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Chapter 1

Introduction

Since its first formulation in 1915, general relativity has given a theoretical description of
gravity that is astonishingly compatible with experiments and observations. Amongst its
many observational successes, we remember the gravitational redshift ([1]), the gravitational
time dilation ([2]), the Shapiro delay ([3]), the deflection of light ([4]) and the gravitational
waves ([5]).
Fixing a small set of six parameters through observations, the cosmological model founded on
general relativity (usually known as ΛCDM model) provide us with other confirmed predic-
tions, such as the abundance of chemical elements formed during the primordial nucleosyn-
thesis ([6]), the large-scale structure of the universe ([7]) and the existence and properties of
the cosmic microwave background (CMB) radiation ([8]).
As it is well known, the ΛCDM model needs the existence of two dark components in the uni-
verse in order to be consistent with the observations: dark matter and dark energy. Since these
two components have never been observed and they also present some theoretical problems([9]
[10] [11]), it has become a common research current to try to explain the phenomena that they
give origin to by modifying the law of gravitation, without introducing new energy sources
([12] [13]).
Amongst these modified gravity theories, the so-called mimetic scenario has lately attracted
much attention. The first formulation of mimetic gravity ([14]) performs a conformal trans-
formation on the Einstein-Hilbert action of general relativity, using an auxiliary metric and a
scalar field. The outcome of this conformal transformation is to switch on a new scalar degree
of freedom of gravity, which behaves exactly as a pressureless perfect fluid, thus mimicking
a cold dark matter component. In this model, the observed cold dark matter energy den-
sity would, in general, be the sum of two unknown amounts of energy density contributions,
one coming from hypothetical dark matter particles and the other from the "mimetic" dark
matter which is only a gravitational effect. In a subsequent article ([15]) it is shown that,
introducing a potential for the scalar field and considering the cosmological solutions, it is
possible to reproduce almost any background expansion history for the universe.
The initial mimetic dark matter model is generalized in [16], considering a very general scalar-
tensor theory of gravity instead of general relativity: in particular, the results contained in
[16] are valid for Horndeski gravity, which is the most general healthy second-order scalar-
tensor theory of gravity. The authors also consider generic disformal transformations instead
of simple conformal ones: it is shown that Horndeski gravity is invariant under invertible
disformal transformations, but when the transformation is non-invertible the resulting theory
is a generalization of the original mimetic dark matter model, with new equations of motion.
This new theory has been defined mimetic Horndeski gravity. Finally they show that there
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Figure 1.1: A spectacular observational confirmation of general relativity: the mass of a
luminous red galaxy gravitationally distorts the light from a much more distant blue galaxy,
forming a nearly complete ring. The image was taken by Hubble Space Telescope.

are mimetic Horndeski models that present interesting cosmological features, being able to
reproduce a perfect fluid or a ΛCDM background expansion history. The issue of cosmolog-
ical perturbations in mimetic Horndeski gravity is studied in [17], where the time evolution
equations for the scalar perturbations are obtained.
Since mimetic Horndeski gravity has proved to be compatible with the observed background
expansion history of the universe, we need other predictions that can be compared with obser-
vations in order to decide whether this theory could be a valid alternative to general relativity.
The goal of this thesis is to perform an analytical calculation of the late-time integrated Sachs-
Wolfe (ISW) effect predicted by mimetic Horndeski gravity, and then to compare it with the
one predicted by general relativity.
The ISW effect is one of the sources of the anisotropies observed in the CMB radiation ([18]).
It is generated by the fact that a photon of the CMB experience a redshift or a blueshift
if, during its travel, it falls into a time-varying gravitational potential well: in particular we
expect that, at late times, the acceleration in the expansion of the universe causes a decay of
the gravitational potential, creating the so-called late-time ISW effect. This effect is largely
dependent on the time evolution of the gravitational potential, that is different from a theory
of gravity to another: different theories of gravity could predict different equations of motion
for the metric perturbations, and therefore they could predict different ISW effects.

The thesis is organized as follows.
In Chapter 2 we present a review of the standard ΛCDM model of cosmology, discussing also
the hot Big Bang model that predicts the existence of the CMB radiation.
In Chapter 3 we discuss the issue of cosmological perturbations in a general metric theory of
gravity, presenting the gauge problem and the different ways to deal with it.
In Chapter 4 we obtain the Boltzmann equation for photons, that describes the evolution of
their distribution function in a perturbed universe.
In Chapter 5 we study the perturbations of the temperature field and how they change during
the free streaming of the photons from the last scattering surface to us. Here we introduce
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the integrated Sachs-Wolfe effect.
In Chapter 6 we review the first formulation of mimetic gravity, considering a conformal
transformation of the Einstein-Hilbert action of general relativity.
In Chapter 7 we generalize the mimetic framework to a very general scalar-tensor theory of
gravity, considering also more general disformal transformations: here we present mimetic
Horndeski gravity.
In Chapter 8 we obtain the equations for the time evolution of the scalar metric perturbations
in general relativity and mimetic Horndeski gravity. In the case of mimetic Horndeski we im-
pose a ΛCDM or a perfect fluid dark energy background expansion history, investigating how
these constraints change the evolution of perturbations. We also solve the equations in the
particular and simpler case of mimetic cubic Horndeski.
In Chapter 9 we perform the analytical calculation of the late-time ISW effect in general
relativity and mimetic Horndeski gravity.
In Chapter 10 we present the conclusions of the thesis.

We use a (−,+,+,+) metric signature and we set c = 1. Other notation conventions will be
defined when needed in the following.
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Chapter 2

Standard model of cosmology

2.1 Cosmological principle

Cosmology in its modern formulation is based upon the cosmological principle, which states
that every comoving observer sees the universe around himself as homogeneous in space and
isotropic on large scales ([19][20]). When we use the expression "comoving observer", we
mean an observer that is still with respect to the source of the geometry of the universe: this
also implies that we accept a metric theory of gravity, that is a theory in which gravity is a
manifestation of the geometrical properties of spacetime.
In a metric theory of gravity the spacetime can be described as a Lorentzian manifold, and
the cosmological principle forces the line element to assume a very symmetric form (the
Friedmann-Robertson-Walker or FRW metric):

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(2.1)

where t is the cosmic time (operatively, it is the time that would be measured by a comoving
clock), a(t) is the scale factor (that is function of the cosmic time only), (r, θ, φ) are polar
comoving coordinates (such that a comoving observer has r, θ and φ fixed) and k is the spatial
curvature constant, whose value can be +1, 0 or −1 corresponding to a closed, flat, or open
universe respectively.
It is sometimes useful to define the conformal time as dη = dt

a(t) : using this conformal time,
equation (2.1) becomes

ds2 = a2(η)

[
−dη2 +

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(2.2)

2.2 General relativity and ΛCDM model

General relativity was the first metric theory of gravity and it was published in its final form
in 1915 by Albert Einstein. The model gives us a very simple and elegant law that explains
how spacetime is curved by sources of mass or energy: Einstein equations in their most general
form are

Gµν = 8πGTµν − Λgµν (2.3)

where Gµν = Rµν− 1
2Rgµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci scalar,

gµν is the metric tensor, G is Newton’s gravitational constant, Tµν is the stress-energy tensor
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of the mass-energy in the universe and Λ is the cosmological constant. This cosmological
constant can be seen as a form of energy that fills the space in a perfectly homogeneous way,
so it can be included in Tµν as a particular energy source.

If we now assume the cosmological principle (so a metric in the form of equation (2.1))
and we assume also that the matter component in the universe is represented by a perfect
fluid of energy density ρ(t) and isotropic pressure p(t) (they are both function of time only
because of homogeneity of space), then equation (2.3) gives us the Friedmann equations:

H2 =

(
ȧ

a

)2

=
8

3
πGρ− k

a2
(2.4)

ä

a
= −4

3
πG(ρ+ 3p) (2.5)

where we defined the Hubble parameter H(t) = ȧ
a . Here and in the following we use the

dot to indicate the derivative with respect to the cosmic time t, while the ′ will indicate the
derivative with respect to the conformal time η.
Using the Bianchi identity ∇µGµν = 0 (that can be shown starting from the definition of
Einstein tensor), we also obtain the continuity equation

ρ̇ = −3H(ρ+ p) (2.6)

Defining the critical density ρc(t) ≡ 3H2(t)
8πG , equation (2.4) can be put in the form

Ω(t)− 1 ≡ ρ(t)

ρc(t)
− 1 =

k

a2(t)H2(t)
(2.7)

This means that the mass-energy density of the cosmic fluid determines the global geometry
of the universe: if ρ(t) > ρc(t) then k = 1 and the universe must be closed, if ρ(t) < ρc(t)
then k = −1 and the universe must be open and finally if ρ(t) = ρc(t) then k = 0 and the
universe must be flat.
The latest results of the Planck satellite ([21]) constrain the current value of ρ to be very close
to1 ρc(t0) = 1.87847(23)× 10−29h2 g · cm−3 (where t0 represent today’s cosmic time), so the
universe can be considered flat. But a problem arises when we try to determine what kind of
energy sources contributes to such a value of the present energy density ρ(t0).

First of all let’s start with matter: from [21] we know that Ωm(t0) ≡ ρm(t0)
ρc(t0) = 0.316(14),

so matter represents little more than the 30% of the total energy budget of the universe. But
we know also that baryonic matter (the usual form of matter that we are familiar with) can
account for no more than the 5% of ρ(t0) ([21]): this implies that there is an unknown form of
matter, called dark matter, that is responsible for the 25% of the total energy of the universe.
This dark matter, in order to be compatible with observations, must be neutral, collisionless,
non relativistic and stable: it must be also cold in the sense that it experienced decoupling
from all the other forms of matter when it was already non relativistic.
What about the remaining 70% of the total energy budget? We know that photons cannot
represent more than the 0.01% of ρ(t0), so this 70% must be covered by an unknown form of
energy, called dark energy. The nature of this dark energy is still a mystery: many models

1Since the experimental determination of the present value of the Hubble parameter is really complicated,
it is common to parametrize the value of H(t0) with h: H(t0) = h× 100km/s

Mpc
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have been proposed, but the most common approach is to consider it as a small cosmological
constant Λ that, as we said before, fills the space with a constant value of energy density.
It is thought that dark energy is responsible for the currently observed acceleration in the
expansion of the universe.

In summary, the cosmological solutions of general relativity’s equations need two unknown
(and still experimentally undetected) dark components in order to satisfy observational con-
straints: dark matter and dark energy. Considering that the best results in fitting data are
given by cold dark matter (CDM) and cosmological constant (Λ) respectively, the ΛCDM
model is now called the standard model of cosmology.

2.3 Modified gravity

The two dark components that are the basis of ΛCDM model pose a number of problems:
as we said in the previous Section by now no experimental detection of dark matter or dark
energy has been performed, but this is not the only challenge.
There are also theoretical problems: for example this model seems to have a "small-scale prob-
lem" ([9]), predicting too many dwarf galaxies and too much dark matter in the innermost
regions of the galaxies. Moreover the nature of the cosmological constant is still unknown: the
modern interpretation of Λ is based on the vacuum energy of quantum field theory, but there
is a discrepancy between theoretical predictions and observations of 120 orders of magnitude
([11]).

The presence of these unknown energy components has motivated many studies that try
to explain the phenomena that they give origin to by modifying the law of gravitation, with-
out introducing new energy sources: for this reason these theories can be grouped under the
label modified gravity.
Among these theories, in this thesis we will focus on mimetic Horndeski gravity, which is a
particular modification of a scalar-tensor theory of gravity.

2.4 Friedmann Models

Now we try to solve the system of equations (2.4)-(2.6):(
ȧ

a

)2

=
8

3
πGρ− k

a2
(2.8)

ä

a
= −4

3
πG(ρ+ 3p) (2.9)

ρ̇ = −3H(ρ+ p) (2.10)

It can be shown ([24]) that (2.9) can be obtained from (2.8) and (2.10), so we have only two
independent equations for the three unknown quantities a(t), ρ(t) and p(t). This means that
we need a third equation in order to find a solution for the system: if we assume the cosmic
fluid to be barotropic, then the third equation could be taken to be the equation of state of
the fluid

p = wρ (2.11)
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where we assumed a simple linear law with w constant in time.

If we restrict the discussion to a flat FRW metric (k = 0) we find the solutions ([24])

a(t) ∝ t
2

3(1+w) ρ(t) ∝ a−3(1+w) (2.12)

For example if we have non relativistic matter (w = 0) we obtain

a(t) ∝ t
2
3 ρ(t) ∝ a−3 p(t) = 0 (2.13)

while if we have radiation (w = 1/3) we obtain

a(t) ∝ t
1
2 ρ(t) ∝ a−4 p(t) =

1

3
ρ(t) (2.14)

If we have only a cosmological constant (w = −1) the solution is in the form

a(t) ∝ eHt ρ(t) = const p(t) = −ρ(t) (2.15)

with H =
√

Λ
3 constant in time.

If we consider the ΛCDM model, at late times (after radiation has become negligible) the
universe experiences a transition from the matter domination to the cosmological constant
domination, and the scale factor assumes the form

a(t) = ai sinh
2
3 (Ct) (2.16)

where C =
√

3Λ
4 . In fact if Ct� 1, we can approximate sinh(Ct) ' Ct so

a(t) ' aiC
2
3 t

2
3 (2.17)

that is exactly the time dependence of a cold dark matter dominated universe. Instead if
Ct� 1, we can approximate sinh(Ct) ' 1

2 exp(Ct) so

a(t) ' ai2−
2
3 exp

(√
Λ

3
t

)
(2.18)

that is the time dependence of a cosmological constant dominated universe.

It is easy to show ([24]) that the Friedmann models with −1
3 < w < 1 have the property

that they present a time in the past where a vanishes and the energy density diverges. This
instant is called Big Bang singularity and can be taken to be the origin of time (t = 0). It is
worth noting that the existence of this singularity is a direct consequence of four conditions:

• the validity of cosmological principle

• the validity of general relativity and then of Friedmann equations

• the present (observed) expansion of the universe2

• the correctness of the equation of state in the form p = wρ with −1
3 < w < 1.

If these four conditions are assumed to be true, then the existence of the Big Bang is inevitable,
establishing the foundations for the hot Big Bang model : the very early universe was in
a hot and dense phase and subsequently it expanded, decreasing in density and falling in
temperature.

2The expansion of the universe was firstly proposed in 1929 by Hubble, who measured the receding velocity
of distant galaxies finding a proportionality relation between this velocity and the distance: v = H(t0)d
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2.5 The hot Big Bang model

It is useful to review the most important stages of the chronology of the universe as predicted
by the hot Big Bang model.

• Singularity (t = 0). As we said above the Big Bang singularity appears when we
extrapolate the results of general relativity in a situation where this theory is no longer
valid: it seems likely that in a complete quantum theory of gravity there would be no
singularity.

• Planck epoch (t < 10−43s). It is conjectured that in this epoch a quantum theory of
gravity could unify all the four known fundamental interaction (gravitational, nuclear
strong, nuclear weak and electromagnetic).

• Grand unification epoch (t < 10−36s). It is conjectured that in this epoch gravity
becomes distinct from the other three interactions, which are now described by a grand
unification theory (GUT).

• Electroweak epoch (t = 10−36s). The electroweak interaction becomes distinct from the
strong interaction.

• Inflation (t = 10−33s− 10−32s). The universe experiences an exponential expansion by
a factor bigger than 1026.

• Quarks epoch (t = 10−12s − 10−6s). The electromagnetic interaction becomes distinct
from the nuclear weak interaction, allowing the elementary particles to acquire mass
through Higgs mechanism. Matter is now in the form of a quark-gluon plasma.

• Hadron epoch (t = 10−6s−1s). The temperature is now sufficiently low to allow quarks
to bind, forming hadrons: the first protons and neutrons appear.

• Lepton epoch (t = 1s−10s). Hadrons and antihadrons annihilate each other, producing
leptons and antileptons. Neutrinos decouple from matter, originating a cosmic neutrino
background.

• Photon epoch (t = 10s− 7× 104y). Most of the leptons and antileptons annihilate each
other, causing the universe to be dominated by radiation. In this epoch photons are
continuously scattered by charged particles (mostly by electrons), so the universe can
be considered a super-hot glowing fog. Between t = 3m and t = 20m the primordial nu-
cleosyntesis arises: helium, deuterium and lithium nuclei are produced through nuclear
fusion reactions, starting from protons and neutrons.

• Beginning of matter-dominated era (t = 7 × 104y). The energy density of matter
dominates radiation and dark energy: the universe’s expansion decelerates.

• Recombination (t = 3.8 × 105y). Temperature is low enough to allow electrons to
combine with protons and nuclei in order to form neutral atoms: photons are no more
in thermal equilibrium with matter (since photons’ scattering with charged particles
becomes rare) and the universe becomes transparent for radiation, allowing photons to
propagate freely. This photons constitute the cosmic microwave background (CMB)
radiation: the spatial surface from which they start propagating is known as surface of
last scattering.

13



Figure 2.1: Synthetic diagram of the evolution of the observable universe

• Dark ages (t = 3.8× 105y− 1.5× 108y). No stars are already formed and the only light
produced is from spin-flip transition in excited hydrogen atoms.

• Galaxy formation (t = 109y− 1010y). Galaxy clusters and superclusters begin to form.

• Beginning of dark energy-dominated era (t = 1010y). The matter density falls below
dark energy density, causing the universe’s expansion to re-accelerate.

• Present time (t = 1.38× 1010y).

14



Chapter 3

Cosmological perturbations

The cosmological principle constrains the universe to be homogeneous and isotropic on large
scales, but we know that on small scales this cannot be true. We observe that matter is
clustered in planets and stars, and that these planets and stars form galaxies and clusters
of galaxies, between which very large void regions exist: on small scales the universe is not
homogeneous. Furthermore we know that the cosmic microwave background radiation is not
perfectly isotropic: if we look at different directions in the sky we measure small fluctuation
in the temperature of the CMB, of order ∆T/T = 10−5.
The standard model explains very well many characteristics of the observed universe (like its
expansion and cooling or the existence of the CMB), but the examples above indicate that
we have to go beyond the cosmological principle in order to study small scale phenomena. To
do this we introduce the cosmological perturbation theory.

3.1 The gauge problem

Let’s consider a generic tensor T : it could be for example the metric tensor gµν or a scalar
field ϕ. We can define the perturbation of this tensor as ∆T ≡ T − T0, where T is the value
assumed by the tensor in the physical (pertubed) spacetime (denoted as M) and T0 is the
value assumed by the tensor in the background (unperturbed) spacetime (denoted as M0).
But we know that two tensors can be compared only if they are calculated in the same point
of the spacetime: since T and T0 live on different spacetimes, in order to define perturbations
we must also define a one-to-one correspondence between the points of M and the points
of M0. To choose a particular correspondence means to choose a gauge and to change the
correspondence means to make a gauge transformation.
So we can define, for example, two different gauges ψ and φ in such a way that, if P is a point
on M0, we have ψ(P ) = O ∈ M and φ(P ) = O′ ∈ M (see Figure 3.1). It is now clear that
we have two different tensors on M corresponding to T0 calculated in P ∈ M0: the tensor
calculated in O (named T ) if we choose the gauge ψ and the tensor calculated in O′ (named
T̃ ) if we choose the gauge φ. This means that we obtain two different perturbation depending
on the gauge: ∆T = T − T0 for ψ and ∆̃T = T̃ − T0 for φ.

3.2 Gauge transformations: active and passive approach

When dealing with gauge transformations, two approaches are possible: the active one or the
passive one.

15



Figure 3.1: The gauge problem

Figure 3.2: Active approach

A change in the choice of the gauge has the direct consequence that the point O ∈M will have
a different corresponding point on M0: before the transformation ψ(P ) = O so P = ψ−1(O),
while after the gauge transformation from ψ to φ we will have φ(Q) = O so Q = φ−1(O) (see
Figure 3.2). This means that we can write Q = φ−1(O) = φ−1(ψ(P )): we have just built a
one-to-one correspondence between points on M0, that can be defined as

Φ : P (∈M0)→ Q(∈M0) = φ−1(ψ(P )) (3.1)

If a coordinate system xµ has been defined on M0, then the coordinates of Q are given as a
function of the coordinates of P by the law xµ(Q) = Φµ(x(P )): in this way a gauge transfor-
mation can be regarded as an active coordinate transformation.

This active approach allows us to define a practical method to build a gauge transforma-
tion Φ:

1. We fix a coordinate system xµ on M0

2. We define a vector field ξµ(x) on M0

3. Introducing a parameter λ we define a congruence of curves xµ(λ) such that d
dλx

µ(λ) =
ξµ

4. Considering for example a point P such that xµ(P ) = xµ(λ = 0), the coordinates xµ(Q)
of a point Q that is at an infinitesimal distance λ from the point P along the curve
xµ(λ) are

xµ(Q) = xµ(P ) + λξµ(x(P )) (3.2)
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We can see immediately that equation (3.2) is a infinitesimal coordinate transformation, de-
fined by the vector field ξµ(x).

