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Chapter 1

Introduction

Since his development, mathematical modeling has always had an important
role in the study of epidemics. The ability to predict the trend of a trans-
mission or a pathogenesis helps biologists, doctors and sociologists involved
in the search of a solution for the main diseases. Thanks to the models, it is
possible to test the actual efficacy of a drug or to understand if population
put preventative measures into practice. Models can also be useful in the
control of transmissions allowing the estimation of the level of vaccination
to be used.

Unfortunately, in most cases the a priori estimate of parameters used
in the models is impossible, so it is needed to resort to data fitting and
regression analysis. Moreover, there is a lack of knowledge of the transmis-
sion process and the viral, bacterial, parasitical, fungal evolution in the first
approach to a new kind of infection (e.g. HIV/AIDS). Although planned ex-
periments can be used to obtain information in many sciences, experiments
with infectious diseases in human populations are generally not possible for
ethical and practical reasons. The only available data is from naturally oc-
curring epidemics and infections, but, as we will see later, these data are not
complete since many cases are not reported due to social stigma or medical
system inefficiency. All these drawbacks make models difficult to validate
and to be used in clinical practice.

Sexually transmitted diseases (STDs) need other remarks with regards to
characteristics, which are different from other infections. STDs are restricted
to sexually active population and transmission take place between males and
females in heterosexual community, so the assumption of uniform mixing is
wrong. This problems are handled, for example, in [1] by H.W. Hethcote and
J.A. Yorke, who divided population into eight groups depending on gender
and sexual activity level. The carrier is often asymptomatic in first stages
of infection. The infection, finally, does not induce acquired immunity so
the removed class (i.e. who have had the disease) need to be considered
susceptible.
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4 CHAPTER 1. INTRODUCTION

In this script, after a general discussion of transmission models used
in the following chapters, we will study transmission and pathogenesis of
HIV-1 virus through the analysis of different models that take into account
specific characteristics of the virus and for its spread control. Now, we will
try to understand how HIV acts in human body in order to be able to model
systems that will be discussed next.

1.1 Brief exposition about HIV-1 virus

HIV is the virus that leads to acquired immune deficiency syndrome, AIDS.
HIV is a member of the genus Lentivirus, part of the family of Retroviridae.
Lentiviruses have many morphologies and biological properties in common.
Two types of HIV have been characterized: HIV-1 and HIV-2. HIV-1 is
the virus that was initially discovered and termed both LAV and HTLV-
III. It is more virulent, more infective, and is the cause of the majority of
HIV infections globally. In this dissertation, we consider HIV-1 due to its
spread and importance. Three groups of HIV-1 have been identified on the
basis of differences in the envelope region: M, N, and O. Group M is the
most prevalent and is subdivided into eight subtypes (or clades), based on
the whole genome, which are geographically distinct. The most prevalent
are subtypes B (found mainly in North America and Europe), A and D
(found mainly in Africa), and C (found mainly in Africa and Asia). Most
HIV-1 research is focused on subtype B; few laboratories focus on the other
subtypes.

HIV is composed of two copies of positive single-stranded RNA that
codes for the virus’s nine genes enclosed by a conical capsid composed of
2,000 copies of a viral protein. The single-stranded RNA is tightly bound
to nucleocapsid proteins and enzymes needed for the development of the
virion such as reverse transcriptase, proteases, ribonuclease and integrase. A
matrix composed of viral protein surrounds the capsid ensuring the integrity
of the virion particle. This is, in turn, surrounded by the viral envelope that
is composed of two layers of fatty molecules called phospholipids taken from
the membrane of a human cell when a newly formed virus particle buds
from the cell. Embedded in the viral envelope are proteins from the host
cell and about 70 copies of a complex HIV protein that protrudes through
the surface of the virus particle.

Sexual intercourse is the major mode of HIV transmission. HIV is
present in the seminal fluid, which is passed from a male to his sexual part-
ner. The virions can then infect numerous cellular targets and disseminate
into the whole organism. Other transmission ways are contaminated blood
transfusions, hypodermic needles, and from mother to child during preg-
nancy, delivery, or breastfeeding.

Many species are infected by lentiviruses, which are characteristically
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responsible for long-duration illnesses with a long incubation period. Len-
tiviruses are transmitted as single-stranded, positive-sense, enveloped RNA
viruses. Upon entry into the target cell, the viral RNA genome is converted
(reverse transcribed) into double-stranded DNA by a virally encoded reverse
transcriptase that is transported along with the viral genome in the virus
particle. The resulting viral DNA is then imported into the cell nucleus and
integrated into the cellular DNA by a virally encoded integrase and host
co-factors.

The primary infection starts when HIV enters CD4+ T and macrophages
cells (the first cells infected by HIV and perhaps the source of HIV produc-
tion when CD4+ T-cells become depleted in the patient) by the adsorption
of glycoproteins on its surface to receptors on the target cell followed by
fusion of the viral envelope with the cell membrane and the release of the
HIV capsid into the cell. Shortly after the viral capsid enters the cell, an en-
zyme called reverse transcriptase liberates the single-stranded RNA genome
from the attached viral proteins and copies it into a complementary DNA
(cDNA) molecule. During this period there is a rapid increase in the number
of viral particles in the plasma which can reach well over 10 million copies
per ml. The replication cycle of the virus is very fast, with the generation
of about 1010 virions every day. The process of reverse transcription is ex-
tremely error-prone, with a high mutation rate of approximately 3 × 105

per nucleotide base per cycle of replication and recombinogenic properties
of reverse transcriptase. The resulting mutations may cause drug resis-
tance or allow the virus to evade the body’s immune system. The best
current therapy for HIV involves the simultaneous administration of two or
more anti-viral drugs, potential inhibitors of HIV replication in vivo. These
drug cocktails generally consist of reverse transcriptase inhibitors (RTIs)
that block the infection of target T-cells by infection virus and protease
inhibitors (PIs) that prevent HIV protease from cleaving HIV polyprotein
into functional units, causing infected cells to produce virus particles that
are noninfectious. The introduction of these potent antiviral agents has,
also, opened the door to defining kinetic parameters associated with HIV-1
dynamics in infected individuals. While in primary infection the infectious
HIV-1 particles seek out target cells, mostly CD4+ T-cells, and infect them
until a peak in viral concentration is reached. After which, due to limita-
tions of target cells and/or the emergence of cytotoxic (or effector) T-cells
that target HIV-1 infected cells, the viral load begins to decline.

Primary infection ends when the viral loads reach a set point which de-
fines the beginning of latency. Viral load at set point is a good indicator
of the future of the disease. At this point, the virus and its host cell avoid
detection by the immune system. During latency, there can be numerous
changes in the viral load totals but not to the extent seen in primary infec-
tion. In many patients the behavior is characteristic of a damped oscillating
system in which there are substantial oscillations in viral loads until a quasi-
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steady state level is reached. This state can last for many years until the
virus becomes more active, i.e., the patient receives an anti-viral therapy
which causes viral totals to greatly diminish , or the patient develops AIDS
and the CD4+ T-cell count, normally around 1000/µL, decreases to 200/µL
or below. In this case, the virus is transcribed, producing new RNA genomes
and viral proteins that are packaged and released from the cell as new virus
particles that begin the replication cycle anew. During viral replication, the
integrated DNA provirus is transcribed into mRNA, which is then spliced
into smaller pieces. These small pieces are exported from the nucleus into
the cytoplasm, where they are translated into the regulatory proteins. As
the newly produced proteins accumulates in the nucleus, it binds to viral
mRNAs and allows unspliced RNAs to leave the nucleus, where they are
otherwise retained until spliced. At this stage, structural proteins are pro-
duced from the full-length mRNA. The full-length RNA is actually the virus
genome, that is packaged into new virus particles.

The final step of the viral cycle, assembly of new HIV-1 virions, begins
at the plasma membrane of the host cell. A polyprotein goes through the
endoplasmic reticulum and is transported to the Golgi complex where it
is cleaved in envelope glycoproteins. These are transported to the plasma
membrane of the host cell where the forming virion begins to bud from the
host cell. Maturation occurs either in the forming bud or in the immature
virion after it buds from the host cell. During maturation, HIV proteases
cleave the polyproteins into individual functional HIV proteins. This cleav-
age step can be inhibited by protease inhibitors. The various structural
components then assemble to produce a mature HIV virion. The mature
virion is then able to infect another cell.



