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Abstract

The aim of this thesis is to develop a numerical method to produce equilibrium initial conditions for
a galactic system. In the first phase the different components of the galaxy (halo, bulge and disc) are
considered separately. Subsequently, the interaction between them is taken into account in the final
method to produce the initial conditions of the N-Body particles. Eddington’ formula is used to get the
distribution function of the bodies for the components with spherical symmetry. For the disc, instead,
Toomre’s law and Jeans equations are considered. The numerical method builds a logarithmic grid
with the parameters of density, potential, dispersion and velocities of the bodies. This grid is used to
generate the initial conditions, that are then validated as regards the maintenance of the collisionless
equilibrium using a parallel-mesh code for gravitational N-body systems.





Italian section

Abstract

L’obiettivo di questa tesi è quello di sviluppare un metodo numerico per la produzione di condizioni
iniziali dei corpi di una galassia in equilibrio. Prima si considerano separatamente le sue componenti
(alone, bulge e disco). Successivamente si considera l’interazione tra di esse per generare le condizioni
iniziali. Per le componenti a simmetria sferica si sfrutta la formula di Eddinghton per calcolare la
funzione di distribuzione, mentre per il disco si considerano la legge di Toumre e le equazioni di Jeans
per ottenere le condizioni iniziali. Il metodo numerico usato si basa sulla produzione di una griglia
logaritmica in cui vengono inseriti tutti i parametri di densità, potenziale, dispersione e velocità dei
corpi. La griglia viene sfruttata per la generazione delle condizioni iniziali del sistema che vengono
poi validate tramite l’uso di un codice parallel- mesh per sistemi gravitazionali di N-corpi.

Riassunto

Per la generazione delle condizioni iniziali delle componenti a simmetria sferica si sfrutta la formula
di Eddington al fine di definire la funzione di distribuzione dei corpi. In primo luogo si costruisce
una griglia in cui, a raggi equidistanti, si calcolano il valore del potenziale e della densità. Per poter
usare la formula di Eddington (1), e quindi ottenere la funzione di distribuzione, si costruisce un’altra
griglia che a valori equidistanti del potenziale associa raggio e densità corrispondenti, calcolati tramite
interpolazione. Ora si può calcolare l’integrale della formula di Eddington e ottenere f .

f(ϵ) =
1√
8π2

d

dϵ

∫ V(rmax)

ϵ

dρ(r)

dV(r)

dV(r)
√

V(r) − ϵ
(1)

A questo punto si possono ottenere le condizioni iniziali: si considerano una serie di valori equidistanti
per raggi e velocità e per ogni coppia di essi si determina il valore di (2) costruendo una griglia
tridimensionale.

F(r⃗,v⃗) = f(ϵ(r⃗,v⃗))16π
2r2v2 (2)

Scegliendo una distribuzione uniforme di raggio, velocità e F compresi tra zero e il loro valore massimo
ottenuto precedentemente, si vanno a considerare solo le coppie (r, v) tali che il valore di F associato
ad esse sia inferiore rispetto a quello che si ha nella griglia tridimensionale. Si ripete questa procedura
fino ad ottenere N=106 corpi di cui si avranno le coordinate sferiche. Per poter verificare la stabilità
del sistema bisogna però passare alle coordinate cartesiane sfruttando una distribuzione uniforme per
gli angoli che si formano con i piani xy e xz.

Questa procedura si applica sia per l’alone, in cui a partire dalla formula (3) si ottiene il potenziale
usando (4), che per il bulge, in cui per la densità si considera una legge di Sérsic.

ρ(r) =
Mhalo

2π

a

r

1

(a+ r)3
(3)

V (r) = −G

r

∫ r

0
4πr′2ρ(r′)dr′ −G

∫ ∞

r
4πr′ρ(r′)dr′ (4)



vi

Per la generazione delle condizioni iniziali del disco galattico non si può sfruttare questo procedimento,
in quanto viene a mancare la simmetria sferica del sistema. La tecnica utilizzata in questo caso è
quella di costruire una griglia a partire da valori equidistanti del raggio a cui associare la misura della
densità superficiale e del potenziale con cui si determinano frequenza epiciclica e angolare. Sfruttando
le equazioni di Jeans si ottiene il valore medio della velocità angolare in funzione del raggio. Con la
legge di Toumre si ottengono i valori della dispersione in direzione radiale e angolare. A questo punto
si considera una nuova griglia, in cui vengono considerati raggi in scala logaritmica, e si determinano
tutti i valori precedentemente calcolati tramite interpolazione quantificando il numero di corpi in ogni
cella. In questo modo si hanno le informazioni necessarie per ottenere le condizioni iniziali dei corpi del
disco generando distribuzioni uniformi dei corpi attorno al raggio considerato e distribuzioni gaussiane
di velocità la cui dispersione è nota ad ogni raggio.

Una volta considerate le componenti in maniera separata si sfruttano delle tecniche di rilassamento
per avere un sistema stabile quando esse vengono unite. A questo scopo si utilizza un codice che
permette lo studio dell’evoluzione temporale del sistema a partire dalle condizioni iniziali prodotte.
In primo luogo si rilassa l’alone, congelando i corpi del disco e facendo evolvere il sistema finché non
appare in equilibrio; successivamente si congela l’alone lasciando evolvere il disco.

A questo punto con il nuovo disco e il nuovo alone entrambi stabilizzati si ottiene una galassia stabile.

