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Abstract

In ambito ingegneristico le analisi CFD stanno sempre piú sostituendo le prove sper-
imentali grazie all’aumento della potenza di calcolo e ai vantaggi che queste analisi
comportano, tra cui, l’abbattimento di costi e di tempi.
Lo studio dei comportamenti di un fluido in un condotto a direttrice curvilinea sono
stati oggetto di diverse recenti ricerche come quelle di D’Ambros [9], Rigobello [31] e
Tridello [35], che si sono concentrate sull’implementazione di loop di ottimizzazione.
La ricerca presentata in questa tesi risulta la naturale continuazione delle ricerche
precedentemente citate. Infatti, l’obiettivo rimane sempre quello di cercare delle forme
ottimizzate ma tenendo conto dello studio delle incertezze. Ció implica la realizzazione
di una cosiddetta ”robust optimization”.
Lo studio delle incertezze e in particolare la propagazione di queste é un argomento
molto complesso e in letteratura si possono trovare diverse strategie per il relativo cal-
colo. In particolare, in questo lavoro sono state scelte due tecniche diverse tra loro ma
entrambe facenti parte delle tecniche non intrusive del polynomial chaos: la non intru-
sive point collocation e la non intrusive spectral projection. I risultati delle due tecniche
sono stati messi a confronto tra loro. Inoltre é stata effettuata una comparazione tra
i risultati ottenuti dalle due robust optimization con quelli ottenuti da D’Ambros [9]
con una non robust optimization.
La seconda parte della ricerca é legata all’adattamento dell’S-duct, precedentememte
studiata, alle dimensioni e alle condizioni al contorno che il compressore transonico
rotor67 necessita per lavorare correttamente. Nello specifico, due ottimizzazioni non
robust sono state effettuate, una con le stesse funzioni obiettivo utilizzate nelle ricerche
di [35] [9] [31], e l’altra considerando l’indice di distorsione DC60 come una delle fun-
zioni obiettivo. Gli scopi di questa seconda parte sono stati quelli di trovare soluzioni
ottimizzate con queste diverse soluzioni al contorno e fornire i design piú significativi
a [36] che ha collegato con il rotore in modo da calcolare quanto le performance del
rotore migliorino al variare della forma del condotto S-duct.
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Introduction

In the recent period Computational Fluid Dynamics (CFD) analysis has become in-
creasingly important and widespread in the engineering world.
In this context, the study of the behaviour of the flow in an S-duct intake has been
conducted, following the line of previous studies performed by Tridello [35], Rigobello
[31] and D’Ambros [9]. In particular, the aim of all these above mentioned researches
has been to optimize the shape of the duct in order to improve its performance. Our
project is meant as the natural prosecution of these works: in fact, the main purpose
here has been to optimize the S-duct including a study of the uncertainties. In the
first chapter, an overview of the state-of-the-art has been given with all the main phys-
ical peculiarities and problems behind the studies of an S-duct. Moreover, the key
researches from which this thesis has its fundamentals have been highlighted. Specif-
ically, the most important reference works have been D’Ambros [9], Delot [10] and
Wellborn [39].
In the second chapter the theoretical characteristics of the Multi Objective Optimiza-
tion and in particular the algorithm Multi Objective Tabu Search (MOTS)has been
discussed, which has been used in this thesis.
In the third chapter has been underlined the complex task of the uncertainties quantifi-
cation. Also, the entire theoretical overview and some of the most common techniques
and examples have been presented. Eventually, practical schemes of two techniques
have been reported as a good starting point for future researches.
In chapter four, the case study has been explained and in particular, the geometry, the
parametrization, the mesh, the cfd analysis and the uncertainty taken into account.
In particular, the geometry that we studied is the one utilized in Wellborn experiment
[39], and Delot [10], whereas the parameterization is the same used in D’Ambros [9].
The objective function that was taken into account was the same already considered
in the researches previously quoted: the CP and the average Swirl angle, both of them
computed at the AIP surface.
As said before, the main difference between this work and the previous ones is that the
optimization loop has been changed from a non robust to a robust optimization one,
and this implies that the study of the uncertainty is needed.
As a matter of fact, the study of the uncertainties is the basis of the robust optimiza-
tion. The outcome of this is that the designs that we obtain have resulted to have
parameters of performance more stable with respect to the design found in the non
robust optimization.
In order to realize this robust optimization loop, the input and the output become
stochastic values, with their own mean value and their own probability density func-
tion. In fact, on one side, the input variables are depending on the number and the
behaviour of the uncertainty parameters, on the other side, the output variables have
to be computed.
For what concerns the uncertainty parameter, in this specific thesis has been imple-
mented the inlet velocity, with a gaussian distribution and a standard deviation of 10.
Instead, with respect to the output parameters, an uncertainty quantification has been
necessary. The uncertainty quantification is a complex task and several techniques
have been studied in order to take into account them. Specifically, in this thesis, an
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overview of the main techniques has been performed and two non intrusive polynomial
chaos techniques have been used: the non intrusive point collocation and the non in-
trusive spectral projection.
In the fifth chapter, all the results have been disclosed, and in particular, the results of
the two different optimizations with the two techniques NISP and NIPC are compared
in order to understand similarities and differences.
A further comparison has been realized also between the results collected with the
robust and the non robust optimization that has been performed by D’Ambros [9], to
comprehend and highlight the differences and the common points.
In chapter six has been discussed the other case study used in this thesis: the S-duct of
Wellborn readjusted according to the boundary condition that a rotor67 needs to work
properly. The modifications with respect to the previous methods are the dimensions
of the geometry and the boundary conditions.
With this new geometry two non robust optimizations with different couples of objec-
tive functions have been conducted: one with the CP and the swirl angle, whereas the
other one with the CP and the DC60.
The latter parameter is a discontinuity point with respect to the previous researches
but it has been used often in other works as in the one of Garavello [15].
The main goals of these optimization have been the following: finding several optimized
shapes in order to understand how much the value of the parameters can change with
different boundary constraints, giving these deformed shape to Tridente [36] in order to
see how an optimized shape can increase the performance of the rotor67, understanding
which parameter between the DC60 and the swirl influences more the efficiency of the
rotor.
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Chapter 1

1 S-duct state-of-the-art

1.1 S-duct flow physics

The first step of this thesis is to understand the physics of the problem, in particular the

main characteristics of a subsonic flow in an S-duct intake. This is a fundamental part

in order to understand the issues and also the goals that we have to take into account

in this project. The S-duct intakes are so called because they are characterized by a

bended shape. This particular shape creates many non-uniformities: total pressure,

swirl angle and total temperature. The latter is not interesting for us since it is relevant

only for military goals.

1.1.1 Total Pressure losses

The definition of the total pressure is: the pressure value when the fluid element is

brought to rest isentropically [3]. The total pressure is the sum of the dynamic and

the static pressure.

Ptot = Pstatic +
1

2
ρv2 (1)

In an S-duct in-take, the total pressure losses are caused by the presence of two

different separated regions. The first one is due to the growth of the cross-section,

whereas the second one is due to the bending. The definition of a separated region

is: the detachment of the boundary layer from the wall, due to the adverse pressure

gradient which is created by the increasing cross-section area. The presence of the

gradient pression generates a reverse flow and a vortex. The latter can be seen in the

symmetry plane of the duct.

In the figure 1 below, the streamflow is hindered by the vortex and, as a consequence,

the velocity increases, the low-energy regions are conveyed towards the center, which

determines a downturn of the uniformity and the magnitude of the pressure distibuition.

For this reason, the pressure losses are a fundamental parameter to understand how

good is an In-take. These losses are described by a parameter called Pressure Recovery

(PR), that is defined as follows:

PR =
PTot,Out
PTot,In

(2)

1



Figure 1: Vortex in S-duct symmetry plane

This value permits, on one side, to perceive the general behaviour of the flow,however,

on the other side, it is not able to indicate exactly where these events are located.

1.1.2 Swirl

Swirl is a parameter that determines the distortion of the flow. In fact, considering

cylindrical coordinates it is possible to divided the velocity vector in the tangential and

the axial components and the swirl is defined as follow:

α = arctan
Vθ,AIP
Vz,AIP

(3)

From the previous definition it is easy to understand why the swirl represents the

distortion of the flow. In fact, it is the angle between the local velocity vector and

the normal vector in the AIP plane. In the figure 2 it is possible to see a schematic

representation of the swirl angle. According to the literature it is considered positive

if it has the same direction of the rotation of the compressor. Moreover, the swirl is a

Figure 2: Swirl and velocity components

fundamental parameter in the study of an S-duct, as a matter of fact it is written in [33]

2



”Instances have occured of engines surging in flight because the angle of swirl,in the

absence of inlet guide vanes, has been sufficient to stall the compressor. The problem

is associated specifically with installations in which the engine is carried in the aircraft

fuselage and the intake is located in an offset position, necessitating thereby a double-

bend or S-shaped duct.” It is necessary to specify that exist several typologies of swirl

which are identified as follows: paried, bulk, cross-flow and tightly-wound swirl.

- Bulk swirl

Bulk swirl occurs when the entire flow in the AIP is rotating in the same direction

as it is represented in Figure 3 . If the flow is rotating in the same direction of the

engine rotation it is called co-swirl, otherwise (which means if in the opposite direction

of the engine rotation) is called counter-swirl.[14] This typology of swirl is due to the

Figure 3: Bulk swirl

presence of a non-axis symmetrical total pressure gradient of the S-bend flow [8], [35].

- Paired swirl

The paired swirl consists of two or more paired vortices rotating in opposite directions.

[13] It is possible to see the typical behaviour of this phenomenon in the figure below

4. Moreover, it is crucial to make another distinction. As a matter of fact if the

magnitude of the vortex is equal, this phenomenon is called twin swirl, whereas if it

not equal, it is called offset paired swirl. To explain how this type of swirl, which is the

most relevant, takes place, there are two alternatives. The first is due to the vorticity

vector that is turned by the duct shape, which at the end creates a flow rotation. The

3



Figure 4: Paired swirl

second explanation is due to the pressure gradient and the momentum. To clarify it

more precisely, it is useful to take a look at the figure below 5 that visibly exemplifies

what happened. Taking into account the ideal conditions, as written in [37], in the low

area there is an increasing static pressure for two reasons: the first is the growing of

the radius, and the second is the balancing of the centrifugal forces. If we remove the

hypothesis of the ideal conditions, the boundaries layers conditions have to be treated,

and so how they influence the velocity of the flow. This velocity is equal to zero at the

walls, and it is maximum in the flow core, therefore the natural consequence is that

even the momentum distribution is either not uniform. [37]

Figure 5: Paired swirl

There is a blending of a high velocity and low velocity which is the reason of the

two counter-rotating vortexes. De facto, on one hand, when the high velocity flow,

that is in the core of the duct, is going through the bend, it tries to maintain the

position, thanks to the higher momentum, until it finds the upper wall; on the other

hand, the low velocity, that is located near the walls, whenever it finds the adverse

pressure gradient region, slips around the walls towards the inside part of the bend.

4



- Cross Swirl

Now we are going to define another type of swirl called cross swirl. This peculiar

swirl is a typology which is very close to the paired swirl just previously described.

However, the main difference is that the velocity is uniform in the cross flow direction.

[35]. As we can see written in [26], it is common to find this type of swirl in straight inlet

ducts with the flow directions normal to the motion of the aircraft as it is illustrated

in Figure 6. Usually, it can be observed in lift fans.

Figure 6: Cross flow swirl

- Tightly-Wound Vortex

It is essential to make a further consideration: this typology of swirl is created by

several mechanisms, but all of them are characterized by three common elements that

are: a stagnation point, a source of vorticity in the surrounding flow field and a flow

sink. The figures 7 and 8 exemplify two examples of what just explained. Specifically,

in the first one we can see the stagnation point and the flow sink in the ground. In

the second figure, the upstream disturbances in the flow field are the reason of the

ingestion of fuselage and wing tip vortices.

Figure 7: Ground vortex ingestion
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Figure 8: Tightly-wound vortices sucked from the fuselage body

1.1.3 The distortion and DC60

The distortion according to [33], is the variation of the total pressure across the engine

face. It is fundamental to remind that exists different classifications of the total pressure

distortions. Indeed, we can find the so called steady and time variant, and the latter

could be further divided into spatially non-uniform and spatially uniform. We have to

clarify that is possible to compute the distortion in several ways, however, one of the

most used ones is the well-known DC(θ). The DC(θ) is a distortion parameter that has

Figure 9: Example of DC60 [1]

been derived by Rolls Royce and used extensively in the European fighter programs

TORNADO (Stocks and Bissinger, 1981) and Eurofighter (Bissinger and Jost, 2000)

as reported by [5]. It is defined as follows:

DCθ =
Ptot,AIP − Ptot,θ

qf,AIP
(4)

Where Ptot,θ is the minimum mean total pressure of all sectors of the extent in the AIP

(so it correspond to the worst sector), Ptot,AIP and qf,AIP are the mean total pressure

and the dynamic head, respectively, at AIP. θ is the angular value of the sector and

60◦ is the value that is most used.
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In the figure 9 it is possible to see an example of an AIP surface divided by the θ angle

equal to 60◦ and also the representations of the curves of the pressure ratio.

