax1 * e-µ1t 

v2 = vmax2 * e-µ2t 

The speeds v1 and v2 we have just found are not function of time anymore, 
because we are considering the speeds constant between two consecutive hand-
offs. We have to use the speeds that we found, considering them constant, until 
the next hand-off is done. When another hand off is done, we have to make the 
calculation again: the values of vmax1, vmax2, µ1 and µ2 remain the same , but the 24

value of t changes, because some time is passed by. In particular, the new time t 
will be calculated adding the time between the two hand-offs to the old time t, so 
that the new time t will be always a bigger number than the old time t. Because 
of the fact that the new time t is bigger than the old time t, the speeds decrease 
their value every iteration, according to the fact that the pickers slow down over 
time, because of fatigue.   
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If we order the pickers from the slowest to the fastest and consider their speeds 
slowing down over time in the work shift, we will obtain the dynamics of the 
system represented in figure 5.7. 

Fig 5.7 - Dynamics of a 2 operators BB line when workers’ speed is constant between two hand-
off. In the x axis the time is shown, while in the y axis the normalized length of the aisle is 
represented. The plot is similar to the one of figure 4.3, which represents the dynamics of a 
bucket brigade under the hypothesis of normative model. The difference between the two 
pictures is that in picture 4.3 the lines are straight and with the same slope (v is constant over 
time), while in this picture the lines are always straight, but the slope of the lines decreases over 
time, because v is not constant over time, but it decreases iteration by iteration. In particular we 
have to calculate the constant speed in each interval using the formula v(t) = vmax * e-µt, where t 
is the time from the beginning of the work shift to the first of the two hand-offs that we are 
considering. This leads to an enlargement of the time between hand-offs over time: in general, 
after the first few iterations, when the system is balanced, we will have tn+1 > tn > tn-1. In this 
case neither x(t) nor x’(t) are continuous functions. 

!
In this case we are considering that the speed of the operators decreases over 
time with the function v(t) = vmax * e-µt , but not continuously. We will first 
calculate the speed v(tn) immediately after a hand-off at time tn with the formula 
v(tn) = vmax * e-µtn  and we will consider the speed v(tn), found with this 
procedure, constant for all the time between tn and tn+1. These calculations can be 
done for each interval of time between hand-offs, always considering the speed 
constant in the time interval. 
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In the first step :  25

v1(t0=0) = v1(0) = v1max * e-µ1*t0  = v1max * e-µ1*0  = v1max * 1 = v1max 

v2(t0=0) = v2(0) = v2max * e-µ2*t0  = v2max * e-µ2*0  = v2max * 1 = v2max 

t1 = (1-x2(0))/v2(0)  = (1-x2(0))/v2max 

x1(1) = 0        x2(1) = v1(0)*t1+x1(0) = v1max*t1+x1(0) 

!
In the second step: 

v1(t1) = v1(1) = v1max * e-µ1*(t0+t1)  = v1max * e-µ1*t1 

v2(t1) = v2(1) = v2max * e-µ2*(t0+t1)  = v2max * e-µ2*t1 

t2 = (1-x2(1))/v2(1) 

x1(2) = 0 

x2(2) = v1(1)*t2+x1(1) = v1(1)*t2 

!
In the third step: 

v1(t2) = v1(2) = v1max * e-µ1*(t0+t1+t2)  = v1max * e-µ1(t1+t2)   

v2(t2) = v2(2) = v2max * e-µ2*(t0+t1+t2)  = v2max * e-µ2(t1+t2)  

t3 = (1-x2(2))/v2(2) 

x1(3) = 0 

x2(3) = v1(2)*t3+x1(2) = v1(2)*t3 

!
In the n step: 

v1(tn-1) = v1(n-1) = v1max * e-µ1*Σ from 0 to n-1 (tn)  = v1max * e-µ1*(t1+t2+…+tn-1)   
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the letter n and not with t as in the previous chapters.



v2(tn-1) = v2(n-1) = v2max * e-µ2*Σ from 0 to n-1 (tn)  = v2max * e-µ2*(t1+t2+…+tn-1)  

tn = (1-x2(n-1))/v2(n-1) 

x1(n) = 0 

x2(n) = v1(n-1)*tn+x1(n-1) = v1(n-1)*tn 

!
And it is possible to compare the results we have just obtained with the results 
that we shown in chapter 2. In that chapter we found that after the tth step:  

tt = (1 - x2(t-1)) / v2 

x1(t) = 0 

x2(t) = v1 * tt + x1(t-1)  = v1 * tt 

The only difference between the two results is that in the result that we have just 
obtained, the speeds of the pickers v1 and v2 are changing (they slow down) over 
time during the work shift. We remind the reader another time, then, that from 
this chapter on we will use n (not t anymore) to indicate the number of an 
iteration (step). 

After simple algebra, it is possible to show the successions of consecutive point 
of hand-off and the succession of times between hand-offs. 

!
 

!
!
!

And we found the succession that links consecutive hand-off positions (links x2(n) 
and x2(n-1)) and the one that links the time between two consecutive hand-offs 
(links tn and tn-1). It is not easy to prove and understand when these equations 
lead to a convergence point or not and we will work on it, case by case, in 
paragraph 5.5, where we will give mathematical explanations to the results of the 
simulations, starting from this equations. 
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5.4.4 Errors of approximation 

We have already explained why it is possible to approximate very well the 
behavior of a bucket brigade system considering pickers’ speed varying with v(t) 
= vmax * e-µt  over time with a system where pickers’ speed is constant between 
two consecutive hand-offs. In this paragraph we will run some MATLAB 
simulations to prove this fact again. The results are presented in chart 5.1. 

!
Chart 5.1 - Comparison between the results obtained with exponential speed and the results 
obtained with constant speed between two consecutive hand-offs. The comparison is done 
taking into account x2 after 8 hours, the time between two consecutive hand-offs after 8 hours 
and the throughput after 8 hours. For all these three values a percentage error is calculated. The 
speeds v1 and v2 and the starting positions x(0) are random. 

!
Chart 5.1 shows that, as we were guessing before, the approximation is nearly 
perfect, in fact all the results obtained with constant speed differ no more than 
0,1% from the perfect results obtained with exponentially decreasing speed. 
These simulations suggest that this error can be neglected. In particular, the 
throughput after 8 hours remains exactly the same, while there is a little error in 
x2 and in time between hand-off. Moreover, if the speed constant, the time 
between hand-offs is always longer than the case with exponential speed, 
because the speed is constant and, so higher inside the interval (see picture 5.6). 
On the other hand, if we consider the speed constant, the position x2 after 8 hours 
remains exactly the same if µ1=µ2, it is a little bit bigger if µ1<µ2 and it is a little 
bit smaller if µ1>µ2. 
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5.5 Simulations 

5.5.1 Hypothesis to set up the simulations 

In this paragraph we will simulate with the software MATLAB the behavior of a 
two operators bucket brigade in an order-picking system, considering the speeds 
of the pickers slow down over time following the equation v(t) = vmax * e-µt. All 
the results obtained with the simulations will be supported by mathematical 
explanation. 

Before starting with the simulations, we have to explain which are the starting 
hypothesis that we will use. Down here, a bulleted list is shown: 

• Assumptions and restrictions we wrote in paragraph 5.3 are valid. 

• The pickers are sequenced from the slowest to the fastest along the line to have 
the maximum throughput (TR). We will call “picker 1” the picker who has the 
minimum vmax (we will call his maximum speed vmax1 ) and “picker 2” the 
picker who has the maximum vmax (we will call his maximum speed vmax2). 

• For every simulation, we will consider different levels of vmax: the maximum 
speed of the slowest picker will be vmax1 and the maximum speed of the fastest 
picker will be vmax2 (vmax1 < vmax2). 

• For every simulation, we will consider four different level of µ (0, 3.6584*10-6, 
7.7480*10-6 and 12.3850*10-6). 

• We will chose the vector of the starting point x(0) = (x1(0), x2(0)) randomly in the 
interval [0, 1]; we will chose this interval because the length of the aisle is 
normalized to l=1. Moreover the restriction x1(0) < x2(0) is important to avoid 
blockage. 

• We will consider the pickers’ speed constant between two hand-offs  (see 26

5.4.3). Doing like this, the result will be approximated, but very close to the 
perfect one, which can be obtained considering the pickers’ speed varying with 
the function v(t) = vmax * e-µt   between two hand-offs (see 5.4.1).  

�87

 It is possible to simulate everything also with the code that takes into account that the picking 26

speed varies with v(t) = vmax * e-µt  over time (see code C.3). In this case the results give exactly 
the same number of iterations and there is only a little mistake on the time between iterations 
(always less than 0,1%, see chart 5.1). We will consider the pickers’ speed constant between two 
hand-offs because the mathematics to justify the results of the simulation is easier. 



Starting from these hypothesis, we will study the behavior of the system in four 
different cases, always using the code “stepwise_function_mu.m” (see code C.2), 
that we run with the script MyScript_mu.m (see code C.1): 

• Pickers with same vmax and same µ (5.5.2) 

• Pickers with different vmax and same µ (5.5.3) 

• Pickers with same vmax and different µ (5.5.4) 

• Pickers with different vmax and different µ (5.5.5) 

!
The aims of the simulations are a lot. First of all, we want to understand which 
case performs better and how to order the two pickers to obtain the maximum 
throughput. For each case, we will first give a mathematical explanation, trying 
to understand how the results could be, before running the simulations; then, 
running each simulation, the behavior of the system in the 8 hours work shift will 
become clear. In particular, we want to understand if the system is balanced or 
not. After that, for each simulation, we will provide the throughput of the system, 
the fixed points (if they exist) and finally, we will study how the system reacts to 
the changing of some starting data.  

!
5.5.2 Pickers with same vmax and same µ 

The easiest problem to solve is to simulate the behavior of the system where 
work is perfectly distributed along the warehouse, the orders are all equal and the 
operators are completely equivalent. This means that they get tired in the same 
way, so that it is possible to consider vmax1 = vmax2 = vmax and µ1 = µ2 = µ. In this 
case, the problem is trivial.  

The equations obtained at the end of 5.4.3 can be simplified, because vmax1 = 
vmax2 = vmax and µ1 = µ2 = µ. 

The succession of hand-off positions gives: 

x2(n) = 1-x2(n-1)       
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that is an equation of fixed point with g(x) = 1-x; the first derivative of the 
function g(x) is g’(x) = -1 and |g’(x)| = 1 that is not |g’(x)|<1; therefore the 
succession does not converge to a fixed point and the system is not balanced. It is 
important to notice that the system does not converges regardless of the values of 
vmax and µ, which disappear in the simplification in the formula. 

!
The same considerations can be done also for the succession of time between 
consecutive hand-offs. This succession does not converge as well. It is very 
difficult to prove it mathematically, so we will show the behavior of the system 
using a simulation, which will clarify everything. The common sense suggests 
that the time between two consecutive hand-offs grows over time, because the 
pickers slows down over time because of fatigue. 

!
In this first simulation, the starting data are: vmax = 0,006 aisles/s (see figure 5.8), 
µ = 7,7480*10-6 (average work), x(0)=(0,5797; 0,8693).  

!
!
Fig 5.8 - Speed 
of the operators 
over time in a 
work shift in the 
case of vmax1 = 
vmax2 = vmax = 
0,006 aisles/s 
and µ1 = µ2 = µ 
= 7,7480*10-6 

(average work).  

!
!
!
!

It is possible to notice that the speed of the pickers are exactly the same, because 
vmax1 = vmax2 and µ1 = µ2. In other words, the pickers are equivalent. 
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The results are shown in figure 5.9 and 5.10. 

!
!
Fig 5.9 - Cumulated 
time vs hand-off 
p o s i t i o n s w h e n 
vmax1 = vmax2 = vmax 
= 0,006 aisles/s, µ1 
= µ 2 = µ = 
7,7480*10-6 and x(0) 

= (0,5797; 0,8693). 

!
!
!
!

The succession of the hand-off positions does not converge, as we proved before 
with the calculations. In this particular case the positions of hand-off alternate 
themselves between x=0,28959 and x=0,71041. To predict the hand-off positions 
in this kind of system it is enough to calculate the first two iterations and they 
will alternate for all the work shift. Another interesting fact to notice is that the 
average between the two positions is always 0,5 and this value does not depend 
from the starting data; in our case we have (0,28959+0,71041)/2 = 0,5. 

