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2.4 Feynman-Kač measure for the free field . . . . . . . . . . . . . . 14
2.5 Concentration in L2 of the Feynman-Kač measure for the free field 14
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Chapter 1

Introduction

One of the major revolutions of the 20th century Physics was the introduction
of functional integration methods in the study of quantum phenomena.
Since the first experiments on particles was clear that the Physics of the atomic
world is very different from Classical Physics. Even the concept of “particle”
characterized by a position and a velocity in the space is out of sense, as well
as the “natural” idea that the energy of a particle is a continuous quantity.
A non trivial probabilistic structure emerged by experiments, changing deeply
the intuition on the dynamics. It was one of the biggest achievement of Func-
tional Analysis to develop a striking framework capable to give a precise descrip-
tion and prediction of the QM1. With this strong achievement, since the middle
of 20th century the so called second quantization moved its first steps: the
Quantum Field Theory was born. Despite the successes of the QM, the QFT2 is
a very hard mathematical problem not completely solved even today. There are
basically two approaches to the problem. The first was based on an extention
of the first quantization and involve algebraic methods in Functional Analysis.
We do not mention this subject in this thesis.
The second method was actually introduced by the Nobel price R. Feynman
and it is based on an idea of one of the fathers of QM: P. Dirac. In his book on
QM, Principles of Quantum Mechanics, published yet in 1930, Dirac recognizes
that the fundamental quantity of the QM, that is the propagator3 (i.e. the
integral kernel which allows the computation of transition probabilities for the
quantum system) was expressed as an integral on the space of all possible paths
of an exponential of type

e
i
~A(q)

where q is the path and A is the classical action of the underlying system and
~ is the Planck constant. However it was R. Feynman, beginning with its PhD
Thesis to develop the subject. Actually he defined a formal measure on the

1Quantum Mechanics
2Quantum Field Theory
3see formula (1.1).
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path space (i.e. The space of all possible trajectories, even without any physical
meaning) and started to develop a formal machinery to derive prediction on the
system.
Once acquainted with QM, Feynman launched himself into the challenge of
QFT. The basic idea was quite simple: just replace the classical action with
the appropriate action describing the Physics of the classical fields (i.e. The
Maxwell equations). In this case the formal measure works on the space of all
possible fields. Working on this subject jontly with Tomonaga and Schwinger
he was awarded by the Nobel Price for Physics in 1965 just for the theory of
quantum electrodynamics.

Despite the straordinary succes of the functional integration methods intro-
duced by Feynman, the main mathematical problem was that they weren’t based
on a rigorous ground. The Feynman measures were only formally defined and
nobody up to now has been able to construct a rigorous theory, except for some
exotic cases. However, yet in the fifties of 20th century M. Kač proved that
changing time in imaginary time (this corresponds to swich the Schrodinger
equation into the heat equation) a completely rigorous construction of path
space measures was possible, at least for the case corresponding to QM. Such
measure is called now Feynman-Kač measure.
Since then many mathematicians studied the problem to extend the construc-
tion to QFT. The major success was achieved by J. Glimm and A. Jaffe in
a series of works culminated in the book Quantum Physics (Springer 1984),
where, however, the construction is done in full generality in the case of physi-
cal dimension of the space time equal to d=2 and in some particular case in the
case d=3. The phisically interesting problem d=4 is yet open.
Even if an incomplete theory was developed, the positive results encouraged
to believe that the functional integration methods are the right way in order
to construct a rigorous framework for QFT. Indeed the next challenge was to
include General Relativity into the description, taking account of the geometric
structure of the space time and, hopefully (the big dream of every Physicist) the
unified theory, that is theory able to include all the phenomena of Physics.
In this direction, the last decades of 20th century were characterized by the in-
troduction of a new theory: the String Theory. Actually, this theory is quite
technical and seems a agglomerate of very complicate mathematical statements
without a clear context.
In this jungle, in a couple of articles published on Physics Letters A.M. Polyakov
proposed once again to describe strings toward integration on the space of 2-dim
surfaces, using as action the geometrical area defined by a Riemaniann metric.
Actually his idea was even more daring: he proposed to consider a measure
in the product space {2-dim surfaces}×{riemanian metrics}. The literature on
the mathematical solution of this problem is reduced to few attempts and it is
basically completely open up to now.

The aim of this thesis is to introduce a bit of mathematical rigour in the
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definition of the measures of type:

e−A(φ)dφ,

where A is a particular action functional (the Nabu-Goto action), and φ is a
field (mathematically spoken φ : Rd → Rn), in particular φ is a parameterization
of a 2-dim surface with smooth boundary (it will be also a compact Rieman-
nian manifold4) then φ : R2 → Rn. Polyakov, introducing a functional with
another variable, splits the problems into two parts, one of these is a kind of
e−

1
2

∫
〈∇φ|∇φ〉g dxd∞φ where g is the metric associated to the Riemannian mani-

fold. Therefore Chapter 2 is dedicated to the definition of the infinite product
measure: e−

1
2

∫
|∇φ|2 dxd∞φ, where φ : Rd → Rn. Finally in Chapter 3 will be

presented in detail Polyakov idea and will be applied the results of the previous
chapter to define, at least, the first part of the over-mentioned measure.

In this work there is no purpose to study physical phenomenons, or to moti-
vate it. However follows a simple excursus useful to a better comprehension of
the problem5.

1.1 Why do we need measures in QFT?

In C.M.6 the trajectories can be seen as stationary points of some functional
(for example the statinary points of the action A(q) =

∫ t1
t0

1
2 q̇(t)

2 − V (q(t)) dt
are the trajectories of a particle with mass m = 1, immersed in a forces field
generated by a potential −V ).
In QM we can’t give the same interpretation, innovatively we can think that
a particle can follow any path between two fixed positions. The interpreta-
tion which has more correspondences with experimental results, is to assign a
probability density to each path. Then a particle’s state is described by a prob-
ability distribution that has not to be meant as usual because the state space
is L2(R,C) =

{
φ : R −→ C : φ is measurable, ‖φ‖22 ≡

∫
R |φ(x)|2 < +∞

}
, and a

state is said to be a probability distribution in the following sense: if ‖φ‖2 = 1,

the probability that a particle in the state φ is in [a, b] is
∫ b
a
|φ|2 dx (Analogously

in Quantum Field Theory the state space will be S = L2
C
(
L2
R(R)

)
).

The final purpose is then to construct a measure on the space of all paths con-
necting the initial and the final positions of the particle (which are fixed) and
that evaluates the probabilities of a particular “trajectory” between the two
observed positions. In QM we denote the the amplitude to propagate from a
point qI to a point qF in time τ as

〈qF |e−iHτ |qI〉, (1.1)

4Riemannian manifold: is a couple (M, g) where M is a real differentiable manifold M ,
and g is a pointwise smooth inner product over the tangent space”

5The results that follows are not topics of this work, then they are presented without
proof. Those are only useful to understand what is the context in which the definition of
infinite gaussian measure originates.

6Classical Mechanics
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where the symbol |q〉 stands for “the state in which the particle is at q, and
H is the Hamiltonian7. In fact the equation that describes the evolution of a
state is Schrödinger equation8 φ̇(t) = − i

~Hφ(t), where φ(t) = φ(t,#), with

formal solution φ(t) = e−
i
~ tHφ(0). Does this solution have sense mathematically

speaking?
We turn back to follow Dirac’s formulation of the problem of defining the

path integral representation (see [8]) and we have, in the free-particle case:

〈qF |e−iHτ |qI〉 =

∫
ei
∫ τ
0

1
2mq̇

2 dtDq(t),

where Dq(t) suggests an integration over all possible paths q(t) such that q(0) =
qI and q(τ) = qF . Analogously if the particle is in a potential the formula

becomes 〈qF |e−iHτ |qI〉 =
∫
ei
∫ τ
0 ( 1

2mq̇
2−V (q)) dtDq(t), then, in general, if L(q, q̇)

is the Lagrangian:

〈qF |e−iHτ |qI〉 =

∫
ei
∫ τ
0
L(q,q̇) dtDq(t)“ = ”

∫
eiA(q)Dq(t).

in fact in C.M. the quantity A(q) =
∫ τ

0
L(q, q̇) dt is called “action”.

For simplicity it’s better to introduce some useful notations: 〈F |e−iHτ |I〉 specify
that a particle starts from a initial state I and ends in some final state F , and
is:

〈F |e−iHτ |I〉 =

∫ (∫
〈F |qF 〉〈qF |e−iHτ |qI〉〈qI |I〉dqI

)
dqF .

We will call Z = 〈0|e−iHτ |0〉 where 0 is the ground state. After the rotation to
the Euclidean time (t→ −it) we can write:

Z =

∫
e−
∫ τ
0
L(q,q̇) dtDq(t), (1.2)

therefore, it doesn’t matter if the hamiltonian (and then
∫ τ

0
L(q, q̇) dt) is not a

bounded operator.
In Quantum Field Theory, instead of the particles q, we consider fields which

are functions φ(t,x) where φ : R× Rn → R 9. The action becomes

A(φ) =

∫ (∫
L(φ)dnx

)
dt,

while the path integral defining a scalar field theory is:

Z =

∫
eiA(φ)Dφ.

7This is Dirac’s formulation.
8This is the partial derivatives equation: i~∂tφ(t, x) = − ~2

2m
∂xxφ(t, x) + V (x)φ(t, x).

9In particular we consider n = 2 then x represents the position, but notice that if n = 1
QFT is QM.

5



More generally we want to disturb the vacuum (particles could be created and
annihilated) then we consider the path integral:

Z =

∫
ei
∫

(
∫

[L(φ)+J(x)φ(x)]dnx)dtDφ (1.3)

where J(x) = J(t, x) can vanish except in some regions. This fuctional is
impossible to do except when L(φ) = 1

2

(
(∂φ)2 −m2φ2

)
. The corrisponding

theory is called the free (or Gaussian) theory. The equation of motion is the
Klein-Gordon equation, which is introduced in the following section.
Integrating by parts (1.3) we have

Z → Z =

∫
ei
∫
(
∫
[− 1

2φ(∂2+m2φ2)φ+J(x)φ(x)]dnx)dtDφ. (1.4)

The space of all φ is clearly not finite dimensional and it’s not clear how this
measure can be definined. We have already said that we can consider the ima-
ginary time; this simplify considerably the problem because e−y tends to zero
if y is not limited, while eiy do not behave in the same way.

1.2 Lagrangian for fields

Let talk about the quantum theory of the electromagnetic field and try to find a
more explicit expression for the lagrangian used in formula (1.4). The analogue
of the Newton Equations (in C.M.), is the Klein-Gordon equation:

(� +m2)φ(ξ) ≡ ∂ttφ(x, t)− ∂xxφ(x, t) +m2φ(x, t) = −f(φ(x, t)).

where, for simplicity, φ = φ(x, t) : R × R → R, and � is the D’Alembert
operator. We now try to rewrite the equation as a Hamiltonian system: we look
for a function H(φ, ψ), called Hamiltonian, such that{

∂tφ = ψ

∂tψ = −
(
−∂xxφ+m2φ+ f(φ)

) =

{
∂tφ = ∂ψH

∂tψ = −∂φH

The solution is the functional

H(φ, ψ) =
1

2

∫
R

[ψ(x)2 + ∂xφ(x)2 +m2φ(x)2] dx+

∫
R
F (φ(x)) dx,

where H : D → R and D could be C∞c (R)×C∞c (R) ⊂ L2
R(R)×L2

R(R), F it’s a
primitive for f .