We can look at equation (3.2) in a different way. The passive view of the gauge transfor-
mation considers it an ordinary coordinate transformation:

xµ(P ) = xµ(Q)− λξµ(x(P )) = xµ(Q)− λξµ(x(Q)) + o(ξ2) (3.3)

Now we can introduce a new coordinate system yµ, such that at first order we get

yµ(Q) ≡ xµ(P ) = xµ(Q)− λξµ(x(Q)) (3.4)

As we anticipated, equation (3.4) represents an ordinary infinitesimal coordinate transforma-
tion.

3.3 Gauge transformations: tensors

We are now able to find how a generic tensor transforms under a gauge transformation.
Let’s take for example a vector field Z with components Zµ in the coordinates xµ: under a
gauge transformation Zµ goes in

Z̃µ(x(P )) = Z ′µ(y(Q)) (3.5)

where Z ′µ(y(Q)) = ∂yµ

∂xν

∣∣∣
x(Q)

Zν(x(Q)) is the usual transformation of a vector field Z under a

change of coordinates x→ y(x).
Taking an infinitesimal coordinate transformation yµ = xµ − λξµ we get

∂yµ

∂xν
= δµν − λ

∂ξµ

∂xν
(3.6)

so equation (3.5) becomes

Z̃µ(x(P )) = Zµ(x(Q))− λ∂ξ
µ

∂xν
Zν(x(Q)) (3.7)

Using now equation (3.2) we get

Z̃µ(x(P )) = Zµ(x(P )) + λ
∂Zµ

∂xν
ξν − λ∂ξ

µ

∂xν
Zν(x(P )) + o(ξ2) =

= Zµ(x(P )) + LξZµ
(3.8)

taking λ = 1 and ξ infinitesimal and defining the Lie derivative of the tensor Z along the
vector field ξ as LξZ. We notice that (3.8) is the equation of Lie dragging.

Repeating this procedure for the other kinds of tensor it can be shown that for a generic
tensor T the transformation law under a gauge transformation is

T̃ = T + LξT (3.9)

This means that now we can also find how perturbations transform. We know that ∆T =
T − T0 in the first gauge and ∆̃T = T̃ − T0 in the second gauge, so T = T0 + ∆T and
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T̃ = T0 + ∆̃T .
Using now equation (3.9) we get

T̃ = T + LξT = T0 + ∆T + LξT (3.10)

and so ∆̃T = ∆T + LξT . But the Lie derivative contains terms of first order in ξ, so at first
order in ξ we can write:

∆̃T = ∆T + LξT0 (3.11)

3.4 Cosmological perturbations

As we said in the introduction of this Chapter, we need to consider a physical spacetime
with small perturbations with respect to the perfectly homogeneous and isotropic universe
described by the cosmological principle. Using the notation of the previous Sections, M0 will
be a flat FRW spacetime

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2] = a2(η)[−dη2 + dx2 + dy2 + dz2] (3.12)

while M will be the physical universe in which there are small inhomogeneities. The metric
tensor gµν of this perturbed spacetime can be written, using conformal time, as:

g00(η, ~x) = −a2(η)

[
1 + 2

∞∑
r=1

1

r!
Φ(r)(η, ~x)

]
(3.13)

g0i(η, ~x) = gi0(η, ~x) = a2(η)
∞∑
r=1

1

r!
ω

(r)
i (η, ~x) (3.14)

gij(η, ~x) = a2(η)

{[
1− 2

∞∑
r=1

1

r!
Ψ(r)(η, ~x)

]
δij +

∞∑
r=1

1

r!
χ

(r)
ij (η, ~x)

}
(3.15)

where r is the order of the perturbation.
We note that in gij we have separated the diagonal part (proportional to δij) from the off-
diagonal part, taking the tensor χ(r)

ij (η, ~x) to be traceless (χ(r)i
i(η, ~x) = 0). We note also that

spatial indexes are raised and lowered using the Kronecker delta δij .

Using the fact that spatial indexes are now "flat indexes", the perturbations of the metric can
be decomposed in scalar, vector and tensor components:

• Φ(r) and Ψ(r) are scalar perturbations.

• ω
(r)
i can be decomposed, using Helmholtz’s theorem, in this way ([22]):

ω
(r)
i = ∂iω

(r)
‖ + ω

(r)⊥
i (3.16)

ω
(r)
‖ is a scalar perturbation and ω(r)⊥

i is a vector perturbation such that ∂iω(r)⊥
i = 0

(all vector perturbations are defined to be solenoidal).

• χ
(r)
ij can be decomposed in this way ([22]):

χ
(r)
ij = Dijχ

(r)
‖ + ∂iχ

(r)⊥
j + ∂jχ

(r)⊥
i + χ

(r)T
ij (3.17)
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χ
(r)
‖ is a scalar perturbation, χ(r)⊥

i is a vector perturbation (so ∂iχ(r)⊥
i = 0) and χ(r)T

ij

is a tensor perturbation such that ∂iχ(r)T
ij = 0 and χ(r)T i

i = 0 (all tensor perturbations
are defined to be solenoidal and traceless). We have also defined Dij ≡ ∂i∂j − 1

3δij∇
2,

in order to keep Dijχ
(r)
‖ traceless.

This decomposition turns out to be useful because, at first order (r = 1) both in general
relativity and in its extensions, scalar, vector and tensor perturbations evolve separately: in
the time evolution equations there is no coupling between perturbations of different kinds.

We need also to perturb the stress-energy tensor Tµν because, as we said in the previous
Sections, the energy density of the universe is not perfectly homogeneous in space. If we
consider a perfect fluid, the stress-energy tensor can be written as

Tµν = ρuµuν + phµν (3.18)

where uµ is the 4-velocity of the fluid element, hµν ≡ gµν+uµuν is a projector on hypersurfaces
orthogonal to uµ (hµνuν = 0), ρ is the energy density of the fluid and p is the isotropic pressure.
For a perturbed fluid the quantities in equation (3.18) can be written as

ρ(η, ~x) = ρ0(η) +
∞∑
r=1

1

r!
δρ(r)(η, ~x) (3.19)

p(η, ~x) = p0(η) +
∞∑
r=1

1

r!
δp(r)(η, ~x) (3.20)

uµ(η, ~x) =
1

a(η)

(
δµ0 +

∞∑
r=1

1

r!
vµ(r)(η, ~x)

)
(3.21)

Some comments are needed here.
First of all, we know that for every fluid there is an equation of state. Its most general form
is p = p(ρ, s) where s is the entropy density, so the pressure perturbation can always be
decomposed as follows (omitting the arguments of the functions involved):

δp(r) =
∂p

∂ρ

∣∣∣∣
s=const

δρ(r) +
∂p

∂s

∣∣∣∣
ρ=const

δs(r) = c2
sδρ

(r) + δp(r)
n.a. (3.22)

where we have defined the adiabatic speed of sound cs ≡
√

∂p
∂ρ

∣∣∣
s=const

and the non adiabatic

pressure perturbation δp(r)
n.a. = ∂p

∂s

∣∣∣
ρ=const

δs(r).

Considering now the expression for uµ, we note that the first term is the background 4-velocity
of a comoving fluid element (remember that in curved spacetime the constraint uµuµ = −1
makes the 4-velocity of an unmoving observer to be uµ = 1√

−g00
δµ0 ). Furthermore it can be

shown that the constraint uµuµ = −1 makes it possible, for every order r, to express v0
(r) as

a function of the metric perturbations only: for example it is easy to show that v0
(1) = −Φ(1).

This implies that we can take the only three independent components of the 4-velocity to be
the spatial ones vi(r): as we did for the metric perturbations we can now decompose these
spatial components as

vi(r) = ∂iv
‖
(r) + v⊥i(r) (3.23)

where v‖(r) is a scalar perturbation and v⊥i(r) is a vector perturbation such that ∂iv⊥i(r) = 0.
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3.5 Gauge fixing at first order

As we made clear in Section 3.2, a gauge transformation is completely defined by a vector field
ξ(x), so at first order (r = 1) it can be identified by the four components ξµ(1) = (ξ0

(1), ξ
i
(1)).

We can define ξ0
(1) ≡ α and decompose ξi(1) = ∂iβ + di: α and β are scalar quantities, while

di is a vector quantity (∂idi = 0).
We are now able to see how first order perturbations change under a gauge transformation
defined by α, β and di. Using the general law (3.11), indicating with a tilde the perturbations
in the new gauge and omitting the superscript (1), we can find for the metric:

Φ̃ = Φ + α′ +
a′

a
α (3.24)

ω̃i = ωi − ∂iα+ ∂iβ
′ + d′i ⇒ ω̃‖ = ω‖ − α+ β′ , ω̃⊥i = ω⊥i + d′i (3.25)

Ψ̃ = Ψ− 1

3
∇2β − a′

a
α (3.26)

χ̃ij = χij + 2Dijβ + ∂idj + ∂jdi ⇒ χ̃‖ = χ‖ + 2β , χ̃⊥i = χ⊥i + di , χ̃Tij = χTij (3.27)

where ′ ≡ d
dη and Dij ≡ ∂i∂j − 1

3δij∇
2.

For the quantities in the stress-energy tensor we get:

δ̃ρ = δρ+ ρ′0α (3.28)

ṽ0 = v0 − α′ − a′

a
α (3.29)

ṽi = vi − ∂iβ′ − di′ ⇒ ṽ‖ = v‖ − β′ and ṽ⊥ i = v⊥ i − di′ (3.30)

In order to fix a gauge we must fix the four components of the vector field ξ: as we said at the
beginning of this Section, ξ is completely determined by two scalars (α and β) and a vector
(di), so the gauge is fixed when we fix a value for any two scalar and one vector perturbations.
In fact for example if we fix χ̃‖ = 0, then using (3.27) this condition forces us to choose a
gauge transformation with β = −1

2χ
‖: in a similar way if we fix another scalar and a tensor

also α and di are constrained, completely defining the gauge transformation.
Here are some examples of gauge choices:

• Poisson gauge: ω‖ = 0, χ‖ = 0 and χi⊥ = 0. It is a particular case of the longitudinal
gauge (ω‖ = 0 and χ‖ = 0), also called conformal newtonian because in this gauge
the evolution equations in general relativity have direct correspondents in newtonian
gravity. It is called also orthogonal zero-shear gauge.

• Synchronous gauge: Φ = 0. If we add the conditions ω‖ = 0 and ωi⊥ = 0 we get the
synchronous and time-orthogonal gauge: in this gauge all the comoving observers have
the same proper time. It can be shown that the synchronous and time-orthogonal gauge
has a residual gauge freedom, so another constraint is needed to completely fix the gauge
(usually initial conditions are used).

• Comoving gauge: v‖ = 0 and vi⊥ = 0. Usually the third condition is taken to be ω‖ = 0,
because T 0

i ∝ v‖ + ω‖ = 0 and so the energy flux is null in this gauge.

• Spatially flat gauge: Ψ = 0, χ‖ = 0 and χi⊥ = 0. Hypersurfaces at η = const are left
unperturbed in this gauge.

• Uniform energy density gauge: δρ = 0.
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3.6 Gauge-invariant perturbations

There are two ways in which the gauge problem can be kept under control.
The first one consists in choosing a gauge and then making all calculations consistently in that
gauge: observable quantities should always be gauge invariant, so it doesn’t matter the gauge
chosen to calculate them. This first approach usually presents simpler calculations, but one
should always be careful with any residual gauge invariance that could generate unphysical
solutions.
The second approach is to use gauge-invariant perturbations. In fact it is possible to build,
starting from the perturbations of the metric and stress-energy tensors, some quantities that
remain unchanged under a gauge transformation, avoiding the gauge choice issue.
Looking at the transformation laws (3.24)-(3.30) we can define scalar, vector and tensor gauge-
invariant perturbations.

Scalar perturbations
We can build two purely geometric gauge-invariant quantities starting from scalar perturba-
tions ([23],[25]):

2ΦA = 2Φ + 2ω‖′ + 2
a′

a
ω‖ −

(
χ‖′′ +

a′

a
χ‖′
)

(3.31)

2ΦH = −2Ψ− 1

3
∇2χ‖ + 2

a′

a
ω‖ − a′

a
χ‖′ (3.32)

We note that in the Poisson gauge we get ΦA = Φ and ΦH = −Ψ.
If we use also perturbations of the stress-energy tensor we have three more gauge-invariant
quantities:

2vs = 2v‖ + χ‖′ (3.33)
that is the scalar shear amplitude associated to the velocity field of matter,

εm = δρ+ ρ′0(v‖ + ω‖) (3.34)

that is the energy density perturbation in the comoving gauge,

εg = δρ+ ρ′0(2ω‖ − χ‖′) (3.35)

that is the energy density perturbation in the zero-shear gauge.

Vector perturbations
We can build only one purely geometric gauge-invariant quantity starting from vector pertur-
bations:

Ψi = ω⊥i − χ⊥′i (3.36)
that corresponds to the geometric vector shear amplitude.
Using also stress-energy perturbations we get:

vis = vi⊥ + χi′⊥ (3.37)

that is the shear amplitude built starting from vi⊥,

vic = vi⊥ + ωi⊥ (3.38)

that is the vorticity tensor amplitude.

Tensor perturbations
From equation (3.27) we know that χ̃Tij = χTij , so tensor perturbations are automatically
gauge-invariant at linear order.
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Chapter 4

The Boltzmann equation for photons

The final goal of this thesis is to study a particular source of anisotropy for the CMB in the
framework of a theory of modified gravity. However anisotropies in the cosmic distribution
of photons are complicated to calculate. The photons’ propagation is affected by gravity
and by Compton scattering with electrons. The electrons are tightly coupled to protons and
they are both affected by gravity. The metric itself is influenced by photons, electrons and
protons, plus neutrinos and dark matter. This means that if we want to obtain the photons’
distribution, we need to solve also for the other components.
The tool that is going to help us in this quest is Boltzmann equation. As it is known,
Boltzmann equation describes the evolution of the distribution function f of a particular
species in the universe1:

d

dt
f(~x, ~p, t) = C[f(~x, ~p, t)] (4.1)

where in the right hand side we have the collisional operator that takes into account all
possible collision terms. Instead, it can be shown (see [19]) that the total derivative in the
left hand side of equation (4.1) (sometimes called Liouville operator and indicated as L[f ]) in
curved spacetime becomes

d

dt
f(xµ, pµ) = pα

∂f

∂xα
− Γαβγp

βpγ
∂f

∂pα
(4.2)

where Γαβγ represent the Christoffel symbols of the metric.

4.1 Metric perturbations and gauge choice

It is easy to show that in a FRW universe the perfect isotropy and homogeneity of space
constrain the distribution function f to be function of x0 = t and p0 = E (or |~p|) only, and
that the Liouville operator becomes

L[f(t, E)] = E
∂f

∂t
− ȧ(t)

a(t)
|~p|2 ∂f

∂E
(4.3)

But we should not forget what we said above: photons’ propagation is influenced by the
curvature of spacetime and the curvature of spacetime is a consequence of all kinds of energy

1The distribution function f(~x, ~p, t) of a particle species is defined in such a way that dN =
1

(2π)3
f(~x, ~p, t)d3xd3p is the number of the particles in the infinitesimal volume d3xd3p of the phase space,

where ~x indicates the particle’s position and ~p indicates the particle’s momentum
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sources, including photons. So we need to consider a metric perturbed by the presence of
radiation and matter, and equation (4.3) cannot be used.
Using equations (3.13)-(3.15), the most general perturbed metric can be written at first order
in this way:

ds2 =− (1 + 2Φ(t, ~x))dt2 + 2a(t)ωi(t, ~x)dxidt+

+ a2(t)[(1− 2Ψ(t, ~x))δij + χij(t, ~x)]dxidxj
(4.4)

Remembering now the decomposition of perturbations into scalar, vector and tensor parts,
we can rewrite equation (4.4) as

ds2 =− (1 + 2Φ)dt2 + 2a(t)(∂iω
‖ + ω⊥i )dxidt+

+ a2(t)
[
(1− 2Ψ)δij +Dijχ

‖ + ∂iχ
⊥
j + ∂jχ

⊥
i + χTij

]
dxidxj

(4.5)

where Φ, ω‖, Ψ and χ‖ are scalar perturbations, ω⊥i and χ⊥i are vector perturbations and χTij
is a tensor perturbation.

We can now choose a particular gauge in order to simplify our calculations, using the gauge
invariance of metric theories of gravity discussed in Chapter 3: we will use Poisson gauge, so
we take ω‖ = 0, χ‖ = 0 and χ⊥i = 0.
Furthermore, in the following we will consider only scalar perturbations. This choice is moti-
vated by the fact that the scalar perturbations in the metric are the most important between
those that couple to radiation perturbations: in fact vector perturbations usually have ampli-
tudes that decrease rapidly in time, while tensor perturbations describe gravitational waves,
which have a small influence on photons (see [20]).
Considering both these things, in what follows we will work with a metric in the form

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Ψ)δijdx
idxj (4.6)

4.2 Liouville operator for photons

As we have already made clear, the distribution function f will be function of the spacetime
point xµ and the particle’s momentum, that can be defined as Pµ = dxµ

dλ using an affine
parameter λ. Since we are considering photons, we should remember that

PµP νgµν = 0 (4.7)

because we are dealing with massless particles. Defining now p2 ≡ P iP jgij , equation (4.7)
together with equation (4.6) gives us at first order

P 0 =
p√

1 + 2Φ
' p(1− Φ) (4.8)

that allows us to eliminate P 0 from the equations in favour of p, since they are not independent
quantities.
Therefore, defining the unit vector p̂i such that P i = pp̂i, we can now express the total
derivative in the Liouville operator as

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂p

dp

dt
+
∂f

∂p̂i
dp̂i

dt
(4.9)
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Let’s now analyze the different terms in the right hand side of equation (4.9).
It is easy to show that the last term vanishes at first order. In fact at zeroth order f is simply
the Bose-Einstein distribution, that depends only on p and not on the direction p̂i: so ∂f

∂p̂i
is

a first order term. Also dp̂i

dt is a first order term, since the direction of the photons changes
only in the presence of Φ and Ψ. This means that ∂f

∂p̂i
dp̂i

dt is a second order term and can be
neglected.
Using similar arguments it can be shown (see [20]) that the second term in equation (4.9)
reads at first order ∂f

∂xi
p̂i

a , so we get

df

dt
=
∂f

∂t
+
p̂i

a

∂f

∂xi
+
∂f

∂p

dp

dt
(4.10)

In order to calculate dp
dt we use the geodesic equation

dPµ

dλ
= −ΓµαβP

αP β (4.11)

If we now explicit the Christoffel symbols for the perturbed metric and we use equation (4.8),
at first order we get (see [20])

1

p

dp

dt
= −H +

∂Ψ

∂t
− p̂i

a

∂Φ

∂xi
(4.12)

Equation (4.12) describes the change in the momentum as a photon moves through a perturbed
FRW universe. The first term accounts for the loss of momentum due to the Hubble expansion.
Observing that, with our sign conventions, an overdense region has Ψ < 0 and Φ < 0, the
second term tells us that a photon in a deepening gravitational well (∂Ψ

∂t < 0) loses energy:
it is understandable, as the deepening well makes it more difficult for the photon to emerge,
thereby increasing the magnitude of the redshift. Finally, the last term in equation (4.12)
describes how a photon traveling into a well (p̂i ∂Φ

∂xi
< 0) gets blueshifted because it is being

pulled towards the center.
We are now in position to rewrite equation (4.10):

df

dt
=
∂f

∂t
+
p̂i

a

∂f

∂xi
− p∂f

∂p

[
H − ∂Ψ

∂t
+
p̂i

a

∂Φ

∂xi

]
(4.13)

To go further we have to expand the photon distribution function f about the zero-order
form, that is Bose-Einstein distribution

f (0)(p, t) =
1

ep/T (t) − 1
(4.14)

where T (t) is the temperature, function of t only because of homogeneity and isotropy. We
do that by writing

f(t, ~x, p, p̂) =

{
exp

[
p

T (t)[1 + Θ(~x, p̂, t)]

]
− 1

}−1

(4.15)

where the function Θ(~x, p̂, t) = δT
T takes into account the inhomogeneities and the anisotropies

in the photon distribution function. We are assuming that this temperature perturbation does
not depend on the momentum magnitude p: the reason for this assumption comes from the
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fact that, at first order, all the interactions we are going to consider leave the magnitude of
the photons’ momentum unchanged.
Expanding now the right hand side of equation (4.15) at first order in Θ, we get

f(t, ~x, p, p̂) ' f (0)(p, t)− p∂f
(0)(p, t)

∂p
Θ(~x, p̂, t) (4.16)

where f (0)(p, t) is the zeroth order Bose-Einstein distribution defined in equation (4.14) and
we used T ∂f (0)

∂T = −p∂f
(0)

∂p .