1.1 Historical review

The S-duct intakes have been studied in multiple ways, in fact they are usually applied

in both civil and military vehicles. In the early studies were mainly involved prototype

construction that had to be tested. As we can imagine, this methodology was very

onerous in terms of both time and money resources. Therefore, in the last decade,all the

studies are based on CFD simulations.The CFD simulations are basically a method that

emules the physical system thanks to mathematical models previously validated. Under

this perspective it is relevant , particularly in this context, to review the experiment of

Wellborn in 1993 [39] and the CFD analysis conducted by Delot [10], which both have

been the milestones for several following researches.

1.2.3 Wellborn experiment

Specifically, the experimental investigation performed by Wellborn had the goal to

provide a comprehensive benchmark data set for the compressible flow through a rep-

resentative diffusing S-duct. Hence, as Wellborn himself reported in [39], even the

details of the flow separation region and the mechanisms which drive this complicated

flow phenomenon were both deeply investigated. Therefore, for this thesis the above-

mentioned work is fundamental since it give us the data that are useful to validate the

CFD simulations.

To clarify, the facility that was used by Wellborn is briefly schematized in figure 10.

We can notice, there are three mains parts: the settling chamber, the test section and

Figure 10: Wellborn facility

the exhaust region.

In the settling chamber we can find a perforated spreader cone that mixes the flow.
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Then, the flow finds a coarse mesh conditioning screen that reduces the non-uniformities.

Eventually, the flow finds an honeycomb-screen, that removes the large scale turbu-

lence fluctuations,that is followed by a reduction of the area.

The second part as previously cited is the test section, that can be easily described.

Indeed, it can be divided in three parts: the S-duct, and two additional parts with a

constant area, that are located before and after the duct.

The last section is the so called exhaust region, which is composed by a circular pipe,

a mass flow plug and a sub-atmospheric plenum. The purpose of this component is to

delete the influences of the exhaust plenum on the test section.

The following figure 11 illustrates the geometry of the S-duct. The cross section areas

Figure 11: Wellborn S-duct geometry [39]

that are normal to the centerline are circular. Moreover, the centerline is established

by a function of two planar circular areas with exactly the same value of R =102.1cm

and subteanded angles of θmax/2 that is equal to 30◦. The duct inlet radius, r1, was

10.21 cm, the exit one, r2, was 12.57 cm, which produce an area ratio of 1.52. However,

in the following chapters the geometry will be explained in detail.

All the data were computed on five planes with the help of 220 static pressure taps

spreaded on the surface of the duct.

This experiment has highlighted severals behaviors of the flow; the presence of a sep-

arated region in correspondence to the first band, that develop in vortexes in the

symmetry plane and in two counter-rotating vortices at the AIP surface. The pres-

ence of the secondary flows creates several total pressure losses. The other aspect that

Wellborn enunciated is that the flow remain symmetric.In the figure 12 it is evident
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how the boundary layer detaches off the walls. Moreover, it is evident in the Plane E,

that the two vortices convey the fluid with the low momentum towards the center. As

a result, there is a decrease in the magnitude of the pressure and the velocity.

Figure 12: Wellborn Total pressure in several planes [39]

1.2.4 CFD analysis

-Delot CFD analysis

The Delot analysis, conducted in 2006, which is essential for this research, based her

study on Wellborn’s S-duct and in figure 13, is illustrated the geometry.

The investigation consisted in a series of computational tests, performed in order to

Figure 13: S-duct geometry used by Delot

define which was the best way to reproduce the real flow. She tried to change meshes,
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solver code and turbulence models. For the purpose of our analysis it is crucial to

remind an important statement that she postulated after her researches: the fluent

solver well represents the separated region and the low pressure region, but the PR

coefficient is higher than the one of the real flow.

-Recent CFD analysis

The goal of this paragraph is to give evidence of all the recent CDF analysis that deeply

examined the S-duct with Wellborn’s geometry. Specifically, there are a series of con-

secutive researches made by: Marco Barison [4], Enrico Manca [24], L. Guglielmi[18],

Rigobello Aurora, R.Tridello [31] and Alessio D’ Ambros [9]. In their studies they

investigated the behaviour of the optimization with different typologies of algorithms

or with a change in the number of the decision variables. In particular, most of them

used as objective functions α and 1-PR. For the purpose of this investigation, the most

important source is the one performed by Alessio D’ Ambros, which is also the most

recent.

Precisely, his research consisted in the optimization of the Wellborn’s geometry con-

sidering two objective functions: the pressure losses and the swirl. It is important

to remind how this author proceeded: the geometry management has been controlled

with the Free-Form Deformation (FFD) technique, whereas the analysis of the flow

has been performed using the steady-state computational fluid dynamics (CFD). Fur-

thermore, the exploration of the design space has been achieved utilising the heuristic

optimization algorithm Tabu Search (MOTS) [9]. The analys succeeded to obtain very

trustworthy and significant results as reported in Table 3. We can indeed make fur-

Table 1: A.D’Ambros’ s results

Individual CP Improvement α(deg) Improvement
Baseline 0.0294 - 4.8511 -
optCP 0.0252 14.3% 3.2560 32.9%
opt1 0.0261 11.2% 2.5216 48.0%
opt2 0.0262 10.9% 1.9972 58.8%
opt3 0.00264 10.2% 1.9713 59.4%
optα 0.0275 6.5% 1.4109 70.0%

ther considerations. As a matter of fact, the two most important results of this work

are, on one hand the huge reduction of the value of swirl and, on the other hand the

parametrization that D’Ambros implemented. In fact, with respect to the previous

studies he had the intuition of changing the position of the controls points and this

variation was the cause of the good results obtained. De facto, this has been funda-

mental for this research since it was decided to adopt the same technique.
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1.3 Recent researches

The main requirements for the next generation of propulsion systems in aeronautics

are basically two: on one side to increase the efficiency, and on the other side to

ameliorate the environmental compatibility. In order to reach these above-mentioned

improvements, which are above all fundamental, nowadays exist two studies: the so

called Boundary Layer In-gesting and the Transonic compressor.

1.3.1 Boundary Layer In-gesting

In order to reduce the Thrust-specific fuel consumption (TSFC) of the engine, recently

a lot of researches conducted by Boeing [23] studied, and though keep going studying,

the Boundary Layer In-gesting. This produces the thrust from the boundary layer that

is created thanks to the presence of the fuselage, and, the latter, influences the stream

flow. The main difference between the standard engine and the BLI engine is that in

the second one the first stage of the compressor receives a distorted flow. The main

consequence is the re-energizing of the aircraft wake, which means that less kinetic

energy will be wasted. What just affirmed is shown in figure 14.

Figure 14: BLI and kinetic energy will be wasted

1.3.2 Transonic compressor

The transonic axial compressor is nowadays considered the future of the compressors, in

fact, the pressure ratio that these typology of compressors can archive is 1.8-1.9, which

is largely much more than the subsonic compressor, which usually fluctuates between

1.2 and 1.3. In this way, the efficiency is about 90%. These results are notable since the

increased pressure ration permits to obtain a sensible reduction of the dimensions of

the engine and so a reduction in the production costs. These achievements are possible

because a transonic compressor is a compressor in which the inlet relative Mach number

11



is bigger than 1, and the outlet relative Mach number is less than 1.

However, the main drawback is linked to the complexity of the flow field, as it is possible

to see in figure15 , where we can find some oblique shock waves that are located in

the rotor. The presence of the shock waves is the reason why the axial compressor can

Figure 15: oblique shock waves in transonic compressor

reach high level of pressure ratio, and, in figure 16, are illustrated some Normal shock

parameters, and it is possible to see how, if the Mach number is less than 2, the ratio
Ptot1
Ptot2

decreases slow compared to the increase of the ratio P1

P2
.

-Rotor 67

The Rotor67 is a transonic compressor that has been developed by the NASA. This

peculiar rotor has been studied in several researches, in particular, all of them usually

conducted to find an optimization of the blade. These studies permit to have enough

information to recreate a high fidelity model. The data of this model are reported in

the table 2.
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Figure 16: Normal shock parameter

Table 2: Rotor 67 parameters

Parameter Value
Compression Ration(PR) 1.63

Mass Flow Rate 33.25 [kg/s]
Rotational Velocity 16043 [rpm]

Tip Velocity 429 [m/s]
M at inlet 1.38

Number of Blades 22
Inlet Diameter 51.4 [cm]

Outlet Diameter 48.5[cm]
Shroud Tip 0.1016[cm]
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Chapter 2

2 Multi-Objective Optimization

This chapter is going to deeply described the main characteristics and peculiarities of a

Multi optimization process. Nevertheless, before starting to analyse in details this kind

of optimization it is useful to remind what is the process itself. Indeed, an optimization

is a procedure that it is employed in many different fields of application: e.g. economics,

engineering, logistic, etc.... The fundamental idea behind it is to increase the efficiency

of the subject of the analysis. In order to do that, you have to model this subject of the

analysis as a function and, as defined by Ciara Pike-Burke in [30], you have to maximize

or minimize the function (e.g. maximizing the profit or minimizing the environmental

impact) subjected to a set of constraints. However, in many situations, the decision

makers might find themselves in the position of wanting to optimize several different

objective functions at the same time. As a consequence, this leads to the necessity to

compute Multi-Objective Optimization (MOO). The underlying difference between the

single objective function and the MOO, is that the latter does not provide an optimal

solution that can ensure that all the objective functions are optimized. In fact, it may

usually happened that there are two o three objectives and many constraints, and this

means that the decision variable is not free to change.

2.1 Examples of Multi-Objective Optimization

In a MOOP, as already anticipated, is not easy to understand what constitutes an

optimal solution. As a matter of fact, it can happen that a solution might be optimal

for one objective function but, not for another. In order to clarify just what affirmed,

it can be very useful to write the following mathematical expression:

Find X = x1,.....,xn that

Minimize fj(x)j = 1, ....m

subject to:

gl ≥ 0 ∀l = 1, ....., L

hk = 0∀k = 1, ....., K .

xiL < xi < xiU ∀i = 1, ...., n

gl and hk are constraints, whereas fj(x) are objective functions. This mathematical

concept is well illustrated in figure 17. As we can see, in the axis of the figure there are

the two objective functions, moreover, the lines that are called ”side constraints” are
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the constraints, and they are fundamental, since they impose the boundaries for each

project parameter.

Figure 17: MOOP example

-Dominace concept

Lets going now to analyze the concept of dominance. In particular, the definition

of dominance, as reported in [35], is the following : in a minimization problem the

solution A dominates a solution B. Therefore, if these statements are verified:

• The solution A is not worst then the solution B in each objective function. What

just asserted means fj(A) ≤ fj(B) ∀j = 1, .....,m where m is the number of the

objective functions.

• The solution A is strictly better then the solution B, in at least one objective

function. As a consequence, this means that fk(A) < fk(B) for at least one k in

1, ....m

. If neither A dominates B nor the opposite, this means that both are non-dominated

solutions. The figure 18 helps to clarify the comprehension of what just asserted, where

f1 and f2 are the objective functions. The non dominated points are chosen and are
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Figure 18: Pareto front example

considered optimal, in fact all this points have the peculiarity that if one objective

function improves, the other has to become worst.

There are other two parameters that are fundamental and that are deeply linked to

the dominant concept:

• Pareto Optimal Set: it is the subspace of the decision variable domain, so it

is the set of non-dominated solutions

• Pareto Front: it is the image of the Pareto optimal set, it contains all the

non-dominated solutions.

2.2 Optimization Algorithms

In an optimization, a key rule is played by the optimization algorithm. The aim of

the algorithm is to decide how to change the decision variable in order to find better

solutions. Exist different typologies of algorithm that, according to EL-Sherbeny, [11],

can be divided into:

• exact algorithms : the aim of this code is trying to find the exact mathematical

solution. Most of the time, these algorithms are not easy to be implemented, and

the difficulties increase with the increment of the complexity of the problem.

Another problem is the time they required in order to be programmed.