.
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Chapter 1

Theoretical introduction

To simulate a galactic system using the N-body method we need to find a way to describe the initial
distribution of the bodies’ positions and velocities. In the present thesis we discuss how to obtain
initial conditions for N-body simulations of a galaxy with three components: halo, bulge and disc.
In chapter 2 and 3 is explained how to calculate the initial conditions of the spheroidal components
and of the disc respectively (following a procedure similar the one used in Kyziropoulos et al. [2016]).
Section 4 describes the method employed to relax all the components of the galaxy when they are put
all together and interact. Section 5 explains how our method to produce initial conditions is validated,
by examining how the galaxy evolves after relaxation and up to what extent, the equilibrium state is
mantained in time.

1.1 The distribution function and its moments

A fundamental quantity for the description of stellar systems is the distribution function(DF) f(r⃗, v⃗, t),
which defines the numerical density of bodies in the phase-space at time t:

f(r⃗, v⃗, t) =
∆N

∆3r⃗∆3v⃗
(1.1)

This function can also be interpreted as the probability of finding a body with given phase-space
coordinates at time t. Assuming all bodies identical the DF is normalised such that:

∫

d3r⃗d3v⃗f(r⃗, v⃗, t) = 1 (1.2)

Integrating the distribution function over velocities yields the bodies’ numerical density per unit
volume (1.3).

ρ(t, r⃗) =

∫

f(r⃗, v⃗, t)d3ṽ (1.3)

The dispersion of velocities in x-axis direction is given by

.
σ2
x(r⃗, t) =

1
ρ(r⃗,t)

∫

(vx(r⃗, t)− vx(r⃗, t))
2f(r⃗, v⃗, t)d3ṽ

where vx(r⃗, t) =
∫

vx(r⃗, t)f(r⃗, v⃗, t)d
3ṽ

(1.4)

and similarly are defined the velocity dispersions σy and σz. In order to describe the orbit of the
bodies we consider the Hamiltonian:

H(p⃗, q⃗, t) =
p⃗2

2
+ V (r⃗, t) (1.5)

where the potential can be obtained solving Poisson’s equation:

∇2V = 4πGρ (1.6)

1
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By the well known Liouville’s theorem for the Hamiltonians systems we have

df(p,q)
dt = 0

∂f
∂t + q̇

∂f
∂q −∇V ∂f

∂p = 0
(1.7)

Equation (1.7) is known as collisionless Boltzmann equation.

A stellar system is said to be in steady state equilibrium if:

∂f

∂t
= 0 (1.8)

In the case of steady state equilibrium, equation (1.7) can be written as

v⃗
∂f

∂r⃗
− ∂V

∂r⃗

∂f

∂v⃗
= 0 (1.9)

A useful set of equations can be obtained by calculating the momenta of the distribution function
with respect to the velocities.
The zero momentum is obtained by:

∫ +∞

−∞
d3v

(

v⃗
∂f

∂r⃗
− ∂V

∂r⃗

∂f

∂v⃗

)

= 0 (1.10)

Splitting the integral into its summed terms we final:

∫ +∞
−∞ d3v

(

vx
∂f
∂x + vy

∂f
∂y + vz

∂f
∂z

)

= ∂
∂x(ρ(r⃗,t)vx) +

∂
∂y (ρ(r⃗,t)vy) +

∂
∂z (ρ(r⃗,t)vz)

∫ +∞
−∞ d3v

(

∂V
∂r⃗

∂f
∂v⃗

)

= ∂V
∂x

∫ +∞
−∞ dvxdvydvz

∂f
∂vx

+ ∂V
∂y

∫ +∞
∞ d3v ∂f

∂vy
+ ∂V

∂z

∫ +∞
∞ d3v ∂f

∂vz
=

= ∂V
∂x

(

f |+∞
−∞ −

∫ +∞
−∞ d3vf

)

+ ∂V
∂y

∫ +∞
−∞ vxdvxdvz[fvy=+∞ − fvy=−∞] + ∂V

∂z

∫ +∞
−∞ vxdvxdvy[fvz=+∞ − fvz=−∞]

= 0

as well as
∫ +∞

−∞
d3vvxf(r⃗,v⃗,t) =

∫

vx
∆N

∆x∆y∆z∆vx∆vy∆vz
∆vx∆vy∆vz = ρvx (1.11)

Hence the zero-order Jeans equation takes the form:

∂

∂x
(ρvx) +

∂

∂y
(ρvy) +

∂

∂z
(ρvz) = 0 (1.12)

Which represents the continuity equation in the usual space of the bodies’ motions.

The first momentum of Jeans equation yields:

∫ ∞

−∞
d3vvx

(

v⃗
∂f

∂r⃗
− ∂V

∂r⃗

∂f

∂v⃗

)

= 0 (1.13)

(1.13) can be solved splitting it into the two addends and given that the distribution function is 0
when v = ∞ :

∫ +∞
−∞ d3v

(

v2x
∂f
∂x + vxvy

∂f
∂y + vxvz

∂f
∂z

)

= ∂
∂x(ρ(r⃗,t)v

2
x) +

∂
∂y (ρ(r⃗,t)vxvy) +

∂
∂z (ρ(r⃗,t)vxvz)

∫ +∞
−∞ d3vvx

(

∂V
∂r⃗

∂f
∂v⃗

)

= ∂V
∂x

∫ +∞
−∞ dvxdvydvzvx

∂f
∂vx

+ ∂V
∂y

∫ +∞
∞ d3vvx

∂f
∂vy

+ ∂V
∂z

∫ +∞
∞ d3vvx

∂f
∂vz

=

= ∂V
∂x

(

vxf |+∞
−∞ −

∫ +∞
−∞ d3vf

)

