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Introduction

This thesis is a mathematical journey from the Pell’s equation to Gross–Stark units, centered
around the theme of the relationship between leading terms of L-series, and algebraic units.

Our story begins with Pell’s equation, and two methods to solve it. In particular, we will focus
on the study the fundamental solution of a real quadratic number field k. Then we will move to
a general abelian extension of number fields K/k by stating the Stark conjecture. To conclude we
will discuss the p-adic analogue of the Stark conjecture, namely the Gross–Stark conjecture. We
will state the conjecture for k a real quadratic number field and K its narrow Hilbert class field.
We will define the Gross–Stark unit, and compute an explicit example.

In the first chapter, we will focus on the Pell’s equation which is a diophantine equation of the
form x2 = dy2 + 1 where d is positive integer. This equation is of great interest in the history of
mathematics; one of the oldest examples is the cattle problem of Archimedes (287-212 B.C.). This
equation mistakenly takes is name after the English mathematician John Pell (1611-1685), since
Euler (1707-1783) attributed to him a solution method that had been found instead by the English
mathematician William Brouncker (1620-1684) in response to a challenge by Fermat (1601-1665).
The solution of this equation has been the subject of many studies. Finding the fundamental
solution to Pell’s equation comes down to finding the fundamental unit ε of norm 1 of the number
ring Z[

√
d], by using Dirichlet’s unit theorem. We will present the continued fraction method

and Dirichlet’s method using L-functions. The first method is based on the continued fraction
expansion of

√
d. We will first define continued fractions and the associated N -convergent CN and

use it to solve some examples of Pell equations. From these examples we will also observe that the
size of the fundamental unit is quite unpredictable. The second method was found by Dirichlet
and involves special values of L-functions. Specifically, we will consider the L-function

L(t, χD) =
∞

∑
n=1

χD(n)n
−t

where D > 0 is the discriminant of Q[
√
d]; which converges for R(t) > 0. We will see that the

logarithm of the fundamental unit is closely related to the value of L(1, χD), which leads to the
expression:

ε2h =
D

∏
m=1

(1 − e2iπm/D)χ(m).

The continued fraction method is much more efficient in practice, while the approach via L-
functions leads to the generalization found in the Stark and the Gross–Stark conjecture, which are
the other two chapters of this thesis.

The second chapter will be focused on the rank one abelian Stark conjecture. In general the
rank of the unit group can be arbitrarily large and the unit group is not easily reconstructed from
the regulator. To remedy this, Stark refined the Dirichlet class number formula, by breaking up
the unit group O×K into ‘pieces’. We will first present the Stark conjecture which says that if K/k
is an abelian Galois extension and the partial zeta function ζK,S(s, σ) vanishes to order 1 then
there is a unit ε, the so-called "Stark unit", in K such that:

ζ ′K,S(0, σ) ∼ log ∣σ(ε)∣w.
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This conjecture is also connected to Hilbert’s twelfth problem. Hilbert asked for a systematic
construction of algebraic numbers that generate all finite abelian extensions of k, where k is a
general number field A.1 . We will define the objects which play a role in this conjecture, namely
the partial zeta function ζK,S , the characteristics of the set S and the related L-function LS(s,χ).
To conclude, we will state the rank one abelian Stark conjecture both in the general case and in
the case where K is the narrow Hilbert class field of k. We recall that the Stark conjecture has
been proved only for k = Q and for k an imaginary quadratic field, and it is still an open problem
in general. On the other hand, the p-adic counterpart, which is the Gross–Stark conjecture, was
proved by Darmon, Dasgupta and Pollack in 2011.

The last chapter will be focused on the Gross–Stark conjecture. We will first recall some of
the basics of p-adic analysis by defining continuous and analytic functions on Zp and by recalling
Hensel’s lemma. We will focus then on the p-adic L-function associated to an odd character:

χ ∶ Cl+k Ð→ Q
×

p

where k is a real quadratic field. Deligne and Ribet proved the existence of a p-adic L-function
Lp(s,χ) in Zp[[s]], satisfying the interpolation property:

Lp(n,χ) = (1 − p
−2n)L(n,χ) ∀n ∈ Z, n ≤ 0 and (p − 1)∣n.

We assume that L(0, χ) ≠ 0, hence ords=0Lp(s,χ) = 1. There are two different methods in order
to compute the quantity L′p(s,χ). The first method uses the approach of T. Shintani and was
developed by Roblot. The second method uses the diagonal restriction of Hilbert Eisenstein series
and it was developed by J.Vonk and A. Lauder. We will discuss this last one and we will compute
some examples. Then we discuss the p-adic Gross–Stark conjecture, applied to the case where K
is the narrow Hilbert class field of k, which predicts that

L′p(0, χ) ∼ logp(u)

for a p-unit u in K. We will compute a concrete example.
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Chapter 1

Two approaches to Pell’s equation

In this chapter we introduce Pell’s equation x2 = dy2 + 1 where d is a positive integer. We dedicate
a section to a brief historical treatment since this equation has an incredibly rich history and it
seems that it first appeared in poem of Archimedes (287-212 B.C.). We will show subsequently
that finding a fundamental solution to the Pell’s equation comes down to find a fundamental unit
ε of norm 1 of the number ring Z[

√
d]. After that, we will focus on two methods to find and

compute the fundamental unit. The first method uses the continued fraction expansion of
√
d, and

we will compute some examples. The second method is due to Dirichlet and it involves special
values of L-functions. We will prove that given the L-function L(t, χD) where χD is the quadratic
Dirichlet character associated to Z[

√
d] and h is its class number, we obtain the following relation

with the logarithm of the fundamental unit: log(ε) = L(1, χD)
√
D/2h. Dirichlet computed the

value of L(1, χD) and found that

ε2h =
D

∏
m=1

(1 − e2iπm/D)χ(m).

We will end this section with a proof of this result. To conclude, we will observe that this method
hinges on the fact that the rank of the unit group is equal to one, so that we can recover a
fundamental unit from the regulator. This is not possible in general number fields. A conjectural
refinement of Dirichlet’s method will be the main aim of the second chapter.

1.1 Pell’s equation
Definition 1.1. A Pell’s equation is a diophantine equation of the form:

x2 = dy2 + 1

where d is a positive non-square integer and the solutions are taken to be two positive integers.

The case where d is a square may be excluded, since the only squares which differ by 1 are
0 and 1. We find that d = 1, x2 = 1 and y2 = 0, and so, the only possible solutions are (x, y) = (±1,0).

Definition 1.2. A negative Pell’s equation is a diophantine equation of the form:

x2 = dy2 − 1

where d is a positive non-square integer and the solutions are taken to be two positive integers.

1.1.1 History of Pell’s equation
This equation is named after the English mathematician John Pell (1611-1685) since Euler (1707-
1783) mistakenly attributed to him a solution method that had been found by the English math-
ematician, William Brouncker (1620-1684), in response to a challenge by Fermat (1601-1665).

1



2 CHAPTER 1. TWO APPROACHES TO PELL’S EQUATION

The history of Pell’s equation is very interesting. It seems that the method of Brouncker is
very similar to a method that was known to Indian mathematicians at least six centuries earlier,
while the existence of the equation was already known to Greek mathematicians, even if there is
no evidence that they could solve it. A thorough discussion can be found in "Number theory: an
approach through history" of A. Weil [AWe84] and an explanation of the method can be found in
Euler’s Algebra [Eul70]. The only certainty is that if there was a solution then the method would
have found it, however, Euler took for granted that the method always found a solution. One of
the earliest proofs of the method for every d was probably found by Fermat, and Lagrange was the
first who published it in his paper [Gra73].

One of the oldest examples of Pell’s equation is given by the cattle problem of Archimedes
(287-212 B.C.). The famous Greek mathematician issued a challenge to the Alexandrian math-
ematicians, headed by Eratosthenes. The problem was written in elegiac distichs and may be
summarised as follows:

"The sun god had a herd of cattle consisting of bulls and cows, one part of which was white, a
second black, a third spotted, and a fourth brown. Among the bulls, the number of white ones was
one half plus one third the number of the black greater than the brown; the number of the black,
one quarter plus one fifth the number of the spotted greater than the brown; the number of the
spotted, one sixth and one seventh the number of the white greater than the brown. Among the

cows, the number of white ones was one third plus one quarter of the total black cattle; the
number of the black, one quarter plus one fifth the total of the spotted cattle; the number of

spotted, one fifth plus one sixth the total of the brown cattle; the number of the brown, one sixth
plus one seventh the total of the white cattle. What was the composition of the herd?"

In addition, the last 14 lines of the poem impose the additional constraints that:

"[. . . ]the white and black bulls together form a square and that the brown and spotted bulls
together form a triangle."

We can observe that if we indicate with x, y, z, t the numbers of white, black, spotted, and brown
bulls we obtain the following relations from the text.

x = (
1

2
+
1

3
) y + t, y = (

1

4
+
1

5
) z + t z = (

1

6
+
1

7
)x + t.

While if we indicate with x′, y′, z′, t′ the number of cows of the same respective colors, we obtain
that:

x′ = (
1

3
+
1

4
) (y + y′), y′ = (

1

4
+
1

5
) (z + z′), z′ = (

1

5
+
1

6
) (t + t′), z′ = (

1

6
+
1

7
) (x + x′),

In addition, x + y must be a square and z + t must be a triangular number. One the one hand the
general solution of the equations of the bulls is given by:

(x, y, z, t) =m ⋅ (2226; 1602; 1580; 891)

and the equations of the cows are solvable if and only if m is divisible by 4657. As a consequence,
if we write m = 4657 ⋅ k we obtain that

(x′, y′, z′, t′) = k ⋅ (7206360; 4893246; 3515820; 5439213).

What it is challenging now is to find a k s.t.

x + y = 4657 ⋅ 3828 ⋅ k

is a square and
z + t = 4657 ⋅ 2471 ⋅ k

is a triangular number. From the prime decomposition we obtain that

k = αl2,
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where α, l are integers and α = 3 ⋅11 ⋅29 ⋅4657. From the triangular condition we obtain the following
equation:

h2 = 8(z + t) + 1 = 8 ⋅ 4657 ⋅ 2471 ⋅ αl2 + 1

Observe that this is a Pell equation. Throughout the 19th century, many mathematicians at-
tempted to obtain reasonable solutions. The first to solve the cattle problem satisfactorily was
A. Amthor in 1880 [KA80] even if he didn’t apply the continued fraction method that we will
present in the next section. He showed that, in the smallest solution to the cattle problem, the
total number of cattle is given by a number of 206545 digits. Written out in full, this huge number
would occupy forty-seven pages of computer printout!

1.1.2 Initial properties
Let us consider the following Pell’s equation with d non-square positive integer:

x2 = dy2 + 1.

We can rewrite the equation in the following way:

(x +
√
dy)(x −

√
dy) = 1.

We can observe that x +
√
dy and x −

√
dy are units of Z[

√
d]. As a consequence, we can see that

finding a solution of Pell’s equation comes down to finding a non-trivial unit of the ring Z[
√
d] of

norm one. This implies that once we have found a solution to Pell’s equation we can actually find
infinitely many solutions to it. If we write x1 +

√
dy1 for the smallest possible solution (x1, y1) and

call it the fundamental solution of Pell’s equation, we obtain more solutions (xn, yn) by:

xn +
√
dyn = (x1 +

√
dy1)

n.

Remark 1.1.1. This result could be seen as an application of Dirichlet’s unit theorem A.2.2 if we
set K = Q[

√
d]. For a real quadratic field we have that µK = ±1 and there are only two embedding

σ1, σ2 of Q[
√
d] in C and they are both real:

id = σ1 ∶
√
d z→

√
d,

σ2 ∶
√
d z→ −

√
d.

Therefore r = 2, s = 0 and r + s − 1 = 1. This means that:

O×K = {±1} × ⟨εk⟩

We call εk the fundamental unit of K.

We will study step by step all the possible cases for d.

First of all, let us suppose that d ≡ 2,3 (mod 4), K = Q[
√
d] and then OK = Z[

√
d]. From

Dirichlet’s unit theorem A.2.2 applied to real quadratic case we have that there is, up to sign,
a unique fundamental unit, which we indicate with εK , which generates the group of units of
Z[
√
d]. As a consequence, once we have found εK , we have found the fundamental solution of the

associated Pell’s equation. Moreover, since εK is the generator of the unit group, we can obtain
all the other solutions by raising it to all positive powers.

Let us suppose now that d ≡ 1 (mod 4), K = Q[
√
d] and then OK = Z[ 1+

√
d

2
]. There exists

a unique fundamental unit εK but εK ∈ Z[ 1+
√
d

2
] and not Z[

√
d]. This will lead us to some

observations.
First of all, we have that:

εK =
1

2
x +

√
d

2
y, x, y ∈ Z.

Since εk is a unit, it has to have unitary norm. This means:

εKεK = (
1

2
x +

√
d

2
y)(

1

2
x −

√
d

2
y) =

1

4
(x2 − dy2) = ±1.
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Which implies that:
x2 − dy2 = 4, or x2 − dy2 = −4

We can refer to the first equation by calling it the 4-Pell’s equation and to the second by calling it
the negative 4-Pell’s equation.

Remark 1.1.2. We can observe that if we find a solution to a usual Pell’s equation, we can
always obtain a solution to the 4-Pell’s equation by multiplying by 2 the two components of the
first solution.

Let us x, y ∈ Z be such that x +
√
dy is a solution of the Pell’s equation:

x2 + dy2 = 1.

Then if we multiply both x, y by 2, we obtain:

(2x)2 + d(2y)2 = 4x2 + 4dy2 = 4(x2 + dy2) = 4,

therefore, 2x + 2
√
dy is a solution of the 4-Pell equation.

On the other hand, the converse is not true, since the components of εK may be half-integers.
Firstly, we define R ∶= Z[

√
d] ⊂ Z[d+

√
d

2
]. In this case, in order to find the integer solutions to the

Pell’s equation, we have to raise εK to the minimal integer power j such that εjK ∈ Z[
√
d].