Chapter 2

General transmission models

2.1 Infectious diseases

In the classical (but still highly relevant) models we consider here the total
population is taken to be constant. If a small group of infected individuals is
introduced into a large population, a basic problem is to describe the spread
of the infection within the population as a function of time. Of course this
depends on a variety of circumstances, including the actual disease involved,
but as a first attempt at modelling directly transmitted diseases we make
some not unreasonable general assumptions.

Consider a disease which, after recovery, confers immunity which, if
lethal, includes deaths: dead individuals are still counted. Suppose the dis-
ease is such that the population can be divided into three distinct classes:
the susceptibles, S, who can catch the disease; the infectives, I , who have
the disease and can transmit it; and the removed class, R, namely, those
who have either had the disease, or are recovered, immune or isolated until
recovered. The progress of individuals is schematically represented by

Such models are often called SIR models. The number of classes depends
on the disease. SI models, for example, have only susceptible and infected
classes while SEIR models have a suceptible class, S, a class in which the
disease is latent, E, an infectious class, I, and a recovered or dead class, R.
The assumptions made about the transmission of the infection and incuba-
tion period are crucial in any model; these are reflected in the terms in the
equations and the parameters. With S(t), I(t) and R(t) as the number of
individuals in each class we assume here that:

• The gain in the infective class is at a rate proportional to the number

7
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of infectives and susceptibles, that is, rSI, where r > 0 is a constant
parameter. The susceptibles are lost at the same rate;

• The rate of removal of infectives to the removed class is proportional
to the number of infectives, that is, aI where a > 0 is a constant; 1/a
is a measure of the time spent in the infectious state;

• The incubation period is short enough to be negligible; that is, a sus-
ceptible who contracts the disease is infective right away.

We now consider the various classes as uniformly mixed; that is, every pair
of individuals has equal probability of coming into contact with one another.
This is a major assumption and in many situations does not hold as in most
sexually transmitted diseases (STD’s). The model mechanism based on the
above assumptions is then

dS

dt
= −rSI,

dI

dt
= rsI − aI,

dR

dt
= aI.

(2.1)

where r > 0 is the infection rate and a > 0 the removal rate of infectives.
This is the classic KermackMcKendrick [9] model. We are, of course, only
interested in nonnegative solutions for S, I and R. This is a basic model
but, even so, we can make some highly relevant general comments about
epidemics and, in fact, adequately describe some specific epidemics with
such a model. The constant population size is built into the system (2.1)
since, on adding the equations,

dS

dt
+
dI

dt
+
dR

dt
= 0 ⇒ S(t) + I(t) +R(t) = N. (2.2)

where N is the total size of the population. Thus, S, I and R are all bounded
above by N . The mathematical formulation of the epidemic problem is
completed given initial conditions such as

S(0) > 0, I(0) > 0, R(0) = 0. (2.3)

A key question in any epidemic situation is, given r , a, S(0) and the initial
number of infectives I(0), whether the infection will spread or not, and if it
does how it develops with time, and crucially when it will start to decline.
From (2.2),[
dI

dt

]
t=0

= I(0)[rS(0)− a],

[
dI

dt

]
t=0

> 0 ifS(0) > ρ,

[
dI

dt

]
t=0

< 0 ifS(0) < ρ.

(2.4)
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Since, from (2.1), dS/dt ≤ 0, S ≤ S(0) we have, if S(0) < a/r ,

dI

dt
= I(rS − a) ≤ 0 for all t ≥ 0. (2.5)

in which case I(0) > I(t) → 0 as t → ∞ and so the infection dies out;
that is, no epidemic can occur. On the other hand if S(0) > a/r then I(t)
initially increases and we have an epidemic. The term ’epidemic’ means
that I(t) > I(0) for some t > 0. We thus have a threshold phenomenon. If
S(0) > Sc = a/r there is an epidemic while if S(0) < Sc there is not. The
critical parameter ρ = a/r is sometimes called the relative removal rate and
its reciprocal σ(= r/a) the infections contact rate. We write

R0 =
rS(0)

a
. (2.6)

where R0 is the basic reproduction rate of the infection, that is, the num-
ber of secondary infections produced by one primary infection in a wholly
susceptible population. Here 1/a is the average infectious period. If more
than one secondary infection is produced from one primary infection, that
is, R0 > 1, clearly an epidemic ensues. The whole question of thresholds in
epidemics is obviously important. The definition and derivation or compu-
tation of the basic reproduction rate is crucial and can be quite complicated.

Figure 2.1: Threshold fenomenon. For Sc → S(0) the number of infectives
decreases.

We can derive some other useful analytical results from this simple
model. From (2.1) and (2.2)

dI

dt
=

(rS − a)I

rSI
= −1 +

ρ

S
, ρ =

a

r
, (I 6= 0). (2.7)

The singularities all lie on the I = 0 axis. Integrating the last equation gives
the (I, S) phase plane trajectories as

I + Sρ lnS = constant = I(0) + S(0)ρ lnS(0) (2.8)
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where we have used the initial conditions. Note that with (2.3), all initial
values S(0) and I(0) satisfy I(0) + S(0) = N since R(0) = 0 and so for
t > 0, 0 ≤ S + I < N . If an epidemic exists we would like to know how
severe it will be. From (2.5) the maximum I , Imax , occurs at S = ρ where
dI/dt = 0. From (2.8) , with S = ρ,

Imax = ρ ln ρ− ρ+ I(0) + S(0)− ρ lnS(0)

= I(0) + [S(0)− ρ] + ρ ln
ρ

S(0)

= N − ρ+ ρ ln
ρ

S(0)

(2.9)

For any initial values I(0) and S(0) > ρ, the phase trajectory starts with
S > ρ and we see that I increases from I(0) and hence an epidemic ensues.
It may not necessarily be a severe epidemic as is the case if I(0) is close to
Imax. If S(0) < ρ then I decreases from I(0) and no epidemic occurs. Since
the axis I = 0 is a line of singularities, on all trajectories I → 0 as t → ∞.
From 2.1, S decreases since dS/dt < 0 for S = 0, I = 0. From (2.1),

dS

dR
= −S

ρ

⇒ S = S(0)e−R/ρ ≥ S(0)e−N/ρ > 0

⇒ 0 < S(∞) ≤ N.

(2.10)

In fact, 0 < S(∞) < ρ. Since I(∞) = 0, (2.2) implies that R(∞) = NS(∞).
Thus, from (2.10),

S(∞) = S(0)e
R(∞)
ρ = S(0)e

−N−S(∞)
ρ (2.11)

and so S(∞) is the positive root 0 < z < ρ of the transcendental equation

S(0)e
−Nz

ρ = z. (2.12)

We then get the total number of susceptibles who catch the disease in the
course of the epidemic as

Itotal = I(0) + S(0)− S(∞), (2.13)

where S(∞) is the positive solution z of (2.12). An important implication
of this analysis, namely, that I(t) → 0 and S(t) → S(∞) > 0, is that the
disease dies out from a lack of infectives and not from a lack of susceptibles.
The threshold result for an epidemic is directly related to the relative removal
rate, ρ: if S(0) > ρ an epidemic ensues whereas it does not if S(0) < ρ. For a
given disease, the relative removal rate varies with the community and hence
determines whether an epidemic may occur in one community and not in
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another. The number of susceptibles S(0) also plays a major role, of course.
For example, if the density of susceptibles is high and the removal rate,
a, of infectives is low (through ignorance, lack of medical care, inadequate
isolation and so on) then an epidemic is likely to occur. Expression (2.9)
gives the maximum number of infectives while (2.13) gives the total number
who get the infection in terms of ρ(= a/r), I(0), S(0) and N . In most
epidemics it is difficult to determine how many new infectives there are each
day since only those that are removed, for medical aid or whatever, can be
counted. Public Health records generally give the number of infectives per
day, week or month. So, to apply the model to actual epidemic situations, in
general we need to know the number removed per unit time, namely, dR/dt,
as a function of time. From (2.10), (2.2) and (2.1) we get an equation for R
alone; namely,

dR

dt
= aI = a(N −R− S) = a[N −R− S(0)e−R/ρ], R(0) = 0, (2.14)

which can only be solved analytically in a parametric way: the solution in
this form however is not particularly convenient. Of course, if we know a,
r, S(0) and N it is a simple matter to compute the solution numerically.
Usually we do not know all the parameters and so we have to carry out a
best fit procedure assuming, of course, the epidemic is reasonably described
by such a model. In practice, however, it is often the case that if the epi-
demic is not large, R/ρ is small, at least R/ρ < 1. Following Kermack and
McKendrick [9] we can then approximate (2.14) by

dR

dt
= a

{
N − S(0) +

[
S(0)

ρ
− 1

]
R− S(0)R2

2ρ2

}
. (2.15)

Factoring the right-hand side quadratic in R, we can integrate this equation
to get, after some elementary but tedious algebra, the solution

R(t) =
r2

S(0)

{[
S(0)

ρ
− 1

]
+α tanh

(
αat

2
− φ

)}

α =

√[
S(0)

ρ
− 1

]2
+

2S(0)[N − S(0)]

ρ2
,

φ =
tanh−1 (S(0)ρ )

α
.

