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Abstract - Italiano

La bioinformatica è una disciplina che utilizza metodi computazionali per raccogliere ed analizzare

dati biologici. L’avvento delle tecnologie di sequenziamento dell’RNA a singola cellula ha aperto

nuove possibilità di ricerca ed esplorazione nella biomedicina, consentendo in particolar modo lo

studio sempre più approfondito di cancri e tumori e l’acquisizione di sempre più dati ad alta

risoluzione. Tali dati vengono però spesso acquisiti in diversi contesti e con diverse metodologie e

condizioni laboratoriali, esponendoli quindi a bias tecnici e ad elevati livelli di rumore. Questo

richiede lo sviluppo di metodi standardizzati per l’integrazione.

Lo scopo di questo progetto di tesi è stato quello di confrontare quattro metodologie diverse di

integrazione dati. I dataset utilizzati contengono l’espressione genica di campioni di cancro al seno,

con diversi gradi di severità e metastasi. Al fine di fornire una valutazione oggettiva dei vari aspetti

qualitativi dell’integrazione sono state implementate delle metriche statistiche e computazionali. È

stata anche sviluppata una funzione il cui scopo sia di effettuare un benchmarking completo della

procedura di integrazione e riportare visualizzazioni.

La tesi inizia con un’introduzione al cancro al seno e alle tecnologie di sequenziamento dell’RNA a

singola cellula. A seguito verranno descritti nel dettaglio di dataset impiegati nello studio e le loro

caratteristiche, nonché la metodologia di elaborazione impiegata. Successivamente saranno

esplicate le quattro metodologie di integrazione dati implementate e le metriche impiegate nel

processo di benchmarking. Infine verranno presentati i risultati, sia singolarmente che mettendo a

confronto i quattro metodi.

Complessivamente, Harmony mostra le migliori prestazioni nel preservare le informazioni

biologiche e, sebbene le sue prestazioni nella rimozione di bias tecnici siano le più basse tra i

quattro algoritmi, i punteggi rilevanti restano comunque paragonabili a quelli ottenuti dagli altri

algoritmi. FastMNN si dimostra il secondo migliore nel preservare la varianza biologica, sebbene le

metriche indichino la persistenza di bias tecnici residui, in particolare specifici ai singoli campioni.

RPCA mostra prestazioni equilibrate sia nella conservazione dell'informazione biologica sia nella

rimozione di bias tecnici. LIGER mostra i migliori risultati nella rimozione dei bias tecnici,

ottenendo tuttavia il punteggio peggiore per quanto riguarda la conservazione delle informazioni

biologiche.
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Abstract - English

Bioinformatics is a discipline that employs computational methods to collect and analyze biological

data. The emergence of single-cell RNA sequencing technologies has opened up new avenues for

research and enquiry in biomedicine, in particular by enabling the increasingly in-depth study of

cancers and tumors and the acquisition of more and more high-resolution data. However, this data is

often acquired in different contexts and under different protocols and laboratory conditions, thus

exposing it to technical bias and high levels of noise. This issue requires the development of

standardized methods for data integration.

The purpose of this thesis project is to compare four different data integration methodologies. The

datasets used contain the gene expression profiles from different breast cancer samples,

characterized by varying degrees of severity and metastasis. A panel of statistical and computational

metrics was implemented, in order to provide an objective evaluation of the various qualitative

aspects of integration. Additionally, a function was developed whose purpose is to comprehensively

benchmark the integration procedure and provide useful visualizations.

The thesis begins with an introduction to breast cancer and single-cell RNA sequencing

technologies. After that, a detailed description of datasets used in the study and of the processing

methodology will be provided. Next, an elaboration will be provided on the four data integration

methodologies implemented and the metrics employed in the benchmarking process. Finally, the

results will be presented, both individually and by comparing the four methods.

Overall, Harmony displays the best performance at preserving biological information, and although

its performance at removing batch effects ranks lowest among the four algorithms the relevant

scores still mostly parallel those achieved by the other techniques. FastMNN demonstrates to be the

second best at preserving biological variance, although the metrics point to a persistence of

technical batches and specifically of sample-specific bias. RPCA exhibits a balanced performance

in both biological information preservation and removal of batch effects. LIGER showcases the best

results in removal of technical bias, scoring however the worst pertaining to preservation of

biological information.
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Introduction

Overview of breast cancer

The breast (also called mammary gland) is one of a pair of glandular organs located in the upper

part of the chest. It is primarily composed of subcutaneous adipose tissue, which surrounds a

network of lactiferous ducts lined by columnar epithelial cells in a matrix containing fibroblasts,

adipocytes, endothelial, and immune cells1. These ducts end with lobules, clusters of alveoli where

milk production takes place, and converge on the nipple. From these tissues breast cancer may arise

through a process called carcinogenesis, a multifactorial and multistep process driven by genetic

and environmental factors in which genetic alterations drive the progressive transformation of

normal human cells into highly malignant derivatives2,3.

Breast cancer ranks second in incidence and fourth in mortality among all cancers worldwide, and it

is the most common cancer in women, with an estimated 2.296.840 new diagnoses and 666.103

deaths in 20224. In Italy it is the most common kind of cancer both for women and in total, with an

estimated 57.480 new diagnoses and 15.455 deaths in 2022, and women carry a 13.2% cumulative

risk of developing breast cancer during their lifetime and an 8.0% risk of dying due to it5.

Additionally, while the net survival ratio at 5 years after diagnosis is high, at around 88%, the high

incidence means that there are around 834.200 women with a past breast cancer diagnosis6.

Depending on molecular and histological profile breast cancer can be classified in 3 main groups:

one expressing hormone receptors (either estrogen (ER+) or progesterone (PR+)), one expressing

human epidermal receptor 2 (HER2+), and triple negative one (TNBC). This last group may be

further divided in 6 subgroups: basal-like 1 (BL-1), basal-like 2 (BL-2), immunomodulatory (IM),

mesenchymal (M), mesenchymal stem-like (MSL) and luminal androgen receptor (LAR)7.

Compared to other cancers, breast cancer has a comparatively high pattern of inheritance, with

5-10% of all cases following a Mendelian inheritance pattern and 15-20% a familial one8. The

BRCA1 and BRCA2 mutations are particularly well studied since, though they only have a

combined frequency of about 0.4%, have a high penetrance, comprising more than a third of all

hereditary breast cancers and resulting in a lifetime risk of breast cancer for the carriers between

60% and 85%9.
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Depending on stage and on cancer subtype, treatment options may fall into three main groups:

surgery, radiation, and medication. Surgical options involve the direct removal of cancerous tissue

and are usually either breast-conserving surgery or mastectomy; these options may be applied alone

in early stages of breast cancer or in conjunction with other treatments. Radiation therapy entails the

irradiation with high levels of either X-rays or protons; it is often applied after surgery to ensure the

complete elimination of cancerous cells and minimize the risk of recurrence. Medication options

can be further divided in 3 more categories: chemotherapy, hormonal therapy and biological

therapy. Chemotherapy is the use of cytotoxic drugs to kill cancer cells; while it contributes

significantly to reduced mortality its side effects are often very significant2. Hormonal therapy

entails the use of either hormones or drugs to lower hormone levels and block breast cancer cells to

be stimulated by them, therefore making it most effective with ER+ and PR+ breast cancers.

Biological therapy is the use of biological compounds to fight cancer, of which immunotherapy is

for the purposes of this thesis its most interesting subtype: that involves the engineering of immune

cells to attack breast cancer inside the body.