We can see that εR ∶= εjK is a unit since it is a power of a unit; it belongs to Z[
√
d] by

construction and it is the smallest possible unit since we have taken the smallest power of εK . As
a consequence, εR is the fundamental unit of Z[

√
d].

Example 1.1. Let us consider the case where d = 5. We have K = Q[
√
5] and OK = Z[ 1+

√
5

2
].

First of all, we can observe that α ∶= 1+
√
5

2
is a unit, since:

αα =
1 +
√
5

2
⋅
1 −
√
5

2
= −1.

Observe that the component of α: x = 1, y = 1, they satisfy the Negative 4-Pell’s equation :

(1 +
√
5)(1 −

√
5) = −4.

However, α /∈ R ∶= Z[
√
5]. To find the solutions of the Negative Pell’s equation we raise α to the

minimal power such that it will belongs to Z[
√
5].

α2 =
1

2
(3 +
√
5) /∈ Z[

√
5]

α3 = 2 +
√
5 ∈ Z[

√
d].

Therefore, the components of α3 = 2+
√
5 are solutions of the Negative Pell’s equation. As a matter

of facts:
22 − 5 ⋅ 1 = 4 − 5 = −1.

Now we want to find the fundamental unit of O×K . With a method that we will describe later, we
will obtain that:

εK =
3

2
+
1

2

√
5.

On one hand, we can observe that the components of εK , x = 3, y = 1 satisfy the 4-Pell’s equation:

x2 − 5y2 = 9 − 5 = 4.

On the other hand, in order to find the fundamental unit of R, we raise εK to powers until we find
an element of R. We can see that:

ε2K =
1

2
(7 + 3

√
5) /∈ Z[

√
5]

ε3K = 9 + 4
√
5 ∈ Z[

√
5].

As a consequence, we have found that εR = ε3K is the fundamental unit of the group of units of
Z[
√
5].
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The last case that we have to study is when d is not squarefree. In this case, we can write

d = f2d′,

where d′ is square free. Hence if x, y solve the Pell’s equation for d, then x, f ⋅ y solve the Pell’s
equation for d′ and x + fy

√
d′ will be equal for some n to the n-th solution x′n, y

′
n of the Pell’s

equation for d′:
x + fy

√
d′ = (x′1 + y

′
1

√
d′)n.

Therefore, in order to find the fundamental solution to the Pell’s equation for d, we have to compute
two steps. First of all, we have to solve the Pell’s equation for d′, then we have to find the least
value of n for which y′n is divisible by f . The n-th power of the fundamental solution of the Pell’s
equation for d′ is the fundamental solution of the Pell’s equation for d, and we can find infinitely
many solutions by raising it to the powers.

Example 1.2. Let us consider the case where d = 45. We can write d = 32 ⋅ 5. First of all, we
solve the Pell’s equation for 5. We already know that the fundamental solution of this equation is
9 + 4
√
5. Since, 3 ∤ 4, we have to find the least value of n such that y′n is divisible by 3.

We compute:
(9 + 4

√
4)2 = 161 + 72

√
5,

and observe that 3 ∣ 72. As a consequence, we find the least value of n, and we have that 161+72
√
5

is the fundamental solution of the Pell’s equation for d = 45.

Ultimately, in this section, we have seen an important result namely once we find the funda-
mental unit of norm 1 of the ring of integer Z[

√
d] we have found the fundamental solution to

the Pell’s equation for d and we can obtain infinitely many other solutions of it by raising the
fundamental solution to powers.

1.2 Continued fraction method

In this section, we will introduce the continued fraction expression and the associated method to
solve the Pell’s equation. We will show that, given a certain d, which refers to the Pell’s equation
x2 = dy2 + 1, we can obtain important information by looking at the continued fraction expression
of
√
d. As a matter of fact, if the period length of its continued fraction expression is even, we will

truncate the continued fraction at the end of the first period. We will calculate the N -convergent
CN and CN = x1

y1
where x1 and y1 are such that x1 +

√
dy1 is the fundamental unit. On the other

hand, if the period length of the continued fraction expression of
√
d is odd, we will truncate the

continued fraction at the end of the second period. We will calculate the 2N -convergent C2N and
C2N =

x1

y1
. To conclude, we will compute some examples.

1.2.1 Continued fraction expression

A continued fraction is an expression obtained through an iterative process of representing a number
as the sum of its integer part and the reciprocal of another number, then writing this other number
as the sum of its integer part and another reciprocal, and so on.

Definition 1.3 (Continued fraction expansion). An expression of the form:

a0 +
b0

a1 +
b1

a2+
b2

a3+
b3
...

.

is said to be a continued fraction. The values of a1, a2, a3, . . . and b1, b2, b3, . . . can be either real
or complex values. There can be either an infinite or a finite number of terms.
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A continued fraction can be created from any number n by using the following recursive algo-
rithm:

ai = ⌊ni⌋

ni =
1

ni − ai
.

where n0 = n. The sequence of ai’s are the terms of the continued fraction.
The continued fraction expressions which we will use are called simple continued fractions.

Definition 1.4 (Simple continued fraction). A simple continued fraction is a continued fraction
in which the value of bn = 1 for all n.

a0 +
1

a1 +
1

a2+
1

a3+
1
...

.

The value of an is a positive integer for all n ≥ 1, while a0 can be any integer value, including 0.
We will represent the fraction in this way:

[a0;a1, a2, a3, . . . ].

The terms of a simple continued fraction refer to the values of ai, i ≥ 0 and we can also call
them partial quotients. For example, a4 is the fifth term, since we are starting from a0.

Definition 1.5 (Finite and infinite simple continued fraction). A finite simple continued fraction
is a simple continued fraction with only a finite number of terms. An infinite simple continued
fraction is a simple continued fraction with an infinite number of terms.

Definition 1.6 (k-Convergent). The continued fraction [a0;a1, a2, . . . , ak−1] where k is a non-
negative integer less than or equal to n is called the k-th convergent of the continued fraction
[a0;a1, a2, . . . , an]. The k-th convergent is denoted by Ck.

Example 1.3. Given the continued fraction:

1 +
1

2 + 1
3

.

We can write it as: [1; 2,3].
Then:

C1 = 1;

C2 = 1 +
1

2
=
3

2

C3 = 1 +
1
7
3

= 1 +
3

7
=
10

7
.

Definition 1.7 (Periodic continued fraction ). The infinite simple continued fraction [a0;a1, a2, . . . ]
is said to be periodic if there is a positive integer N such that an = an+N for all sufficiently large
n. We represent this continued fraction in this way:

[a0; (a1, a2, . . . , aN)
∗].

We say that this continued fraction has period length equal to N .

Proposition 1.2.1. We have the following properties:

1. The continued fraction representation for a rational number is finite and only rational num-
bers have finite representations.

2. The continued fraction representation of an irrational number is unique.
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1.2.2 Resolution of Pell’s equation
In this section, we will show how to use the continued fraction expression to solve Pell’s equation
for a given d.

Let us suppose that the period length N of the continued fraction expression of
√
d is even. In

this case, we truncate the continued fraction expression of
√
d at the end of the first period. Then

we calculate the corresponding convergent CN . The numerator of CN is x1 while the denominator
of CN is y1. Hence we have found the fundamental solution of the Pell’s equation for d.

Example 1.4. Let us consider d = 14. The continued fraction expansion of
√
14 is [3; (1,2,1,6)∗].

The period is (1,2,1,6) and has length 4, which is even. We compute C4 which is the computation
of [3; 1,2,1] ∶

3 +
1

1 + 1
2+ 1

1
1

=
15

4
.

Therefore, the fundamental solution of Pell’s equation for d = 14 is 15 + 4
√
14.

Example 1.5. Let us consider d = 28. The continued fraction expansion of
√
28 is [5; (3,2,3,10)∗].

The period is (3,2,3,10) and has length 4, which is even. We compute C4 which is the computation
of [5; 3,2,3] ∶

5 +
1

3 + 1
2+ 1

3
1

=
127

24
.

Therefore, the fundamental solution of Pell’s equation for d = 28 is 127 + 24
√
28 = 127 + 48

√
28.

Example 1.6. Let us consider d = 71. The continued fraction expansion of
√
71 is [8; (2,2,1,7,1,2,2,16)∗].

The period is (2,2,1,7,1,2,2,16) and has length 8, which is even. We compute C8 which is the
computation of [8; 2,2,1,7,1,2,2] ∶

8 +
1

2 + 1
2+ 1

1+ 1
7+ 1

1+ 1
2+ 1

2
1

=
3480

413
.

Therefore, the fundamental solution of Pell’s equation for d = 71 is 3480 + 413
√
71.

Let us suppose now that the period length N is odd. In this case, we truncate the continued
fraction expression of

√
d at the end of the second period. Then we calculate the correspondent

convergent C2N . The numerator of C2N is x1 while the denominator of C2N is y1. Hence we have
found the fundamental solution of the Pell’s equation for d.

Example 1.7. Let us consider d = 5. The continued fraction expansion of
√
5 is [2; (4)∗]. The

period is (4) and has length 1, which is odd. We compute C2 which is the computation of [2; 4] ∶

2 +
1
4
1

=
9

4
.

Therefore, the fundamental solution of the Pell’s equation for 5 is 9+4
√
5. This is the same solution

that we have obtained in the Example 1.1.

Example 1.8. Let us consider d = 13. The continued fraction expansion of
√
13 is [3; (1,1,1,1,6)∗].

The period is (1,1,1,1,6) and has length 5, which is odd. We compute C10 which is the compu-
tation of [3; 1,1,1,1,6,1,1,1,1] ∶

3 +
1

1 + 1
1+ 1

1+ 1
1+ 1

6+ 1
1+ 1

1+ 1
1+ 1

1

=
649

180
.

Therefore, the fundamental solution of the Pell’s equation for 13 is 649 + 180
√
13.
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Example 1.9. Let us consider d = 313. The continued fraction expansion of
√
313 is

[17; (1,2,4,11,1,1,3,2,2,3,1,1,11,4,2,1,34)∗].

The period is (1,2,4,11,1,1,3,2,2,3,1,1,11,4,2,1,34) and has length 17, which is odd. We com-
pute C34 and we obtain:

32188120829134849

1819380158564160
.

Therefore, the fundamental solution of the Pell’s equation for 313 is:

32188120829134849 + 1819380158564160
√
313.

Remark 1.2.2. Observe that the size of the fundamental unit is quite unpredictable. We can
see, indeed, that the fundamental unit of the Pell’s equation for d = 14 which is 15+ 4

√
14 is much

smaller than the fundamental unit of the Pell’s equation for d = 13 which is 649 + 180
√
13.

To conclude in this section we have shown the first method which we can use in order to solve
the Pell’s equation. This method uses basic concepts of algebraic number theory and it is the most
common and efficient method used so far to compute solutions of the Pell’s equation. We will see
another method, which will involve more analytic number theory, in the next section.

1.3 Dirichlet’s method using L-functions

A different method was discovered by Dirichlet, and involves special values of L-functions. Specif-
ically, we will consider the L-function

L(t, χD) =
∞

∑
n=1

χD(n)n
−t

which converges for R(t) > 0. As we will see, log(εK) is very closely related to L(1, χD), so that
the fundamental unit εK may be recovered by exponentiation. Dirichlet furthermore made this
special value explicit, which leads to the expression

ε2hK =
D

∏
m=1

(1 − e2iπm/D)χ(m),

in terms of so-called circular units. We observe that this method is less efficient in practice than
the continued fraction method, but it lends itself more easily to generalization, as we will explore
in our discussion of the Stark and Gross–Stark conjectures.

1.3.1 The class number formula

As before, we let K be a number field. We define its Dedekind zeta function by

ζK(t) = ∑
I≠0

Norm(I)−t where R(t) > 1,

where the sum ranges over non-zero integral ideals I in OK . For quadratic number fields K, the
Dedekind zeta function relates to the Dirichlet L-function of the quadratic character χD according
to the following theorem.

Theorem 1.3.1. Let K/Q be a quadratic number field, then

ζK(t) = ζ(t) ⋅L(t, χD), (1.1)

where ζ(t) is the Riemann zeta function, and χD is the quadratic Dirichlet character of conductor
D, the discriminant of K.
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In order to prove this theorem, we make a study of prime decomposition in OK . The basics
are reviewed in Appendix A.3. We begin by determining how many ideals have norm equal to a
given prime p. Note that the value χD(p) depends on the behaviour of the ideal (p) in the ring of
integers OK :

χD(p) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, if p is ramified
1, if p split
−1. if p is inert

(1.2)

Any ideal of OK of norm p is a prime above p. We observe that if p is inert in K then there are
no ideals q in OK which have norm p, since pOK is prime also in OK , hence it has norm p2. If p
splits in K, we have two ideals in OK of norm p, and these are the two prime ideals p1,p2 that
lie over p. Finally, if p is ramified in K, we have just one ideal of OK which has norm p since
Norm(p2) = Norm(p) = p2. In summary, we proved the following proposition:

Proposition 1.3.2. The number of ideals of OK of norm p, with p prime, is given by:

#{q�OK ∣ Norm(q) = p} = 1 + χD(p), (1.3)

In order to prove Theorem 1.3.1, observe that

ζK(t) = ∑
I≠0

Norm(I)−t (1.4)

= ∏
p prime in K

(1 −Norm(p)−t)−1 = (1.5)

= ∏
p prime in Q

( ∏
p prime
p∩Z=(p)

(1 −Norm(p)−t)−1) (1.6)

On the other hand,

ζ(t)L(t, χD) = ∏
p prime in Q

(1 − p−t)−1(1 − χD(p)p
−t)−1 = (1.7)

= ∏
p prime in Q

(1 − (1 + χD(p))p
−t + χD(p)p

−2t)−1. (1.8)

To prove the identity (1.1), it now suffices to prove that for each prime p, the corresponding factors
in (1.6) and (1.8) are equal, which can be checked case by case:

1. Suppose first that p is inert, then its corresponding factor in (1.6) is equal to (1− p2t)−1. On
the other hand, using (1.2), we have that χD(p) = −1 and the factor in (1.8) is equal to:

(1 − (1 + χD(p))p
−t + χD(p)p

−2t)−1 = (1 − (1 − 1)p−t − 1p−2t)−1 = (1 − p−2t)−1.