• heuristic algorithm: this typology of code attempts to individuate immediately

a solution that can be sufficient for the purpose. The problem of this kind of

algorithm is that the solution is usually coarse and so, improvable.
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• metaheuristic algorithms:In this algorithm the decision of how change the

decision variable is guided by a strategy, that explore the design space, and that

try to be as efficient as possible.

As said before, it is very common the situation of non existence of a point with both

the objective functions with the minimum value. As a consequence, it is necessary a

decision maker, that is the criterion that expresses a preference between two objective

functions or choose a compromise.

Due to the different role inside the algorithm of the decision maker, another classifica-

tion is made by Miettinen [6]

• non-preference methods: the compromise is selected randomly, which basi-

cally means without any strategy.

• a priori method: the decision maker selects as compromise solution on the base

on a strategy selected a priori, so without waiting the results of the simulations.

However, the main problem with this type of method is that it may have too

optimistic or too pessimistic expectations, because the decision maker unknows

the results.

• a posteriori method: the decision maker in this typology of algorithm makes

an overview of the results before choosing the solutions. In order to do that, it is

created a Pareto-optimal set, as it is possible to see in the figure 19. The main

advantage is the acquisition of consciousness in the choice, but the drawback is

the computational time that is requested.

• interactive methods: these particular systems permit the interaction during

the running of the simulation. In this way, it is possible to guide the solution in

order to obtain the desired solution.

In this research the meta-heuristic and the posteriori method has been used, and, to

be specific, the Multi-objective Tabu Search that we are going to analyse in detail in

the next paragraph.

2.3 Multi-objective Tabu Search

The Multi-objective Tabu Search was born in 1989 thanks to the work of Glover

[17].This strategy is implemented to explore the design space with the use of three

type of memories as it is represented in figure 20. Moreover, this method has already

been tested in previous works such as [9] , [31] and [35] and its behaviour resulted to

be accurate and at the same time efficient. We have to clarify that the Tabu search is
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Figure 19: Pareto-optimal set

not unique, in fact, exist many variants of it, and, in this work, the alternative cho-

sen has been proposed by Kipouros [21] and the software that he developed is called

Multi-objective Tabu search (MOTS).

Figure 20: MOTS memories

2.3.1 Tabu Search Memories

In this section we are going to add further in-depth information of the Tabu algorithms.

This peculiar typology of algorithm employs three different memories.

• Short Term Memory: this is the memory that records all the recent points,
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that are considered as tabu. Specifically, when a point is a tabu point, it signifies

that this point can not be visited again.

• Medium Term Memory: this is where are recorded all the points of the Pareto

optimal set, and also the output of the analysis. In this memory are stored the

points that are used as starting points for the intensification move. As a result,

this implies that if the research finds a worst result with respect to the starting

point, the following research will start from the actual Pareto-optimal.

• Long Term Memory: this memory contains all the points from the beginning.

The main aim of this stage is to obtain a diversification move. This move is

necessary when the intensification move fails, and the research has to shift in the

other designed space.

2.3.2 Hooke and Jeeves Local Search

Tabu Search is based on the Hooke and Jeeve moves, for what concerns the local search.

Every time that an iteration is realized, 2nvar new points are created systematically

by the optimizer with nvar as design variables. In particular, to originate these points,

the MOTS optimizer uses a step that is decided by the user, to increase (xi + δi) or

decrease (xi− δi) the variable value. Once obtained what just explained, there are the

evaluations of all the objective functions for all the non tabu points. The point xi+1

that results better than the others, it will be the new starting point for the following

step. It may happen that, after the evaluations, more than one non-dominated points

are created. As a consequence, one of them will be choose randomly, whilst the other

will be recorded in the Medium Term Memory. In the Figure below 21 is represented

the Flow diagram of the MOTS algorithm that has been adopted in this work.

2.3.3 Robust optimisation

Lets now discuss about the role of the robust optimization. As previously reminded,

the aim of an optimization is to find the maximum or the minimum value for the

objective functions. However,one of the problem that can occur is that usually the

optimal design is really sensitive to small variations of any geometry or boundaries

conditions. If this happens, and so these variations occur, it may happen that the

value of the objective functions drastically change. In order to reduce this huge change

of value it is necessary to take into account the presence of uncertainty. The uncertainty

exists in almost every parameters of a project and, of course, is also unpredictable. In

order to better understand what just explained, in figure 22 it is illustrated the plot

of a generic objective function, with δ that is the variation of the input variable and
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Figure 21: The Flow diagram of the MOTS algorithm
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∆ and ∆′ that are the variation of value of the objective function. Here it is clear the

huge difference between these two values. So, lets finally discuss about the purpose

of a robust optimization: finding the result B , that could be, in the global view, the

most stable, even though not the best. To study this typology of optimization severals

Figure 22: The effect of uncertainties on the objective function

method can be utilized, as reported in [25] and that we are going to explain in detail:

• expectation measure: in this typology, the value of the objective function is

averaged in the neighborhood of the solution. In this way, the value is not the

punctual one of the objective function.

• variance measure: in this case, the process is identically equal to the original

optimization, but with the difference that there is a constraint in the value of the

variance. In fact, if the objective function exceeds a value that is defined by the

user, the solution is not more available.

• hybrids In this case, the expected measure is found computing an average

weighted on the importance of the neighbourhoods distributions computed on

the objective functions [25].
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The scheme that is used in this work, is a variation of the variance measure already

utilized in [27] and [25]; where it is considered as objective function the standard

deviation and the mean of variable that is taken into consideration. In this specific

case, the optimization results inevitably a multi-objective optimization, as a matter of

fact, if I have only one variable, still I will have his mean and standard deviation as

objective function. The standard deviation is a value that could be minimized anyway,

whereas, the mean could be maximized or minimized depending on the particular

simulation. The main positive peculiarity of this approach is a more detailed overview

of the problem, but the drawback is that the process needs an efficient and precise tool

in order to compute stochastic properties and to model uncertainty. This models will

be discussed in the next chapter.
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Chapter 3

3 Uncertainty quantification

In the recent period, CFD analysis has become very useful and convenient, mainly due

to the improvements in terms of computational power, which permits to simulate more

complex systems. However, it is inevitable that, in order to simulate the reality, some

errors and uncertainties remain. For this reason, in [38], they underline the definition

of uncertainties and errors, made by AIAA:

• Error: a recognisable deficiency in any phase or activity of modelling and simu-

lation that is not due to lack of knowledge.

• Uncertainty: a potential deficiency in any phase or activity of the modelling

process that is due to lack of knowledge.

Both elements can be divided in other subcategories. In fact, as reported in [28], the

error can be acknowledged or unacknowledged. The first typology is linked for instance

to the finite precision of a PC. Moreover, this type of errors are usually accepted

because, they are very tiny and, furthermore, they need an excessive amount of time

in order to fix them. The errors called unacknowledged are errors that can be found

as mistakes in the code.

Uncertainties can be divided into epistemic and aleatory.

• Epistemic: epistemic uncertainty, is exactly what the AIAA means as uncer-

tainty, so where there is a potential deficiency that is due to a lack of knowl-

edge.The common origin of this uncertainty is, for example, when some assump-

tions are postulated or whenever the mathematical model implemented, simplifies

the real problem. To take into account this uncertainty a typical method is to

calibrate the results of the CFD with experimental observations. This category

of uncertainty is difficult to study with a statistical approach, in fact the lack

of knowledge does not permit to have any statistical information. The most

common example for epistemic uncertainty are turbulence model assumptions or

surrogate chemical kinetics models.

• Aleatory: this peculiar uncertainties are not directly linked to a lack of knowl-

edge, but this depends on the physical variability of the system analyzed or its

environment as reported in [29]. The example of the most common causes of
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aleatory uncertainties are materials properties or operating conditions. One of

the most important peculiarities is the possibility to represent them using prob-

abilistic approaches.

In the work of [28], has been conducted a study of all the most typical cause of uncer-

tainty in engineering problems:

• parametric: these mainly include physical or chemical parameters. They are

usually modelled with a Probability Distribution Function (PDF) if there is

enough knowledge or must be guessed from the analysis.

• modelling: these include the uncertainties that occur when there are some inad-

equate understanding of the model implemented for physical/chemical processes

[25]. The typical example could be an uncompleted amount of data.

• scenario abstraction: these include all the parameters that are not take into

account in the simulations, but that can occur.

A completely different classification of uncertainty, but very interesting to remind, is

represented by [20]. The discretization factors are the effect and the frequency of the

events, as it is shown in the figure 23

Figure 23: Uncertainty classification

In order to model uncertainty the literature gives us several schemes, and all of

them are possible to be applied. However, these methodologies can be subdivided into

two main groups: deterministic and stochastic approaches. Lets now take a further

look to each of them.
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3.1 Deterministic approach

In this category of approaches, the aim is to take into account the worst case, in order

to render the process simpler. One deterministic strategy is called interval analysis:

in this approach, the basic idea is to cover all the possible value of the results. As a

result, in order to succeed in that, the design variable is divided in n intervals that

covered all the possible values. Then, after this discretization, there is the evaluation

of the objective functions for each of n points. Eventually, in the last step the limits

of maximum errors had to be defined and, all of them are represented by the interval

of the output made by all the evaluations.

There is another common deterministic strategy called sensitivity derivatives. The the-

ory and an application of this method can be found in [38] and [2]. Using deterministic

approaches have for sore many advantages, for example the limited amount of time

that has to be employed and the simplicity of the schemes, however, drawbacks may

exist, and we are now going to explain them in details.

• First of all, from equivalent expression it is possible obtaining different results,

specifically, in term of amplitude of the output.

• The discretization of the model in n sampling, is the source of possible errors. In

fact, usually the results are too conservative.

• Moreover, there is an error that is not possible to delete. As a matter of fact,

one of the basic assumptions is that the interval should contain all the possible

outputs, although, this might not be true. A simple explanation of what just

asserted is that, if you consider a standard deviation of 3σ , which is also the

most common, this standard deviation contains 99% of the entire results, however,

it is typically considered as 100%.

3.2 Stochastic approach

This above mentioned second approach is based on the main assumption that the input

variable has to be considered as random, and with a probability distribution function.

The direct consequence of assuming this variable as random, is that all the output

variable should be random and obviously also with their own PDF. Now, in order to

be able to compute some results with a stochastic method, it is fundamental to run

the deterministic model several times. Deterministic model means the classical model

that has only one unique result.

There are several schemes that let apply the stochastic process, and that we will discuss

in this chapter.
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3.2.1 Monte Carlo Method

The Monte Carlo method (MC) is an original and very used sampling approach. This

method is in fact used as a reference point for the other models. Since it is a stochastic

method, it uses random input variable,with a random sampling. This sampling is, of

course, depending on a PDF. This method has some positive peculiarities, such as:

• the method converge to the precise stochastic solution

• the solutions are not directly linked to the number of the random variables.

• the method is easy to be implemented

• it is applicable in any sort of problem and it does not need to be modified.

However, there is also a drawback: in fact, the solution always converges, but could be

very time consuming to be found. As a matter of fact, it takes a lot of deterministic

calculations. The huge problem is when there are more random variables, that means

that the number of evaluations increases a lot in order to obtain a good convergence.

For a good generator of random numbers, the convergence is 1√
N

, where N is the num-

ber of random variables. In many papers, in order to deeply understand the Monte

carlo Method, it is used the following example. The example is this: finding the value

of the surface of a lake. In order to succeed in it, it is possible to adopt the shooting

of a cannon inside a square, and count the shots that land on earth Nearth. The figure

24 can explain well this exemplification. As reported in [25], if N is the number of

Figure 24: Lake example

total shots, Sterrain is the value of the square surface (that is known), the Slake, can be
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computed with the following simply relation:

Slake
Sterrain

=
N −Nearth

Nearth

As it is easy to understand, the more shots are and the more well distributed are, the

more accurate will result the computation of the Slake.

To obtain good results in less time, alternative methods were implemented.

3.2.2 Sigma Point

The sigma point is a stochastic method, and the main idea is that is better to approx-

imate the input value instead of output. In order to do that, the procedure consists

in choosing the sigma points, that are input points, symmetrically distributed around

the mean value. As a result, the deterministic models will be computed only for these

points. Usually, the random variable is called ξ. If uξ is the mean and σξ the standard

deviation.

ξp = µξ ± hspσξ (5)

The coefficient hsp is the key to the success of this method, in fact, all the sampling

points depend on this parameter. It is also difficult to find the right value since it has

to be chosen by the user.

The results are strictly dependent on this value, as reported in [27], where this method

has been tested with positive results.