Breast cancer is a highly heterogeneous disease and both the tumor microenvironment and

variations in mutation patterns within cells can significantly affect disease progression, prognosis,

and treatment efficacy. Modern advancements in sequencing technology and computer science are

now allowing increasingly higher resolution in the analysis of gene expression at lower costs,

enabling a deeper understanding of tumorigenesis and making it possible to know the breast cancer

gene expression specific for each patient. This is leading to important developments for

personalized medicine in oncology and is assisting in bringing it into common clinical practice10,11.

Single-cell RNA sequencing

In the life sciences, the word “sequencing” refers to the determination of the primary structure of a

biopolymer, which could be either a protein or a string of DNA or RNA. Specifically, genomic

sequencing refers to the determination of the sequences of bases of a nucleic acid, from which the

complete set of genes (in case of DNA sequencing) and eventually of their transcription into

proteins (in case of RNA sequencing) can be extracted.

The history of sequencing technologies starts in 1968, when Wu and Keiser first made use of primer

extension to sequence 12 bases of the DNA of a bacteriophage12. 1977 saw the birth of Sanger

sequencing, the first method that could be reliably used on a wide scale to reconstruct long DNA
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sequences13. This technique, based on electrophoresis, remained the predominant one until the

1990s, when massive developments in life science technologies and increases in computational

power gave rise to “Next Generation” (NGS) sequencing. They became commercially available in

2005 and, through enzymatic methods, enabled the massive parallel sequencing of samples and the

execution of significantly larger-scale genomics projects14. In the year 2001 a landmark

breakthrough occurred in genomics, when the Human Genome Project Consortium published the

preliminary draft of the entire euchromatic human genome15.

Single-cell omics emerged in 2009 with the publication by Tang et al., marking the first successful

transcriptome analysis of a single cell and the introduction of scRNA-seq16. Although there may be

variations in the specific materials and steps employed, the vast majority of techniques follow a

similar procedure17 (see Figure 1). First, cells are mechanically separated and isolated, using either

micro-dissection, droplet-based, or microfluidics-based platforms. Subsequently, the cells are lysed

in order to extract as much polyadenylated mRNA as possible. The mRNA is then

reverse-transcribed into complementary DNA (cDNA). Polymerase chain reaction (PCR) is

employed to amplify the cDNA, thereby generating sufficient material for downstream analysis.

This material is subsequently associated with its own unique cell through a process referred to as

"barcode-tagging"18. The cDNA is then sequenced using NGS technologies. Library generation

techniques and genomic alignment tools are employed to convert the cDNA samples into fragments

that can be sequenced by the instrumentation and map the sequencing reads to the reference

genome. At this point the gene expression data is obtained and ready to be processed.

Figure 1: The figure shows the workflow of scRNA-Seq, which includes the following parts: single-cell isolation, reverse transcription,

cDNA synthesis, single-cell library, high-throughput sequencing, and data analysis. Image taken from “The Evolution of Single-Cell

RNA Sequencing Technology and Application: Progress and Perspectives.”, by Wang, S.; Sun, S.-T.; et al., Int. J. Mol. Sci. 2023
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scRNA-seq offers several advantages over bulk sequencing. While bulk sequencing can only detect

the average gene expression across the sample, scRNA-seq can detect the heterogeneity in gene

expression across cells19. Most importantly, it enables the study of gene expression at a much higher

resolution, allowing the identification of rare cell populations and the characterization of their

unique transcriptional profiles. This makes it possible to reconstruct the complex cellular

environment of a sample and identify internal variance20. The specific design of scRNA-seq allows

for the sequencing of theoretically any kind of eukaryotic cell21. There are however some

limitations. As it requires the isolation of every cell from each other, this technique is challenging to

implement with mechanically hard or very elastic tissues. Additionally, it is less efficient in

capturing RNA and provides a lower depth count of genes, requiring higher amplification and less

ability to analyze weakly expressed genes. Furthermore, this technology is highly susceptible to

dropout and reduplication events, as well as to minimal differences in protocol choice and

environmental conditions, making the data very noisy17.

scRNA-seq has been widely applied to all fields of medical research. For example, it has proven to

be invaluable in cancer research. It is enabling the comprehensive characterization of the tumor

microenvironment and the study of the genetic mechanisms behind the tumor evasion of the

immune system and its drug response, as well as tumor growth and proliferation into the healthy

tissue22. Furthermore, it is also contributing to the study of the pathogenesis of immune diseases and

of the host immune response against bacterial and viral infections19. Moreover, scRNA-seq is

enabling the identification of new molecular targets for drug development and precision medicine

purposes, in particular for malignant cancers23. Finally, it is being used in embryonic and organ

development research, by characterizing the development of the distinct cell lineages and types

spatially and over time24.

With the increase of data available it is now becoming possible to undertake large-scale projects.

However, due to the characteristics of the technology and of the biological material, the scRNA-seq

samples often present strong internal variations that are unrelated to the internal biological variance

and are instead due to differences in technical protocols or environmental conditions at the time of

sampling25. These unwanted variations, called batch effects, introduce technical bias that hinders the

ability to conduct meaningful analysis. In order to merge the data together while eliminating batch

effects, data integration algorithms have been developed, designed to remove the technical bias and

cluster similar cells together.
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Project activities and goals

My internship project took place from the 1st of March to the 31th of May 2023, through the

Erasmus+ for Traineeship programme. It was carried out at the Digital Science Center (DiSC), with

the Computational Biomedicine research group of the University of Innsbruck, under Professor

Francesca Finotello. The group is highly interdisciplinary and focuses on the analysis of bulk and

single-cell genomic data and on the development of computational methods for precision medicine,

with a special focus on cancer immunology.

My project was in the field of bioinformatics, specifically in single cell omics, a branch of

bioinformatics focussing on the detection and analysis of high-resolution biological molecules at a

cellular level. My goals throughout this project were:

● To select and process labeled breast cancer scRNA-seq datasets and associated metadata

from different human studies

● To integrate the datasets according to 4 different integration algorithms

● To benchmark on breast cancer data the integration quality of 4 different data integration

techniques

● To document my scientific finding with a report and a powerpoint and present my work to

my colleagues

The integration techniques applied were the following:

● Reciprocal Principal Component Analysis (RPCA)

● Fast Mutual Nearest Neighbour correction (FastMNN)

● Harmony

● Linked Inference of Genomic Experimental Relationships (LIGER).

The benchmarking was performed according to their fit in removing batch effects and in preserving

biological variance. The metrics used were the following:

● k-nearest Neighbour Batch Effect Test (kBET)

● Principal Component Regression (PCR)

● Local Inverse Simpson's Index (LISI)

● Average Silhouette Width (ASW)

● Adjusted Rand Index (ARI)

● Normalised Mutual Information (NMI)

● Trajectory Conservation
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● Ratio of Highly Variable Genes preserved

● Cell Cycle Conservation Score.

The project was implemented in the R programming language, using the Seurat framework for

preprocessing and analysis. The deliverables consisted of a scientific report and a code repository,

inclusive of a function designed to conduct the whole benchmarking process and complete with

plots aiding to the interpretation of the results.

Data

Overview of the data processing

In the field of bioinformatics the data is often highly heterogeneous and prone to technical bias. The

standardization of the data processing workflow is therefore essential to allow for the extraction of

meaningful information and ensure the reproducibility of results. For this project the Seurat

computational toolkit was used, which has become the standard in the subfield of scRNA-seq

bioinformatics.