2. When p is split, its factor in (1.6) is equal to (1 − p−t)−1(1 − p−t)−1. On the other hand, we
have that χD(p) = 1 and the factor in (1.8) is equal to:

(1 − (1 + χD(p))p
−t + χD(p)p

−2t)−1 = (1 − (1 + 1)p−t + 1p−2t)−1

= (1 − 2p−t + p−2t)−1

= (1 − p−t)−1(1 − p−t)−1.

3. Finally, when p is ramified, it factor in (1.6) is equal to (1 − p−t)−1. On the other hand, we
have that χD(p) = 0 and (1.8) is equal to:

(1 − (1 + χD(p))p
−t + χD(p)p

−2t)−1 = (1 − (1 + 0)p−t + 0 ⋅ p−2t)−1 = (1 − p−t)−1.

The Dedekind zeta function of a number field K encodes several arithmetic invariants of K in
its residue at t = 1, as described by the Class number formula :

rest=1 ζK(t) =
2r(2π)shKRK

wK
√
D

. (1.9)
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When K = Q[
√
d] is a real quadratic field, we have r + s − 1 = 1 and the regulator is:

RK = det(log ∣σj(εi)∣)1≤i,j≤1 = det(log ∣σ1(ε1)∣) = log(εK),

where εK is a fundamental unit of O×K . In addition, the number wK of roots of unity in K is equal
to 2, since the roots of unity in Q[

√
d] are {±1}. Therefore (1.9) simplifies to:

rest=1 ζK(t) =
2hK log(εK)
√
D

. (1.10)

We apply the identity (1.1) and we obtain:

lim
t→1
(t − 1)(ζ(t)L(t, χD)) =

2hK log(εK)
√
D

(1.11)

Since the Riemann zeta function has a simple pole with residue 1 at t = 1 by (1.9), and the function
L(t, χD) is analytic t = 1, we obtain

L(1, χD) =
2hK log(εK)
√
D

. (1.12)

Hence:

log(εK) =
L(1, χD)

√
D

2hK
. (1.13)

Therefore, we can recover εK by exponentiating the right hand side. As a consequence, we can
find the fundamental solution of the Pell’s equation for d.

1.3.2 The functional equation for ζK

Alternatively, we may use the functional equation for ζK to obtain a similar analytic method for
computing a fundamental unit, using instead the first derivative of ζK at t = 0. This leads to sim-
pler expressions, and paves the way for the formulation of the Stark and Gross–Stark conjectures,
discussed in subsequent chapters.

The Dedekind zeta function satisfies the following functional equation:

Theorem 1.3.3. Let K be a number field of degree n with r real and 2s complex embeddings.
Then ζK can be extended to a holomorphic function on C ∖ {1}. The completed zeta function:

ZK(t) =
√
∣DK ∣

t
(Γ(t/2)π−t/2)r(Γ(t)(2π)−t)sζK(t). (1.14)

satisfies the functional equation ZK(t) = ZK(1 − t), where

Γ(t) = ∫
∞

0
xt−1e−xdx. (1.15)

We observe that we can rewrite the class number formula in terms of the behaviour of ζK(t)
at t = 0 by applying the functional equation. We obtain that ordt=0 ζK(t) = r + s − 1 and

lim
t→0

t−(r+s−1)ζK(t) = −
hKRK
wK

, (1.16)

For real quadratic fields K, we have ordt=0 ζK(t) = 1 and the equation (1.16) becomes:

ζ ′K(0) = ζ ′(0)L(0, χD) + ζ(0)L
′(0, χD)

= −
1

2
L′(0, χD)

= −
hK log(εK)

2
.

Therefore, we can obtain the fundamental unit εK by exponentiating the quantity L′(0, χD)/hK .
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1.3.3 Circular units method

We can make (1.13) more explicit, since the value of L(1, χD) can be made explicit. Dirichlet, in
his paper "Sur la manière de résoudre l’équation t2 − pu2 = 1 au moyen des fonctions circulaires"
[Dir80], obtained the following identity.

ε2hK =
D

∏
m=1

(1 − e2iπm/D)χD(m). (1.17)

Remark 1.3.4. The expressions on the right hand side of (1.17) are the simplest examples of
circular units. These in general give rise to a systematic collection of units in abelian extensions
of Q and are of fundamental importance in the classical theory of cyclotomic fields.

The primitive D-th root of unity e2iπ/D will henceforth be denoted by ζD ∶= e2iπ/D. We will now
describe the Dirichlet character in (1.17) more precisely. We recall the definition of the Kronecker
symbol.

Definition 1.8 (Kronecker symbol). Let n be a non-zero integer, with prime factorization:

n = u ⋅ ph1

1 ⋯p
hr
r ,

where u is a unit and the pi are primes. Let a be an integer.

The Kronecker symbol (
a

n
) is defined as:

(
a

n
) = (

a

u
)
r

∏
i=1

(
a

pi
)
hi

.

Where for odd primes pi, the number (
a

pi
) is the Legendre symbol, defined by

(
a

p
) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if a is a quadratic residue modulo p and a /≡ 0 (mod p),

−1 if a is a non- quadratic residue modulo p,
0 if a ≡ 0 (mod p).

When pi = 2, we define:

(
a

2
) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if a is even,
1 if a ≡ ±1 (mod 8),

−1 if a ≡ ±3 (mod 8).

The quantity (
a

u
) = 1 when u = 1, while:

(
a

−1
) =

⎧⎪⎪
⎨
⎪⎪⎩

−1 if a < 0,
1 if a ≥ 0.

Finally we put:

(
a

0
) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if a = ±1,
0 otherwise.

Proposition 1.3.5. Let χ be a primitive real Dirichlet character. Then χ(m) equals the Kronecker

symbol (
D

m
), where D is the discriminant of the quadratic field K corresponding to χ.

The last thing to prove in this section is the equality (1.17). The following theorem is proved
in [Was97, Theorem 4.9].
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Theorem 1.3.6. Let χ be a Dirichlet’s character with conductor fχ, then:

L(1, χ) = πi
τ(χ)

fχ

fχ

∑
a=1

χ(a)a if χ(−1) = −1. (1.18)

L(1, χ) = −
τ(χ)

fχ

fχ

∑
a=1

χ(a) log ∣1 − ζafχ ∣ if χ(−1) = 1. (1.19)

where τ(χ) is the Gauss sum defined by

τ(χ) =
fχ

∑
a=1

χ(a)e2πia/fχ .

Since we are working with an even character, we will focus on (1.19). Our character is real,
therefore χ = χ and its conductor is the discriminant D of the corresponding number field K. As
a consequence, (1.19) becomes:

L(1, χD) = −
τ(χD)

D

D

∑
a=1

χD(a) log ∣1 − ζ
a
D ∣. (1.20)

Since log(1 − ζaD) + log(1 − ζ
−a
D ) = 2 log ∣1 − ζ

a
D ∣ and χD is even, we can rewrite (1.20) as:

L(1, χD) = −
τ(χD)

D

D

∑
a=1

χD(a) log(1 − ζ
a
D). (1.21)

Let us focus now on τ(χD). It is proved in [Was97, Lemma 4.8] that

∣τ(χD)∣ =
√
D. (1.22)

We observe that, in our case, τ(χD) is real. Indeed, we calculate its conjugate τ(χD):

τ(χD) =
D

∑
a=1

χD(a)e
−2πia/D =

D

∑
a=1

χD(a)e
−2πia/D =

D

∑
a=1

χD(−a)e
2πi(−a)/D = τ(χd).

Therefore, τ(χD) = ±
√
D, and (1.21) becomes:

L(1, χD) =
±1
√
D

D

∑
a=1

χD(a) log(1 − ζ
a
D) (1.23)

Now, we susbstitute it in 1.13 and we obtain that:

log(εK) =
±1

2hK

D

∑
a=1

χD(a) log(1 − ζ
a
D), (1.24)

=
±1

2hK
log(

D

∏
a=1

(1 − ζaD)
χD(a)) (1.25)

and therefore (1.17) holds, up to a root of unity contained in K. Since ±1 are the only roots of
unity in K, the right hand side of (1.17) is equal to the 2hK-th power of a fundamental unit.

1.4 Conclusion
We discussed two methods to compute the fundamental unit of a real quadratic number field:

• The continued fraction method;

• Dirichlet’s method using L-functions.

It is important to note that the continued fraction method is vastly superior in practice. On the
other hand, we showed how equation (1.13) is the simplest non-trivial instance of the analytic class
number formula, valid for general number fields. The analytic approach via L-functions therefore
suggests the possibility of generalisation, and as we will see, it leads to deep conjectures in number
theory like the Stark conjecture and the Gross–Stark conjecture, which we discuss in the remainder
of this thesis.



Chapter 2

The rank one abelian Stark
conjecture

In this chapter, we will present the rank one abelian Stark conjecture. First of all, we will recall
the definitions of the objects which appear in the conjecture and we will state the conjecture in a
general way. Secondly, we will focus on a specific case that involve the narrow Hilbert class field.

2.1 Stark’s conjectures
In the previous chapter, we have seen how we can obtain a fundamental unit in the case where the
ground field is Q with two different methods.

In particular, we discussed the Dirichlet class number formula (1.9) for number fields K, which
by the functional equation implies that

ζK(t) = −
hKRK
wK

tr+s−1 +O(tr+s),

where we recall that hK and RK denote the class number and regulator of K respectively, and wK
denotes the number of roots of unity in K.

Remark 2.1.1. We have seen that if r + s − 1 = 1, we can replace the regulator RK with log(εK)
and we can obtain a fundamental unit as we have discussed in the previous chapter. However, for
general number fields, we have no possibility of easily recovering the unit group from the regulator
whenever the unit rank is greater than one.

To remedy this, Harold Mead Stark formulated a conjecture which gives a refinement of the
Dirichlet class number formula, by breaking up the unit group OK into ‘pieces’. The Stark con-
jectures, introduced by Stark [Sta71; Sta75a; Sta76; Sta80] and later expanded by Tate [Tat84],
give conjectural information about the coefficient of the leading term in the Taylor expansion of
an Artin L-function associated with a Galois extension K/k of algebraic number fields.

Moreover, in the case where K/k is an abelian extension, Stark has given a refined conjec-
ture which essentially states there exists a unit of K such that specific linear combinations of
its archimedean valuations give the values of the derivatives L′(0, χ), where χ is a character of
Gal(K/k). In certain cases, this “Stark unit” can be seen to generate K over k, and hence the
refined conjecture implies that K can be obtained from k by adjoining the value of a certain ana-
lytic function at zero. This is reminiscent of the celebrated Hilbert’s twelfth problem, which asks
whether one can generate all abelian extensions of a given algebraic number field in a way that
would generalize the so-called theorem of Kronecker and Weber to any base number field.

Theorem 2.1.2 (Kronecker-Weber theorem). Every finite abelian extension of the rational num-
bers Q is a subfield of a cyclotomic field. Hence, whenever an algebraic number field has a Galois
group over Q that is an abelian group, the field is a subfield of a field obtained by adjoining a root
of unity to the rational numbers.

13
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In particular, Hilbert asked what are the algebraic numbers necessary to construct all abelian
extensions of k, where k is a general number field. As Stark observed himself “a reference to
Hilbert’s 12th problem may not be completely inappropriate.” [Sta75b]. In fact, in cases where a
solution to Hilbert’s 12th problem is known, namely when k is either Q or a quadratic imaginary
field, Stark was able to prove his abelian conjecture. For these reasons, Stark’s conjectures remain
among the central open problems in number theory.

The case that we are going to study in this chapter is the abelian rank one Stark conjecture in
which the extension is abelian and the L-function vanishes to order one and this case leads to the
notion of a “Stark unit”. Namely, under certain technical assumptions, Stark predicts that there is
a unit ε in K such that:

ζ ′S(0, σ) ∼ log ∣σ(ε)∣ω,

where ζS(0, σ) is a the partial zeta function that we will introduce in the next section.

2.2 The partial zeta function
In this section, we will present the partial zeta function which will be a fundamental ingredient
for the rank one Stark conjecture that we will state in the next section. Firstly, we will give the
definition in the simplest case, and then we will move to a more general version which will be used
in the statement of the conjecture.

Let K/k be a finite abelian Galois extension and G = Gal(K/k). We can construct a map α
from the integral ideals of Ok and G defined in the following way:

α ∶ {Ideals of Ok} Ð→ G
a z→ [a]

by sending a prime ideal p to the Frobenius element [p], which is the unique element of G in the
decomposition group Dp defined in A.5 which reduces to the Frobenius morphism x ↦ xp in the
Galois group of the residue field extension at p. For a general ideal a, we factor it into prime ideals:

a = pe11 . . . perr ,

and sent it to the corresponding product of Frobenius elements:

a↦ [a] = [p1]
e1 . . . [pr]

er .

Now we can define the partial zeta function.

Definition 2.1 (The partial zeta function). Let K/k be a finite abelian Galois extension and
G = Gal(K/k). Then for every σ ∈ G we can define the partial zeta function for complex number
s with R(s) > 1:

ζS(s, σ) = ∑
a�Ok

[a]=σ

Norm(a)−s. (2.1)

namely we sum only over ideals of K whose class [a] is equal to σ.

More generally, we can define a version of the partial zeta function relative to a finite set of
places S in k, which we assume to minimally contain:

1. all Archimedean places

2. all places which ramify in K/k.