3.2.3 Polynomial Chaos

In this paragraph there is only a general overview of the methods, since this method

is used in this work and all the details will be deeply analysed later. The general idea

is that the output variable is formed by two parts, that are the deterministic and the

stochastic.

Specifically, this method is based on the assumption that a second-order random pro-

cess, as the majority of the engineering process, can be expressed in terms of orthogonal

polynomials. This theory has its fundamentals on the homogeneous chaos written by

Wiener, Xiu and Karniadakis in the [40].

In order to separate the deterministic part and stochastic part, it has been used a

Galerkin projection, that permits to obtain systems which only contain deterministic

variable.

As a matter of fact, there are several types of polynomials that has been used to im-
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plement the polynomial Chaos, and, specifically, the original ones were the Hermite

Polynomials. In case of a Gaussian random variable, the weighting function is the

same of the Hermite polynomial, and it is proved that this characteristic brings to an

exponential convergence.

This concept has been generalized by Xiu and Karniadakis to every orthogonal poly-

nomials that belong to the Askey-Scheme. The generalization has been made also for

some other general PDF that are not included in the Askey-Scheme.

The Polynomial chaos is a method that is used in many works, especially to integrate an

optimization work, as in [16] [7] [34]. These works highlighted also the main problems

that this method can have:

• It is a good method only if there are a small amount of uncertainties parameters,

if not, the computational cost increases too much

• In order to implement the scheme it is necessary to know the PDF of the uncertain

parameter, and this is not easy to know. If there are not enough information,

the analyst has to guess it.

• The original polynomial chaos is intrusive, this means that the solver should be

modified.

In order to solve some of this issues many modification has been made, in particular

the intrusiveness. In fact, in this research, it is has been utilized a non intrusive variant

of the Polynomial Chaos.

3.3 Polynomial Chaos

The Polynomial chaos expands the solution nonlinearly, depending on the random

vector X in a series of orthogonal polynomials with respect to the distribution of the

random input vector X ,as reported in [32].

f(p,X(ζ)) =
∞∑
i=1

f̃i(p) · Φi(X(ζ)) (6)

with Φi orthogonal polynomials and f̃i(p) deterministic coefficients function. The solu-

tion can also be splitted into two parts, one deterministic and one stochastic. In order

to do that, the infinite sum has to be truncated at a finite number of random variables,

and, in this way, you can calculate the results with the following approximation:

f(p,X(ζ)) =

NPC∑
i=1

f̃i(p) · Φi(X(ζ)) (7)
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In order to better understand the method, the theory of the orthogonal polynomial Φ

and its computation will be discussed.

3.3.1 Orthogonal Polynomials in the Askey scheme

The hypergeometric orthogonal polynomials that satisfy some differential equations are

classified in the Askey scheme; the main concept is linked to the basis of the polyno-

mials, that should be orthogonal to the density functions of the random variables.

It is important to know the principal characteristics of the ortogonal polynomials.

Orthogonal System of Polynomials A system of polynomials {Φn : nεI} where

Φn is a polynomial of exact degree n and I = N or I = 0, 1, 2, ..., N , is an orthogonal

system of polynomials with respect to some real positive weighting function ω, if it holds

〈ΦnΦm〉 =

∫
S

Φn(x)Φm(x)ω(x)dx

= 0, if n 6= m

6= 0, if n = 0
∀n,m ∈ I (8)

where S denotes the support of the weighting function ω. The system {Φn : nεI}is called

orthonormal, if 〈ΦnΦn〉 = 1,∀n ∈ I.
With a probability space (O, Y, P ), a real-valued random variable on X : O −→ R
and the probability density function fx : R −→ R+, then a system of polynomials is

orthogonal with respect to fx if

〈ΦnΦm〉 =

∫
O

Φn(X(ζ))Φm(X(ζ))dP(ζ)

∫
R

Φn(x)Φm(x)fx(x)dx

= 0, if n 6= m

6= 0, if n = 0
∀n,m ∈ I (9)

All orthogonal polynomials {Φn} fulfill the three term recurrence relation

−xΦn(x) = bnΦn+1(x) + dnΦn(x) + cnΦn−1(x), n > 1 (10)

where bn, cn 6= 0 and cn/bn−1 > 0.

In the theory of generalized polynomial chaos, the probability density function is used

as weighting function in order to built the basis of the orthogonal polynomials, where

the solution of PDE is expanded.

The parameter that delineates the partition in the Askey scheme is the weighting func-

tion, that can be identical to the standard probability density function. In order to

classify the polynomials, the generalized hypergeometric series is taken into account,
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and it is defined as follows:

rF2(a1, ....., ar; b1, ...., bs; z) =
∞∑
k=0

(a1)k....(ar)kz
k

(b1)k....(bs)kk!
, (11)

with bi 6= 0,−1,−2, ..,∀i = 1, ....., s this to be sure that the denominator factor remains

positive and with (·)n that is the Pochhammer symbol defined as:

(a)n =

1, if n = 0

a(a+ 1)...(a+ n− 1), if n = 1, 2, 3, ....
(12)

The serie become finite and so a hypergeometric polynomial, when one of the ai nu-

merator parameters assumes a negative value.

In the figure 25, the Askey scheme is illustrated, where there is a classification of the

polynomials according to rFs(n), with n the number of free parameters. The lines that

we can see in the scheme, are used to connect different polynomials, and it means that

the polynomials at the end of the line can be computed by taking the limit of the poly-

nomials on the upper part. The table 3 shows the most common standard probability

Figure 25: Askey scheme [32]

functions and the respective hypergeometric polynomials distribution, following the

Askey scheme. Specifically, in this thesis, a Gaussian distribution and the respective
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Hypergeometric polynomial are been implemented.

Table 3: Standard probability functions and the corresponding hypergeometric poly-
nomials

distribution density function hypergeometric polynomial weight function

Gaussian 1√
2π
exp(−x

2

2
) Hermite exp(−x

2

2
)

Gamma exp(-x) Laguerre exp(-x)

Beta xa−1(1−x)β−1∫ 1
0 u

α−1(1−u)β−1du
Jacobi (1− x)α(1 + x)β

3.3.2 Hermite chaos

With the Hermite polynomials, it is possible to explicit a second-order process X (θ))

as :

X(θ) = a0I0+

+
∞∑
i1=1

ci1I1(ζi1(θ))+

+
∞∑
i1=1

i1∑
i2=1

ci1i2I2(ζi1(θ)), (ζi2(θ))+

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ci1i2i3I3(ζi1(θ)), (ζi2(θ)), (ζi3(θ))+

+... (13)

where In(ζi1,....,ζin) is the Hermite chaos polynomial function with the order equal to

n, in terms of random vector ξ=(ξi1, ...., ξin). In, the Hermite polynomials, can be

computed as:

Hn(ξi1, ...., ξin) = (−1)ne

1

2
ξT ξ ∂n

∂ξi1....∂ξin
e
−

1

2
ξT ξ

(14)

To simply the equation 13, it is possible to rewrite as:

X(θ) =
∞∑
i=0

aiΨi(ξ) (15)

In this equation there is a relation between the functions Hn(ξi1, ...., , ξin) and Ψi(ξ) .

The relation is a one to one relation, and, from the study [12], the author explicits the
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first five polynomials of the Herimite Chaos with two random variables ξ = (ξ1, ξ2) :

Ψ0(ξ)

Ψ1(ξ)

Ψ2(ξ)

Ψ3(ξ)

Ψ3(ξ)

Ψ5(ξ)

=

=

=

=

=

=

1

ξ1

ξ2

ξ2
1 − 1

ξ1ξ2

ξ2
2 − 1

(16)

The basis of the Hermite polynomials is orthogonal and can be written as:

〈Ψi,Ψj〉 = 〈Ψ2
i 〉δi,j (17)

The symbol δi,j it is the Kronecker delta and 〈., .〉 is the ensemble average, that is equal

to the inner product in the Hilbert space of the Gaussian variable ξ, as reported in

[27]:

〈f(ξ), g(ξ)〉 =

∫
Ω

f(ξ), g(ξ)W (ξ)dξ (18)

In the equation 18 , the W (ξ) it is the weighted function that matches the polynomials

basis {Ψi}. In particular, for the Hermite polynomials, it corresponds to:

W (ξ) =
1

(
√

2π)n
e

1
2
ξT ξ (19)

As it is possible to understand from the previous equation, and as written in [41],

the Hermite polynomials are paired with the Gaussian distribution because Hermite

polynomials are expressed in terms of Gaussian variables and, by definition, these

polynomials are orthogonal to the weighting function W(ξ) which shares its form with

a n-dimensional independent Gaussian probability function.

3.3.3 Stochastic Ordinary Differential Equation

From the study conducted by Xiu and Karniadakis [41], an useful example has been

taken. There is the following differential equation:

dy(t)

dt
= −ky, y(0) = y0 (20)

In the previous equation, the k is a random variable, with a Gaussian distribution.

According to the Askey scheme, with a Gaussian distribution is chosen a Hermite
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chaos. It is possible to explicit k as:

k(θ) = µk + σkξ1(θ) (21)

with θ that is the random variable dimension, and ξ1(θ) is the value of the random

variable depending (in this specific example) on the Gaussian distribution. In order to

simplify, the ξ1(θ) is in this case rewritten as ξ, since the random variable taken into

account is one dimensional.

The Polynomial Chaos expansion has to be applied in the stochastic input k(θ) and in

the dependent variables, y(t, θ). This means that we obtain:

k(θ) =
∞∑
i=0

kiΨi(ξ), y(t, θ) =
∞∑
i=0

yi(t)Ψi(ξ) (22)

The spectral expansion divides the stochastic process from the random basis polyno-

mials into deterministic coefficients (ki and yi(t)). The following step is substituting

the expansions into the differential equation to obtain:

∞∑
i=0

dyi(t)

dt
Ψi(ξ) = −

∞∑
i=0

∞∑
j=0

kiyi(t)Ψi(ξ)Ψj(ξ) (23)

The summation in practical problems has to be truncated. As reported in [27] the

limits depend on the number of random dimensions and on the desired order of the

polynomials:

P + 1 = (
(p+ n)!

p!n!
(24)

with n is the number of random dimensions, p is the desired order of the polynomials

and P is the limit of the summation. After the truncation the equation 23 becomes:

P∑
i=0

dyi(t)

dt
Ψi(ξ) = −

P∑
i=0

P∑
j=0

kiyi(t)Ψi(ξ)Ψj(ξ) (25)

Once the truncation is applied, the inevitable consequence is that an error appears,

and, for this reason, a Galerkin projection is used, since the latter ensures that the

result will be projected to the reduce Hermite polynomial basis orthogonally to the

error.

Utilising the condition of orthogonality, the results are:

dyl(t)

dt
=

1

〈Ψ2
l 〉

P∑
i=0

P∑
j=0

〈ΨiΨjΨl〉kiyj(t) (26)
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Furthermore, it is interesting to remark that 〈ΨiΨjΨl〉 and〈Ψ2
l 〉 can be computed be-

fore. If it is fixed to be equal to 0, it happens that the full projection becomes:

〈
P∑
i=0

dyi(t)

dt
Ψi,Ψ0〉 = 〈−

P∑
i=0

P∑
j=0

kiyj(t)ΨiΨj,Ψ0〉 (27)

The left part of the equation is always equal to zero, except when i=0, therefore, it

can be rewritten as dy0(t)
dt
〈Ψ2

0〉. The entire equation 27 becomes:

dy0(t)

dt
=

1

〈Ψ2
0〉

P∑
i=0

P∑
j=0

〈ΨiΨjΨ0〉kiyj(t) (28)

To compute 〈Ψ2
0〉 and 〈ΨiΨjΨ0〉, it is necessary to use the right chaos, and, in this

example, the Hermite Chaos. This calculation permits to delete all the random pa-

rameters from the equations.