+ ∂V
∂y

∫ +∞
−∞ vxdvxdvz[fvy=+∞ − fvy=−∞] + ∂V

∂z

∫ +∞
−∞ vxdvxdvy[fvz=+∞ − fvz=−∞]

= −∂V
∂x ρ(r⃗,t)

(1.14)
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Hence:
∂
∂x(ρv

2
x) +

∂
∂y (ρvxvy) +

∂
∂z (ρvxvz) +

∂V
∂x ρ = 0

∂
∂y (ρv

2
y) +

∂
∂x(ρvxvy) +

∂
∂z (ρvyvz) +

∂V
∂y ρ = 0

∂
∂z (ρv

2
z) +

∂
∂x(ρvxvz) +

∂
∂y (ρvyvz) +

∂V
∂z ρ = 0

(1.15)

1.2 Stellar equilibrium for spherical systems

According to Jeans theorem, in a spherical system the distribution function depends on the coordinates
(r, v) through the integrals of motion (ϵ, L) where:

ϵ(r, v⃗) =
v2x + v2y + v2z

2
+ V (r) (1.16)

is the energy and

L = r⃗ ∧ v⃗ (1.17)

is the angular momentum.

Consider the case in which the dispersion of velocities at each point of space satisfies the condition
σ2
x = σ2

y = σ2
z . In such case the system is called isotropic.

In the case of an isotropic system the distribution function depends on ϵ. Switching to spherical
coordinates (vx, vy, vz) → (v, θ, ϕ) from equation (1.3) we final

dvxdvydvz = v2 sin θdvdθdϕ

ρ(r) =
∫

f(r, v⃗)dṽ3 =
∫ π
0 dθ sin θ

∫ 2π
0 dϕ

∫∞
0 v2dvf(v

2

2 + V (r)) = 4π
∫∞
0 v2dvf(v

2

2 + V (r)) =

= 4π
∫ Vmin

V (r)

√

2(ϵ− V (r))f(ϵ)dϵ
ρ(r)√
8π

= 2
∫ Vmin

V (r)

√

ϵ− V (r)f(ϵ)dϵ

(1.18)

Differentiating both sides of (1.18) we obtain

dρ(r)√
8πdV

=

∫ Vmin

V (r)

f(ϵ)
√

ϵ− V (r)
dϵ (1.19)

The Abel integral (1.19)can be inverted leading to Eddington’s formula(this procedure is described in
chapter 4 Binney and Tremaine [1987]).

f(ϵ) =
1√
8π2

d

dϵ

∫ V(rmax)

ϵ

dρ(r)

dV(r)

dV (r)
√

V (r)− ϵ
(1.20)

This integral is easily solved if the equations for ρ and V are known.

The density ρ(r) is obtained by observations of the brighteness profile of the galaxy.

The potential of a galaxy is calculated using Poisson equation (1.6) whose solution is

V (r) = −G

r

∫ r

0
4πr′2ρ(r′)dr′ −G

∫ ∞

r
4πr′ρ(r′)dr′ (1.21)

At this point f is expressed in the terms of energy ϵ and radius r and hence in terms of (r, v).

Consider now a spherical shell of radius r and volume 4πr2dr, as well as a shell in velocity space of
volume 4πv2dv. The number of particles within the shell is given by:

∆N = f(r, v)16π2r2v2∆r∆v (1.22)
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Using spherical coordinates we can distribute the ∆N particles uniformly within the shell volumes,
by setting uniform distributions in the angular parameters:

−1 ≤ cos (θ) ≤ 1
0 ≤ ϕ ≤ 2π

−1 ≤ cos (θv) ≤ 1
0 ≤ ϕv ≤ 2π

(1.23)

We then assign cartesian positions and velocities to the particles via the formulas:

x = r sin θ cosϕ
y = r sin θ sinϕ

z = r cos θ
vx = v sin θv cosϕv

vy = v sin θv sinϕv

vz = v cos θv

(1.24)

1.3 Equilibria of stellar discs

We use cylindrical coordinates to describe a flat disc of zero thickness. The collisioless Boltzmann
equation(1.7) takes the form

∂f

∂t
+ pR

∂f

∂r
+

pϕ
r2

∂f

∂ϕ
−
(

∂V

∂r
−

p2ϕ
r3

)

∂f

∂pR
− ∂V

∂ϕ

∂f

∂pϕ
= 0 (1.25)

Setting ∂f
∂t = 0 we obtain Jeans’ equations for a disc in steady-state equilibrium. Multiplying (1.25)

by pR and integrating over the momenta and considering that ρ = Σ(r)r where Σ(r) is the surface
density we arrive at:

∂(Σv2R)

∂r
+Σ

∂V

∂r
+

Σ

r
(v2R − v2ϕ) = 0 (1.26)

We consider the case where vR = 0, vϕ = µϕ, v
2
R = σ2

R, v
2
ϕ = µ2

ϕ+σ2
ϕ, and adopt an exponential profile

Σ(r) = Σ0e
−r/RD

The dispersion of velocities can be obtained using Toomre’s Q parameter:

Q(r) =
σR(r)κ(r)

3.36GΣ(r)
(1.27)

where κ and Ω are angular and epicyclic frequencies.

Ω(r) =

√

1

r

∂V

∂r
(1.28)

κ(r) =

√

3

r

∂V

∂r
+

∂2V

∂r2
(1.29)

We adopt an exponential law for Toomre’s parameter, leading to the asymptotic values Q = Q0 for
r = 0 and Q = Q∞ for r = ∞.