(2.16)

The removal rate is then given by

dR

dt
=
aα2ρ2

2S(0)
sech2

(
αat

2
− φ

)
, (2.17)

which involves only 3 parameters, namely, aα2ρ2/2S(0), αa and φ. With
epidemics which are not large, it is this function of time which we should fit
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to the public health records. On the other hand, if the disease is such that
we know the actual number of the removed class then it is R(t) in (2.16)
we should use. If R/ρ is not small, however, we must use the differential
equation (2.14) to determine R(t).

Figure 2.2: Typical situation of infective disease dynamics. Parameter values
are: r = 2.18 ∗ 10−3, N = 1000, ρ = 202, S(0) = 999, I(0) = 1.

2.2 Sexually transmitted diseases

In this section we present a simple classical epidemic model which incor-
porates some of the basic elements in the heterosexual spread of venereal
diseases. We have in mind such diseases as gonorrhea and AIDS. The mono-
graph by Hethcote and Yorke [1] is still a good survey of models used for
the spread and control of gonorrhea. They show how models and data can
be used to advantage, the conclusions they arrived at are specifically aimed
at public health workers. For the model here we assume there is uniformly
promiscuous behaviour in the population we are considering. As a simpli-
fication we consider only heterosexual encounters. The population consists
of two interacting classes, males and females, and infection is passed from
a member of one class to the other. It is a criss-cross type of disease in
which each class is the disease host for the other. In all of the models we
have assumed homogeneous mixing between certain population subgroups.
Dietz and Hadeler [7], for example, considered epidemic models for STDs in
which there is heterogeneous mixing. More complex models can include the
pairing of two susceptibles, which confers temporary immunity, several sub-
groups and so on. We discuss a multi-group example later in this section.
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Figure 2.3

Figure 2.4

Criss-cross infection is similar in many ways to what goes on in malaria
and bilharzia, for example, where two criss-cross infections occur. Since the
incubation period for venereal diseases is usually quite shortin gonorrhea,
for example, it is three to seven dayswhen compared to the infectious pe-
riod, we use an extension of the simple epidemic model in 2.1. We divide
the promiscuous male population into susceptibles, S, infectives, I, and a
removed class, R; the similar female groups we denote by S∗, I∗ and R∗. If
we do not include any transition from the removed class to the susceptible
group, the infection dynamics is schematically described in figure 2.3. Here
I∗ infects S and I infects S∗. As we noted above, the contraction of gonor-
rhea does not confer immunity and so an individual removed for treatment
becomes susceptible again after recovery. In this case a better dynamics flow
diagram for gonorrhea is represented in figure 2.4.

An even simpler version involving only susceptibles and infectives is
shown in figure 2.5 which, by way of illustration, we now analyse. It is
a criss-cross SI model. We take the total number of males and females to
be constant and equal to N and N∗ respectively. Then,

S(t) + I(t) = N, S∗(t) + I∗(t) = N∗ (2.18)

As before we now take the rate of decrease of male susceptibles to be pro-
portional to the male susceptibles times the infectious female population
with a similar form for the female rate. We assume that once infectives have
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Figure 2.5

recovered they rejoin the susceptible class. A model for criss-cross SI is then
(2.18) together with

dS

dt
= −rSI∗ + aI,

dS∗

dt
= −r∗S∗I + a∗I∗

dI

dt
= rSI∗ − aI, dI∗

dt
= r∗S∗I − a∗I∗,

(2.19)

where r,a, r∗ and a∗ are positive parameters. We are interested in the
progress of then disease given initial conditions S(0), I(0), S∗(0), I∗(0).
Although (2.19) is a 4th-order system, with (2.18) it reduces to a 2nd-order
system in either S and S∗ or I and I∗. In the latter case we get

dI

dt
= rI∗(N − I)− aI, dI∗

dt
= r∗I(N∗ − I∗)− a∗I∗, (2.20)

which can be analysed in the (I, I∗) phase plane in the standard way. The
equilibrium points, that is, the steady states of (2.20), are I = 0 = I∗ and

Is =
NN∗ − ρρ∗

ρ+N∗
, I∗s =

NN∗ − ρρ∗

ρ∗ +N
, ρ =

a

r
, ρ∗ =

a∗

r∗
. (2.21)

Thus nonzero positive steady state levels of the infective populations exist
only if NN∗/ρρ∗ > 1: this is the threshold condition somewhat analogous to
that found in 2.1. We now expect that, if the positive steady state exists then
the zero steady state is unstable. This is indeed the case. The eigenvalues
λ for the linearisation of (2.20) about I = 0 = I∗ are given by∣∣∣∣−a− λ rN

r∗N∗ −a∗ − λ

∣∣∣∣ = 0

⇒ 2λ = −(a+ a∗)±

√
(a+ a∗)2 + 4aa∗

(
NN∗

ρρ∗
− 1

)
.

(2.22)

So, if the threshold condition NN∗/ρρ∗ > 1 holds, λ1 < 0 < λ2 and the
origin is a saddle point in the (I, I∗) phase plane. If the threshold condition
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is not satisfied, that is, (0 <)NN∗/ρρ∗ < 1, then the origin is stable since
both λ < 0. In this case positive Is and I∗s do not exist. If Is and I∗s exist,
meaning in the context here that they are positive, then linearising (2.20)
about it, the eigenvalues λ satisfy∣∣∣∣−a− rI∗s − λ rN − rI

r∗N∗ − r∗I∗ −a∗ − r∗I∗s − λ

∣∣∣∣ = 0; (2.23)

that is,

λ2 + λ[a+ a∗ + rI∗s + r∗Is]+

[a∗rI∗s + ar∗Is + rr∗(I∗N + IN∗) + aa∗ − rr∗NN∗] = 0, (2.24)

the solutions of which have <[λ] < 0 and so the positive steady state (Is, I
∗s)

in (2.21) is stable. The threshold condition for a nonzero steady state in-
fected population is NN∗/ρρ∗ = (rN/a)(r∗N∗/a∗) > 1. We can interpret
each term as follows. If every male is susceptible then rN/a is the average
number of males contacted by a female infective during her infectious pe-
riod; a reciprocal interpretation holds for r∗N∗/a∗. These quantities, rN/a
and r∗N∗/a∗, are the maximal male and female contact rates respectively.

2.2.1 Multi-Group Model for Gonorrhea and Its Control

Although the SI model in the last section is a particularly simple one, it is
not too unrealistic. In the case of gonorrheal infections, however, it neglects
many relevant factors. For example, as already mentioned a large propor-
tion of females, although infected and infectious, show no obvious symp-
toms; that is, they form an asymptomatic group. There are, in fact, various
population subgroups. For example, we could reasonably have susceptible,
symptomatic, treated infective and untreated infective groups. Hethcote and
Yorke [1] proposed and analysed an 8-group model for gonococcal infections
consisting of

1 - (2) sexually very active women (men) who are asymptomatic when in-
fectious,

3 - (4) sexually active women (men) who are asymptomatic when infec-
tious,

5 - (6) sexually very active women (men) who are symptomatic when in-
fectious,

7 - (8) sexually active women (men) who are symptomatic when infectious.