It is possible to notice that 0,5 is exactly the value of x* that it is possible to 
obtain if the bucket brigade is working under the hypothesis of the normative 
model (v = vmax = constant). The value of x2 depends, in fact, from the ratio v1/
v2: the more the ratio is close to 1 and the more the hand-off position is close to 
0,5; the more the ratio is close to 0 and the more the hand-off position shifts 
towards the beginning of the aisle. 

x2 av = v1 / (v1+v2) = (vmax1 * e-µ1*t ) / ((vmax1 * e-µ1*t ) + (vmax2 * e-µ2*t))  

                              = (vmax * e-µ*t ) / ((vmax * e-µ*t ) + (vmax * e-µ*t)) 

                              = vmax / (vmax+vmax) = 1/2 = 0,5 

The result is confirmed by figure 5.8: the ratio is 1, so x2 av = 0,5. 
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The behavior of the time between hand-offs is different and it is shown in figure 
5.10. 

!
F i g 5 . 1 0 - 
Cumulated time 
and steps vs time 
between hand-
offs when vmax1 = 
vmax2 = vmax = 
0,006 aisles/s, µ1 
= µ 2 = µ = 
7,7480*10-6 and 

x ( 0 ) = ( 0 , 5 7 9 7 ; 
0 ,8693) . In 8 
hours the system 
f i n i s h e s 3 1 1 
orders. 

!
!
!
!
!
!

As we told before, also the succession of times between hand-offs does not 
converge. In an eight hours work shift, there are 311 hand-offs and this means 
that the pickers have finished picking 311 orders. It is important to notice how 
the average time between hand-offs grows over time: this is due to the slowdown 
of the pickers, in fact they are getting tired while picking and we considered 
picking as an average tiring work  (µ1 = µ2 = µ = 7,7480*10-6). 27

Also with times it is possible to find a formula that can tell us the average time 
between two consecutive hand-offs after time t from the beginning of the work 
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 If we have considered µ1 = µ2 = µ = 0 (no fatigue), also the time between two consecutive 27

hand-offs would have swung between two well determined positions, which are easy to find 
with the first two iterations.



shift. The formula can be obtained working on the system like if it was a bucket 
brigade that works under the conditions of normative model. 

tav = 1 / (v1+v2) = 1 / ((vmax1 * e-µ1*t ) + (vmax2 * e-µ2*t)) 

                         = 1 / ((vmax * e-µt ) + (vmax * e-µt)) 

                         = 1 / (2vmax * e-µt )  

With this formula we can calculate the average time between two hand-offs after 
a time t from the beginning of the work shift. It is important to notice that the 
result we have found does not depend on the starting positions of the pickers x(0). 
It is easy to see that the higher is the value of µ, the longer is the value between 
two consecutive hand-offs. In accordance to the fact that the pickers get tired 
over time (t grows), the value of tav grows over time.  

In the case of our simulation, for example: 

tav(4h) = 93,17 s 

tav(8h) = 104,16 s 

All these results are confirmed in figure 5.10. 

A good strategy to make the system works better, reducing the instability of the 
system could be to work on the starting positions of the pickers. In particular, we 
noticed that the more x1(0) + 0,5 = x2(0) is true and the more the system is 
completely stable from the beginning. In this case, the hand-off position will be 
always at 0,5 and the time between two consecutive hand-off will grow 
exponentially and without instabilities. 

!
In conclusion, when the operators are completely equivalent (vmax1 = vmax2 = vmax 

and µ1 = µ2 = µ) the system does not behave well, because it is not balanced. It 
has been proved, then, that the behavior of the system is not chaotic, but the 
positions of hand-off can be predicted: in fact they swing between two precise 
positions, with average 0,5. Also the average time between two consecutive hand 
offs can be easily calculated and it grows over time, because the pickers slow 
down over time during the work shift. Even if the system is not balanced, its 
behavior is easy to predict. In particular, we found that if the starting point of the 
pickers are x1(0) + 0,5 = x2(0) this kind of bucket brigade works very well. 
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5.5.3 Pickers with different vmax and same µ 

The second step is to consider two pickers that get tired with the same speed, but 
with one operator faster than another. This means that vmax1 < vmax2 and µ1 = µ2 = 
µ. Following what Bartholdi and Eisenstein (1996a) proved in their paper, to 
have the maximum throughput the picker 2 has to be positioned closer to the end 
of the aisle. It is easy to notice that picker 2 will be always faster than picker 1, 
because the two pickers get tired with the same value of µ1 = µ2 = µ: therefore 
there is no chance of blockage and the throughput is maximum if we make picker 
2 work closer to the end of the line. 

 The equations obtained in 5.4.3 can be simplified, because µ1 = µ2 = µ.  

After a simple algebra, the succession of hand-off positions is:  

!
!

that is an equation of fixed point with g(x) = (v1max/v2max)*(1-x); the first 
derivative of the function g(x) is g’(x) = -v1max/v2max and |g’(x)| = v1max/v2max that 
is always |g’(x)|<1, because we are in the case vmax1 < vmax2; therefore the 
succession converges to a fixed point and the system is balanced. This means that 
after a few time the hand-off position will be always in the same place x2* and 
that the pickers will have to pick always in the same zone: the first picker in the 
interval [0, x2*] and the second picker in the interval [x2*, 1]. 

To find the convergence point is enough to set x2(n)  = x2(n-1)  = x2*. 

x2* = (v1max/v2max)*(1-x2*) 

And solving the equation in x2*: 

x2* = v1max / (v1max+v2max) 

This is exactly the same results that Bartholdi and Eisenstein (1996a) found in 
their paper, under the hypothesis of normative model, considering the speed of 
the workers constant. This result tells that the fixed hand-off position does not 
depend on the value of µ1 = µ2 = µ. 

!
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The conclusions are different if we speak about the succession of time between 
two consecutive hand-offs. In this case the succession of times between two 
consecutive hand-offs seems to converge, but it grows inevitably, because the 
pickers get tired over time. It is very difficult to prove it mathematically, so we 
will show it with some the simulations. 

!
In this first simulation we will run the code with v2max = 0,006 aisles/s, v1max = 
0,003 aisles/s (see figure 5.11), µ = 7,7480*10-6 (av. work), x(0)=(0,8147; 0,9058).  

!
Fig 5.11 - Speed of the 
operators over time in a 
work shift in the case of 
vmax1 = 0,003 aisles/s 
vmax2 = 0,006 aisles/s 
and µ1 = µ2 = µ = 
7,7480*10-6 (average 
work).  

!
!
!

The results are shown in figure 5.12 and 5.13. 

!
!
F i g 5 . 1 2 - 
Cumulated time vs 
hand-off positions 
when vmax1 = 0,003 
aisles/s, vmax2 = 
0,006 aisles/s, µ1 = 
µ 2 = µ = 
7,7480*10-6 and 

x ( 0 ) = ( 0 , 8 1 4 7 ; 
0,9058). 

!
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As we expected from the mathematical calculation, the system is balanced after a 
few iterations. The simulation gives as fixed point x2*= 0,333, according to the 
formula x2* = v1max / (v1max+v2max) that we found before. After a little bit more 
than 10 minutes the pickers have to work always in the same zone: picker 1 
works in the interval [0; 0,333] and picker 2 works in the interval [0,333; 1].  

!
The results, as the common sense suggests, are completely different with regard 
to the time between hand-offs (figure 5.13). In fact, because of the value of µ that 
is not 0, the pickers get tired and, inevitably, the more the pickers are tired, the 
more they slow down and the more the time between two consecutive hand-offs 
is longer; moreover, the throughput of the bucket brigade is lower.  

!
!
F i g 5 . 1 3 - 
Cumulated time 
and steps vs time 
between hand-offs 
when vmax1 = 0,003 
aisles/s, vmax2 = 
0,006 aisles/s, µ1 = 
µ 2 = µ = 
7,7480*10-6 and 

x ( 0 ) = ( 0 , 8 1 4 7 ; 
0,9058). In 8 hours 
the system finishes 
234 orders. 

!
!
!
!
!
!

In an 8 hours work shift, there are 234 hand-offs and this means that the pickers 
have finished picking 234 orders. 
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Moreover, the results show that the plots cumulated time and steps vs time 
between hand-offs show a particular behavior. In a first moment, the time 
between two consecutive hand-offs seems to converge to a fixed point, but it is 
not like this. In fact, from picture 5.13, it is possible to notice that the time 
between two consecutive hand-offs grows exponentially with time, in accordance 
with the fact that pickers’ speed decreases exponentially during the work shift. 

Also in this case, it is possible to find an equation that gives as the value of t°, 
that is the time between two consecutive hand-offs after a time t from the 
beginning of the work shift . It is possible to find the equation we are seeking, 28

starting always from the results obtained under the hypothesis of normative 
model. 

t° = 1 / (v1+v2) = 1 / ((vmax1 * e-µt ) + (vmax2 * e-µt)) 

                         = 1 / (e-µt * (vmax1 + vmax2)) 

                         = t* / e-µt 

So, to find the time between two consecutive hand-offs after a time t from the 
beginning of the work shift, it is enough to calculate the value t* = 1 / (vmax1 + 
vmax2) and then correct it with the factor e-µt. The factor e-µt  is always positive and 
0 < e-µt ≤ 1. Therefore, it is always true that t° > t*, according to the fact that 
when the speeds (pick rate) of the workers slow down over time, the time 
between two consecutive hand-offs is longer as time passes by. Moreover, t° is 
not the result of a fixed point iteration anymore, but tells us the time between 
after consecutive hand-offs when the system is balanced (when the position of 
hand-off is constant along the line, over time) at time t: the value of t° varies 
iteration by iteration, depending on the time t from the start of the work shift .  29

In our simulation, for example: 

t* = 1 / (vmax1 + vmax2) = 1 / (0,003 + 0,006) = 111,11 s  

t°(4 h) = 111,11 / 0,894 = 124,28 s 
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 We will call it t° and not t* because in this case the time between two consecutive hand-offs 28

does not converge, but it grows over time.

 The formula we have found doesn’t work for the first iterations, but it starts working only 29

when the system is balanced, after a few iterations.



t°(8 h) = 111,11 / 0,800 = 138,89 s 

The results are confirmed by figure 5.13. 

It is important to notice that the number 0,800 in the calculation t°(8 h) is exactly 
the factor of reduction for average work that we found before. 20% is the very 
factor of reduction of speed in average work, which is the kind of work that we 
are taking into account. If we had worked with easy work, the value of e-µt after 8 
hours (t = 3600*8) would have been e-µt = 0,900 that is linked to the 10% (easy 
work); if we had worked with hard work, e-µt after 8 hours (t = 3600*8) would 
have been e-µt = 0,700 that is linked to the 30% (hard work). Summarizing, the 
factor e-µt tells us how much, after time t, the time between two consecutive 
hand-offs diverges from the value t*, that we can obtain starting from the 
hypothesis of the normative model (speeds constant over time). In particular, 
after t = 8 hours, e-µt is exactly 0,7 for hard work, 0,8 for average work and 0,9 
for easy work, in accordance with what we found in paragraph 5.2.3.   

!
In the second simulation the starting data are: v2max = 0,006 aisles/s, v1max = 0,003 
aisles/s (see figure 5.14), µ = 3,6584*10-6 (easy work), x(0)=(0,0975; 0,6324).  

!
Fig 5.14 - Speed 
of the operators 
over time in a 
work shift in the 
case of vmax1 = 
0,003 aisles/s 
vmax2 = 0,006 
aisles/s and µ1 = 
µ 2 = µ 
= 3 , 6 5 8 4 * 1 0 - 6 

(easy work).  

!
!

!
!
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In this second simulation the starting speeds are the same, but the pickers get 
tired slower, because of the lower value of µ (easy work). The starting vector x(0) 
is randomly generated, in fact, after a few iterations, the behavior of the system 
does not depend on the initial positions of the pickers. 

!
The results are shown in figure 5.15 and 5.16. 

!
F i g 5 . 1 5 - 
Cumulated time 
v s h a n d - o f f 
positions when 
vmax1 = 0,003 
aisles/s, vmax2 = 
0,006 aisles/s, 
µ1 = µ2 = µ = 
3,6584*10-6 and 

x(0) = (0,0975; 
0,6324). 

!
!

As we were expecting, even if we change the values of x(0) and µ, the results of 
x2* is always the same x2*=0,333. In fact, as we shown before, the value of x2* 
depends only on the values of vmax1 and vmax2 and not on the values of x(0) and µ. 