Once the profile Q(r) has been selected, we can compute the radial and azimuthal dispertions profiles
via the formulas

σR(r) =
3.36GΣ(r)Q(r)

κ(r)
(1.30)

σϕ(r) =
κ(r)σR(r)

2Ω(r)
(1.31)
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Once the dispersion of velocities is known, we can compute µϕ(r) via the Jeans equation(1.26) leading
to the asymmetric drift formula.

µϕ(r) =

√

r

Σ(r)

∂(Σ(r)σ2
R(r))

∂r
+ r

∂V (r)

∂r
+ σ2

R(r)− σ2
ϕ(r) (1.32)

Finally we locally approximate the distribution of velocities within a ring of radius R by the Gaussian
formula:

fR(vR, vϕ) =
1

2πσRσϕ
e
− v2R

2σ2
R

− (vϕ−µϕ)2

2σ2
ϕ (1.33)
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Chapter 2

Initial conditions for spheroidal
components

We consider a spherical galctic component where we aim to get the initial conditions of the bodies in
cartesian coordinates. There are two distinct spherical components in our model of galaxy: bulge and
halo. We find the initial conditions of the bodies in each of them using a similar procedure, starting
from different density laws.

2.1 Halo

For the halo we consider a spherical model with a density profile law (the same used in Hernquist
[1990])

ρ(r) =
Mhalo

2π

a

r

1

(a+ r)3
(2.1)

Where a is the scale radius and Mhalo is the total mass of the halo. We set a = 5kpc and Mhalo =
2 · 1010M⊙ and build a linear grid calculating the density at each ri = i∆r where ∆r = 0.01 and
i = 1, ..., 3000 corresponding to Rmax = 30kpc and Rmin = 0.01kpc. This model for the density profile
should result in a Hernquist model for the potential.

V (r) = −GMhalo

r + a
(2.2)

Figure 2.1 shows the potential obtained using the Hernquist profile via equation (1.21). We use the
trapezoidal method to calculate the integrals. This method calculates the area subtended by a function
adding the areas of the trapezoids that have as vortex two points of infinitesimal ranges of the domain
and their corresponding values of the function. It is clear from the image that the values somewhat
differ. This is due to the truncation of the galaxy inside the radius Rmax. By the comparison the
potential can be fixed just subtracting from the analytic potential the difference between the analytic
and the Hernquist potential at Rmax. In this way the two profiles now coincide as in figure 2.2.

Now we have a linear grid with parameters ri, ρi and V (ri) and we aim to get the distribution
function using Eddington formula (1.20). A convenient way to calculate this integral, considering that
it uses infinitesimal potential, is to build another grid where we have equidistant potentials and their
correspondent values of radius and density. Therefore we consider V (Rmax) and V (Rmin) to build the

new grid, where Vj = j∆V where ∆V = V (Rmax)−V (Rmin)
1000−1 and j = 0, ..., 1000. To get the values of

radius and density correspondent to the j-potentials, we can use the linear interpolation formula

rj = ri +
ri+1−ri
Vi+1−Vi

(Vj − Vi)

ρj = ri +
ρi+1−ρi
Vi+1−Vi

(Vj − Vi)
(2.3)

7
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Figure 2.1: Comparison between Hernquist profile
and values of potential obtained with 1.21

Figure 2.2: Potential corrected after comparison
with Hernquist profile

where i and i+1 are the indexes of the linear grid in which we find Vj . Once we have this grid, we can
calculate the distribution function using equation (1.20) where we replicate for ϵ the Vj values. The
theoretical distribution function for the hernquist model is (2.4)(as we can see in Hernquist [1990])

f(V ) = Mtot

8
√
2π3a3v3g

1

(1−q2)
5
2
(3 arcsin q + q + q(1− q2)

1
2 (1− 2q2)(8q4 − 8q2 − 3)

vg =

(

GMtot

a

)
1
2

q =
√

− a
GMtot

V

(2.4)

As shown in figure (2.6), the distribution function we obtained is a good approximation, it is different

Figure 2.3: Comparison between theoric and analytic distribution function

from the theoretical one only at very small or large values of energy. For large E the difference is
caused by the fact that we’re considering all the bodies as they were inside radius Rmax. At small
energy the error is due to the use of a finite grid.
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Now we consider the function (1.22) and we calculate a grid with Nk = 1000 values of F = ∆N
∆r∆v just

to have an approximatiom for its maximum value. Therefore we consider the Nk values rk = k∆r
(∆r = Rmax

k−1 ) and vk′ = k′∆v (∆v = vmax

k′−1 where vmax =
√
2Vi=0 and k, k′ = 1, ...Nk); for each possible

couple (rk, vk′) we calculate F at each couple of radius and velocity.

To build this 3-dimentional grid, we start from the radia rk and calculate the correspondent potential
using the linear interpolation formula 2.3 starting from Vj and rj . For each rk we calculate the possible
energy per mass with vk′ , using 2.5.

Ekk′ =
1

2
v2k′ + Vk (2.5)

We can now calculate fkk′ with 2.3 starting from fj , Vj and using the energy Ekk′ . We have now
rk, vk′ and fkk′ to calculate the 3-dimentional grid of the F (r⃗k, v⃗k′) values(calculated using equation
(1.22)). We are ready to get the initial conditions.

We produce values of r, v, F distributed uniformly in the ranges: 0 < r < Rmax, 0 < v < vmax and
0 < F < Fmax. We consider Nhalo = 106 triplettes (r, v, F ), where F < F (r, v)) with F (r, v) obtained
by the quadratic interpolation using the values of the 3-dimensional grid (2.6).

r1 = ∆r⌊( r
∆r )⌋

r2 = ∆(1 + r⌊( r
∆r )⌋)

v1 = ∆v⌊( v
∆v )⌋

v2 = ∆(1 + v⌊( v
∆v )⌋)

F00 = F (r1, v1)

F10 =
F (r2,v1)−F (r1,v1)

σr

F01 =
F (r1,v2)−F (r1,v1)

σv

F (r, v) = F00 + F10(r − r1) + F01(v − v1)

(2.6)

Choosing the (r, v) of the triplettes, where we have F (r, v) < F we obtained the initial spherical
conditions. The best way to manipulate the data is using cartesian coordinates, therefore we use
(1.24) to transform the coordinates.