In the specific case of a system with P+1 deterministic equations of which the equation

28 is the first, it is possible to simplify thanks to the known behaviour of k(θ), so the

parameter k can be computed.

k(θ) = µk + σkξ ≈
P∑
i=0

kiΨi(ξ) (29)

If the right hand side is expanded, we obtain:

k(θ) = µk + σkξ = k0 + k1ξ + k2(ξ2 − 1) + ... (30)

Now, from the equation 44, it is possible to understand that k0 = µk,k1 = σk and

∀i > 1, ki = 0. The result is that the equation 28 is reduced to:

dy0(t)

dt
= −µk

P∑
i=0

yi(t)〈Ψ0ΨjΨ0〉 − σk
P∑
i=0

yi(t)〈Ψ1ΨjΨ0〉 (31)

To continue the computation, you have to select a chaos order. In this example, since

there is only one dimensional random variable, according to the equation 24, the order

chosen is P=2. Once that the order is decided, the equation 31 can be written:

dy0(t)

dt
= −µk[y0(t)〈Ψ0Ψ0Ψ0〉+ y1(t)〈Ψ0Ψ1Ψ0〉+ y0(t)〈Ψ0Ψ2Ψ0〉]

−σk[y0(t)〈Ψ1Ψ0Ψ0〉+ y1(t)〈Ψ1Ψ1Ψ0〉+ y2(t)〈Ψ1Ψ2Ψ0〉] (32)
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In the case that l 6= 1, in order to built the deterministic system of P+1 equation,

where the only unknowns are the coefficients yi(t), the previous procedure has to be

applied for all the l ∈ [|0, P |]. After the computing of the coefficients yi(t), which is

possible to carry out with a standard deterministic solver, they can be substituted back

into the original y (t,θ) and the result is:

y(t, θ) = y0(t)Ψ0(θ) + y1(t)Ψ1(θ) + y2(t)Ψ2(θ) (33)

The last step is to find the value of the standard deviation and the mean. The latter

is computed as:

µy(t) = y0(t) (34)

whereas, the standard deviation is :

σy(t) =

√√√√ P∑
i=1

yi(t)〈Ψ2
i 〉 (35)

In this example, if we considered that k(θ) follows the Gaussian standard distribution,

so with µ = 0 and σ = 1, the solution that has been found in [41] is illustrated in

figure 26. It is interesting to remark that the deterministic response is constant, but

Figure 26: Solution with Gaussian random input for 2nd-order Hermite chaos

the mean stochastic increases with time. These behaviours underline the limits of the

study of a stochastic system with deterministic models.
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It is also possible to compute the skew, the third moment of the distribution, and, if

you want to calculate even the higher moments of the distributions, it is feasible, but

only with an higher polynomial expansion.

3.3.4 Non-Intrusive methods

One of the main drawback of the classical structure of a Polynomial chaos is that it is

intrusive. Intrusive means that the analyst has to be able to access the deterministic

solver. This is clear if one considers equation 32. However, this could be a problem

when the system is very complex, in particular, when CFD simulations are involved.

In order to find a solution many non-intrusive approaches have been studied and tested.

The general idea behind these methods is that the deterministic solver is treated as a

black box, and that one can find the PC coefficient after a fixed number of evaluations

of the deterministic code. In figure 27 is shown the general structure of a non intrusive

method.

Figure 27: Schematic of the non-intrusive methods

3.3.5 Non-Intrusive Spectral Projection

The non Intrusive Spectral projection basic assumption is related to the observation

that the Polynomial Chaos coefficients ai, with a the variable, can be computed with

a Galernik projection of the deterministic computation into the PC basis, as reported

in [27]

In fact if a is:

a =
∞∑
i=0

aiΦi (36)
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Indicating ad(ζ) as deterministic solution, with ζ = (ζ1, ...., ζn), we obtain that the

polynomials coefficients are:

ai =
〈ad(ζ)Φi〉
〈Φ2

i 〉
=

∫
Ω

....

∫
Ω

[ad(ζ)
Φi(ζ)

〈Φ2
i 〉

n∏
k=1

W (ζk)]dζ1...dζn (37)

With the utilization of the Gaussian quadrature adapted to the polynomials basis, the

equation 37 can be solved. For example, if m quadrature points are chosen in each

direction, the results of the integral in the equation 37 become

ai =
m∑

m1=1

....
m∑

mn=1

ad(xm1 , ...., xmn)
Φi(xm1 , ....., xmn)

〈Φ2
i 〉

n∏
k=1

wmk (38)

In the equation 38 xk are the quadrature points and mk are the weights correlated with

xk. The results that it is possible to obtain from a Gaussian quadrature rule are exact

only if the order of the polynomial is less than 2m. You can note in the equation 38

that there are two polynomials: one explicit Φi and one implicit ad. Both of them have

at most p as order. As a result, the order of the polynomial to integrate is at most 2p.

The consequence is that if m is equal to p+1, for each random dimension assures an

exact quadrature for the dimension.

For instance, the previous equation 38 needs mn or (p + 1)n samples. This number,

if it is compared with the P+1 of the intrusive PC, results to be higher. However,

despite this drawback, the possibility of non-modifying the deterministic solver is a

great advantage, since the modification of the solver, especially for CDF analysis,

requires a lot of work.

Example of NISP

To understand better how NISP works, it is useful to give an example. If you consider

the equation that was written in section 3.3.3:

dt(t)

dt
= −ky, y(0) = y0 (39)

the data of the problem are:

• k, as before, is equal to k(θ) = µk + σkξ(θ)

• numbers of dimension n=1

• random variable ξ as a Gaussian distribution

• p=2, the Hermite Chaos is expanded to the second order
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The equation 38, if are chosen m quadrature points equal to p+1, can be rewritten as:

yi =

p+1∑
m1=1

yd(xm1)
Ψi(ξm1)

〈Ψ2
i 〉

(40)

In this equation, xm1 is a sample of the Gaussian random variables ξ, from which

k(xm1) = µk + σkxm1 . Moreover, it is crucial to underline that any deterministic

solver can be used to measure the value of the coefficient yi. As reported in [27], it

seems that m deterministic, needs to be solved for each one of the P+1 coefficients.

However, this is not necessary. As a matter of fact, the yd depends on the Gaussian

quadrature points xm1 , since the same m deterministic solves can be used to compute

the yi coefficients. This observation permits to reduce the number of deterministic

solves from (P + 1)(p+ 1) to (p+ 1)n.

Practical instructions for NISP

Following the study conducted by Moro [27], here it is presented a practical series of

instructions of how to build a NISP:

• define the behaviour of the uncertainty value, that mean, choose the probability

density function.

• sample the random variable according to the PDF with a technique, in this

specific case, the Latin hypercube sampling.

• compute the input variable k, that corresponds to the random sampling done

before.

• compute the basis function Φ with i=(0,....,P) where Φ depends on the chaos

(usually chosen from the Askey scheme) and the weights w, computed in M

quadrature points.

• use the solver to calculate the deterministic solution yd(k(ξm)) for each of the m

value, with m=1,...M

• The last step is to compute the chaos coefficients with the following relation:

yi =
1√
π

M∑
m=1

yd(k(ξm))
Φi(ξm)

〈Φ2
i 〉

wm

The value 1√
π

is added because the quadrature performed is a Gauss-Hermite

quadrature, since Hermite polynomials have been used.
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3.3.6 Non-Intrusive Point-Collocation

The non-intrusive point-collocation is a technique that was proposed in [19] and in the

paper of [25] . The crucial steps to understand how this method works are:

• understand the behaviour of the random variable. In particular, the mean value

and the standard deviation.

• decide an order of the Polynomial Chaos P.

• sample P+1 points with a technique, that will be discussed later

• compute the deterministic results for each sampling point.

• solve the linear system 41, therefore without any Galerkin projection. It is fun-

damental to remind that this point is the main difference between the NISP and

the NIPC technique.
Φ0(ξ0) Φ1(ξ0) Φ2(ξ0) . . . ΦP (ξ0)

Φ0(ξ1) Φ1(ξ1) Φ2(ξ1) . . . ΦP (ξ1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φ0(ξP ) Φ1(ξP ) Φ2(ξP ) . . . ΦP (ξP )



y0

y1

. . .

yP

 =


y(ξ0)

y(ξ1)

. . .

y(ξP )

 (41)

In the system 41 the yP are the unknowns of the system, and are the PC coef-

ficients. In the right hand side of the equation, we can find the deterministics

results for each sampling point ( already computed in the previous step.

• compute the mean and the standard deviation of the results using the equation

of the polynomial chaos theory.

There is a further observation to precise: the results are not unique, since they depend

on the sampling points. For this reason [19] studied three sampling techniques:

• Random sampling: this is the easiest technique, but the results obtained are

not accurate

• Latin Hypercube Sampling: this is an algorithm that divides in P+1 sections

the cumulative density function, and randomly selects one point for each section.

In this way, all the portion of the input range are represented. We have to specify

that this technique is more accurate that the random ones

• Hammersley Sampling: this algorithm is based on the prime numbers, and

its output results unique
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It is also interesting to see the comparison between the NISP and NIPC technique, that

is represented in figure 28. Here it is clear how the two methods are comparable in

terms of number of function evaluations, that is, when the PC order is small. However,

when n increases, there is a great advantage in favour of the NIPC technique. In fact,

it needs P+1 deterministic solves. It is also possible to oversample, and, as reported

in [19], the oversampling permits to obtain more accurate results.

Figure 28: Function evaluations needed with NIPC and NISP methods. [25]
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Chapter 4

4 Case study: S-duct optimization with uncertainty

The aim of this work is to obtain a robust optimization of a S-duct, and compare

the results accomplished here with the results of the previous study conducted by

D’Ambros [9], that executed a non robust optimization.

The optimization, and in particular the uncertainty quantification, is made with two

different non intrusive techniques: NIPC and NISP, in order to compare the results.

The geometry of the baseline, the parameterization, the mesh and the CFD parameters

will be analysed in this chapter.

4.1 Geometry

The geometry of the baseline is the Wellborn geometry [39]. The centerline of the duct

is built with two planar circular arcs with same radii and that subtended angles θmax
2

.

The equation of the centerline results in:

for 0 < θ < θmax/2

xcl

ycl

zcl

=

=

=

Rsinθ

Rcosθ −R
0

(42)

For θmax/2 ≤ θ ≤ θmax

xcl

ycl

zcl

=

=

=

2Rsin(θmax/2)−Rsin(θmax − θ)
2Rcos(θmax/2)−Rcos(θmax − θ)−R

0

(43)

The radius of the section perpendicular to the centerline is a function of θ and the

function is:
r

r1

= 1 + 3(
r2

r1

− 1)(
θ

θmax
)2 − 2(

r2

r1

− 1)(
θ

θmax
)3 (44)

In equation 44, r1 and r2 are the radius values respectively of the inlet and the outlet

section. An important consideration to say is that both centerline and radius are

function of the only unknown θ. The value of θmax, R, r1 and r2 are the same of the

Delot experiment [10] and they are reported in table 4

In order to increase the uniformity in the inlet condition, an additional part has

been added: a cylindrical duct eight time longer the inlet radius.
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Table 4: S-duct baseline geometry parameters.

Parameter Value
θmax 60

R 0.6650m
r1 0.0655m
r2 0.0820m

Furthermore, a cylindrical duct six time longer then the outlet radius has been added, in

order to ensure that the outlet conditions may not have any influence on the upstream

flow. The results can be seen in figure 29, where the symmetry plane x-y it is illustrated.

The values of the parameters have been reported in table 16.

Table 5: S-duct baseline geometry parameters.

Parameter Value
Offset 2R(1-cos(θmax/2)
LS−duct R
Linlet 8r1

Loutlet 6r2

LAIP = Linlet + LS−duct + r1 9r1+R
LTOT = Linlet + LS−duct + Loutlet 14r1+R

Figure 29: S-duct symmetry plane

The other important decision to undertake is that only half of the geometry is

simulated in order to reduce the computational costs, and this is possible since Wellborn

[39] and Delot [10] have demonstrated that the stream flow is symmetric in this S-duct.
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4.2 Geometry parameterization

The parameterization of the Wellborn [39] S-duct studied by D’Ambros [9], is the

same parameterization that it has been implemented in this research. The reasons

behind this choice are mainly two: on one side, this parameterization results in a great

improvement of the previous ones and, on the other side, to have the opportunity to

compare the robust and the non robust optimization results.

This parameterization is based on the Free Form Deformation (FFD) technique. In

this strategy, the entire geometry that has to be parametrized has been incorporated

in a 3D lattice, and the latter is divided into regular sections, and the nodes of every

section are called control points.

The points of the geometry are linked to the control points since their position is

described by a weighted sum of the control points. Two simplifications have been

made in order to improve the method:

• The S-duct has a symmetry plan (x-y), so, in order to reduce the time constraints,

only half S-duct has been simulated.

• The two added part are fixed, as a result, it is not necessary to parameterize

them.

The parallelepipedic lattice it has been created from a planar rectangular plane as it is

illustrated in figure 30. The FFD method is based on the following equation that links

Figure 30: S-duct parallelepipedic lattice

the control points and the geometry:

Xffd =

l,m∑
i,j=0

Bi(s)Bj(t)Pij (45)
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With :

• Xffd is the vector with all the coordinates of the displaced point

• Bk(u) are Bernstein polynomials of degree 3

• Pij is the vector with the coordinates of the control points

• s,t are the coordinates if a generic point in the system S-T

• l,m are the number of control points in the two main directions S and T.