Definition 2.2 (S-Partial zeta function). To any element σ ∈ Gal(K/k), with K/k and S as
above, we associates the partial zeta function defined for a complex number s with R(s) > 1 by
the Dirichlet series:

ζS(s, σ) = ∑
(a,S)=1
σa=σ

Norm(a)−s. (2.2)
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where a runs through the integral ideals of k not divisible by any finite prime ideal contained in S
and such that the Artin symbol σa is equal to σ.

Moreover, with the same setup, we can also define an L- function.

Definition 2.3. Let K/k and S as above, we can associates an L-function to a character χ over
G defined for a complex number s with R(s) > 1 by the Euler product:

LS(s,χ) =∏
p/∈S

(1 − χ(p)Norm(p)−s)−1. (2.3)

where p runs through the finite prime ideals of k not contained in S.

Remark 2.2.1. Since G = Gal(K/k) is abelian, all of its irreducible representations are 1-
dimensional, so the character χ is a multiplicative homomorphism χ ∶ GÐ→ C×.

In order to have some information about the order of vanishing of this L-function we need the
following definition. If χ0 is the trivial character we set r(χ0) = ∣S ∣ − 1. Otherwise

r(χ) = ∣{v ∈ S ∶ χ(Dv) = 1}∣ (2.4)

where Dv is the decomposition group for v. The following theorem is proved in [Das99].

Theorem 2.2.2. The order of vanishing at s = 0 of the L-function LS(s,χ) is equal to r(χ).

In addition, we have the following relation between the partial zeta function and the L-function:

Proposition 2.2.3.
LS(s,χ) = ∑

σ∈G

ζS(s, σ)χ(σ). (2.5)

ζS(s, σ) =
1

∣G∣
∑
χ∈Ĝ

LS(s,χ)χ(σ). (2.6)

We can observe that both of these functions can be analytically continued to meromorphic
functions on the whole complex plane.

2.3 The rank one abelian Stark conjecture
In this section, we will state the rank one abelian Stark conjecture with a specific focus for K
the Hilbert Narrow class field of k. In addition, we will present an important remark which is
connected to the Hilbert 12th problem.

Let us consider K/k a finite abelian extension of number fields, with G = Gal(K/k) and let
us consider a finite set of places S in k, which minimally contains all Archimedean places and all
places which ramify in K, as before. We define the group of S-units in the following way.

Definition 2.4 (S-unit). An element x ∈K is an S-unit if the fractional ideal (x) is a product of
primes that lie above primes of S.

Remark 2.3.1. We can observe that asking that the fractional ideal (x) is a product of primes
lying above primes in S is the same as asking that the valuation of x is equal to 1 for all finite
primes of K not above S, i.e. ∣x∣w = 1 for all places w /∈ SK with w in K and where SK is the set
of places of K which lie above S.

Let us choose the set S such that it satisfies the following conditions:

1. S is finite set of places containing all Archimedean places and all places ramifying in K/k.

2. S contains at least one place v which splits completely in K.
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3. LS(s;χ) vanishes to order 1 at s = 0.

4. ∣S ∣ ≥ 2.

With these conditions on S, the rank one abelian conjecture takes the following form:

Conjecture 2.3.2 (Rank one abelian Stark conjecture). Choose a place w of K lying above the
place v of k that splits completely in K. Then there exists an S-unit ε such that:

1. If ∣S∣ ≥ 3 then ∣ε∣′w = 1 for all places w′ of K s.t. w′ doesn’t divide v in k.

2. If S = {v, v′} then ∣ε∣σ(w) = ∣ε∣w′ for all σ ∈ G and all places w′ of K dividing v′.

3. For every σ ∈ G we have:
log ∣σ(ε)∣w = −eζ

′
S(0, σ) (2.7)

where e is the number of roots of unity in K;
or equivalently:

L′S(0, χ) = −
1

e
∑
σ∈G

χ(σ) log ∣σ(ε)∣w (2.8)

for any character χ over G.

4. The extension K(ε1/e)/k is an abelian extension of k.

Any unit satisfying the conditions of this conjecture will be referred to as a Stark unit.

Remark 2.3.3. Condition 1 requires that ε is a v-unit, which is stronger than just asking that ε is
an S-unit. Indeed, the absolute value of ε is trivial not only in the places outside S but also in the
places of S which do not divide v, hence the only important information resides in the valuations
at the prime divisors of v.

Remark 2.3.4. In addition, since the conditions on ε specify its absolute value at every place of
K, we have that ε is uniquely determined up to multiplication by a root of unity in K.

Henceforth, k will be a real quadratic field, and we will focus on the case where K is the narrow
Hilbert class field of k. Since k is a real quadratic field, we have two embeddings in C namely
σ1 ∶ k Ð→ C and σ2 ∶ k Ð→ C and they are both real. In particular, if k = Q[

√
d] we have that

σ1(
√
d) =

√
d and σ2(

√
d) = −

√
d. We recall the Ostrowski’s theorem.

Theorem 2.3.5 (Ostrowski’s theorem). Let k be a number field. Then for every embedding σ ∶
k Ð→ C there will be an archimedian place denoted by ∣ ⋅ ∣σ ∶ k Ð→ R≥0.

Therefore, there are exactly two archimedean places of k namely ∞1 ∶= ∣ ⋅ ∣σ1 and ∞2 ∶= ∣ ⋅ ∣σ2 .

We recall the definition of a class group.

Definition 2.5 (Class group). The ideal class group of a number field k is the quotient group
Clk ∶= I(k)/P(k) where I(k) is the group of fractional ideals of Ok, and P(k) is its subgroup of
principal ideals.

Definition 2.6 (Hilbert class field). The Hilbert class field H of a number field k is the maximal
finite abelian extension that is unramified at all places of k. It is finite Galois extension of k, and
Gal(H/k) is isomorphic to the class group of k via the Artin map.

We can define also the narrow class group.

Definition 2.7 (Narrow class group). The narrow class group of a number field k is the quotient
group Cl+k ∶= I(k)/P(k)

+, where I(k) is the group of fractional ideals of Ok, and P(k)+ is its
subgroup of principal ideals generated by totally positive elements of k, that is an element a ∈ k
such that σ(a) > 0 for every real embedding σ ∶ k ↪ R.

We have the following proposition.



2.3. THE RANK ONE ABELIAN STARK CONJECTURE 17

Proposition 2.3.6. Let k be a real quadratic field. Then:

1. Clk = Cl
+
k if and only if there exists a unit in Ok of norm equal to −1.

2. otherwise Cl+k is twice as big as Clk, namely [Cl+k ∶ Clk] = 2.

Example 2.1. Let us consider k = Q(
√
3). We know that k is a PID, namely every ideal is

principal, hence Clk is trivial and hk = 1. On the other hand, we can observe that the equation:

Norm(u) = x2 − 3y2 = −1,

has no solution. This means, by the proposition, that [Cl+k ∶ ClK] = 2, hence Cl+k ≅ Z/2Z.

We recall the definition of the narrow Hilbert class field.

Definition 2.8 (Narrow Hilbert Class field). The narrow Hilbert Class field H+ of a number field
k is the maximal finite abelian extension of k that is unramified at all finite primes of k.

Remark 2.3.7. It is easy to prove that the narrow Hilbert class field of Q(
√
3) in example 2.1 is

H+ ∶= Q(
√
3,
√
−1) since it satisfies the previous conditions.

To conclude, we have the following relation.

Proposition 2.3.8. Let k be a number field and H+ its narrow Hilbert class field, then:

Gal(H+/k) ≅ Cl+k . (2.9)

As a consequence we have the following diagram:

k

H

H+

2 or 1

hk

Let us consider K as the narrow Hilbert Class field H+ of k.
Observe that if we consider K =H+, we do not have any information about the behaviour of the

two infinite places ∞1 and ∞2; they could be either real or complex. As a consequence, if we want
the set S to satisfy the conditions necessary for Stark’s conjecture, we may need to include finite
primes. Consider the set S = {∞1,∞2,p} where p is a finite prime of k which splits completely in
H+/k. Note that the set S now satisfies ∣S ∣ = 3; it contains all the archimedean places of k, there
are no finite places which ramify in H/k, andthere is at least one place which splits completely in
H+ which is p. When LS(s;χ) vanishes to order 1 at s = 0, Stark’s conjecture then predicts:

Conjecture 2.3.9. Choose w a prime of H+ above p. Then there exists an S-unit ε such that:

1. ∣ε∣w′ = 1 for all places w′ of H+ not dividing p.

2. For every σ ∈ G we have:
log ∣σ(ε)∣w = −eζ

′
S(0, σ) (2.10)

where e is the number of roots of unity in H+; or equivalently:

L′S(0, χ) = −
1

e
∑
σ∈G

χ(σ) log ∣σ(ε)∣w (2.11)

for any character χ of G.

3. The extension H+(ε1/e)/k is an abelian extension of k.

Remark 2.3.10. In order to choose the possible p which splits completely in H+/k we can apply
the following theorem. Let consider p inert in k/Q, then p ∶= (p) is generated by a totally positive
element of k, and therefore it splits completely in the narrow Hilbert class field H+/k.
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The relation between Stark’s conjecture and Hilbert’s twelfth problem comes from the following
proposition:

Proposition 2.3.11. Let K/k be an extension of number fields, and assume that G = Gal(K/k)
is cyclic. For any set S as before, containing only one place which splits completely in K, and any
faitful character χ of G (i.e. χ has trivial kernel), the Stark conjecture implies that K = k(ε).

Note that, since χ has trivial kernel, equation (2.4) implies that r(χ) = ∣{v ∈ S ∶ χ(Dv) = 1}∣ = 1,
and therefore the L-function LS(s,χ) indeed has rank one. If we consider K and k such that any
τ ∈ G satisfies τ(ε) = ε, then we can rewrite (2.11) in the following way:

L′S(0, χ) = −
1

e
∑
σ∈G

χ(σ) log ∣σ(ε)∣w (2.12)

= −
1

e
∑
σ∈G

χ(στ) log ∣σ(τ(ε))∣w (2.13)

= −
1

e
∑
σ∈G

χ(σ)χ(τ) log ∣σ(ε)∣w (2.14)

= −χ(τ)
1

e
∑
σ∈G

χ(σ) log ∣σ(ε)∣w (2.15)

= χ(τ)L′S(0, χ). (2.16)

As a consequence χ(τ) = 1 and since χ is faithful it follows that τ = 1, hence ε is fixed only by
the trivial element of G. Therefore, k(ε) is fixed only by the trivial subgroup of G. This means
that K = k(ε), since otherwise k(ε) would be a proper subfield of K, hence it should be fixed by
a non-trivial subgroup of G by Galois theory.

Dasgupta underlined another interesting case, namely when k is also totally real and the only
place v which splits completely is real. Suppose that ε is a positive Stark unit and fix an embedding
k ⊂ K ⊂ Kw, corresponding to a real place w above v. We are still in the conditions of the Stark
conjecture and in this specific case we have that e = 2. Applying (2.7) to σ = 1 we obtain:

ε = exp(−2ζ ′S(0,1)) (2.17)

From the previous observations, this implies that K = k(exp(−2ζ ′S(0,1)).

Remark 2.3.12. On one hand, this result is relevant to Hilbert’s twelfth problem, since the
extension K can be obtained (condintionally on Stark’s conjecture) by adjoining a unit, which
can be computed as the special value of an analytic function. On the other hand, however, this
function ζ ′S(s,1) still depends on the extension K/k.

Remark 2.3.13. In general, the Stark conjecture remains an open problem. On the other hand,
the p-adic counterpart (the Gross–Stark conjecture) was proved by Darmon, Dasgupta and Pollack
in 2011.



Chapter 3

The Gross–Stark conjecture

In this chapter, we state a p-adic analogue of the Stark conjecture for real quadratic fields. It
has several advantages over the complex version. On the one hand, the p-adic analogue of the
Stark conjecture is actually a theorem, proved by Samit Dasgupta, Henri Darmon, and Robert
Pollack in [SP11]. On the other hand, it is also possible to compute the first order derivatives of
the relevant p-adic L-series, leading to practical algorithms to determine Gross–Stark units, which
are contained in abelian extensions of real quadratic fields.

In the first section we present some of the basics of p-adic analysis. We study continuous
functions on Zp and Mahler’s theorem, which allows us to write a continuous function on Zp as a
formal combination of binomial polynomials, called its Mahler expansion. After that, we will focus
on Hensel’s lemma and we underline some of its main consequences. We conclude this section by
studying analytic functions on Zp, and we define the p-adic logarithm

logp ∶ C
×
p Ð→ Cp.

The second section introduces p-adic L-functions of real quadratic fields. After a brief histor-
ical introduction, we recall some properties of these p-adic L-functions, notably the interpolation
property.In the context of the Gross–Stark conjecture, we choose the prime p such that p is inert
in k/Q, and consider the p-adic L-function associated to an odd character

χ ∶ Cl+k Ð→ Q
×
,

of the narrow class group Cl+k of k, which means that χ([(
√
Dk)]) = −1, whereDk is the discriminant

of k. For such a character to exist, k must have a fundamental unit of positive norm. Finally,
we discuss an algorithm to compute these p-adic L-functions, and we illustrate this with some
examples of p-adic L-functions and Gross–Stark units.

3.1 p-adic analytic functions

In this section we introduce some of the basics of the p-adic analysis that will be useful. We will
discuss continuous and analytic functions on Zp, and define the p-adic logarithm. To conclude, we
will define p-adic L-functions of real quadratic fields, and discuss some of their principal properties.
The proofs of the results of this section could be found in [Ste21; Von21]

3.1.1 Continuous functions on Zp

In this section we will make a small presentation of the continuous functions on Zp which take
values in a finite extension of Qp. We will also present the Mahler’s theorem. The definitions of Zp
and Qp and their basic properties can be found in A.4 and the basic properties of non-archimedean
analysis can be found the paper [Von21].