Once we have this set of initial conditions for the halo, the centre of gravity of the galaxy needs to
correspond to the origin of the axes. Therefore we use equation (2.7) for the coordinates x, y, z to
correct the position of bodies.

xcg =
∑Ntot

i=1 xi·mi
∑Ntot

i=1 mi

xnew = xi − xvg
(2.7)

Also the velocities are corrected according to

vcg =
∑Ntot

i=1 vi·mi
∑Ntot

i=1 mi

vnew = vi − vvg
(2.8)

2.2 Bulge

For the bulge we consider a Sérsic density profile

ρB(r) = − 1
π

∫∞
r

dΣB(R)

dR
1√

R2−r2
dR

ΣB(r) = Σ0e
−bB(r/rB)

1
nB −1

(2.9)
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where Σ0 is the central surface density given by

Σ0 =
Mbulge

∫∞
0 2πse−bB(s/rB)

1
nB −1ds

(2.10)

where
∫ ∞

0
2πse−bB(s/rB)

1
nB −1ds = 2πr2B (2.11)

To obtain initial conditions for the bulge bodies we follow the same procedure used for the halo. The
Sérsic profile considered has the following parameters: Mbulge = 5 · 109M⊙, nB = 3.5, rB = 1.5kpc,
bB = 2nB − 0.324. In 2.4 we can see the potential profile, it is clear that it is really high inside the

Figure 2.4: Potential in the bulge

scale radius rB, then it decreases rapidly because all the mass of the bulge is concentrated in the
inner part of the galaxy. Then we switch to the grid with equidistant potentials and determine the
distribution function shown in figure (2.5). The bodies are concentrated in the centre of the galaxy,

Figure 2.5: Bulge distribution function
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according to the fact that we are considering the bulge. Once we have the distribution function we
obtain the initial conditions in the same way as the halo, using equations (2.5) and (2.6).

2.3 Test

Once we have the initial conditions, we study their distribution and see if the results are compatible
with what expected.

The spheres of the halo and the bulge are divided in concentric shells ∆r = Rmax

Nshell
wide (we considered

Nshell = 100). Knowing the radius of each body, we can count how many bodies there are in each
shell(∆N) and get the numerical distribution(2.12).

ρ(r⃗) =
∆N

4πr2∆r
(2.12)

2.3.1 Halo

Comparing 2.12 with 2.1 we can check how accurate is the method we used to get the initial conditions.
It seems clear that the bodies are distributed correctly up to the radius of about 5 kpc, then we see

Figure 2.6: Density test with a logarithmic scale for the halo

that the calculated density decreases much faster than the model. This happens because we chose
a=5kpc as scale radius for the density profile, therefore at this radius the density is cut off.

2.3.2 Bulge

Comparing (2.9) with (2.12), we can see how accurate are the bulge initial conditions. Figure (2.7)
shows that the density of bodies in the bulge is higher than density in the halo if we consider the
inner part of the galaxy. Analysing the plot it results that the profile is close to the theoretical profile
inside radius of r ≈ 3.5kpc, in the outer region it has a different trend, this is probably due to the
fact that when we build the grid with equidistant potential V (Rmax) and V (Rmin) are far apart and
consequently many bodies are counted in the last cell of the grid, thus increasing the density at large
radii.
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Figure 2.7: Density test with logarithmic scale for the bulge
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Initial conditions for disc components

The first step to get the initial conditions for the bodies in the disc is to calculate the potential at a
given radius. The maximum and minimum disc radii considered are Rmax = 20kpc and Rmin = 0.1kpc
and total mass of the disc is Mdisc = 5 · 109M⊙. We create a linear grid starting from the values of
radii ri = i∆r where ∆r = Rmax/NL, i = 1, ..., NL and NL = 200.

The disc’s surface density law is exponential (3.2) and Σ0 = 1.8 ·109⊙/kpc2 value is calculated solving
equation (3.1).

Mdisc =

∫ ∞

0
Σ0e

−RD
r 2πrdr (3.1)

Σ(ri) = Σ0e
−ri/RD (3.2)

where RD = 3kpc. The density law is corrected at the edges of the grid in order to decrease the
number of bodies and make the disc more similar to reality. The functions for the correction are 3.3.

f1(r) =
1
2 + 1

2 tanh (
r−3Rmin

Rmin
)

f2(r) =
1
2 + 1

2 tanh (− r−0.9Rmax

10Rmin
)

(3.3)

Multiplying this function by Σ(R) we obtain the density profile shown in figure 3.1. The system is

Figure 3.1: Density profile of the disc

not perfectly flat, to reproduce the thickness of the disc we can consider the bodies as they were
distributed randomly inside the area defined by the exponential function (3.4):

f(z) = e−z/zD (3.4)

13



Chapter 3. Initial conditions for disc components 14

The mean velocity vz = 0 and the dispersion of velocities follows:

σz(r) = σR(r)e
zD/RD (3.5)

The potential can now be estimated via the formula

V (ri) = −
∫

Gdm

∥r⃗i−R⃗′∥ = −
∫∞
0 dR′ ∫ 2π

0 dϕ GR′Σ(R′)

(r2i+R′2+2riR′ cosϕ)
1
2

dm = Σ(R′)dσ = Σ(R′)R′dR′dϕ
(3.6)

Considering the fact that we need to run a simulation of the disc and the halo we add to the potential

Figure 3.2: Disco potential Figure 3.3: k and omega

of the disc the potential of the halo calculated in (2.1). The value of the potential obtained is shown
in figure 3.2 in which we can see that the potential increases its absolute value getting closer to the
galactic centre.