However we need the lagrangian: we know that the lagrangian has to be
such that ∂φA(φ) = 0 implies the Klein-Gordon equation, where

A(φ) =

∫
R2

L(φ, ∂tφ, ∂xφ) dt dx.
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This condition leads to the expression

L(φ, ∂tφ, ∂xφ) =
1

2
m2φ2 + F (φ)− 1

2
(∂tφ

2 − ∂xφ2);

if f ≡ 0 is called the lagrangian of the free field.
If we pass to the imaginary time (t→ it) we have

1

2
m2φ2 + F (φ)− 1

2
(∂tφ

2 − ∂xφ2)
t→it−→ 1

2
m2φ2 + F (φ)− 1

2
((i∂tφ)2 − ∂xφ2) =

=
1

2
m2φ2 + F (φ) +

1

2
(∂tφ

2 + ∂xφ
2) =

1

2
m2φ2 + F (φ) +

1

2
‖∇φ‖22.

Consequently the action becomes

iA(φ) = i

∫ (∫
L(φ)dx

)
dt = i

[
1

2
m2φ2 + F (φ) +

1

2
‖∇φ‖22

]
and eiA(φ) is replaced by e−A(φ).
In the first section of the second chapter we will define the measure for the free

field µ(dφ) = e−A(φ) = e−[ 1
2m

2φ2+F (φ)+ 1
2‖∇φ‖

2
2], where we consider F (φ) ≡ 0

(because f = 0 implies F is constant, then we can pick F (φ) ≡ 0); this measure
will be a infinite product of gaussian measure.

1.3 Application to String Theory and Polyakov’s
contribution

The main innovation of String Theory is to consider the particle as strings (1-
dimensional), and we can imagine that a string, moving in space-time, describes
a surface, as a particle describes paths. In analogy with what happens in QM
we can’t determine with precision what is the string position in a particular
moment, or what is the surface it describes moving from a position to another,
therefore we should contruct a probability density.

In Quantum Geometry of Bosonic Strings, Polyakov says that it’s neces-
sary “to develop an art of handling sums over random surfaces. These sums
replace the old-fashioned sums over random paths.” This is due to the heuristic
description given just before, in fact, continues Polyakov, “all transition ampli-
tude are given by the sums over all possible surfaces with fixed boundary”. This
is exactly what we want to be able to compute.

He considers the case of free strings, this means that there is no interaction
if it cross each other; then he recall that the amplitudes of free particles are
simbolically defined as follows: denote by Pp,q a path from p to q and by L the
lenght of the path, then we have the amplitude G(p, q) =

∑
(paths) e

−mL(Pp,q).

By analogy, Polyakov writes the heuristic formula G(C) =
∑

(SC) e
−m2A(SC),

where C is a loop, the sum is over all possible surfaces SC whose bound is the

7



loop C, and finally A(SC) is the area of SC . He try to develop this formalism
starting from the bosonic case10.

In Chapter 3 we try to give a rigorous definition to these sums, or better to
these integrals. Polyakov’s idea is to replace the functional area with another
functional, called Polyakov action, which does not bring different phisical re-
sults, but it’s very helpful in the mathematical definition of such a probability
distribution.

10In the article Quantum Geometry of Fermionic Strings he studies the fermionic case, as
the title suggests.
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Chapter 2

Gaussian Measures in QFT

2.1 Introduction

In this Chapter we study the problem of a rigorous definition of the Feynman-
Kač measure for the free field case. This means to give a rigorous meaning to
the measure:

e−
1
2

∫
D

(φ2+|∇φ|2) dx d∞φ (2.1)

on a suitable space of fields φ : D → R, where D is a region with compact
closure. This measure will be a sort of infinite gaussian measure with covari-
ance (I − ∆)−1. To simplify the presentation, we will assume that D is the
2-dimensional thorus. In particular in the second section we will notice that
such a measure has a heuristic expression as infinite product of gaussian mea-
sure and then the third section summarize without proofs the relevant material
on the construction of infinite product measures in order to apply the results in
a rigorous definition of the Feynman-Kač measure. So in Section 4 the heuristic
definition will gain sense.
Once we have a rigorous definition of (2.2), we study the problem of concentra-
tion of this measure. This is a relevant problem because it turns out that (2.2)
is concentrated on distributional fields, i.e. on functional rather than functions.
Section 5 is intended to motivate our investigation of the Hs spaces, which are
defined in the subsequent section, in order to find the set of concentration of
the measure.

The discussion on Feynman-Kač free field measure is extended to the defi-
nition of

e−
1
2

∫
D
|∇φ|2 dx d∞φ φ : D → R,

which is more close to the kind of measure we will treat in next chapter in the
case of String Theory. Section 7 deals with the case of the Feynman-Kač with a
quite simple extension of the results obtained in the previous sections: definition
of the measure and its concentration.
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2.2 Heuristic definition of the Feynman-Kač mea-
sure for the free field

Let D be a region with compact closure in R2 and let φ : D → R, we can
suppose φ to be a smooth map; in this section we look closely at the possible
definitions of a measure of this kind:

e−
1
2

∫
D

(φ2+|∇φ|2) dx d∞φ. (2.2)

A more complete theory may be obtained generalizing to the case φ : D ⊂
Rd → R, d ∈ N> then, when necessary, we will specify the general case, but for
simplicity we discuss esplicitely the case d = 2.

Integrating by parts and supposing that φ : D → R is equal to zero in ∂D
we have: ∫

D

∇φ · ∇φ dx =
∑
i

∫
D

∂iφ∂iφ dx = −
∑
i

∫
D

∂i (∂iφ)φ dx =

= −
∫
D

(∑
i

∂2
i φ

)
φ dx = −

∫
D

∆φ φ dx,

where ∆ is the Laplace operator. Then∫
D

φ2 + |∇φ|2 dx =

∫
D

φ2 dx +

∫
D

|∇φ|2 dx =

∫
D

φ2 dx −
∫
D

∆φ φ dx =

=

∫
D

(φ − ∆φ)φ dx = 〈(I − ∆)φ, φ〉L2

So formally we have:

e−
1
2

∫
D
φ2 + |∇φ|2 dx d∞φ = e−

1
2 〈(I−∆)φ,φ〉L2 d∞φ. (2.3)

The important point to note here is the form of the heuristic measure: there is
an evident similarity with the gaussian measure finite dimensional. We recall
that, if C is a positive-definite n × n matrix, a gaussian measure of null mean
and variance C is defined as:

N (0, C)(dx) =
e−

1
2 (C−1x·x)√

(2π)n det C
dx.

By analogy it is natural to think to (2.3) (or better to (2.2)) as a infinite di-
mensional gaussian:

e−
1
2 〈(I−∆)φ,φ〉L2 dφ = N (0, (I − ∆)−1) (dφ), (2.4)

of mean 0 and variance C = (I − ∆)−1.
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How to define the measure?

From now on we make the assumption that the domain is D = [0, 2π]2; and let
ek(x) = ei(k·x) where k ∈ Z2. {ek}k∈Z2 is an orthonormal base for L2(D). We
notice that these ek are also eigenfunction of the operator I−∆ and

(I−∆)ek(x) = (1 + |k|2)ek(x) ∀k ∈ Z2, x ∈ D,

so the eigenvalues are λk = 1 + |k|2 where ∈ Z2. In fact if k = (k1, k2) and
x = (x1, x2) ∈ D

(I−∆)ek(x) = ek(x)− ∂x∂xek(x)− ∂y∂yek(x) =

= ek(x)− ik1∂xek(x)− ik2∂yek(x) = ek(x) + k2
1 ek(x) + k2

2 ek(x) =

= ek(x) + (k2
1 + k2

2)ek(x) = (1 + |k|2)ek(x).

In particular

〈(I−∆)φ, φ〉 =
∑
k∈Z2

(1 + |k|2)φ2
k.

Identifying φ with its “coordinates” (Fourier coefficients), φ ≡ (φk)k∈Z2 so that
φ =

∑
k∈Z2 φkek, we have identified L2(D) and `2(Z2) because φ ∈ `2(Z2) ⇔∑

k∈Z2 φkek converges in L2(D). However, thanks to this identification, we
have:

(I−∆)φ =
∑
k∈Z2

φk(I−∆)ek =
∑
k∈Z2

φk(1 + |k|2)ek.

By this follows the useful formal equality

〈(I−∆)φ, φ〉 =
∑
k∈Z2

(1 + |k|2)φ2
k.

The previous calculations make it legitimate to write formally:

e−
1
2 〈(I−∆)φ,φ〉d∞φ = e−

1
2

∑
k∈Z2 (1+|k|2)φ2

kdφ1dφ2 . . . dφn . . . =

∗
=
⊗ e−

1
2 (1+|k|2)φ2

k√
2π(1 + |k|2)−1

dφk =

=
⊗
k∈Z2

µk,

(2.5)

where we set:

µk ≡
e−

1
2 (1+|k|2)φ2

k√
2π(1 + |k|2)−1

dφk.

The “
∗
= ” recall us that these formulas are heuristic.

Moreover notice that µk = NR(0, (1 + |k|2)−1), it’s a probability (gaussian)
measure over (R,B(R)).
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Remark 2.2.1. It was necessary to diagonalize the Laplace operator, then to
find eigenvalues and respective eigenfunctions. When we change the domain D
from [0, 2π]2 into a general region, with compact closure, of the plane (or in
Rd,) then we have to find eigenvalues and eigenfunction of the Laplace-Beltrami
operator.

In the following section we will see how to define infinite product of proba-
bility measure. We will touch only a few aspects of the thery and it is not our
purpose to give proofs of the results that will be stated, for the proofs we refer
the reader to [2].

2.3 Infinite product measures

Let (Xi,Mi, µi) be probability spaces, that is Xi are totally finite measurable
spaces (i.e. µi(Xi) < ∞) such that the measure µi(Xi) = 1, and X = ×∞i=1Xi

the Cartesian product. We would like to define inX the concept of measurability
and a measure, and we start with the definition of a σ-algebra on X. The first
step in the

Definition 2.3.1 (Mesurable rectangle). In the above hypothesis we define a
(measurable) rectangle as a set of the form

×∞i=1Ai

where Ai ⊆ Xi ∀i (are measurable: Ai ∈ Mi), and Ai 6= Xi only for a finite
number of i.

We construct a measurable space (X,M):

Definition 2.3.2 (The σ-algebra M). If R is the class of all measurable rect-
angles of X, M = M(R)1, i.e. M is the σ-algebra generated by the class of all
measurable rectangle. We shall write M = ×∞i=1Mi.

Recall 2.3.3. M = M(R) means that M is the (σ-algebra) intersection of all
σ-algebras which contain R.

Definition 2.3.4 (J-cylinder). Let J ⊂ N> finite, and two points of X x =
(x1, x2, . . .) y = (y1, y2, . . .). We will say that x and y agree on J and we will
write

x ≡ y (J), if xi = yi ∀i ∈ J.

A set E is a J-cylinder if, when x ≡ y (J), then x ∈ E ⇔ y ∈ E.

Example 2.3.5 (useful example of a J-cylinder). If J = {1, 2, . . . , n} and Aj
is an arbitrary subset of Xj, j = 1, . . . , n then the rectangle A1 × A2 × . . . ×
An ×Xn+1 ×Xn+2 × . . . is a J-cylinder. In fact for each point x ∈ X are not
important the coordinates xi i ≥ n+1, but only the belonging of (x1, x2, . . . , xn)
to A1 × . . .×An.

1This notation for the generated σ-algebra is used in [4].
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Notation 2.3.6. X(n) = ×∞i=n+1Xi n = 0, 1, 2, . . . and In = {1, 2, . . . , n}

Definition 2.3.7 (X(n)-section). Let x = (x1, x2, . . . , xn) ∈ X1×X2× . . .×Xn

and let E be a subset of X, E(x1, . . . , xn) is the X(n)-section of E:

E(x) = {y ∈ X(n) | (x,y) ∈ E}

Lemma 2.3.8. Every section of a rectangle in X is a rectangle in X(n);
Every section of a measurable rectangle in X is a measurable rectangle in X(n).