If the total populations of active male and female are N and N∗, assumed
constant, we can normalise the various group populations as fractions of N
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and N∗. Denote the groups of women with indices 1, 3, 5, 7 and the men
with indices 2, 4, 6, 8. Then if Ni, i = 1, 2, . . . , 8 denote the normalised
populations

N1 +N3 +N5 +N7 = 1, N2 +N4 +N6 +N8 = 1. (2.25)

Since neither immunity nor resistance is acquired in gonococcal infections we
consider only two classes, susceptibles and infectives. If Ii(t), i = 1, 2, . . . , 8
denote the fractions infectious at any time t, the fractional numbers of sus-
ceptibles at that time are then 1 − Ii(t), i = 1, 2, . . . , 8. We again assume
homogeneous mixing. For each group let Di be the mean length of time (in
months) of the infection in group i. Then, there is a 1/Di chance of an infec-
tive recovering each month. This implies that the removal rate per month is
Ii/Di. Let Lij be the number of effective contacts per month of an infective
in group j with an individual in group i. Since the model here considers
only heterosexual (as opposed to homosexual) contacts we have Lij = 0 if
i + j even. The matrix [Lij ] is called the contact matrix. Although there
are seasonable variations in the Lij we take them to be constant here. Then
the average number of susceptibles infected per unit time (month) in group
i by group j is Lij(1− Ii). Thus the model differential equation system is

d(NiIi)

dt
=

8∑
j=1

Lij(1− Ii)NjIj −
NiIi
Di

(2.26)

with given initial conditions Ii(0). Here the first term is the rate of new
infectives, the second is the incidence rate of new infectives, the third is
the recovery rate of infectives. By considering the linearisation about the
nonzero steady state the effect of varying the parameters can be assessed
and hence the effects of various control strategies. This model is analysed
in detail by [26]. Major aims in control include of course the reduction
in incidence and an increase in detection, each of which affects the long
term progress of the spread of the disease. So, screening, detection and
treatment of infectives is the major first step in control. The research [1]
compares various control methods for gonorrhea; it also has references to
other models which have been proposed. As an example, suppose C is a
parameter proportional to the number of women screened and CRi is the
rate at which infected women are detected in group i. Let EPi be the general
supplementary detection rate where E is a measure of the effort put in and
Pi is the population of a group i: E depends on the control strategy. Then,
in place of (2.26) we have the control model

d(NiIi)

dt
=

8∑
j=1

Lij(1− Ii)NjIj −
NiIi
Di
− CRi − EPi (2.27)

Different control methods imply different Ri and Pi. Suppose there is gen-
eral screening of women. On the basis that the number of infected women
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detected is directly proportional to the number infected and the supplemen-
tary programme is general screening of the women population, we have

Pi = Ri = IiNi, i = 1, 3, 5, 7; Pi = Ri = 0, i = 2, 4, 6, 8. (2.28)

If the programme is for men, the odd and even number range is inter-
changed. The cost and social range of screening are not negligible factors
in the practical implementation of such programmes. The political and
sociological considerations can also be rather sensitive. It should be empha-
sised again, that venereal disease models, which are to be used in control
programmes, must have a realistic validation, which can only come from a
comparison of their solutions and predictions with actual data. This should,
of course, apply to all disease control models.





Chapter 3

HIV transmission models

3.1 Simple model for HIV Infection in a Homo-
sexual Population

Here we are interested in the development of an AIDS epidemic in a ho-
mosexual population. Let us assume there is a constant immigration rate
B of susceptible males into a population of size N(t). Let X(t), Y (t), A(t)
and Z(t) denote respectively the number of susceptibles, infectious males,
AIDS patients and the number of HIV-positive or seropositive men who are
noninfectious. We assume susceptibles die naturally at a rate µ; if there
were no AIDS, the steady state population would then be N∗ = B/µ. We
assume AIDS patients die at a rate d: 1/d is of the order of months to years,
more often the latter. Figure 3.1 is a flow diagram of the disease on which
we base our model. As in previous models we consider uniform mixing. A
reasonable first model system, based on the flow diagram in figure 3.1, is
then

dX

dt
= B − µX − λcX, λ =

βY

N
,

dY

dt
= λcX − (ν + µ)Y,

dA

dt
= pνY − (d+ µ)A,

dZ

dt
= (1− p)νY − µZ,

N(t) = X(t) + Y (t) + Z(t) +A(t).

(3.1)

Here B is the recruitment rate of susceptibles, µ is the natural (non-AIDS-
related) death rate, λ is the probability of acquiring infection from a ran-
domly chosen partner (λ = βY/N , where β is the transmission probability),
c is the number of sexual partners, d is the AIDS-related death rate, p is the
proportion of HIV-positives who are infectious and ν is the rate of conver-
sion from infection to AIDS here taken to be constant. 1/v, equal to D say,

19
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Figure 3.1

is then the average incubation time of the disease. (Actually λ here is more
appropriately βY/(X+Y +Z) but A is considered small in comparison with
N). Note that in this model the total population N(t) is not constant, as
was the case in the epidemic models in 2.1. If we add equations (3.1) we get

dN

dt
= B − µN − dA. (3.2)

An epidemic ensues if the basic reproductive rate R0 > 1: that is, the num-
ber of secondary infections which arise from a primary infection is greater
than 1. If, at t = 0, an infected individual is introduced into an otherwise
infection-free population of susceptibles, we have initially X ≈ N and so
near t = 0,

dY

dt
≈ (βc− ν − µ)Y ≈ ν(R0 − 1)Y (3.3)

since the average incubation time, 1/ν, from infection to development of
the disease, is very much shorter than the average life expectancy, 1/µ, of a
susceptible; that is, ν � µ. Thus the approximate threshold condition for
an epidemic to start is, from the last equation,

R0 ≈
βc

ν
> 1. (3.4)

Here the basic reproductive rate R0 is given in terms of the number of sexual
partners c, the transmission probability β and the average incubation time
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of the disease 1ν. When an epidemic starts, the system (3.1) evolves to a
steady state given by

X∗ =
(ν + µ)N∗

cβ
,

Y ∗ =
(d+ µ)(B − µN∗)

pνd
,

Z∗ =
(1− p)(d+ µ)(B − µN∗)

pdµ
,

A∗ =
B − µN∗

d
,

N∗ =
Bβ[µ(ν + d+ µ) + νd(1− p)]

(v + µ)[b(d+ µ)− pν]
.

(3.5)

If we linearise about this steady state it can be shown that (X,Y, Z,A) tends
to (X∗, Y ∗, Z∗, A∗) in a damped oscillatory manner with a period of oscil-
lation given in terms of the model parameters. With typical values for the
parameters at the time [4] the period of epidemic outbreaks was of the order
of 30 to 40 years. It is unrealistic to think that the parameters characterising
social behaviour associated with the disease would remain unchanged over
that time span. The life expectancy of people with HIV has dramatically
increased since then, due mainly of course, to new medicines such as AZT
and protease inhibitors. We can get some interesting information from an
analysis of the system during the early stages of an epidemic. Here the pop-
ulation consists of almost all susceptibles and so X ≈ N and the equation for
the growth of the infectious, that is, HIV-positive, Y -class is approximated
by (3.3), the solution of which is

Y (t) = Y (0)eν(R0−1)t = Y (0)ert, (3.6)

where R0 is the basic reproductive rate, 1/ν is the average infectious period
and Y (0) is the initial number of infectious people introduced into the sus-
ceptible population. The intrinsic growth rate, r = ν(R0 − 1), is positive
only if an epidemic exists (R0 > 1). From (3.6) we can obtain the doubling
time for the epidemic, that is, the time td when Y (td) = 2Y (0), as

td = r−1 ln 2 =
ln 2

ν(R0 − 1)
. (3.7)

We thus see that the larger the basic reproductive rate R0 the shorter the
doubling time. If we substitute (3.6) into equation (3.1) for the AIDS pa-
tients, we get

dA

dt
= pνY (0)ert − (d+ µ)A. (3.8)
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Early on in the epidemic there are no AIDS patients, that is, A(0) = 0, and
so the solution is given by

A(t) = pνY (0)
ert − e−(d+µ)t

r + d+ µ
. (3.9)

In the following table there are estimates for the model parameters that
are used next in our simulations.

r d µ B ν p c

0.88yr−1 1yr−1 1/32yr−1 13333.3yr−1 0.2yr−1 0.3 24yr−1

Figure 3.2:

With these estimates we then get an approximate doubling time for the
HIV-positive class as roughly 9 months. Numerical simulations of the model
system of equations (3.1) give a clear picture of the epidemic development
after the introduction of HIV into a susceptible homosexual population.
Figure 3.2 shows one such simulation: the model predicts that HIV incidence
reaches a maximum around 12 to 15 years after the introduction of the virus
into the population. It should be kept in mind that this is an early (and now
more a pedagogical) model. It is interesting to compare these predictions of
the mid-1980s with the situation in 2000. In spite of the simplicity of the
models, the results were in line with observation in homosexual communities.
More realistic, and not always more complex models, have been proposed
such as those discussed below. With the accumulation of more data and
information of the epidemic, even more sophisticated models will no doubt
be required in the normal progression of realistic modelling. A practical use
of good models at any stage is that, among other things, it poses questions
which can guide data collection and focus on what useful information can
be obtained from sparse or less than complete data. Estimates of epidemic

Data fits of model (3.1) using data from ISS [27].
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severity doubling time, and so on, are in themselves of considerable interest
and use. The model here is for a homosexual population. Now that the
epidemic is very much heterosexual other models are required. The approach
described here is a reasonable starting point.