19



20 CHAPTER 3. THE GROSS–STARK CONJECTURE

Definition 3.1 (Continuous function on Zp). Let L be a finite extension of Qp and f ∶ Zp Ð→ L.
We say that f is continuous on Zp if for every x0 ∈ Zp we have that:

∀ε ∈ R+,∃δε,x0 ∈ R
+ ∶ ∀x ∈ B(x0, δε,x0) = {x ∈ Zp ∶ ∣x − x0∣p < δε,x0}⇒ ∣f(x0) − f(x)∣L < ε

Essentially the same definition may be given for any metric space. Since many of the properties
we will use can be stated and proved in much more generality, we make abstraction of the specifics
of Zp, and focus on two of its crucial properties that go into consequent results. First of all, Zp is
a compact space, hence we can apply the theorem of Heine-Cantor.

Theorem 3.1.1 (Heine-Cantor). Let (X,ϕX), (Y,ϕY ) two metric spaces and f ∶ X Ð→ Y a
continuous function on X. If X is a compact space, then f is also uniformly continuous.

This statement immediately implies that every continuous function f ∶ Zp Ð→ L is also uni-
formly continuous. A second important important property of Zp is that the set of natural numbers
N is dense in it. This implies that if we can define a continuous function on N, it uniquely extends
to a continuous function on Zp. This mechanism is reffered to as interpolation.

Proposition 3.1.2. Let g ∶ N Ð→ L be a uniformly continuous function, with respect to the
subspace topology on N ⊂ Zp. Then g uniquely extends to a continuous function f ∶ Zp Ð→ L.

We now define binomial polynomials, which will be our prototypical example of a continuous
function Zp → Zp. We will see that these are in some sense the only examples, as is made precise
by Mahler’s theorem stated below.

Definition 3.2. For every n ∈ N we define the binomial polynomial

(
x

n
) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if n = 0,
x(x − 1)⋯ (x − n + 1)

n!
if n ≥ 1.

(3.1)

Firstly, we prove that it defines a continuous function from Zp to Zp.

Lemma 3.1.3. If x ∈ Zp, then (x
n
) ∈ Zp for all n ∈ N.

Proof. The polynomial function f(x) = (x
n
) is continuous and f(m) is an integer for all m ∈ N.

The previous proposition then implies that this function maps the closure of N, which is Zp, to Zp
[Alp85].

We are now ready to state the Mahler’s theorem.

Theorem 3.1.4 (Mahler’s theorem). Let f ∶ Zp Ð→ L be a continuous function. Then there exist
a unique sequence of elements an ∈ L with lim

n→∞
an = 0 such that:

f(x) = ∑
n≥0

an(
x

n
). (3.2)

This expression is called the Mahler expansion of the continuous function f and the an are
called its Mahler coefficients. A similar result was proved by Dieudonné in [Die44] for compact
subsets of Qp.

We now define a norm on the space of continuous functions on Zp.

Definition 3.3 (Supremum norm). Let f ∶ Zp Ð→ L be a continuous function, then we can define:

∣∣f ∣∣ ∶= sup
x∈Zp

∣f(x)∣. (3.3)

Remark 3.1.5. We can observe that, since Zp is a compact space, any continuous function on Zp
has to be bounded in it, hence this norm is always finite.

In addition, we can give an equivalent definition of this norm, based on the Mahler’s theorem.
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Definition 3.4. Let f ∶ Zp Ð→ L be a continuous function, and f(x) = ∑n≥0 an(
x
n
), then we can

define:
∣∣f ∣∣ ∶= sup

n→∞
∣an∣. (3.4)

To conclude, we underline that the space of continuous function from Zp to L, denoted by
C(Zp, L) is a Banach space with respect to the supremum norm, i.e. a complete normed vector
space, and this norms endows it with a topology.

3.1.2 Hensel’s lemma

In this section we state Hensel’s Lemma both in general, and in the p-adic case. Then we will
prove that the roots of unity of Zp are exactly the p − 1 roots of Xp−1 − 1 ∈ Zp[X]. To conclude,
we will recall the Teichmüller representatives and the Teichmüller character.

The main aim of Hensel’s lemma is to lift approximate factors of a polynomial f , defined over
a complete non-archimedean valued field, to actual factors.

Theorem 3.1.6 (Hensel’s lemma). Let K be complete with respect to a non-archimedean valuation
and A the valuation ring of K. Suppose that f ∈ A[X] is a polynomial that factors over the residue
class field k = A/m as:

f = g ⋅ h ∈ k[X]

with g, h ∈ k[X] non-zero and coprime. Then there exist g, h ∈ A[X] with deg(g) = deg(g), such
that

f = g ⋅ h ∈ A[X].

Observe that if g is a linear factor of f , namely if g = X − α, then asking that g and f/g are
coprime is equivalent to requiring that α is a simple root of f ∈ k[X]. As a consequence, we obtain
the following useful corollary, which will be used repeatedly in what follows.

Corollary 3.1.7. Let f ∈ A[X] be a polynomial. Then every simple zero α ∈ k = A/m of f ∈ k[X]
can uniquely be lifted to a zero α ∈ A of f satisfying:

α ≡ α (mod m).

Let us consider the case where K = Qp, so that A = Zp and k = Fp. We will be able to determine
all roots of unity in Zp using Hensel’s lemma. First, we consider the polynomial Xp −X ∈ Fp[X].
By Fermat’s little theorem we know that this polynomial splits completely into linear factors over
Fp[X]. More precisely, we have

Xp −X =
p

∏
i=0

(X − i) ∈ Fp[X].

Since all of these roots are simple, we apply Hensel’s lemma and obtain that the polynomial Xp−1−1
has p − 1 distinct roots in Zp. It can be shown that the number of roots of unity in Z×p equals

U(Z×p) =
⎧⎪⎪
⎨
⎪⎪⎩

2 if p = 2

p − 1 if p > 2
. (3.5)

We assume henceforth that p is an odd prime. We now define the Teichmüller representative
and the Teichmüller character.

Definition 3.5 (Teichmüller lift). The Teichmüller representative ω(a) of an element a in F×p is
the unique root of unity in Z×p that reduces to a. This defines a morphism

ω ∶ F×p Ð→ Z×p
az→ ω(a).
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Remark 3.1.8. In general we have no information on the p-adic expansion of the Teichmüller
representative ω(a) besides its first digit, which must be a. However, since ω is a group homomor-
phism, we do know that

ω(1) = 1
ω(−1) = (p − 1) + (p − 1)p + ⋅ ⋅ ⋅ + (p − 1)pn + . . . .

Definition 3.6 (Teichmüller character). The Teichmüller character is the homomorphism:

ω ∶ Z×p Ð→ Z×p
az→ ω(a)

obtained by first reducing modulo p, then sending an element to its Teichmüller representative.
Moreover, we can define the following projection:

⟨⋅⟩ ∶ Z×p Ð→ 1 + pZp

xz→ ⟨x⟩ ∶=
x

ω(x)

Hence the Teichmüller representatives give us an isomorphism Z×p ≅ F×p×(1+pZp) with the following
identification:

x ∈ Z×p = (ω(x), ⟨x⟩).

3.1.3 Analytic functions on Zp

In this section we discuss analytic functions on Zp. We study their radius convergence, and define
the p-adic logarithm and the p-adic exponential.

In the previous section we have studied the space of continuous functions C(Zp, L) where L is
a finite extension of Qp. We now consider only a particular kind of continuous functions, namely
the analytic functions. We give a definition of analytic functions using the Mahler expansion.

Definition 3.7 (Analytic function). Let f ∶ Zp Ð→ L be a continuous function with Mahler
expansion:

f(x) = ∑
n≥0

an(
x

n
).

We say this function is analytic if
lim
n→∞

an
n!
= 0. (3.6)

All analytic functions are continuous but the converse is not true. Indeed, the condition (3.6)
is stronger than the condition that an → 0 given by Mahler’s theorem. An equivalent definition is
that analytic functions are those functions defined by a power series f(x) ∈ LJxK.

Remark 3.1.9. One of the main properties of analytic functions, which distinguish them from
mere continuous functions, is that they can be evaluated at arguments x in extensions of Qp.

In order to do that, consider an analytic function f(x) ∈ CpJxK. We recall that Cp is algebraically
closed from Proposition A.4.4. We are now ready to define the radius of convergence of the analytic
function f on Zp.

Definition 3.8 (Radius of convergence). Let

f(x) = ∑
n≥0

anx
n ∈ CpJxK

be an analytic function. Then its radius of convergence R is defined as:

1

R
= lim sup

n
∣an∣

1
n . (3.7)
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We can see that 0 ≤ R ≤∞ and study the convergence.

Proposition 3.1.10. An analytic function f(x) = ∑n≥0 anx
n ∈ CpJxK converges for a given value

x ∈ Cp if and only if we have:

⎧⎪⎪
⎨
⎪⎪⎩

∣x∣ ≤ R if lim
n→∞

∣an∣R
n → 0

∣x∣ < R otherwise.
(3.8)

Remark 3.1.11. We observe that in p-adic analysis any power series either converges on the entire
boundary ∣x∣ = R or nowhere at all on the boundary. In contrast, we can have different behaviours
on the boundary in real and complex analysis. This is one of the many advantages of studying
objects in the p-adic setting.

We are now ready to introduce the p-adic logarithm which will be fundamental for the p-adic
Gross–Stark conjecture.

Definition 3.9 (p-adic logarithm). We define the p-adic logarithm as the following analytic func-
tion:

logp(1 + x) ∶=
∞

∑
n=1

(−1)n+1
xn

n
(3.9)

The radius of convergence of this analytic function is R = 1 and this function does not converge
anywhere on the boundary. This function may be extended to the domain C×p by choosing the
Iwasawa branch of the p-adic logarithm, which we now describe.

Proposition 3.1.12. There exists an unique function logp ∶ C×p Ð→ Cp such that:

1. logp(1 + x) = ∑
∞
n=1(−1)

n+1 xn

n
for all x ∈ C×p s.t. ∣x∣ < 1;

2. logp(xy) = logp(x) + logp(y) for all x, y ∈ C×p ;

3. logp(p) = 0.

Proof. First of all, we choose an element pr for any r ∈ Q, s.t. pr+s = pr ⋅ ps for all r, s ∈ Q. We can
write any element a ∈ Cp as a = pr ⋅ a0, with r ∈ Q and ∣a0∣ = 1, because of the fact that Cp is the
completion of Qp, hence it has value group equal to pQ. In addition, since ∣a0∣ = 1 we can write it
uniquely as a0 = ω ⋅ a1 s.t. ω is a root of unity of order coprime with p, and ∣a1 − 1∣ < 1. This comes
from the fact that any sequence of elements in Qp which approximate a0, determines a sequence
of elements also in the residue field of Qp, which is eventually constant, since Cp is the completion
of Qp. As a consequence, we can lift this element in the residue class of Qp to a root of unity ω by
the Hensel’s lemma and we can define the p-adic logarithm in the following way:

logp(a) ∶=
∞

∑
n=1

(−1)n+1
(a1 − 1)

n

n
= logp(a1).

This object satisfies the previous properties.

In a similar way we can define the p-adic exponential.

Definition 3.10 (p-adic exponential). We define the p-adic exponential as the following analytic
function:

expp(1 + x) ∶=
∞

∑
n=1

xn

n!
(3.10)

With some computations we obtain that its radius of convergence is R = p−1/(p−1) < 1.

Remark 3.1.13. We can observe that its radius of convergence depends on the prime p while the
radius of of convergence of the p-adic logarithm is always 1.
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Remark 3.1.14. Unlike the p-adic logarithm, there is no possibility to extend the p-adic expo-
nential to a larger set. As a matter of facts, if we want to have better possibilities we could for
instance consider the Artin-Hasse exponential, which is similar to the p-adic exponential but has
better convergence properties. It is defined by

E(x) ∶= exp(
∞

∑
i=0

xp
i

pi
) (3.11)

and one can show that E(x) ∈ 1 + x ⋅ZpJxK.

To conclude, we can see that under certain circumstances the p-adic logarithm and the p-adic
exponential are mutual inverses.

Proposition 3.1.15. If ∣x∣ < p−1/(p−1) then

logp expp(x) = x

expp logp(x + 1) = x + 1.

3.2 p-adic L-functions

In this section we introduce the p-adic L-functions of characters of totally real fields with some
historical hints and some of their fundamental properties. We will refer to the paper of Dasgupta,
Darmon and Pollack [SP11] for more details. In the second section we present a method to compute
the special values of these p-adic functions, following A. Lauder and J. Vonk in [LV21]. To conclude,
we will compute some examples to illustrate the algorithm.

3.2.1 Historical hints

The concept of p-adic L-functions was first introduced by T. Kubota and H. W. Leopoldt in
1964 with their paper Eine p-adische Theorie der Zetawerte I [KL64]. Their main aim was to p-
adically interpolate special values of the Riemann zeta function at negative odd integers. After this
influential development, the subject of p-adic L-functions garnered tremendous successes through
its arithmetic applications. Iwasawa discovered that the invariants of p-adic L-functions are closely
related to the arithmetic of towers of cyclotomic fields Q(ζpn). This subject continues to flourish
today, and is called Iwasawa theory. Its main conjecture, which is now a theorem, is the statement
that the Kubota-Leopoldt p-adic L-function are essentially the same as the arithmetic analogue
constructed by Iwasawa theory from unit groups in cyclotomic towers.

A more contemporary view on p-adic L-functions was introduced in 1972 by B.Mazur [B72]
who systematically developped the theory of p-adic L-functions through the language of p-adic
measures. For an excellent treatment on this viewpoint, we refer to the notes of J. Rodrigues and
C. Williams in [RW21]. Since we will consider p-adic L-functions of totally real fields other than
Q, even this theory does not suffice for the construction, which requires additional deep tools that
go far beyond the scope of this thesis, originally developped by Deligne and Ribet [DR80]. We will
therefore assume their existence, and focus on their explicit computation, for which it suffices to
know their interpolation properties.

3.2.2 Main properties of Lp(s,χ)
In this section we introduce the p-adic L-functions that feature in the statement of the rank one
abelian Gross–Stark conjecture.