If we now look only at zeroth order terms, the full Boltzmann equation becomes

∂f (0)(p, t)

∂t
−Hp∂f

(0)(p, t)

∂p
= 0 (4.17)

where we have set the collision term in the right hand side of equation (4.1) to zero. In fact
we will see that there is no zeroth order collision term: this is reasonable, since the collision
terms will create inhomogeneities and anisotropies that are first order perturbations.
If we now rewrite the time derivative in (4.17) as

∂f (0)(p, t)

∂t
=
∂f (0)

∂T

dT

dt
= − 1

T

dT

dt
p
∂f (0)

∂p
(4.18)

we get [
− 1

T

dT

dt
− 1

a

da

dt

]
∂f (0)

∂p
= 0 (4.19)

Since ∂f (0)

∂p 6= 0, we have
dT

T
= −da

a
⇒ T ∝ 1

a
(4.20)

We note that equation (4.20) describes the familiar result of how the photon’s wavelenght is
stretched as the universe expands.

To find a first order equation for Θ we substitute equation (4.16) into equation (4.13), ob-
taining

df

dt

∣∣∣∣
first order

=− p ∂
∂t

[
∂f (0)

∂p
Θ

]
− pp̂

i

a

∂Θ

∂xi
∂f (0)

∂p
+HpΘ

∂

∂p

[
∂f (0)

∂p
p

]
+

− p∂f
(0)

∂p

[
−∂Ψ

∂t
+
p̂i

a

∂Φ

∂xi

] (4.21)

Rewriting the time derivative as a temperature derivative and using again T ∂f (0)

∂T = −p∂f
(0)

∂p
we finally get

df

dt

∣∣∣∣
first order

= −p∂f
(0)

∂p

[
∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
− ∂Ψ

∂t
+
p̂i

a

∂Φ

∂xi

]
(4.22)

The first two terms in the right hand side of equation (4.22) account for free streaming, while
the last two terms account for the effects of gravity.
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4.3 Collisional operator for photons

In this Section we analyze the right hand side of the Boltzmann equation (4.1) in the case
of photons. Since Compton scattering is the most significant interaction that can alter the
photon distribution function, we consider only this process:

e−(~q) + γ(~p) ←→ e−(~q ′) + γ(~p ′)

The collisional term for this scattering is (see [20])

C[f(~p)] =
1

p

∫
d3q

(2π)32Ee(q)

∫
d3q′

(2π)32Ee(q)

∫
d3p′

(2π)32E(p)
|M|2(2π)4×

× δ3(~p+ ~q − ~p ′ − ~q ′)δ(E(p) + Ee(q)− E(p′)− Ee(q′))×
× [fe(~q

′)f(~p ′)− fe(~q)f(~p)]

(4.23)

where we have neglected Pauli suppression and Bose enhancement factors (at first order it
is a valid assumption). We have defined the momentum magnitude q = |~q| as before, the
energy of the electron Ee(q), the energy of the photon E(p), the amplitude for the processM
and the distribution function for the electrons fe(~q). The delta functions enforce energy and
momentum conservation.
In order to go further we have to make some assumptions. First of all we take the electrons
to be non relativistic, so we can consider

Ee(q) ' me +
q2

2me
(4.24)

while for photons E(p) = p. Moreover, in the epochs we are interested in, the kinetic energy
of the electrons is much smaller than the rest mass me, so in the denominators of equation
(4.23) we can substitute Ee with me.
Furthermore, non relativistic Compton scattering is nearly elastic, so at zeroth order p′ ' p
and q′2 ' q2 and we can expand p′ and q′ around p and q respectively.
We now need to calculate the amplitude for Compton scattering and we will take it to be
constant

|M|2 = 8πσTm
2
e (4.25)

with σT being the well-known Thomson cross-section. Equation (4.25) neglects two depen-
dencies:

• Angular dependence. The amplitude squared has an angular dependence proportional
to the factor 1 + cos2(p̂ · p̂′), but it can be ignored if we accept a 1% inaccuracy.

• Polarization dependence. The amplitude squared has a polarization dependence pro-
portional to the factor |ε̂ · ε̂′|2, where ε̂ and ε̂′ are the polarizations of the incoming
and outgoing photons. This means that the CMB will be polarized due to Compton
scattering: even if we are not concerned in polarization, the temperature anisotropies
are coupled with polarization fields so a small effect will be present, but we will ignore
it.

Remembering that electrons are tightly coupled to baryons through Coulomb scattering, we
can also consider the bulk velocity of electrons to be nearly equal to the baryonic velocity, so
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we can take 1
2me

~q ' ~vb.
Finally, defining the monopole part of the temperature perturbation

Θ0(t, ~x) ≡ 1

4π

∫
dΩΘ(t, ~x, p̂) (4.26)

we find

C[f(~p)] = −p∂f
(0)

∂p
neσT [Θ0 −Θ(p̂) + p̂ · ~vb] (4.27)

where ne =
∫
d3q fe(~q)

(2π)3 is the electron number density and we have written explicitly only the
functions’ arguments that depend on the direction of the photon.

4.4 Boltzmann equation for photons

In order to obtain Boltzmann equation for photons we have to equal the Liouville operator
and the collisional operator: from equations (4.22) and (4.27) we get

∂Θ

∂t
+
p̂i

a

∂Θ

∂xi
− ∂Ψ

∂t
+
p̂i

a

∂Φ

∂xi
= neσT [Θ0 −Θ + p̂ · ~vb] (4.28)

It is convenient to use conformal time dη = dt
a , so we get

Θ′ + p̂i
∂Θ

∂xi
−Ψ′ + p̂i

∂Φ

∂xi
= neσTa[Θ0 −Θ + p̂ · ~vb] (4.29)

where the ′ represents as usual the derivative with respect to conformal time.

Since equation (4.29) is a partial differential linear equation, it is useful to use Fourier trans-
forms because the different Fourier modes will evolve independently. Our convention for
Fourier transforms will be

Θ(~x) =

∫
d3k

(2π)3
ei
~k·~xΘ̃(~k) (4.30)

We define now the cosine of the angle between the wavevector ~k and the photon direction p̂
to be

µ ≡
~k · p̂
|~k|

(4.31)

We define also the optical depth2 to be

τ(η) ≡
∫ η0

η
dη′neσTa (4.32)

in such a way that
τ ′(η) = −neσTa (4.33)

Considering these definitions, equation (4.29) in Fourier space becomes

Θ̃′ + ikµΘ̃− Ψ̃′ + ikµΦ̃ = −τ ′
[
Θ̃0 − Θ̃ + µṽb

]
(4.34)

2It can be considered as a measure of how "difficult" is for a photon to propagate from η to η0: if τ is large,
then a photon will experience many Compton scattering before it can be detected by an observer at present
time η0.
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For completeness, if we don’t neglect the angular dependence in the amplitude squared of
Compton scattering, we get

Θ̃′ + ikµΘ̃− Ψ̃′ + ikµΦ̃ = −τ ′
[
Θ̃0 − Θ̃ + µṽb −

1

2
P2(µ)Θ̃2

]
(4.35)

where P2(µ) = 1
2(3µ2 − 1) is the second Legendre polynomial and

Θ2 ≡
∫ 1

−1

dµ

2
P2(µ)Θ (4.36)
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Chapter 5

Free streaming

The perturbations of the photon distribution function evolve in two completely different ways
before and after the epoch of recombination (t ' 3.8× 105y). Before recombination the pho-
tons are tightly coupled to electrons and protons: all together they can be described as a
single "baryon-photon" fluid. After recombination photons free-stream from the surface of
last scattering to us today: in this Chapter we are going to see how perturbations change
during this free-streaming, modifying the anisotropies in the CMB that we observe.

First of all, we define the multipole moments of the temperature perturbation Θ

Θl ≡
1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)Θ(µ) (5.1)

that generalize equations (4.26) and (4.36). If we take two photons separated by a comoving
distance k−1, we see them coming from an angular separation

θ ' k−1

η0 − η∗
(5.2)

because η0 − η∗ is the comoving distance between us and the surface of last scattering, if
we define η∗ to be the conformal time of recombination. If we decompose the temperature
field into multipole moments, then an angular scale θ will roughly correspond to 1/l. So,
remembering that η∗ � η0, inhomogeneities on scales k−1 will become anisotropies on angular
scales l ' kη0.
In this argument we have implicitly assumed that, between the surface of last scattering and
the observer, nothing happens to the photons: this is true for a matter-dominated universe,
because the gravitational potentials Φ and Ψ that the photons encounter during the journey
remain constant in time. But we must take into account that recombination occurs not too
much later than the matter-radiation equivalence, and the non-negligible radiation energy
density causes the potential to significantly change in time. Moreover, at late times, the
acceleration in the expansion of the universe leads to the decay of the gravitational potentials.
The first effect is known as early-time integrated Sachs-Wolfe effect and it is usually lumped
in with the primordial CMB, since the energy density fluctuations that cause it are in practice
undetectable. The second effect is known as late-time integrated Sachs-Wolfe effect and will
be studied in the framework of mimetic Horndeski gravity in the last Chapter of this thesis.
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5.1 Free streaming

In this Section we want to obtain an expression for the multipole moments Θl(η0) at present
time in terms of the perturbations of the temperature at the time of recombination η∗ and in
terms of the perturbations of the metric.
We start from the Boltzmann equation for photons (4.34), removing the tilde to indicate
Fourier transforms: rearranging both sides we get

Θ′ + (ikµ− τ ′)Θ = Ψ′ − ikµΦ− τ ′[Θ0 + µvb] (5.3)

Defining the right hand side to be the source function S̃ ≡ Ψ′ − ikµΦ − τ ′[Θ0 + µvb] and
manipulating the left hand side, we obtain

e−ikµη+τ d

dη
[Θeikµη−τ ] = S̃ (5.4)

Multiplying now by eikµη−τ and integrating over η from the initial time ηi to η0, we have

Θ(η0) = Θ(ηi)e
ikµ(ηi−η0)e−τ(ηi) +

∫ η0

ηi

dηS̃(η)eikµ(η−η0)−τ(η) (5.5)

having used the fact that τ(η0) = 0, which follows from the definition of the optical depth
(4.32).
If we take the initial time ηi early enough, the optical depth τ(ηi) will be extremely large
(because Compton scattering will be very frequent): so we can set the first term in the right
hand side of equation (5.5) to zero and set the lower limit in the integral to 0, because any
contribution to the integrand from η < ηi will be negligible, being suppressed by a factor
e−τ(η). Therefore we get, writing explicitly all the arguments,

Θ(k, µ, η0) =

∫ η0

0
dηS̃(k, µ, η)eikµ(η−η0)−τ(η) (5.6)

If S̃ did not depend on µ we could multiply both sides of equation (5.6) by the Legendre
polynomial Pl(µ) and then integrate over µ. Using the identity∫ 1

−1

dµ

2
Pl(µ)eikµ(η−η0) =

1

(−i)l
jl[k(η − η0)] (5.7)

where the jl are the spherical Bessel functions, we would get

(−i)lΘl(k, η0) =
1

(−i)l

∫ η0

0
dηS̃(k, η)e−τ(η)jl[k(η − η0)] (5.8)

so
Θl(k, η0) = (−1)l

∫ η0

0
dηS̃(k, η)e−τ(η)jl[k(η − η0)] (5.9)

The µ dependence in S̃ can be treated noting that in equation (5.6) the source function is
multiplied by the exponential eikµ(η−η0): thus everywhere we encounter a factor µ in the
explicit expression of S̃ we can replace it with

µ → 1

ik

d

dη
(5.10)
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In order to show that this method works, we take the −ikµΦ term in S̃:

− ik
∫ η0

0
dηµΦeikµ(η−η0)−τ(η) = −

∫ η0

0
dηΦe−τ(η) d

dη
eikµ(η−η0) (5.11)

and if we integrate by parts we get

−ik
∫ η0

0
dηµΦeikµ(η−η0)−τ(η) =−

[
Φe−τ(η)eikµ(η−η0)

]η0

0
+

+

∫ η0

0
dη eikµ(η−η0) d

dη

[
Φe−τ(η)

] (5.12)

The surface terms can be neglected: at η = 0 there is a eτ(0) damping, while at η = η0 there
is no angular dependence, so it is an alteration in the monopole that we cannot detect. So if
we now define a new source function

S(k, η) ≡ e−τ
[
Ψ′ − τ ′Θ0

]
+

d

dη

[
e−τ

(
Φ− ivbτ

′

k

)]
(5.13)

and we use the property of the spherical Bessel functions jl(x) = (−1)ljl(−x), we obtain

Θl(k, η0) =

∫ η0

0
dηS(k, η)jl[k(η0 − η)] (5.14)

At this point we can define the visibility function

g(η) ≡ −τ ′e−τ (5.15)

that can be thought as the probability density that a photon last scattered at time η. This
function is sharply peaked at η = η∗: before recombination τ is large, so g is small, while
after recombination −τ ′ (the scattering rate) is small, so again g is suppressed. Using the
visibility function, the source function in equation (5.13) becomes

S(k, η) =g(η)[Θ0(k, η) + Φ(k, η)]+

+
d

dη

(
ivb(k, η)g(η)

k

)
+

+ e−τ
[
Φ′(k, η) + Ψ′(k, η)

] (5.16)

In this way equation (5.14) becomes

Θl(k, η0) =

∫ η0

0
dηg(η)[Θ0(k, η) + Φ(k, η)]jl[k(η0 − η)]+

+

∫ η0

0
dη

d

dη

(
ivb(k, η)g(η)

k

)
jl[k(η0 − η)]+

+

∫ η0

0
dη e−τ

[
Φ′(k, η) + Ψ′(k, η)

]
jl[k(η0 − η)]

(5.17)

If we approximate the g(η) function with a delta function peaked at η∗, and then we use
integration by parts in the second term of the right hand side of equation (5.17), we have

Θl(k, η0) '[Θ0(k, η∗) + Φ(k, η∗)]jl[k(η0 − η∗)]+

− ivb(η∗)
k

d

dη
jl[k(η0 − η)]

∣∣∣∣
η=η∗

+

+

∫ η0

0
dη e−τ

[
Φ′(k, η) + Ψ′(k, η)

]
jl[k(η0 − η)]

(5.18)
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Finally, using the relation
d

dx
jl(x) = jl−1(x)− l − 1

x
jl(x) (5.19)

we get the well-known formula

Θl(k, η0) '[Θ0(k, η∗) + Φ(k, η∗)]jl[k(η0 − η∗)]+

+ ivb(η∗)
(
jl−1[k(η0 − η∗)]−

l − 1

k(η0 − η∗)
jl[k(η0 − η∗)]

)
+

+

∫ η0

0
dη e−τ

[
Φ′(k, η) + Ψ′(k, η)

]
jl[k(η0 − η)]

(5.20)

Let’s now analyze the three terms in the right hand side of equation (5.20).

• The first term accounts for the Sachs-Wolfe effect. It gives a mathematical justification
for the statement we made at the beginning of this Chapter, saying that inhomogeneities
on scales k−1 become anisotropies on angular scales l ' kη0. The presence of the
potential Φ can be explained with the fact that the photons we see today had to travel
out of the potentials they were in at the time of recombination: as they emerged from
these potential perturbations, their waveleghts were changed (redshifted or blueshifted)
and also was changed their energy. Thus the temperature we observe today is Θ0 + Φ
calculated at η∗.

• The second term accounts for Doppler effect.

• The third term accounts for the integrated Sachs-Wolfe effect (ISW effect). As we said
before, this term consider the fact that potentials could change in time as the photons
travel from the surface of last scattering to us. If the potentials remain constant in time
a photon will gain some energy when it enters a potential well, but it will lose the same
amount of energy when it leaves the well. Instead if the potentials change in time, the
depth of the well could change while the photon is still inside of it: this means that
the photon will lose a different amount of energy leaving the well, if compared to the
amount of energy it gained falling into the well.

5.2 The Cl coefficients

In the previous Section we have found a way to calculate the multipole moments Θl(k, η), but
they are rather abstract: we need to relate these quantities to something we use in practice
to characterize the anisotropy pattern of the CMB.
First of all we recall that in equation (4.15) we wrote the temperature field in the universe as

T (~x, p̂, η) = T (η)[1 + Θ(~x, p̂, η)] (5.21)

Considering that we observe this temperature only on the Earth (~x0) and now (η0), the
only dependence that we can describe is the one on the direction of the incoming photons
p̂: observers make maps of the sky, reporting the temperature measured in the different
directions. The resolution of the experiments constrains the resolution of the maps: the
smaller is the angular resolution of the telescope, the more accurate will be the map (see
Figure 5.1 and 5.2).

34



Figure 5.1: The full sky map of the CMB anisotropies, realized using data from the COBE
satellite (1992)

Figure 5.2: The full sky map of the CMB anisotropies, realized using data from the Planck
satellite (2013)
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We start by expanding the temperature perturbation in terms of spherical harmonics Ylm:

Θ(~x, p̂, η) =

∞∑
l=0

l∑
m=−l

alm(~x, η)Ylm(p̂) (5.22)

where we use the p̂ dependence, but the classical θ, φ dependence in the spherical harmonics
can be recovered considering that p̂ is a unit vector, so

p̂x = sin θ cosφ p̂y = sin θ sinφ p̂z = cos θ (5.23)

In order to explain the relation between the expansion (5.22) and the resolution of the sky
maps obtained using satellites, we can start with an example: let’s consider an experiment
that maps the full sky (4π radians2 ' 41, 000degrees2) with an angular resolution of 7°. Each
"pixel" has an area of (7°)2 so we need 840 pixels to cover the full sky: such an experiment
has 840 independent pieces of information.
If we want to describe the temperature perturbations in terms of the alm coefficients, there
is some lmax above which we have no information. In fact the total number of recoverable
coefficients will be 840 so, remembering that for a fixed l there are 2l + 1 different alm
coefficients, this lmax satisfies

840 =

lmax∑
l=0

(2l + 1) = (lmax + 1)2 (5.24)

from which we obtain lmax = 28. So an experiment with angular resolution of 7°allows us to
write a decomposition of the temperature field, like the one in (5.22), up to l = 28.