Proof. Trivial

Theorem 2.3.9. Let E ⊆ X,
J = In, if E is a measurable J-cylinder, then E = A×X(n),
where A is a measurable subset of X1 ×X2 × . . .×Xn.

Proof. See [2] 38.A.

Let F be the class of all measurable sets which are In-cylinders for some value
of n. This should be the domain of definition of a set function µ such that, for
every measurable In-cylinder A×X(n), µ(A×X(n)) = (µ1×µ2× . . .×µn)(A).

Remark 2.3.10. If m,n ≥ 0, and we can suppose m < n. A In cylinder E can
be also a Im cylinder.

Otherwise there is the following:

Proposition 2.3.11. The function is well-defined and the domain is appropri-
ate

Proof. The previous theorem says that E = A × X(m) and at the same time
E = B×X(n), but we also can write E = A×X(m) = (A×Xm+1× . . .×Xn×
X(n). Finally the equality B ×X(n) = (A×Xm+1 × . . .×Xn)×X(n) leads to
B = A×Xm+1 × . . .×Xn.
If E is measurable, both A and B are measurable and (µ1 × . . . × µm)(A) =
(µ1 × . . .× µn)(B).
It follows that µ is well-defined on F

Proposition 2.3.12. In the hypotesis of the preceeding definition the following
conclusions hold

• F is an Algebra;

• M(F) =M;

• the set function µ on F is finite, non negative, and finitely additive.

Proof. Easy.

Notation 2.3.13. X(n) may be seen as a product space, so we can costruct
F (n) and µ(n) exactly as F and µ.

13



Fact 2.3.14. If E ∈ F then every section E(x1, x2, . . . , xn) ∈ F (n) and

µ(E) =

∫
· · ·
∫
µ(n)(E(x1, . . . , xn))dµ1(x1) · · · dµn(xn)

Proof. It follows from the results in [2] for finite dimensional product spaces.

Theorem 2.3.15. In the opening Hypothesis ({(Xi,Mi, µi)} totally finite spaces
with measure with µi(Xi) = 1) there exists a unique measure µ on the σ-algebra
M = ×∞i=1Mi, such that, for every measurable set E = A×X(n),

µ(E) = (µ1 × · · · × µn)(A)

Proof. See [2], theorem 38.B

2.4 Feynman-Kač measure for the free field

In our case there are the following:

Hypothesis 1. (Xi,Mi, µi) = (R,B(R), µi) ∀i ∈ Z2 where µi are the gaus-
sian measure NR(0, (1 + |i|2)−1)

Clearly in Theorem (2.3.15) there is no dependency on the indexing (we can
replace Z2 with N>) and the theorem says:

∃!µ su R∞ = {(φk)k∈Z2}

such that (R∞,M, µ) is a space with measure where M is the σ-algebra gene-
rated by the In cylinders.
By definition µ =

⊗
k∈Z2 µk

Definition 2.4.1.
N (0, (I−∆)−1) ≡ µ

and also, if we recall (2.3) and (2.5),

e−
1
2

∫
D
φ2 + |∇φ|2 dx d∞φ ≡ µ

Finally we have solved the problem (2.4).

2.5 Concentration in L2 of the Feynman-Kač mea-
sure for the free field

The measure obtained in the previous section is defined on R∞ but we would
like to find the sets on which the measure is concentrated. It is to be expected
that L2(D) is one of those sets; obviously in the same hypothesis of the previous
sections (D = [0, 2π]2 = T2, etc.). The crucial fact is that L2(D) is a negligible
set with respect to the measure previously defined.
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The proof fills all the section and to semplify it we need to recall the identifi-
cation L2 ≡ `2(Z2) = {(φk)k :

∑
k∈Z2 φ2

k < ∞}, already done in (2.2) when we
identified φ ∈ L2(D) with its Fourier coefficients φ ≡ (φk)k because

φ ∈ `2(Z2)⇐⇒
∑
k∈Z2

φkek converges in L2(D).

Theorem 2.5.1.
µ(`2(Z2)) = 0 (2.6)

In particular µ{‖φ‖2 =∞} = 1

Moreover might be proved that:

Proposition 2.5.2. If d = dim(D(= T)) ≥ 2 then µ(`2(Zd)) = 0 .

Proof. This is (2.14) that will be proved at page 25.

Lemma 2.5.3. We notice that
∫
R∞ ‖φ‖

2
`2 dµ = ∞. (This don’t implies that

µ{‖φ‖2`2 = +∞} = 1)

Proof. (Lemma)
Let us prove it assuming φ is real valued. Racall that µk = NR(0, 1

1+|k|2x) is

probability (gaussian) measure on (R,B(R)), and also we set σk ≡ 1
1+|k|2 ; then∫

R∞
‖φ‖2`2 dµ =

∫
R∞

∑
k∈Z2

φ2
k dµ =

∫
R∞

lim
n

∑
k:|k|≤n

φ2
k dµ =

monotone
conv.=

∑
k∈Z2

∫
R∞

φ2
k dµ =

Halmos
=

∑
k∈Z2

∫
R
φ2
k dµk =

∑
k∈Z2

∫
R
φ2
k

1√
2πσk

e
− φ2k

2σk dφk

variance
=

∑
k∈Z2

σk =
∑
k∈Z2

1

1 + |k|2
.

Since ∑
k∈Z2

1

1 + |k|2
∼
∫
R2

1

1 + |k|2
dk

we can compute this Lebesgue integral in R2 using polar coordinates:∫
R2

1

1 + |k|2
dk =

∫ ∞
0

∫ 2π

0

ρ

1 + ρ2
dθ dρ = 2π

∫ ∞
0

ρ

1 + ρ2
dρ = +∞.
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Proof. 2 Fix ε > 0, recall that
∑
k∈Z2 σk = +∞; the basic idea of the proof is

to show that ∫
R∞

e−ε‖φ‖
2
2 dµ(φ) = 0, (2.7)

it follows the conclusion, in fact:∫
R∞

e−ε‖φ‖
2
2 dµ(φ) =

∫
{φ∈R∞:‖φ‖2<+∞}

e−ε‖φ‖
2
2 dµ(φ) +

∫
{‖φ‖2=+∞}

e−ε‖φ‖
2
2 dµ(φ)

=

∫
{‖φ‖2<+∞}

e−ε‖φ‖
2
2 dµ(φ) + 0 =

∫
{‖φ‖2<+∞}

e−ε‖φ‖
2
2 dµ(φ);

where the sets {‖φ‖2 < +∞} and {‖φ‖2 = +∞} are respectively {φ ∈ R∞ :
‖φ‖2 < +∞} and {φ ∈ R∞ : ‖φ‖2 = +∞}. Letting ε→ 0 we have∫
{φ∈R∞:‖φ‖2<+∞}

e−ε‖φ‖
2
2 dµ(φ)→

∫
{φ∈R∞:‖φ‖2<+∞}

1 dµ(φ) = µ (‖φ‖2 < +∞) .

We have used the Monotone Convergence Theorem (let ε = 1
n , n ∈ N and the

function fn = e−
1
n‖φ‖

2
2 , then limε→0 can be replaced by limn→∞). This means

that µ (‖φ‖2 < +∞) = 0:

0 =

∫
R∞

e−ε‖φ‖
2
2 dµ(φ) =

∫
{φ∈R∞:‖φ‖2<+∞}

e−ε‖φ‖
2
2 dµ(φ)

ε→0−→ µ (‖φ‖2 < +∞) .

We are reduced to proving (2.7):

∫
R∞

e−ε‖φ‖
2
2 dµ(φ) =

∫
R∞

⊗
k∈Z2

e−ε‖φ‖
2
2e
− φ2k

2σk

√
2πσk

dφk =
∏
k∈Z2

∫
R

e
−
(
ε‖φ‖22+

φ2k
2σk

)
√

2πσk
dφk;

Calculating separately the integrals3:

∫
R

e
−
(
ε‖φ‖22+

φ2k
2σk

)
√

2πσk
dφk =

Γ
(

1
2

)√
ε+ 1

2σk

√
2πσk

=

√
π√

π(2εσk + 1)
=

1√
2εσk + 1

.

Therefore
∫
R∞ e

−ε‖φ‖22 dµ(φ) =
∏
k∈Z2 (2εσk + 1)

− 1
2 , and we only need to show

that
∏
k∈Z2 (2εσk + 1)

− 1
2 = 0. To do it we use a trick:∏

k∈Z2

(2εσk + 1)
− 1

2 =
∏
k∈Z2

e−
1
2 log(2εσk+1) = e−

1
2

∑
k∈Z2 (log(2εσk+1)),

but it’s well known that log(1 + x)
x→0∼ x (are infinitesimal of the same order),

then

e−
1
2

∑
k∈Z2 (log(2εσk+1)) ∼ e− 1

2

∑
k∈Z2 (2εσk) = e−ε

∑
k∈Z2 σk

∑
k σk=+∞

= e−∞ = 0

2see the appendix to have another idea for the solution.
3Is the integral number 69 in “Formulario” by G.De Marco

16



Resuming, µ which has been defined as a probability measure over R∞, is
such that µ(`2) = 0.

Is now our purpose to answer to the following questions:

1. Is there true that µ
(
L2(T)

)
= 1 (i.e. in the case d = dimD = 1)?

2. Where is the measure concentrated (we give a brief exposition for the case
d = 2)?

Proposition 2.5.4. The measure µ of the space L2(T) is equal to one. Identi-
fying L2(T) and `2(Z), we only have to check that µ

(
`2(Z)

)
= 1.

Proof. It suffices to prove ∫
R∞
‖φ‖2`2 dµ <∞

because this implies that µ
{
‖φ‖2L2 <∞

}
= 1. By the same calculation done in

the proof of Lemma 2.5.3 follows the conclusion:∫
R∞ ‖φ‖

2
`2 dµ =

∑
n∈Z

1
1+|n|2 = 1+2

∑
k∈N\{0}

1
1+n2 and this sum converges.

The sets of concentration of the measure are subsets of R∞ such that the
measure of these sets is equal to 1.
These sets have to contain `2, so it’s necessary to look for the intemediate
subsets.

2.6 Hs spaces

In the previous section has been shown that `2(Zd) ≡ L2(Td) ⊂ R∞ (d = 2) is a
null set with respect to µ. In this section we will introduce an increasing family
of R∞ subspaces, such that `2 is a particular case. The advantage of defining
these subspaces lies in the fact that some of those are the natural context where
the concentration of the measure problem has to be studied.

In simple words in `2 there are spaces of more and more regular functions
(Cn, n ≥ 2), while between `2 and R∞ there are sets containing maps that are
more and more irregular, or even not functions; and we shall call them distribu-
tions. Schematically: regular functions ↔ `2 ↔ irregular maps (distributions),
as is shown in the picture below.

`2 R∞regular functions distributions
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2.6.1 Definition and first properties of the Hs-spaces

Definition 2.6.1. Let s ∈ R, let us denote by Hs-space the set:

Hs = {(φk)k∈Z2 ∈ R∞ |
∑

(1 + |k|2)sφ2
k <∞}.

This definition provides a decreasing family of subsets of R∞, and an element
of the family is `2. If s = 0 we have H0 = `2 and, according to the well known
identification, we can write H0 = L2, in fact:

H0 = {(φk) ∈ R∞ |
∑

(1 + |k|2)0φ2
k <∞} = {(φk) ∈ R∞ |

∑
φ2
k <∞} = `2.

Maybe Hs-spaces have many of the properties of `2. In fact, the next proposi-
tions will state that for all s ∈ R Hs are scalar product spaces, then normed
spaces.

Proposition 2.6.2. Hs is a scalar product space ∀s, s ∈ R.