3.2 Model for public health educational campaigns

The population of interest is with high HIV/AIDS prevalence due to hetero-
sexual transmission (Sub-Saharan Africa). We classify the sexually active
population into four classes: susceptibles S(t), educated E(t), infected I(t),
and AIDS cases who are ill or showing AIDS symptoms A(t) at time t. It
is assumed that, at any moment in time, new recruits enter the sexually
active population at a rate b. A proportion π of these individuals are as-
sumed to be educated (categorized in the E class) and the complementary
proportion (1 − π), are susceptibles (and move to the susceptible class S).
Sexually mature susceptibles S are also educated at a constant rate ε into
the E class of educated individuals. Susceptible individuals acquire infec-
tion at a time dependent rate λ0. Upon effective contact with an infective
individual, a susceptible individual move into the I class of infected indi-
viduals. Educated individuals are infected at a rate (1 − σ)λ0, where σ is
the overall effectiveness of the public health educational campaigns, that
is the factor by which the average infection rate of educated individuals
is reduced relatively to the infection rate of non-educated individuals. In
this context, 0 < σ < 1, the range does not include 0 and 1 because 0
implies that education is useless and 1 implies that education is completely
effective. Upon becoming infected with HIV, educated individuals enter the
class I of infected individuals. The model assumes a constant incubation
period (τ > 0) for both infected susceptible and educated individuals from
the time of being infected to the development of AIDS symptoms. In reality
τ varies due to a number of factors (e.g., genetic heterogeneity) and other
studies [22] have considered variable incubation period from the time of HIV
infection to the development of AIDS. We assume no latent period for HIV
since the latent period is negligible compared to the period of infectivity.
The natural death rate is assumed to be proportional to the number in each
class, µ > 0. AIDS patients have an additional disease-induced mortality
rate, ν > 0. The probability that an infected individual remains in the
incubation period time t units before developing AIDS is given by a step
function with value 1 for 0 ≤ t < τ and value zero for t > τ . There is a
constant emigration rate m > 0 of individuals to other countries except for
the AIDS patients. This assumption makes the model more appropriate to

Salvo
Typewritten Text

Salvo
Typewritten Text
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developing countries where a significant proportion of the population emi-
grate to developed countries for better educational facilities and in search of
employment. The probability that an infected individual in the incubation
period time t units has survived to develop AIDS is k = e−(m+µ)τ for sus-
ceptible and educated. Infected individuals progress to AIDS stage at a rate
kλτ for the susceptibles and (1− σ)kλτ for the educated individuals, where
λτ is the average per capita risk of infection. The infection rate λi for i = 0;
τ depends on the probability of transmission per partnership β, the rate at
which an individual acquires new sexual partners c and the proportion of
infected individuals in each category. The probability of transmission from
an individual in category I to susceptible individuals in category S or E is
β. Assuming homogeneous mixing we have

λi =
βcI(t− i)
N(t− i)

, N(t− i) = S(t− i)+E(t− i)+I(t− i), i = 0, τ, (3.10)

where N(t− i) for i = 0; s is the total sexually active population (excluding
AIDS patients). A total variable population size is

NT (t) = S(t) + E(t) + I(t) +A(t). (3.11)

Educational campaign is intended to reduce the product βc to (1 − σ)βc,
which then reduces the infection rate λ0 to (1− σ)λ0. The model structure
is shown in figure 3.3. HIV/AIDS is assumed to have been in the population
for at least a time τ > 0, such that initial perturbations or transients have
died out. The model equations take the following form for t > τ :

dS(t)

dt
= (1− π)b− λ0S(t)− (ε+ µ+m)S(t),

dE(t)

dt
= πb+ εS(t)− (1− σ)λ0E(t)− (µ+m)E(t),

I(t) =

∫ t

t−τ
λ0[S(u) + (1− σ)E(u)]e(µ+m)(t−u) du,

dA(t)

dt
= kλτ [S(t− τ) + (1− σ)E(t− τ)]− (µ+ ν)A(t).

(3.12)

It is convenient to shift time by τ , so that system (3.12) holds for a new
t > 0, with the initial condition for system (3.12) given as

S(θ) = φ1(θ), E(θ) = φ2(θ), I(θ) = φ3(θ), A(θ) = φ4(θ), φ ∈ [−τ, 0].
(3.13)

The integral in system (3.12) represents the summation over the interval
[t− τ, t] of those individuals who become infectives at time u ≥ 0 and have
neither developed AIDS nor died. For the model to be analyzed, an equiv-
alent delay differential equation should be obtained for standard theorems
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Figure 3.3

to be applied. System (3.12) as a delay differential equation becomes

dS(t)

dt
= (1− π)b− λ0S(t)− (ε+ µ+m)S(t),

dE(t)

dt
= πb+ εS(t)− (1− σ)λ0E(t)− (µ+m)E(t),

dI(t)

dt
= λ0[S(t) + (1− σ)E(t)]− kλτ [S(t− τ) + (1− σ)E(t− τ)]− (µ+m)I(t),

dA(t)

dt
= kλτ [S(t− τ) + (1− σ)E(t− τ)]− (µ+ ν)A(t).

(3.14)
where k = e−(µ+m)τ and parameters φ, b, ε,m, µ, ν, σ, τ, β and c ∈ R+. We
state the following theorem whose proof follows from [23].

Theorem 3.2.1. Every solution of the integro-differential system (3.12)
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satisfies the system (3.14) and an additional equation. Conversely, let S(t),
E(t), I(t) and A(t) be a solution of the differential-difference equation system
(3.14), with NT (t) given by (3.11), and initial conditions given on [−τ, 0]
stated above. If in addition,

I(0) =

∫ 0

−τ
λ0[S(u) + (1− σ)E(u)]e(µ+m)(t−u) du, (3.15)

then this solution satisfies the integro-differential equation system (3.12).

Lemma 3.2.1. System (3.14) is dissipative and preserves positively.

Model system (3.14) describes human population therefore it is very
important to prove that all state variables are non-negative for all time. We
state theorem 3.2.2 for positivity.

Theorem 3.2.2. Let the initial data be S(t) ≥ 0 on [−τ, 0], E(t) ≥ 0 on
[−τ, 0], I(t) ≥ 0 on [−τ, 0], A(t) ≥ 0. Then, solutions of S(t), E(t), I(t)
and A(t) of system (3.14) are positive for all t > 0 (with the compatibility
condition (3.15)).

We begin our analysis from model system (3.14) without public health
educational campaigns ε = π = σ = E = 0 and this reduces to the following
system of equations:

dS(t)

dt
= b− βS(t)I(t)

N(t)
− (µ+m)S(t),

dI(t)

dt
= β

S(t)I(t)

N(t)
− βckS(t− τ)I(t− τ)

N(t− τ)
− (µ+m)I(t),

dA(t)

dt
= βck

S(t− τ)I(t− τ)

N(t− τ)
− (µ+ ν)A(t).

(3.16)

where N(t) = S(t) + I(t) and k = e−(µ+m)τ . All parameters for the model
system (3.16) are assumed to be non-negative for all time t > 0. The model
has a disease-free equilibrium

E0 = (
b

m+ µ
, 0, 0). (3.17)

The basic reproductive number R0 for system (23) is∫ τ

0
βce−(m+µ)t =

βc(1− k)

m+ µ
dt, (3.18)

and this defines the number of new infections generated by a single infected
individual in a completely susceptible population [22]. Mathematically, R0

is defined as the spectral radius. The basic reproductive number R0 mea-
sures the power of a disease to invade a population under conditions that
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facilitate maximal growth. Since 1911, control and intervention efforts have
been based on the concept of the basic reproductive number, introduced
by Kermack and McKendrick [9]. Next, we consider the model with public
health educational campaigns.