The behavior of the system is easy to predict and each picker works always in the 
same zone for all the 8 hours work shift. The behavior of the system does not 
depend on the initial position of the operators and the strategy to give the pickers 
well determined initial positions can always be used, but it is not so efficient and 
important as in the case of paragraph 5.5.2. 

!
The behavior of the system is different, if we focus on the succession of time 
between two consecutive hand-offs. Also in this case we have to expect that the 
time between two consecutive hand-offs grows over time, because the pickers get 
tired while picking items, so they slow down (µ>0). 
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The behavior of the system is shown in figure 5.16. 

!
!
F i g 5 . 1 6 - 
Cumulated time 
and steps vs time 
between hand-
offs when vmax1 
= 0,003 aisles/s, 
vmax2 = 0,006 
aisles/s, µ1 = µ2 
= µ = 
3,6584*10-6 and 

x(0) = (0,0975; 
0,6324). In 8 
hours the system 
f i n i s h e s 2 4 7 
orders. 

!
!
!
!
!

The shape of the two functions is the same, but, after the system becomes 
balanced (x2* converges), the slope of the function is lower than the previous 
case, in accordance with the fact that the speed of the pickers slows down slower 
and, consequently, the time between hand-offs is shorter than when pickers are 
dealing with a harder work (average or hard). This reasoning leads to the fact that 
the pickers can pick faster and, so, the throughput of the system is higher: in an 8 
hours work shift 247 orders are picked (234 with average work), so that the 
throughput of the system is 5,56% higher.  

Also in this case it is possible to calculate the time t° between two consecutive 
hand-offs after a certain time t. 

t° = 1 / (e-µt * (vmax1 + vmax2)) = t* / e-µt 
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t°(8 h) = 111,11/0,9 = 123,45 

As we have already told the value 0,9 corresponds exactly to the factor of 
reduction in an easy work; moreover, the result is consistent with the result 
obtained from the simulation and shown in chart 5.2 (see next page). Another 
important fact to notice is that the value of t* depends only on the value of vmax1 
and vmax2, so it is the same for each value of µ, once that vmax1 and vmax2 have 
been chosen.  

!
We ran also a third simulation with the following starting data: v2max = 0,006 
aisles/s, v1max = 0,003 aisles/s, µ =12,3850*10-6 (easy work), x(0) = (0,4854; 
0,9572). Also in this case the system balances itself after a few iterations. The 
fixed point x2* is always x2* = 0,333, confirming another time that the fixed 
point x2* depends only on vmax1 and vmax2 and not on the values of x(0) and µ. In 
conclusion, in all the three cases, the value of x2* is the same. The throughput of 
the system in an eight hours work shift is 220 orders picked, against 247 that we 
obtained with an easy work and 234 with an average work. This confirms what 
the common sense suggested before: the harder is the work and the smaller is the 
throughput of the system.  

!
At the end, we ran a forth simulation with µ=0: the convergence point is always 
x2*=0,333, the time between the last two hand-offs after 8 hours and constant 
over all the 8 hours is t*=111,11 s  and the throughput in the work shift is 260 30

orders . 31

!
Down here we will build a chart to sum up the behavior of the bucket brigade 
system with the four different levels of µ, if the pickers have different vmax, but 
same µ. The chart is built for v2max = 0,006 aisles/s, v1max = 0,003 aisles/s and 
random values of x(0).  

!
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 In accordance with the formula t*=1/(v1+v2) found by Bartholdi and Eisenstein (1996a).30

 In accordance with the formula TR=v1+v2 found by Bartholdi and  Eisenstein (1996a).31



Chart 5.2 - Behavior of the bucket brigade system when pickers have different vmax and same µ. 
The starting data to build the chart are v2max = 0,006 aisles/s, v1max = 0,003 aisles/s and random 
values of x(0). The chart compares four different kinds of work: no effort, easy work, average 
work and hard work. The results given are the fixed point of the hand-off positions x2*, the time 
between consecutive hand-offs after 8 hours t°(8) (time between the two last hand-offs) and the 
total throughput of the system in the work shift. 

!
Chart 7.2 confirms that the succession of hand-off positions converges, after a 
few iteration, to a value x2* = v1max / (v1max+v2max), so this value does not depend 
on the starting vector of the initial positions x(0). The time t°(8), which is the time 
between the last two hand-offs of the work shift, grows with the level of effort 
required by the work. In particular, from the value t*=111,11 s, the time t°(8) is 
obtained calculating t*/0,9 in case of easy work, t*/0,8 in case of average work 
and t*/0,7 in case of hard work. The throughput of the system, then, decreases 
with the level of effort that the picking requires.   

!
In conclusion, if the bucket brigade has pickers with different vmax and same µ, 
the system performs very well, because it balances itself very fast and both the 
position of hand-off and the time between two consecutive hand-offs have a 
regular shape and are balanced over time. Under this kind of conditions it is 
simpler to organize the work, schedule the departure of the trucks and so fulfill 
the orders of the customer, because all the orders will be ready after the same 
amount of time. 

!
!
!
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!
5.5.4 Pickers with same vmax and different µ 

The third step is to consider pickers with the same starting speed, but that get 
tired in different ways. This leads to vmax1 = vmax2 = vmax and µ1 < µ2 or µ1 > µ2. 
According to Bartholdi and Eisenstein (1996a), to have the maximum throughput 
the workers should be ordered from the slowest to the fastest. In this case we 
decided that the worker who has the minimum value of µ will be the one closer 
to the end of the aisle. Immediately after the beginning of the work shift, the 
picker with the lower value of µ will be faster than the picker with the higher 
value of µ, because the former gets tired slower and so he decreases his speed 
slower. For this reason we will call “picker 2” the picker with the picker with 
lower µ and “picker 1” the picker with the higher µ, so that it will be always µ1 > 
µ2.  

The equations obtained in 5.4.3 can be simplified, because µ1 = µ2 = µ.  

After a simple algebra, the succession of hand-off positions is:  

 

!
!
!

And it is not so easy to demonstrate that the system has not a fixed point of 
convergence. The idea to follow to understand why the fixed point does not 
converge is the fact that the instant ratio between the speeds of the pickers v1/v2 
is changing continuously over time. In particular v1/v2 is decreasing, because µ1 
> µ2, so v1 is decreasing faster than v2. In conclusion we have to expect that the 
hand-off position will shift back towards the beginning of the line. 

!
The succession of times between two consecutive hand-offs, which we could 
obtain working on the equation at the end of 5.4.3, is very complicated and it is 
very difficult to work on it and to find if it converges to a unique fixed point or 
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not. The behavior that we expect is that the time between two consecutive hand-
offs will grow over time, because the pickers slow down over time (µ>0). 

In this first simulation we will run the code with v1max = v2max = 0,006 aisles/s 
(see figure 5.17), µ1 = 3,6584*10-6 (easy work), µ2 = 0 (no effort), x(0) = (0,1576; 
0,9706).  

!
Fig 5.17 - Speed 
of the operators 
over time in a 
work shift in the 
case of vmax1 = 
vmax2 = 0,006 
aisles/s, µ1 = 
3 , 6 5 8 4 * 1 0 - 6 
(easy work) and  
µ2 =0 (no effort).  

!
!
!

The results are shown in figure 5.18 and 5.19. 

!
F i g 5 . 1 8 - 
Cumulated time 
v s h a n d - o f f 
positions when 
vmax1 = vmax2 = 
0,006 aisles/s, µ1 
= 3,6584*10-6 
( e a s y w o r k ) , 
µ2=0 (no effort) 
a n d x ( 0 )  = 
( 0 , 1 5 7 6 ; 
0,9706). 

!
!
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The first fact that we notice in this plot is the scattering of the hand-off positions, 
in particular at the beginning of the work shift, due to the very close speeds of the 
pickers at the beginning of the work shift. At the beginning, in fact vmax1 = vmax2 , 
but after one iteration the pickers’ speeds start to have different values, because 
of the different values of µ. At the beginning, the system behaves exactly like the 
bucket brigade that we studied in the first case  (see 5.5.2). After a few 32

iterations, as we told, the speeds of the pickers become different, and the system 
seems to converge, even if it does not converge to a fixed point, but the time 
between two consecutive hand-offs goes down along the line over time. The 
hand-off positions seem to be well-ordered only after 4 hours. 

As we saw in the previous paragraph, there is a formula to find the position of the 
hand-off x2° after a certain time t from the beginning of the work shift . It is 33

possible to find the equation we are seeking, starting always from the results 
obtained under the hypothesis of normative model. 

x2° = v1 / (v1+v2) = (vmax1 * e-µ1*t) / (vmax1 * e-µ1*t + vmax2 * e-µ2*t) 

                            = (vmax * e-µ1*t) / (vmax * e-µ1*t + vmax * e-µ2*t) 

                            = (vmax * e-µ1*t) / (vmax * (e-µ1*t + e-µ2*t )) 

                            = e-µ1*t / (e-µ1*t + e-µ2*t )   

As we could expect, x2° is always 0 < x2° <1, in accordance with the fact that the  
hand-off position is along the aisle of normalized length 1.  

In our simulation, the function gives the following results, confirmed in figure 
5.18: 

x2° = e -3,6584*10^-6*t  / (e -3,6584*10^-6*t + 1) 

x2°(0 h) = 0,5 

x2°(1 h) = 0,497 

x2°(4 h) = 0,487 
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 In fact the average of the data at the beginning of the work shift is again 0,5 as we proved in 32

paragraph 5.5.2.

 We will call it x2° and not x2* because in this case the hand-off position does not converge, 33

but it shifts back along the line over time.



x2°(8 h) = 0,474 

The results have some similarities even when we speak about time between two 
consecutive hand-offs, as shown in figure 5.19. 

!
F i g 5 . 1 9 - 
Cumulated time 
and s t eps v s 
t ime between 
hand-offs when 
vmax1 = vmax2 = 
0,006 aisles/s, µ1 
= 3,6584*10-6 
(easy work), µ2 
=0 (no effort) 
a n d x ( 0 )  = 
( 0 , 1 5 7 6 ; 
0,9706). In 8 
hours the system 
f i n i s h e s 3 2 9 
orders. 

!
!
!
!
!
!

Also in the case of the time between two consecutive hand-offs, the system 
seems not to converge in the first three-four hours, because the speed of the 
pickers are very close and the behavior of the system is close to the case we 
described in 5.5.2. In this case, contrary to what we saw in the hand-off position, 
the time between two consecutive hand-offs is longer over time, in fact the slope 
of the plots is positive, so that the function is growing. This is in accordance with 
the fact that picker 1 slows down over time and so he picks slower: consequently 
the time he needs to pick is longer. After 8 hours, the throughput of the system is 
329 finished orders. 
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Also in this case it is possible to find a function t° that gives the average time 
between two consecutive hand-offs after time t from the beginning of the work 
shift. To find it, we have to start again from the hypothesis of the normative 
model.  

t° = 1 / (v1+v2) = 1 / (vmax1 * e-µ1*t + vmax2 * e-µ2*t) 

                            = 1 / (vmax * e-µ1*t + vmax * e-µ2*t) 

                            = 1 / (vmax * (e-µ1*t + e-µ2*t )) 

And also here it is possible to calculate t° for some values of t. 

t°(0h) = 1 / (vmax1 + vmax2) = t* = 83,33 s 

t°(1h) = 83,88 s 

t°(4h) = 85,53 s 

t°(8h) = 87,72 s 

!
In this second simulation we will run the code with v1max = v2max = 0,006 aisles/s 
(see figure 5.17), µ1 = 12,3850*10-6 (hard work), µ2 = 0 (no effort), x(0) = (0,1419; 
0,4218). So the speeds are the same, but the value of µ1 changes. 

The results are shown in figure 5.20 and 5.21. 

!
F i g 5 . 2 0 - 
Cumulated time vs 
hand-off positions 
when vmax1 = vmax2 
= 0,006 aisles/s, µ1 
= 12,3850*10-6 
(hard work), µ2 =0 

(no effort) and x(0)  

= ( 0 , 1 4 1 9 ; 
0,4218). 