Proof. Let fix s ∈ R. We claim that

〈(φk), (ψk)〉Hs =
∑

(1 + |k|2)sφkψk

defines a scalar product on Hs; plainly Hs is an R-vector space. We only need
to show that:

• 〈(φk + ηk), (ψk)〉Hs = 〈(φk), (ψk)〉Hs + 〈(ηk), (ψk)〉Hs

• 〈(λφk), (ψk)〉Hs = λ〈(φk), (ψk)〉Hs

• 〈(φk), (φk)〉Hs ≥ 0 se φ 6= 0

It’s immediate that the three properties are satisfied.

Proposition 2.6.3. Hs, s ∈ R, are also normed spaces as every scalar product
space. Let ‖#‖Hs the norm defined by the scalar product, then ‖#‖Hs ≥ ‖#‖`2 .

Proof. The inner product defines the norm which satisfies the inequality:

‖(φk)‖2Hs ≡
∑

(1 + |k|2)sφ2
k ≥

∑
φ2
k = ‖(φk)‖2`2 .

And trivially ‖#‖H0 = ‖#‖`2 .

Proposition 2.6.4. Let s > 0 then Hs is isomorphic to H−s: Hs ∼= H−s.

Proof. The simple isomorphisms are: (φk)k ∈ Hs →
(
φk(1 + |k|2)s

)
k
∈ H−s

and (φk)k ∈ H−s →
(

φk
(1+|k|2)s

)
k
∈ Hs

Proposition 2.6.5. H−s can be identify with the topological dual of Hs, there-

fore Hs =
(
H−s

)∗
.
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Proof. Let φ ∈ H−s. Consider the map

F : Hs → R

(ψk)→
∑

φkψk
.

Playnly this is a linear map; we proceed to show that it is also continuous.∑
φkψk =

∑
(1 + |k|2)−s/2φk(1 + |k|2)s/2ψk

which converges because, applying Hölder inequality we have:

|F (ψ)| =|
∑

(1 + |k|2)−s/2φk(1 + |k|2)s/2ψk |

≤
(∑

(1 + |k|2)−sφ2
k

)1/2 (∑
(1 + |k|2)sψ2

k

)1/2

= ‖φ‖H−s‖ψ‖Hs <∞

.

Therefore |F (ψ)| ≤ ‖φ‖‖ψ‖∀ψ and this means that F is continuous. It remains
to prove that the map F : H−s → (Hs)∗ is injective and surjective.

Let us suppose that φ goes to 0, i.e. that∑
k

φkψk = 0

for every ψ ∈ Hs. In particular this holds for ψ such that ψk̄ = 1 and ψh = 0
for each h 6= k̄. But this imply φk̄ = 0 and, since k̄ is arbitrary, φ = 0.

Now take F ∈ (Hs)∗, we must find φ ∈ H−s such that F = Fφ.
Let consider the isometric immersion:

S : Hs −→ `2

(ψk)k −→
(
ψk(1 + |k|2)

s
2

)
k

this map clearly is linear and isometric (‖ψ‖s =
∑
k ψ

2
k(1 + |k|2)s = ‖ψ2

k(1 +
|k|2)s/2‖2). Than we define a function:

Q : S(Hs) ⊆ `2 −→ R
S(ψ) −→ F (ψ),

which is “Q = F ◦ S−1 well defined (because S is injective) and continuous:
‖F (ψ)‖ ≤ ‖F‖ ‖ψ‖s = ‖F‖ ‖S(ψ)‖. By Hahn-Banach theorem Q has an exten-
sion Q̃ : `2 → R (more easily we can notice that S(Hs) is dense in `2, then exists
the extension for Q because of the theorem of extension of uniformely continu-
ous functions), and by Rietz theorem ∃!(αk)k ∈ `2 such that Q̃(β) =

∑
k αkβk.

If ψ ∈ Hs we have Q̃(S(ψ)) = Q(S(ψ)) = F (ψ), but also, being S(ψ) ∈ `2, also
holds Q̃(S(ψ)) =

∑
k αk (S(ψ))k. (S(ψ))k = ψk(1 + |k|2)s/2, therefore

F (ψ) =
∑
k

αkψk(1 + |k|2)
1
2 =

∑
k

(
αk(1 + |k|2)

1
2

)
ψk.

Set φk = αk
(
1 + |k|2

)s/2
, if this is a function in H−s, we have concluded:∑

k
φ2

(1+|k|2)s =
∑
k
α2
k(1+|k|2)s

(1+|k|2)s =
∑
k α

2
k < +∞ because α is a function in `2.
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In fact can be prooved (we accept it):

Theorem 2.6.6. Hs are separable Hilbert spaces.

2.6.2 In and out `2

s > 0
If s > 0 Hs ⊆ `2

Proof. Let s > 0, the definition for the Hs spaces allow us to conclude:

Hs = {(φk) ∈ R∞ |
∑

(1 + |k|2)sφ2
k <∞}

but (1 + |k|2)s ≥ 1, then we have

φ2
k ≤ (1 + |k|2)sφ2

k and if
∑

(1 + |k|2)sφk <∞⇒
∑

φ2
k <∞

In other words, if φ ∈ Hs then φ is also in `2.

Example 2.6.7.

H1 = {φk |
∑

(1 + |k|2)φ2
k <∞}

If (φk) ∈ H1 then (1 + |k|2)φ2
k
k→∞2

→ 0; this happens for example if φk = o
(

1
k

)
,

and than if φ ∈ C1. In fact φk = o
(

1
kl

)
∃l > 0 because φk, k ∈ Z2, are

coefficients of the Fourier series of φ and the following result is valid ([6] 13.8.1):

Proposition 2.6.8. Let l ∈ N and f ∈ Cl which is also τ -periodic, then the
Fourier series coefficient cn(f) is o

(
1
nl

)
for n→ ±∞.

Always for (φk) ∈ H1 ⊆ `2, we define the function in L2

Φ =
∑

φkek .

Therefore H1 can be written in terms of Φ:

H1 = {φk |
∑

(1 + |k|2)φ2
k <∞ = {(φk) | ‖Φ‖2`2 + ‖∇Φ‖2`2 <∞};

in fact
∑

(1 + |k|2)φ2
k is exactly ‖Φ‖2`2 + ‖∇Φ‖2`2 .

We notice that the derivative of Φ is in L2: Φ ∈ L2 and also ∂Φ ∈ L2. This
means that Φ is a function in L2 as all its partial derivative. This calculation
prove it:

∂x1

∑
φkek =

∑
φkik

(1)ek

and this quantity is in L2 because (iφkk
(1))k ∈ `2 being

∑
|iφkk(1)|2 =

∑
(φkk

(1))2 ≤∑
φ2
k|k|2 ≤ ∞ by hypothesis.
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The completion of the family

H3 H2 H1H
1
2 `2 H−1 H−2 R∞

Being subsets of `2, Hs are negligible sets if s > 0. In the last part of the
subsection our aim is to analyse the remaining case s < 0.

s 6∈ Z
In order to give a complete description to these spaces we accept the following:

Fact 2.6.9. If s 6∈ Z, for example s = 1
2 , we have by the definition:

H1/2 = {φk |
∑

(1 + |k|2)1/2φ2
k <∞}

φ =
∑

φkek ∈ L2(T2) and also is 1/2−Hölder function

with more precision are α-Hölder functions for all α < 1/2.

s < 0

Hs = {(φk) |
∑

(1 + |k|2)sφ2
k <∞}

Example 2.6.10. Let d = 2.
If s = −1, H−1 = {(φk) |

∑
1

1+|k|2φ
2
k < ∞}. It’s easier to work with positive

number; then, given s > 0, we consider

H−s = {φk |
∑ 1

(1 + |k|2)s
φ2
k <∞}.

If s > 1 we have φk ≡ 1 belongs to H−s because
∑

1
(1+|k|2)s converges; but

it doesn’t converge if s = 1 (
∑
k∈Zd

1
1+|k|2 ∼

∫∞
0

1
1+ρ2 ρ

d−1dρ = ∞ if d ≥ 2 and

in our case d = 2), therefore φk ≡ 1 doesn’t belong to H−1.
The point of the section is the looking for the sets of concentration of the

measure µ and the following result will solve our problem.

Proposition 2.6.11. ∃s∗, s∗ > 0 such that if s ≤ s∗ then µ (H−s) = 1.

Proof. Surely s∗ is the smaller positive number s such that∫
R∞
‖φ‖2H−s dµ <∞,

in fact
∫
R∞ ‖φ‖

2
H−s dµ =

∫
{‖φ‖2

H−s
<∞} ‖φ‖H−s dµ+

∫
{‖φ‖H−s=∞} ‖φ‖

2
H−s dµ, and
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if it is finite this means that µ({‖φ‖H−s =∞}) = 0.∫
R∞
‖φ‖2H−s dµ =

∫ ∑
k∈Z2

(1 + |k|2)−sφ2
k dµk

=
∑
k∈Z2

(1 + |k|2)−s
∫
φ2
k dµk =

∑
k∈Z2

(1 + |k|2)−sσk

=
∑
k∈Z2

(1 + |k|2)−s

1 + |k|2
=
∑
k∈Z2

(1 + |k|2)−s−1

and
∑
k∈Z2(1 + |k|2)−s−1 − 1 ∼

∫
R2\(−1,1)2

(1 + |(x1, x2)|2)−s−1dx1dx2 =

= 2π
∫∞

1
ρd−1

(1+ρ2)1+s dρ and also
∫∞

1
ρd−1

(1+ρ2)1+s dρ ≤
∫∞

1
ρd−1

ρ2(1+s)
dρ =

∫∞
1

1
ρ2(1+s)−(d−1) dρ.

In this case d = 2 then
∫∞

1
1

ρ2(1+s)−(d−1) dρ =
∫∞

1
1

ρ1+2s dρ and∫ ∞
1

1

ρ1+2s
dρ <∞⇔ 1 + 2s > 1⇔ s > 0.

We would like to conclude the section with a resuming picture:

H3 H2 H1 `2 H−
1
2 H−1H−2 R∞

µ = 0 µ = 0

µ(`2) = 0

µ = 1 µ = 1

s ≥ 0 s = 0 s ≤ 0

2.7 Definition of the measure (2.8)

Let φ : D → R where D ⊆ Rd region with compact closure (in particular we
will consider the case of the torus D = [0, 2π]d = Td). In this section we want
to give sense to the expression

e−
1
2

∫
D
|∇φ|2 dx d∞φ. (2.8)

We now indicate how the same tecniques and calculations that enabled us to
give sense to (2.2), may be used to define the measure suggested by the formula
(2.8). Let us follow the same order. Integrating by parts, . . . , formally we have:∫

D

|∇φ|2 dx = −
∫
D

∆φ φ dx = 〈−∆φ, φ〉L2 ,

and we obtain
e−

1
2

∫
D
|∇φ|2 dx d∞φ = e−

1
2 〈−∆φ,φ〉L2 d∞φ (2.9)

in the same way we have concluded (2.3) at page 10.
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2.7.1 Construction of the measure

There still is an analogy with the gaussian measure of a finite gaussian measure
of mean 0 and variance C = (−∆)−1. As before, it is natural to think to (2.9)
as an infinite dimensional gaussian:

e−
1
2 〈−∆φ,φ〉L2 dφ = N (0, (−∆)−1) dφ. (2.10)

How to define the measure? Case D = Td

Let D = [0, 2π]d = Td and ek(x) = ei(k·x) where k ∈ Zd. We notice that
{ek}k∈Zd is an orthonormal base for L2(D). We can identify L2(D) and `2(Zd)
because

φ ∈ `2(Zd)⇔
∑
k∈Zd

φkek converges in L2(D).