Model system (3.14) with public health educational campaigns has a
disease-free equilibrium given by

E0 = (S̄, Ē, Ī, Ā) = (
(1− π)b

m+ ε+ µ
,

bε+ bπ(m+ µ)

(m+ µ)(m+ ε+ µ)
, 0, 0). (3.19)

The education-induced basic reproductive number for model system (3.14),
denoted by RE with the subscript E indicating education, is

RE =

∫ τ

0
βc
S̄ + (1− σ)Ē

S̄ + Ē
e−(m+µ)t dt =

R0
(1− πσ)(m+ µ) + (1− σ)ε

m+ µ+ ε
(3.20)

where

R0 =
βc(1− k)

m+ µ
, (3.21)

is the basic reproductive number of model system (3.14) when there are no
public health educational campaigns, that is ε = π = σ = E = 0, in which
case RE reduces to R0. Note that R0 < 1, therefore RE < 1 irrespective of
the values of π, σ and ε. Biologically speaking, this measures the number
of new secondary infections generated by a single HIV-infected individual
in a community with no public health educational campaigns as a control
strategy for HIV/AIDS. We state theorem 3.2.3 for the stability of system
(3.14) at E0.

Theorem 3.2.3. The model system (3.14) always has the disease-free equi-
librium E0. If RE < 1, the disease-free equilibrium is locally asymptotically
stable in Φ.

In order to study the effects of public health educational campaigns
in slowing the development of HIV/AIDS epidemic in a community, we
investigate the basic reproductive number which is a measure of the power
of a disease to invade a population under conditions that facilitate maximal
growth. We rewrite the education-induced reproductive number as

RE = R0H1, (3.22)

where

H1 =
(1− πσ)(m+ µ) + (1− σ)ε

m+ µ+ ε
(3.23)

Note that H1 is the factor by which public health educational campaigns
reduce the number of secondary HIV infectives if adopted in a community.
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If R0 < 1, HIV/AIDS cannot develop into an epidemic and public health
educational campaigns may not be necessary. For R0 > 1 we want to de-
termine the necessary condition for slowing the development of HIV/AIDS.
We have

∆E := R0 −RE = R0

[
1− (1− πσ)(m+ µ) + (1− σ)ε

m+ µ+ ε

]
= R0(1−H1)

(3.24)
for which ∆E > 0 is expected for slowing down the spread of the HIV/AIDS
in a community and is satisfied for all 0 < ε, π, σ < 1. We note that under
this condition the factor H1 multiplying R0 is less than unity (H1 < 1),
indicating that public health educational campaigns have the capability of
slowing down HIV/AIDS if adopted in a community. Differentiating RE

partially with respect to π, ε and σ we obtain

∂RE

∂π
= − σ(m+ µ)

m+ ε+ µ
R0,

∂RE

∂ε
= −σ(1− π)(m+ µ)

(m+ ε+ µ)2
R0,

∂RE

∂σ
= −π(m+ µ) + ε

m+ ε+ µ
R0.

(3.25)

From (3.25) we see that a necessary condition for slowing down the devel-
opment of HIV/AIDS epidemic are σ > 0 and π < 1. The conditions

∆E > 0,
∂RE

∂π
< 0,

∂RE

∂ε
< 0,

∂RE

∂σ
< 0 (3.26)

for slowing down the epidemic are satisfied for all 0 < ε, π, σ < 1. Setting
the education-induced reproductive number RE = 1 and solving for π, σ and
ε gives the threshold proportion of educated adolescence, education rate for
susceptible individuals and education efficacy respectively as follows:

πc =
1

σ

[
1− (m+ µ) + σε

R0(m+ µ)

]
,

εc =
m+ µ

σ
[R0(1− πσ)− 1],

σc =
(m+ µ)(R0 − 1)

R0π(m+ µ) + ε
.

(3.27)

Public health educational campaigns on HIV/AIDS would succeed in con-
trolling the epidemic RE < 1 if π > πc, ε > εc and σ > σc. The threshold
values, πc exist when σ > 0 and

m+ µ+ σε

R0(m+ µ)
< 1 (3.28)
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εc exist when σ > 0 and R0(1 − πσ) > 1 and σc exist when R0 > 1 and
R0π(m + µ) + ε > 0. We note that πc and εc are decreasing functions
of σ (effectiveness of education). Thus, if education is not very effective
(small σ), high values of πc and εc are required. We also note that πc and
εc are increasing functions of R0, thus for populations where R0 is large,
high values of πc and εc are required to control HIV/AIDS using public
health educational campaigns. We conclude that in population where ed-
ucation is not effective or R0 is large, HIV/AIDS may not be controlled
using public health educational campaigns alone because the corresponding
values of πc and εc required are high and perhaps unattainable for such pop-
ulations. The education-induced basic reproductive number (RE) can be
written as RE(π, ε) to emphasize the role of educating sexually immature
and sexually mature individuals in controlling HIV/AIDS. We note that
RE(π, ε) < RE(0, ε) and RE(π, ε) < RE(π, 0) suggest that educating sexu-
ally immature and sexually mature individuals concurrently is more effective
in slowing down HIV/AIDS than concentrating on a cohort public health
educational campaign of either the sexually immature or sexually mature
individuals only.

From theorem 3.2.3, we note that if the disease-free equilibrium exists,
it is locally asymptotically stable if and only if RE < 1. However, the
disease-free equilibrium may not be globally asymptotically stable even if
RE < 1. In the presence of public health educational campaigns the ba-
sic reproductive number (RE in this case) does not completely describe
the equilibrium behaviour of the model. There is the possibility of back-
ward bifurcation (bistability), where a stable endemic state co-exist with
the disease-free equilibrium when RE < 1. The public health implication
of backward bifurcation is that the classical requirement of having the ba-
sic reproductive number less than unity, although necessary, is no longer
sufficient for disease control.

b µ ν m τ π ε c σ

0.029yr−1 0.02yr−1 0.333yr−1 0.01yr−1 8yr 0.2 0.15yr−1 3yr−1 0.6
0.029yr−1 0.02yr−1 0.333yr−1 0.01yr−1 8yr 0.4 0.3yr−1 3yr−1 0.7

Table 3.1
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Figure 3.4:

Figure 3.5:

Simulation for model (3.14) using parameter values in table 3.1

Increasing rate of educating adults, efficiency of education, and proportion

of individual educated, number of infected dramatically decreases after five years.





Chapter 4

HIV pathogenesis models

In this chapter we will consider deterministic and stochastic models for the
analysis of pathogenesis of HIV-1 virus. Deterministic models can include
time delay and we will see how this influences final results of simulations.
Stochastic model that will be studied allows for the possibility of viral extinc-
tion under a given threshold of viral volumes at the beginning of infection.
We show for each model a Matlab R© simulation.

4.1 Deterministic models

4.1.1 Effector model

With this in mind we have the following set of equations as our basic model,

dT

dt
= s− dT − kV T,

dT ∗

dt
= kV T − δT ∗ − dxET ∗,

dV

dt
= NδT ∗ − cV,

dE

dt
= pT ∗ − dEE.

(4.1)

The initial conditions are T (0), T ∗(0), V (0), E(0) = 0. Here T, T ∗, V and
E ∈ R+ and all parameters are in R+. The constant s represents a source
of healthy cells and d is their death rate. k is the infectivity rate, δ is the
death rate of the infected cells and dx represents the effectiveness of the
immune response. N is the number of virus particles produced per infected
cell and c is the viral clearance rate. The inclusion of the term dxET

∗,
allows for the removal of productively infected T cells due to a cell mediated
immune response. Model (4.1) has two steady states: the infection-free
steady state E0 = (T̄ , 0, 0, 0) with T̄ = s/d and the infected steady state

32
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E1 = (T̄ , T̄ ∗, V̄ , Ē) where

T̄ =
c2dxp

2k2N2δ∗dE

[
kNδ2dE
cdxp

− d+

√(
kNδ2dE
cdxp

− d
)2

+4s
k2N2δ2dE
c2dxp

]
,

T̄ ∗ =
dE
dxp

(
kNδT̄

c
− δ
)
,

V̄ =
Nδ

c
T̄ ∗,

Ē =
p

dE
T̄ ∗.