To prepare the data for downstream analysis, quality control and initial data preprocessing are

applied. The dataset undergoes prefiltering to eliminate low-quality cells and genes, which may

suggest the presence of droplets (genes with expression values inaccurately recorded as zero) or

doublets (artifacts where the gene expression of multiple cells is inaccurately combined)28. This

process establishes a minimum threshold of 3 cells per gene and 200 genes per cell. The percentage

of mitochondrial and ribosomal genes is computed as a useful metric of cell quality. Then, in order

to reduce the impact of technical biases and cell-specific noise, the data is normalized using

log-normalization. Next, highly variable features are selected through variance-stabilizing

transformation, in order to identify only genes that are informative of the variability in the data.

Finally, the data is scaled to a mean of 0 and a variance of 1 to avoid uneven weighting of gene

expression in downstream analysis.

Machine learning methods are employed to ease computational burden for subsequent analysis.

This is first done by applying 3 different dimensionality reduction techniques: principal component

analysis (PCA), uniform manifold approximation and projection (UMAP)29 and t-distributed
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stochastic neighbor embedding (t-SNE)30. PCA is particularly useful to ease computational burden

and perform unsupervised machine learning, while UMAP and t-SNE allow for concise and

informative visual representation of data31. After that, unsupervised clustering is obtained by

calculating the K-nearest neighbor (KNN) graph in PCA space and applying the Louvain algorithm

to iteratively cluster cells together. After that, celltype labels are standardized across the datasets

and cell cycle scores are computed for each cell. Finally, a comprehensive round of quality control

(QC) is applied to eliminate empty droplets, doublets, low-quality, and dying cells.

A panel of data visualization plots is then generated to explore the data. Initially, violin plots and

scatter plots are produced for every numerical label (count of genes per cell, count of molecules per

cell and percentage of mitochondrial genes) in order to visualize any internal discrepancies in data

quality within the datasets. Next, cells are projected onto UMAP 2-dimensional plots classified by

categorical labels (datasets, celltype and sample) to display the data's global structure and internal

relations32. Bar plots with relative proportions of cell types and cell phases are produced as well.

Finally, heat maps, dot plots and scatter plots are used to display feature expression and gene

expression variance for highly expressed genes33.

GEO GSE176078 - Wu Dataset

The first of the two datasets used in this project was curated by Sunny Z. Wu, Ghamdan Al-Eryani

et al26. It originated from the study “A single-cell and spatially resolved atlas of human breast

cancers”, published in Nature Genetics in 2021, and deposited on the GEO repository under the

accession number GSE176078. The study aimed to provide a comprehensive atlas of human breast

cancers and of their cellular architecture. By combining scRNA-seq data with spatial information,

the researchers sought to provide a detailed view of breast cancer ecosystems.

The raw dataset was generated through the Illumina NextSeq 500 desktop sequencing technology

and the 10x Chromium sequencing platform. It is approximately 4.3 GB in size and contains

100,064 cells, comprising 26 different tumor samples. It is composed of the following cell types:

endothelial cells, fibroblasts, perivascular-like (PVL) cells, B cells, T cells, myeloid cells, epithelial

cells, plasmablasts, and cancer epithelial cells. These cells are further classified into 49 subtypes,

and the samples are categorized as HER2+, ER+, or TNBC based on their cancer subtype.
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As shown in figures 2 and 3, prior to filtering and data preprocessing the dataset exhibits significant

internal variance, characterized by a substantial presence of droplets and doublets. Furthermore,

there is considerable variability in cell quality among distinct cell populations in the dataset.

Specifically, cancer epithelial cells have on average a much higher amount of gene and RNA

molecules, making them more likely to be doublets.

After filtering and quality control (QC) the composition of the dataset underwent substantial

changes. Figures 4 and 5 are provided to aid in the visualization of the new composition and

celltype proportions of the dataset. The dataset resized to 1.1 GB and now contains 31.977 cells.

The cell populations experiencing the greatest loss were epithelial cells and cancer epithelial cells,

of which only 8.36% and 13.64% remained after QC. B cells and T cells maintained the largest

relative population at 54.70% and 57.38%.

Figure 2: Violin plot of the raw Wu dataset, displaying the amount of cells according to the number of RNA molecules contained, the

number of genes expressed and the percentage of mitochondrial genes expressed.
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Figure 3: Violin plot of the raw Wu dataset, displaying the amount of cells according to the number of RNA molecules contained, the

number of genes expressed and the percentage of mitochondrial genes expressed. Cells are split according to their celltype.

Figure 4: Violin plot of the filtered, processed Wu dataset, displaying the amount of cells according to the number of RNA molecules

contained, the number of genes expressed and the percentage of mitochondrial genes expressed.
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Figure 5: Violin plot of the filtered, processed Wu dataset, displaying the amount of cells according to the number of RNA molecules

contained, the number of genes expressed and the percentage of mitochondrial genes expressed. Cells are split according to their

celltype.

GEO GSE140819 - Slyper Dataset

The second of the two datasets used in this project was curated by Michal Slyper, Caroline B. M.

Porte et al27. It stemmed from the study "A single-cell and single-nucleus RNA-Seq toolbox for

fresh and frozen human tumors", which was published in Nature Medicine in 2020 and deposited in

the GEO repository under accession number GSE140819. The study aimed to develop a systematic

toolbox for profiling fresh and frozen clinical tumor samples. The original dataset contained

samples from 9 different tumor types, of which I subsetted samples containing metastatic breast

cancer data.

The raw data were obtained with HiSeq X Ten desktop sequencing technology and Chromium 10x

sequencing platform. It is approximately 2.2 GB in size and contains 56.648 cells, comprising 9

different tumor samples. It contains the following cell types: macrophages, epithelial cells, T cells,

B cells, NK lymphocytes, endothelial cells, fibroblasts, hepatocytes, oligodendrocytes and

astrocytes.

13

https://www.zotero.org/google-docs/?e3yUU5


As shown in figure 6, prior to data filtering and preprocessing the dataset exhibits some internal

variance, characterized by a substantial presence of dying cells and considerable variability in cell

quality among distinct cell populations. In figure 7 in particular it is clear that B cells on average

show an abnormally high amount of RNA molecules (thus identifying them as doublets), while

astrocytes and NK lymphocytes express very high ratios of mitochondrial genes, most of which

exceed the 5% threshold.

After filtering and QC, the composition of the dataset changed substantially. Figures 8 and 9 are

provided to aid in the visualization of the new composition and celltype proportions of the dataset.

The data resized to 1.2 GB and is now composed of 28,483 cells. The cell population that suffered

the greatest loss is B cells, of which only 8.62% were left after QC. The other cell populations

maintained comparable proportions, ranging from 38 to 57%; the only exception is

oligodendrocytes, with 78.22% of cells surviving QC.

Figure 6: Violin plot of the raw Slyper dataset, displaying the amount of cells according to the number of RNA molecules contained,

the number of genes expressed and the percentage of mitochondrial genes expressed.
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Figure 7: Violin plot of the raw Slyper dataset, displaying the amount of cells according to the number of RNA molecules contained,

the number of genes expressed and the percentage of mitochondrial genes expressed. Cells are split according to their celltype.

Figure 8: Violin plot of the filtered, processed, Slyper dataset, displaying the amount of cells according to the number of RNA

molecules contained, the number of genes expressed and the percentage of mitochondrial genes expressed
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Figure 9: Violin plot of the filtered, processed Slyler dataset, displaying the amount of cells according to the number of RNA

molecules contained, the number of genes expressed and the percentage of mitochondrial genes expressed. Cells are split

according to their celltype.