Once we know the potential, we can determine the values of the angular and epicyclic frequencies
Ω(ri) and κ(ri) (1.28, 1.29).

The result for angular and epicyclic frequencies is shown in figure 3.3 where the blue curve is κ and
the red curve is Ω. In the plot is shown the value of Ω− κ/2 with a green line: such value should be
constant for most of the extension of the disc; as we see in the graph, this condition is fulfilled. These
two frequences are needed to calculate the dispersion of velocities(1.30,1.31, 3.5 where zD = 0.2kpc)
using Toomre’s law(1.27). As we see in figures 3.4, 3.5 and 3.6, the dispersion decreases when the radii
increases as it happens with the angular velocity, we can therefore say that the motion of bodies is
more cahotic when we are closer to the centre. Now we can use (1.32) to calculate the mean angular
velocity at each radii. The result is shown in figure 3.7 and we can see that velocity has a maximum
in r ∼ 3kpc and then decreases.

Now we have a linear grid with ri,Σ(ri), V (ri), σR(ri), σϕ(ri), σz(ri) and µ(ri).

But this linear grid is not convenient for numerical purposes, so we switch to a new grid where we
have a logarithmic scale for radius. The grid now considers the values at each rj = ∆rej∆y with
j = 0, ..., Nlog, Nlog = 300, ∆y = log Rmin

Rmax
Comparing these values of rj with the radii calculated in

the linear grid we can count how many bodies are in each j-cell with equation 3.7.

N(rj) =
Ndisc

Mdisc
Σ(rj)2πrj∆rj (3.7)

Where Ndisc = 106 is the total number of bodies. For each j-radius we subsequently calculate V (rj),
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Figure 3.4: Dispersion in radial direction Figure 3.5: Dispersion z direction

Figure 3.6: Dispersion in angular direction Figure 3.7: Mean angular velocity

σR(rj), σϕ(rj), σz(rj) and µ(rj). We consider i = int(rj/∆r) and the j−values we look for are
calculated by

V (rj) = V (ri) +
V (ri+1)− V (ri)

ri+1 − ri
(rj − ri) (3.8)

At this point we have the logarithmic grid with all the needed parameters. The N(rj) objects of
each cell are positioned in a uniform distribution around rj , and their velocities follow a gaussian
distribution with standard deviation σR(rj), σz(rj), σϕ(rj). Considering such distributions, we have
the cartesian coordinates of space and velocities(1.24).

For the z coordinate we consider (3.4) and produce Ndisc coordinates.

Finally the Ndisc coordinates obtained for space and velocity are the initial conditions of the bodies
in the disc.
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Figure 3.8: Number of bodies depending on the radius

3.1 Test

Once we have the initial conditions, we check if they are compatible with the theory.

3.1.1 Plot of the coordinates

Using the cartesian coordinates we plot the bodies in (3.9). Each colour of this plot represents a
different ring of the logarithmic grid. As we see in the figure, the bodies are distributed in a disc with
radius of 20kpc.

Figure 3.9: Plot of the cartesian coordinates

3.1.2 Density test

Density profile

For this test we consider 100 rings with radii from 0.2 to 20kpc, in each ring we count how many bodies
there are after calculating the radii of each one as we did in test 3.1.1. At this point we calculate
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the numerical density (3.9) (where ∆N is the number if bodies in the ring with radius between r and
r + δr) for each radius and plot the results figure 3.10.

ρ(r) =
∆N

2πrδr
(3.9)

Figure 3.10: Plot for density and radius Figure 3.11: Plot for density on z axis

In figure 3.10 it is clear that the results are compatible with what we are expecting. Specifically using
a logarithmic scale for density, we can see that there is a linear relation between radii and log(ρ)
if are not considered the edges where the correction (3.3) changes the profile. Using the formula
of linear interpolation, we obtain a line with slope: −0.308 that, compared to the expected value
−1/RD = −0.333, shows that the conditions we obtained are compatible with the model of the galaxy
we describe.

Vertical density profile

A similar test can be done for the position of bodies on the z axis. We can consider the maximum
value zmax of the z coordinates of the initial conditions and divide the disc into 200 intervals between
−zmax and zmax. In each of them we calculate the number of bodies and compare it with (3.4) as we
see in figure 3.11. The results are compatible: the slope of the plot with the logarithm of density is
5.00 which is compatible with 1/zD = 5.

3.1.3 Mean velocity and dispersion

For each ring considered in 3.1.1 can be calculated the mean velocity of the bodies in the radial, z
and angular direction. As we see in figures 3.12 and 3.13 the mean velocity in radial and z directions
is close to zero, as we wanted because of the fact that the galaxy we have chosen is in equilibrium.
As we get closer to the centre of the galaxy, the mean velocity has a non-zero value because here the
bodies are less and are moving really fast, so the situation is more cahotic than it is at bigger radii.
Calculating the mean angular velocity and comparing it with the values of the grid, we can see that(in
figure 3.14) the two diagrams are superimposable, therefore the results are correct.