(4.2)
From T̄ ∗ > 0, we have that the infected steady state exists if and only

if k1NT̄/c > 1, which is equivalent to kNs/(dc) > 1, i.e., kNT̄/c > 1.
Note that R0 = kNs/(dc) is the basic reproductive ratio of the basic model
(without the immune response). We will study the mathematical properties
of the solutions of model (4.1). To study the local stability of the steady
states of model (4.1), we linearized the system about a given steady state
to get ∣∣∣∣∣∣∣∣

−d− kV̄ − λ 0 −kT̄ 0
kV̄ −δ − dxĒ − λ kT̄ −dxT̄ ∗
0 Nδ −c− λ 0
0 p 0 −dE − λ

∣∣∣∣∣∣∣∣ = 0, (4.3)

where λ is an eigenvalue. We have the following result for the infection-free
steady state. The characteristic equation for the linearized system is

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (4.4)

where

a1 = c+ δ + dxĒ + dE + d+ kV̄ ,

a2 = k(dE + c+ δ + dxĒ)V̄ + ddE + δdE + dδ + dc+ cdE + dxĒc

+ T̄ ∗pdx + ddxĒ + δc− δkT̄N + dxĒdE ,

a3 = dx[k(c+ dE)V̄ + dc+ cdE + ddE ]Ē − δkN(dE + d)T̄

+ k(δdE + dEc+ pdxT̄
∗ + δc)V̄ + δcde + pdx(d+ c)T̄ ∗ + δdEd

+ δdc+ cdEd,

a4 = kc(dEdxĒ + δdE + T̄ ∗dxp)V̄ + dcdEdxĒ + cdEδd− δdkT̄NdE
+ T̄ ∗pdxcd.

(4.5)

By the Routh-Hurwitz conditions, all eigenvalues of (4.4) have negative real
part if and only if

a1 > 0, a4 > 0, B1 := a1a2 − a3 > 0, B1a3 − a1a4 > 0. (4.6)
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Theorem 4.1.1. The infection-free steady state of model (4.1) is locally
asymptotically stable when R0 < 1 and unstable when R0 > 1.

Proof. The Jacobian matrix at the non-infected steady state is
−d 0 −ks

d 0

0 −δ ks
d 0

0 Nδ −c 0
0 p 0 −dE

 , (4.7)

which produces the eigenvalues

λ1 = −d, λ2 = −dE , λ3,4 =
−(c+ δ)±

√
(c− δ)2 + 4ksNδ

d

2
. (4.8)

Hence it is easily seen that all eigenvalues are real and negative given 4.1.1
is satisfied. Under this assumption the non-infected steady-state is locally
stable.

Theorem 4.1.2. The infected steady state (4.2) is stable if and only if the
Routh-Hurwitz inequalities (4.6) evaluated at this steady state are satisfied.

Pawelek et al. [16] collected data from 10 patients to provide an eval-
uation for model discussed above. We used data from 4 patients in our
simulations. Figure 4.1 shows data fit for patient 3 with a RMS (root mean
square) of 0.172, a good result if compared to data fit for patient 2 in fig-
ure 4.6, whose RMS is 0.647 for model (4.1) and 0.506 for model (4.13).
Parameter values are in table 4.1 and 4.3.

Figure 4.1: Data fits of model (4.1) for patient 3
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4.1.2 Model with response activation time delay

In this section we introduce a time delay in the model (4.1) by assuming
that the immune response at time t is generated by the infection of a cell
T ∗ at time t− τ , where τ is constant. The model then becomes

dT (t)

dt
= s− dT − kV T,

dT ∗(t)

dt
= kV T − δT ∗ − dxET ∗,

dV (t)

dt
= NδT ∗ − cV,

dE(t)

dt
= pT ∗(t− τ)− dEE,

(4.9)

where the term T ∗(t − τ) allows for a time delay between the moment of
infection and the recognition of the infected cells by the cytotoxic CD8+ T
cells. The initial values are

T (0), T ∗(θ) = 0, V (0), E(0) = 0, θ ∈ [−τ, 0]. (4.10)

From (4.9) we obtain the following determinant:∣∣∣∣∣∣∣∣
−d− kV̄ − λ 0 −kT̄ 0

kV̄ −δ − dxĒ − λ kT̄ −dxT̄ ∗
0 Nδ −c− λ 0
0 pe−λτ 0 −dE − λ

∣∣∣∣∣∣∣∣ = 0, (4.11)

The analysis of free-infection steady state lead to the same results of 4.1.1.
The following theorem shows the conditions for stability of the infected
steady state.

Theorem 4.1.3. In the case of τ > 0, the infected steady state is locally
asymptotically stable when τ < τ∗, where τ∗ = minj∈N (τ j1 , τ

j
2 ) with

τ j1 =
1

ω

[
arccos

(
α1cω

2 + ω2(ω2 − α2)

α3(c2 + ω2)

)
+ 2jπ

]
,

τ j2 =
1

ω

[
2π − arccos

(
α1cω

2 + ω2(ω2 − α2)

α3(c2 + ω2)

)
+ 2jπ

]
.

(4.12)

Here α1 = dE + c + R0δ, α2 = dE(c + R0δ), α3 = (R0 − 1)dEδ and ω is
=[λ]. Moreover, a Hopf bifurcation1 occurs at the infected steady state when
τ = τ∗.

1A Hopf bifurcation is a local bifurcation in which a fixed point of a dynamical system
loses stability as a pair of complex conjugate eigenvalues of the linearization around the
fixed point cross the imaginary axis of the complex plane. Under reasonably generic
assumptions about the dynamical system, we can expect to see a small-amplitude limit
cycle branching from the fixed point.
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The proof is based on the analysis of threshold values of τ2 for the cross
of imaginary axis, substituting λ = iω.

In figure 4.2 and 4.3 we show two possible behaviors of model (4.9).

4.1.3 Model with response activation and intracellular time
delay

Ciupe et al. [12] incorporated one time delay into an HIV-1 model to account
for the time needed to activate the CD8+ T cell response, i.e., the immune
cells at time t were activated by infected cells at time t − τ2, where τ2
is a constant. Pawelek et al. [16] include this immune delay as well as
an intracellular delay, τ1, between viral entry and viral production (this
phase is referred to as the eclipse phase). The model is described by a
system of differential equations (4.1). Schematic diagram at the model is
given in figure 4.4. It includes four variables: uninfected target cells T (t),
productively infected cells T ∗(t), free virus V (t), and effector cells E(t). The
parameter s represents the rate at which target cells are created, d is the
death rate of target cells, k is the infection rate, and δ is the death rate
of productively infected cells. As described in [13], we assume k1 = ke−aτ1 ,
where α(d < α < δ) is the death rate of infected cells before viral production
commences. Thus, e−aτ1 is the probability that an infected cell survives the
eclipse phase to produce virions. The constant dx represents the killing rate
of infected cells by effector cells. N is the number of virions produced by an
infected cell during its lifespan, and c is the viral clearance rate constant.
Effector cells are assumed to be generated at a rate proportional to the
level of productively infected cells, and die at a rate dE . Note that the
generation of effector cells was described using a mass action term pET ∗ in
other studies. However, it generates a steady state of infected cells, T ∗ =
dE/p, which is independent of any viral parameters. Here, we assumed the
same generation rate for effector cells as in [12]. The model including the
two delays is given by

dT (t)

dt
= s− dT − kV T,

dT ∗(t)

dt
= k1V (t− τ1)T (t− τ1)− δT ∗ − dxET ∗,

dV (t)

dt
= NδT ∗ − cV,

dE(t)

dt
= pT ∗(t− τ2)− dEE.

(4.13)

R0 is intracellular delay-dependent, because k1 = ke−ατ1 can be good
approximated to k. Both α and τ1, in fact, are very small. The determinant
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Figure 4.2: Simulation of model (4.9) that exhibits damped oscillations.
Parameter values in first line of table 4.2

Figure 4.3: Simulation of model (4.9). After an initial peak, viral load settle
to a costant value. . Parameter values in second line of table 4.2
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Figure 4.4

is given by:∣∣∣∣∣∣∣∣
−d− kV̄ − λ 0 −kT̄ 0
kV̄ e−λτ1 −δ − dxĒ − λ kT̄ e−λτ1 −dxT̄ ∗

0 Nδ −c− λ 0
0 pe−λτ2 0 −dE − λ.

∣∣∣∣∣∣∣∣ = 0, (4.14)

Again, there is no need to analyze the free-infection steady state. At the
infected steady state, the characteristic Eq. given by (4.14) can be simplified
to

(λ+ d+ kV̄ )(λ+ c)[(λ+ R0δ)(λ+ dE) + (R0 − 1)dEδe
−λτ2 ]

= (λ+ d)(λ+ dE)R0cδe
−λτ1 . (4.15)

For a special case of τ2 = 0, we have the following theorem for the stability
of the infected steady state.