Merging and preprocessing of the datasets

This processed merged dataset was obtained from the simple merging and preprocessing of the two

preceding datasets, without the implementation of any further methodology. It served as a baseline

and starting point for all subsequent project activities. Most importantly, it functioned as a

benchmarking point for assessing the effectiveness of data integration techniques against the

baseline scenario. It contains 60.460 cells, and weighs 2,4 GB.

As shown in figure 10, the dataset exhibits significant heterogeneity due to the large internal

variance within the constituent datasets and the substantial imbalance in cell type composition. The

overlap in cell population between the two datasets is relatively small and further biased by the

differing relative proportions of cells belonging to each dataset. Specifically, the shared cell types

include B cells, endothelial cells, epithelial cells, fibroblasts, and T cells. Notably, as seen in figure

10, the Slyper dataset predominantly contributes to epithelial cells (98.38%), whereas the Wu

dataset predominantly contributes to B cells (94.45%), endothelial cells (69.36%), fibroblasts

(75.45%), and T cells (88.20%). Upon visual examination of the data, the UMAP plots in figure 11
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exhibit a clear separation between the two datasets, with cell type separation often aligning with

dataset boundaries rather than true cell type distinctions.

Figure 10: Barplot of the processed merged dataset, displaying the amount of cells for each celltype, colored by their source

dataset.

Figure 11: UMAP plot of the processed merged dataset. On the left cells are colored according to celltype, on the right according to

the original dataset.
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Integration methods

Thanks to the modern advancements in sequencing technology and to the decreasing costs

associated it is now possible to obtain progressively larger amounts of data and to study it at

increasingly better resolution. However, in order to extract meaningful information, it is often

necessary to integrate data from multiple sources and acquired through a variety of different

techniques, which inevitably exposes it to a multitude of different biases that are challenging to

account for and to mitigate. This is especially pronounced for biological datasets in general and

scRNA-seq data in particular, where biases may arise due to biological grounds, such as the vast

diversity within cell samples, and laboratory methodologies, including specific techniques and

environmental fluctuations during the data acquisition34.

This issue highlights the importance of choosing appropriate ways to interface the different data

into a single, unified view that addresses these concerns and allows the analysis of the data in a

comprehensive manner. Different techniques have been developed for this purpose, each based on

different concepts and approaches. In general, there are two primary challenges in the selection and

implementation of effective data integration methodologies31:

● Arisal of batch effects: batch effects are apparent differences in data caused by technical

factors that are not reflective of actual variations in biological data. The most common roots

of this in scRNA-seq are the use of different sequencing technologies, instrumentation or lab

protocols, and changes even minute in experimental and environmental conditions.

● Loss of biological variability: it is the presence of apparent similarities in data that do not

reflect the variability in the biological data. This involves the technique mistaking true

biological variations for technical bias and overcorrecting, inducing a loss of information.

Reciprocal Principal Component Analysis (RPCA)

Reciprocal Principal Component Analysis (RPCA) is a data integration technique introduced by the

authors of a 2019 collaborative study in the journal Cell35. It is one of the first data integration

techniques devised specifically for scRNA-seq data. It was designed to allow the construction of

atlases of transcriptomic, epigenomic, proteomic, and spatially resolved single-cell data at tissue or

organismal level. Unlike its predecessor, canonical correlation analysis (‘CCA’), it is intended to
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have a conservative approach, assuming that the overlap in cell types between the constituent

datasets is not very large and that cells in different biological states are less likely to ‘align’ after

integration36.

RPCA is based on the identification of pairwise mutually nearest cell correspondences (called

“anchors”) between single cells across datasets. The algorithm first reduces the dimensionality of

the datasets using canonical correlation analysis. It then selects the integration features across

overlapping cell populations and identifies the anchors between any possible pair of datasets in the

shared low-dimensional representation. The cells are projected into the reduced PCA space using

the aforementioned anchors. Two scores are then calculated: an anchor score for each anchor pair

and a cell similarity score for each cell. These scores are weighted together to calculate a correction

vector, which is then applied to every cell in the dataset to correct gene expression and finally

integrate the data. Figure 12 is provided to aid in the visual understanding of the RPCA algorithm.

Figures 13 and14 are provided to offer an initial visual understanding of the results of the data

integration process. An initial examination and comparison of the UMAP plots for the integrated

dataset and the preprocessed one reveals a preliminary degree of mixing. This mixing occurs across

dataset boundaries among cells of the same or similar cell types. However, the degree of mixing

appears to be limited, with the datasets largely clustering separately.

Figure 12: “In order to relate different experiments to each other, we assume that there are correspondences between datasets,

and that at least a subset of cells represent a shared biological state. Inspired by the concept of mutual nearest neighbors (MNNs),

we represent these correspondences as two cells (one from each dataset) that we expect to be defined by a common set of

molecular features“. Image taken from T. Stuart et al., “Comprehensive integration of single cell data”
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Figure 13: UMAP plots of the dataset integrated using RPCA (on the left) and of the processed merged dataset (on the right). Cells

are colored according to source dataset.

Figure 14: UMAP plots of the dataset integrated using RPCA (on the left) and of the processed merged dataset (on the right). Cells

are colored according to celltype.
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Fast Mutual Nearest Neighbour correction (FastMNN)

Fast Mutual Nearest Neighbors correction (FastMNN) is a data integration technique introduced by

the authors of a 2018 collaborative study in the journal Nature Biotechnology37. It allows for

integration of different datasets without requiring predefined or equal population compositions

across batches. This method relies on the following assumptions: there is a shared population of

cells between batches, the technical variations introduced by different batches are largely

independent of the underlying biological differences, and they are much smaller than the

biological-effect variation between different cell types. Unlike other techniques derived from bulk

RNA-seq, it does not assume that the composition of the cell population within each batch is

homogenous37.

FastMNN is based on the identification of mutual nearest neighbors between batches and the

calculation of their differences in gene expression38. First, the algorithm performs PCA across all

cells in all batches, in order to reduce dimensionality and decrease technical noise. Then, it

identifies mutually nearest neighbors between each reference batch and a target batch, which are

pairs of cells across each pair of batches that resemble each other the most. The average batch

vector is used to remove variation in both reference and target batches. Correction vectors are then

computed for each paired cell in the target batch. Finally, locally weighted correction vectors are

used to correct the target batch, which is then merged with the reference. The process is then

iterated on all batches in the dataset. Figure 15 is provided to aid in the visual understanding of the

FastMNN algorithm.

Figures 16 and 17 offer an initial visual understanding of the results of the data integration process.

Upon initial examination and comparison of the UMAP plots for the integrated dataset and the

preprocessed one, it becomes evident that there is a limited degree of mixing between the two

datasets, with the majority of this occurring at the boundary between the two. It is evident that there

is a greater degree of mixing across cell type boundaries, particularly in the case of the Wu dataset.
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Figure 15: “The difference in expression values between cells in an MNN pair provides an estimate of the batch effect, which is

made more precise by averaging across many such pairs. A correction vector is obtained from the estimated batch effect and

applied to the expression values to perform batch correction.”. Image taken from L. Haghverdi, A. T. L. Lun, M. D. Morgan, and J. C.

Marioni, “Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors,”

Figure 16: UMAP plots of the dataset integrated using FastMNN(on the left) and of the processed merged dataset (on the right).

Cells are colored according to source dataset.
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Figure 17: UMAP plots of the dataset integrated using FastMNN (on the left) and of the processed merged dataset (on the right).

Cells are colored according to celltype.

Harmony

Harmony is a data integration technique introduced by the authors of a 2019 collaborative study in

the journal Nature Methods39. It was designed to provide a computationally sound algorithm that

scales well with dataset size, identifies both broad and fine-grained populations, and can easily

accommodate complex experimental design across multimodal data.