The next step of the parameterization is selecting a S section, and moving the control

points, equally separated, in correspondence to the S-duct surface, as we can see in

figure 31. In this way, as reported in [9], the geometry obtained results similar to the

Figure 31: Generic cross-section.

baseline but, as it is visible in the figure 31, not equal. To avoid closer results, it is

possible to invert the equation of a Bezier curve, since for a fixed section, the geometry

can be described with a 1D FFD formulation (Bezier curve) as follows:

Xffd =
m∑
i=0

Bj(t)Pi (46)

As obtained in D’Ambros [9], some constraints have been imposed to invert the equa-

tion:
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The 3rd and the 4th constraints are the tangency conditions, the 5th, 6th and the 7th

are the symmetry conditions. In order to preserve the tangential condition in the inlet

and the outlate surface, some changes has been performed. In fact, the control points

of the first and the last section have been respectively moved slightly after and slightly

before. This type of parameterization permits to modify the geometry of the S-duct

with more accuracy compared to the other previous works of [31] and [35].

The control points of the cross sections of the inlet and the outlet are fixed for manu-

facturing constraints. In figure 31, we can see in particular: P1 and P6 that can only

move along x-y, in order to respect the symmetry (2dof) ; P2 and P5 that, in order to

respect the tangential conditions, they have the same x and y as P1 and P6. As a result,

they only have one direction to move (1dof each); instead, P4 and P5 are free to move

(3dof each). These above mentioned conditions can be applied to all the sections. Each

cross-section at the end has twelve dof, and so, in agreement with the previous studies

of [9] [35][31], which contain thirty-six dof, three cross section have been performed,

and this means that l is equal to 7. The 3D image of the parameterization is shown in

figure 32.

4.3 Mesh

To built the mesh it was decided to emulate the mesh created by D’Ambros [9] in order

to be able to compare the finals results of the optimization. It was decided to adopt

the software ICEM. The mesh has been created with the same topology of [10], and

changing the number of nodes. The results are available in the figure 33. The final

number of mesh elements chosen are 1.8x106, due to the oscillation of the results when

the mesh number is higher than 1.7x106. The structure is a H-grid in the center and

a O-grid next to the walls, as it is possible to see in the figure 34.
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Figure 32: 3D plot of the parameterization

4.4 CFD analysis

The analysis that we carried out is a steady state RANS simulation, with the ANSYS

Fluent solver. The turbulence model that was chosen is K-ω SST, and the reason is

because this model gives similar results compared to the four-equation transition SST

model, that is the best match with experimental data [9]. The number of iterations is

fixed to 200 with the first order and 500 with the second order, in this way the residuals

can go below 10−5.

The boundary conditions are the same applied by Delot [10] and also in D’Ambros [9].

However, the main difference is that in this thesis we find an uncertainty variable: the

inlet velocity, that will be discussed in the next paragraph. The boundary conditions

of Delot are reported in table 6.

4.5 Uncertainty parameter

The uncertainties could be in every parameter, as a result it is important to select the

uncertainty that can affect more the results and that is more common. In agreement
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Figure 33: PR and swirl angle as function of the number of mesh elements [9]

Figure 34: Mesh used with H-grid in the center and O-grid next to the walls
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Table 6: S-duct boundary conditions parameters.

Parameter Value
Inlet static pressure 77819 Pa
Inlet total pressure 106390Pa

Outlet static pressure 88822 Pa
Total temperature 288.2 K

with the research conducted by Liatsikouras [22], the parameter chosen as uncertainty

is the Inlet velocity.

The first step of an uncertainty quantification is the knowledges of the behaviour of

the variable, that means defining the probability distribution function.

In this study, the mean value of the inlet velocity is equal to the inlet velocity of Delot.

For what concerns the distribution function, a Gaussian distribution function has been

chosen, in agreement with Liatsikouras [22], with a standard deviation of 10. To take

into account the uncertainties, it have been utilized two Non Intrusive Polynomial

Chaos techniques: NIPC and NISP. However, the theory behind these methods has

been already described in chapter three.
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Chapter 5

5 Robust optimization of Delot S-duct

In this chapter, the Delot S-duct will be robustly optimized with an uncertainty param-

eter that corresponds to the velocity inlet. The robust optimization has been computed

using the two non intrusive polynomial chaos techniques:

• Non intrusive Spectral Projection (NISP)

• Non intrusive Point collocation(NIPC).

Both methods have been implemented with a Python code. The aim is to compare

the results obtained here with the non robust optimization made by D’Ambros [9].

Moreover, a comparison between the NIPC and NISP should be one of the purpose of

the research. The objective functions utilized here are the following:

• CP mean

• CP standard deviation

with, to remind, CP is equal to 1-pressure recovery.

As previously said, the swirl angle is an important parameter and, for this reason it

cannot be disregarded in this optimization loop. We have to specify that the swirl

angle was not used as objective function, but as a constraint with these specifics: the

swirl average value has to be < 5 and the standard deviation < 1.

5.1 Optimization loop

The optimization loop used is MOTS, the Multi objective Tab search. This method

implements a masters and slaves paradigm: on one side, the master performs the tasks

that are in the orange boxes in figure 35 and figure 36, and on the other side, the

slaves tasks are in the green box of the same figures 1 and 36 . The loop optimization

performed is slightly different from the standard one. In figure 1 and 36 is possible to

notice the difference between a Non robust optimization loop and Robust optimization

loop implemented in this work. The sampling in this case creates P+1 different veloc-

ities and so, for each of these values, a CDF analysis is performed.

Once all the P+1 analysis are made, the following step is to compute the objective

functions using the NIPC or the NISP tool. In fact, the latter permits to obtain the
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value of the mean and the standard deviation that here are the two objective functions.

Figure 35: The non robust optimisation loop using the MOTS software
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Figure 36: The optimisation loop undertaken in this work by the MOTS software

5.2 NIPC robust optimization Results

The first optimization loop implemented used the NIPC method. Here the aim is to

compare the results obtained with this optimization with the results of a Non-robust

optimization carried out by D’Ambros [9].

The NIPC data, in agreement with the section 3.3.6, that are necessary to implement

the loop are:

• Random variable: the velocity inlet is the uncertainty parameter, with a Gaus-

sian distribution, the standard deviation equal to 10 and the mean equal to 196.46

[m/s].

• Polynomial Chaos type and order: the typology is the Hermite Polynomial

and the value of P is fixed to 3.

• Sampling technique: the sampling technique used is the Latin Hypercube

Sampling

The MOTS loop has been stopped after 457 evaluations. These number of evaluations

53



is enough to obtain significant results, as in the Mattioli [25] study. Moreover, these

number of evaluations means that 457x4 = 1828 fluent simulations have converged.

The time for a single fluent evaluation is 32 minutes, so the time that was necessary

to obtain all these results is 1066 hours.

The Pareto front that has been obtained is illustrated in figure 37. In the Pareto

Figure 37: Pareto front with NIPC method

front are highlighted in green the Pareto front points and in red seven points of the

Pareto front of the non robust optimization made by Alessio D’Ambros [9]. As it was

predictable, the standard deviation of the D’Ambros points results completely random.

In fact, one point emerges very close to the Pareto front, but the others have a similar

standard deviation of the Baseline or worst. The points that have been found have

improved the CP mean value of about 10% and the standard deviation around 14% .

The numerical results of the seven D’Ambros’ s points and the seven points of our

Pareto front are reported in the table 7.

The results that are illustrated in the table 7, underline the main improvement
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Table 7: Values and improvement of 7 D’Ambros points and 7 points of actual analysis
NIPC

Individual CP-mean Improvement CP-st-deviation Improvement
Baseline 0,029411 - 0,08296 -

1-D’Ambros 0,025889 +11,97% 0,007284 +12,20%
2-D’Ambros 0,027136 +7,73% 0,008749 -5,46%
3-D’Ambros 0,027005 +8,18% 0,008046 +3,01%
4-D’Ambros 0,027166 +7,63% 0,00808 +2,60%
5-D’Ambros 0,028267 +3,89% 0,009037 -8,93%
6-D’Ambros 0,028051 +4,62% 0,008164 +1,59%
7-D’Ambros 0,028283 +3,83% 0,008224 +0,87%

1-Actual analysis 0,028841 +1,94% 0,00639 +22,97%
2-Actual analysis 0,026418 +10,18% 0,007072 +14,75
3-Actual analysis 0,026052 +11,42% 0,006983 +15,83
4-Actual analysis 0,025989 +11,63% 0,007173 +13,54
5-Actual analysis 0,026059 +11,39% 0,007289 +12,14
6-Actual analysis 0,025837 +12,15% 0,007324 +11,72
7-Actual analysis 0,025775 +12,36% 0,00726 +12,49

accomplished: the best CP-standard-deviation configuration on one side reduces the

value of 22,97%, and on the other side the best CP-mean improvement increases the

CP value of 12.36%, which is really a good results, compared to those obtained by

D’Ambros [9]. As a matter of fact, he performed a non robust optimization reached

an increment of the CP value of 14.4%, which is slightly, bot not that much higher.

The D’Ambros points, as already reminded, result good only if you take into account

just the mean, however this is a predictable consequence, since the mean value of the

robust optimization and the deterministic value of a non robust optimization are linked.

It is fundamental to underline that three configurations are going to be explained

in detail. Specifically, these are reported as:

• Best CP-Mean(7-Actual analysis of table 7)

• Best CP-Standard-Deviation (1-Actual analysis of table 7)

• Trade-off (3-Actual analysis of table 7)

5.2.1 Best CP-mean NIPC optimization

The first configuration that is taken into account in this paragraph is the design that

has achieved the best results in terms of CP-mean. In figure 38, it is possible to see

the pressure recovery value (PR) that is PtotAIP
PtotIn

in the AIP surface. This figure shows
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the four samplings performed, with a different velocity inlet. The order is from the

lowest velocity, that we can see in the top left, to the highest one, which is located in

the bottom right. The left half of each AIP drawing represents the pressure recovery

in the AIP surface of the baseline, for each sample. The first observation that is it

Figure 38: Pressure Recovery in the AIP surface, for each sampling and compared to
the baseline Pressure Recovery, best CP mean design

possible to give is noticing that all the right sides of the drawings are higher than the

respectively value of the left sides. In fact, in table 8, are reported all the values of

CP = 1− PR, found for each sample.

Table 8: Deterministic values of CP for each samplings

CP Baseline CP NIPC-Best-CP-mean Improvement
Sampling-1 0,023 0,017 -34,87%
Sampling-2 0,024 0,021 -14,74%
Sampling-3 0,030 0,029 -4,73%
Sampling-4 0,046 0,033 -38,81%

The CP mean value has improved, however, it is possible to acknowledge that also

the standard deviation is better than in the baseline, since the difference between each

sample CP values are lower compared to the respective of the baseline.

For the intakes, another important parameter, as already underlined, is the DC60.This

value is not taken into consideration in this optimization loop, though remains inter-
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esting to observe how it has changed with respect to the baseline. In the figure 39, the

representation of this parameter are summarized.

Figure 39: DC60 comparison between NIPC-best-CP-mean and baseline

The behaviour of the DC60 is better in the optimized shape than in the baseline.

This is a good result since, luckily, we obtain better values without directly checking

this parameter.

The other value that in severals previous researches such as [9], [31] [35] has been

used is the Swirl Angle. This parameter, as already explained, has been used in our

optimization as a constraint, but not as an objective function. The trending of the

swirl in the AIP is illustrated in the figure 40. The differences between the samples

are not so evident, though we can affirm that the optimized shape decreases the swirl

angle in all the four samplings. As a result, we can assume that this is a good result,

taking into consideration that the swirl angle is not an objective function and could be

a suitable starting point for future researches that want to take into account also this

parameter.
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Figure 40: Swirl comparison between NIPC-best-CP-mean and baseline

5.2.2 Best CP-standard deviation NIPC optimization

In this section we will exhibit the intake design that obtains the best value in terms

of CP-standard-deviation. In according with the table 7, this design is the so called

individual ”1- Actual analysis”. The AIP surface with the trending of the pressure

recovery is shown in the figure 41 that has the same structure of the figure 38. As a

result, there is a comparison between the baseline and the optimized design. The PR

in the sampling is generally better then in the baseline, though is less evident than

in figure 38. In fact, in the table 9, where all the deterministic values of the CP for

each samplings are reported, it is clear that the improvement in terms of CP is not

that high, with the only exception for the 4th sampling. As already performed with

Table 9: Deterministic values of CP for each samplings

CP Baseline CP NIPC-Best-CP-st-dev Improvement
Sampling-1 0,023 0,022 -7,42%
Sampling-2 0,024 0,027 +13,19%
Sampling-3 0,030 0,029 -1,11%
Sampling-4 0,046 0,038 -19,03%

the NIPC best CP-mean, it is interesting to notice how the swirl angle and DC60 are

changed with this configuration design.