Theorem 4.1.4. The infected steady state of model (4.13) is locally asymp-
totically stable when R0 > 1 in the case of τ2 = 0.

Proof. In the case of τ2 = 0, the characteristic equation is

(λ+ d+ kV̄ )(λ+ c)[(λ+ R0δ)(λ+ dE) + (R0 − 1)dEδ]

= (λ+ d)(λ+ dE)R0cδe
−λτ1 . (4.16)
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Obviously, Eq. (4.16) does not have a nonnegative real solution. Now
we prove that (4.16) does not have any complex root k with a nonnegative
real part. Suppose, by contradiction, that k = x+ iy with x ≥ 0 is a root of
(4.16). Because its complex conjugate k = x− iy is also a root of (4.16), we
can assume that y > 0. When R0 → 1, we have V̄ → 0. Thus, Eq. (4.16)
reduces to (λ + c)[(λ + δ) = cδe−λτ1 . Using the same arguments as above,
we can show that it does not have any root with a nonnegative real part.
By the continuous dependence of roots of the characteristic equation on R0,
we know that the curve of the roots must cross the imaginary axis as R0

decreases sufficiently close to 1. That is, the characteristic Eq. (4.16) has a
pure imaginary root, say, iy0, where y0 > 0. From (4.16), we have

(iy0 + d+ kV̄ )(iy0 + c)[(iy0 + R0δ)(iy0 + dE) + (R0 − 1)dEδ]

= (iy0 + d)(iy0 + dE)R0cδe
−iy0τ1 . (4.17)

We claim that the following inequality holds:

|(iy0 + R0δ)(iy0 + dE) + (R0 − 1)dEδ| > |iy0 + dE |R0δ. (4.18)

In fact, after straightforward computations, we have

|(iy0 + R0δ)(iy0 + dE) + (R0 − 1)dEδ|2 − |iy0 + dE |2(R0δ)
2

= [y20 − (R0 − 1)dEδ]
2 + 2R0(R0 − 1)(dEδ)

2 + (dEy0)
2 > 0. (4.19)

Thus, (4.18) holds. It follows from |iy0 + d+ kV̄ | ≥ |d+ iy0|, |c+ iy0| > c,
and the inequality (4.18) that the modulus of the left-hand side of (4.17) is
greater than the modulus of the right-hand side. This leads to the contra-
diction. Therefore, we conclude that the characteristic Eq.(4.16) does not
have any root with a nonnegative real part. Thus, the infected steady state
is locally asymptotically stable when R0 > 1 in the case of τ2 = 0.

Figure 4.5 displays the best fit for model (4.13) with a RMS error of
0.048. Although data fits of model (4.13) are usually better than model
(4.1), in figure 4.7 results are similare in both models. This highlights that
more data are needed for models validation.
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Figure 4.5: Data fits of model (4.13) for patient 4

Figure 4.6: Data fits of model (4.13) and (4.9) for patient 2

Figure 4.7: Data fits of model (4.13) and (4.9) for patient 1
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4.2 Stochastic model

Tan and Wu introduced a stochastic model on the basis of Perelsons de-
terministic model [20]. Although [20] and [18] models are similar, their
solutions differ because different parameter values are used and different
time periods of infection are studied. Therefore, direct comparison of the
two stochastic approaches is not possible. In this section we develop a new
model by applying Tan and Wus stochastic approach [19] to Phillipss de-
terministic model [18] used by Tuckwell and Le Corfecs multi-dimensional
diffusion process [17]. Numerical solutions are obtained in the same man-
ner as that used in the previous model except that we no longer use a
multi-dimensional diffusion process method. The new model enables us to
compare the two stochastic approaches directly. The four variables used in
this model are the same as described in the previous section. By apply-
ing Tan and Wus stochastic approach, a four-dimensional stochastic process
X = {T (t), L(t), I(t), V (t)} is described based on the following set of as-
sumptions:

• New normal CD4+ T-cells are generated stochastically from precursor
cells. This is modeled by a Poisson process with rate λδt.

• Susceptible CD4+ T-cells can be infected by HIV-1 to become latently
or actively infected cells. The conditional probability that an HIV-1
infects a CD4+ T-cell during [t, t+ δt) is k1T (t)δt+ o(δt). A CD4+ T-
cell infected by HIV-1 during [t, t+δt) becomes latent with probability
p.

• Activation of an L(t) cell during [t, t+ δt) takes place with probability
αδt+ o(δt).

• The probability of death of a T (t) cell and an L(t) cell is µδt+ o(δt).
Similarly the probability of death of an I(t) cell and a V (t) during
[t, t+ δt) are aδt+ o(δt) and γδt+ o(δt), respectively.

• An I(t) cell releases c HIV-l particles during [t, t+ δt). This process is
modeled deterministically and the random variation of this quantity
is ignored.

Given the above assumptions, the numerical solutions for the (n+1)th step
of the four variables are given by the following algorithm:

Tn+1 = Tn + Sn − Fn −DTn,

Ln+1 = Ln +Xn − F ′n −DLn,

In+1 = In + Fn −Xn + F ′n −DIn,

Vn+1 = Vn + cInδt− Fn −DV n,

(4.20)
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where
Sn ∼ Poisson with a mean ofλδt,

Fn, DV n|[Tn, Vn] ∼ Multinomial[Vn; k1Tnδt, γδt],

F ′n, DLn|Ln ∼ Multinomial[Ln, αδt, γδt],

Xn|Fn ∼ Binomial[Fn, p],

DTn|Tn ∼ Binomial[Tn, µδt],

DIn|In ∼ Binomial[In, aδt].

The conditional distribution method is used to generate the multinomial
random variables. The deterministic solutions are computed by replacing all
terms in Eqs. (4.20) with expected values of the corresponding distributions.

Using the model described above, Kamina et al. generated 1000 Monte-
Carlo samples for 60 post-primary infection days with time step of 0.01
days. They repeatedly generated sample paths for the six different initial
viral volumes, V (0) = 2, 5, 10, 50, 100, and 300. Parameter values are

λ (mm−3 day)
−1

µ day−1 k1 (mm−3 day)
−1

k2 (mm−3 day)
−1

p α day−1 a day−1 c day−1 γ day−1

0.272 0.00136 0.00027 0.00027 0.1 0.036 0.33 100 2

In figure 4.8 we note that model (4.20) is able to predict viral extinction
in an early period of HIV-1 infection.

Figure 4.8: Ten sample paths of infected steady state from the Monte-Carlo
simulation of (4.20) generated in [21]



Chapter 5

Conclusion

In this thesis, we showed how model theory takes on an important role in
epidemiology and virology since its regular application to real study cases.

Although model development is relatively simple if spread dynamics or
viral evolution is known, model verification and validation need more data
that are not always available. Collection of data requires ongoing com-
mitment that health workers cannot honor. Studies, that are involved in
serious epidemics such as HIV, would need specific departments in hospitals
and clinics to assign this role. Since nineties Departments of Health of de-
veloped countries have seriously activated qualified systems to analyze data.
In Italy the task has been assigned to Istituto Superiore della Sanit that
every year publishes a paper with current data organized in regions, gender
and transmission medium.

We focused on HIV-1 virus that leaded to the worst outbreak of ninth
century in terms of number of infected people and social implications. We
analyzed epidemic and pathogenesis models to give a complete evaluation of
the problem. The former gave us the opportunity to understand how we can
model different characteristics of the spread dynamics such as educational
campaigns. The latter explain the problem of data collection seen above,
through Matlab R© simulations and data fits. The use of data collected from
few patients does not allow for a statistical approach required to model
validation. With a stochastic model, we could also consider the possibility
of viral extinction in the case of low viral load during the first stages of
infection.

In the perspective of an increase in efficiency of public health facilities
involved in HIV/AIDS disease, we expect an improvement of models in the
near future, although the still partial knowledge of some inner workings.
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