Harmony is based on fuzzy clustering, an implementation of clustering in which each data point is

initially assigned to more than one cluster39. The algorithm starts by projecting the cells onto the

space obtained through PCA and grouping them into multi-dataset clusters. Initially every cell is

assigned to multiple clusters, in order to account for smooth transitions between different cell states.

Clusters containing disproportionate amounts of cells from a small subset of datasets are penalized.

For each cluster, the algorithm computes a global centroid and cluster-specific linear correction

factors, as well as correction factors specific to every identified cell-type and cell-state. Finally,

each cell is assigned to a cluster-weighted average of these correction factors and a linear

adjustment function is applied to correct it with its unique correction factor. The algorithm is then

iterated until the assignment of every cell into a cluster becomes stable. Figure 18 is provided to aid

in the visual understanding of the Harmony algorithm.
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As shown in Figures 19 and 20, a preliminary visual overview suggests that, compared to the

processed merged dataset, Harmony displays a limited but still comparatively higher degree of

intermixing , forming clusters of cells belonging to similar cell types with limited relation with the

originating dataset. Given the differing cell type proportions between the two datasets, epithelial

cells appear to be particularly well-mixed.

Figure 18: “PCA embeds cells into a space with reduced dimensionality. Harmony accepts the cell coordinates in this reduced space

and runs an iterative algorithm to adjust for dataset specific effects.” Schematic view of the batch correction process according to

the Harmony method. Image taken from I. Korsunsky et al., “Fast, sensitive and accurate integration of single-cell data with

Harmony,”

Figure 19: UMAP plots of the dataset integrated using Harmony (on the left) and of the processed merged dataset (on the right).

Cells are colored according to source dataset.
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Figure 20: UMAP plots of the dataset integrated using Harmony (on the left) and of the processed merged dataset (on the right).

Cells are colored according to celltype.

Linked Inference of Genomic Experimental Relationships (LIGER)

Linked Inference of Genomic Experimental Relationships (LIGER) is a data integration technique

introduced by the authors of a 2019 collaborative study in the journal Cell40. It was designed to

effectively integrate datasets that present high levels of internal and reciprocal heterogeneity in the

data, with large differences in the number of cells and of features and in sequencing depth.

Compared to other techniques, LIGER does not assume that differences within the data arise only

due to batch effects and technical variations, but may also be reflective of true variance between

widely differing cell populations. It is therefore devised to allow identification of shared and

dataset-specific characteristics across diverse health statuses, individuals, species, and data

modalities40.

LIGER is based on iterative non-negative matrix factorization (iNMF), an algorithm performing the

decomposition of the gene expression matrix into two constituent matrices, each containing only

non-negative elements, therefore making them easier to inspect. LIGER uses iNMF to infer a set of

dataset-specific underlying factors (referred as ‘metagenes’), which characterize every cell and

often correspond to specific biological signals. After fine-tuning and normalization, cells are

clustered together and labeled according to analogous maximum factor loadings. Finally, a shared
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factor neighborhood graph is constructed, connecting cells with similar factor loading patterns.

Figure 21 is provided to aid in the visual understanding of the LIGER algorithm.

For an initial visual assessment of the data integration results, figures X and Y are displayed in

figures 22 and 23. The UMAP plots reveal extensive intermixing across both dataset and cell type

boundaries. There is minimal discernible separation between the Slyper and Wu datasets,

particularly among epithelial and cancer epithelial cells.

Figure 21: “ The difference in expression values between cells in an MNN pair provides an estimate of the batch effect, which is

made more precise by averaging across many such pairs. A correction vector is obtained from the estimated batch effect and

applied to the expression values to perform batch correction.”. Image taken from J. D. Welch, V. Kozareva, A. Ferreira, C. Vanderburg,

C. Martin, and E. Z. Macosko, “Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity,”
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Figure 22: UMAP plots of the dataset integrated using LIGER (on the left) and of the processed merged dataset (on the right). Cells

are colored according to source dataset.

Figure 23: UMAP plots of the dataset integrated using LIGER (on the left) and of the processed merged dataset (on the right). Cells

are colored according to celltype.
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Metrics

k-nearest Neighbour Batch Effect Test (kBET)

The k-nearest neighbor batch-effect test (kBET) metric was introduced in 2019 in the journal

Nature Methods in a collaborative study41. It was devised as a robust, sensitive and user-friendly test

to objectively quantify batch effects It was the first metric designed specifically for scRNA-seq

data.

The kBET metric is based on the repeated application of Pearson's 𝜒2 test to randomly selected

neighbors42. The null-hypothesis is “the data is well-mixed”. The algorithm takes an integrated

dataset as an input. It first creates the k-nearest neighbor (kNN) matrix. Then, it selects 10% of all

samples and rates the distribution of batch labels within samples according to the null-hypothesis. If

the distribution of labels in the batches is sufficiently similar to that of the entire dataset, the

null-hypothesis is accepted. The function returns a binary result for each of the tested samples, and

finally it averages the test rejection rate across all samples.

Intuitively, kBET can be understood as a method for assessing whether the distribution of labels in

subsamples of the dataset is similar to that of the entire dataset. The kBET score ranges from 0 to 1,

with values closer to 0 indicating better mixing of labels throughout the dataset, and higher values

suggesting a non-homogeneous distribution of labels within the dataset.

While useful, it is important to be mindful of a few issues when using this metric. First, it is highly

sensitive to any kind of bias, which can potentially inflate the score. Second, kBET is sensitive to

the quality of the data, and low-quality data may result in artificially high values. Third, the null

hypothesis of kBET, which assumes that a homogeneous distribution of labels is expected, may not

be applicable for all datasets. This is especially true for datasets with complex or subtle batch

effects. Fourth, kBET is computationally intensive and does not scale well with large datasets.

In this project the kBET metric was applied to the “authors” label. For computational efficiency and

to effectively capture the diversity of the data, PCA embeddings were used for the computations.

Given the very high computational demands of kBET, every dataset was reduced in size to 250 cells

through subsampling.
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Principal Component Regression (PCR)

Principal Component Regression (PCR) is a regression analysis technique that models the

relationship between a target variable and predictor variables. It uses principal components to

estimate the unknown regression coefficients in a standard linear regression model.

As a metric, the algorithm takes as an input a dataset, a list of batches (used as predictor variables)

and a target label (used as a dependent variable)43. First, PCA is used in order to generate principal

components from the predictor variables. Then, the dependent variables are then regressed on the

PCA loading obtained using the method of least squares. A vector of estimated regression

coefficients is obtained, and then transformed back in order to obtain a final PCR estimator, which

is then used to predict the target label based on the predictor variables.

This score of this metric represents the number of principal components needed to explain 100% of

the variance in the target variable. Intuitively, it can be understood as a measure of how efficient the

data integration technique is at using the predictor labels to calculate clusters. The predictor

variables used in this project were “authors”, “sample” and “celltype”, while the target variable was

the “cluster”.

Local Inverse Simpson's Index (LISI)

The Local Inverse Simpson's Index (LISI) is a metric introduced in 2019 by Korsunsky, I. et al in

the journal Nature Methods. It was designed to provide good evaluation of batch effects in

scRNA-seq data while also accounting for local distances between cells and data imbalance. It is an

extension of Simpson’s diversity index, a metric used in ecology to measure diversity within

populations.