Consequently each φ : D → R can be written as φ =
∑
k∈Zd φkek because in

“coordinates” φ ≡ (φk)k∈Zd .

Proposition 2.7.1 (Diagonalization of the Laplace operator). (ek)k is an
eigenfunction with eigenvalue |k|d in fact:

(−∆)ek = |k|dek.

Moreover
(−∆)φ =

∑
k∈Zd

φk|k|dek((x1, x2, . . . , xd))

then ∀φ 〈−∆φ, φ〉 =
∑
k∈Zd |k|dφ2

k.
In particular, when d = 2 the statement of the proposition becomes: (ek)k is an
eigenfunction with eigenvalue |k|2 in fact (−∆)ek = |k|2ek. Moreover (−∆)φ =∑
k∈Z2 φk|k|2ek((x, y)) then ∀φ 〈−∆φ, φ〉 =

∑
k∈Z2 |k|2φ2

k.

Proof. Trivial (see Subsection 2.2).

Our proof is a direct computation but this proposition can have a confirma-
tion of it’s validity by Weyl’s asymptotic formula:

Theorem 2.7.2 (Weyl’s asymptotic formula for the torus T). Let N(λ) be the
number of eigenvalues, counted with multiplicity, ≤ λ then, as λ→∞

N(λ) ∼ ωdλ
d
2
vol(T)

(2π)d
(2.11)

and also the m-th eigenvalue (λm)
d
2 ∼ (2π)d

ωd
m

vol(T) . In particular for bounded do-

mains in Rd (as is the torus) G.Polya conjectured that (λm)
d
2 ≥ (2π)d

ωd
m

vol(T) ∀m ≥ 1.
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Proof. See [7] (page 30 and 33). Here we show how this theorem gives the
same eigenvalues asymptotic behaviour. Let us estimate the number of eigen-
values, counted with multiplicity, ≤ nd, as n → ∞ with W.a.f.: N(nd) ∼
ωdn

d2

2
vol(T)
(2π)d

, then we can estimate what is the asymptotic behaviour of the

N(nd)th eigenvalue. Set m = N(λ) then, noticing that letting λ → ∞, we

have (λm)
d
2 ∼ λ. In particular in fact, if m = N(nd), letting n → ∞,

(λm)
1
2 ∼ (2π)

ω
1/d
d

(
m

vol(T)

)1/d

∼ (2π)

ω
1/d
d

(
ωdn

d2/2vol(T)
(2π)dvol(T)

)1/d

∼ n
d
2 . Polya’s conjecture

gives us λ
1/2
m ≥ (2π)

ω
1/d
d

(
m

vol(T)

)1/d n→∞∼ n
d
2 , then λm ≥ nd if n→∞.

The solution of the problem (2.10) is more delicate: it’s necessary to put
some restrictions on φ.

Theorem 2.7.3 (Definition of the measure). Let φ ∈ L2(D) such that
∫
D
φdλ =

0; and φ is not constant (that is to say φ 6≡ 0, because of the previous assump-
tion). We can now give sense to (2.10).

Notation 2.7.4. For simplicity we call L2
0(D) =

{
φ ∈ L2|

∫
D
φdλ = 0

}
, and

`20
(
Zd
)

= {(φk)k∈Zd |φ0 = 0} ∼= `2
(
Zd \ {0}

)
,

so that we can even talk about the identification between the two spaces.

Proof. Heuristically we have:

e−
1
2 〈−∆φ,φ〉d∞φ = e−

1
2

∑
k∈Zd |k|

dφ2
kdφ1dφ2 . . . dφn . . . = (2.12)

=
⊗

k∈Zd\{0}

e−
1
2 |k|

dφ2
k√

2π(|k|d)−1
dφk (2.13)

And we set by definition:

µk ≡
e−

1
2 |k|

dφ2
k√

2π(|k|d)−1
dφk,

then µk = NR(0, (|k|d)−1) is a probability gaussian measure on (R,B(R)).
A simple application of theorem 2.3.15 assures that:

∃!µ su R∞ = {(φk)k∈Zd\{0}}

such that µ =
⊗

k∈Zd\{0} µk. Finally we set N (0, (−∆)−1) ≡ µ and also:

e−
1
2

∫
D
|∇φ|2 dx d∞φ ≡ µ after having recalled (2.9). We have just given sense to

(2.10).

Remark 2.7.5 (Why the condition on φ is essential to the proof). Let (φk)k∈Zd ≡
φ ∈ `2(Zd) ≡ L2(D); notice that φ0 = 〈φ, e0〉L2 =

∫
D
φdλ. φ0 is a con-

stant and e−
1
2 |0|

dφ2
0 dφ0 = dφ0 is not a probability measure on (R,B(R)). But
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φ0 = 0 ⇔
∫
D
φdλ = 0 and we are allowed to fix φ0 as we prefer because

(φk)k 6=0 ∈ `2 ⇔ (φk)k ∈ `2, then we fix φ0 = 0.
Moreover 〈−∆φ, φ〉 =

∫
D
|∇φ|2 d2ξ = 0 ⇔ φ is constant then we need this

restriction on “φ-space” to define the mesure e〈−∆φ,φ〉dφ.

2.7.2 Concentration of the measure in L2

We recall the Notation 2.7.4 and we restrict our attention to the measure of
L2

0(Td).

Proposition 2.7.6.
µ(`20(Zd)) = 0 (2.14)

Follows that µ{‖φ‖2 =∞} = 1

Proof. We can use exactly the proof of the formula (2.6) at page 15, because the
only hypothesis we used is:

∑
k∈Zd σk = +∞; in fact, being σk = |k|d, we have∑

k∈Zd σk =
∑
k∈Zd

1
|k|d ∼

∫
Rd

1
|k|d dk =

∫ +∞
0

ρd−1

ρd
dρ =

∫ +∞
0

1
ρ dρ = +∞.

2.7.3 Hs spaces

In order to find the concentration sets of the Feynman-Kač measure, we try to
estimate the measure of the Hs-spaces with s < 0. We recall the definition:

Definition 2.7.7. Let s ∈ R, let us denote by Hs-space the set:

Hs = {(φk)k∈Zd\{0} ∈ R∞ |
∑
k∈Zd

(1 + |k|d)sφ2
k <∞}.

Proposition 2.7.8. µ(H−s) = 1 ∀s > 0.

Proof. The proof is the same: surely s∗ is the smaller positive number s such
that ∫

R∞
‖φ‖2H−s dµ <∞.

Imposing this condition we have:∫
R∞
‖φ‖2H−s dµ =

∑
k∈Zd\{0}

(1+|k|d)−sσk =
∑

k∈Zd\{0}

(1 + |k|d)−s

|k|d
≤

∑
k∈Zd\{0}

(|k|d)−s−1

and this quantity is ∼
∫
Rd\(−1,1)d

(|x|d)−(s+1)dx1dx2 . . . dxd =

= ωd
∫∞

1
ρd−1

ρd(1+s)
dρ = ωd

∫∞
1

1
ρ(ds+1) dρ. And

∫∞
1

1
ρ1+ds

dρ < ∞ ⇔ 1 + ds > 1 ⇔
s > 0.

We wish to investigate the case φ : D ⊂ Rd → Rn where D is a region with
compact closure and piecewise C∞ boundary, and not only D = Td and n = 1.
The following Chapter, in addition to the definition of Polyakov measure, gives
as consequence the above-mentioned generalization.
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Chapter 3

Polyakov measure

In his article Quantum Geometry of Bosonic Strings [1], Polyakov starts his
analysis from the research of the minimum of the Nabu-Goto Action, then he
notices that there is another functional, which gives the same results. This
functional is the Polyakov functional and is essential in the construction of the
measure.

The first section provides a detailed exposition with proofs of the preliminary
statements, present in [1], necessary to the definition of the measure. Polyakov
measure will be defined in Section 2. We will define the gaussian part of the
measure, clearly applying the results of Chapter 1.

3.1 Nabu-Goto action vs Polyakov action

3.1.1 Nabu-Goto action

String Theory (and in particular, Polyakov Action [1]) studies the area action
functional:

A =

∫
D

d2ξ (det‖hab‖)
1
2 hab = ∂aφ

µ∂bφ
µ, (3.1)

where we use the Einstein notation, in other words hab =
∑n
µ=1 ∂aφ

µ∂bφ
µ. The

computation is over the unitary circle D 1, and φ : D → Rn is the parameteri-
zation (we can suppose it to be in C∞); Σ = φ(D) is the surface over which we
compute the area with the formula (3.1). In String Theory A is called Nabu-
Goto action [3].

1In some proof we will apply some theorems, for example the Divergence theorem or the
Fundamental lemma in the calculus of variation, then we need some hypothesis to be fulfilled:
D compact subset of Rd (in our case d = 2, but always remember that in any case d ≥ 2)
with piecewise C∞ boundary (or even without boundary).
Moreover, later, D will be a compact 2-dim Riemannian manifold with asociated metric g,
this means that D has to be a compact topological space that is locally euclidean. Being φ a
diffeomorphism we can talk about D as it was φ(D).
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The formula for the area in effect is:

A(φ) =

∫
D

√
det[J tJ ] d2ξ,

and obviosly J is the jacobian: φ′.
We would like to find the stationary point of this functional.

Proposition 3.1.1 (Stationary point of A). Let φ, δφ : D → Rn where D is a
region in Rd, φ ∈ Ck, k ≥ 2, δφ ∈ Ch, h ≥ 1 and δφ |∂D≡ 0,

δA =
1

2

∫ √
hhabδhab

where δhab = ∂(aφ
µ∂b)δφ

µ denotes the “symmetrization of indexes”:

δhab = ∂(aφ
µ∂b)δφ

µ =

= ∂aφ
µ∂b(δφ

µ) + ∂bφ
µ∂a(δφµ)

Notation 3.1.2. φµ(ξ1, ξ2) is the parameterization2.

Proof. Let v : D → Rn with v |∂D≡ 0, and recall that φ′ tφ′ = (hab)ab and also
hab = (h−1)ab. We introduce the notation h = det(φ′ tφ′).
A stationary point must satisfy the condition:

d

dt
A(φ+ t · v) |t=0= 0.

Explicating calculations and remembering the differential of the funcion det we
have:

d

ds
A(φ+ sv) |s=0=

∫
D

√
det[(φ+ s · v)′ t(φ+ s · v)′] d2ξ |s=0=

=

∫
D

1

2

d
dsdet[(φ+ s · v)′ t(φ+ s · v)′].[ dds ((φ+ s · v)′ t(φ+ s · v)′)]√

det[(φ+ s · v)′ t(φ+ s · v)′]
d2ξ |s=0=

=

∫
D

1

2

d
dsdet[(φ+ s · v)′ t(φ+ s · v)′].[ dds (φ′ tφ′+ s · v′ tφ′+ sφ′ tv′+ s2v′ tv′)]√

det[φ′ t(φ)′]
d2ξ |s=0

=

∫
D

1

2

d
dsdet[(φ+ s · v)′ t(φ+ s · v)′].[v′ tφ′+ φ′ tv′+ 2s · v′ tv′)]√

det[φ′ t(φ)′]
d2ξ |s=0

=

∫
D

1

2

det[φ′ tφ′]√
det[φ′ t(φ)′]

tr[(φ′ tφ′)−1(v′ tφ′+ φ′ tv′)] d2ξ

Now can be used the notation recalled above for det(φ′ tφ′) to write:

d

ds
A(φ+ sv) |s=0 =

∫
D

1

2

√
det[φ′ tφ′] tr[(φ′ tφ′)−1(v′ tφ′+ φ′ tv′)] d2ξ

=
1

2

∫
D

√
h tr[({hab}a,b=1,...,d)

−1(v′ tφ′+ φ′ tv′)] d2ξ.