!
!
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In this simulation the system finds his balance after a little bit more than 2 hours, 
so it is faster than in the first simulation. This fact is due to the higher difference 
between the values of µ: 0 and 3,6584*10-6 in the first simulation, against 0 and 
12,3850*10-6 in this one. If the value of µ are more different, this means that the 
speeds of the pickers will be different in a shorter time and this allows the system 
to find his balance sooner. Another fact that helps the system to find balance 
sooner or, at least, to have less scatter of hand-off positions at the beginning of 
the work shift, is that the starting positions of the pickers should be as much as 
possible x1(0) + 0,5 = x2(0), but we will see this fact more in detail later, using 
some simulations. Another important fact to notice is that the slope of the 
function, when the system find its balance, is steeper than in the first simulation. 
This is always due to the bigger difference between the values of µ. In fact the 
more different are the values of µ, the more the speed of the pickers becomes 
different over time and the more the hand-off position shifts itself back towards 
the beginning of the aisle, because picker 2 is step by step faster than picker 1. 

Some observations can be done also looking figure 5.21. 

!
Fig 5.21 - Cumulated 
time and steps vs 
time between hand-
offs when vmax1 = 
vmax2 = 0,006 aisles/s, 
µ1 = 12,3850*10-6 
(hard work), µ2 =0 

(no effort) and x(0)  = 
(0,1419; 0,4218). In 
8 hours the system 
finishes 319 orders. 

!
!
!
!
!
!
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Also here the time the system needs to find its balance is less than in the first 
simulation. The cause of this is always the fact that the values of µ are very 
different. Then, the slope of the function is positive and steeper than in the first 
simulation, because the values of µ are higher: this means that pickers get tired 
faster, that they pick slower and consequently the time between two consecutive 
hand-offs grows over time. After 8 hours, the throughput of the system is 319 
finished orders, according with the fact that, if a picker slows down more, the 
throughput is minor (319 here, against 329 in the first simulation). 

Also here it is possible to calculate some values of t°, to show that t°(0h) is the 
same and that the function grows faster, because the values of µ are more distant. 

t°(0h) = 1 / (vmax1 + vmax2) = t* = 83,33 s (exactly like in the first simulation) 

t°(1h) = 85,19 s  (83,88 s in the previous simulation) 

t°(4h) = 90,74 s  (85,53 s in the previous simulation) 

t°(8h) = 98,04 s  (87,72 s in the previous simulation) 

!
In this third simulation we will run the code with v1max = v2max = 0,003 aisles/s 
(half speed, see figure 5.22), µ1 = 12,3850*10-6 (hard work), µ2 = 0 (no effort), 
x(0) = (0,0357; 0,6557). 

!
Fig 5.22 - Speed 
of the operators 
over time in a 
work shift in the 
case of vmax1 = 
v m a x 2 = 0 , 0 0 3 
a i s l e s / s , µ 1 = 
1 2 , 3 8 5 0 * 1 0 - 6 

(hard work) and  
µ2 =0 (no effort).  

!
!

The values of µ are the same than in the second simulation, but the value of vmax1 
= vmax2 = 0,003 aisles/s, so the starting speed of the two pickers is halved. 
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The results are shown in figure 5.23 and 5.24. 

!
F i g 5 . 2 3 - 
Cumulated time vs 
hand-off positions 
when vmax1 = vmax2 
= 0,003 aisles/s, µ1 
= 12,3850*10-6 

(hard work), µ2 =0 

(no effort) and x(0) 

= ( 0 , 0 3 5 7 ; 
0,6557). 

!
!
!

At the end of the 8 hours and more in particular in every moment during the 
work shift, the position x2° is the same in the second and in the third simulation: 
this means that x2° does not depends on the values of vmax, but only on the values 
of µ1 and µ2, in fact in the formula x2° = e-µ1*t / (e-µ1*t + e-µ2*t ) no speed is present. 
The system finds its balance after 3 hours (one hour more than in the first 
simulation), because the speeds are closer than in the second simulation; in fact 
the same slowdown in percentage (with the same percentage, because in the 
second and third simulations the values of µ are the same) is more effective on a 
higher initial speed (0,006 in the second simulation) then on a lower one (0,003 
in the first simulation). Also here, the slope of the function is negative, because 
picker 1 slows down more than picker 2 over time. The last thing to notice is that 
the plot is less “dense” than in the previous simulations, because the speed of the 
pickers is smaller, so that there are less hand-offs in a work shift. 

!
We cannot find the same results speaking about the time between consecutive 
hand-offs. The formula t° = 1 / (vmax * (e-µ1*t + e-µ2*t )) depends not only on the 
values of µ, but also on the value of vmax. Also in this case we have to expect that 
the average function will grow over time, because the pickers slow down (µ>0). 
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All of these results about time between two consecutive hand-offs find 
confirmation in figure 5.24. 

!
F i g 5 . 2 4 - 
Cumulated time 
and steps vs time 
between hand-
offs when vmax1 
= vmax2 = 0,003 
aisles/s, µ1 = 
1 2 , 3 8 5 0 * 1 0 - 6 
(hard work), µ2 
=0 (no effort) 
a n d x ( 0 )  = 
( 0 , 0 3 5 7 ; 
0,6557). In 8 
hours the system 
f i n i s h e s 1 6 0 
orders. 

!
!
!
!
!

The slope of the function is always positive after the first period of unbalance. 
The slope is positive and it is the same as in the second simulation, according 
with the fact that the values of µ are the same. The most interesting facts to 
notice are that the time t° is exactly the double of the time t° in the second 
simulation, in accordance with the formula t° = 1 / (vmax * (e-µ1*t + e-µ2*t )): in this 
third simulation the speed is halved and the values of µ are the same. We can say 
the same about the throughput: in fact, after 8 hours, the throughput is 160, that is 
the half  of 319, the result that we obtained in the second simulation. This kind 34

of observations are explained better in chart 5.3, at the end of this paragraph. 

!
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 It is not exactly the half because the different values of x(0) introduce a little mistake.34



As we have already discussed, the starting positions of the pickers can have an 
influence on the scatter of the data in the plot we represented. In particular, the 
more the starting positions of the pickers are in a relation x1(0) + 0,5 = x2(0), and 
the more the scatter of data (both in hand-off positions and time between hand-
offs) is reduced. In figure 5.25 and 5.26 this fact is shown: the starting data are 
the same as the previous simulation, but the starting vector of initial positions is 
different and it is x(0)  = (0,3028; 0,8326).  

!
F i g 5 . 2 5 - 
Cumulated time 
v s h a n d - o f f 
positions when 
vmax1 = vmax2 = 
0,003 aisles/s, µ1 
= 12,3850*10-6 

(hard work), µ2 =0 

(no effort) and x(0) 

= ( 0 , 3 0 2 8 ; 
0,8326). 

!
!

!
In this case the relationship between the two starting positions is 0,5298, that is 
very close to 0,5. As it is possible to see in figure 5.25 the sequence of hand-off 
positions swings less than in the previous simulation, because the difference 
between the values of the two starting points is closer to 0,5. In particular, if the 
difference between the starting points is exactly 0,5 the system has no 
fluctuation, both in hand-off positions and in time between two consecutive 
hand-offs. 

This fact leads to an important result: a manager can control the amplitude of the 
fluctuations of a bucket brigade system over time, only choosing in the right way 
the starting positions of the pickers. Taking this little decision the manager can 
balance the system immediately, from the first iteration. In conclusion, the 
manager can improve a lot the efficiency of the system only with a very simple 
decision. 
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In figure 5.26 , the behavior of the system in time between hand-off is shown. 

!
Fig 5.26 - Cumulated 
time and steps vs 
time between hand-
offs when vmax1 = 
vmax2 = 0,003 aisles/s, 
µ1 = 12,3850*10-6 
(hard work), µ2 =0 

(no effort) and x(0)  = 
(0,0357; 0,6557). In 
8 hours the system 
finishes 160 orders. 

!
!
!
!
!
!
!

It is important to notice that all the results of x2° and t° are the same over time, 
even the throughput after 8 hours, in fact all these results depend on x2° and t°, 
which do not depend on the values of the starting points of pickers x(0). The only 
difference is that the more x1(0) + 0,5 = x2(0) and the less the system is 
unbalanced  at the beginning at the work shift (the fluctuation of data is 35

reduced). This means that the system is less unbalanced and that it is simple to 
deal with it from a practical point of view. Therefore, when in a warehouse a 
manager has to deal with this kind of case of bucket brigade he should give to the 
pickers the starting positions in this relationship: x1(0) + 0,5 = x2(0).  This works 
for all the simulations in 5.5.2 as well. 
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 It does not mean that the system converges in a shorter time, it only means that at the 35

beginning, when the system is unbalanced, the results in hand-off positions and time are closer 
between them, so that the behavior of the system is more regular (less fluctuations). Only if the 
number is exactly 0,5 the system converges immediately and has no fluctuations.



In the following chart (chart 5.3) we summarize all the results in 12 different 
cases. The starting data take into account all the possible combinations of µ (6 
combinations for each level of speed), first with vmax1 = vmax2 = vmax = 0,006 
aisles/s, then with vmax1 = vmax2 = vmax = 0,003 aisles/s. The initial positions x(0) 

are random. 

Chart 5.3 - Comparison between the 6 possible kinds of µ combinations (always under the 
hypothesis µ1 > µ2), considering first vmax1 = vmax2 = vmax = 0,006 aisles/s and then vmax1 = vmax2 
= vmax = 0,003 aisles/s.  The simulations with (*) are the one that we presented in this paragraph 
till now (see above). 

!
The value of x2° after 8 hours is different for each combination of µ, in fact x2° 
depends on the ratio of the speeds v1/v2 in a certain moment of time t and this 
ratio varies over time because the speeds change over time, because of the 
different values of µ that the two pickers have (x2° = e-µ1*t / (e-µ1*t + e-µ2*t )). The 
more the value of µ1 and µ2 are similar over time and the more x2° after 8 hours is 
going to be closer to the value 0,5 . Because of the fact that in both cases with 36

vmax1 = vmax2 = vmax = 0,006 aisles/s and with vmax1 = vmax2 = vmax = 0,003 aisles/s 
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 value that we found also in paragraph 5.5.2, where both the vmax and the values of µ were the 36

same 



the ratio between speeds is 1, if the values of µ are the same, also the values of 
x2° after 8 hours are the same (0,412 both in the second and in the third 
simulation). Always from chart 5.3, we can notice that if the speed vmax is halved, 
the value of time t° after 8 hours is doubled (t° = 1 / (vmax * (e-µ1*t + e-µ2*t )) ) and 
the throughput is halved, if the values of µ1 and µ2 are the same (always 
comparing the second and the third simulation). After all this conclusions, we can 
notice that all the three results x2°, t° and the throughput do not depend on the 
starting positions of the pickers. As we saw, working on the initial position of the 
pickers has a consequence only on the amplitude of the fluctuations, both in 
hand-off positions and in times between two consecutive hand-offs. 

!
In conclusion, if the pickers have the same vmax and different µ, the system does 
not perform well, because the convergence is very slow (sometimes more than 
four hours) and it is difficult to predict the behavior of the system. Moreover, the 
worst problem is that the system does not provide a constant throughput over 
time, when the system is not balanced. This can cause a lot of problems, because 
the orders will be fulfilled not in regular interval of time, because the time 
between two consecutive hand-offs is very irregular. Luckily, we noticed that 
there is a way to solve this problem of slow convergence and that is to work on 
the starting positions of the pickers. The ideal starting positions of the operators 
should be in a relationship x1(0) + 0,5 = x2(0). If this condition is verified, the 
system will be balanced from the first iterations and it will work without 
fluctuations in hand-off positions and time between two consecutive hand-offs. 
The intervention of a manager who makes the pickers start in the right position of 
the aisle is of paramount importance in this kind of bucket brigade system. After 
his intervention, in fact, the system can perform very well, even if the average 
hand-off positions x2° will always shift from 0,5 towards the beginning of the 
aisle and the time between two consecutive hand-offs will always become longer 
because of the slowdown of the pickers. 

!
!
!
!
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5.5.5 Pickers with different vmax and different µ 

The last step is to see what happens if the operators are completely different, both 
in maximum speed and in the way they get tired. This means that both the value 
of maximum speed vmax and µ are different. We will consider the cases where 
vmax1 < vmax2  or  vmax1 > vmax2  and µ1 < µ2 or µ1 > µ2.  