First, a perplexity parameter k is chosen, providing a measure of uncertainty in the value of a

sample from a discrete probability distribution44. After that, the cell embeddings are computed, and

a kNN graph is built on the cell embeddings. Then, Simpson’s diversity index is computed using the

formula DL(S) = ∑l∈L(nl/n)2 . S is the kNN graph built from the cell embeddings, L is the specified

set of labels, nl is the number of cells in the graph carrying the label l and n is the total number of

cells. The LISI score is finally computed as the inverse of the value just obtained.
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Intuitively, the LISI score may be understood as the number of cells that need to be selected from a

batch before the same label is observed twice34. Its value may range from 0 to N, where N is the

number of different labels in the set chosen.

The project utilized the PCA reduction algorithm to calculate kNN graphs, simplifying the

calculation and allowing good performance for data information capture. The dataset was reduced

to 800 cells to improve computability. A perplexity value of 30 was chosen, due to its commons as a

standard value in the field. Technical bias was assessed through the “authors” and “sample” labels,

while the “celltype” and “cluster” labels were used to assess the conservation of biological

variability and clustering quality.

Average Silhouette Width (ASW)

Average Silhouette Width (ASW) is a method of interpretation and validation of consistency within

clusters of data, derived from unsupervised learning methodologies. It is based on the silhouette

method introduced by Peter J. Rousseeuw in Journal of Computational and Applied Mathematics in

1987, and over the years has become one of the main metrics used in validation of scRNA-seq

clustering.

The algorithm takes a dataset and a cluster label as an input. For each cell i in the dataset, the

algorithm first calculates the average distance a(i) between the cell and every other cell in the same

cluster45. The distance metric may be either Euclidean or Manhattan, in this thesis the Euclidean

distance was used. Next, it computes the average distance b(i) between that cell and every other cell

in the nearest cluster. Then, the algorithm computes the silhouette score for the cell using the

following formula: s(i)=(b(i)-a(i))/max{a(i), b(i)} . Finally, all the values are averaged to obtain the

ASW score for the specified label.

ASW scores evaluate the average similarity between components within a batch, compared to

components in other batches34. The score ranges from -1 to +1, with values closer to 1 indicating

well-separated clusters with high internal similarity, 0 indicating overlapping clusters, and -1

indicating strong dissimilarity within clusters and high levels of misclassification. The metric was

developed in two versions: the standard one, and the isolated labels ASW metric. The latter is the
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ASW metric applied to a subset of the integrated dataset containing only “isolated labels” (cells

belonging to celltypes that are present only in a maximum of 5 different samples).

In this project, the ASW metric was used to evaluate both effectiveness in removal of batch effects

and effectiveness against loss of biological information, with the isolated labels ASW metric

assessing this specifically on outlier data. For the standard ASW metric, the data was downsampled

down to 800 samples to ease computability. For computational efficiency and to effectively capture

the diversity of the data, PCA embeddings were used for the computations. The evaluation of

technical biases was conducted based on the ”authors” and “sample” labels, while the assessment of

biological variability preservation and clustering quality utilized “celltype” and “cluster” labels.

Due to the smaller size of the dataset, the isolated labels ASW metric is computed only on the

“sample”, “celltype” and “cluster” labels.

Adjusted Rand Index (ARI)

The Adjusted Rand Index (ARI) is a metric used to validate clustering performance. It was

introduced by Hubert and Arabie in 1985, and it is based on Rand’s Index, developed by William

Rand and published in the Journal of the American Statistical Association in 1971.

The algorithm takes as an input two labeled sets X and Y. It then computes the Rand index using the

formula RI = (a+b)/(a+b+c+d), where a represents the number of pairs of elements sharing the

same label in both X and Y, b represents the number of pairs of elements that do not share a label in

either X or Y, and c represents the number of pairs of elements that share a label in X but not in Y,

and d represents the number of pairs of elements that share a label in Y but not in X46. Then, the

ARI is computed using the formula ARI = (RI - RIexpected) / (RImax - RIexpected). RIexpected is the RI score

computed using a contingency table47 and RImax is the maximum RI score, which is 1.

Intuitively, ARI can be understood as measuring the degree of agreement between an estimated

clustering and a reference clustering, adjusted for the possibility that the agreement is due to

chance34. The score can range from 0 to 1, where 0 indicates a complete lack of agreement between

the two label sets and 1 indicates complete agreement. In this project, “cluster” was used as the

reference label. Technical bias was measured using the “authors” and “sample” labels, while

biological conservation was evaluated using the “celltype” label.
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Normalised Mutual Information (NMI)

Normalized Mutual Information (NMI) is a metric used to evaluate network partitioning performed

by community finding algorithms, measuring the degree of overlap between two clusterings. It is a

normalization of the Mutual Information (MI) score, a metric introduced by Claude E. Shannon in

1949 in the journal Bell System Technical Journal48.

First, the algorithm takes as an input two labeled sets X and Y49. It then computes the MI score as

MI(X, Y) = H(X) + H(Y) - H(X, Y), where H(X) and H(Y) are the marginal entropies of the two sets

and H(X, Y) is their joint entropy. There are multiple normalization methods used in literature to

compute NMI, in this project normalization was performed by dividing the MI score by the

maximum of the two marginal entropies, using the formula NMI(X, Y) = MI(X, Y)/max{H(X), H(Y)}.

Intuitively, it may be seen as expressing how much a chosen set of labels is informative about the

true clustering of the cells34. The score may range from 0 to 1. An NMI score of 0 indicates that the

two clusterings are completely independent, meaning that there is no mutual information between

them. An NMI score of 1 indicates that the two clusterings are identical, meaning that there is

perfect correlation between them. In this project the reference label used was “cluster”. Technical

bias was measured using the “authors” and “sample” labels, while biological conservation was

evaluated using the “celltype” label.

Trajectory Conservation

Trajectory conservation is a metric introduced by Malte D. Luecken, M. Büttner et al. in their 2021

in the journal Nature Methods. It measures the degree to which the developmental paths of cells,

known as trajectories, are preserved during the process of integrating data from two datasets.

The algorithm first computes the pseudotime (a measure of a cell's progress along its developmental

path50) of all cells between two datasets, a reference dataset and a comparison dataset34. The

algorithm then calculates Spearman’s rank correlation coefficient between the two, defined as the

Pearson correlation coefficient between the rank variables. Finally, the values are normalized

between 0 and 1.The score may vary between 0 and 1, with 0 indicating lack of preservation on cell

development proxy information and 1 total preservation of it.
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Pseudotime may be computed in several different ways. In this project the first principal component

was used, as it separates well cells by cell state while also being computationally efficient50. The

referenced dataset used was the processed merged dataset, while the comparison dataset was the

integrated dataset.

The trajectory conservation metric presents a few limitations. Firstly, it’s very sensitive to the

method used for the calculation of pseudotime, and results may not always be comparable.

Secondly, it assumes that cells develop on a linear, natural developmental path, which may not

always be the case for pathological populations51. Lastly, it assumes that biological information is

more readily available before data integration, which may not always be the case.

Ratio of Highly Variable Genes preserved

The ratio of preserved highly variable genes (HVGs) is a metric introduced by Malte D. Luecken,

M. Büttner et al. in their 2021 study 'Benchmarking atlas-level data integration in single-cell

genomics' published in the journal Nature Methods. It serves as a proxy for the preservation of the

most informative components of the biological signal.

The HVG ratio is calculated as HVG(Y)= overlap(X,Y)=|X∩Y|/min(|X|, |Y|), where X represents the

highly variable genes of the reference non-integrated dataset (the processed merged dataset) and Y

represents the highly variable genes of the integrated dataset34. In this project, a cutoff value of 500

HVGs was used for gene selection. This ensured that only the most highly variable genes were

tested, which encapsulate most of the variance and are most representative of biological variability.