Now we want to relate the observable alm coefficients to the abstract multipole moments
Θl. Using the orthogonality of spherical harmonics (dΩ is the solid angle spanned by p̂)∫

dΩYlm(p̂)Y ∗l′m′(p̂) = δll′δmm′ (5.25)

we can multiply equation (5.22) by Y ∗l′m′(p̂) and then integrate over the full solid angle, getting

alm(~x, η) =

∫
dΩY ∗lm(p̂)Θ(~x, p̂, η) (5.26)

Since in the previous Section we have obtained solutions for the Fourier transforms Θl(k, η),
we rewrite equation (5.26) as

alm(~x, η) =

∫
d3k

(2π)3
ei
~k·~x
∫
dΩY ∗lm(p̂)Θ(~k, p̂, η) (5.27)

A point must be made clear now. As we said above, with an experiment we can determine the
alm coefficient up to a maximum value of l, but these coefficients characterize temperature
perturbations that are originated by quantum fluctuations during inflation, so they must
be regarded as random variables described by a probability distribution. Therefore their
particular values have no significance, but they can give us information about the distribution
from which they are drawn.
These distributions have a null mean value, but they have a non-zero variance: we can define
the Cl coefficients in such a way that

〈alma∗l′m′〉 = δll′δmm′Cl (5.28)
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We note that, for a fixed l, each alm has the same variance: for example for l = 100 all 201
a100m are drawn from the same distribution with variance C100. So if we measure, with an
experiment, the 201 values of the a100m, we obtain a very good sampling of the distribution
for l = 100, getting a good handle on the value of C100. On the other hand if we measure the
5 values of the a2m, we don’t get very much information about C2. This means that there is
a fundamental uncertainty in the knowledge of the Cl coefficients, called cosmic variance:(

∆Cl
Cl

)
cosmic variance

=

√
2

2l + 1
(5.29)

We are now going to write the Cl coefficients as functions of the Θl. Using equation (5.27)
we have

Cl = 〈alma∗lm〉 =

∫
d3k

(2π)3
ei
~k·~x
∫
dΩY ∗lm(p̂)×

×
∫

d3k′

(2π)3
e−i

~k′·~x
∫
dΩ′Ylm(p̂′)×

×
〈

Θ(~k, p̂)Θ∗(~k′, p̂′)
〉 (5.30)

The average
〈

Θ(~k, p̂)Θ∗(~k′, p̂′)
〉

is complicated to evaluate, since it depends both on the
initial perturbations (generated randomly during inflation) and on their evolution to become
anisotropies. In order to overcome this problem we can use the matter perturbations

δ(~x, η) ≡ δρm
ρm

(5.31)

and write the temperature perturbations as Θ = δ × Θ
δ : the ratio Θ/δ does not depend on

the initial amplitude ([20]) so it can be removed from the averaging over the distribution〈
Θ(~k, p̂)Θ∗(~k′, p̂′)

〉
=
〈
δ(~k)δ∗(~k′)

〉 Θ(~k, p̂)

δ(~k)

Θ∗(~k′, p̂′)

δ∗(~k′)
(5.32)

Remembering the definition of the matter power spectrum P (k)〈
δ(~k)δ∗(~k′)

〉
= (2π)3δ3(~k − ~k′)P (k) (5.33)

and using the fact that the ratio Θ/δ depends only on the magnitude of ~k and the dot product
k̂ · p̂ (see [20]), we can write

Cl =

∫
d3k

(2π)3
P (k)

∫
dΩY ∗lm(p̂)

Θ(k, k̂ · p̂)
δ(k)

∫
dΩ′Ylm(p̂′)

Θ∗(k, k̂ · p̂′)
δ∗(k)

(5.34)

Now we can invert equation (5.1), obtaining

Θ(k, k̂ · p̂) =
∞∑
l=0

(−i)l(2l + 1)Pl(k̂ · p̂)Θl(k) (5.35)

Substituting this into equation (5.34) we get

Cl =

∫
d3k

(2π)3
P (k)

∞∑
l′=0

∞∑
l′′=0

(−i)l′(i)l′′(2l′ + 1)(2l′′ + 1)
Θl′(k)Θ∗l′′(k)

|δ(k)|2
×

×
∫
dΩPl′(k̂ · p̂)Y ∗lm(p̂)

∫
dΩ′Pl′′(k̂ · p̂′)Ylm(p̂′)

(5.36)
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Using the relations (see [20])∫
dΩPl′(k̂ · p̂)Y ∗lm(p̂) =

4π

2l + 1
Y ∗lm(k̂)δll′ (5.37)

and ∫
dΩPl′(k̂ · p̂)Ylm(p̂) =

4π

2l + 1
Ylm(k̂)δll′ (5.38)

we have

Cl =

∫
d3k

(2π)3
P (k)(2l + 1)2

∣∣∣∣Θl(k)

δ(k)

∣∣∣∣2 (4π)2

(2l + 1)2
|Ylm(k̂)|2 =

= (4π)2

∫
d3k

(2π)3
P (k)

∣∣∣∣Θl(k)

δ(k)

∣∣∣∣2 |Ylm(k̂)|2 =

=
2

π

∫ ∞
0

dkk2P (k)

∣∣∣∣Θl(k)

δ(k)

∣∣∣∣2 ∫ dΩ|Ylm(k̂)|2

(5.39)

and remembering the normalization of the spherical harmonics∫
dΩ|Ylm(k̂)|2 = 1 (5.40)

we finally obtain

Cl =
2

π

∫ ∞
0

dkk2P (k)

∣∣∣∣Θl(k)

δ(k)

∣∣∣∣2 (5.41)
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Chapter 6

Mimetic gravity

In this Chapter we are going to discuss the first appearance of the mimetic framework into
the field of modified gravity. As it is explained in [14], Chamseddine and Mukhanov started
from the action of general relativity: they made a simple conformal transformation on the
metric gµν , using an auxiliary metric lµν and a scalar field ϕ, and they found an extra degree
of freedom that can mimic cold dark matter. In a subsequent work ([15]) Chamseddine,
Mukhanov and Vikman proposed a small generalization of the first model, adding a potential
for the scalar field ϕ to the action: they showed that by accurately choosing this potential,
one can mimic many cosmological models (Friedmann models, quintessence, inflation...). In
the following Chapters we will set 8πG = 1.

6.1 Mimetic dark matter

First of all, let’s consider a physical metric gµν that can be rewritten, through a conformal
transformation, in terms of an auxiliary metric lµν and a scalar field ϕ

gµν = −(lαβ∂αϕ∂βϕ)lµν (6.1)

Remembering the Einstein-Hilbert action of general relativity

S =

∫
d4x
√
−g
[

1

2
R+ Lm

]
(6.2)

we know that if we perform the variation of this action with respect to the physical metric
gµν , we obtain the usual Einstein equations with Tµν ≡ − 2√

−g
δ(
√
−gLm)
δgµν and Lm being the

lagrangian density of the matter fields:

δS =

∫
d4x

δS

δgαβ
δgαβ =

1

2

∫
d4x
√
−g(Gαβ − Tαβ)δgαβ (6.3)

so
δS = 0 ∀δgαβ ⇐⇒ Gαβ = Tαβ (6.4)

that is equivalent to equation (2.3) if we set 8πG = 1 and consider the cosmological constant
as a particular source of energy already encapsulated in the stress-energy tensor.
But if we now consider equation (6.1), we can express the variation of the physical metric
δgαβ in terms of the variations of the auxiliary metric δlαβ and the scalar field δϕ:

δgαβ = −(lκλ∂κϕ∂λϕ)δlαβ − lαβδ(lκλ∂κϕ∂λϕ) =

= −(lκλ∂κϕ∂λϕ)δlαβ − lαβ(−lκµlλνδlµν∂κϕ∂λϕ+ 2lκλ∂κδϕ∂λϕ) =

= −(lκλ∂κϕ∂λϕ)δlµν(δµαδ
ν
β + gαβg

κµgλν∂κϕ∂λϕ)− 2gαβg
κλ∂κδϕ∂λϕ

(6.5)
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where we used the relations

δlµν = −lµαlνβδlαβ lαβ = − 1

lκλ∂κϕ∂λϕ
gαβ lαβ = −(lκλ∂κϕ∂λϕ)gαβ (6.6)

This means that the variation of the action can be written as

δS = −1

2

∫
d4x
√
−g(Gαβ − Tαβ)×

× [(lκλ∂κϕ∂λϕ)δlµν(δµαδ
ν
β + gαβg

κµgλν∂κϕ∂λϕ) + 2gαβg
κλ∂κδϕ∂λϕ]

(6.7)

If we take the variation with respect to the auxiliary metric lµν we obtain

Gµν = Tµν − (G− T )gµαgνβ∂αϕ∂βϕ (6.8)

where G ≡ gµνGµν and T ≡ gµνTµν , while if we take the variation with respect to the scalar
field ϕ we get

1√
−g

∂α(
√
−g(G− T )gαβ∂βϕ) = 0 (6.9)

Furthermore, since

gµν = − 1

lαβ∂αϕ∂βϕ
lµν (6.10)

the scalar field satisfies the constraint equation

gµν∂µϕ∂νϕ = −1 (6.11)

Thus the gravitational field, in addition to two transverse degrees of freedom describing gravi-
tons, acquires an extra longitudinal degree of freedom shared by the scalar field ϕ and a
conformal factor of the physical metric. To understand what this extra degree of freedom
describes we can rewrite equation (6.8) as

Gµν = Tµν + T̃µν (6.12)

where
T̃µν ≡ −(G− T )gµαgνβ∂αϕ∂βϕ (6.13)

Comparing this expression with the stress-energy tensor of a perfect fluid (equation (3.18))

Tµν = (ρ+ p)uµuν + pgµν (6.14)

if we set p = 0 and we make the identifications

ρ ≡ −(G− T ) uµ ≡ gµα∂αϕ (6.15)

the stress-energy tensor in equation (6.14) becomes equivalent to T̃µν in equation (6.13).
Noticing that the constraint equation (6.11) is equivalent to the normalization condition on
the four-velocity gµνuµuν = −1, we conclude that the extra degree of freedom imitates pres-
sureless dust with energy density −(G − T ) (mimetic dark matter), with the scalar field ϕ
playing the role of the velocity potential.

In order to find how the Einstein equations are modified by the presence of the term T̃µν , we
have to solve equation (6.9) finding G− T . Since we are interested in cosmological solutions,
we take a flat FRW metric

ds2 = −dt2 + a2(t)δijdx
idxj (6.16)
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Moreover we could take the hypersurfaces of constant time to be the same as the hypersurfaces
of constant ϕ (see [14]), so

ϕ(xµ) = t (6.17)

in such a way that equation (6.11) is satisfied. Now equation (6.9) becomes

d

dt
[a3(G− T )] = 0 (6.18)

and so we get

− (G− T ) =
C(xi)

a3
(6.19)

where C(xi) is a constant of integration depending only on spatial coordinates. Remembering
that −(G − T ) represented the energy density of mimetic dark matter, we have recovered
the a−3 dependence of the energy density of pressureless dust in an expanding universe: we
have found a mimetic dark matter that behaves exactly as dark matter, whose amount is
determined by the constant of integration C(xi).

6.2 Lagrange multiplier

There is an alternative path that can be used to obtain the equations of motion (6.8) and
(6.9) without performing a conformal transformation on the physical metric.
As it is explained in [15] and [26], we can take Einstein-Hilbert action of general relativity
(equation (6.2)) and then add a non-dynamical scalar field ϕ with the constraint

gµν∂µϕ∂νϕ = −1 (6.20)

implemented by the Lagrange multiplier λ:

S =

∫
d4x
√
−g
[

1

2
R+ Lm + λ(gµν∂µϕ∂νϕ+ 1)

]
(6.21)

Taking the variation of this action with respect to the metric gµν and using the constraint
(6.20) we get

Gµν = Tµν − 2λ∂µϕ∂νϕ (6.22)

while taking the variation with respect to the Lagrange multiplier λ we obtain the constraint
equation (6.20).
Taking the trace of equation (6.22) we have

G = T + 2λ =⇒ λ =
1

2
(G− T ) (6.23)

and so equation (6.22) becomes

Gµν = Tµν − (G− T )∂µϕ∂νϕ (6.24)

that is equivalent to equation (6.8). Finally if we take the variation with respect to the scalar
field ϕ we find

δS = 0 ∀δϕ ⇐⇒ ∂α(2
√
−gλgαβ∂βϕ) = 0 (6.25)

and if we multiply for 1√
−g and we use equation (6.23) we obtain

1√
−g

∂α(
√
−g(G− T )gαβ∂βϕ) = 0 (6.26)

that is equivalent to equation (6.9).
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6.3 Cosmology with mimetic matter

One year after the first article ([14]), Chamseddine, Mukhanov and Vikman ([15]) proposed
a small modification of the original model, adding a potential for the scalar field ϕ in the
action:

S =

∫
d4x
√
−g
[

1

2
R+ Lm + λ(gµν∂µϕ∂νϕ+ 1)− V (ϕ)

]
(6.27)

Taking the variation of this action with respect to the Lagrange multiplier we obtain the
constraint

gµν∂µϕ∂νϕ = −1 (6.28)

while taking the variation of this action with respect to the metric gµν , and using the con-
straint, we get

Gµν = Tµν − 2λ∂µϕ∂νϕ+ gµνV (ϕ) (6.29)

Taking the trace of equation (6.29) we have

G = T + 2λ+ 4V =⇒ λ =
1

2
(G− T − 4V ) (6.30)

and so equation (6.29) becomes

Gµν = Tµν − (G− T − 4V (ϕ))∂µϕ∂νϕ+ gµνV (ϕ) (6.31)

Finally if we take the variation with respect to the scalar field, using equation (6.30) we obtain

1√
−g

∂α(
√
−g(G− T − 4V )gαβ∂βϕ) = −∂V

∂ϕ
(6.32)

We note that equation (6.31) can be rewritten as

Gµν = Tµν + T̃µν (6.33)

with T̃µν being the stress-energy tensor of a fluid of energy density ρ = −(G − T − 3V ),
pressure p = V and velocity potential ϕ.

In order to find cosmological solutions we take a flat FRW metric

ds2 = −dt2 + a2(t)δijdx
idxj (6.34)

and we take
ϕ(xµ) = −t (6.35)

in a similar way to what we did above. In this way equation (6.32) becomes

1

a3

d

dt
[a3(−ρ− V )] = −V̇ (6.36)

that can be integrated to give

ρ = −V +
1

a3

∫
dt a3V̇ (6.37)

Integrating by parts and changing the variable of integration we get

ρ = − 3

a3

∫
da a2V (6.38)
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Taking now the 00 component of equation (6.31) and assuming the absence of any kind of
matter (Tµν = 0), we have (

ȧ

a

)2

=
1

3
ρ = − 1

a3

∫
da a2V (6.39)

and differentiating it with respect to time we obtain

2Ḣ + 3H2 = −V (t) (6.40)

Defining a new variable
y ≡ a3/2 (6.41)

equation (6.40) becomes

ÿ +
3

4
V (t)y = 0 (6.42)

Choosing in the appropriate way the potential V (t) we can get nearly every possible solution
y(t), and so nearly every possible expansion history a(t) for the universe.

6.3.1 Cosmological solutions

First, we take the potential
V (ϕ) = − α

ϕ2
= −α

t2
(6.43)

with α ≥ −1/3 being a constant. The general solution of the equation

ÿ − 3α

4t2
y = 0 (6.44)

is
y(t) = C1t

1
2

(1+
√

1+3α) + C2t
1
2

(1−
√

1+3α) (6.45)

where C1 and C2 are constants of integration. Since in a flat universe the scale factor a(t) is
defined up to an overall normalization constant, assuming C1 6= 0 we have the general solution
for the scale factor

a(t) = t
1
3

(1+
√

1+3α)
(

1 +At−
√

1+3α
)2/3

(6.46)

with A = C2/C1 being a constant of integration.
Remembering now equation (6.39), we can find the energy density

ρ = 3

(
ȧ

a

)2

=
1

3t2

(
1 +
√

1 + 3α
1−At−

√
1+3α

1 +At−
√

1+3α

)2

(6.47)

and considering that
p = V = −α

t2
(6.48)

we obtain an equation of state for the mimetic matter

w =
p

ρ
= −3α

(
1 +
√

1 + 3α
1−At−

√
1+3α

1 +At−
√

1+3α

)−2

(6.49)

This equation of state is clearly dependent on time, but for small and large t it approaches a
constant:
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• If α = −1/3 we get p = ρ (ultra-hard matter) and a(t) ∝ t1/3.

• If α = −1/4 we get p = 1
3ρ (ultra-relativistic matter) if t→∞ and p = 3ρ if t→ 0.

• If α ' 0 we get p ' 0 (pressureless dust).

• If α� 1 we get p = −ρ (cosmological constant).

If we take a more general power law potential

V (ϕ) = −αϕn = −αtn (6.50)

the solution of equation (6.42) is given in terms of the modified Bessel functions of the first
kind

y(t) ∝ t1/2I 1
n+2

(√
−3α

n+ 2
t
n+2

2

)
(6.51)

If n < −2, for large t we get y(t) ∝ t and therefore a(t) ∝ t2/3, so the behavior of a dust
dominated universe. If n > −2, for large t we get

y(t) ∝ t−n/4 exp

(
±i
√
−3α

n+ 2
t
n+2

2

)
(6.52)

In this case the sign of α plays a crucial role: if α is negative, equation (6.52) describes
an oscillating universe with singularities, while if α is positive, it describes a universe that
undergoes an accelerated expansion.
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Chapter 7

Mimetic Horndeski gravity

In this Chapter we are going to extend the mimetic model introduced above. As we have
explained, mimetic dark matter first appeared performing a conformal transformation on the
physical metric and then taking the variation of the Einstein-Hilbert action of general rela-
tivity.
The generalization that we propose follows two directions. First, instead of conformal trans-
formations of the physical metric, we consider more general disformal transformations of the
type

gµν = A(ϕ,w)lµν +B(ϕ,w)∂µϕ∂νϕ (7.1)

where
w ≡ lµν∂µϕ∂νϕ (7.2)

and A(ϕ,w) and B(ϕ,w) are generic functions of their two arguments.
Second, instead of general relativity we consider a very general scalar-tensor theory of gravity,
so the Einstein-Hilbert action is substituted by

S =

∫
d4x
√
−gL[gµν , ∂λ1gµν , ..., ∂λ1 ...∂λpgµν , ϕ, ∂λ1ϕ, ..., ∂λ1 ...∂λqϕ] +

∫
d4x
√
−gLm (7.3)

with p, q ≥ 2.

7.1 Horndeski gravity

The idea of using a scalar-tensor theory to describe gravity is one of the most simple gen-
eralizations of general relativity. As we said above, general relativity is a metric theory:
gravitation is completely described using just the metric gµν , and so Einstein’s model can be
considered a tensor theory of gravity.
Remembering the cosmological problems we have spoken of at the beginning, physicists have
always tried to find alternative theories that could explain the same phenomena without intro-
ducing dark components in the universe: one class of these alternative theories is represented
by scalar-tensor models. This models are founded on the idea that gravity cannot be described
only by the metric tensor gµν , but we also need a scalar field ϕ that is non-minimally coupled
to the metric.
Therefore, in general, we can assume that gravity is described by the action

S =

∫
d4x
√
−gL[gµν , ∂λ1gµν , ..., ∂λ1 ...∂λpgµν , ϕ, ∂λ1ϕ, ..., ∂λ1 ...∂λqϕ] +

∫
d4x
√
−gLm (7.4)

45



with p, q ≥ 2 and supposing that the matter lagrangian is function only of the metric and the
matter fields: Lm = Lm[gµν , φm].

In order to obtain the equations of motion, we calculate the variation of the action with
respect to ϕ, gµν and φm:

δS =
1

2

∫
d4x
√
−g(Eµν − Tµν)δgµν +

∫
d4xΩϕδϕ+

∫
d4xΩmδφm (7.5)

where we defined

Ωϕ ≡
δ(
√
−gL)

δϕ
=
∂(
√
−gL)

∂ϕ
+

q∑
h=1

(−1)h
d

dxλ1
...

d

dxλh
∂(
√
−gL)

∂(∂λ1 ...∂λhϕ)
(7.6)

Eµν ≡ 2√
−g

δ(
√
−gL)

δgµν
=

2√
−g

(
∂(
√
−gL)

∂gµν
+

p∑
h=1

(−1)h
d

dxλ1
...

d

dxλh
∂(
√
−gL)

∂(∂λ1 ...∂λhgµν)

)
(7.7)

Tµν ≡ − 2√
−g

δ(
√
−gLm)

δgµν
(7.8)

Ωm ≡
δ(
√
−gLm)

δφm
(7.9)

Now it is clear that the equations of motion are

Eµν = Tµν (7.10)

Ωϕ = 0 (7.11)

Ωm = 0 (7.12)

General relativity can be considered as a particular scalar-tensor theory: in fact, if we take
L = 1

2R we obtain Eµν = Gµν and equation (7.10) becomes the usual Einstein equation
Gµν = Tµν .

In 1974 Horndeski ([27]) found the lagrangian for the most general 4-D local covariant scalar-
tensor theory that can be derived from an action and that has second-order equations of
motion for both the metric and the scalar field: this last property in particular guarantees
that Horndeski theory is free from higher-derivative ghosts. Horndeski action can be written
as

SH =

∫
d4x
√
−gLH =

∫
d4x
√
−g

3∑
n=0

Ln (7.13)

where
L0 = K(X,ϕ) (7.14)

L1 = −G3(X,ϕ)�ϕ (7.15)

L2 = G4,X(X,ϕ)
[
(�ϕ)2 − (∇µ∇νϕ)2

]
+RG4(X,ϕ) (7.16)

L3 = −1

6
G5,X(X,ϕ)

[
(�ϕ)3 − 3�ϕ(∇µ∇νϕ)2 + 2(∇µ∇νϕ)3

]
+Gµν∇µ∇νϕG5(X,ϕ) (7.17)
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and

X ≡ −1

2
gµν∇µϕ∇νϕ

(∇µ∇νϕ)2 ≡ ∇µ∇νϕ∇µ∇νϕ
(∇µ∇νϕ)3 ≡ ∇µ∇νϕ∇µ∇ρϕ∇ν∇ρϕ

(7.18)

while K(X,ϕ), G3(X,ϕ), G4(X,ϕ) and G5(X,ϕ) are free functions of their two arguments
and define a particular theory in the Horndeski class. The subscript ,X denotes derivative
with respect to X.

We note that general relativity is a particular theory inside the Horndeski class: taking

K = G3 = G5 = 0 G4 =
1

2
(7.19)

we get

S =
1

2

∫
d4x
√
−gR (7.20)

that is exactly Einstein-Hilbert action if matter is absent (Lm = 0).