According to the hypothesis in 5.5.1, “picker 2” is the one who has the highest 
vmax: it means that we only have to study the case vmax1 < vmax2. In this case, if µ1 
< µ2, a problem could arise: if “picker 2” has a higher µ than “picker 1”, it could 
happen that at a certain moment in the work shift, “picker 1” could be faster than 
“picker 2” and, after some other iterations, this could lead to blockage, with the 
result of a loss in throughput.  

To check a priori if the pickers will be blocked or not, we have to follow the 
following steps: 

• Compare the value of µ1 and µ2: if µ1 < µ2 the problem of blockage could be 
real (in this case read the next step), if µ1 > µ2 there is no problem. 

• Intersecate the two functions of speed v1(t) = v1max*e-µ1t and v2(t) = v2max*e-µ2t. 
To find the point of intersection we have to solve the system when v1(t) = 
v2(t) and t are the same. Combining the two equation, it is possible to find t^: 

       

      

!
      If  t^ < 8 h (28800 s), then the possibility of blockage could exist (in this case 

go on reading the next step); if t^ > 8 h (28800 s), then blockage is no longer 
possible. The system starts losing its exponential average behavior and 
diverges; the more the time passes by and the more the hand-off positions and 
the time between two consecutive hand-offs swing. 

• See with the simulation if the system diverges “enough” or not . It is 37

possible to understand if the pickers get blocked or not looking at the plots 
and the numerical output of the code. If the plots are meaningless and in the 
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 We did not find an analytical way to find the time t from the beginning of the work shift, 37

when the first blockage happens.



output data of the simulation there are hand-off positions x2 < 0 or x2 > 1 and 
the time between two consecutive hand-offs negative, the fastest picker is 
blocked. The blockage exists when some of these anomalies happen. In 
particular the exact moment when the fastest picker is first blocked is when 
the first one of these anomalies comes out. 

!
Once we decided to call “picker 2” the picker with maximum vmax (vmax2 > vmax1), 
there are three cases that we can study: 

• µ1>µ2 (divergent speeds): in this case we expect a fast convergence, with 
hand-off position shifting towards the beginning of the line over time and the 
time between two consecutive hand-offs growing over time. 

• µ1<µ2 and ln(vmax2 / vmax1) / (µ2-µ1) = t^ > 8 h (convergent, but not crossing 
speeds): in this case the system does not suffer from blockage and we expect 
a fast convergence as well, with the hand-off position shifting towards the end 
of the line over time and the time between two consecutive hand-offs growing 
over time. 

• µ1<µ2 and ln(vmax2 / vmax1) / (µ2-µ1) = t^ < 8 h (convergent and crossing 
speed): in this case the system could suffer from blockage. We expect a fast 
convergence at the beginning of the work shift and, after time t^, the slower 
picker becomes the faster and, after a few time more, the system starts to 
diverge again: it means that there is chance of blockage. Blockage exists if 
the system has enough time to find such an unbalance that leads to one of the 
anomalies that we described before (the plots become meaningless and in the 
output data of the simulation there are hand-off positions x2 < 0 or x2 > 1 and 
time between two consecutive hand-offs negative); this means that the more 
the pickers’ speed cross each other early in the work shift and the higher the 
probability of blockage is. In other words we can divide this case in two sub-
cases: the first one is when the system diverges, because of the crossing 
speeds, but not enough to create blockage and the second one is when the 
system diverges sufficiently to create blockage. In all the cases, the time 
between two consecutive hand-offs always grows over time.  

!
!
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We will run five simulations, one for each kind of situation that could happen.  

In the first simulation, the starting data are v1max = 0,003 aisles/s, v2max = 0,006 
aisles/s (see figure 5.27), µ1 = 12,3850*10-6 (hard work), µ2 = 3,6584*10-6 (easy 
work), x(0) = (0,1869; 0,4898). 

!
Fig 5.27 - Speed 
of the operators 
over time in a 
work shift in the 
case of vmax1 = 
0,003 aisles/s, 
vmax2 = 0,006 
aisles/s, µ1 = 
1 2 , 3 8 5 0 * 1 0 - 6 

(hard work) and  
µ 2 = 
3 , 6 5 8 4 * 1 0 - 6 

(easy work).  

!
In this simulation µ1>µ2, so there is no possibility of blockage, because picker 2 
is always faster than picker 1. 

The results are shown in figure 5.28 and 5.29. 

!
F i g 5 . 2 8 - 
Cumulated time vs 
hand-off positions 
when vmax1 = 0,003 
aisles/s, vmax2 = 
0,006 aisles/s, µ1 = 
12,3850*10-6 (hard 
w o r k ) , µ 2 = 
3,6584*10-6 (easy 
work) and x(0) = 
(0,1869; 0,4898). 

!
!
!
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The speeds are diverging over time. This leads to the fact that the hand-off 
positions shift towards the beginning of the line over time, because the ratio v1/v2 
is decreasing over time. The system converges very fast: after 10 minutes it has 
already balanced itself. 

Also in the case of different maximum (starting) speeds vmax and different values 
of µ, it is possible to find a function that gives the average hand-off position after 
a period of time t from the beginning of the work shift. 

x° = v1 / (v1+v2) = (vmax1 * e-µ1*t) / (vmax1 * e-µ1*t + vmax2 * e-µ2*t) 

With this formula it is possible to verify that figure 5.27 is correct. 

x°(0) = vmax1 / (vmax1 + vmax2) = x* = 0,333 

x°(4) = 0,306 

x°(8) = 0,280 

Speaking about the time between two consecutive hand-offs, the results are 
shown in figure 5.29. 

!
Fig 5.29 - Cumulated time 
and steps vs time between 
hand-offs when vmax1 = 
0,003 aisles/s, vmax2 = 
0 ,006 a i s l e s / s , µ1 = 
12,3850*10-6 (hard work), 
µ2 = 3,6584*10-6 (easy 
work) and x(0) = (0,1869; 
0,4898). In 8 hours the 
s y s t e m f i n i s h e s 2 3 8 
orders. 

!
!
!
!
!
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The system converges very fast and it is very stable, since the beginning of the 
work shift. The time between two consecutive hand-offs is growing over time, 
because, as always, the pickers are slowing down over time because of fatigue (µ 
> 0). In 8 hours the bucket brigade finishes 238 orders. 

Also here it is possible to find a function that gives the average time between two 
consecutive hand-offs after time t from the beginning of the work shift. 

t° = 1 / (v1+v2) = 1 / (vmax1 * e-µ1*t  + vmax2 * e-µ2*t) 

With this function it is possible to verify the correctness of the plot (fig 5.29). 

t°(0) = 1 / (vmax1+vmax2) = 111,11 

t°(4) = 121,92 

t°(8) = 133,33 

!
In the second simulation, the starting data are v1max = 0,003 aisles/s, v2max = 0,006 
aisles/s (see figure 5.30), µ1 = 3,6584*10-6 (easy work), µ2 = 12,3850*10-6 (hard 
work), x(0) = (0,7094; 0,7547). 

!
Fig 5.30 - Speed 
of the operators 
over time in a 
work shift in the 
case of vmax1 = 
0,003 aisles/s, 
vmax2 = 0 ,006 
a is les /s , µ1 = 
3,6584*10-6 (easy 
work) and µ2 = 
1 2 , 3 8 5 0 * 1 0 - 6 

(hard work).  

!
!

In this simulation µ1<µ2, so there is possibility of blockage, because picker 2 
slows down faster than picker 1. To check if the possibility of blockage is real or 
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not we have to calculate the value of t^ = 22,06. Because of the fact that 22,06 > 
8, there is no intersection point between the two speeds in 8 hours, so there is no 
possibility of blockage. 

The results are shown in figure 5.31 and 5.32. 

!
Fig 5.31 - Cumulated 
t i m e v s h a n d - o f f 
positions when vmax1 = 
0,003 aisles/s, vmax2 = 
0,006 aisles/s, µ1 = 
3 , 6 5 8 4 * 1 0 - 6 ( e a s y 
w o r k ) , µ 2 = 
12,3850*10-6 (hard 
w o r k ) a n d x ( 0 ) = 
(0,7094; 0,7547). 

!
!
!
!

The speeds are converging over time. This leads to the fact that the hand-off 
positions are shifted towards the end of the line over time, because the ratio v1/v2 
is growing over time. The system converges very fast: after 10 minutes it has 
already balanced itself. Notice that this is the first time that we are studying a 
case in which the hand-off position is shifting toward the end of the line and not 
towards the beginning. 

Also here it is possible to calculate analytically the average of the function: 

x°(0) = vmax1 / (vmax1 + vmax2) = x* = 0,333     (as in the first simulation) 

x°(4) = 0,362 

x°(8) = 0,391 

And x° is growing over time and not decreasing, as we were expecting. 
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Speaking about the time between two consecutive hand-offs, the results are 
shown in figure 5.32. 

!
F i g 5 . 3 2 - 
Cumulated time 
and steps vs time 
between hand-offs 
when vmax1 = 0,003 
aisles/s, vmax2 = 
0,006 aisles/s, µ1 = 
3,6584*10-6 (easy 
w o r k ) , µ 2 = 
12,3850*10-6 (hard 
work) and x(0) = 
(0,7094; 0,7547). 
In 8 hours the 
system finishes 229 
orders. 

!
!
!
!
!

!
The system converges very fast and it is very stable, since the beginning of the 
work shift. The time between two consecutive hand-offs is increasing, because, 
as always, the pickers are slowing down over time because of fatigue (µ > 0). In 
8 hours the bucket brigade finishes 229 orders: less then the simulation before, 
because the speeds are decreasing more, even if the values of µ are the same. 

And also here we can check if the function we found is correct or not: 

t°(0) = 1 / (vmax1+vmax2) = 111,11 

t°(4) = 127,13 

t°(8) = 144,93 
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In the third simulation, the starting data are v1max = 0,005 aisles/s, v2max = 0,006 
aisles/s (see figure 5.33), µ1 = 3,6584*10-6 (easy work), µ2 = 12,3850*10-6 (hard 
work), x(0) = (0,1190; 0,4984). 

!
Fig 5.33 - Speed of 
the operators over 
time in a work shift 
in the case of vmax1 
= 0,005 aisles/s, 
v m a x 2 = 0 , 0 0 6 
a i s l e s / s , µ 1 = 
3,6584*10-6 (easy 
work) and µ2 = 
12,3850*10-6 (hard 
work).  

!
!
!

In this simulation µ1<µ2, so there is possibility of blockage, because picker 2 
slows down faster than picker 1. To check if the possibility of blockage is real or 
not, we have calculated the value of t^ = 5,80 h.  

!
= 20892,62 s  = 5,80 h = 5h 48 min 

!
Because 5,80 < 8 there is an intersection point between the two speeds in 8 hours 
as shown in figure 5.33, so the possibility of blockage exists. In particular, 
because of the intersection of the speed, the system will diverge for sure. The 
question that we have to answer is: “Does the system have enough time to 
become this unbalanced to make the blockage happen?”. To understand if the 
blockage will happen or not, we have to look at the plots and at the output of the 
code. If the plots become meaningless and in the output data of the simulation 
there are hand-off positions x2 < 0 or x2 > 1 and times between two consecutive 
hand-offs negative, this means that the fastest picker will be blocked.  
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The results are shown in figure 5.34 and 5.35. 

!
Fig 5.34 - Cumulated 
t i m e v s h a n d - o f f 
positions when vmax1 = 
0,005 aisles/s, vmax2 = 
0,006 aisles/s, µ1 = 
3 , 6 5 8 4 * 1 0 - 6 ( e a s y 
w o r k ) , µ 2 = 
1 2 , 3 8 5 0 * 1 0 - 6 ( h a r d 
w o r k ) a n d x ( 0 ) = 
(0,1190; 0,4984). 

!
!
!

Also in this case, the speeds are converging over time. This leads to the fact that 
the hand-off positions are shifted towards the end of the line over time, because 
the ratio v1/v2 is growing over time. Because of the fact that the ratio v1/v2 is 
closer to 1 than the previous simulation, the positions of hand-off are more 
shifted towards the position 0,5. The position 0,5 is reached exactly after the time 
t^ that we calculated before, because in that moment the speeds are the same, the 
ratio between the two speeds is 1 and the hand-off position is 0,5. We can 
conclude that a sufficient and necessary condition to have the hand-off at a 
position 0,5 is that the speeds of the two pickers have to be the same. The system 
converges very fast, but slower than the previous simulations, because the 
starting speeds are very similar at the beginning and even more similar over time. 
Even if the pickers’ speeds have a point of intersection in figure 5.33, the 
behavior of the system seems regular, so we can conclude that the pickers do not 
block each other. This happens because the speed intersection at a time t^ is close 
to the end of the work shift; because of this the system does not have enough 
time to become so unbalanced to create blockage. Even though it is impossible to 
see it in the picture, even zooming, the system, after t^, slightly diverges from the 
average balanced behavior.  