The score may range from 0 to 1, with 0 indicating a complete loss of HVGs after integration and 1

indicating a complete preservation of them.

There are multiple methods in the literature to identify HVGs. In this project, the “dispersion”

method provided by the Seurat platform was used. The algorithm selects genes based on the

logarithm of the gene expression dispersion, which is defined as the variance-to-mean ratio si2 / X̄i
Genes with larger expression dispersion are selected with higher priority52. The dispersion method

was chosen due multiple reasons. Firstly, Seurat methods are the most widely used in literature.

Secondly, among Seurat methods, dispersion provides the highest efficiency in terms of runtime53.

Thirdly, it performs well with datasets of various sparsity (ratio of 0 values in the gene expression
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matrix). Fourthly, this method is the least likely to result in errors when benchmarking diverse data

integration techniques.

Cell Cycle Conservation Score

The cell cycle conservation (CCC) score is a metric that evaluates the ability to capture the

cell-cycle effect before and after integration. It was introduced in the 2021 study 'Benchmarking

atlas-level data integration in single-cell genomics' published in the journal Nature Methods by

Malte D. Luecken, M. Büttner et al. The score is based on the cell cycle scoring method, which was

introduced by Itay Tirosh, Benjamin Izar et al. in 2016.

The algorithm is divided into two main sections. The first section computes a score for the S phase

(DNA synthesis phase) and the G2/M phase (DNA damage checkpoint before mitosis) for each

cell54. These scores are calculated by aggregating the expression levels of a list of gene markers

specific to each phase. The phase of each cell is determined based on its S score and G2M score.

Cells with low S and G2/M scores are in the G1 phase, while cells with high S score and low G2/M

score are in the S phase, and cells with high G2/M score and low S score are in the G2/M phase.

The second section computes the CCC score for each phase using the formula CCC score = 1 - |

(Varintegrated - Varmerged) / Varmerged |34. Varintegrated is the variance of the score of the specified phase in

the integrated dataset, and Varmerged is the variance of the score of the specified phase in the merged

dataset. The conservation score for the cell cycle was computed by averaging the two scores

calculated for the S and G2/M phases. The score ranges from 0 to 1, with 0 indicating no

conservation of variance explained by the cell cycle and 1 indicating full conservation of cell

cycle-related variance.

Results

All metrics were classified in two categories: metrics informing on batch effect removal and metrics

informing on preservation of biological variability. In green are the cells associated with the best

results for the metric, while in red are the cells displaying the worst result. It is important to note
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that red doesn’t not necessarily denote a bad result, and green does not necessarily denote a good

result.

Metrics pertaining batch effects:

Integration Methods

Metrics RPCA FastMNN Harmony LIGER

kBET authors 1 0.478 0.478 0.173

LISI
authors 1.333 1.162 1.162 1.161

sample 3.925 3.509 3.509 3.671

ASW

Non

isolated

authors 0.065 0.140 0.140 0.090

sample -0.108 -0.044 -0.044 -0.046

Isolated sample 0.032 0.075 0.075 0.074

ARI authors 0.085 0.120 0.212 0.029

sample 0.314 0.403 0.289 0.127

NMI
authors 0.135 0.164 0.172 0.070

sample 0.454 0.449 0.401 0.325

Metrics pertaining preservation of biological variability and model quality:

Integration Methods

Metrics RPCA FastMNN Harmony LIGER
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PCR 29 dimensions 31 dimensions 16 dimensions 43 dimensions

LISI
celltype 1.401 1.328 1.328 1.331

cluster 1.763 2.695 1.310 3.597

ASW

Non

isolated

celltype 0.091 0.144 0.144 0.126

cluster 0.070 0.088 0.158 -0.106

Isolated
celltype 0.471 0.478 0.478 0.401

cluster 0.175 -0.179 0.346 0.030

ARI celltype 0.254 0.291 0.587 0.104

NMI celltype 0.448 0.454 0.590 0.319

Trajectory conservation 0.438 1 1 0.348

HVG ratio 0.598 0.608 1 1

Cell Cycle Conservation 1 0.957 1 1

RPCA results

RPCA is one of the two top performers in regards to removal of batch effects, while also adequately

preserving biological information.

When assessing the metrics related to the preservation of biological information, RPCA does not

result as the top-perfomer method overall. Celltype-ARI and NMI scores are in the middle of the

range of values assumed by this metric among the four algorithms, and indicate that celltype-related

information is being used significantly to cluster cells together. This fact is further reinforced by the

LISI scores for clusters and celltype, which point at a good separation between clusters. The ASW

scores for isolated labels indicate that the algorithm performs well with outlier data, though the
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lower results for non-isolated ASW hint at RPCA's limitations with evaluating the dataset

comprehensively. This is supported by the value for the HVG ratio, which is the lowest among the

four data integration techniques and indicates an incomplete consideration of gene expression

variability. The low trajectory conservation score, although not necessarily all that meaningful on its

own, also supports this conclusion. Additionally, the high value of the CCC score indicates that the

cell cycle is well accounted for during the data integration process. The PCR value of 29 PCs points

at a high degree of effectiveness in using the predictor labels to account for variance in the data.

Regarding batch effect removal, RCPA exhibits the best results for 50% of the metrics. The high

kBET result is well explained by the size and unbalancedness of the dataset. The ASW scores for

technical labels, as well as the authors- and sample-LISI scores, are the highest among the four data

integration techniques, and demonstrate a successful removal of technical bias. The sample-NMI

score is relatively high, ranking as the worst among the four algorithms and falling in the middle of

the range of possible values, whereas the authors-NMI score is the second highest, indicating that

the dataset-specific bias has been effectively mitigated, but that the sample-specific bias remains.

The ARI scores follow the same pattern and also support this conclusion.

Overall, it achieves good performance in removing batch effects but does not stand out as a

top-performing method in conserving biological variability. The residual presence of

sample-specific bias is well explained by the conservative approach of the algorithm. Overall,

RPCA demonstrates good and well-balanced performance, particularly given the unbalanced source

datasets.

FastMNN results

FastMNN's performance is balanced across metrics related to both the preservation of biological

information and the removal of batch effects. The algorithm prioritizes the preservation of

biological information, being somewhat less effective at removing batch effects.

With respect to metrics on the preservation of biological information, FastMNN performs well. The

HVG ratio is only around 60%, and, when combined with the good but not great CCC score, it

suggests an incomplete accounting of the variance of gene expression. The NMI score for celltype

is the second highest, but the corresponding ARI score is only in the middle of the range assumed
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by this metric among the 4 data integration algorithms, suggesting that clustering has been effective

in grouping together similar cellypes, but not to the same degree at separating clusters from each

other. This view is supported by the value of the celltype-LISI score, which is one of the best two

for this metric, and the comparatively high value of the cluster-LISI score, the second highest

among the data integration techniques. This is further reinforced by the ASW scores for the celltype

label, tying together with Harmony for best scores, and comparatively worse for the cluster label,

close to 0 or displaying a negative value. In particular, the isolated-label celltype ASW score

suggests that the algorithm struggles to cluster together outlier data. The PCR value is relatively

low, indicating that FastMNN is quite efficient.

FastMNN does not result as a top-perfomer method in removing batch effects, with values that,

while among the worst for the four algorithms, are still close to those achieved by the other

methods. The low kBET score, at around the middle of possible values for this metric, proves that

after the data integration process, the data is overall quite well-mixed. Interestingly, the sample

scores for ASW, LISI, ARI and NMI are all among the worst across the four data integration

methods, demonstrating a residual presence of sample-specific bias. However, the corresponding

scores for the “authors” label are significantly better, indicating that the bias specific to the source

datasets has been satisfactorily mitigated.