In 2015 Gleyzes, Langlois, Piazza and Vernizzi ([28] [29]) introduced an extension of Horndeski
theory, adding the terms

F4(X,ϕ)εµνρσε
αβγσ∇µϕ∇αϕ∇ν∇βϕ∇ρ∇γϕ (7.21)

and
F5(X,ϕ)εµνρσεαβγδ∇µϕ∇αϕ∇ν∇βϕ∇ρ∇γϕ∇σ∇δϕ (7.22)

where εµνρσ is the totally antisymmetric Levi-Civita symbol.
This model (called G3 theory) possesses third-order equations of motion for the metric, but
the true propagating degrees of freedom obey well-behaved second-order equations and are
thus free from higher-derivative ghosts ([28]). However, in the following Chapters we will
consider only Horndeski theory and not this healthy extension.

7.2 Disformal transformations

As we anticipated at the beginning of this Chapter we will go beyond the simple conformal
transformations, considering the more general disformal transformations of the metric. A
disformal transformation can be written as

gµν = A(ϕ,w)lµν +B(ϕ,w)∂µϕ∂νϕ (7.23)

where w is defined as
w ≡ lµν∂µϕ∂νϕ (7.24)

A(ϕ,w) and B(ϕ,w) are generic functions of their two arguments, gµν is the physical metric,
lµν is the auxiliary new metric and ϕ is the scalar field present also in the action of the
scalar-tensor theory.
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7.2.1 Non-invertibility of a disformal transformation

Now we want to find out when a generic disformal transformation (7.23) is not invertible.
The issue of the non-invertibility of a conformal transformation was first discussed in [30], but
here we will consider a more general disformal transformation.
The inverse of the physical metric gµν can be found to be ([16])

gµν =
1

A(ϕ,w)
lµν +

B(ϕ,w)

B(ϕ,w)gρσ∂ρϕ∂σϕ− 1
gµαgνβ∂αϕ∂βϕ (7.25)

with the condition that B(ϕ,w)gρσ∂ρϕ∂σϕ− 1 6= 0.
Defining now

χ ≡ gµν∂µϕ∂νϕ (7.26)

if we multiply equation (7.25) for ∂µϕ∂νϕ we get

χ =
w

A(ϕ,w)
+

B(ϕ,w)χ2

B(ϕ,w)χ− 1
(7.27)

and isolating w we obtain

w =
A(ϕ,w)χ

1−B(ϕ,w)χ
=

A(ϕ,w)gµν∂µϕ∂νϕ

1−B(ϕ,w)gµν∂µϕ∂νϕ
(7.28)

Defining

G(ϕ,w) ≡ w(1−B(ϕ,w)gµν∂µϕ∂νϕ)

A(ϕ,w)
(7.29)

equation (7.28) can be written as

G(ϕ,w) = gµν∂µϕ∂νϕ (7.30)

For a fixed given ϕ, the inverse function theorem shows that, if dG(ϕ,w)
dw

∣∣∣
w=w∗

6= 0, then the

inverse function G−1 exists in the neighborhood of w∗. In that case one can write w as a
function of gµν only as w = G−1(gµν∂µϕ∂νϕ) and then use equation (7.23) to write lµν as a
function of only gµν , obtaining the inverse transformation lαβ(gµν) we were looking for.
On the other hand, the non-existence of G−1 implies that

dG(ϕ,w)

dw

∣∣∣∣
w=w∗

= 0 (7.31)

that can be solved as
G(ϕ,w) =

1

b(ϕ)
(7.32)

If we are in the case of equation (7.32), then the disformal transformation cannot be inverted
and, using equation (7.30), we have

b(ϕ) =
1

gµν∂µϕ∂νϕ
(7.33)

that can be used with equation (7.28) to find

B(ϕ,w) = −A(ϕ,w)

w
+ b(ϕ) (7.34)

In summary, we have found that a disformal transformation of the type given in equation
(7.23) is non-invertible if the two free functions A(ϕ,w) and B(ϕ,w) satisfy the relation given
by equation (7.34), with b(ϕ) being a free "potential" function.
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7.2.2 Disformal transformation method

If we perform a disformal transformation of the type (7.23), the variation of the metric becomes

δgµν = Aδlµν + lµνδA+ δB∂µϕ∂νϕ+B∂µ(δϕ)∂νϕ+B∂µϕ∂ν(δϕ) (7.35)

Taking into account that

δA(ϕ,w ≡ lαβ∂αϕ∂βϕ) =
∂A

∂ϕ
δϕ+

∂A

∂w
δw =

=
∂A

∂ϕ
δϕ+

∂A

∂w
[δlαβ∂αϕ∂βϕ+ 2lαβ∂α(δϕ)∂βϕ]

(7.36)

and that, using the fact that lµαlαν = δνµ,

δlαβ = −lραlσβδlρσ (7.37)

the variation written in equation (7.35) becomes

δgµν =Aδlµν −
(
lµν

∂A

∂w
+ ∂µϕ∂νϕ

∂B

∂w

)
[lραlσβδlρσ∂αϕ∂βϕ− 2lαβ∂α(δϕ)∂βϕ]+

+

(
lµν

∂A

∂ϕ
+ ∂µϕ∂νϕ

∂B

∂ϕ

)
δϕ+B[∂µϕ∂ν(δϕ) + ∂µ(δϕ)∂νϕ]

(7.38)

Inserting equation (7.38) into equation (7.5), we can take the variation of the action of a
generic scalar-tensor theory with respect to the auxiliary metric lµν , obtaining the equation
of motion

A(Eµν − Tµν) =

(
α1
∂A

∂w
+ α2

∂B

∂w

)
(lµρ∂ρϕ)(lνσ∂σϕ) (7.39)

while taking the variation with respect to the scalar field ϕ we have

1√
−g

∂ρ

{√
−g∂σϕ

[
B(Eρσ − T ρσ) +

(
α1
∂A

∂w
+ α2

∂B

∂w

)
lρσ
]}
− Ωϕ√
−g

=

=
1

2

(
α1
∂A

∂ϕ
+ α2

∂B

∂ϕ

)
(7.40)

where we have defined

α1 ≡ (Eρσ − T ρσ)lρσ α2 ≡ (Eρσ − T ρσ)∂ρϕ∂σϕ (7.41)

The equation of motion for matter is again

Ωm = 0 (7.42)

If we now contract equation (7.39) with lµν and with ∂µϕ∂νϕ, we find respectively

α1

(
A− w∂A

∂w

)
− α2w

∂B

∂w
= 0 α1w

2∂A

∂w
− α2

(
A− w2∂B

∂w

)
= 0 (7.43)

This two equations form a linear system of algebraic equations for α1 and α2, that can be
written as

M

(
α1

α2

)
= 0 where M =

(
A− w ∂A

∂w −w ∂B
∂w

w2 ∂A
∂w −A+ w2 ∂B

∂w

)
(7.44)
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and the determinant of the system is

det(M) =

(
A− w∂A

∂w

)(
−A+ w2∂B

∂w

)
+ w3∂A

∂w

∂B

∂w
=

= A

[
−A+ w2∂B

∂w
+ w

∂A

∂w

]
=

= w2A
∂

∂w

(
B +

A

w

) (7.45)

The solutions of the system are different depending on whether its determinant is zero or not.
If det(M) 6= 0, then the only solution is α1 = α2 = 0 and the equations of motion (7.39) and
(7.40) reduce to

Eµν = Tµν (7.46)

Ωϕ = 0 (7.47)

that, in addition to Ωm = 0, are the same equations of the original theory before doing any
disformal transformation. This shows that, if det(M) 6= 0, a generic scalar-tensor theory is
invariant under disformal transformations: this result should not be surprising, since we are
just doing a well-behaved invertible change of coordinates.

On the other hand, the determinant of the system is zero if

∂

∂w

(
B +

A

w

)
= 0 (7.48)

that is satisfied if the free function B(ϕ,w) is in the form

B(ϕ,w) = −A(ϕ,w)

w
+ b(ϕ) (7.49)

with b(ϕ) being an integration constant. Substituting this equation into the system (7.44) we
obtain

α2 = wα1 (7.50)

and the equations of motion (7.39) and (7.40) become

Eµν = Tµν +
α1

w
(lµρ∂ρϕ)(lνσ∂σϕ) (7.51)

1√
−g

∂ρ(
√
−gbα1l

ρσ∂σϕ)− Ωϕ√
−g

=
1

2
α1w

db

dϕ
(7.52)

Using now the identities lµρ∂ρϕ = bwgµρ∂ρϕ and α1 = E−T
bw , where E − T ≡ gµν(Eµν − Tµν),

we find ([16])
b(ϕ)gµν∂µϕ∂νϕ = 1 (7.53)

and the equations of motion (7.51) and (7.52) simplify to

Eµν = Tµν + (E − T )b∂µϕ∂νϕ (7.54)

1√
−g

∂ρ(
√
−g(E − T )bgρσ∂σϕ)− Ωϕ√

−g
=

1

2
(E − T )

1

b

db

dϕ
(7.55)
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Adding also the matter equation, the full system of equations of motion of this new mimetic
theory of gravity is

b(ϕ)gµν∂µϕ∂νϕ = 1 (7.56)

Eµν = Tµν + (E − T )b∂µϕ∂νϕ (7.57)

1√
−g

∂ρ(
√
−g(E − T )bgρσ∂σϕ)− Ωϕ√

−g
=

1

2
(E − T )

1

b

db

dϕ
(7.58)

Ωm = 0 (7.59)

in contrast with the equations of motion (7.10)-(7.12) of the original scalar-tensor theory.

We note that condition (7.49) is the same we found in the previous Subsection for a dis-
formal transformation to be non-invertible. This means that if we perform a non-invertible
disformal transformation on a general scalar-tensor theory with equations of motion (7.10)-
(7.12), we obtain a different theory with different equations of motion (7.56)-(7.59): this new
theory is called mimetic gravity.

7.3 Mimetic gravity from a Lagrange multiplier

As we have shown in the previous Chapter for the conformal mimetic modification of general
relativity, we can obtain the mimetic modification of a general scalar-tensor theory (with ac-
tion given by equation (7.3)) without performing any disformal transformation or introducing
an auxiliary metric.
In order to do that, we simply impose the kinematical constraint b(ϕ)gµν∂µϕ∂νϕ = 1 on the
scalar field ϕ, introducing a Lagrange multiplier λ in the action:

S =

∫
d4x
√
−gL[gµν , ∂λ1gµν , ..., ∂λ1 ...∂λpgµν , ϕ, ∂λ1ϕ, ..., ∂λ1 ...∂λqϕ] +

+

∫
d4x
√
−gLm +

∫
d4x
√
−gλ(b(ϕ)gµν∂µϕ∂νϕ− 1)

(7.60)

with b(ϕ) being a known potential function that defines the theory.
Taking the variation of this action with respect to λ, gµν , ϕ and φm we get respectively ([16])

b(ϕ)gµν∂µϕ∂νϕ = 1 (7.61)

Eµν = Tµν + 2λb∂µϕ∂νϕ (7.62)

2√
−g

∂ρ(
√
−gλbgρσ∂σϕ)− Ωϕ√

−g
=
λ

b

db

dϕ
(7.63)

Ωm = 0 (7.64)

If we now take the trace of equation (7.62), using also equation (7.61) we get

λ =
E − T

2
(7.65)

and substituting this into equations (7.62)-(7.64) we have the full system of equations of
motion

b(ϕ)gµν∂µϕ∂νϕ = 1 (7.66)

Eµν = Tµν + (E − T )b∂µϕ∂νϕ (7.67)
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1√
−g

∂ρ(
√
−g(E − T )bgρσ∂σϕ)− Ωϕ√

−g
=

1

2
(E − T )

1

b

db

dϕ
(7.68)

Ωm = 0 (7.69)

These equations are the same as equations (7.56)-(7.59), so we have just shown that mimetic
gravity can be obtained from the original theory simply by adding the kinematical constraint
b(ϕ)gµν∂µϕ∂νϕ = 1 in the action with a Lagrange multiplier.

7.4 Independent equations of motion

Not all the equations (7.66)-(7.69) are independent. First of all we show that equation (7.68)
can be derived from the other equations of motion: remembering that∇µjµ = 1√

−g∂µ(
√
−gjµ)

if jµ is a vector quantity ([31]), equation (7.68) can be written as

∇µ[(E − T )b∂µϕ]− Ωϕ√
−g

=
1

2
(E − T )

1

b

db

dϕ
(7.70)

Taking now the covariant derivative of equation (7.67) we obtain

∇µEµν = ∇µTµν +∇µ[(E − T )b(ϕ)∂µϕ]∂νϕ+ (E − T )b(ϕ)∂µϕ∇µ(∂νϕ) (7.71)

Since we have assumed that Sm can be written as a functional of the matter fields and the
metric gµν , using the equation of motion (7.69) together with the Horndeski identity ([27]
[16]) √

−g∇µEµν = Ωϕ∇νϕ (7.72)

it can be shown that the stress-energy tensor Tµν obeys a continuity equation ∇µTµν = 0.
Furthermore, taking the covariant derivative of equation (7.66) we have

∇ν [b(ϕ)∂µϕ∂µϕ] = 0 (7.73)

and, since ∇νb(ϕ) = ∂νb(ϕ) and ∇νϕ = ∂νϕ,

∂νb(ϕ)∂µϕ∂µϕ+ 2b(ϕ)∇ν∇µϕ∇µϕ = 0 (7.74)

Using now ∂νb(ϕ) = db
dϕ∂

νϕ and the fact that covariant derivatives commute on scalars, we
get

db

dϕ
∂νϕ∂µϕ∂µϕ = −2b(ϕ)∇µ∇νϕ∇µϕ (7.75)

and finally

b(ϕ)∂µϕ∇µ(∂νϕ) = −1

2

db

dϕ
∂νϕ∂µϕ∂µϕ (7.76)

Using these results, equation (7.71) becomes

∇µEµν = ∂νϕ

[
∇µ[(E − T )b(ϕ)∂µϕ]− 1

2

1

b(ϕ)

db(ϕ)

dϕ
(E − T )

]
(7.77)

and taking into account again the Horndeski identity (7.72), together with the fact that
∂νϕ 6= 0 at least for one index ν, we finally find

∇µ[(E − T )b∂µϕ]− Ωϕ√
−g

=
1

2
(E − T )

1

b

db

dϕ
(7.78)
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that is exactly the same equation as (7.70). So we have just shown that equation (7.68) can
be derived from the other equations of motion.

Now we show that the 00 component of equation (7.67) can be derived from the other com-
ponents, together with equation (7.66): this constraint equation can be written as

b(ϕ)g00(∂0ϕ)2 + 2b(ϕ)g0i∂0ϕ∂iϕ+ b(ϕ)gij∂iϕ∂jϕ = 1 (7.79)

Multiplying both sides by E − T = gµν(Eµν − Tµν) we have

(E − T )b(ϕ)g00(∂0ϕ)2 + 2(E − T )b(ϕ)g0i∂0ϕ∂iϕ+ (E − T )b(ϕ)gij∂iϕ∂jϕ =

= g00(E00 − T00) + 2g0i(E0i − T0i) + gij(Eij − Tij)
(7.80)

The 0i and ij components of equation (7.67) are

E0i − T 0i = (E − T )b(ϕ)∂0ϕ∂iϕ Eij − T ij = (E − T )b(ϕ)∂iϕ∂jϕ (7.81)

and substituting them in equation (7.80) we get

(E − T )b(ϕ)g00(∂0ϕ)2 = g00(E00 − T00) (7.82)

Since g00 6= 0 we finally find

E00 − T00 = (E − T )b(ϕ)(∂0ϕ)2 (7.83)

that is exactly the 00 component of equation (7.67).

These results allow us to conclude that a full list of independent equations of motion for
mimetic gravity can be written as

b(ϕ)gµν∂µϕ∂νϕ = 1 (7.84)

Eµi = Tµi + (E − T )b∂µϕ∂iϕ (7.85)

Ωm = 0 (7.86)

7.5 Cosmology in mimetic Horndeski gravity

In this Section we are going to consider two particular mimetic Horndeski models, fixing the
functions K(X,ϕ), G3(X,ϕ), G4(X,ϕ) and G5(X,ϕ), and we will investigate their cosmolog-
ical solutions assuming a flat FRW metric

ds2 = −dt2 + a2(t)δijdx
idxj (7.87)

and considering the absence of matter (Sm = 0).
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7.5.1 Mimetic canonical scalar field

We first consider the mimetic theory of a scalar field with canonical kinetic term and no
potential:

K(X,ϕ) = c2X G3(X,ϕ) = 0 G4(X,ϕ) = 1/2 G5(X,ϕ) = 0 (7.88)

so the gravitational lagrangian of the theory becomes

L = −1

2
c2g

µν∂µϕ∂νϕ+
1

2
R (7.89)

We can now calculate the tensor Eµν :

Eµν ≡
2√
−g

δ(
√
−gL)

δgµν
=

=
2√
−g

δ

δgµν

(
−1

2

√
−gc2g

αβ∂αϕ∂βϕ

)
+

2√
−g

δ

δgµν

(
1

2

√
−gR

)
=

= − 1√
−g

c2∂αϕ∂βϕ
δ

δgµν
(
√
−ggαβ) +Gµν =

=
1

2
c2gµνg

αβ∂αϕ∂βϕ− c2∂µϕ∂νϕ+Gµν

(7.90)

where in the last passage we used

δ

δgµν
(
√
−ggαβ) =

δ
√
−g

δgµν
gαβ +

√
−g δg

αβ

δgµν
= −1

2

√
−ggµνgαβ +

√
−gδαµδβν (7.91)

In a flat FRW universe, and considering also the scalar field ϕ to be function of time only
because of homogeneity of space, we have gαβ∂αϕ∂βϕ = −ϕ̇2 and so

E00 =
1

2
c2ϕ̇

2 − c2ϕ̇
2 +G00 = −1

2
c2ϕ̇

2 + 3H2 (7.92)

E0i = Ei0 = 0 (7.93)

Eij = −1

2
c2a

2δijϕ̇
2 +Gij =

= −1

2
c2a

2δijϕ̇
2 − 2a2

[
ä

a
+

1

2
H2

]
δij =

= −a2δij

(
2Ḣ + 3H2 +

1

2
c2ϕ̇

2

) (7.94)

E = Eµνg
µν = E00g

00 + Eijg
ij = −12H2 − 6Ḣ − c2ϕ̇

2 (7.95)

where we have used the expression of Gµν for a flat FRW universe given in [23].
The independent equations of motion (7.84) and (7.85) for this simple model reduce to

b(ϕ)ϕ̇2 + 1 = 0 (7.96)

4Ḣ + 6H2 + c2ϕ̇
2 = 0 (7.97)

and it easy to check ([16]) that they admit the solution

a(t) = t
2

3(1+w) ϕ(t) = ±
√
− α
c2

log
t

ti
b(ϕ) =

c2

α
t2 =

c2

α
t2i e
±
√
− c2
α
ϕ (7.98)
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where ti is an integration constant, w is a constant parameter and α ≡ − 8w
3(1+w)2 . This shows

that this simple mimetic model can mimic the background expansion history of a universe
dominated by a perfect fluid with constant equation of state w.
By accordingly adjusting the function b(ϕ), one can obtain almost any background expansion
history: this is similar to what we had in the previous Chapter, adding a potential to the
original mimetic dark matter model.

7.5.2 Mimetic cubic Galileon

The mimetic cubic Galileon model takes

K(X,ϕ) = c2X G3(X,ϕ) = 2
c3

Λ̃3
X G4(X,ϕ) = 1/2 G5(X,ϕ) = 0 (7.99)

and in the following we will set the cutoff scale to be Λ̃ = 1. The gravitational part of the
lagrangian becomes

L = −1

2
c2g

µν∂µϕ∂νϕ+ c3g
µν∂µϕ∂νϕ�ϕ+

1

2
R (7.100)

and the tensor Eµν is

Eµν =
1

2
c2gµνg

αβ∂αϕ∂βϕ− c2∂µϕ∂νϕ+Gµν+

+
2√
−g

c3∂µϕ∂νϕ[gαβ(∂α
√
−g)∂βϕ] +

2√
−g

c3(gαβ∂αϕ∂βϕ)(∂µ
√
−g)∂νϕ+

− 1√
−g

(gρσ∂ρϕ∂σϕ)gαβ∂βϕ∂α(
√
−ggµν)− c3(gρσ∂ρϕ∂σϕ)(gαβ∂β∂αϕ)gµν+

+ 2c3∂µϕ∂νϕ(gαβ∂β∂αϕ) + 2c3∂µ∂νϕ(gρσ∂ρϕ∂σϕ)

(7.101)

In a flat FRW universe, and considering again the scalar field ϕ to be function of time only,
the independent equations of motion for this model become ([16])

b(ϕ)ϕ̇2 + 1 = 0 (7.102)

4Ḣ + 6H2 + ϕ̇2(c2 − 4c3ϕ̈) = 0 (7.103)

We now want to reproduce the expansion history of a universe filled with dark matter and a
positive cosmological constant Λ, that is

a(t) = ai sinh
2
3 (Ct) (7.104)

where C =
√

3Λ/4. Integrating once equation (7.103), with a(t) given by equation (7.104),
we get

4
c3

c2

[
− tan−1

(
±
√

3c2

8C2
ϕ̇

)
±
√

3c2

8C2
ϕ̇

]
= t (7.105)

and inverting it, we can use equation (7.102) to find b(ϕ): this can be done numerically
(see Figure 7.1). Choosing the model parameters as C = c2 = c3 = ai = 1, the matter-
dominated era ends around t ' 1 and after that, the universe becomes dominated by the
cosmological constant. The previous equations can be solved in the limits of small and large
time: for Ct� 1 we have ϕ̇ ∝ t1/3 and b(ϕ) ∝ −ϕ−1/2, while for Ct� 1 we have ϕ̇ ∝ t and
b(ϕ) ∝ −ϕ−1.
This means that, by choosing a function b(ϕ) with these suitable asymptotic limits, we can
approximately reproduce the expansion history of a ΛCDM universe.
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Figure 7.1: Plot of a(t) (solid line), ϕ̇ (dashed line) and −b(t) (dotted line) as function of t.
The parameters are chosen to be C = c2 = c3 = ai = 1. The picture is taken from [16].
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Chapter 8

Time evolution of cosmological
perturbations

In this Chapter we are going to investigate the evolution in time of the first order cosmological
perturbations that we introduced in Chapter 3. This evolution in time is different depending
on the theory of gravity chosen: we will start discussing the evolution of perturbations in
general relativity, then we will move to Horndeski gravity and mimetic Horndeski gravity.