In the same way can be calculated the dispersion in radial, z and angular direction and compared with
the values of the grid. As we see in 3.15, 3.17, 3.16, we can observe that the dispersions obtained are
correct.
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Figure 3.12: Mean radial velocity Figure 3.13: Mean z velocity

Figure 3.14: Mean angular velocity Figure 3.15: dispersion radial velocity

Figure 3.16: Dispersion z velocity Figure 3.17: Dispersion angular velocity
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Relaxation procedure

4.1 Theory

In order to validate the initial conditions, we used a parallel-mesh code to study the evolution of the
system over time and verify if it is stable. This code(described in Kyziropoulos et al. [2016])considers
the initial conditions for halo and disc we obtained in the previous sections and puts all the bodies
in a box. This box is divided into smaller cubes, for each of them is applied Poissons’ equation (1.6)
where the density is determined counting how many bodies are in each cell and how much mass is in
it. Once we have the density, the potential exerted by one cell on the other can be derived. With this
method the acceleration of each body is calculated and then the evolution of the system over time can
be described. The spheroidal components of the galaxy can be considered in equilibrium when they
are isolated. For the disc the situation is different and we consider the potential of the halo in order to
obtain a disc in equilibrium. If the components are together, the situation is not stable and to avoid
this condition we consider two stages of relaxation. First of all we relax the halo freezing the disc, then
we recompute a new disc with the potential of the halo relaxed. Secondly we freeze the halo and let
the disc relax. At this point all the components together are stable and we can check if the system is
in equilibrium running a simulation and verifing if the galaxy looks the same over time (in section 5).
The reason why we are considering this methond to relax the system and the other possible ways to
do it are explained in Barnes and Hernquist [1996], Toomre and Toomre [1972], Hernquist and Quinn
[1988], Barnes [1988] , Barnes [1992].

4.2 Halo relaxation

To relax the halo we freeze the disc in a box of 70kpc and let the system evolve until when it looks
always the same over time. Once we have relaxed the halo, we consider these new initial conditions
and compare them with the previous ones. During the simulation the halo looks always the same, this
means that the system is stable even before the relaxation. This is shown in figures 4.1 and 4.2. Using
equation (1.21) is calculated the new potential of the halo. The results are shown in 4.3. We also
consider the evolution of the halo without the disc in order to verify if it is stable when it is isolated.
In the plot we see four different profiles of the potential of the halo:

• The dotted blue line is the Hernquist law for the potential that we imposed at the beginning(2.2).

• The red line is the potential obtained with (1.21) that we already studied and compared with
the Hernquist profile in (2.2).

• The green line represents the potential after the relaxation of the halo when it’s isolated. We
can observe that it’s really similar to the analytic profile at bigger radia. At smaller radia the
two profiles are slightly different and more bodies are now concentrated in the inner part of the
galaxy.

19
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Figure 4.1: Halo after 0.005Gyr Figure 4.2: Halo relaxed after 1Gyr

Figure 4.3: Comparison between the potential of the halo before and after relaxation

• The black line represents the potential of the relaxed halo when we freeze the disc. We can see
that it is really similar to the analytic profile before relaxation at larger radia. At smaller radia
the difference between these profiles can be explained by the fact that after the relaxation more
bodies will be in the inner part of the galaxy because they are attracted by the disc bodies, as
a consequence the potential in the inner part of the halo will increase.

To study the distribution of bodies of the halo, we can repeat the density test of section 2.3. The
results are shown in figure 4.4 where the colours of the plots correspond to the colours of the potential
profile we have just explained. We have already described in 2.3 the theoric and analytical profiles
before starting the relaxation.

As for the evolution of the halo when it is isolated, we can see that the profile is very similar to the
analytical one before the relaxation. This means that the initial conditions of the halo we produced
represent a stable model for this component of the galaxy because the distribution of bodies is constant.

If we consider the black line, the situation is slightly different: it is clear that the density is higher
at small radia, and lower at bigger radia. The fact that the decrease starts at r ≈ 20kpc is not a
coincidence: this is the Rmax of the disc, therefore this is the component involved in the perturbation
of the density profile. Maybe this occurs because the disc attracts bodies increasing the density in the
inner part of the galaxy. Considering that the total number of bodies is always the same, the rise of
density at small radia causes a decrease of this quantity in the outer region of the halo at r ≈ 20kpc.
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Figure 4.4: Density profiles of the halo after relaxation

Once we have this new relaxed halo we recompute the initial conditions of the disc considering the
new halo potential with the same procedure explained in section 3.

The new disc has a density profile similar to the previous one, only at the edges, as we see in figure
4.5, the profile is smoother because after relaxation bodies tend to get this kind of trend. As for the
numerical distribution of bodies, this is exactly the same we had for the previous disc. With this new

Figure 4.5: Disc density profile before and after re-
laxing the halo

Figure 4.6: Numerical distribution of bodies before
and after relaxing the halo

disc we can calculate the new potential shown in figure (4.8) that has a lower value in the inner part
and a higher value in the outer region. This is because the distribution is more homogeneous and
more bodies have moved towards the centre of the galaxy. This perturbation of the potential causes
changes in the value of the angular and epicyclic frequencies that keep the same trend but increase a
little their values.

Regarding the velocities, this new disc has mean velocity zero on radial and z direction (as we see in
figure 4.9 and 4.10), the dispersion is now smaller if we consider plots 4.11 and 4.13. The velocity on
angular direction has a lower value and dispersion as we see in plots 4.14 and 4.12.