We start by considering a totally real field F of degree n over Q. Let us consider a character
of conductor n:

χ ∶ Gal(F /F )→ Q
×
,
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where F is an algebraic closure of F .Since Gal(F /F ) is a finite group, the image of χ is a finite
group of roots of unity. Since we are about to discuss both p-adic and complex L-series, and we wish
to compare their special values at negative integers with each other, we fix a pair of embeddings:

Q ↪ Cp,
Q ↪ C.

Henceforth, algebraic numbers will be considered freely as elements of Cp or C according to these
embeddings, without further explicit reference.

Remark 3.2.1. We recall that

Ker(χ) ∶= {σ ∈ Gal(F /F )∣ χ(σ) = 1}

is a subgroup of Gal(F /F ), since χ is a group homomorphism. Consider H, the fixed field of
Ker(χ) by the Galois correspondence. We note that H is a Galois extension of F and its Galois
group is finite and abelian. By class field theory, we may see χ as a function of the ideals of F , by
sending χ(c) = 0 if c is not prime to n.

We associate a complex L-function to our character χ as we have done in the previous chapter.
Consider a finite set of places S of F containing all the archimedean places. Then we define

LS(s,χ) ∶=∏
p/∈S

(1 − χ(p)Norm(p)−s)−1.

This series converges for R(s) > 1 and has a meromorphic continuation to all of C. In addition,
Siegel proved in [Sie70] that the value LS(n,χ) is algebraic whenever n ≤ 0 is an integer.

To simplify things as much as possible, let us now specialize to the main case of interest.
Henceforth, F will denote a real quadratic number field and H+ its narrow Hilbert class field.
Furthermore, we choose a character

χ ∶ Cl+F Ð→ Q
×
. (3.12)

Since we are considering an unramified case, the conductor of χ is n = 1. In addition, the rational
prime p which we will choose for our p-adic studies is a prime p that is inert in F . Since p = (p) is
principal and it is generated by p, which is a totally positive element of F , we have that p is trivial
in Cl+F , hence χ(p) = 1 due to the fact that χ is a group homomorphism. Consequently, the ideal
p splits completely in the extension H+/F . Moreover, Norm(p) = p2.

Now consider a finite extension E of Qp containing the values of the character χ, and we let
ω be the p-adic Teichmüller character defined in 3.6. Suppose S contains p. Deligne and Ribet
in [DR80] proved that there exists a unique continuous function E-valued function LS,p(s,χ) for
s ∈ Zp which satisfies the following interpolation property:

LS,p(n,χ) = LS(n,χω
n) (3.13)

for all integers n ≤ 0.

Remark 3.2.2. The function LS,p(s,χ) is in fact analytic on Zp when χ is nontrivial.

Consider the finite set R ∶= S − {p}. By definition of LS(s,χ) we obtain:

LS(s,χ) =∏
p/∈S

(1 − χ(p)Norm(p)−s)−1

= (1 − χ(p)Norm(p)−s)∏
p/∈R

(1 − χ(p)Norm(p)−s)−1

= (1 − χ(p)Norm(p)−s)LR(s,χ).

Hence:
LS(s,χ) = (1 − χ(p)Norm(p)−s)LR(s,χ). (3.14)
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We evaluate this function in s = 0 and we obtain that:

LS(0, χ) = (1 − χ(p))LR(0, χ). (3.15)

This implies that LS(0, χ) = 0 when χ(p) = 1, which is always satisfied under our assumptions. In
addition, since s = 0 is in our interval of interpolation we can apply the interpolation property 3.13
and we obtain that the p-adic L- function LS,p(s,χ) vanishes in s = 0. This zero, which is caused
by a vanishing Euler factor at p, is called an exceptional zero.

3.2.3 Computing Lp(s,χ)
In this section we discuss the computation of p-adic L-functions. Two methods exist: one was
developped by X.Roblot in [Rob15], and the other by J.Vonk and A.Lauder in [LV21]. While each
of these methods has its merits, we will focus on the second one, which relies on an idea of Hecke
and Siegel–Klingen and uses the diagonal restriction of Eisenstein series. We do not go into the
details, since the theory behind these results goes beyond the scope of this thesis. Finally, we
provide a concrete example to illustrate the algorithm.

Recall that we are considering the special case where F is a real quadratic field, and χ is an
odd narrow class group character. Consider a prime p which is inert in F /Q and set p ∶= (p). We
choose the set

S = {∞1,∞2,p}

and consider its associated p-adic L-function Lp(s,χ) ∈ ZpJsK. We saw that p splits completely
in H+/F ; this means both that Norm(p) = p2 and that χ(p) = 1. Therefore we obtain from the
interpolation property of 3.13 that:

LS,p(n,χ) = (1 − p
−2n)LR(n,χ) ∀n ≤ 0, (p − 1)∣n. (3.16)

In addition, we saw that Lp(0, χ) = 0 because the Euler factor at p vanishes. As a consequence
ords=0Lp(s,χ) ≥ 1. To investigate the order of vanishing at s = 0, we may look at the right side of
(3.16) and recall that from Theorem 2.2.2

ords=0LR(s,χ) = r(χ) = ∣{v ∈R ∶ χ(Dv) = 1}∣,

The order of vanishing of the p-adic L-function is one more than the number of infinite places whose
decomposition group is in the kernel of χ, and since χ is odd, it follows that the complex L-function
does not vanish i.e. ords=0L(s,χ) = 0. Therefore, Lp(s,χ) has order of vanishing precisely equal
to 1. As a consequence, the quantity L′p(0, χ) will be of interest to us.

Remark 3.2.3. We will see in the next section that the quantity L′p(0, χ) is related to the p-adic
analogue of the Gross–Stark conjecture and to the p-adic logarithm of what will be defined as the
Gross–Stark unit.

There are two different methods to compute this quantity. The first method uses the approach
of T. Shintani presented in his paper An evaluation of zeta-functions of totally real algebraic fields
at non-positive integers in 1976 [Shi76]. This method was found by X. Roblot in his paper Com-
puting p-adic L-functions of totally real number fields in 2015 [Rob15]. His procedure relies on the
so-called cone decompositions and on an explicit formula. The second method uses the diagonal
restriction of Hilbert modular forms and it was presented by J.Vonk and A. Lauder in their paper
Computing p-adic L-functions of totally real fields in 2021 [LV21]. This approach uses an old idea
of E. Hecke appearing in his 1924 paper [Hec24] and was developed by C.L. Siegel in 1968 [Sie68];
later on, an application to the construction of p-adic L-functions was found by J.-P. Serre in 1972
[Ser73]. On the one hand, this method relies on important and sometimes difficult prerequisites
like modular forms and diagonal restrictions. On the other hand, however, the basic idea of this
method is quite simple.
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Let us briefly explain the second method. The key idea is the construction for any k ≥ 1 of a
formal power series in one variable:

fk(q) = a0 + a1q +⋯ ∈ QpJqK,

which satisfies the following properties:

• The constant term a0 equals L(1−k,χ), whereas the an with n > 0 are elementary quantities,
resembling those appearing in the computations with continuous fractions.

• The power series fk(q) is the q-expansion of a modular form of weight 2k and level one.

This allows one to compute the special value L(1−k,χ) by computing the coefficients an for n > 0,
and computing the q-expansions of a Q-basis of the space of modular forms of weight 2k. By
expressing fk(q) as a finite Q-linear combination of these basis elements (which can be done using
only the coefficients an for n > 0) one obtains numerically the value of a0.

More specifically, the power series fk(q) are obtained as the diagonal restrictions of Hilbert
Eisenstein series, and they have the form

fk(q) = L(1 − k,χ) + 2
2
∑
n≥1

( ∑
ν∈d−1

+

Tr(ν)=n

∑
a∣(ν)d

χ(a)Norm(a)k−1)qn, (3.17)

where d is the different ideal of OF and with d+ we indicate the set of totally positive elements
contained in d. The exponent of 2 is equal to [F ∶ Q] = 2. The n-Fourier coefficient an of this
diagonal restriction may be rewritten as:

an = 2
2
∑
C∈Cl+

F

ψ(C) ∑
(a,ν)∈I(n,C)

Norm(a)k−1, (3.18)

where we define the index set in the following way:

I(n,C) ∶= {(a, ν) ∈ IF × d
−1
+ ∶ Tr(ν) = n, a∣(ν)d, [a] = C}, (3.19)

where IF is the set of integral ideals of F . This index set is still not very easy to compute efficiently.
A crucial idea in the algorithm is to find an explicit bijection between I(n,C) and a certain set
RM(n, τ) of so-called augmented RM points of discriminant n2D, which can be computed efficiently
using continued fractions and reduction theory of indefinite quadratic forms.

Remark 3.2.4. We can observe that this index set is independent of k, and the only thing in
fk(q) which depends on k is the exponent of the norm, hence is very elementary. This will help us
in the efficiency of the computation since we have to compute the index set just one time.

Finally, from a large set of special values L(1 − k,χ) for k ≥ 1 and (p − 1)∣(k − 1), we then
compute the power series Lp(s,χ) by interpolation, modulo some power of p. In summary, the
main steps of the algorithm are:

1. Compute the Fourier coefficients an with n > 0 of the diagonal restriction fk(q) up to a large
enough bound n < N .

2. Compute the q-expansions of a Q-rational basis for M2k,1, the space of modular forms of
weight 2k level 1.

3. Recognize the power series fk(q) as an element of M2k,1, and determine the value of its
constant term a0 = L(1 − k,χ).

Then use finite differences to interpolate these special values (multiplied by the corresponding
Euler factor at p), to compute Lp(χ, s) as a power series in OJsK/(pm) for any p-adic precision m.
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3.2.4 Example

We will illustrate this method with an example.

Example 3.1. Let us consider the real quadratic field F = Q(
√
3). We saw in 2.3.7 that the

narrow Hilbert class field of F is H+ = Q(
√
3,
√
−1) and that Cl+F = Z/2Z and we consider the

prime p ∶= (5) which splits completely in H+/F since 5 is inert in F /Q.
As a consequence, we have only two possibilities for a character defined on Cl+F . On the one

hand, we have the trivial character which sends everything to 1, however this character is not odd,
hence we can’t take it into consideration. The only other possibility is the following character:

ψ ∶ Cl+F Ð→ Q
×

[(
√
3)] z→ −1.

We can observe that DF = 12 and ψ((
√
12)) = ψ((2

√
3)) = −1, hence it is odd and it is the character

that we will use. We use the algorithm of Lauder–Vonk to compute the diagonal restrictions fk(q)
for the first few values of k:

1. When k = 1 we compute to order of precision equal to 20 that:

f1(q) = O(q
20),

which was to be expected, since it is a modular form of weight 2 and level 1, and M2,1 = {0}.

2. When k = 5, we obtain

f5(q) = L(−4, ψ) − 440q − 225720q
2 − 8660960q3 + . . .

We look at f5(q) in the space of classical modular forms M10,1, which has dimension 1, and
we obtain that the constant term is 5/3, hence L(−4, ψ) = 5/3.

3. When k = 9, we obtain

f9(q) = L(−8, ψ) − 28280q − 3561592440q
2 + . . .

We look at f9(q) in the space of classical modular forms M18,1, which has dimension 2. A
basis for M18,1 is given by:

⎧⎪⎪
⎨
⎪⎪⎩

F1 = 1 − 86184q2 − 84575232q3 + . . .

F2 = q − 528q2 − 4284q3 + . . .
(3.20)

Since F1 does not have q term, we must have that

f9(q) = −28280F2 + aF1,

for some a ∈ Q, which we can in turn determine by looking at the coefficient of q2:

f9(q) + 28280F2 = L(−8, ψ) − 3576524280q
2 + ⋅ ⋅ ⋅ = aF1

hence a = 1120465/27 this means that the constant term of f9(q) is 1120465/27, hence

L(−8, ψ) =
1120465

27
.

Remark 3.2.5. Observe that we used only the coefficients of q and q2 of fk(q).In the actual code,
the number of coefficients that is computed is equal to the so-called Sturm bound which is the
minimal number of coefficients needed to determine fk uniquely in M2k,1.
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At this point, the chosen prime p enters the computation. The Euler factor which appears in
the interpolation property is equal to (1 − p−2s) = (1 − 25−s) where s = 1 − k, and we have that:

L5(1 − k,ψ) = (1 − 25
−1+k)L(1 − k,ψ), 4∣(k − 1)

In order to use the interpolation we compute a high number of L(1− k,ψ) values in the same way
as before. Therefore, we obtain an high number of L5(1 − k,ψ). We compute a power series, with
order of precision equal to 10, which interpolates the values L5(1 − k,ψ). We obtain the following
first coefficients of an s-power series F (s):

F (s) = − (2 ⋅ 59 +O(510))s11 +O(510)s10 + (2 ⋅ 58 +O(510))s9 + (52 ⋅ 57 +O(510))s8

− (143 ⋅ 56 +O(510))s7 − (189 ⋅ 56 +O(510))s6 − (6182 ⋅ 54 +O(510))s5

− (6218 ⋅ 54 +O(510))s4 − (7134 ⋅ 53 +O(510))s3 + (30489 ⋅ 53 +O(510))s2

− (728698 ⋅ 5 +O(510))s +O(510).

This power series is the 5-adic L-function L5(s,ψ). In addition, we can see that F (0) = O(510),
hence it is 5-adically very close to 0, which agrees with the fact that L5(0, ψ) = 0. The quantity
L′5(0, ψ) will be connected to a Gross–Stark unit by the p-adic Gross–Stark conjecture presented
in the next section.

Remark 3.2.6. We can observe that the coefficients of s are divisible by 5, and the number of
time a coefficient is divisible by 5 grow with the growth of the exponent of s. This is positive since
we are in the case where the radius of convergence is p−2

p−1
= 3/4. Hence the coefficient of sn should

be divisible by 3
4
n power of 5. As a matter of facts, if we look at the coefficient of s8 we have that

it should be divided by 3
4
⋅ 8 = 6 power of 5 and it is indeed divided by 57 hence by 56.