We consider only scalar perturbations and we choose the Poisson gauge, so we deal with
a metric

ds2 = a2(η)[−(1 + 2Φ)dη2 + (1− 2Ψ)δijdx
idxj ] (8.1)

while in the presence of matter we consider a perfect fluid with no anisotropic stress:

ρ = ρ0(η) + δρ p = p0(η) + δp uµ =
1

a(η)
(δµ0 + vµ) (8.2)

8.1 Cosmological perturbations in general relativity

In order to find the time evolution of cosmological perturbations in general relativity, we have
to perturb the Einstein equation Gµν = Tµν considering the perturbations given in equations
(8.1) and (8.2). After some calculations we obtain four independent equations ([32])

− 3H(HΦ + Ψ′) +∇2Ψ =
1

2
a2δρ (8.3)

HΦ + Ψ′ =
1

2
a(ρ0 + p0)v‖ (8.4)

(2H′ +H2)Φ +HΦ′ + Ψ′′ + 2HΨ′ +
1

2
∇2(Φ−Ψ) =

1

2
a2δp (8.5)

Φ = Ψ (8.6)

where H ≡ a′

a . Substituting equation (8.6) into (8.3)-(8.5) we get

∇2Φ− 3HΦ′ − 3H2Φ =
1

2
a2δρ (8.7)

(aΦ)′ =
1

2
a2(ρ0 + p0)v‖ (8.8)
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Φ′′ + 3HΦ′ + (2H′ +H2)Φ =
1

2
a2δp (8.9)

We know that δp = c2
sδρ+ δpn.a., so using equation (8.7) we get

1

2
a2δp =

1

2
a2c2

sδρ+
1

2
a2δpn.a. =

= c2
s∇2Φ− 3Hc2

sΦ
′ − 3H2c2

sΦ +
1

2
a2δpn.a.

(8.10)

and substituting this into equation (8.9) we obtain

Φ′′ + 3H(1 + c2
s)Φ
′ − c2

s∇2Φ + [2H′ + (1 + 3c2
s)H2]Φ =

1

2
a2δpn.a. (8.11)

In the following we will consider only adiabatic perturbations, so the gravitational potential
Φ obeys the second-order differential equation given by

Φ′′ + 3H(1 + c2
s)Φ
′ − c2

s∇2Φ + [2H′ + (1 + 3c2
s)H2]Φ = 0 (8.12)

In order to solve this equation we need to perform a change of variable, defining

u ≡ exp

[
3

2

∫
(1 + c2

s)Hdη
]

Φ =
1√

ρ0 + p0
Φ (8.13)

and

θ ≡ 1

a

(
ρ0

ρ0 + p0

)1/2

=
1

a

[
2

3

(
1− H

′

H2

)]−1/2

(8.14)

where we have used c2
s = p′0/ρ

′
0 and the background (Friedmann) equations

ρ′0 = −3H(ρ0 + p0) H2 =
1

3
a2ρ0 H2 −H′ = 1

2
a2(ρ0 + p0) (8.15)

In this new variables equation (8.12) becomes ([33])

u′′ − c2
s∇2u− θ′′

θ
u = 0 (8.16)

and using Fourier transforms

u′′ + c2
sk

2u− θ′′

θ
u = 0 (8.17)

Equation (8.17) can be analytically solved only in the small scale and large scale limits. In
the large scale limit (|cs|kη � 1) it becomes

u′′ − θ′′

θ
u = 0 (8.18)

and it has a trivial solution in u1 = Aθ, with A being a constant. The second solution u2 can
be found with the d’Alembert method: assuming that it can be written as u2 = vu1 = Avθ
we have

u′2 = Av′θ +Avθ′ u′′2 = Av′′θ + 2Av′θ′ +Avθ′′ (8.19)

and substituting in equation (8.18) we get

v′′θ + 2v′θ′ + vθ′′ − θ′′

θ
vθ = 0 =⇒ v′′ + 2

θ′

θ
v′ = 0 (8.20)
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Defining now z ≡ v′, equation (8.20) becomes

z′

z
= −2

θ′

θ
(8.21)

that can be easily solved, finding z = v′ = 1
θ2 and so v =

∫ dη
θ2 . Therefore the second mode is

u2 = vθ = θ
∫ dη
θ2 and the general solution for equation (8.18) is

u = c1θ + c2θ

∫
ηi

dη

θ2
= c2θ

∫
η̄i

dη

θ2
(8.22)

where c1 and c2 are integration constants and in the second passage we have changed the
lower limit of integration in order to absorb the c1 mode.
Using now the definition of θ given in terms of a and H in equation (8.14), we obtain∫

dη

θ2
=

2

3

∫
dηa2

(
1− H

′

H2

)
=

2

3

[∫
dηa2 +

∫
dηa2

(
1

H

)′]
=

=
2

3

[∫
dηa2 +

a2

H
− 2

∫
dηaa′

1

H

]
=

2

3

[
a2

H
−
∫
dηa2

] (8.23)

where in the third passage we integrated by parts, and the potential Φ is

Φ = (ρ0 + p0)1/2u = (ρ0 + p0)1/2 · c2θ

∫
dη

θ2
=

= (ρ0 + p0)1/2 · c2
1

a

ρ
1/2
0

(ρ0 + p0)1/2
· 2

3

[
a2

H
−
∫
dηa2

]
=

= A
H
a2

[
a2

H
−
∫
dηa2

]
= A

[
1− H

a2

∫
dηa2

] (8.24)

where we used the definition of θ given in equation (8.14), together with the background
equation H2 = 1

3a
2ρ0 that implies ρ1/2

0 ∝ Ha . A is again constant in time, and reintroducing
the arguments of the functions we have

Φ(k, η) = A(k)

[
1− H(η)

a2(η)

∫ η

ηi

dη̃a2(η̃)

]
(8.25)

In the small scale limit (|cs|kη � 1) equation (8.17) becomes

u′′ + c2
sk

2u = 0 (8.26)

If cs is constant in time, equation (8.26) has the solution

u = c1e
ikcsη + c2e

−ikcsη (8.27)

so
Φ(k, η) = ρ

1/2
0 (η)

[
c1e

ikcsη + c2e
−ikcsη

]
(8.28)

while if cs is real and varies in time more slowly than u, the WKB method gives us

u = A
1
√
cs

cos

(
k

∫
ηi

csdη

)
(8.29)

so

Φ(k, η) = A(k)

(
ρ0(η) + p0(η)

cs(η)

)1/2

cos

(
k

∫ η

ηi

cs(η̃)dη̃

)
(8.30)
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8.1.1 The case of dark energy

If we consider a universe dominated by a dark energy fluid with a constant equation of state
w < 0, the evolution of the cosmological perturbations that we have just investigated presents
some problems. In fact, in this case we have c2

s = w < 0, so cs is pure imaginary. Therefore
the small scale solution (8.28) becomes

Φ(k, η) = ρ
1/2
0 (η)

[
c1e

k|cs|η + c2e
−k|cs|η

]
(8.31)

where the exponentially growing mode is completely incompatible with the observations.
In order to solve this problem, we have to consider a more general expression for the pressure
perturbation

δp = c2
sδρ+ (c2

s − c2
a)ρ
′
0v
‖ (8.32)

where c2
a =

p′0
ρ′0

is the real adiabatic speed of sound (and if w is constant we have c2
a = w)

while the speed of sound cs is now a free parameter (see [40]). For ordinary fluids without
non-adiabatic perturbations we can take ca = cs, obtaining the evolution equation (8.12), but
for dark energy this cannot be done if we want to avoid a diverging gravitational potential.
The problem for dark energy is solved if we impose a null speed of sound and the absence of
non-adiabatic perturbations, getting δp = 0 and so an evolution equation for Φ

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 0 (8.33)

that allows the solution for all scales

Φ(k, η) = A(k)

[
1− H(η)

a2(η)

∫ η

ηi

dη̃a2(η̃)

]
(8.34)

8.2 Cosmological perturbations in Horndeski gravity

In this Section we present some results for linear scalar perturbations in Horndeski gravity,
since they will be useful also when we consider the mimetic extension. We assume that matter
is absent, so Sm = 0: we expect this to be a good approximation during the time when the
effective energy density of the scalar field is much larger than the other usual components,
like radiation or cold dark matter.
The metric is the one in equation (8.1) and the scalar field is expanded as

ϕ(η, ~x) = ϕ0(η) + δϕ(η, ~x) (8.35)

where ϕ0 denotes the background value of the scalar field and δϕ indicates the perturbation.

The independent equations of motion for Horndeski gravity, if matter is absent, are simply

Eµν = 0 (8.36)

because Horndeski identity (7.72), together with equation (8.36), implies Ωϕ = 0.
At the background level they reduce to E(0)

µν = 0, where the superscript (0) denotes a back-
ground quantity: the explicit expression of E(0)

µν for a flat FRW background can be found in
the Appendix A of [17].
At first order (denoted by the superscript (1)) the tensor Eµν can be written as

E
(1)
00 = f1Ψ′ + f2δϕ

′ + f3Φ + f4δϕ+ f5∇2Ψ + f6∇2δϕ (8.37)
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E
(1)
0i = ∂i(f18Ψ′ + f19δϕ

′ + f20δϕ+ f21Φ) (8.38)

E
(1)
ij =∂i∂j(f7Ψ + f8δϕ+ f9Φ) + δij(−f7∇2Ψ− f8∇2δϕ− f9∇2Φ+

+ f10Ψ′′ + f11δϕ
′′ + f12Ψ′ + f13δϕ

′ + f14Φ′ + f15Ψ + f16δϕ+ f17Φ)
(8.39)

where the fi are linear functions of K, G3, G4, G5 and their derivatives evaluated on the
background, so they are functions of time only. Their explicit expression, and some useful
relations between them, can be found in the Appendix B of [17].
The equations of motion for the first order perturbations are E(1)

µν = 0:

f1Ψ′ + f2δϕ
′ + f3Φ + f4δϕ+ f5∇2Ψ + f6∇2δϕ = 0 (8.40)

f18Ψ′ + f19δϕ
′ + f20δϕ+ f21Φ = 0 (8.41)

f7Ψ + f8δϕ+ f9Φ = 0 (8.42)

f10Ψ′′ + f11δϕ
′′ + f12Ψ′ + f13δϕ

′ + f14Φ′ + f15Ψ + f16δϕ+ f17Φ = 0 (8.43)

but equation (8.43) can be derived from equations (8.41) and (8.42) (see [17]), using some of
the identities in the Appendix B of [17]. So we have three independent equations for the three
perturbations Ψ, Φ and δϕ

f1Ψ′ + f2δϕ
′ + f3Φ + f4δϕ+ f5∇2Ψ + f6∇2δϕ = 0 (8.44)

f18Ψ′ + f19δϕ
′ + f20δϕ+ f21Φ = 0 (8.45)

f7Ψ + f8δϕ+ f9Φ = 0 (8.46)

There are two physical implications of equation (8.46). First, the anisotropic stress is in
general not zero (Ψ 6= Φ) even if matter is absent. Second, at least one of the perturbations
is not a new dynamical degree of freedom, since one of them can be isolated to be a linear
function of the other two.

8.3 Cosmological perturbations in mimetic Horndeski gravity

As we have found in the previous Chapter, the independent equations of motion for mimetic
Horndeski gravity (if matter is absent) are equations (7.84) and (7.85):

b(ϕ)gµν∂µϕ∂νϕ = 1 Eµi = Eb(ϕ)∂µϕ∂iϕ (8.47)

At the background level they reduce to

− 1

a2
b0(ϕ′0)2 = 1 (8.48)

E
(0)
µi = 0 (8.49)

where b0 ≡ b(ϕ0) and the explicit expressions for E(0)
µi are the same of the previous Section

and can be found in Appendix B of [17].
At first order the equations of motion are

2b0δϕ
′ + ϕ′0b,ϕδϕ− 2b0ϕ

′
0Φ = 0 (8.50)

E
(1)
0i = E(0)b0ϕ

′
0∂iδϕ (8.51)
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E
(1)
ij = 0 (8.52)

where E(0) is the zeroth-order trace of the tensor Eµν , the subscript , ϕ denotes the derivative
with respect to the scalar field ϕ and b,ϕ ≡ b,ϕ(ϕ0).
Using the expressions (8.37)-(8.39), equation (8.52) gives us

f7Ψ + f8δϕ+ f9Φ = 0 (8.53)

f10Ψ′′ + f11δϕ
′′ + f12Ψ′ + f13δϕ

′ + f14Φ′ + f15Ψ + f16δϕ+ f17Φ = 0 (8.54)

while, using also the background constraint (8.48), equation (8.51) implies

f18Ψ′ + f19δϕ
′ +

(
f20 +

a2E(0)

ϕ′0

)
δϕ+ f21Φ = 0 (8.55)

In a similar way to what we did for the simple Horndeski model, it is possible to show that
equation (8.54) can be derived by equations (8.50), (8.53) and (8.55) (see [17]). This means
that a system of independent equations of motion for first order perturbations is

2b0δϕ
′ + ϕ′0b,ϕδϕ− 2b0ϕ

′
0Φ = 0 (8.56)

f7Ψ + f8δϕ+ f9Φ = 0 (8.57)

f18Ψ′ + f19δϕ
′ +

(
f20 +

a2E(0)

ϕ′0

)
δϕ+ f21Φ = 0 (8.58)

We note that equation (8.57) is the same as in Horndeski gravity: this means that also in the
mimetic modification there could be anisotropic stress (Ψ 6= Φ) even if matter is absent, and
that one of the three perturbations is not a new dynamical degree of freedom.
We note also that in the system of equations (8.56)-(8.58) there are no spatial derivatives,
so we can anticipate that the sound speed for the dynamical scalar degree of freedom will be
exactly zero.
Finally, it is important to note that one can set b(ϕ) = −1 without loss of generality. In that
case we would have b,ϕ = 0 and equation (8.56) would become

2b0δϕ
′ − 2b0ϕ

′
0Φ = 0 =⇒ Φ =

δϕ′

ϕ′0
(8.59)

This is possible because Horndeski theory is form-invariant under a field redefinition of the
type dϕ̃ ≡

√
|b(ϕ)|dϕ. Applying this transformation to a mimetic Horndeski model fixed by

the functions K(X,ϕ), Gi(X,ϕ) and b(ϕ), we obtain an equivalent mimetic model (again in
the Horndeski class) with b̃(ϕ̃) = −1 and new Horndeski functions K̃(X̃, ϕ̃) and G̃i(X̃, ϕ̃).

Combining equations (8.56)-(8.58) one can find a second order differential equation for the
potential Φ (see [17]):

Φ′′+

[
B2

B3
+

(
log

B3

B1

)′
+H− ϕ′′0

ϕ′0

]
Φ′+

[
B1

B3
ϕ′0 +

B1

B3

(
B2

B1

)′
+
B2

B3

(
H− ϕ′′0

ϕ′0

)]
Φ = 0 (8.60)

where the Bi functions are defined as

B1 = f20 +
f10f8f

′
7

f2
7

+ f11

(
−H+

ϕ′′0
ϕ′0

)
− f10

f7

[
f ′8 + f8

(
−H+

ϕ′′0
ϕ′0

)]
+ a2E

(0)

ϕ′0
(8.61)
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B2 = f14 +
f10f9f

′
7

f2
7

+ f11ϕ
′
0 −

f10(f ′9 + f8ϕ
′
0)

f7
(8.62)

B3 = 2
f2

9

f7
(8.63)

In equation (8.60) there is no spatial Laplacian term, so the sound speed of the perturbations
is exactly zero as we anticipated.

8.4 Imposing a ΛCDM background expansion history

Equations (8.56)-(8.58) and equation (8.60) are valid in general for a FRW metric. In this
Subsection we want to impose a ΛCDM background expansion history for the universe, given
by

a(t) = ai sinh
2
3 (Ct) (8.64)

In fact a very large set of observations coming from different probes (supernovae, clusters of
galaxies, baryonic acoustic oscillations and weak gravitational lensing are four examples, see
[34]) indicates that the background expansion history of the universe, when radiation becomes
negligible, can be described by equation (8.64), even if the correct theory of gravity may not
be general relativity. In that case there is no cosmological constant, so the parameter C is
not related to Λ and it is fixed directly from observations.

We start by taking b(ϕ) = −1, so, using equation (8.64), the first background equation
of motion (8.48) becomes

(ϕ′0)2 = a2 =⇒ ϕ′0 = ±a = ±ai sinh2/3(Ct) (8.65)

and other useful quantities are

H =
a′

a
=

2

3
Cai sinh−1/3(Ct) cosh(Ct) (8.66)

H′ = −2

9
C2a2

i sinh−2/3(Ct) cosh2(Ct) +
2

3
C2a2

i sinh4/3(Ct) (8.67)

ϕ′′0 = ±2

3
Ca2

i sinh1/3(Ct) cosh(Ct) (8.68)

Taking now the explicit expression of E(0)
ij given in Appendix A of [17], and substituting the

quantities (8.65)-(8.68), the second background equation of motion (8.49) becomes

a2
i sinh4/3(Ct)K − a2

i sinh4/3(Ct)G3,ϕ +
8

3
C2a2

i sinh4/3(Ct)G4+

− 8

3
C2a2

i sinh4/3(Ct)G4,X ±
8

3
Ca2

i sinh1/3(Ct) cosh(Ct)G4,ϕ + 2a2
i sinh4/3(Ct)G4,ϕϕ+

∓ 8

3
Ca2

i sinh1/3(Ct) cosh(Ct)G4,Xϕ +
4

3
C2a2

i sinh4/3(Ct)G5,ϕ+

±
[

8

27
C3a2

i sinh−5/3(Ct) cosh3(Ct)− 8

9
C3a2

i sinh1/3(Ct)

]
G5,X+

− 4

9
C2a2

i sinh−2/3(Ct) cosh2(Ct)G5,Xϕ ±
4

3
Ca2

i sinh1/3(Ct) cosh(Ct)G5,ϕϕ = 0

(8.69)
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where the Horndeski functions K, Gi and their derivatives are evaluated on the the back-
ground quantities ϕ0 and X0. This means that a mimetic Horndeski model allows a ΛCDM
background expansion history only if the Horndeski functions obey the zeroth order constraint

K(X0, ϕ0) =G3,ϕ −
8

3
C2G4 +

8

3
C2G4,X ∓

8

3
C sinh−1(Ct) cosh(Ct)G4,ϕ+

− 2G4,ϕϕ ±
8

3
C sinh−1(Ct) cosh(Ct)G4,Xϕ −

4

3
C2G5,ϕ+

∓ 8

27
C3
[
sinh−3(Ct) cosh3(Ct)− 3 sinh−1(Ct) cosh(Ct)

]
G5,X+

+
4

9
C2 sinh−2(Ct) cosh2(Ct)G5,Xϕ ∓

4

3
C sinh−1(Ct) cosh(Ct)G5,ϕϕ

(8.70)

where again the arguments ϕ0 and X0 of the functions Gi are implicit.