!
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Speaking about the time between two consecutive hand-offs, the results are 
shown in figure 5.35. 

!
Fig 5.35 - Cumulated 
time and steps vs time 
between hand-offs 
when vmax1 = 0,005 
aisles/s, vmax2 = 0,006 
a i s l e s / s , µ 1 = 
3 ,6584*10-6 (easy 
w o r k ) , µ 2 = 
12,3850*10-6 (hard 
w o r k ) a n d x ( 0 ) = 
(0,1190; 0,4984). In 8 
hours the system 
finishes 283 orders. 

!
!
!
!
!
!

The system converges pretty fast and it is very stable, since the beginning of the 
work shift. The time between two consecutive hand-offs is increasing, because, 
as always, the pickers are slowing down over time because of fatigue (µ > 0). In 
8 hours the bucket brigade finishes 283 orders: more then the simulation before, 
because the speed of picker 1 is 0,005 aisles/s and not anymore 0,006 aisles/s. As 
we noticed before the system behaves normally and seems not to suffer of 
blockage. As we told before, the system has not enough time to become this 
unbalanced to block the pickers. Also here, even if it is not visible in picture 
5.35, after time t^ the system slightly diverges from the average balanced 
behavior.  

!
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In the fourth simulation, the starting data are v1max = 0,005 aisles/s, v2max = 0,006 
aisles/s (see figure 5.36), µ1 = 0 (no effort), µ2 = 12,3850*10-6 (hard work), x(0) = 
(0,5060; 0,6991). 

!
Fig 5.36 - Speed 
of the operators 
over time in a 
work shift in the 
case of vmax1 = 
0,005 aisles/s, 
vmax2 = 0,006 
aisles/s, µ1 = 0 
(no effort) and µ2 
= 12,3850*10-6 

(hard work). 

!
!
!

!
In this simulation µ1<µ2, so there is a possibility of blockage, because picker 2 
slows down faster than picker 1. To check if the possibility of blockage is real or 
not we have calculated the value of t^ = 4,09. Because 4,09 < 8 there is an 
intersection point between the two speeds in 8 hours, so there is a possibility of 
blockage. The fact that we found a time t^ < 8 hours means that the system, after 
t^ hours, starts to diverge from its average exponential balanced behavior, slowly 
at the beginning and faster step by step over time. It is important to notice that 
the time t^ is lower than the values we obtained in the previous simulation, so the 
system has more time to get unbalanced. The question that we have to ask 
ourselves is: “Does the system has enough time to become enough unbalanced to 
lead to a blockage?”. If yes, the fastest picker will be blocked from the slowest 
one and the results of the simulation will be meaningless. We remind the reader 
that a blockage leads to a loss in throughput. In conclusion, to check if the 
blockage exists or not, we have to look at the results of the simulations. 

!
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The results are shown in figure 5.37 and 5.38. 

!
!
F i g 5 . 3 7 - 
Cumulated time 
v s h a n d - o f f 
positions when 
vmax1 = 0,005 
aisles/s, vmax2 = 
0,006 aisles/s, µ1 
= 0 (no effort), µ2 
= 12,3850*10-6 

(hard work) and 
x(0) = (0,5060; 
0,6991). 

!
!
!

The most important fact that it is easy to notice is that the system converges at 
the beginning of the work shift and diverges at the end of the work shift. This 
means that the system returns unbalanced. Here the unbalance is bigger than in 
the previous simulation, in fact it is possible to notice it even if we do not zoom 
the plot in figure 5.37. The general behavior of the system is the same that the 
one we had in the previous simulation: after time t^ the system starts to be 
unbalanced and the more the time goes by and the faster the unbalance grows. It 
is important to notice that, even though the system is unbalanced, in no one of 
the simulations till now the blockage exists. The only difference between 
simulation three and four (this one) is that in this simulation here the system 
remains unbalanced for a longer time, therefore it has more time to diverge and it 
is possible to see, without zooming, the plot diverging (see figure 5.37). Also 
here the slope of the function is increasing, because the ratio v1/v2 is increasing. 
At the beginning of the work shift the system converges fast, but not as fast as in 
the first two simulations, because in this simulation the speeds have closer 
values. 

!
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Speaking about the time between two consecutive hand-offs, the results are 
shown in figure 5.38. 

!
!
F i g 5 . 3 8 - 
Cumulated time and 
s t e p s v s t i m e 
between hand-offs 
when vmax1 = 0,005 
a i s les / s , vmax2 = 
0,006 aisles/s, µ1 = 0 

(no effort), µ2 = 
12,3850*10-6 (hard 
work) and x (0) = 
(0,5060; 0,6991). In 
8 hours the system 
finishes 291 orders. 

!
!
!
!
!
!

!
Also here the system converges, and then starts to diverge again after t^ = 4,09 
hours, because the pickers’ speeds are crossing, so the system is not balanced 
anymore. The plot in figure 5.38 is not meaningless, the values of hand-off 
position are always in the interval 0 < x2 < 1 and the time between two 
consecutive hand-offs is always positive: the code is still working well and all 
this factors suggest us that there is no blockage inside the eight hours work shift. 
The slope of the function is increasing on average, according to the fact that the 
pickers get tired over time during the work shift, therefore the time between two 
consecutive hand-offs becomes longer over time. 
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In the fifth and last simulation, the starting data are v1max = 0,0055 aisles/s, v2max 
= 0,006 aisles/s (see figure 5.39), µ1 = 0 (no effort), µ2 = 12,3850*10-6 (hard 
work), x(0) = (0,1869; 0,4898). 

!
Fig 5.39 - Speed of 
the operators over 
time in a work shift 
in the case of vmax1 
= 0,0055 aisles/s, 
v m a x 2 = 0 , 0 0 6 
aisles/s, µ1 = 0 (no 
effort) and µ2 = 
12,3850*10-6 (hard 
work). The plot 
takes into account 
only the first 4,5 
hours. 

!
!
In this simulation µ1<µ2, so there is possibility of blockage, because picker 2 
slows down faster than picker 1. To check if the possibility of blockage is real or 
not, we calculated the value t^ = 1,95. Because of the fact that 1,95 < 8, there is 
an intersection point between the two speeds in 8 hours, therefore there is a 
possibility of blockage. From time t^ on, the system will be unbalanced and it 
will diverge always faster over time. Moreover, in this last simulation, the system 
has the time to become so unbalanced that picker 1 (the fastest picker) is blocked 
by picker 2 (the slowest picker). We can notice it immediately looking carefully 
at figure 5.39: the speed of picker 2 (the green one), after around 4,5 hours, has a 
strange behavior. This strange behavior suggests that the code is not working  
properly anymore and that is because of the fact that the fastest picker is blocked 
by the slowest one. It is important to notice that figure 5.39 does not consider the 
whole eight hours work shift; if the we had considered the whole work shift, the 
result would have been a meaningless doodle. To understand better the behavior 
of the system when the slowest picker blocks the fastest one, we have to focus 
our attention on the results we obtained with the simulation. 

!
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The results are shown in figure 5.40 and 5.41. 

Fig 5.40 - Cumulated time vs hand-off positions when vmax1 = 0,0055 aisles/s, vmax2 = 0,006 
aisles/s, µ1 = 0 (no effort), µ2 = 12,3850*10-6 (hard work) and x(0) = (0,1869; 0,4898). In red the 
average behavior is shown. The red spot is the “breaking point”: from that point on the code 
does not work properly anymore; this means that the fastest picker is blocked by the slowest 
one. The plot takes into account only the first 4,5 hours. 

!
As we have already told before, in this case the fastest picker is blocked by the 
slowest one. This is suggested by a lot of anomalies in the results. First of all, if  
we had considered the whole work shift in figure 5.40, the result would have 
been a meaningless doodle. Moreover, always in figure 5.40, the plot of x2, after 
a little bit less than 4,3 hours, goes above 1 (the code is not working properly 
anymore), but that is impossible in reality because 0 < x2 < 1 for hypothesis: the 
existence of this breaking point indicates the presence of blockage. In the 
simulation, in fact, at the 169th iteration (after a little bit less than 4,3 hours), the 
value of the hand-off position is x2 = 1,021 > 1. The following iteration (170th), 
shows a value of time between hand-offs of -4,21 seconds, that is completely 
meaningless.  

�129



Speaking about the time between two consecutive hand-offs, the results are 
shown in figure 5.41. 

Fig 5.41 - Cumulated time and steps vs time between hand-offs when vmax1 = 0,0055 aisles/s, 
vmax2 = 0,006 aisles/s, µ1 = 0 (no effort), µ2 = 12,3850*10-6 (hard work) and x(0) = (0,1869; 
0,4898). In red the average behavior is shown. The red spots are the “breaking points”: from 
that points on the code does not work properly anymore; this means that the fastest picker is 
blocked by the slowest one. The plot takes into account only the first 4,5 hours, corresponding 
to the first 180 steps (iterations). 

!
Also in this case there are a lot of hints that suggest us that the fastest picker is 
blocked by the slowest one. At iteration number 170 (a little bit less than 4,3 
hours) the code does not work properly anymore, in fact the time between two 
consecutive hand-offs goes below 0 (negative time). This breaking point 
corresponds to the moment when the fastest picker is blocked by the slowest one. 

To summarize the results we obtained in paragraph 5.5.5 we will use chart 5.4. 
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Chart 5.4 - Comparison between five different behaviors that a bucket brigade system could 
have under the hypothesis of different vmax (always under the hypothesis vmax2 > vmax1) and 
different values of µ. All the five simulations have been presented in this paragraph. 

!
As we told at the beginning of this paragraph, the behavior of this kind of system 
mainly depends on the combination of the values of vmax and µ. All the possible 
behaviors are summarized in figure 5.42. 

Fig 5.42 - Possible behaviors of the bucket brigade when vmax1 ≠ vmax2 and µ1 ≠ µ2. 
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In conclusion, there are a lot of possible behaviors that the bucket brigade system 
could have, depending on the relationships between vmax1 and vmax2, µ1 and µ2. 
The system converges always pretty fast. In particular, if µ1 > µ2, the speeds are 
diverging, there is no chance of blockage, x2° decreases and t° grows; if µ1 < µ2, 
the speeds are converging, there is a chance of blockage, x2° grows over time 
and t° grows as well. To understand if the fastest picker can be blocked by the 
slowest one the number t^ = ln(vmax2 / vmax1) / (µ2-µ1) is very important: if t^ > 8 
hours, the speeds are not crossing and the system will be balanced during the 
whole work shift; if t^ < 8 hours the speeds have an intersection in the work shift 
and, from time t^ on, the system will start to diverge, first slowly and then always 
faster over time. In this case, the system starts to be unbalanced and this leads to 
a major amplitude in the plots of hand-off positions and time between two 
consecutive hand-offs. In general, the more the time passes by and the more the 
system becomes unbalanced. If the bucket brigade remains unbalanced for 
enough time, the fastest picker will be blocked, after some time, by the slowest 
one and this will lead to a loss in throughput. It is possible to understand if the 
fastest picker is blocked by the slowest one looking at the plots and at the results 
of the simulation. In case of blockage the code does not work properly anymore 
and some anomalies will be visible; these anomalies could be: 

• The plots become meaningless. 

• In the output data of the simulation there are hand-off positions x2 < 0 or x2 > 1. 

• The times between two consecutive hand-offs are negative. 

To avoid this situation of blockage, we advice the managers to operate as follow: 
as soon as the speeds of the pickers cross each other after time t^, the manager 
should tell the pickers to switch their position. With this strategy the pickers will 
be working along the aisle always from the slowest to the fastest and blockage is 
no longer possible: the bucket brigade will maintain its balance and it will 
perform at its best.  

We can say that also if vmax and µ are different, the system performs well, 
because it is possible to avoid blockage using the simple strategy which we 
described in the previous line.  

!
!
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5.6 Conclusions and techniques to improve  

Once we have shown the behavior of the system in all these different cases we 
consider appropriate to use chart 5.5 to summarize all the results that we have 
found.  