2There is a typing error in the second line, second page, of the article [1]

27



We are reduced to study tr[({hab}a,b=1,...,d)
−1(v′ tφ′+ φ′ tv′)].

tr[({hab}a,b=1,...,d)
−1(v′ tφ′+ φ′ tv′)] =

d∑
a=1

(
(φ′ tφ′)−1(v′ tφ′+ φ′ tv′)

)
aa

=

=

d∑
a=1

[
d∑
b=1

((
(φ′ tφ′)−1

)
ab

(v′ tφ′+ φ′ tv′)ba
)]

=

d∑
a,b=1

[
hab(v′ tφ′+ φ′ tv′)ba

]
.

In particular the quantity in parentheses can be written as:

(v′ tφ′+ φ′ tv′)ba =

n∑
µ=1

(v′µbφ′µa + φ′µbv′µa) =

n∑
µ=1

(∂bv
µ∂aφ

µ + ∂bφ
µ∂av

µ) =

=

n∑
µ=1

(∂b(δφ
µ)∂aφ

µ + ∂bφ
µ∂a(δφµ)) ,

where we noticed that δφ = d
ds (φ+ t · v) = v e quindi δφµ = vµ.

Finally the minimal area is exactly the value in the unique critical point and
this establishes the desired formula:

0 = δA =
1

2

∫
D

√
h

d∑
a,b=1

[
hab

n∑
µ=1

(∂b(δφ
µ)∂aφ

µ + ∂bφ
µ∂a(δφµ))

]
. (3.2)

Theorem 3.1.3 (The Eulero-Lagrange equation). Now we suppose also that
φ ∈ Ck, k ≥ 2. Integrating by parts (3.2) follows the Eulero-Lagrange equation:

∂a

(√
hhab∂bφ

µ
)

= 0 hab = ∂aφ
µ∂bφ

µ, µ = 1, . . . , n. (3.3)

In the proof will be used the following theorems: the Divergence theorem and
the Fundamental lemma in the calculus of variations, in particular we use a
more general formulation:

Lemma 3.1.4 (The du Bois-Reymond lemma). Suppose that f is a locally in-
tegrable function defined on an open set D ∈ Rd. If∫

D

f(x)h(x)dx = 0 for all h ∈ C∞00 (D),

then f(x) = 0 for almost all x ∈ D. C∞00 (D) is the space of all infinitely
differentiable functions defined on D whose support is a compact set contained
in D.

In our theorem the functions are Rn−valued but this is not a problem: if
f = (f1, f2, . . . , fn) we can apply the theorem to each fµ : D → R.
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Proof. Consider (3.2) which is δA = 0 then:

0 =
1

2

∫
D

√
h

d∑
a,b=1

[
hab

n∑
µ=1

(∂b(δφ
µ)∂aφ

µ + ∂bφ
µ∂a(δφµ))

]

=
1

2

d∑
a,b=1

n∑
µ=1

∫
D

√
h
[
hab (∂b(δφ

µ)∂aφ
µ + ∂bφ

µ∂a(δφµ))
]
.

(3.4)

Let us apply the Divergence Theorem: define w = (wi)i, wi =
√
hhai∂aφ

µ vµ∫
D

∇ · w =

∫
∂D

w · ~n by def⇔
∫
D

d∑
b=1

∂bwb =

∫
∂D

∑
b

wbnb

∫
D

d∑
b=1

∂b(
√
hhab∂aφ

µ vµ) =

∫
∂D

∑
b

(
√
hhab∂aφ

µ vµ)nb
v|∂D≡0

= 0

then we have:

0 =

∫
D

d∑
b=1

∂b(
√
hhab∂aφ

µ vµ)

=

∫
D

d∑
b=1

[
∂b

(√
hhab∂aφ

µ
)
vµ + (

√
hhab∂aφ

µ)∂bv
µ
]
⇒

⇒
∫
D

d∑
b=1

(√
hhab∂aφ

µ∂bv
µ
)

= −
∫
D

d∑
b=1

[
∂b

(√
hhab∂aφ

µ
)
vµ
]
v|∂D≡0

= 0

⇒
∫
D

d∑
b=1

(√
hhab∂aφ

µ∂bv
µ
)

= 0.

But v is arbitrary, then the Fundamental lemma in the calculus of variations
completes the proof.

3.2 Polyakov action

From now on we consider the functional

W
(

(φµ)µ , (gab)ab

)
=

1

2

∫
√
ggab∂aφ

µ∂bφ
µd2ξ

=
1

2

∫
√
g

d∑
a,b=1

n∑
µ=1

gab∂aφ
µ∂bφ

µd2ξ

where g is a metric. In String Theory W is called Polyakov action. When we
introduce a metric, (D, g) becomes a compact Riemannian manifold, and from
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now on, will be connected and without boundary (this happens even if D = T2

or D is the unitary circle: we can consider it so).
There are lots of reasons that allow us to introduce this new functional

instead of the area (3.1) but this is the argument of the following subsection,
now we only notice that, at least formally, it brings to the same conclusions,
that is to say that preserves the physical features. For one thing we recover the
Eulero-Lagrange equation and then that the stress-energy-momentum tensor is
equal to zero.

Proposition 3.2.1 (Eulero-Lagrange equation). See the statement for the for-
mula (3.3) at page 28.

Remark 3.2.2. Variating φ formally we have (3.3), however there is g instead
of h. In fact formally the formulas are equal, but g doesn’t depend on φ. The
solution will be linear equation with respect to φ.

Proof.

0 =
d

dt
W (g, φ+ t v) |t=0

=
1

2

∫
√
g
∑
a,b,µ

d

dt

[
gab∂a(φµ + t vµ)∂b(φ

µ + t vµ)
]
|t=0 d

2ξ

=
1

2

∫
√
g
∑
a,b,µ

gab [∂av
µ∂b(φ

µ + t vµ) + ∂a(φµ + t vµ)∂bv
µ] |t=0 d

2ξ

=
1

2

∫
√
g
∑
a,b,µ

gab [∂av
µ∂bφ

µ + ∂aφ
µ∂bv

µ] d2ξ

It’s now evident that (3.4), is the same formula but, instead of h (which is
the metric induced by the euclidean metric), there is the metric g. Eulero-
Lagrange equations follow by the same method as in the proof for the minimal
area (3.1).

Proposition 3.2.3 (The stress-energy-momentum tensor is equal to zero). Do-
ing the variation with respect to the metric, we have:

0 =

n∑
µ=1

∂cφµ∂dφµ − 1

2

∑
a,b

gdcg
ab∂aφ

µ∂bφ
µ

 (3.5)

Proof. Consider Polyakov action:

W =
1

2

∫ √
det ggab∂aφ

µ∂bφ
µd2ξ =

1

2

∫ √
det g

∑
a,b,µ

gab∂aφ
µ∂bφ

µd2ξ

We calculate the variation of W (φ, g) w.r.t. g, that is to say:

d

dt
W (φ, g + tr)|t=0 = 0 with r|∂D ≡ 0,
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we obtain

0 =
1

2

d

dt

∫
D

√
det(g + tr)

∑
a,b,µ

(g + tr)−1
ab ∂aφ

µ∂bφ
µd2ξ

∣∣∣∣∣∣
t=0

=
1

2

∫
D

1

2

det′(g + tr)r√
det(g + tr)

∑
a,b,µ

(g + tr)−1
ab ∂aφ

µ∂bφ
µ

 d2ξ +

+
1

2

∫
D

√
det(g + tr)

∑
a,b,µ

−(g + tr)−1 d

dt
(g + tr)(g + tr)−1


ab

∂aφ
µ∂bφ

µ

=
1

2

∫
D

1

2

√
det gtr(g−1r)

∑
a,b,µ

gab∂aφ
µ∂bφ

µ +

+
1

2

∫
D

√
det g

∑
a,b,µ

(−g−1rg−1)ab∂aφ
µ∂bφ

µd2ξ

=
1

2

∫
D

√
det g

∑
a,b,µ

[
1

2
tr(g−1r)gab − (g−1rg−1)ab

]
∂aφ

µ∂bφ
µd2ξ.

We now estimate separately some terms:

(g−1r)cd =

d∑
j=1

(g−1)cjrjd then tr(g−1r) =

d∑
i=1

d∑
j=1

gijrji;

another term is (g−1rg−1)cd:

(g−1rg−1)cd =

d∑
i=1

(g−1r)ci(g
−1)id =

∑
i,j

gcirjig
id.

We replace these new expression to the previous ones and, doing the products
and collecting

0 =
1

2

∫
D

1

2

∑
i,j

∑
a,b,µ

√
detg

(
1

2
gijrjig

ab − gajrijgib
) ∂aφµ∂bφµd2ξ.

In
∑
i,j

∑
a,b,µ g

ajrijgib I can exchange i and j because the matrix g−1rg−1 is
symmetric, and then picking up rij , we have:

0 =
1

2

∫
D

1

2

∑
i,j

∑
a,b,µ

√
det g

(
1

2
gijrjig

ab − gajrijgib
) ∂aφµ∂bφµd2ξ

=
1

2

∫
D

∑
a,b,µ

∑
i,j

√
det g

(
1

2
gijrjig

ab − gairjigjb
)
∂aφ

µ∂bφ
µdξ

=
1

2

∫
D

∑
a,b,µ

∑
i,j

√
det g

(
1

2
gijgab − gaigjb

)
rji∂aφ

µ∂bφ
µd2ξ.
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This equality is valid for every rij , then by the Fundamental lemma in the
calculus of variation ∑

a,b,µ

(
1

2
gijgab − gaigjb

)
∂aφ

µ∂bφ
µ = 0

for all i, j. With a little trick we obtain the formula (3.5):
multiplying by gic, summing over i, and recalling that

∑
b g

abgbc = δac we have:

0 =
∑
i

∑
a,b,µ

(
gijgicg

ab − gicgaigjb
)
∂aφ

µ∂bφ
µ

=
∑
a,b,µ

(
1

2
δcjg

ab

)
∂aφ

µ∂bφ
µ −

∑
a,b,µ

(
δacg

jb
)
∂aφ

µ∂bφ
µ;

but δac is equal to zero except when a = c, therefore

=
∑
a,b,µ

(
1

2
δcjg

ab

)
∂aφ

µ∂bφ
µ −

∑
b,µ

gjb∂cφ
µ∂bφ

µ.

The same method leads us to the conclusion: multiplying by gdj and summing
over j, we have

0 =
∑
j

∑
a,b,µ

(
1

2
δcjgdjg

ab

)
∂aφ

µ∂bφ
µ −

∑
b,µ

gdjg
jb∂cφ

µ∂bφ
µ.

We now study separately the two addends. The second one is
∑
b,µ gdjg

jb∂cφ
µ∂bφ

µ =∑
b,µ δdb∂cφ

µ∂bφ
µ =

∑
µ ∂cφ

µ∂dφ
µ being δdb 6= 0 only if b = d; the first term

contains δcj , then:∑
j,a,b,µ

1

2
δcjgdjg

ab∂aφ
µ∂bφ

µ =
∑
a,b,µ

1

2
gdcg

ab∂aφ
µ∂bφ

µ.

Reccollecting all the quantities we can conclude:

0 =
∑
a,b,µ

1

2
gdcg

ab∂aφ
µ∂bφ

µ −
∑
µ

∂cφ
µ∂dφ

µ.

3.2.1 Polyakov Action advantages

For first thing we recall that (hab) is a metric on φ(D) induced by the Eu-
clidean metric of Rd, that clearly depends on φ; moreover the metric is not
intrinsically determined on D: we have A(φ) = A(φ ◦ ψ) for any ψ : D → D
diffeomorphism. Then we notice that if there wasn’t the square root in our ac-
tion functional, this could be more similar to the action studied in the previous
chapter:

∫
D
|∇φ(x)|2 dx.