The following figure 42 and figure 43 are the representation respectively of the DC60
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Figure 41: Pressure Recovery in the AIP surface, for each sampling and compared to
the baseline Pressure Recovery, best CP standard deviation design

and the swirl angle in the AIP.

For what concerns the DC60 we can come across how, for any sampling, the behavior

is quite similar, with the exception of the results in the 4th sampling, which are slightly

worst. However, all the curves with respect the baseline behaviour are considerably

better in the angle range 90 > θ > 130.

The swirl results, as in the other configuration, are better than the baseline and without

the peaks values over 18 [deg] that are presents with the baseline configuration.

5.2.3 Trade-off between CP-standard-deviation and CP-mean NIPC opti-

mization

The last configuration that is shown is the trade-off between the CP mean and the CP

standard deviation. The design is, in according to the table 7, the ”3- Actual analysis”.

The PR that this design achieved in the AIP surface can be seen in figure 44. The

values obtained are summarized in the table 10. From that, the table 7 and the figure

44, it is possible to fully understand why this is the trade off. In fact, the CP mean

value decreases around 11.42%, and at the same time, even the standard deviation

declines about 15,83%.

Concerning the DC60 and the swirl angle, the results are visible respectively in figure

45 and figure 46.
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Figure 42: DC60 comparison between NIPC-best-CP-standard-deviation and baseline

Figure 43: Swirl comparison between NIPC-best-CP-standard-deviation and baseline
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Figure 44: Pressure Recovery in the AIP surface, for each sampling and compared to
the baseline Pressure Recovery, Trade off design

Table 10: Deterministic values of CP for each samplings

CP Baseline CP of NIPC-Best-CP-mean Improvement
Sampling-1 0,023 0,021 -12,83%
Sampling-2 0,024 0,024 1,176%
Sampling-3 0,030 0,025 -17,39%
Sampling-4 0,046 0,036 -26,40%

The behaviour of the DC60 of the optimized shape is similar to the behavior of the

best CP-mean, since at the beginning it is slightly lower than the baseline, though from

80 it starts to be considerably closer to zero, compared to the DC60 of the baseline. The

trend is the opposite of the just mentioned only in a short moment that is localized in

the neighborhood of 130, with the baseline DC60 closer to zero, but the exact position

depends on the samplings.

Moreover, with respect to the swirl angle, the values and the general behaviour are

quite similar to the best CP-mean , since the swirl angle is reduced. In fact, it is

remarkable that the little regions of the AIP surface of the baseline with a swirl angle

over 18[deg] are not anymore visible in the deformed shape.
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Figure 45: DC60 comparison between NIPC-tradeoff and baseline

Figure 46: Swirl comparison between NIPC-tradeoff and baseline
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5.3 NISP robust optimization Results

The other method of uncertainties quantification that has been adopted here is the

NISP, since the previous method will be compared with the D’Ambros [9] non robust

optimization results, with the aim of highlighting the differences and the common

traits. Moreover, three different configurations are going to be analysed with further

details: the best CP-mean, the best CP-standard-deviation and the trade off.

The NISP data, as already underlined in section 3.3.5, necessary to implement the loop

are:

• Random variable: the random variable is the same choosen for the NIPC

method. The velocity inlet is the uncertainty parameter with a Gaussian distri-

bution, standard deviation equal to 10 and mean equal to 196.46 [m/s].

• Polynomial Chaos type and order: the typology is Hermite Polynomial and

the value of P is fixed to 3.

• Sampling technique: the Gaussian quadrature points are used to sample the

uncertainty variable.

The MOTS loop has been stopped after 557 evaluations in order to be coherent with

the previous optimization that used NIPC that has 457 evaluations. These numbers

of evaluations are equal to 557x4 = 2228 fluent analysis, so, taking into account that

each fluent simulation needs 32 minutes, the total time of simulation is 1188 hours.

The Pareto front that it was obtained from the NISP analysis is shown in the figure

47. In this Pareto front, the red points are seven Pareto front points of D’Ambros [9].

In fact, the mean value of these points results in being better than the baseline mean

CP value, but, on the other hand, the standard deviation results in most of the cases

to be worst or almost equal, with the unique exception that is the point next to the

Pareto front.

The results of the seven points of the non robust optimization and the seven points

of the actual analysis are compared in the table 11. From this table you can notice

that the configuration with the best CP mean value decreases the mean of around

12,81%.This result is perfectly in line not only with the improvement reached with

the NIPC method, that obtained a value of -12,36%, but also it is valuable even if

compared to the results of the non robust optimization of D’Ambros [9]. From the

table 11, it is clear how the standard deviation was not an objective function in the

D’Ambros study, in fact the standard deviation results in six individuals out of seven

worst than in the baseline.

As written before, three configurations will be studied with more accuracy, and specif-

ically these are:
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Figure 47: The optimisation loop standard MOTS software

Table 11: Values and improvement of the seven D’Ambros points and the seven points
of actual analysis NISP

Individual CP-mean Improvement CP-st-deviation Improvement
Baseline 0,02923 - 0,08235 -

1-D’Ambros 0,025942 +11,79% 0,007326 +11,69%
2-D’Ambros 0,027162 +7,65% 0,00854 -2,95%
3-D’Ambros 0,027207 +7,49% 0,008527 -2,78%
4-D’Ambros 0,027281 +7,24% 0,008458 -1,95%
5-D’Ambros 0,028188 +4,16% 0,008801 -6,09%
6-D’Ambros 0,02828 +3,84% 0,008694 -4,79%
7-D’Ambros 0,0285 +3,10% 0,008916 -7,47%

1-Actual analysis +0,02804 4,66% 0,006765 +18,45%
2-Actual analysis +0,028 5,42% 0,006798 +18,05
3-Actual analysis +0,027 +7,69% 0,006897 +16,86
4-Actual analysis + 0,0265 +9,74% 0,00698 +15,86
5-Actual analysis +0,0259 11,87% 0,007079 +14,66
6-Actual analysis +0,0257 12,42% 0,007213 +13,05
7-Actual analysis +0,0256 12,81% 0,007356 +11,33
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• Best CP-Mean(7-Actual analysis of table 11)

• Best CP-Standard-Deviation (1-Actual analysis of table 11)

• Trade-off (4-Actual analysis of table 11)

5.3.1 Best CP-mean NISP optimization

In this section the configuration design that is taken into account is the geometry

that realizes the best CP mean value. In the table 11, the best CP mean value is the

individual ”7-Actual analysis” that has achieved a CP mean of 0,0256, that corresponds

to a total improvement of 12,81%, and with a standard deviation of 0,00735 that

ameliorated around +11,33%. All these improvements are computed on the baseline

results.

In figure 48 the trend of PR is shown. Despite the results of the CP mean and the CP

Figure 48: Pressure Recovery in the AIP surface, for each sampling and compared to
the baseline Pressure Recovery, best CP mean design

standard deviation are quite similar to the NIPC best CP-mean, the contour is quite

different. In fact, the first and the last samplings are respectively higher and lower, in

terms of PR, with respect to the same samplings of the NIPC technique.

In the following table 12 are reported all the values of the CP area average for each

sampling.
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Table 12: Deterministic values of CP for each samplings

CP Baseline CP NISP-Best-CP-mean Improvement
Sampling-1 0,013 0,012 -11,37%
Sampling-2 0,023 0,020 -13,93%
Sampling-3 0,035 0,030 -14,75%
Sampling-4 0,057 0,048 -18,47%

With the help of the table, you can notice that the CP of the optimized shape

results lower than the CP in the baseline in every sampling, with a value that changes

from 11,37% to 18,47%.

For what concerns the standard deviation, is not that easy to understand its behaviour,

though it is pretty clear that the value of the CP in the baseline changes a lot from

sampling to sampling with respect to the deformed shape.

The others two reference parameters in an intake optimization are the DC60 and the

swirl angle. As already acted for the others individuals, the trending of both of them

in the AIP surface has been reported in figure49 and figure50

Figure 49: DC60 comparison between NISP-best-CP-mean and baseline

The DC60 in the first three samplings clearly results better than the DC60 of the

baseline. As a matter of fact the value oscillates around the 0, until 150[deg], and it
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Figure 50: Swirl comparison between NISP-best-CP-mean and baseline

grows in the last 30[deg] but less than the baseline. Moreover, in the last sampling

we can see that the graphic is different: in fact, after the 80[deg] the value increases

without any oscillation.

The swirl results to be better than in the baseline, and as in all the other configurations

found with the NIPC technique, the higher values of the swirl are disappeared.

5.3.2 Best CP-standard deviation NISP optimization

The second NISP design that has been highlighted is the one which has obtained the

best CP-standard-deviation. In particular, this is the design ”1- Actual analysis” of

the table 11. In this configuration the standard deviation improved around 18,45%,

due to a value of 0,00675, that is slightly less than the best value achieved with the

NIPC technique, that reached a value of 0,0639.

The PR value in the AIP surface is visible in the figure 51 As we can notice, the PR

values are low. In fact, as it is reported in the table 13, the CP value in the first two

samplings is worst than the baseline, but the last sampling improved around 19, 7%

with respect to the baseline. What just asserted in fact permits to obtain good results

in terms of the standard deviation. However, despite the increment of the PR value in

the last sampling, it is remarkable to emphasize that some areas with Y ' 0, 2 have a

low value of the PR . The DC60 and the swirl angle are used as post processing, due

to the influence that these parameters could have on the performance of the intakes.
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Figure 51: Pressure Recovery in the AIP surface, for each sampling and compared to
the baseline Pressure Recovery, best CP mean design

Table 13: Deterministic values of CP for each samplings

CP Baseline CP NISP-Best-CP-mean Improvement
Sampling-1 0,013 0,014 4,23%
Sampling-2 0,023 0,023 0,54%
Sampling-3 0,035 0,032 -6,99%
Sampling-4 0,057 0,047 -19,70%

In figure 52 it is exemplified the trending of the DC60, whereas in the figure 53 is

plotted the swirl angle.

The DC60 has a similar behaviour of the design with the best CP mean. In fact,

the value of DC60 oscillates around the zero for all the θ until 140[deg].

The swirl angle results better than the one in the baseline, but there is an evident

different between the values with this design and the values with the best CP mean

design. De facto, in figure 53, it is possible to notice that the peaks over 18[deg] are

not disappeared as previously happened in the figure 50.

5.3.3 Trade off NISP optimization

The last design that will be presented is the trade off design that improves both stan-

dard deviation and mean. The configuration chosen is the ”3- Actual analysis” visible

the table 11. In this case, the improvement of the mean and the standard deviation
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Figure 52: DC60 comparison between the NISP-best-CP-standard-deviation and the
baseline

Figure 53: Swirl comparison between the NISP-best-CP-standard-deviation and the
baseline
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are respectively one around 9,74% and the other about 15,86%. The AIP surface with

all the values of the PR are shown in the figure 54. Thanks to the figure 54 and with

Figure 54: Pressure Recovery in the AIP surface, for each sampling and compared to
the baseline Pressure Recovery, trade off design

the help of the table 14, in which all the results of the CP average for each sampling

are reported, it is possible to notice that in the first three samplings the results are

worst compared to the best CP mean case, though considerably better than those of

the baseline.

Table 14: Deterministic values of CP for each samplings

CP of the Baseline CP of the Trade off Improvement
Sampling-1 0,013 0,013 -4,73%
Sampling-2 0,023 0,021 -7,65%
Sampling-3 0,035 0,031 -11,59%
Sampling-4 0,057 0,047 -21,46%

Even in this case we are going to explain in detail the behaviour of the DC60 figure

55 and that of the swirl angle 56.

The swirl angle is very similar to the swirl of the best CP mean, but with one

exception. In fact, in the region with Y ' −0, 20, a zone with a swirl angle higher

is formed. This zone is the same place in which the swirl of the CP best standard

deviation of NISP has a huge peak of the swirl angle. For what concerns the DC60,
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Figure 55: DC60 comparison between NISP-trade off and baseline

Figure 56: Swirl comparison between NISP-trade off and baseline

all the peculiarities of this graph are equal to the DC60 graph of the best CP mean,
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but as already happened for the swirl, in the 4th approximately around 130[deg], that

correspond to an Y ' −0, 20 , the DC60 continues to increase, whereas in the best CP

mean solution is decreasing.