Chart 5.5 - Summary of the behavior of an order-picking bucket brigade system, when the 
speeds of the pickers are not constant over time. The chart takes into consideration all the 
possible behaviors that the system can have, considering all the different possible combinations 
of vmax and µ values. For each case the evolution of the succession of hand-off positions and 
times between two consecutive hand-offs is explained. At the end, some notes for each case are 
given. 

!
As chart 5.5 shows, the bucket brigade can have a lot of different behaviors.  

The hand-off position x2 could remain constant, shift towards the end of the aisle 
or shift towards the beginning of the aisle. In every case, we could find a function 
x2° that tells us where the hand-off position is after a time t when the system is 
balanced. The hand-off position x2° over time depends only on the values of the 
speeds v1 and v2, that are functions of t. More precisely, it is possible to find the 
hand-off position x2° after a certain time t from the beginning of the work shift 
only knowing the ratio r = v1/v2 between the two speeds at time t. This 
observation is valid both when the speeds are constant and when the speeds slow 
down over time, because of fatigue. The formula can be obtained from the 
hypothesis of the normative model; moreover we have already found the formula 
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we are seeking in paragraph 2.2 to calculate the value of x2*. Working on x2* = 
v1 / (v1+v2), it is possible to obtain x2* = r / (1+r). 

Another way to write the formula that we found is: 

!
=  r / (1+r) 

!
In the formula only the values of speeds appear, in fact the position of x2 depends 
only on the speeds of the workers and not on their initial positions. 

If we consider the speeds changing over time, the ratio r = v1/v2 is not constant 
and the formula becomes: x2° = r(t) / (1+r(t)), where r(t) = v1(t) / v2(t). 

We can plot the function, as in figure 5.40.  

!
Fig 5.43 - Hand-
off position vs 
i n s t a n t a n e o u s 
speed ratio r = 
v1/v2. The plot 
s h o w s t h e 
function x2° of 
t h e h a n d - o f f 
p o s i t i o n s 
e v o l v i n g i n 
function of the 
i n s t a n t a n e o u s 
speed ratio v1/v2. 

!
!
!

The function is a hyperbola: the more the ratio v1/v2 grows and the more the 
hand-off position is shifted towards the end of the line, the more the ratio v1/v2 
decreases and the more the hand-off position is shifted towards the beginning of 
the line. It is important to notice that when the speeds assume the same value 
(v1=v2), the hand-off position is 0,5, so exactly in the middle of the aisle. 
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Moreover, according to Bartholdi and Eisenstein (1996a), a bucket brigade works 
well (it provides the maximum throughput) if the workers are ordered to the 
slowest to the fastest; also in our work, in fact, we always ordered the pickers 
with this rule, so that v1<v2 . If v1<v2, the ratio r = v1/v2 is always 0 ≤ r ≤ 1 and 38

consequently the hand-off position is always in the first half of the line. The fact 
that the pickers’ speeds are changing over time leads to a translation of the hand-
off position along the aisle, following the function in figure 5.43. As last thing, 
we remind the reader that this function works only from the moment when the 
system is balanced and on; if the system is not balanced the formula and the plot 
are useful to find the average behavior of the system, not the instantaneous one. 

On the other hand, the time between two consecutive hand-offs always grows 
over time, because of fatigue (µ>0), that makes the pickers slow down. The 
harder the work is, the higher the values of µ are and, consequently, the time 
between two consecutive hand-offs becomes longer. The time between two 
consecutive hand-offs depends both on the pickers’ speeds and on the values of 
µ, but it does not depend on the starting positions of the pickers. 

Another interesting problem is to try to find a function to calculate the 
throughput of the bucket brigade after time t. According to Bartholdi and 
Eisenstein (1996a) and under the hypothesis of normative model, because of the 
constant values of the speeds, it was possible to calculate the throughput with TR 
= 1/t* = v1+v2. Unfortunately, we could not find a closed formula to calculate the 
throughput of the system analytically, so we calculated all the throughput after 8 
hours using a numerical approach, thanks to the simulations. However, to find 
the instantaneous throughput after time t, it is possible to use the formula TR = 
v1(t)+v2(t), where v1 and v2 are decreasing over time, because of fatigue.  

After all the simulations, we noticed that the best system to use is the case where 
pickers have different vmax and same µ (5.5.3), because the system converges 
very fast and the hand-off position is fixed over time: this fact guarantees a 
regular and predictable throughput during the work shift. Also the system with 
pickers working at different vmax and different µ (5.5.5) performs well: it ensures 
a rapid convergence, even if the hand-off position shifts along the aisle over time. 
In this case, blockage could be possible; if it exist, it creates losses in throughput. 
Then, bucket brigades with same vmax and same µ (5.5.2) seem to perform badly, 
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because the system does not converge, even if the behavior of the system is easy 
to predict, because it does not diverge neither. At the end, systems with same vmax 
and different µ (5.5.4) converge very slowly, because the starting maximum 
speeds of the pickers are very close at the beginning of the work shift. This type 
of bucket brigade is the most difficult to deal with. Moreover, it is important to 
notice that it is impossible to have a constant time between two consecutive 
hand-offs because of fatigue: a consequence of this fact is that it is impossible to 
follow exactly the takt time imposed by the customer.  

As we have just explained, the bucket brigade could perform in different ways, 
depending on the starting data. Anyway, we noticed that there are some strategies 
to improve the efficiency of the bucket brigade, taking simple managerial 
decisions. In particular, as we noticed, it could be very important to work on the 
initial positions of the pickers x(0) to make the behavior of the system more 
regular and balanced during the work shift. In particular, the general strategy is to 
calculate the average hand-off position x2°(0h) at the beginning of the work shift 
and position the pickers in a starting position where x2(0) = x2°(0h) + x1(0), where 
x2°(0h) = vmax1 / (vmax1 + vmax2). Using this foresight, the system is already 
balanced from the beginning of the work shift: the fluctuations of the system  39

are reduced and the system immediately converges in hand-off positions and time 
between two consecutive hand-offs. As the simulations confirm, even though the 
system is balanced, the hand-off positions could shift along the aisle or remain in 
the same place, depending on the ratio v1/v2. On the contrary, the time between to 
consecutive hand-off is always growing over time, because of fatigue (µ>0). 
There are two ways to reduce the time between two consecutive hand off and so 
to increase the throughput. The first one is to increase the maximum speed of the 
pickers, working on all the factors that we mentioned in paragraph 5.2.2 
(experience, training, ergonomics, motivation, …), while the second one is to 
reduce fatigue, reducing the value of µ, working on the factors that we mentioned 
in paragraph 4.5 (make the picking action easier, ergonomics, good rest, …). 

We want to conclude the discussion of this chapter, making the reader notice that 
the most common case that a manager has to deal with is when pickers have 
different vmax and different µ, in accordance to the fact that all the human beings 
are different. 
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Results 
This thesis has demonstrated that a two workers order-picking bucket brigade 
system performs very well even when considering human factors. We showed 
analytically and numerically that the effects of considering muscular fatigue in an 
eight hours work shift are a decrement in throughput (due to the slowdown of the 
pickers) and a shift of the hand-off position along the line over time (due to the 
changing of the ratio between the speeds of the two pickers over time). 
Moreover, some important advice to improve the performance of the system are 
given. 	

In particular, a new function to model the slowdown of the pickers during the 
work shift over time has been invented. Then, we considered four different cases 
of bucket brigade:	

• Pickers with same vmax and same μ.	

• Pickers with different vmax and same μ.	

• Pickers with same vmax and different μ.	

• Pickers with different vmax and different μ.	

After that, we analyzed the behavior of the four cases. First we analyzed them 
analytically and then numerically, showing the different results through plots. For 
a matter of clarity, we propose again chart 5.5 (see paragraph 5.6 ), in which the 40

main results are summarized.	
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All of these results are more precise than the results obtained by Bartholdi and 
Eisenstein (1996a, 1996b) and by the others researchers in their papers, because 
they did not consider human factors. Taking into account muscular fatigue 
allowed us to obtain results closer to what happens in a real warehouse, so that 
managers can predict better the behavior of the system they set up and they can 
improve or make it perform better just utilizing the advice we gave. 	

This thesis is the first to link (analytically and numerically) bucket brigades and 
human factors. Due to the fact that it is the first to link these topics, the theme is 
very wide and difficult to understand. For this reason, it is not possible to study 
deeply all the parts of the work. Then, because of the width of the theme, we 
decide to give more importance to the numerical results than to the analytical 
part. It is with the latter approach that we find the most interesting and useful 
results. 	

Even though the results are vast and very interesting, there are some unanswered 
questions. The answers to these questions will lead to a development of our 
work. 

• What happens if the BB has more than two pickers? Could the results we 
obtained be generalized to n pickers?  

• How would the results change if we considered not only an aisle, but all the 
warehouse? 

• We found some formulae to model the function of the average hand-off 
position x2° and the function of the average time between two consecutive 
hand-offs t°. Is it possible to find a closed formula to calculate the throughput 
after time t from the beginning of the work shift TR°? 

• What happens if we consider not only the effect of fatigue, but also the effect 
of learning?  

• In our work we used an exponential function to describe the slowdown of the 
pickers over time. Some other authors suggest that fatigue is not exponential. 
Which model gives results that are closer to reality?  

• One of the working hypothesis was to consider the work equally distributed 
along the line; we were allowed to do this because we were making the 
hypothesis to work in a high-volume distribution warehouse of a chain retailer, 
where a typical order consists in a lot of skus, but a small number each. 
Because of that, we could consider, approximately, the work continuously and 
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uniformly spread along the aisle. What happens if the warehouse is low-
volume and/or we consider the work exponentially distributed?  

• The last one of the four cases studies the behavior of a system with different 
values of maximum speed and different values of work effort. The system is 
very complex to study. How can we explain better all the possible behaviors of 
the system? Is it possible to find an analytical formulation to predict after how 
much time the fastest picker is blocked by the slowest one? 

• Some important results have been obtained only by simulations and it was too 
difficult to prove them. Is it possible to demonstrate mathematically everything 
we found? 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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Appendices 
A.1 Proof of fixed point convergence theorem 

xk+1 = g(xk) 

xk+1 - ξ = g(xk) - ξ 

εk+1 = g(xk) - g(ξ) 

For Lagrange’s theorem: 

εk+1 = g’(η) * εk 

|εk+1| = |g’(η)| * |εk| ≤ m * |εk|  where m is the error increase for every step 

And everything works ∀k, therefore: 

|ε1| ≤ m * |ε0| 

|ε2| ≤ m * |ε1| ≤ m2 * |ε0| 

… 

|εk| ≤ mk * |ε0| 

And because of the Squeeze theorem: 

0 ≤ |εk| ≤ mk * |ε0| , where 0 → 0, mk → 0, then |εk| → 0 

That means the error |εk| goes to 0 after a few iterations, therefore the fixed point 
method converges. 

!
NB: |g’(x)| ≤ m < 1 is only a sufficient condition, so if |g’(x)| > 1 the method can 
converge anyway. 

!
!
!
!
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A.2 Two operators bucket brigade numerical example 

Now, let’s have a look at a simple 2 operators numerical example to understand 
better the dynamics of the bucket brigade system. Passing is not allowed along 
the line. 

The starting data of the problem are l = 1 (hypothesis of normalization of line 
length), x(0) = (0,3; 0,6), v = (0,1; 0,2). The vector v of the speeds is constant 
along the line and over time. 

Using the formulas which have been found above, the results presented in chart 
A2.1 can be obtained: 

Chart A2.1 - Results of a two operators bucket brigade numerical example.                                 
In the chart the different iterations are shown; for each iteration the position of the first and 
second worker after the hand-off and the time between the t and the t-1 iteration are indicated. 

!
It is possible to notice, that all the three lines converge to a number: it means that 
after a few iterations the line balances itself, converging to a single fixed point, 
as Bartholdi and Eisenstein (1996a) proved in their paper.  

The results at 10th step are already very close to the convergence solution (*), 
which is: 

x1* = 0 

x2* = v1 / (v1+v2) = 1/3 ≃ 0,33333… 

t* = 1 / (v1+v2) = 10/3 ≃ 3,33333… 

TR = 1/t* = v1 + v2 = 0,3 pcs/s = 1800 pcs/h 

As it is possible to notice the results do not depend from the starting positions of 
operators x(0), but only on their velocities v. 
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Not only the calculations, but also figure A2.1 and figure A2.2 confirm the 
convergence of the system, both in time and in space. 