32



Polyakov action W (φ, (gab)) depends on two independent variables, a Rie-
mannian metric on D (g) and the parameterization φ. With respect to Nabu-
Goto action, φ is no more under the square root, and Euler-Lagrange equations
for W are linear equations for φ. The crucial fact is that Polyakov action (in
Section 3.3) will allow us to use the results about the Feynman-Kač measure of
the previous chapter in order to define the Polyakov measure. The construction
strongly depends on the fact that W (φ, g) can be expressed in function of the
Laplace-Beltrami operator ∆g.

Another advantage of using W lies in the fact that, if the metric is con-
formally euclidean, we can write W such that it becomes invariant only under
conformal diffeomorphism, with a coordinates change (isothermal coordinates).

The metric is conformally euclidean

Definition 3.2.4 (Conformal metrics3). Let D be a region (open connected
subset) of Rd and g, f two metrics defined on D, and we suppose the metrics
are expressed in the same coordinates; we shall say that the two metric are
conformal, if exists a positive function λ(ξ) such that g(ξ) = λ(ξ)f(ξ), ∀ξ ∈ D.

Definition 3.2.5 (Conformally euclidean metric). The metric g is said to be
conformally euclidean if it is conformal to the euclidean metric δab: i.e. if
there exist a positive function λ(ξ) and local coordinates around any point such
that λ(ξ)gab(ξ) = δab(ξ), ξ ∈ D.

Proposition 3.2.6. If the energy-momentum tensor is equal to zero, then g(ξ)
and h(ξ) are conformal metrics, where h(ξ) is the metric given by the jacobian
of the parameterization φ(ξ). In other words the metric (gab) on D and the
induced metric on φ(D) are proportional.

Proof. hc,d =
∑
µ ∂cφ

µ∂dφ
µ, then if we consider the formula (3.5), follows:

gcd
∑
a,b,µ

1

2
gab∂aφ

µ∂bφ
µ = hcd

If λ ≡
∑
a,b,µ

1
2g
ab∂aφ

µ∂bφ
µ, the previous equation is equal to gcd = λhcd; if the

function λ is positive, g and h are conformal.
In fact λ is positive because all addends are positive.

Fact 3.2.7. Polyakov Action is invariant under conformal transformations:

W (φ, g) = W (φ, λg) ∀λ > 0 (3.6)

Proof. Obvious: it is sufficient to note that the λs cancel out:

W (φ, λg) =
1

2

∫ √
λdg(λg)ab∂aφ

µ∂bφ
µd2ξ,

3Sometimes the change of coordinates is included in the definition, and there isn’t the
assumption that the metrics are expressed in terms of the same coordinates.
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but d = 2 and λ is positive then
√
λ2g = λ

√
g and (λg)ab =

(
(λg)−1

)
ab

=

λ−1
(
g−1

)
ab

= λgab. Note that this is possible because d = 2 (φ : D ⊂ R2 →
Rn).

In String Theory the conformal invariance is called Weyl invariance.

Remark 3.2.8. At first Polyakov suppose to work in a euclidean space (im-
mersed manifolds). In [1] Polyakov conclude immediately gab = hab and not
gab = λhab.
Maybe he left out λ because of the Weyl Invariance.

It’s useful to explain better what is the meaning of the sentence “note that
it is possible because dim = 2 (φ : D → Rn)”.

Fact 3.2.9. Let g and h metrics, if g and h are conformal (“g ∼ h”) then

λ =
(

det(g)
det(h)

) 1
d

where λ : D → R> is the positive function such that g = λh.

Proof. g ∼ h ⇔ gab = λhab ∀a, b = 1, . . . , d, then detg = λddeth ⇒ λ =(
det(g)
det(h)

) 1
d

.

Moreover g ∼ h ⇔ gab

(detg)
1
d

= hab

(deth)
1
d

. Then if hab = δab, the metric is confor-

mally euclidean and it happens iff gab

(detg)
1
d

= δab

Corollary 3.2.10. d = 2
If g ∼ h then the Nabu-Goto action A is equal to the Polyakov Action W .

Proof. Recall that A =
∫ √

h d2ξ and W = 1
2

∫ √
ggab∂aφ

µ∂bφ
µd2ξ, and hab =

∂aφ
µ∂bφ

µ.
g ∼ h⇔ gab = λhab ∀a, b.
Therefore

W =
1

2

∫
λ
√
g
(
(λh)−1

)
ab
∂aφ

µ∂bφ
µd2ξ

=
1

2

∫
√
gλ−1

(
h−1

)
ab
habd

2ξ but λ−1 is equal to

√
h
√
g

=
1

2

∫ √
hhabhabd

2ξ =
1

2

∫ √
htr(I)d2ξ

=
1

2

∫
2
√
hd2ξ =

∫ √
hd2ξ = A

Theorem 3.2.11. It is possible to change coordinates in such a way that
the metric becomes conformally euclidean. A the change of coordinates f =
(f1, f2) can be given, following Polyakov, by the solution of (∂af1, ∂af2) =

(−εac
√
ggcb∂bf2, εac

√
ggcb∂bf1), where εac =


1 if (a, c) = (1, 2)

0 if a = c

−1 if (a, c) = (2, 1)

.
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Remark 3.2.12. The theorem can be stated in this way: Every metric g on a
2-dimensional surface, is conformally euclidean: exist local coordinates for the
surface such that the metric is conformally euclidean.(See Theorem 13.1.1. page
110 [5])
This theorem is what we need in fact our hypothesis are: (D, g) a 2-dim Rieman-
nian manifold. We will follow only the initial part of the proof of the statement
(for a complete proof look in [5]) to show that f can be made to satisfy exactly
the conditions imposed by Polyakov.

Proof. First notice that

g11d(x1)2 + 2g12dx
1dx2 + g22(dx2)2 =

=

(
√
g11dx

1 +
g12 + i

√
g

√
g11

dx2

)(
√
g11dx

1 +
g12 − i

√
g

√
g11

dx2

)
.

We start by looking for a complex-valued function λ

g11d(x1)2 + 2g12dx
1dx2 + g22(dx2)2 = |λ|−2(d(f1)2 + d(f2)2) .

Even more we look for a λ such that

λ

(
√
g11dx

1 +
g12 + i

√
g

√
g11

dx2

)
= d(f1) + id(f2)

where i is the imaginary unit. In fact taking the complex conjugate of that
expression and multiplying for the former equation4 we get

|λ|2(g11d(x1)2 + g12dx
1dx2 + g22d(x2)2) = d(f1)2 + d(f2)2

So, from our condition we get{
λ
√
g11 = ∂f1

∂x1 + i ∂f2∂x1

λ
g12+i

√
g√

g11
= ∂f1

∂x2 + i ∂f2∂x2

That is, eliminating λ from the computation

(g12 + i
√
g)

(
∂f1

∂x1
+ i

∂f2

∂x1

)
= g11

(
∂f1

∂x2
+ i

∂f2

∂x2

)
Separating the real and imaginary parts, the equation splits in the system

∂f2

∂x1
=
g12

∂f1
∂x1 − g11

∂f1
∂x2√

g

∂f2

∂x2
=
g22

∂f1
∂x1 − g12

∂f1
∂x2√

g

∂f1

∂x1
=
g11

∂f2
∂x2 − g12

∂f2
∂x1√

g

∂f1

∂x2
=
g12

∂f2
∂x2 − g22

∂f2
∂x1√

g

which is exactly the condition imposed by Polyakov (it suffices to replace gij
with its expression in terms of gcd, and to consider −f instead of f).

4In the sense of symmetric tensor product
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Fact 3.2.13. In the isothermal coordinates5 z Polyakov Action becomes:

W (z) =
1

2

∫
∂aφ

µ(z)∂bφ
µ(z) d2z

Proof. Immediate by the facts that, if ξ = f(z) = (f1(z), f2(z)) is the change
which makes the metric conformally euclidean, the volume form

√
gd2ξ becomes

λ−1(z)d2z (λ is the conformal factor) and
∑
a,b g

ab∂aφ
µ∂µb = |∇φµ|2g it’s invari-

ant under change of coordinates.

3.3 Polyakov Measure

Recall our purpose: Polyakov in [1] says the “the most immediate problem is to
define the proper measure for the summation over continuous surfaces”.
We now try to define the measure

e−W (φ,g)dφ.

where we have fixed the metric g.6

In this section we assume that M = D 7 is a compact d-dimensional Rie-
mannian manifold, {gab}ab a riemannian metric (then it is positive-definite).

Lemma 3.3.1. Suppose that (M, g) is a compact Riemannian manifold embed-
ded (but non necessarily isometrically) in some Rn. Then the metric is uni-
formely definite-positive, i.e. there exist an α > 0 (depending only on M, g and
the embedding) such that

gab(x)ξaξb ≥ α||ξ||2

for each x ∈M and ξ ∈ TxM .

Proof. Assume that for all α > 0 exists x ∈M and 0 6= ξ ∈ TxM such that 0 <
gab(x)ξaξb ≤ α|ξ|2. If we consider η = ξ

|ξ| , the condition is 0 < gab(x)ηaηb ≤ α.

Then we can take η in the “unitary tangent space” which is compact; we denote
it by TUM .
Define the continuous function f(x, η) = gab(x)ηaηb. Take α = 1/n with n ∈
N>, then ∃xn ∈M and η ∈ TxnM such that f(xn, η) ≤ 1

n . Therefore f(TUM)∩
[0, 1/n] 6= ∅ for all n > 0. Recall that a continuous image of a compact is
compact, then f(TUM) has to be a compact in R which means that is closed
and limited. {0} = ∩n≥1[0, 1/n] ⇒ 0 ∈ f(TUM), this is impossible because
gab(x) > 0 ∀x ∈ M ⇒ f(x, η) > 0∀x ∈ M and η ∈ TUxM . We can conclude
that gab is uniformely positive-definite.

5Isothermal coordinates on a Riemannian manifold are local coordinates where the metric
is conformal to the Euclidean metric.

6In section 3.4 there is the statement of the complete problem.
7Recall that D and φ(D) are diffeomorphic manifolds, then have the same properties as

manifolds.
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Lemma 3.3.1 assures that the Polyakov action W
(

(φµ)µ , (gab)ab

)
=

= 1
2

∫ √
ggab∂aφ

µ∂bφ
µd2ξ is positive.

We recall some definition which will be useful in the understanding of the
sequel.

If (M, g) is a Riemannian manifold and f is a smooth function on M we can
define the gradient of f as the only vector field ∇f such that

〈∇f,X〉 = dfX

for each vector field X over M .
Moreover if X is a smooth vector field over M , we can define its divergence

as the only smooth function ∇ ·X on M such that in local coordinates it holds

∇ ·X =
1
√
g
∂i(
√
gXi)

This definition is chosen in such a way that the classical divergence theorem
holds.

We can now define the Laplace-Beltrami operator on a Riemannian manifold.
If f is a smooth function on M we set

∆gf = ∇ · ∇f .

In coordinates we can state the definition as follows:

Definition 3.3.2 (Laplace-Beltrami operator). Let φ, ψ : D → R, we set:

〈−∆gφ, ψ〉 =

∫
D

√
ggab∂aφ∂bψ dξ.

Now consider the following space:

L2(M,Rn) =

{
φ : M → Rd |

∫
M

|φ|2dV < +∞
}
.

This is a scalar product space with the definition

〈φ, ψ〉 =

∫
M

〈φ(x), ψ(x)〉dV =

∫
M

φ(x) · ψ(x)dV,

where dV is the volume form
√
gddx if M is d−dimensional.