The fact that all the bodies are moving less and with less dispersion is compatible with the fact that
we are relaxing the system.
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Figure 4.7: Disc potential after relaxing the halo Figure 4.8: Epyciclic and angular frequencies

Figure 4.9: Mean velocity on radial direction of disc’s
bodies after relaxiang the halo

Figure 4.10: Mean velocity on z direction of disc’s
bodies after relaxiang the halo

Figure 4.11: Dispersion on radial direction on the
disc before and after relaxing the halo

Figure 4.12: Dispersion on angular direction on the
disc before and after relaxing the halo

4.3 Disc relaxation

Similarly, we relax the disc freezing the halo. Running the simulation we wait for the disc to keep the
same structure over time and compare this new disc with the previous one. Figure 4.15 shows the
xy projection of the disc after 0.005Gyg with the frozen halo. The galaxy does not look completely
uniform, probably because at the centre of the galaxy the bodies are moving chaotically and this
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Figure 4.13: Dispersion on z axis direction on the
disc before and after relaxing the halo

Figure 4.14: Mean angular velocity on angular direc-
tion before and after relaxing the halo

causes a phenomenon similar to density waves where regions of high density are followed by regions of
lower densities as we see in the plot. This occurs also in the yz plot in 4.17, where in the inner part of
the galaxy the thickness does not look like the profile 3.4. After 1Gyr the disc looks like in figures 4.16,
4.18 and the waves disappear. The disc has a uniform and constant distribution of bodies, therefore
we reached a stable condition for this component. It is clear from 4.16 that some spirals have formed,
these non axisymmetric features are caused by swings in the potential(this phenomena is explained in
Toomre [1981]). In 4.19 is shown the new density profile which is very close to the density profile of

Figure 4.15: Disc after 0.005Gyr(xy plot) Figure 4.16: Disc relaxed after 1Gyr(xy plot)

the disc after relaxing the halo, the only difference is at r ≈ 15kpc where there is a small perturbation
of the density. In 4.20 is plotted the new potential of the disc with the orange line. The potential is a
little different in the inner part probably because in this region of the galaxy bodies are moving really
fast and the model is not a perfect approximation. With this new potential, calculated using equation
(3.6), the new epicyclic and angular frequencies shown in figure 4.21 can be measured.

We can compute the velocities in each direction with the correspondant dispersion using the method
explained in section 1.3, the results are plotted in figures 4.22, 4.23, 4.24 and 4.25. The profiles are
very similar, so that, once we have relaxed the halo, the initial conditions of the disc we produced are
compatible with a stable system. Finally, we have equilibrium conditions both for the halo and the
disc.

We did not take into account the bulge in this process of relaxation to simplify the situation. How-
ever considering that the halo was in equilibrium, the bulge should be stable too because its initial
conditions are produced in the same way of the halo.
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Figure 4.17: Disc after 0.005Gyr(yz plot) Figure 4.18: Disc relaxed after 1Gyr(yz plot)

Figure 4.19: Density profile of the disc before and after relaxation
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Figure 4.20: Disc potential after relaxing the disc Figure 4.21: Epyciclic and angular frequencies

Figure 4.22: Dispersion on radial direction on the
disc before and after relaxing the halo

Figure 4.23: Dispersion on angular direction on the
disc before and after relaxing the halo

Figure 4.24: Dispersion on z axis direction on the
disc before and after relaxing the halo

Figure 4.25: Mean angular velocity on angular direc-
tion before and after relaxing the halo
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Chapter 5

Final equilirum

Once both the halo and the disc have been relaxed we can put them together and run a new sim-
ulation(see similar simulations in art [1975], Sellwood and Carlberg [1984], Sellwood and Carlberg
[2014]). If the system keeps always the same structure, we can finally say that the initial conditions
we have produced are in equilibrium. In the following images is shown the galaxy edge-on and face-on
after relaxing it for 0.005Gyr, 0.25Gyr, 0.5Gyr, 0.75Gyr, 1Gyr. The plots are really similar, therefore
we can think that the galaxy is stable. In order to verify this statement, we analyze the distribution
of bodies and velocities during the simulation repeating the tests we did in the previous sections.

Figure 5.1: Disc and halo at 0.005Gyr Figure 5.2: Disc and halo at 0.005Gyr

Figure 5.3: Disc and halo after 0.25Gyr Figure 5.4: Disc and halo after 0.25Gyr

27
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Figure 5.5: Disc and halo after 0.50Gyr Figure 5.6: Disc and halo after 0.50Gyr

Figure 5.7: Disc and halo after 0.75Gyr Figure 5.8: Disc and halo after 0.75Gyr

Figure 5.9: Disc and halo after 1Gyr Figure 5.10: Disc and halo after 1Gyr

We define the density profile using the procedure described in section 2.3 both for the halo and the
disc at different times. Analyzing the plots 5.11 and 5.12, we can see that the profile is the same over
time, therefore the system can be considered in equilibrium. There are only small perturbations for
the halo at r ≈ 20kpc, this is the radius where the disc ends. Probably this is the reason why there
is not complete equilibrium at this r. As for the disc, the perturbations of the density profile occur
at radius ≈ 17kpc. In the previous sections we saw this event taking place before the cut off radius
where there is some instability. For the disc we can also consider the evolution of mean velocity on
angular direction and dispersion of velocities. The plots in figure 5.13, 5.14, 5.15 and 5.16 show that
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Figure 5.11: Halo density profiles Figure 5.12: Disc density profiles

velocities and dispersions keep the same trend over time.

Figure 5.13: Mean angular velocity profiles Figure 5.14: Dispersion of radial velocity

Figure 5.15: Dispersion of angular velocity Figure 5.16: Dispersion of velocity on z axis

In conclusion we can say that the galaxy in this section is stable because it keeps the same features
over time, therefore the procedure we used to determine these initial conditions leads to a galaxy in
equilibrium.
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