Considering now the evolution of perturbations, it is described by the system of equations
(8.57)-(8.59)

f7Ψ + f8δϕ+ f9Φ = 0 (8.71)

f18Ψ′ + f19δϕ
′ +

(
f20 +

a2E(0)

ϕ′0

)
δϕ+ f21Φ = 0 (8.72)

Φ =
δϕ′

ϕ′0
(8.73)

where equations (8.64) and (8.70) give us

f7 = −2G4 +G5,ϕ (8.74)

f8 =2G4,ϕ ∓
4

3
C sinh−1(Ct) cosh(Ct)G4,X − 2G4,Xϕ+

± 4

3
C sinh−1(Ct) cosh(Ct)G5,ϕ +

[
2

9
C2 sinh−2(Ct) cosh2(Ct)− 2

3
C2

]
G5,X+

∓ 2

3
C sinh−1(Ct) cosh(Ct)G5,Xϕ +G5,ϕϕ

(8.75)

f9 = 2G4 − 2G4,X +G5,ϕ ∓
2

3
C sinh−1(Ct) cosh(Ct)G5,X (8.76)

f10 = f18 = −4G4 + 4G4,X − 2G5,ϕ ±
4

3
C sinh−1(Ct) cosh(Ct)G5,X (8.77)

f11 = f19 =−G3,X + 2G4,ϕ ∓
8

3
C sinh−1(Ct) cosh(Ct)G4,X + 2G4,Xϕ+

∓ 8

3
C sinh−1(Ct) cosh(Ct)G4,XX ±

8

3
C sinh−1(Ct) cosh(Ct)G5,ϕ+

− 4

3
C2 sinh−2(Ct) cosh2(Ct)G5,X ±

4

3
C sinh−1(Ct) cosh(Ct)G5,Xϕ+

− 4

9
C2 sinh−2(Ct) cosh2(Ct)G5,XX

(8.78)
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f20 +
a2E(0)

ϕ′0
=±

[
8

3
C2ai sinh−4/3(Ct) cosh2(Ct)− 8

3
C2ai sinh2/3(Ct)

]
G4+

±
[
−8

3
C2ai sinh−4/3(Ct) cosh2(Ct) +

8

3
C2ai sinh2/3(Ct)

]
G4,X+

±
[

4

3
C2ai sinh−4/3(Ct) cosh2(Ct)− 4

3
C2ai sinh2/3(Ct)

]
G5,ϕ+

+

[
−8

9
C3ai sinh−7/3(Ct) cosh3(Ct) +

8

9
C3ai sinh−1/3(Ct) cosh(Ct)

]
G5,X

(8.79)

f14 = f21 =± ai sinh2/3(Ct)G3,X −
8

3
Cai sinh−1/3(Ct) cosh(Ct)G4+

+
16

3
Cai sinh−1/3(Ct) cosh(Ct)G4,X ∓ 2ai sinh2/3(Ct)G4,ϕ+

∓ 2ai sinh2/3(Ct)G4,Xϕ +
8

3
Cai sinh−1/3(Ct) cosh(Ct)G4,XX+

− 4Cai sinh−1/3(Ct) cosh(Ct)G5,ϕ ±
20

9
C2ai sinh−4/3(Ct) cosh2(Ct)G5,X+

− 4

3
Cai sinh−1/3(Ct) cosh(Ct)G5,Xϕ ±

4

9
C2ai sinh−4/3(Ct) cosh2(Ct)G5,XX

(8.80)

Using equations (8.65), (8.66) and (8.68) we get H−ϕ′′0
ϕ′0

= 0, so the second order differential
equation for the potential Φ (8.60) becomes

Φ′′ +

[
B2

B3
+

(
log

B3

B1

)′]
Φ′ +

[
B1

B3
ϕ′0 +

B1

B3

(
B2

B1

)′]
Φ = 0 (8.81)

where

B1 = f20 + a2E
(0)

ϕ′0
+
f10f8f

′
7

f2
7

− f10f
′
8

f7
(8.82)

B2 = f14 +
f10f9f

′
7

f2
7

+ f11ϕ
′
0 −

f10(f ′9 + f8ϕ
′
0)

f7
(8.83)

B3 = 2
f2

9

f7
(8.84)

and

f ′7 = ∓2ai sinh2/3(Ct)G4,ϕ ± ai sinh2/3(Ct)G5,ϕϕ (8.85)
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f ′8 =±
[
−4

3
C2ai sinh2/3(Ct) +

4

3
C2ai sinh−4/3(Ct) cosh2(Ct)

]
G4,X+

− 4

3
Cai sinh−1/3(Ct) cosh(Ct)G4,Xϕ ± 2ai sinh2/3(Ct)G4,ϕϕ ∓ 2ai sinh2/3(Ct)G4,Xϕϕ+

±
[

4

3
C2ai sinh2/3(Ct)− 4

3
C2ai sinh−4/3(Ct) cosh2(Ct)

]
G5,ϕ+

+

[
4

9
C3ai sinh−1/3(Ct) cosh(Ct)− 4

9
C3ai sinh−7/3(Ct) cosh3(Ct)

]
G5,X+

±
[
−4

3
C2ai sinh2/3(Ct) +

8

9
C2ai sinh−4/3(Ct) cosh2(Ct)

]
G5,Xϕ+

+
4

3
Cai sinh−1/3(Ct) cosh(Ct)G5,ϕϕ −

2

3
Cai sinh−1/3(Ct) cosh(Ct)G5,Xϕϕ+

± ai sinh2/3(Ct)G5,ϕϕϕ

(8.86)

f ′9 =± 2ai sinh2/3(Ct)G4,ϕ ∓ 2ai sinh2/3(Ct)G4,Xϕ+

±
[
−2

3
C2ai sinh2/3(Ct) +

2

3
C2ai sinh−4/3(Ct) cosh2(Ct)

]
G5,X+

± ai sinh2/3(Ct)G5,ϕϕ −
2

3
ai sinh2/3(Ct)G5,Xϕ

(8.87)

8.4.1 Mimetic cubic Horndeski gravity

Now we investigate the case when G4(X,ϕ) = 1/2 and G5(X,ϕ) = 0, while the other Horn-
deski functions K(X,ϕ) and G3(X,ϕ) are kept general. These particular models are grouped
under the name of mimetic cubic Horndeski, and they include also the models described in
Section 7.5, that we showed to have an interesting cosmological behavior: in particular, the
mimetic cubic Galileon (7.99) was able to reproduce a ΛCDM background expansion history.
In this particular case, the zeroth order constraint on the Horndeski functions (8.70) becomes

K(X0, ϕ0) = G3,ϕ(X0, ϕ0)− 4

3
C2 (8.88)

while the fi functions (8.74)-(8.80) become

f7 = −1 (8.89)

f8 = 0 (8.90)

f9 = 1 (8.91)

f10 = f18 = −2 (8.92)

f11 = f19 = −G3,X (8.93)

f20 +
a2E(0)

ϕ′0
= ±1

2

[
8

3
C2ai sinh−4/3(Ct) cosh2(Ct)− 8

3
C2ai sinh2/3(Ct)

]
(8.94)

f14 = f21 = ±ai sinh2/3(Ct)G3,X −
4

3
Cai sinh−1/3(Ct) cosh(Ct) (8.95)

We note that, using equations (8.89)-(8.91), the first equation of motion for the perturbations
(8.71) becomes

Φ = Ψ (8.96)
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so in mimetic cubic Horndeski, if we impose a ΛCDM background, there is no effective
anisotropic stress if matter is absent. Actually, it is easy to show that equations (8.89)-(8.91)
hold in general for every background expansion history, so the absence of a gravitational slip
is a general feature of mimetic cubic Horndeski gravity.
Using instead the full set (8.89)-(8.95), the Bi functions (8.82)-(8.84) become

B1 = ±4

3
C2ai

[
sinh−4/3(Ct) cosh2(Ct)− sinh2/3(Ct)

]
(8.97)

B2 = −4

3
Cai sinh−1/3(Ct) cosh(Ct) (8.98)

B3 = −2 (8.99)

and the second order differential equation for the potential Φ (8.81) becomes

Φ′′ + 2Cai sinh−1/3(Ct) cosh(Ct)Φ′ +
4

3
C2a2

i sinh4/3(Ct)Φ = 0 (8.100)

that can be rewritten as
Φ′′ + 3HΦ′ +

(
H2 +H′

)
Φ = 0 (8.101)

In Section 8.1 we solved the second order differential equation (8.12) for the potential Φ with
a change of variable and using the background equations of the theory, to obtain a solution
that contained only geometrical quantities. In the case of mimetic Horndeski gravity, the
absence of the sound speed in the equation allows us to perform a change of variable that
involves only geometrical quantities:

Q ≡
√
− a

H,N
Φ (8.102)

where N ≡ log a and the subscript , N denotes the derivative with respect to N . Defining

Θ ≡ H√
−aH,N

(8.103)

equation (8.101) can be written as ([17])

Q,NN −
Θ,NN

Θ
Q = 0 (8.104)

A trivial solution for this equation is Q1 = AΘ, with A being a constant. The second solution
Q2 can be found with the d’Alembert method exactly as we did in Section 8.1 for equation
(8.18), and the general solution can be written as

Q = c2Θ

∫
dN

Θ2
= c2

H√
−aH,N

∫
dN

(
−
aH,N

H2

)
=

= c2
H√
−aH,N

∫
dNa

d

dN

(
1

H

)
= c2

H√
−aH,N

(
a

H
−
∫
dN

da

dN

1

H

)
=

= c2

√
− a

H,N

(
1− H

a

∫
da

H

) (8.105)
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where in the fourth passage we integrated by parts. Finally, redefining A the multiplication
constant, the potential Φ is

Φ =

√
−
H,N

a
Q = A

(
1− H

a

∫
da

H

)
=

= A

(
1− 1

a2

da

dt

∫
da

a

da/dt

)
= A

(
1− H

a2

∫
dηa2

) (8.106)

that is exactly what we found in equation (8.24) for large scales in general relativity. The
difference is that, in this case, solution (8.106) for Φ is valid for perturbations on all scales:
reintroducing the arguments of the functions it becomes

Φ(k, η) = A(k)

[
1− H(η)

a2(η)

∫ η

ηi

dη̃a2(η̃)

]
(8.107)

8.5 Imposing a perfect fluid dark energy background expansion
history

As we have explained in Section 2.4, the cosmological constant can be interpreted as a ho-
mogeneous perfect fluid with equation of state w = −1. If we substitute the cosmological
constant with a perfect fluid dark energy (PFDE) with a constant generic equation of state
wDE , when this dark energy becomes dominant over matter, general relativity predicts a
background expansion history given by

a(t) = ait
2

3(1+wDE) (8.108)

If we take wDE to be close enough to the cosmological constant value −1, equation (8.108)
describes a background expansion history that is indistinguishable from the ΛCDM solution
when Λ is dominant. Therefore a perfect fluid dark energy with wDE ' −1 can be used
in general relativity as an alternative option instead of a cosmological constant, in order to
explain the observed background expansion history.
Considering this, it is interesting to study cosmological perturbations in mimetic Horndeski
gravity imposing a background expansion history given by the domination of a perfect fluid
with constant generic equation of state w 6= −1:

a(t) = ait
2

3(1+w) (8.109)

Again we take b(ϕ) = −1, so the first background equation of motion (8.48) gives us

(ϕ′0)2 = a2 =⇒ ϕ′0 = ±a = ±ait
2

3(1+w) (8.110)

and the other useful quantities are

H =
a′

a
=

2ai
3(1 + w)

t
− 1+3w

3(1+w) (8.111)

H′ = −2(1 + 3w)a2
i

9(1 + w)2
t
− 2+6w

3(1+w) (8.112)

ϕ′′0 = ± 2a2
i

3(1 + w)
t

1−3w
3(1+w) (8.113)
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Following the same procedure used in the previous Section, the second background equation
of motion (8.49) becomes

a2
i t

4
3(1+w)K − a2

i t
4

3(1+w)G3,ϕ −
8wa2

i

3(1 + w)2
t
− 2+6w

3(1+w)G4 +
8wa2

i

3(1 + w)2
t
− 2+6w

3(1+w)G4,X+

± 8a2
i

3(1 + w)
t

1−3w
3(1+w)G4,ϕ + 2a2

i t
4

3(1+w)G4,ϕϕ ∓
8a2

i

3(1 + w)
t

1−3w
3(1+w)G4,Xϕ+

− 4wa2
i

3(1 + w)2
t
− 2+6w

3(1+w)G5,ϕ ±
8(1 + 3w)a2

i

27(1 + w)3
t
− 5+9w

3(1+w)G5,X −
4a2

i

9(1 + w)2
t
− 2+6w

3(1+w)G5,Xϕ+

± 4a2
i

3(1 + w)
t

1−3w
3(1+w)G5,ϕϕ = 0

(8.114)

where the Horndeski functions K, Gi and their derivatives are evaluated on the background
quantities ϕ0 and X0. Therefore a mimetic Horndeski model allows a perfect fluid background
expansion history only if the Horndeski functions obey the zeroth order constraint

K(X0, ϕ0) =G3,ϕ +
8w

3(1 + w)2
t−2G4 −

8w

3(1 + w)2
t−2G4,X ∓

8

3(1 + w)
t−1G4,ϕ − 2G4,ϕϕ+

± 8

3(1 + w)
t−1G4,Xϕ −

4w

3(1 + w)2
t−2G5,ϕ ∓

8(1 + 3w)

27(1 + w)3
t−3G5,X+

+
4

9(1 + w)2
t−2G5,Xϕ ∓

4

3(1 + w)
t−1G5,ϕϕ

(8.115)

where again the arguments ϕ0 and X0 of the functions Gi are implicit.

As a consequence, if we want to reproduce a universe that is dominated by cold dark matter
with EOS w = 0 at early times and that, afterward, becomes dominated by a perfect fluid
dark energy with EOS wDE , the Horndeski functions have to obey the zeroth order constraint

K(X0, ϕ0) =G3,ϕ ∓
8

3
t−1G4,ϕ − 2G4,ϕϕ ±

8

3
t−1G4,Xϕ ∓

8

27
t−3G5,X+

+
4

9
t−2G5,Xϕ ∓

4

3
t−1G5,ϕϕ

(8.116)

for small t, and

K(X0, ϕ0) =G3,ϕ +
8wDE

3(1 + wDE)2
t−2G4 −

8wDE
3(1 + wDE)2

t−2G4,X ∓
8

3(1 + wDE)
t−1G4,ϕ+

− 2G4,ϕϕ ±
8

3(1 + wDE)
t−1G4,Xϕ −

4wDE
3(1 + wDE)2

t−2G5,ϕ+

∓ 8(1 + 3wDE)

27(1 + wDE)3
t−3G5,X +

4

9(1 + wDE)2
t−2G5,Xϕ ∓

4

3(1 + wDE)
t−1G5,ϕϕ

(8.117)

for large t.

Considering now the evolution of perturbations, it is described also in this case by the system
of equation (8.57)-(8.59)

f7Ψ + f8δϕ+ f9Φ = 0 (8.118)
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f18Ψ′ + f19δϕ
′ +

(
f20 +

a2E(0)

ϕ′0

)
δϕ+ f21Φ = 0 (8.119)

Φ =
δϕ′

ϕ′0
(8.120)

where equations (8.109) and (8.115) give us

f7 = −2G4 +G5,ϕ (8.121)

f8 =2G4,ϕ ∓
4

3(1 + w)
t−1G4,X − 2G4,Xϕ ±

4

3(1 + w)
t−1G5,ϕ +

2(1 + 3w)

9(1 + w)2
t−2G5,X+

∓ 2

3(1 + w)
t−1G5,Xϕ +G5,ϕϕ

(8.122)

f9 = 2G4 − 2G4,X +G5,ϕ ∓
2

3(1 + w)
t−1G5,X (8.123)

f10 = f18 = −4G4 + 4G4,X − 2G5,ϕ ±
4

3(1 + w)
t−1G5,X (8.124)

f11 = f19 =−G3,X + 2G4,ϕ ∓
8

3(1 + w)
t−1G4,X + 2G4,Xϕ ∓

8

3(1 + w)
t−1G4,XX+

± 8

3(1 + w)
t−1G5,ϕ −

4

3(1 + w)2
t−2G5,X ±

4

3(1 + w)
t−1G5,Xϕ+

− 4

9(1 + w)2
t−2G5,XX

(8.125)

f20 +
a2E(0)

ϕ′0
=± 8ai

3(1 + w)
t
− 4+6w

3(1+w)G4 ∓
8ai

3(1 + w)
t
− 4+6w

3(1+w)G4,X+

± 4ai
3(1 + w)

t
− 4+6w

3(1+w)G5,ϕ −
8ai

9(1 + w)2
t
− 7+9w

3(1+w)G5,X

(8.126)

f14 = f21 =± ait
2

3(1+w)G3,X −
8ai

3(1 + w)
t
− 1+3w

3(1+w)G4 +
16ai

3(1 + w)
t
− 1+3w

3(1+w)G4,X+

∓ 2ait
2

3(1+w)G4,ϕ ∓ 2ait
2

3(1+w)G4,Xϕ +
8ai

3(1 + w)
t
− 1+3w

3(1+w)G4,XX+

− 4ai
1 + w

t
− 1+3w

3(1+w)G5,ϕ ±
20ai

9(1 + w)2
t
− 4+6w

3(1+w)G5,X −
4ai

3(1 + w)
t
− 1+3w

3(1+w)G5,Xϕ+

± 4ai
9(1 + w)2

t
− 4+6w

3(1+w)G5,XX

(8.127)

Using equations (8.110), (8.111) and (8.113) we get H−ϕ′′0
ϕ′0

= 0 again, so the second order
differential equation for the potential Φ (8.60) becomes

Φ′′ +

[
B2

B3
+

(
log

B3

B1

)′]
Φ′ +

[
B1

B3
ϕ′0 +

B1

B3

(
B2

B1

)′]
Φ = 0 (8.128)

where

B1 = f20 + a2E
(0)

ϕ′0
+
f10f8f

′
7

f2
7

− f10f
′
8

f7
(8.129)
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B2 = f14 +
f10f9f

′
7

f2
7

+ f11ϕ
′
0 −

f10(f ′9 + f8ϕ
′
0)

f7
(8.130)

B3 = 2
f2

9

f7
(8.131)

and
f ′7 = ∓2ait

2
3(1+w)G4,ϕ ± ait

2
3(1+w)G5,ϕϕ (8.132)

f ′8 =± 4ai
3(1 + w)

t
− 4+6w

3(1+w)G4,X −
4ai

3(1 + w)
t
− 1+3w

3(1+w)G4,Xϕ ± 2ait
2

3(1+w)G4,ϕϕ+

∓ 2ait
2

3(1+w)G4,Xϕϕ ∓
4ai

3(1 + w)
t
− 4+6w

3(1+w)G5,ϕ −
4(1 + 3w)ai
9(1 + w)2

t
− 7+9w

3(1+w)G5,X+

± 4(2 + 3w)ai
9(1 + w)2

t
− 4+6w

3(1+w)G5,Xϕ +
4ai

3(1 + w)
t
− 1+3w

3(1+w)G5,ϕϕ −
2ai

3(1 + w)
t
− 1+3w

3(1+w)G5,Xϕϕ+

± ait
2

3(1+w)G5,ϕϕϕ

(8.133)

f ′9 =± 2ait
2

3(1+w)G4,ϕ ∓ 2ait
2

3(1+w)G4,Xϕ ±
2ai

3(1 + w)
t
− 4+6w

3(1+w)G5,X+

± ait
2

3(1+w)G5,ϕϕ −
2ai

3(1 + w)
t
− 1+3w

3(1+w)G5,Xϕ

(8.134)

8.5.1 Mimetic cubic Horndeski gravity

Since equation (8.128) is still too complicated to be solved analytically, we investigate the
mimetic cubic Horndeski case as we did in the previous Section, taking G4 = 1/2 and G5 = 0.
The zeroth order constraint on the Horndeski functions (8.115) becomes

K(X0, ϕ0) = G3,ϕ(X0, ϕ0) +
4w

3(1 + w)2
t−2 (8.135)

while the fi functions (8.121)-(8.127) become

f7 = −1 (8.136)

f8 = 0 (8.137)

f9 = 1 (8.138)

f10 = f18 = −2 (8.139)

f11 = f19 = −G3,X (8.140)

f20 +
a2E(0)

ϕ′0
= ± 4ai

3(1 + w)
t
− 4+6w

3(1+w) (8.141)

f14 = f21 = ±ait
2

3(1+w)G3,X −
4ai

3(1 + w)
t
− 1+3w

3(1+w) (8.142)

Taking equations (8.136)-(8.138) the first equation of motion for the perturbations (8.118)
becomes

Φ = Ψ (8.143)
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so, as we anticipated in the previous Section, in mimetic cubic Horndeski there is no effective
anisotropic stress if matter is absent, even imposing a perfect fluid background.
In this particular case the Bi functions (8.129)-(8.131) become

B1 = ± 4ai
3(1 + w)

t
− 4+6w

3(1+w) (8.144)

B2 = − 4ai
3(1 + w)

t
− 1+3w

3(1+w) (8.145)

B3 = −2 (8.146)

and the second order differential equation for the potential Φ (8.128) becomes

Φ′′ + 2ait
− 1+3w

3(1+w) Φ′ = 0 (8.147)

Using the definition of conformal time dη = dt
a(t) , we get

η =
3(1 + w)

ai(1 + 3w)
t

1+3w
3(1+w) (8.148)

so equation (8.147) in terms of conformal time becomes

Φ′′ +
6(1 + w)

1 + 3w

1

η
Φ′ = 0 (8.149)

Equation (8.149) has the solution

Φ(η) = c1 + c2η
− 5+3w

1+3w (8.150)

but it is easy to show that this solution can be rewritten (defining new constants A(k) and
ηi instead of c1 and c2) in the more familiar form

Φ(k, η) = A(k)

[
1− H(η)

a2(η)

∫ η

ηi

dη̃a2(η̃)

]
(8.151)

where this time the integral in equation (8.151) can be calculated to give equation (8.150).
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Chapter 9

Analytical calculations of the
integrated Sachs-Wolfe effect

In this Chapter we perform the analytical calculation of the late-time integrated Sachs-Wolfe
effect introduced in Chapter 5, considering the time evolution of the potentials in the frame-
work of general relativity and mimetic Horndeski gravity that we discussed in the previous
Chapter.