3.3 The Gross–Stark conjecture
In this section, we will state the p-adic Gross–Stark conjecture with the assumptions that we took
in the previous section. There are many advantages of the p-adic Gross–Stark conjecture. On the
one hand, as we said in the introduction, this conjecture is an actual theorem. On the other hand,
the first derivative of the p-adic L-function is directly computable, using the methods we described
above. In addition, we will have more specific information about the Gross–Stark unit, unlike the
complex case.

In a nutshell, the Gross–Stark conjecture in our setup predicts that we have:

L′S,p(0, χ) =L (χ)L(0, χ). (3.21)

where S = {∞1,∞2,p}, and L (χ) is a certain invariant attached to χ, which is essentially the
p-adic logarithm of a p-unit in the narrow Hilbert class field. This unit is called a Gross–Stark
unit, and we will define it more precisely now.

Since χ is an odd character, the real quadratic field F cannot have a fundamental unit of norm
−1, and therefore all the infinite places of F ramify in the narrow Hilbert class field H+. Therefore,
the field H+ has no real embeddings, and has 2hF pairs of complex conjugate embeddings, where
hF is the class number of F . Dirichlet’s unit theorem now implies that

rkZ O
×
H+ = 2hF − 1.

Therefore, the rank of the group of p-units in H+ is equal to

rkZ O
×
H+,S = 4hF − 1.

Now we extend scalars to E, which we recall is a finite extension of Qp. Thus we consider O×H+,S⊗E,
which is a finite E-vector space with the same dimension of O×H+,S .
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Since Gal(H+/F ) acts on F , it will acts also on O×H+,S . In particular we consider the following
subspace of O×H+,S ⊗E:

Uχ ∶= (O
×
H+,S ⊗E)

χ−1 ∶= {u ∈ O×H+,S ⊗E∣ σu = χ
−1(σ)u}. (3.22)

Remark 3.3.1. We can observe that Uχ is the subspace characterized by the fact that each element
is mapped to a multiple of itself by σ, and the coefficient is exactly χ−1(σ).

In addition, there is a stronger version of the Dirichlet’s unit theorem which allow us to predict
the dimension of this sub-space. In particular:

dimE Uχ =#{v ∈ S ∣ χ(v) = 1}.

We have seen in 2.2.2 that #{v ∈ S ∣ χ(v) = 1} = ords=0LS(s,χ). Moreover, since S and R differs
from each other by a p and χ(p) = 1, then:

ords=0LS(s,χ) = ords=0LR(s,χ) + 1,

hence:
dimE Uχ = ords=0LS(s,χ) = ords=0LR(s,χ) + 1. (3.23)

Therefore, we can observe that Uχ has dimension one, namely it is a line, if and only if ords=0LR(s,χ) =
0 ⇒ LR(0, χ) ≠ 0. In our study this is the case. On the other hand, if LR(0, χ) ≠ 0 then Uχ is a
line and we can consider a general nonzero vector uχ in Uχ. This element will be our Gross–Stark
unit. To normalise it properly and to define L (χ), we use the p-adic valuation.

Remark 3.3.2. We know that p splits completely in H+/F , hence p =P1⋯ P[H+∶F ].

Let us choose a prime P of H+ which lies above p. This prime P induces the following homo-
morphisms of Z-modules.

ordP ∶ O
×
H+,S Ð→ Z (3.24)

and
LP ∶ O

×
H+,S Ð→ Zp
u z→ logp(NormH+

P
/Qp
(u)).

where with logp we indicate the p-adic logarithm. With the extension of the scalars to E, we
can obtain the same homomorphisms but from Uχ to E; we will indicate these homomorphisms in
the same way: ordP, LP. Now we can define the L (χ) invariant attached to χ by following R.
Greenberg [Gre94] in the following way:

L (χ) ∶= −
LP(uχ)

ordP(uχ)
∈ E. (3.25)

Remark 3.3.3. This invariant is independent of the choice of uχ in Uχ, and of the choice of the
prime P above p.

To conclude, we considered the space of S-units of H units, which has a big rank, and the
character χ which is acting on it. We saw that there is a specific "line" in that space where the
character χ acts in a very specific way, specified equation 3.22. Then, we saw that the p-adic
analogue of the Gross–Stark conjecture says that we can find a unit, and it will be precisely a
specific unit on that line. Firstly, we said that this unit belongs to that line, but we are not sure
where, then we normalized it, so we have a specific generator.

Remark 3.3.4. In conclusion, given the values of L′S,p(0, χω) and LR(0, χω), we can compute a
Gross–Stark unit uχ. We can observe that this pattern is similar to the pattern followed for solving
the Pell’s equations in Dirichlet’s analytic way. As a matter of facts, we studied a special value of
complex L-functions and we found that it was related to a logarithm of a unit in a real quadratic
field, because the character that we chose there was a quadratic character for Q. Now we upgrade
the study, we changed the base field from Q to a more interesting field such as a real quadratic
field and we considered a character of this real quadratic field. Now the first order derivative of
the p-adic L-function gives access to the logarithm of a p-unit in the narrow Hilbert class field.
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To conclude, we show an explicit computation of a Gross–Stark unit.

Example 3.2. Let F = Q(
√
321). We have that DF = 321 and Cl+F = Z/6Z. We choose p ∶= (7)

since 7 is inert in F /Q. The space of odd functions on the Cl+F is spanned by the three following
functions χ1, χ2, χ3.

χ1 = 1[OF ] − 1[d]
χ2 = 1[a] − 1[ad]
χ3 = 1[b] − 1[bd]

where a = (4, (−15 +
√
321)/2) and b = (2, (−15 +

√
321)/2).

To obtain a 7-unit in the narrow Hilbert class field H+ of F we do the following steps.

1. We compute L7(T,χ1) where T = (1 + 7)s − 1 with the algorithm of Lauder–Vonk of section
3.2.3 to find:

L7(T,χ1) ≡ (3 +O(7
2))T 3 − (10 +O(73))T 2 + (913 +O(74))T (mod T 4)

2. We obtain a power series which exhibits L7(0, χ1) = 0 with variable s.

3. We obtain L′7(0, χ1).

In reality we did the above computation to precision O(750). We found that L′7(0, χ1) is equal up
to the computed precision to log7(u), where u satisfies:

716u6 − 20976 ⋅ 78u5 − 270624 ⋅ 74u4 + 526859689u3 + 270624u2 − 20976u2 + 74 = 0.

To conclude, u is a 7-unit in H+ of F and u ∈ OH+[1/7]×.

Remark 3.3.5. Observe that in the first section we start from an equation, the Pell’s equation,
and we end up in finding a unit, which was the fundamental unit of Z[

√
d] of norm 1. At the end

of this thesis with this last example, instead, we start from a unit, which is a Gross–Stark unit,
and we find an equation satisfied by it. We reversed the process.
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Appendix A

Background in algebraic number
theory

In this section, we will recall some basic concepts of algebraic number theory. The proofs of these
results could be found in [Mar18; Ste21].

A.1 Number Fields

Definition A.1 (Number field). A number field is a subfield of C having a finite degree over Q.

In addition to that, we know that every such field has the form Q[α] for some algebraic number
α ∈ C, from the Galois Theory on the subfield of C.

Definition A.2 (Algebraic integer). A complex number is an algebraic integer if and only if it is
a root of some monic polynomial with coefficients in Z.

Theorem A.1.1. The only algebraic integers in Q are the ordinary integers.

In particular, we will work with a specific class of number fields consisting in the quadratic
fields.

Definition A.3 (Quadratic field). A quadratic field K is a number field of degree two over Q.

As a consequence, K is in the form K = Q[
√
m] for some m ∈ Z with m not a perfect square.

Definition A.4. We call real quadratic field the Q[
√
m] for m > 0 and imaginary quadratic field

the Q[
√
m] for m < 0.

We recall some basics results for quadratic number fields.

Corollary A.1.2. Let m be a squarefree integer. The set of algebraic integers in the quadratic
field Q[

√
m] is:

{a + b
√
m ∶ a, b ∈ Z} if m ≡ 2,3 (mod 4).

{
a + b
√
m

2
∶ a, b ∈ Z, a ≡ b (mod 2)} if m ≡ 1 (mod 4).

We will study now the ring of integers of a number field K; let us denote by A the set of
algebraic integers in C.

Definition A.5 (Ring of integral elements of K). We call OK ∶= A ∩K the number ring corre-
sponding to K. It is the ring of all integral elements contained in K.

We recall the definition of norm.

33
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Definition A.6 (Norm). Let K be a number field and let σ1, . . . , σn be the embeddings of K in
C, where n = [K ∶ Q]. For each α ∈K we define the norm of alpha as:

Norm(α) = σ1(α) . . . σn(α).

In particular, for the real quadratic field K = Q[
√
m] we have that:

Norm(a + b
√
m) = a2 −mb2,

for a, b ∈ Q.
We recall also the definition of the discriminant.

Definition A.7 (Discriminant). Let K be a number field of degree n over Q. Let σ1, . . . , σn
denote the n embeddings of K in C. For any n-tuple of elements α1, . . . , αn ∈ K, we define the
discriminant of α1, . . . , αn to be:

disc(α1, . . . , αn) = ∣σi(αj)∣
2,

i.e. the square of the determinant of the matrix having σi(αj) in the ith row, jth column.

We underline that the discriminant is independent from the ordering of the σi and the ordering
of the αj .

In addition, by using the discriminant we can determine the additive structure of OK .

Theorem A.1.3. OK is a free abelian group of rank n.

This means that OK has a basis over Z, namely, there exist β1, . . . , βn ∈ OK s.t. every α ∈ OK
is uniquely representable in the form:

a1β1 +⋯ + anβn, ai ∈ Z.

Definition A.8 (Integral basis). We call {β1, . . . , βn} an integral basis for OK .

Remark A.1.4. We can observe that {β1, . . . , βn} is a basis for K over Q too.

Theorem A.1.5. In the quadratic number field K = Q[
√
m], with m squarefree, an integral basis

for OK = A ∩Q[
√
m] consist of:

{1,m} if m ≡ 2,3 (mod 4), (A.1)

{1,
1 +
√
m

2
} if m ≡ 1 (mod 4). (A.2)

hence:

OK =

⎧⎪⎪
⎨
⎪⎪⎩

Z[
√
m] if m ≡ 2,3 (mod 4)

Z[ 1+
√
m

2
] if m ≡ 1 (mod 4).

We recall that the discriminant of an integral basis can be regarded as an invariant of the ring
OK , and we can denote it as disc(OK).
:

Theorem A.1.6. Let K = Q[
√
m], with m squarefree we have:

disc(OK) =

⎧⎪⎪
⎨
⎪⎪⎩

disc(
√
m) = 4m if m ≡ 2,3 (mod 4),

disc( 1+
√
m

2
) =m if m ≡ 1 (mod 4).
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A.2 Dirichlet’s unit theorem
In this section we will study the units OK of a number ring K.

Definition A.9 (Unit). A unit of a ring R is any element u which has a multiplicative inverse in
R.

Theorem A.2.1. The units in OK are all the elements having norm ±1.

Proof. Since the norm is multiplicative, we can conclude that every unit has norm ±1. On the
other hand, if α is an algebraic integer having norm ±1 and every conjugate of α is an algebraic
integer, then 1

α
is also an algebraic integer, hence α is a unit.

Definition A.10 (Multiplicative group of units of K). Let us denote by O×K the multiplicative
group of units of the number ring OK .

We state the Dirichlet’s unit theorem.

Theorem A.2.2 (Dirichlet’s unit theorem). Let O×K be the group of units of the number ring
OK = A∩K. Let r and 2s denote the number of real and non-real embedding of K in C. Then O×K
is the direct product W × V where W is a finite cyclic group consisting of the roots of 1 in K, and
V is a free abelian group of rank r + s − 1.

More explicitly, the theorem states that there exists a finite set {η1, . . . , ηr+s−1} whose elements
are called fundamental units such that we have:

O×K = µK × ⟨η1⟩ ×⋯ × ⟨ηr+s−1⟩

Where µk is the group of roots of unit of K. Such system of fundamental units, which forms a
Z-basis for O×K/µk, is unique up to coordinate transformations and multiplication by roots of unity.

Remark A.2.3. We have that r + 2s = [K ∶ Q].

A.3 Prime decomposition in a number ring
We consider the number field K with Q ⊂K, and OK = A ∩K. We recall that the ring of integers
of Q is Z and the prime ideals of Z are the ideals of the form pZ where p is prime.

Definition A.11. Let p be a prime in Z and p be a prime in OK . If

p ∩Z = (p),

we will say that p lies over p, or p lies under p.

Theorem A.3.1. Every prime p of OK lies over a unique prime p of Z; every prime p of Z lies
under at least one prime p of OK .

Definition A.12. The primes lying over a given p are the ones that occur in the prime decom-
position of pOK . The exponents with which they occur are called the ramification indices. Thus,
if pe is the exact power of p dividing pOK , then e is the ramification index of p over p denoted by
e(p∣p).

Definition A.13. We call Z/p and OK/p the residue fields associated with p and p. We know
that OK/p is an extension of finite degree over Z/p: let f be the degree of this extension. Then f
is called the inertial degree of p over p and is denoted by f(p∣p).

Proposition A.3.2. The ramification index e and the inertial degree f are multiplicative in towers.

Let us state the following theorem in the generic case, where M and L are number fields with
M ⊂ L, and let OM = A ∩M , OL = A ∩L.
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Theorem A.3.3. Let n be the degree of L over M and let p1, . . . , pr be the primes of OL lying
over a prime P of OM . Denote by e1, . . . , er and f1, . . . , fr the corresponding ramification indices
and inertial degrees. Then:

r

∑
i=1

eifi = n.