In this space we let ∆g act componentwise. We claim that

〈−∆gφ, ψ〉 =
∑
µ

〈−∆gφ
µ, ψµ〉 =

∑
µ

∫
M

〈−∆gφ
µ(x), ψµ(x)〉dV =

=
∑
µ

∫
M

〈∇φµ(x),∇ψµ(x)〉dV
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In terms of the Laplace-Beltrami operator Polyakov action can be written:

W
(

(φµ)µ , (gab)ab

)
=

1

2
〈−∆gφ, φ〉 =

1

2
C̃(φ, φ),

where we denote by C̃(φ, ψ) the quantity
∫
D

√
ggab∂aφ

µ∂bψ
µ dξ.8

We are interested in defining the measure

e−W (φ,g)d[φ]d[g],

where d[φ] and d[g] are formal measure over all parameterizations and all met-
rics. If g is fixed, then this measure becomes a sort of gaussian:

e−
1
2 〈−∆gφ,φ〉 dφ. (3.7)

Remark 3.3.3. This is a generalization of the Feynman-Kač measure, and the
metric is no more the euclidean one. In that case we had a problem (see Remark
2.7.5). If the metric gab = δab then gab = δab and we have C̃(φ, φ) = 〈∆gφ, φ〉 =
0 ⇔ 9

∫
D
|∇φ|2gdξ = 0 ⇒ |∇φ|g = 0 ⇒ dφ = 0 ⇒ φ ≡ cost. These possibility

must be prevented because, e−
1
2 C̃(φ,φ)d∞φ won’t be a probability measure, as has

already been noticed.

To obviate this eventuality we assume that φ ∈ S ≡ {φ : D → Rn|φ 6=
costant not null }, in particular, φ is supposed to be in L2∩S. It is convenient

to call L2 ∩ S = L2
0.

Notation 3.3.4. We will denote by C = Cg = (−∆g)
−1 the covariance matrix,

then C̃(φ, ψ) = 〈C−1φ, ψ〉.

We try to use the same tecnique used in the definition of the Feynman-
Kač measure: the basic idea of the proof is to diagonalize the Laplace-Beltrami
operator.

3.3.1 Diagonalization of the Laplace-Beltrami operator

The following theorems are stated without proof.

Theorem 3.3.5 (Sturm-Liouville decomposition). Let M be a Riemannian
manifold which is also compact; there exists a complete orthonormal basis e0, e1, e2, . . .
of L2(M) of eigenfunction ek of ∆g with λk as eigenvalue such that 0 = λ0 ≤
λ1 ≤ λ2 ≤ . . .

Theorem 3.3.6 (Weyl’s asymptotic formula). Let M be a d-dimensional Rie-
mannian manifold, and N(λ) be the number of eigenvalues, counted with mul-
tiplicity, such that 0 = λ0 ≤ λ1, . . . ≤ λ; then, as λ tends to +∞

N(λ) ∼ ωdλ
d
2
vol(M)

(2π)d
(3.8)

8If now on we take gab = δab and D a compact region of Rd, we obtained the generalization
of the measure for (2.8) in the case of a vector field with domain different from the torus.

9Here we use the closedness (compactness and absence of boundary).
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and also, as m→ +∞ the m-th eigenvalue

(λm)
d
2 ∼ (2π)d

ωd

m

vol(M)
.

Having an orthonormal basis we can identify φ with its Fourier coefficients:
φk =

∫
D
φek dV where dV is the volume form, and k ∈ N (following the enu-

meration given by the Sturm-Liouville theorem).

Remark 3.3.7. The Sturm-Liouville theorem tells us that 0 is an eigenvalue
and there is an orthonormal basis for the kernel. A function in the kernel
satisfies the condition seen in remark 3.3.3 (i.e. C̃(φ, φ) = 0) then is constant.
Therefore the Kernel has dimension one and is the set of all constant functions.
So we are confirmed in our choise of L2

0 as the domain, but we would like to write
it differently. Observe that 1 = e0 then φ0 =

∫
D
φdV which is a constant and

we call it “mean”, then we can choose L2
0(D) =

{
φ ∈ L2(D)|φ has null mean

}
.

3.3.2 Definition of the measure

We have just seen that the Laplace-Beltrami operator C can be diagonalized,
then the construction of the measure can be developed as in the euclidean case.
If λk is the eigenvalue with eigenfunction ek for all k ∈ N and {ek}k is an
orthonormal basis, we can identify φ with its Fourier coordinates (φk)k, where
φk =

∫
D
φekdV . If D is a d-dimensional riemannian manifold, we can identify

the space L2
0(D) with the space `20(N) = {(φk)k∈N ∈ `2(D)|φ0 = 0} ≡ `2(N\{0}).

In analogy with (2.12) we have:

e−
1
2 C̃(φ,φ)d∞φ = e−

1
2 〈−∆gφ,φ〉d∞φ = e−

1
2

∑
k∈N> λkφ

2
kdφ1dφ2 . . . dφn . . .

=
⊗
k∈N>

e−
1
2λkφ

2
k√

2π(λk)−1
dφk.

The last product it’s very similar to a product of gaussian measure. If those
formal equalityies had sense, the definition which gives sense to (3.7) could be
provided analogously to the euclidean case:

e−
1
2 C̃(φ,φ) dφ = e−

1
2 〈−∆gφ,φ〉L2 dφ = N (0, (−∆g)

−1) dφ = N (0, Cg) dφ

Finally, using theorem (2.3.15), the measure is:

µ(dφ) = e−
1
2 C̃(φ,φ) dφ (3.9)

3.3.3 Concentration of the measure

Notice that we don’t have an explicit expression for ek, but Weyl’s asymptotic
formula is useful to check if it is still true that the space of concentration of the
measure is not L0. In such a eventuality, the relative solution (find the space of
concentation of the measure among Hs-spaces) can be used again.
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The measure of L2
0 is still zero because the proof given to (2.14) at page

25 is based only in the fact that
∑
k∈Zd\{0} σk is infinite, than can easily be

generalized. We recall that σk = 1
λk

(k ∈ N>) by definition.

Lemma 3.3.8. Let 0 = λ0 ≤ λ1 ≤ . . . ≤ λn ≤ . . . all the ordered eigenvalues of
the Laplace-Beltrami operator, the

∑+∞
k=0 σk = +∞.

Proof. By Weyl’s asymptotic formula we have λn ∼ (2π)2n2/d

(ωdvol(D))2/d
, therefore for

n big enought, we can assume it is sufficient n ≥ m for a fixed m, the required
sum is:∑

n≥m

1

λn
∼
∞∑
n=m

(ωdvol(D))
2/d

(2π)2n2/d
=

(ωdvol(D))
2/d

(2π)2

∞∑
n=m

1

n2/d
∼ K

∫ +∞

m

dx

x
2
d

,

where K = (ωdvol(D))2/d

(2π)2 is a positive constant depending only on the metric g

and the dimension d of the manifold. The integral converges if and only if 2
d > 1

but d ≥ 2.

3.4 Complete Polyakov Measure

The characterization, given by Polyakov in [1], of the measure is that it must
count all surfaces of a given area with the same weight, and he says that this
condition leads to expression (14) (second page in [1]) for the measure.

Remark 3.4.1 (Expression (14)). Set S = φ(D) Let ψ a functional on S, the
measure is given by∫
ψ(S) dµ(S) =

∫
e−λ

∫ √
g d2ξ [dgab(ξ)]×

∫
e−

1
2

∫
D

√
ggab∂aφ

µ∂bφ
µ d2(ξ) dφ(ξ)×ψ[φ(ξ)],

where [Dgab] is an integration measure over all possible metrics, λ is an arbitrary
parameter and the other terms are known. The expression above can be written
in this way: ∫

ψ(φ(ξ))e−
1
2

∫
D

√
ggab∂aφ

µ∂bφ
µ d2(ξ)e−λ

∫ √
gd2ξ dg dφ.

In this chapter we have restricted our attention to the rigorous definition
of the “gaussian part” of this measure. In other words we succeed in defining
the integration over the space of all change of coordinates, but we are not sure
if there exists a rigorous definition for the part of the measure which allows to
integrate over the space of the metrics.
In every book or article we have read all passages are heuristic, but all report
the same procedure. The idea is to use gauge’s invariance10 and the fact that in
two dimensions all metrics are conformally euclidean, to change the integration

10Weyl’s invariance and invariance under diffeomorphism (change of coordinates)
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over the space of all metric in a integration over the space of all gauge’s invari-
ance. In this way we also eliminate the possibility that the integration of all
possible metrics diverges because we integrate only over configuration (φ, g) non
equivalent (we fix the metric and consider only conformal diffeomorphism). In
[9] and in [11] is used the Faddeev-Popov procedure to define formally Polyakov
Measure, but we aren’t able to give a rigorous definition of the terms employed,
which are also of difficult comprehension; we are even not sure that this is
possible to do.
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Appendix A

Weyl’s asymptotic formula
for T2

We present a proof for the Weyl’s asymptotic formula for the 2-dimensional
torus (see formula (2.11) at page 23 and consider d = 2, m ≡ N(n2) ∼ πn2).
We stated it without proof.

Lemma A.0.2. Let m be the number of k ∈ Z2 such that |k| ≤ n; then m ∼ πn2.

Proof. The basic idea of the proof is that the estimate for m is exactly the
estimate of the number of integers m contained in the unitary circle of radius n
in R2.
We set:

X(r) = {k ∈ R2 | |k| ≤ r},

and in particular |X(n)| = m. If k = (k1, k2) we set

X1(r) =

{
k ∈ R2 |

[
k1 −

1

2
, k1 +

1

2

)
×
[
k2 −

1

2
, k2 +

1

2

)
∩Br 6= ∅

}
.

X1(r) is the set of all k ∈ Z2 such that the square, of side 1 centered in k,
intersect Br, which is the ball of radius r. We also consider the set of all k ∈ Z2

such that the square of side 1 centered in k is entirely contained in Br:

X2(r) =

{
k ∈ R2 |

[
k1 −

1

2
, k1 +

1

2

)
×
[
k2 −

1

2
, k2 +

1

2

)
⊆ Br

}
,

Trivially X2(r) ⊆ X(r) ⊆ X1(r). Moreover we notice that the union of all the
sqares of side 1 centered in k, k ∈ X2(r), is contained Br, on the contrary the
union of all the sqares of side 1 centered in k, k ∈ X1(r) contains Br; this
establishes the formula (see figure A.1):

|X2(r)| ≤ πr2 ≤ |X1(r)|.
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O

k

(r, 0)
O

(r, 0)

(0, 1)

Figure A.1: Respectively X1(r) and X2(r) are the sets which contain exactly
the centers (= k = (k1, k2) ∈ Z2) of the squares colored in the two figures.

Furthermore, if k ∈ X(r) is an integer point (k ∈ Z2) contained also in
Br, the unitary square centered in k is entirely contained in B

r+
√

2
2

. In fact

a point in such a square is distant from k at the most
√

2
2 , then at the most

|k|+
√

2
2 ≤ r +

√
2

2 from the origin. Therefore X(r) ⊆ X2(r +
√

2
2 ), that is

|X(r)| ≤

∣∣∣∣∣X2

(
r +

√
2

2

)∣∣∣∣∣ ≤ π
(
r +

√
2

2

)2

.

Analogically with X1 we have the estimate

|X(r)| ≥ π

(
r −
√

2

2

)2

.

Then

π(r −
√

2

2
)2 ≤ |X(r)| ≤ π(r +

√
2

2
)2 ⇒

⇒ π(−1

2
− 2

√
2

2
r) ≤ |X(r)| − πr2 ≤ π(

1

2
+

√
2

2
r)

,

and consequently∣∣|X(r)| − πr2
∣∣ ≤ 1

2
+

√
2

2
r ⇒ |X(r)| = πr2 +O(r).

In particular, we recall that m = |X(n)|, and follows the lemma:

m = πn2 +O(n) .
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