5.4 NISP and NIPC robust optimization Comparison

In this section will be exposed the difference and the particularities of the results

obtained with the NIPC and the NISP methods.

As previously shown, the results that we have collected are quite similar. As a matter

of fact, in figure 57 in red is reported the Pareto front of the NIPC, and in green we

can see the Pareto front of the NISP. The two Pareto fronts are almost identical when

Figure 57: Pareto front comparison between NIPC-NISP

the CP mean reaches the lower values. However, on the other side, when the standard

deviation is as low as possible, the two methods start to be slightly different in terms

of standard deviation.

The NIPC compute lower values and this trivial difference could be due to the random

nature of the NIPC or simply because of the different shapes of the design.
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Chapter 6

6 Optimization of Delot S-duct adapted to Rotor67

In this chapter the study that will be discussed is the non robust optimization of

an S-duct intake, that has the same shape of the Wellborn [39] intake but scaled of

a constant factor k in order to adapt the shape to the Rotor67. The Rotor67 is a

transonic compressor, as already explained in detail in the first chapter.

Here, the main goal is to find different optimized designs, that in agreement with

Tridente [36] , will be connected to the R67 in order to see how a optimized shape

improves the efficiency of the compressor. This is an interesting improvement because

permits to understand how a certain parameter ameliorates the performance of the

rotor. Moreover, two different typologies of optimizations have been used:

• Case 1: the objective function are the CP and the swirl angle

• Case 2: the objective function are the CP and the DC60

In this way, after the connection with the R67, it will be possible to understand which

parameter is better to take into account in order to maximize the efficiency of the rotor.

6.1 Case study

The case study is the same that has already been described in the chapter four with

respect to the geometry, the parameterization, the mesh and the CFD analysis, but

with two exceptions:

• the geometry is scaled of a factor equal to k = 3, 1295. This value has been

computed in order to have the same diameter both in the outlet surface of the

S-duct and the inlet of the rotor67.

• the boundary condition of the inlet and the outlet are changed in order to have

the initial conditions that are necessary for the rotor in order to work properly.

In order to achieve the latter point, it has been computed a parametric analysis, with

the following steps:

• it has been computed the initial condition of P0inlet1 , with a unidimensional

calculation and with the hypothesis of an isentropic flow. In this way, it has been

obtained values that were next to the right one.
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• it has been computed the analysis, with P0inlet1 , in order to understand the PR

value.

• it has been changed the value of P0inlet1 in P0inlet2 , using the PR as a reference.

• it has been changed conducted the analysis, until the right results have been

finally achieved.

After what just explained, the correct boundary conditions computed have been re-

ported in the table 15.

Table 15: S-duct boundary conditions parameters.

Parameter Value
Inlet static pressure 77819 Pa
Inlet total pressure 106390Pa

Outlet static pressure 88822 Pa
Total temperature 288.2 K

The algorithm chosen for this typology of optimization is the Multi objective Tabu

search (MOTS), already descripted in the second chapter. Also, the optimization loop

used is the one that can found in the figure 58. The analysis of the baseline, that is

illustrated in the figure 59, shown how the general behaviour of the pressure is very

close to delot S-duct, with the original boundary conditions. In fact, in the last surface,

there is the typical upper zone with an high pressure and a circular zone in the bottom

with a low pressure.

6.2 Non robust optimization with CP and DC60 as objective

function results

The MOTS has been stopped after 650 evaluations, and the pareto front that we have

obtained is represented in figure 60. We can see how the value of the DC60 has changed

in a huge way. In fact, as it is possible to read in the table 16, we have gathered an

improvement of about 98,9624%, which is really very significative.

Table 16: Results of the objective function in the non robust optimization

Individuals CP Improvement DC60 Improvement
Baseline 0,048042 - 0,48911 -
CP best 0,0438 8,82769 0,0761 84,4392%

DC60 best 0,044232 7,93056 0,00017 99,9656%
Trade 0,043848 8,72986 0,005075 98,9624%
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Figure 58: Optimization loop of the non robust optimization

Figure 59: Baseline analysis
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Figure 60: Pareto front with CP and DC60

To clearly understand the behaviour of the stream flow inside the duct, we have

taken as instances three significative designs that we previously found: the best CP, the

best DC60 and finally the trade off. These three designs are those that, in agreement

with Tridente [36], have been chosen for the simulations with the rotor67.

6.2.1 Comparison between CP-best, DC60-best and trade off

First of all, we are going to examine the geometry and, in general, the behaviour of

the total pressure along the S-duct for all the four shapes. In figure 61, a comparison

between the three deformed S-ducts and the baseline have been reported.

In this figure, in order we can find: the baseline, the best DC60, the best CP and the

trade off.

It is immediate to recognize how the shape of all the three shapes on one side, results

very different from the original one, but, on the other side, the shape between the best

dc60, the best cp and the trade off results quite similar.

For what concerns the total pressure, it is very interesting to witness how the

behaviour changes in the AIP surface. For this purpose, in figure 62, all the three

deformed cases have been reported and compared with the baseline. In the figure
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Figure 61: Different geometry: baseline, bestcp, best DC60 and trade off

62, it is possible to notice that, as it already happened to the geometry, also for the

behaviour of the pressure in AIP there is an huge difference between the baseline and

the deformed shapes. However, on the other side, the difference between the three

optimized shapes are limited. With respect to the CP medium value that increases

about 7,5-8,5% as we can see in figure 15, it is possible to notice that in all the deformed

shapes there is no region in which the pressure is low as it is in the bottom region of

the baseline. On the other hand, in the upper part of the duct, the big region with the

high level of pressure it has been lost.

For what concerns the DC60, the values are illustrated in the figure 63. The results

obtained are very interesting due to the fact that the DC60 it is reduced over 99%.

In fact, from this picture is highlighted how the value of the DC60 is close to zero

especially if it is compared to the baseline.

In order to have a complete overview, even the behaviour of the swirl angle at the AIP

has been reported in figure 64.

The swirl angle, that is not an objective function of this optimization, results slightly

worse than that in the baseline, especially in the central region.
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(a) Best DC60 compared with the baseline

(b) Best CP60 compared with the baseline

(c) Trade off compared with the baseline

Figure 62: Total Pressure at the AIP
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(a) Best DC60 compared with baseline

(b) Best CP60 compared with baseline

(c) Trade off compared with baseline

Figure 63: DC60
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(a) Best DC60 compared with baseline

(b) Best CP60 compared with baseline

(c) Trade off compared with baseline

Figure 64: Swirl angle
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6.3 Non robust optimization with CP and Swirl Angle as ob-

jective function results

In this section, the analysis that has been conducted is a non robust optimization

which have as objective functions the swirl angle and the CP. The MOTS was stopped

after 1119 evaluations. In the figure 65, it has been reported the pareto front that has

been found. The improvements of the objective functions are reported in the table

Figure 65: Pareto front of the non robust optimization

17 Exactly as previously performed for the other non robust optimization, the most

interesting results have been commented. In particular, the one that has achieved the

best CP, the one with the best swirl angle and two trade offs.

These are the four design that, in agreement with Tridente [36], it will be connected

to the rotor67 in order to test the improvements that the rotor can achieve with the

optimized S-duct.
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Table 17: Results of the objective function in the non robust optimization

Individuals CP Improvement DC60 Improvement
Baseline 0,048042 - 4,73307 -
CP best 0,043898 8,626% 3,233 31,68159%

Swirl best 0,048298 -0,533% 2,511 46,9437%
Trade with higher CO 7,945 8,729% 2,914 38,4270%
Trade with higher SW 0,0471 2,015% 2,582 45,4529%

6.3.1 Comparison between CP-best, Swirl-best and trade off

As first step we are going to describe how the geometry has changed from the baseline

to the optimized shapes. In figure 66, are illustrated the geometry and the behaviour

of the total pressure along the duct. If in one hand the geometry of the baseline results

Figure 66: Comparison between baseline, Best CP, best SW and two trade off geometry

very different from the optimized shapes, especially in the central layers, on the other

hand the differences between the deformed S-ducts are very trivial.

Moreover this close geometry between the deformed shapes, the results in the AIP are

quite different between the best swirl angle and the best CP design.

For the rotor, the most important parameter is the total pressure in the AIP surface,

and, for this reason, all the four designs have been reported in the figure 67 .

The trend of the pressure in all the four designs is similar, with two low pressures, both

of them localized in the lower part of the surface. However, the first one is next to the
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center and the second one is next to the wall. We can further observe how, in the case

of the best CP, the second low pressure area results less evident with respect to the

others design. A further consideration has to be written: the area with a total pressure

under 94000 Pa, that in the specific case of the baseline is situated in the lower part

of the centre, is considerably reduced in all the four deformed shape.

(a) Best CP compared with the baseline (b) Best Swirl compared with the baseline

(c) Trade off with higher CP compared with
the baseline

(d) Trade off with higher Swirl compared with
the baseline

Figure 67: Total pressure AIP

The other objective function of this work is the swirl angle, visible in figure68, that

improves between 30% and 46%, as written in table 17.

In all the deformed shapes all the points with higher swirls values have been deleted,

but in the duct with the best CP has appeared a region in which the value of the swirl

angle reaches a range around 10-13 [deg]. However, we cannot not mentioning that
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this region disappears whenever the best swirl design is performed.

To complete the analysis of the four most significant cases of the optimization, it is

interesting to see how in this case the DC60 have changed. In figure 69 , it is possible

to notice that the DC60 trend is not that different with respect to that of the baseline,

but, in any case, there is a slightly improvement. The latter has not been the purpose

of this optimization, since the objective functions were the swirl angle and the CP,

though it is a good result.

(a) Best CP compared with baseline (b) Best SWirl compared with baseline

(c) Trade off with higher CP compared with
baseline

(d) Trade off with higher Swirl compared with
baseline

Figure 68: Swirl angle
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(a) Best CP compared with baseline (b) Best Swirl compared with baseline

(c) Trade off with higher CP compared with
baseline

(d) Trade off with higher Swirl compared with
baseline

Figure 69: DC60
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Chapter 7

7 Conclusions

In this thesis, seven main objectives have been pursued and in particular:

• investigate the complex matter of uncertainty quantification applied to the phys-

ical processes;

• apply these non intrusive uncertainty propagation techniques to an existing multi

objective optimization, in particular to the S-duct intake studied by Wellborn

[39];

• compare two different non intrusive techniques, in order to highlight similarities

and differences

• compare the results previously obtained by D’Ambros [9] with a non robust op-

timization with the robust optimization in the thesis.

• adapt the S-duct of Wellborn [39] to the transonic compressor rotor

• compute a non robust optimization with different couples of objective functions

to compare the results

• give to Tridente [36] the optimized ducts shapes, in order to understand how they

can increase the performance of the R67.

The complex matter of the uncertainty quantification has been studied, and, in par-

ticular, two non intrusive methods: the non intrusive point collocation and the non

intrusive spectral projection.

The results obtained with these techniques are very close to each others, and the

slightly differences of the results can be associated with the randomly nature of the

Latin Hypercube sampling used in the NIPC optimization loop.

The S-duct intake optimized has obtained improvements in terms of the CP mean

value that are comparable to the improvements of the CP previously reached by [9]

D’Ambros with a non robust optimization. The comparison between the robust and

the non robust optimization highlighted the limits of the non robust ones, since the

standard deviation of some of the seven D’Ambros points results considerably high,

and often worse than those of the baseline.
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The second part of the thesis has been the first step to further improve the optimiza-

tion. As a matter of fact, here the purpose has been to understand which objective

function can be more effective in order to ameliorate the performance of a transonic

rotor and how much an optimized S-duct can improve the efficiency with respect to a

non optimized S-duct .

The different choice of the objective functions affects in a huge way the trend of the

total pressure in the AIP surface. As a result, even the performance of the rotor

should be involved. For future researches in the same areas some improvements could

be further accomplished. Specifically, the optimization with the S-duct adapted to the

rotor67, for example, might be reached with the uncertainty quantification as the one

performed in this study. Another improvement may be a non robust optimization that

could be computed with three objective functions: the DC60, the CP and the swirl.

For what concerns the robust optimization, it could be improved for example with the

use of four objective functions such as the CP mean, the CP standard deviation, the

swirl mean and the swirl standard deviation, because the use of the swirl angle as a

constraint has been a limit of the actual optimization,even though we have obtained a

shape with a swirl angle smaller than that of the baseline.
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