Corollary A.3.4. If M = Q, then, OM = Z and we have that:

pOL =
r

∏
i=1

peii

hence:
Norm(pOL) =

r

∏
i=1

Norm(pi)
ei =

r

∏
i=1

peifii

and we know that Norm(pS) = p2

Let L = Q[
√
d] be a real quadratic extension of Q, while M = Q. As a consequence [L ∶M] = 2.

This means that given a certain p in Z we have only three possibilities for the primes lying over it
in K ∶= Q[

√
d].

pOK =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p2, f(p∣p) = 1

p, f(p∣p) = 2

p1p2. f(p1∣p) = f(p2∣p) = 1

(A.3)

Definition A.14. In the first case we say that p is ramified in OK . In the second case we say
that p is inert in OK . In the third case, we say that p is split in OK .

A.4 Valuations
In this chapter we study the valuations.

Definition A.15 (Valuation). A valuation on a field K is a function ϕ ∶K Ð→ R≥0 satisfying:

1. ϕ(x) = 0 if and only if x = 0;

2. ϕ(xy) = ϕ(x)ϕ(y) for x, y ∈K;

3. there exists C ∈ R> 0 such that ϕ(x + y) ≤ Cmax{ϕ(x), ϕ(y)} for all x, y ∈K.

Theorem A.4.1. A non-trivial valuation on Q is either equivalent to the p-adic valuation ϕp ∶
Q Ð→ R given by ϕp(x) = p−ordp(x) for a prime number p, or to the ordinary absolute value on Q
given by ϕ∞(x) = ∣x∣.

In addition, for every non-archimedean valuation ϕ on a field K we can define the valuation
ring.

Definition A.16 (Valuation ring). Let K be a field and ϕ a non-archimedean valuation on it.
The valuation ring of ϕ is the ring:

A = {x ∈K ∣ ϕ(x) ≤ 1}. (A.4)

Proposition A.4.2. The valuation ring of a non-archimedean valuation ϕ on a field K has the
following properties:

1. K=Frac(A);

2. for every x ∈K× we have that x ∈ A or x−1 ∈ A;

3. A is an integrally closed subring of K

4. A is a local ring with unit group A× = {x ∈ K ∣ ϕ(x) = 1} and maximal ideal m = {x ∈
K ∣ ϕ(x) < 1}.
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Definition A.17 (Resideu class field). We call the residue class field of ϕ the quotient k = A/m .

We can complete a valued field in order to obtain a complete field, namely a field where every
Cauchy sequence in it has a limit in it.

Theorem A.4.3. Let K be a valued field and let ϕ be its valuation. There exists a field extension
K ⊂ Kϕ and an extension of ϕ to a valuation on Kϕ such that Kϕ is a complete valued field
containing K as a dense subfield.

Therefore, we can define Qp.
Definition A.18 (Qp). We define the p-adic number field Qp as the completion of Q under the
p-adic valuation ϕp. Its valuation ring is called Zp and its residue class field is the finite field Fp.

We recall that every p-adic number have a unique p-adic expansion. As a matter of facts, if we
set πi = pi and S = {0,1, . . . , p − 1} for K = Qp in the theorem (vedere se citare il teorema) then:

x =
∞

∑
i≫−∞

aip
i, (A.5)

with ai ∈ S, where with i≫∞ we indicate that there are only finitely many i < 0 with ai ≠ 0.
In order to define Cp we have to consider the algebraic closure of Qp and we refer to it as Qp. First
of all, we observe that [Qp ∶ Qp] =∞. In addition, it can be shown that Qp is not complete with
respect to the unique extension of the p-adic valuation.

Definition A.19 (Cp). We define Cp as the completion of Qp with respect to the valuation
mentioned before.

Proposition A.4.4. The field Cp is algebraically closed.

Proof. We will prove it by contradictions. Let us consider the following polynomial f(x) ∶∏ni=1(x−
αi) ∈ Cp[x] and let us suppose that α = α1 is one of its roots in the algebraic closure of Cp. Since
Cp is the completion of Qp, if we consider the polynomial g(x) =∏ni=1(x − βi) ∈ Qp[x] of degree n
whose coefficients are p-adically very close to those of f(x), then g(α)has to be very small, hence
∣α − βi∣ has to be very small for every i ≤ n. As a consequence, if we choose g(x) very close to
f(x) we will obtain that ∣α − βi∣ < ∣α − αi∣ for all 1 ≤ i ≤ n. This implies from the Krasner’s lemma
that Cp(α) ⊆ Cp(βi) for all 1 ≤ i ≤ n. However, βi ∈ Qp since the polynomial g(x) is necessarily
defined over a finite extension of Qp. This implies that Cp(α) = C, hence α ∈ Cp, but this is absurd.
Therefore, Cp is agebraically closed.

A.5 Decomposition group
Let us consider a valuation ϕ on a field K and ψ an extension of ϕ to a finite Galois extension L
of K.

We recall that the completion Lψ is the compositum of its subfields L and Kϕ and Lψ/Kϕ is a
finite Galois extension from Galois theory.

Definition A.20 (Decomposition group). Dψ ∶= Gal(Lψ/Kϕ) is the decomposition group of ψ in
L/K and it can be seen as a subgroup of Gal(L/K) in the following way:

Dψ = {σ ∈ Gal(L/K)∣ ψ(σ(x)) = ψ(x) ∀x ∈ L}. (A.6)

One of the most interesting things is that under certain conditions all the decomposition groups
are conjugate in Gal(L/K).

Proposition A.5.1. Let L/K be a finite Galois extension with group G and X the set of extensions
of a valuation ϕ on K to L. Then G acts transitively on X, and the stabilizer Dϕ ⊂ G of ψ ∈X is
the decomposition group of ψ in L/K. All decomposition groups Dψ of ψ ∈X are conjugate in G.

In particular we have the following proposition.

Proposition A.5.2. If the extension L/K is a finite abelian Galois extension, all decomposition
groups Dψ for ψ ∈X coincide.

In that case, we can speak of the decomposition group Dϕ of ϕ in L/K.
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Appendix B

Background in analytic number
theory

In this section we will recall some basic concepts of analytic number theory. The proofs of these
results could be found in [Von21; Jan21].

B.1 Dirichlet Characters
In this section we will present the Dirichlet Characters.

Definition B.1 (Dirichel character). A Dirichlet character is a multiplicative homomorphism:

χ ∶ (Z/nZ)× → C×.

where (Z/nZ)× = {a ∣ gcd(a,n) = 1}.

Remark B.1.1. We can observe that if n∣m, then χ induces a homomorphism (Z/mZ)× → C× by
composition with the natural map (Z/mZ)× → (Z/nZ)×. Therefore, we could regard χ as being
defined mod m or mod n, since both are essentially the same map.

Definition B.2 (Trivial character). Let χ be a Dirichlet character. If χ(a) = 1 for all a ∈ (Z/nZ)×,
then we call it the trivial character modulo n.

Let χ be a character mod n and d a positive divisor of n.

Definition B.3. We say that χ is induced by a character χ′ mod d if

χ(a) = χ′(a) for every a ∈ (Z/nZ)×.

Definition B.4 (Conductor of a character). We define the conductor of χ as the smallest positive
divisor d of n such that χ is induced by a character mod d. We indicate this conductor with fχ.

Definition B.5 (Primitive character). A character χ is called primitive if there is no divisor d < n
of n such that χ is induced by a character mod d. In other words, χ has conductor n i.e. it is
defined modulo its conductor.

We define the product of two Dirichlet characters.

Definition B.6 (Product of characters). Let χ and ψ be Dirichlet characters of conductors fχ
and fψ. We define χψ as follows. Considered the homomorphism:

φ ∶ (Z/lcm(fχ, fψ)Z)× → C×

defined by φ(a) = χ(a)ψ(a). Then χψ is the primitive character associated to φ.

Remark B.1.2. Observe that if gdc(fχ, fψ) = 1 then fχψ = fχfψ.

39
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We define an odd character and an even character.

Definition B.7. We define a Dirichlet character χ to be even if χ(−1) = 1.
We define a Dirichlet character χ to be odd if χ(−1) = −1.

We conclude this section with the following theorem.

Theorem B.1.3. The number of Dirichlet characters mod n are φ(n).

B.2 Dedekind zeta function
The Dedekind zeta-function ζK of a number field K is a complex analytic function that encodes a
lot of fundamental information on the number field.

First of all, if K = Q the Dedekind zeta-function is the Riemann zeta function.

Definition B.8 (Riemann zeta function). The Riemann zeta function is a complex analytic func-
tion which is defined on the complex right half-plane R(t) > 1 by the formula:

ζ(t) =
∞

∑
n=1

n−t.

If we consider the generic case where K is a number field, we have the following definition.

Definition B.9 (Dedekind zeta-function). The Dedekind zeta-function ζK of a number field K is
a complex analytic function defined as:

ζK(t) = ∑
I≠0

(Norm(I))−t.

where the sum ranges over all non-zero ideals I ⊂ OK of the ring of integers OK of K.

We indicate with Norm(I) the absolute norm of I, which is the index [OK ∶ I], i.e. the
cardinality of OK/I.

We recall that:

Theorem B.2.1. Every number ring is a Dedekind domain.

Corollary B.2.2. The ideal classes in a Dedekind domain form a group.

Theorem B.2.3. Every ideal in a Dedekind domain R is uniquely representable as a product of
prime ideals.

Corollary B.2.4. The ideals in a number ring factor uniquely into prime ideals.

We recall that the convergence properties of the sum are just as for the Riemann zeta function,
and it has a representation as an Euler product over prime ideals, as follows.

Theorem B.2.5. Let t ∈ C be a complex number with R(t) > 1. Then we have an identity:

ζK(t) = ∑
I≠0

(Norm(I))−t =∏
p

(1 −Norm(p)−t)−1.

in which the sum over I ≠ 0 and the Euler product over p are absolutely convergent. The function
ζK is a holomorphic function without zeroes in the half plane R(t) > 1.

B.3 Class number formula
We recall that the sum in the definition of the Dedekind zeta function B.9 diverges for t = 1 it does
have a meromorphic continuation to the left of the half space R(t) > 1 such that t = 1 becomes a
simple pole for this extended function.
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Theorem B.3.1 (Class number formula). Let K be a number field of degree n with r real and
2s complex embeddings. Then the zeta-function ζK of K admits a meromorphic extension to the
half-plane R(t) > 1 − 1/n. It is holomorphic except for a single pole at t = 1 with residue:

rest=1 ζK(t) =
2r(2π)shKRK

wK
√
DK

. (B.1)

Where hK is the class number of K, RK is the regulator of K, wK is the number of roots of unit
in K and DK is the discriminant of K.

We recall two invariant of K.

Definition B.10 (Class number). The class number hK of a number field K is the order of the
ideal class group of its ring of integers OK .

Remark B.3.2. A number field K has class number 1 if and only if OK is a principal ideal domain
and thus a unique factorization domain.

Definition B.11 (Regulator ofK). The regulator ofK is obtained by choosing a system ε1, . . . , εr+s−1
of generators for the units of K modulo torsion and by taking the determinant of an (r+s−1)×(r+
s − 1) matrix of logarithms of these units relative to any set σ1, . . . , σr+s−1 of distinct embeddings
of K into R or C:

RK ∶= det(log ∣σj(εi)∣)1≤i,j≤r+s−1.

B.4 Dirichlet L-series
In this section, we will present the Dirichlet L-functions.

Definition B.12 (Dirichlet series). Let f be an arithmetic function i.e. a function f ∶ Z>0 → C.
The Dirichlet series associated to f is:

Lf(t) =
∞

∑
n=1

f(n)n−t,

where t is a complex variable.

Theorem B.4.1. There exists a number σ0(f) with −∞ ≤ σ0(f) ≤ ∞ such that Lf(t) converges
for all t ∈ C with R(t) > σ0(f) and diverges for all t ∈ C with R(t) < σ0(f).
Moreover, if σ0(f) <∞, then for t ∈ C with R(t) > σ0(f) the function Lf is analytic, and:

L
(k)
f (t) =

∞

∑
n=1

f(n)(− logn)kn−t for k ≥ 1.

Definition B.13 (Abscissa of convergence). The number σ0(f) is called the abscissa of conver-
gence of Lf .

We recall two important kinds of arithmetic functions.

Definition B.14 (Multiplicative function). A multiplicative function is an arithmetic function f
s.t. f /≡ 0 and f(nm) = f(m)f(n) for all positive integers with gcd(m,n) = 1.

A strongly multiplicative function is an arithmetic function f with the property that f /≡ 0 and
f(nm) = f(m)f(n) for all integers m,n.

Theorem B.4.2. Let f be a multiplicative function. Let t ∈ C be such that Lf(t) = ∑∞n=1 f(n)n
−t

converges absolutely. Then:

Lf(t) =∏
p

(
∞

∑
j=0

f(pj)p−jt).

Further, Lf(t) ≠ 0 as soon as ∑∞j=0 f(p
j)p−jt ≠ 0 for every prime p.
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Corollary B.4.3. Let f be a strongly multiplicative function. Let t ∈ C be such that Lf(t) converges
absolutely. Then

Lf(t) =∏
p

1

1 − f(p)p−s
.

Further Lf(t) ≠ 0.

Remark B.4.4. For t ∈ C with R(t) > 1 we have:

ζ(t) =
∞

∑
n=1

n−t =∏
p

(1 − p−t)−1.

Now, we will be focusing on the Dirichlet characters. We recall that a Dirichlet character can
be seen as an arithmetic function.

Definition B.15. The L-series of a Dirichlet character χ modulo n is defined by:

L(t, χ) =
∞

∑
n=1

χ(n)n−t, R(t) > 1.

Remark B.4.5. We can view ζ(t) = ∑
∞
n=1 n

−t as the L-series of the principal character modulo 1.

Since χ is a strongly multiplicative arithmetic function, we have the following theorem.

Theorem B.4.6. The L-series of a Dirichlet character χ modulo n has the following convergent
Euler product expansion:

L(t, χ) =∏
p

(1 − χ(p)p−t)−1.
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