Fig A2.1 - Convergence of the time between two consecutive hand-offs in the numerical 
example. The diagram shows the time between two consecutive hand-offs in relation to the step 
(hand-offs). 

Fig A2.2 - Convergence of the positions of workers during the hand-offs in the numerical 
example. The diagram shows the position of operator 1 and 2 immediately after the hand-off (at 
each step). 
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Codes in MATLAB 

C.1 “MyScript_mu.m” 

Script that provides the starting data (vmax1, vmax2, µ1, µ2) and calls one of the two 
functions that solve the problem. 

%clears everything 
clearvars; 
close all; 
clc; 
!
%mu values: 0 no effort, 3.6584e-06 easy work, 7.7480e-06 average work, 
12.3850e-06 hard work 
mu1=3.6584e-06; 
mu2=12.3850e-06; 
!
%starting positions of the pickers 
x_0=rand(1,2); 
!
%x_0=[0.3028 0.8326];    %vector [x_0(1) x_0(2)] 
!
if x_0(2)<x_0(1) 
    aux=x_0(1); 
    x_0(1)=x_0(2); 
    x_0(2)=aux; 
end 
!
%starting (maximum) speeds of the pickers 
%v=10e-3*rand(1,2); 
!
v=[0.003 0.006];  %vector [vmax1 vmax2] 
!
if v(2)<v(1) 
    aux=v(1); 
    v(1)=v(2); 
    v(2)=aux; 
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end 
!
%t intersection (to use only in the case of mu1<mu2 (fourth case) 
t_intersection=(log(v(1,2)/v(1,1))/(mu2-mu1))/3600 
!
%decide which function to call 
stepwise_function_mu(x_0,v,mu1,mu2); 
continuous_function_mu(x_0,v,mu1,mu2); 
!
!
!
C.2 “stepwise_function_mu.m” 

Function that solves the problem of a two pickers bucket brigade considering the 
speed of the pickers constant between two consecutive hand-offs, but decreasing 
exponentially over time (it is the file that we used to run all the simulations in 
this thesis; this code gives results that are slightly approximated). 
!
function [] = stepwise_function_mu(x_0,v_0,mu1,mu2) 
%   Bucket brigade with 2 operators 
%   The program solves the problem of a two operators bucket brigade system 
%   both when the speed of the operators is constant during the time (mu=0) 
%   and when it decreases stepwise-exponentially during time (mu=/0) 
!
%starting data 
l=1; %normalized length of aisle 
t=0; 
x1=x_0(1,1); 
x2=x_0(1,2); 
v1=v_0(1,1); 
v2=v_0(1,2); 
fprintf('the starting data are: x1=%0.4f, x2=%0.4f, v1=%0.4f, v2=%0.4f 
\n',x_0(1,1),x_0(1,2),v_0(1,1),v_0(1,2)); 
!
ws_h=8; 
ws_s=ws_h*3600; 
!
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%initialization of data 
steps=[]; 
vett_t=[]; 
positions=[]; 
times=[]; 
positions_av=[]; 
times_h_av=[]; 
t_tot=0; 
i=0; 
!
%while cycle that calculates what happens step by step 
while t_tot<ws_s 
     
    v1=v_0(1,1)*exp(-mu1*t_tot); 
    v2=v_0(1,2)*exp(-mu2*t_tot); 
     
    i=i+1; 
     
    t=(l-x2)/v2; 
    x2=v1*t+x1; 
    x1=0; 
     
     
    %creation of the vectors that we need to create the plots 
    steps(i,:)=i; 
     
    positions(i,:)=x2; 
    vett_t(i,:)=t; 
    t_tot=sum(vett_t); 
    times(i,:)=t_tot; 
    times_h(i,:)=t_tot/3600; 
     
    speeds1(i,:)=v1; 
    speeds2(i,:)=v2; 
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    x_av=(v_0(1,1)*exp(-mu1*t_tot))/(v_0(1,1)*exp(-mu1*t_tot)+v_0(1,2)*exp(-
mu2*t_tot)); 

    t_av=1/(v_0(1,1)*exp(-mu1*t_tot)+v_0(1,2)*exp(-mu2*t_tot)); 
     
    positions_av(i,:)=x_av; 
    vett_t_av(i,:)=t_av; 
     
    fprintf('iteration number %0.0d gives as results t=%0.5f, x1=%0.5f, x2=%0.5f 

\n',i,t,x1,x2) 
     
     
end 
!
t_tot=sum(vett_t); 
t_tot_h=t_tot/3600; 
!
!
fprintf('in %0.0f hours there are %0.0d iterations \n',t_tot_h,i) 
!
 %creates the plot that shows the position of hand-offs over time 
 figure; 
 plot(times_h,positions); 
 hold on;  
 plot(times_h,positions_av);  
 hold off;  
 grid on; 
 title('cumulated time vs hand-off positions'); 
 legend('real behavior','average behavior') 
 xlabel('cumulated time (h)'); 
 ylabel('hand-off positions (max length = 1)'); 
!
 % creates the two plots that show the time between two consecutive hand-offs 
 % over time 
 figure; 
 subplot(2,1,1); 
 plot(times_h,vett_t); 
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 hold on; 
 plot(times_h,vett_t_av); 
 hold off; 
 grid on; 
 title('cumulated time vs time between hand-off'); 
 legend('real behavior','average behavior') 
 xlabel('cumulated time (h)'); 
 ylabel('time between hand-off (s)'); 
 subplot(2,1,2); 
 plot(steps,vett_t); 
 hold on; 
 plot(steps,vett_t_av); 
 hold off; 
 grid on; 
 title('steps vs time between hand-off'); 
 legend('real behavior','average behavior') 
 xlabel('steps'); 
 ylabel('time between hand-off (s)'); 
!
 %creates the plot of the speeds over time 
 figure; 
 subplot(3,1,2); 
 plot(times_h,speeds1,'r'); 
 grid on; 
 title('speed of the first picker over time'); 
 xlabel('time (h)'); 
 ylabel('speed v1 (aisle/s)'); 
 subplot(3,1,3); 
 plot(times_h,speeds2,'g'); 
 grid on; 
 title('speed of the second picker over time'); 
 xlabel('time (h)'); 
 ylabel('speed v2 (aisle/s)'); 
 subplot(3,1,1); 
 plot(times_h,speeds1,'r'); 
 hold on; 
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 plot(times_h,speeds2,'g'); 
 hold off; 
 grid on; 
 title('speed of the two pickers over time'); 
 xlabel('time (h)'); 
 ylabel('speed (aisle/s)'); 
 legend('v1','v2'); 
  
 fprintf('the starting data are: x1=%0.4f, x2=%0.4f, v1=%0.4f, v2=%0.4f 
\n',x_0(1,1),x_0(1,2),v_0(1,1),v_0(1,2)); 
!
end 
!
!
!
C.3 “continuous_function_mu.m” 

Function that solves the problem of a two pickers bucket brigade considering the 
speed of the pickers decreasing exponentially both between two consecutive 
hand-offs and in general over time (this is what happens exactly in reality; this 
code gives the perfect results). 
!
function [] = continuous_function_mu(x_0,v_0,mu1,mu2) 
% Bucket brigade with 2 operators 
%   The program solves the problem of a two operators bucket brigade system 
%   when the speed of the operators decreases exponentially during time 
!
%starting data 
l=1; %normalized length of aisle 
t=0; 
t_0=0; 
x1=x_0(1,1); 
x2=x_0(1,2); 
v1=v_0(1,1); 
v2=v_0(1,2); 
fprintf('the starting data are: x1=%0.4f, x2=%0.4f, v1=%0.4f, v2=%0.4f 
\n',x_0(1,1),x_0(1,2),v_0(1,1),v_0(1,2)); 
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!
ws_h=8; 
ws_s=ws_h*3600; 
!
%initialization of data 
steps=[]; 
vett_t=[]; 
positions=[]; 
times=[]; 
positions_av=[]; 
times_h_av=[]; 
t_tot=0; 
t_tot_prec=0; 
i=0; 
!
%while cycle that calculates what happens step by step 
while t_tot<ws_s 
     
    i=i+1; 
     
    t_tot=(log(((-(1-x2)*mu2)/v_0(1,2))+exp(-mu2*t_tot_prec)))/-mu2; 
    x2=x1-v_0(1,1)/mu1*(exp(-mu1*t_tot)-exp(-mu1*t_tot_prec)); 
    x1=0; 
     
    t=t_tot-t_tot_prec; 
    t_tot_prec=t_tot; 
     
    %creation of the vectors that we need to create the plots 
    steps(i,:)=i; 
     
    positions(i,:)=x2; 
    vett_t_tot(i,:)=t_tot; 
    vett_t(i,:)=t; 
    t_tot=sum(vett_t); 
    times(i,:)=t_tot; 
    times_h(i,:)=t_tot/3600; 
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    speeds1(i,:)=v1*exp(-mu1*t_tot); 
    speeds2(i,:)=v2*exp(-mu2*t_tot); 
     
    x_av=(v_0(1,1)*exp(-mu1*t_tot))/(v_0(1,1)*exp(-mu1*t_tot)+v_0(1,2)*exp(-

mu2*t_tot)); 
    t_av=1/(v_0(1,1)*exp(-mu1*t_tot)+v_0(1,2)*exp(-mu2*t_tot)); 
     
    positions_av(i,:)=x_av; 
    vett_t_av(i,:)=t_av; 
     
    fprintf('iteration number %0.0d gives as results t=%0.5f, x1=%0.5f, x2=%0.5f 

\n',i,t,x1,x2) 
     
end 
!
t_tot_h=t_tot/3600; 
!
fprintf('in %0.0f hours there are %0.0d iterations \n',t_tot_h,i) 
!
 %creates the plot that shows the position of hand-offs over time 
 figure; 
 plot(times_h,positions); 
 hold on;  
 plot(times_h,positions_av);  
 hold off;  
 grid on; 
 title('times vs hand-off positions'); 
 legend('real behavior','average behavior') 
 xlabel('cumulated time (h)'); 
 ylabel('hand-off positions (max length = 1)'); 
  
 % creates the two plots that show the time between two consecutive hand-offs 
 % over time 
 figure; 
 subplot(2,1,1); 
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 plot(times_h,vett_t); 
 hold on; 
 plot(times_h,vett_t_av); 
 hold off; 
 grid on; 
 title('cumulated time vs time between hand-off'); 
 legend('real behavior','average behavior') 
 xlabel('cumulated time (h)'); 
 ylabel('time between hand-off (s)'); 
 subplot(2,1,2); 
 plot(steps,vett_t); 
 hold on; 
 plot(steps,vett_t_av); 
 hold off; 
 grid on; 
 title('steps vs time between hand-off'); 
 legend('real behavior','average behavior') 
 xlabel('steps'); 
 ylabel('time between hand-off (s)'); 
  
 %creates the plot of the speeds over time 
 figure; 
 subplot(3,1,2); 
 plot(times_h,speeds1,'r'); 
 grid on; 
 title('speed of the first picker over time'); 
 xlabel('time (h)'); 
 ylabel('speed v1 (aisle/s)'); 
 subplot(3,1,3); 
 plot(times_h,speeds2,'g'); 
 grid on; 
 title('speed of the second picker over time'); 
 xlabel('time (h)'); 
 ylabel('speed v2 (aisle/s)'); 
 subplot(3,1,1); 
 plot(times_h,speeds1,'r'); 
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 hold on; 
 plot(times_h,speeds2,'g'); 
 hold off; 
 grid on; 
 title('speed of the two pickers over time'); 
 xlabel('time (h)'); 
 ylabel('speed (aisle/s)'); 
 legend('v1','v2'); 
!
 fprintf('the starting data are: x1=%0.4f, x2=%0.4f, v1=%0.4f, v2=%0.4f  
\n',x_0(1,1),x_0(1,2),v_0(1,1),v_0(1,2)); 
!
end 
!
NB: this code does not work if µ1 = 0 or/and µ2 = 0, because of the mathematics 
of the system. In this case, the results can be obtained with code C.2. In fact, if µ1 

= 0 and µ2 = 0, it means that the speeds are constant during the whole work shift, 
so, as a consequence, they are constant also inside the intervals between two 
consecutive hand offs: that is exactly the idea that we used to build code C.2. 

!
!
!
!
!
!
!
!
!
!
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