The final goal of the Chapter is to evaluate the contribution of the late-time ISW effect
to the Cl coefficient given by equation (5.41):

Cl =
2

π

∫ ∞
0

dkk2P (k)

∣∣∣∣Θl(k)

δ(k)

∣∣∣∣2 (9.1)

If we consider the power spectrum of the matter fluctuations P (k) to be generated by quantum
fluctuations during inflation, it is a well-known result that P (k) = |δ(k)|2 (see [19], [35] and
[36]). This means that equation (9.1) becomes

Cl =
2

π

∫ ∞
0

dkk2|Θl(k)|2 (9.2)

The contribution of the late-time ISW effect to Θl(k) is given by the last line of equation
(5.20):

ΘISW
l (k) =

∫ η0

0
dη e−τ

[
Φ′(k, η) + Ψ′(k, η)

]
jl[k(η0 − η)] (9.3)

We know that before recombination (η∗) Compton scattering is very frequent, so the optical
depth τ is extremely large, while after recombination Compton scattering becomes ineffective
and the optical depth is nearly zero. Therefore we can approximate the function e−τ to be 0
for η < η∗ and 1 for η > η∗, so equation (9.3) becomes

ΘISW
l (k) =

∫ η0

η∗
dη
[
Φ′(k, η) + Ψ′(k, η)

]
jl[k(η0 − η)] (9.4)

In what follows we will take the time evolution (after recombination) of the potentials Φ and
Ψ that we discussed in the previous Chapter and we will use it in equations (9.4) and (9.2),
in order to determine the contribution to the CMB’s anisotropies of the late-time ISW effect,
considering the different theories of gravity that we presented.
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9.1 ISW effect in general relativity

9.1.1 ΛCDM background

If we consider the ΛCDM model, we have the domination of the cosmological constant Λ over
matter after the time ηΛ when ρΛ(ηΛ) = ρm(ηΛ). We know that ρΛ is constant in time, while

ρm decays in time as a−3, so ρm(ηΛ) = ρm(η0)
(
a(η0)
a(ηΛ)

)3
. Therefore the time ηΛ is determined

through the scale factor:

a(ηΛ) = a(η0)

(
ρm(η0)

ρΛ

)1/3

= a(η0)

(
Ωm(η0)

ΩΛ(η0)

)1/3

(9.5)

The time ηΛ gives a temporal scale for the variation of the potentials Φ and Ψ, so we can
distinguish two different cases depending on the scale k of the perturbation.

• If k � 1
ηΛ

(large scales), then k(η0 − η) is small for η∗ < η < η0 and in equation (9.4)
we can approximate jl[k(η0 − η)] ' jl[k(η0 − ηΛ)], obtaining

ΘISW
l (k) ' jl[k(η0 − ηΛ)]

∫ η0

η∗
dη
[
Φ′(k, η) + Ψ′(k, η)

]
=

= jl[k(η0 − ηΛ)](∆Φ(k) + ∆Ψ(k))

(9.6)

where ∆Φ(k) ≡ Φ(k, η0)− Φ(k, η∗) and ∆Ψ(k) ≡ Ψ(k, η0)−Ψ(k, η∗).
The physical interpretation of this result is the following. Since the wavelength is much
bigger than the time scale of the variation of the potentials ( 1

k ∝ λ � ηΛ), the change
in the potentials is so rapid that the photon is influenced only by the difference between
the initial and the final values: it receives a kick, given by an instantaneous decay of
the potentials.

• If k � 1
ηΛ

(small scales), then k(η0− η) can be really large. Therefore we must consider
that jl[k(η0 − η)] oscillates rapidly in this regime, but it has a sharp peak at ηk =
η0 − 1

k

(
l + 1

2

)
(see [37] and [38]). So we can approximate the Bessel function as a

non-normalized delta function, obtaining

ΘISW
l (k) '

[
Φ′(k, ηk) + Ψ′(k, ηk)

] ∫ η0

η∗
dηjl[k(η0 − η)] =

= −1

k

[
Φ′(k, ηk) + Ψ′(k, ηk)

] ∫ 0

k(η0−η∗)
dx jl(x) '

' 1

k

[
Φ′(k, ηk) + Ψ′(k, ηk)

] ∫ ∞
0

dx jl(x) =

=
1

k

[
Φ′(k, ηk) + Ψ′(k, ηk)

]
Il

(9.7)

where in the second passage we performed the change of variables x = k(η0 − η), in
the third passage we substituted k(η0− η∗) with ∞ in the integral limit because we are
dealing with large k, and in the fourth passage we have defined the integral

Il ≡
∫ ∞

0
dx jl(x) =

√
π

2

Γ
[

1
2(l + 1)

]
Γ
[

1
2(l + 2)

] (9.8)

Physically, the photon traverses many wavelengths during the potentials’ decay, suffering
alternating redshifts and blueshifts: the result is a cancellation of the contributions.
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Taking into account this distinction, we can write

CISWl =
2

π

∫ 1/ηΛ

0
dkk2

∣∣ΘISW
l (k)

∣∣2 +
2

π

∫ ∞
1/ηΛ

dkk2
∣∣ΘISW

l (k)
∣∣2 =

= CISWl (kηΛ < 1) + CISWl (kηΛ > 1)

(9.9)

in such a way that in order to calculate CISWl (kηΛ < 1) we will use the k � 1
ηΛ

approxima-
tion, so equation (9.6), while in order to calculate CISWl (kηΛ > 1) we will use the k � 1

ηΛ

approximation, so equation (9.7).
Now we must consider the time evolution of the potentials. First of all, since we are consid-
ering matter with no anisotropic stress, we have Ψ(η) = Φ(η) for every time η. Second, since
we are considering only the late-time contribution to ISW effect, we are dealing with matter
and cosmological constant domination: this means that we can take the sound speed of the
perturbations to be exactly zero, because c2

s = 0 for both matter and cosmological constant
as we have explained in the previous Chapter. Therefore we can take the potential Φ to obey
equation (8.18) and so we have a time evolution

Φ(k, η) = A(k)

[
1− H(η)

a2(η)

∫ η

ηi

a2(η̃)dη̃

]
(9.10)

We immediately note that A(k) = Φ(k, ηi), so taking ηi = η∗ and using the well-known
(see [32] and [39]) relation Φ(k, η∗) = 9

10Φ(k, 0) (where Φ(k, 0) is the power spectrum of
perturbations generated during inflation), we get

Φ(k, η) =
9

10
Φ(k, 0)

[
1− H(η)

a2(η)

∫ η

η∗
a2(η̃)dη̃

]
(9.11)

for all scales k.

For k � 1
ηΛ

, equation (9.6), together with the fact that Ψ = Φ, gives us

ΘISW
l (k) = 2jl[k(η0 − ηΛ)]∆Φ(k) (9.12)

where
∆Φ(k) = Φ(k, η0)− Φ(k, η∗) = − 9

10
Φ(k, 0)

H(η0)

a2(η0)

∫ η0

η∗
a2(η̃)dη̃ (9.13)

Therefore

CISWl (kηΛ < 1) =
2

π

∫ 1/ηΛ

0
dkk2

∣∣ΘISW
l (k)

∣∣2 =

=
8

π

∫ 1/ηΛ

0
dkk2j2

l [k(η0 − ηΛ)]

∣∣∣∣ 9

10
Φ(k, 0)

H(η0)

a2(η0)

∫ η0

η∗
a2(η̃)dη̃

∣∣∣∣2 (9.14)

and taking a generic power-law primordial spectrum k3|Φ(k, 0)|2 = Bkn−1 (with B and n
constant), we obtain

CISWl (kηΛ < 1) =
8

π
B

∫ 1/ηΛ

0

dk

k
kn−1j2

l [k(η0 − ηΛ)]

∣∣∣∣ 9

10

H(η0)

a2(η0)

∫ η0

η∗
a2(η̃)dη̃

∣∣∣∣2 (9.15)

For k � 1
ηΛ

, equation (9.7), together with the fact that Ψ = Φ, gives us

ΘISW
l (k) =

2

k
Φ′(k, ηk)Il (9.16)
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where

Φ′(k, ηk) =
9

10
Φ(k, 0)

d

dη

[
1− H(η)

a2(η)

∫ η

η∗
a2(η̃)dη̃

]∣∣∣∣
η=ηk

=

=
9

10
Φ(k, 0)Φ̃′(ηk)

(9.17)

having defined Φ̃(η) ≡ 1− H(η)
a2(η)

∫ η
η∗ a

2(η̃)dη̃.
Since ηk = η0 − 1

k

(
l + 1

2

)
is very close to η0 if k is large, we can expand Φ̃′(k, ηk) around η0

Φ̃′(ηk) ' Φ̃′(η0) + Φ̃′′(η0)(ηk − η0) =

= Φ̃′(η0)− 1

k

(
l +

1

2

)
Φ̃′′(η0)

(9.18)

so ∣∣∣Φ̃′(ηk)∣∣∣2 ' ∣∣∣Φ̃′(η0)
∣∣∣2 − 2

k

(
l +

1

2

)
Φ̃′(η0)Φ̃′′(η0)+

+
1

k2

(
l +

1

2

)2 ∣∣∣Φ̃′′(η0)
∣∣∣2 (9.19)

Moreover we can assume that the potentials start to change in time for η > ηΛ, when the
cosmological constant becomes important. Therefore, for the modes k � 1

ηΛ
we can impose

ηk > ηΛ and, remembering the definition of ηk, we can substitute the lower limit of the integral
CISWl (kηΛ > 1) with the quantity k̃ = l+1/2

η0−ηΛ
(see [39]).

So we have

CISWl (kηΛ > 1) =
2

π

∫ ∞
k̃

dkk2
∣∣ΘISW

l (k)
∣∣2 =

=
8

π

(
9

10

)2

I2
l

∫ ∞
k̃

dk |Φ(k, 0)|2
∣∣∣Φ̃′(ηk)∣∣∣2 =

=
8

π

(
9

10

)2

I2
l

∫ ∞
k̃

dk |Φ(k, 0)|2
[∣∣∣Φ̃′(η0)

∣∣∣2 +

− 2

k

(
l +

1

2

)
Φ̃′(η0)Φ̃′′(η0) +

1

k2

(
l +

1

2

)2 ∣∣∣Φ̃′′(η0)
∣∣∣2]

(9.20)

and taking a generic power-law primordial spectrum k3|Φ(k, 0)|2 = Bkn−1 we obtain

CISWl (kηΛ > 1) =
8

π

(
9

10

)2

I2
l B

[∫ ∞
k̃

dkkn−4
∣∣∣Φ̃′(η0)

∣∣∣2 +

− 2

(
l +

1

2

)∫ ∞
k̃

dkkn−5Φ̃′(η0)Φ̃′′(η0)+

+

(
l +

1

2

)2 ∫ ∞
k̃

dkkn−6
∣∣∣Φ̃′′(η0)

∣∣∣2] =

=
8

π

(
9

10

)2

I2
l B

[
1

3− n

(
η0 − ηΛ

l + 1/2

)3−n ∣∣∣Φ̃′(η0)
∣∣∣2 +

− 2

(
l +

1

2

)
1

4− n

(
η0 − ηΛ

l + 1/2

)4−n
Φ̃′(η0)Φ̃′′(η0)+

+

(
l +

1

2

)2 1

5− n

(
η0 − ηΛ

l + 1/2

)5−n ∣∣∣Φ̃′′(η0)
∣∣∣2]

(9.21)
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where the integrals converge if n < 3. Using the fact that for l� 1

I2
l =

π

4

(
Γ
[

1
2(l + 1)

]
Γ
[

1
2(l + 2)

])2

∝ 1

l
(9.22)

and considering a Harrison-Zeldovich primordial power spectrum (n = 1), we find that for
large scales (and so l� 1)

CISWl ∝ 1

l3
(9.23)

9.1.2 CDM and PFDE background

If we consider a universe that at the time of recombination is dominated by cold dark matter
and that at late times becomes dominated by a perfect fluid dark energy with EOS wDE , the
temporal scale for the variation of the potentials Φ and Ψ is given by the conformal time η1/2

at which the effective equation of state of the universe becomes w = −1/2: it is easy to show
(see [39] and [38]) that in the case of a cosmological constant (wDE = −1) we have η1/2 = ηΛ.
Therefore, assuming also that CDM and the PFDE are free from anisotropic stress, so Ψ = Φ,
we get the same two cases of the previous Section

ΘISW
l (k) = 2jl[k(η0 − η1/2)]∆Φ(k) if k � 1

η1/2
(9.24)

ΘISW
l (k) =

2

k
Φ′(k, ηk)Il if k � 1

η1/2
(9.25)

and so

CISWl =
2

π

∫ 1/η1/2

0
dkk2

∣∣ΘISW
l (k)

∣∣2 +
2

π

∫ ∞
1/η1/2

dkk2
∣∣ΘISW

l (k)
∣∣2 =

= CISWl (kη1/2 < 1) + CISWl (kη1/2 > 1)

(9.26)

Since we are dealing with cold dark matter and dark energy, we can take again the speed of
sound to be c2

s = 0, so the time evolution of the potential is given again by equation (8.34)
for all scales k:

Φ(k, η) = A(k)

[
1− H(η)

a2(η)

∫ η

ηi

a2(η̃)dη̃

]
(9.27)

This means that the time evolution of the potential Φ is completely determined by the back-
ground expansion history, in the same identical way for every CDM-PFDE universe, also if
the PFDE is represented by a cosmological constant. Now we must remember that we have
strong observational constraints upon the background expansion history of the universe, and
the time evolution of the potential Φ will be the same if this observed expansion history is
caused by the domination of a cosmological constant or a generic perfect fluid dark energy with
wDE 6= −1. Therefore the ΛCDM and CDM-PFDE models predict the same time evolution
for Φ as long as the observations cannot distinguish which one describes the right background
expansion history, and consequently they predict the same late-time ISW effect.
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9.2 ISW effect in mimetic cubic Horndeski gravity

In this Section we consider mimetic cubic Horndeski gravity, since in the particular case when
G4 = 1/2 and G5 = 0 we have found the fully analytical solution for the time evolution of
the potential Φ to be, for both ΛCDM and CDM-PFDE backgrounds,

Φ(k, η) = A(k)

[
1− H(η)

a2(η)

∫ η

ηi

a2(η̃)dη̃

]
(9.28)

Independently on the exact explanation for the origin of it (ΛCDM or CDM-PFDE), if we
impose that our theory should reproduce the observed background expansion history, then the
time evolution of Φ will be exactly the same in the two cases and it will be identical to what
we saw in the previous Section for general relativity. Moreover, the existence of the temporal
scale η1/2 is a direct consequence of the background expansion history, so it is granted also in
mimetic cubic Horndeski gravity if we impose ΛCDM or CDM-PFDE background as we did
in the previous Chapter.
Remembering also that in mimetic cubic Horndeski we have Ψ = Φ if matter is absent, we
can repeat the same identical procedure of the previous Section to find that mimetic cubic
Horndeski predicts the same late-time ISW effect of general relativity.

9.3 ISW in generic mimetic Horndeski gravity

If we consider a generic mimetic Horndeski theory (without fixing G4 = 1/2 and G5 = 0), we
know that the time evolution of the potential Φ is described by equation (8.60)

Φ′′+

[
B2

B3
+

(
log

B3

B1

)′
+H− ϕ′′0

ϕ′0

]
Φ′+

[
B1

B3
ϕ′0 +

B1

B3

(
B2

B1

)′
+
B2

B3

(
H− ϕ′′0

ϕ′0

)]
Φ = 0 (9.29)

and if we impose a ΛCDM or CDM-PFDE background expansion history it becomes

Φ′′ +

[
B2

B3
+

(
log

B3

B1

)′]
Φ′ +

[
B1

B3
ϕ′0 +

B1

B3

(
B2

B1

)′]
Φ = 0 (9.30)

where the explicit expression of the functions Bi depends on the particular background chosen,
as we have shown in Sections 8.4 and 8.5.
Equation (9.30) cannot be solved analytically, so the only option in order to find the time
evolution of the potential is to use numerical calculations. It seems legit to suppose that this
time evolution could present a temporal scale η1/2 given by the background expansion history,
like in the mimetic cubic Horndeski case, but this hypothesis should be confirmed finding a
numerical solution of equation (9.30): if it proves to be correct, it would be possible to use
equation (9.9) also in this case, allowing us to perform different calculations for large and
small scales k.
Besides of the fact that the time evolution of the potential Φ could be significantly different
from general relativity, there is another reason that makes us suppose that mimetic Horndeski
gravity could predict a different late-time ISW effect from Einstein’s theory: in fact we should
remember that, in mimetic Horndeski, first-order perturbations obey equation (8.57)

f7Ψ + f8δϕ+ f9Φ = 0 (9.31)

that, in general, implies the existence of a gravitational slip such that Ψ(η) 6= Φ(η).
Therefore we expect that only a numerical solution of the full system of equations (8.57)-(8.59)
could give us the time evolution of the potentials Φ and Ψ, and finally allow us to calculate
the late-time ISW effect in the most general mimetic Horndeski theory.
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Chapter 10

Conclusions

In this Thesis we considered the modification of general relativity given by mimetic Horndeski
gravity: in fact, we know that the cosmological solutions of Einstein’s theory need, in order
to be consistent with observations, the existence of dark matter and dark energy. Since these
two dark components have never been observed so far, and considering that they present also
theoretical problems (such as the cosmological constant problem or the small-scale problem),
many alternative theories have been proposed, trying to explain the same phenomena without
introducing new energy sources: mimetic Horndeski gravity is one of these theories.
Mimetic Horndeski gravity is a modification of Horndeski model, which is the most general
4-D local covariant scalar-tensor theory that can be derived from an action and that has
second-order equations of motion for both the metric and the scalar field: the mimetic modi-
fication can be obtained simply by imposing the constraint b(ϕ)gµν∂µϕ∂νϕ = 1 on the scalar
field ϕ, with b(ϕ) being a free potential function.
We showed that mimetic Horndeski gravity can easily reproduce the observed background
expansion history of the late-time universe, compatible with the ΛCDM or CDM-PFDE mod-
els of general relativity: it is sufficient to impose a zero-order constraint on the functions
K(X0, ϕ0) and Gi(X0, ϕ0) that define the particular theory inside the Horndeski class. Given
this, it makes sense to investigate other predictions of mimetic Horndeski gravity, and we
focused on the late-time integrated Sachs-Wolfe effect.
The late-time ISW effect is a particular source of spectral distortion in the CMB radiation:
the photons propagating from the last scattering surface to us encounter time-varying metric
perturbations (the potentials Φ and Ψ), and therefore get blue-shifted or red-shifted. Since
different theories of gravity predict different time evolution of the potentials, they also predict
different late-time ISW effects.
We considered two cases, imposing first a ΛCDM and then a CDM-PFDE background expan-
sion history. Since the equations for the time evolution of the potentials were too complicated
to be solved analytically, we restricted the discussion to the case of mimetic cubic Horndeski
gravity: what we found is that in this particular case the time evolution of the potentials is
the same as in general relativity, since it is determined in the same way by the background
expansion history. This means that mimetic cubic Horndeski gravity predicts the same late-
time ISW effect of general relativity.
The most general case of mimetic Horndeski gravity could be studied with a numerical solu-
tion of the time evolution equations for the potentials. We expect this more general model to
predict a late-time ISW effect that is different from general relativity, because it is present a
gravitational slip (Ψ 6= Φ) and because the equations for the time evolution of the potentials
are different from the ones in Einstein’s theory.
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