In conclusion, FastMNN displays the second best performance in preserving biological information,

while not standing out regarding batch removal. Although there is a residual presence of

sample-specific bias, it can be attributed to the assumptions behind the algorithm, particularly the

assumption that there is always a shared population between batches.

Harmony results

Harmony seems to be the top performer in conserving biological variability. Although its results in

regards to batch effects are overall the weakest, it is still comparable to the other methods.

When looking at the metrics regarding the preservation of biological information, Harmony is by

far the best performer method across the 4 methods. As evidenced by celltype- ARI and NMI

scores, it is particularly good at using celltype-specific information in clustering cells together. The

ASW metrics point to a high degree of homogeneity in the way the gene expression data is adjusted
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for clusters and celltypes, especially for the isolated labels. This fact is reinforced by the values of

celltype- and cluster-LISI, with the former especially revealing a strong homogeneity and degree of

separation in clustering of cells belonging to the same cell type. The HVG, CCC and trajectory

conservation scores are all at 1, meaning that Harmony very accurately captures data related to gene

expression variability and cell cycle stage. The PCR value of 16 PCs shows that the data integration

method effectively utilizes the predictor labels to calculate clusters and account for variance in the

data.

As for metrics pertaining batch effects, Harmony’s performance is the weakest among the four

algorithms, although even the worst scores still align with the higher-performing values achieved by

other data integration techniques. The authors- and sample-ASW, although among the highest

measures, are still close to 0 and suggest that, after data integration is performed, the two source

datasets display greater similarity to each other than they do to one another. The corresponding LISI

scores also indicate that the source datasets tend to cluster together. The authors-ARI and NMI

values are close to the bottom of the range of possible values for this metric and point to a limited

persistence of source-specific bias, while sample-NMI is close to the middle of the range of values,

indicating that clustering was affected by sample-specific factors. However, the kBET score is less

than half of its possible value, signifying that the data is overall quite well-mixed.

In conclusion, Harmony effectively preserves biological information, albeit at the expense of batch

removal. The comparatively lower performance in removing technical bias may be due to the high

degree of dissimilarity between the two source datasets. Overall, Harmony's performance aligns

well with the underlying assumptions of the data integration algorithm.

LIGER results

LIGER proves to be one of the top performers at removing batch effects. However, its performance

at handling the preservation of biological information is not very good.

When assessing the preservation of biological information, LIGER is the worst performer. The

scores for celltype-ARI and NMI are the lowest among the four techniques,with a significant gap

compared to the others, indicating that celltype-related information is scarcely used in clustering.

All ASW scores, except the isolated celltype-ASW score, are very close to zero or display negative
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values, suggesting inadequate and chance clustering of similar cells. The cluster-LISI score is

markedly the highest and also supports the view that the clusters are poorly separated. The PCR

score of 43 PCs shows that LIGER is very inefficient at using the predictor labels to calculate

clusters and account for variance in the data. However, the HVG ratio and CCC scores of 1

demonstrates the algorithm's effectiveness in preserving cell cycle-related information and

capturing highly variable genes.

LIGER’s performance in terms of batch effect removal demonstrates to be the best one among the

algorithms employed. The authors- and sample- scores for ARI and NMI are the lowest within the

group of four data integration techniques, with the authors- ones being especially close to 0,

indicating an almost complete absence of bias specific to source datasets and a low presence of

sample-specific one. The LISI scores for both authors and samples are relatively close to the upper

range of values, indicating a partial separation of clusters present due to source-specific factors. The

kBET value is the lowest, indicating a very high degree of homogeneity between cells in the dataset

after data integration. However, given the imbalanced nature of the source datasets, this warrants

scrutiny, as it suggests a loss of biological information.

In conclusion, LIGER performs well at removing batch effects, but at the significant expense of not

effectively preserving biological information. This result aligns with the assumptions of the

algorithm, which was designed to integrate very highly diverse cell populations and may therefore

not work as well with comparatively more homogeneous datasets.

Evaluation and comparison of the techniques

Harmony, FastMNN, RPCA and LIGER underwent a comprehensive analysis to benchmark their

ability to integrate data well and in a useful fashion. Their performance was evaluated based on

their effectiveness at clustering together similar cells, preserving gene expression variance, and

removing batch effects. More weight was given to the preservation of biological information, as it is

crucial for a successful bioinformatics analysis.

When evaluating the four data integration algorithms together with respect to the conservation of

biological variance, all the methods perform similarly in regards to clustering similar cells together.

The main differences lie in how well the algorithms preserve the variance of the gene expression

and delineate distinct clusters. Harmony emerges as the top performer, exhibiting a robust
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performance both comprehensively and with outlier data, while doing so in a computationally

efficient way. FastMNN performs similarly, although it displays a higher degree of sample-specific

bias. RPCA is computationally efficient and quite effective with outlier data, however, when

looking at the data comprehensively, it seems to partially conflate biological information and

technical bias. Finally, LIGER’s performance is noticeably worse than that of the other methods,

and the algorithm does not separate clusters effectively.

In regards to removal of batch effects, all methods seem to perform quite similarly at removing bias

that is specific to the source dataset. The main differences lie in their ability to account for

sample-specific bias. Harmony’s approach is the most conservative one, resulting in the

comparatively speaking poorest performance. Of the four algorithms it is the worst at removing

dataset-specific technical bias, although it performs comparatively better at mitigating

sample-specific bias. FastMNN slightly outperforms Harmony, demonstrating effectiveness in

mitigating technical bias while maintaining a balanced approach. However, it is the least effective

method at removing sample-specific bias. RPCA is the best performer, displaying minimal

persistence of sample-specific bias. LIGER, despite achieving respectable ARI, NMI and kBET

scores, displays non-optimal results in ASW and LISI, indicating an unbalanced and probably

overly thorough removal of potential bias.

In the realm of overall performance, RPCA emerges as the most balanced approach among the

evaluated techniques. It consistently performs well across the different source datasets and requires

few assumptions regarding the source data, making it a good choice for performing data integration

in scenarios with limited prior knowledge or significant dissimilarities between the source datasets.

Harmony’s methodology prioritizes the preservation of biological information, albeit at the partial

cost of a less efficient removal of batch effects. Given its good overall performance it may be

considered to be the top method of choice, especially with relatively homogeneous datasets.

FastMNN, while comparable to Harmony in most aspects, underperforms slightly in biological

conservation, probably due to its restrictive assumptions. Finally, LIGER is very prone to

overcorrection of the data and focuses mostly on technical bias removal, at the expense of

preservation of gene expression variance. However, it may be a good choice for extremely

unbalanced and internally diverse datasets.

Figures 24 and 25 can offer a final aid in understanding the benchmarking results from a visual

perspective. Visually the results seem to align with the benchmarking results. Higher degrees of

intermixing across dataset boundaries seem to correlate with better results for the batch removal
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metrics, while higher degrees of clusterization of cells belonging to similar celltypes seem to

correlate with better scores in conservation of biological variability. LIGER displays the highest

degree of intermixing across both dataset and celltype boundaries. RPCA exhibits a much lower but

still noticeable level of mixing between datasets, with a comparatively higher extent of

clusterization by similar celltype. Harmony demonstrates the highest degree of clustering of cells

belonging to related celltypes, with a lower degree of dataset mixing that is present mostly among

epithelial cells. FastMNN presents the lowest magnitude of intermixing between datasets, while

having a higher degree of mixing between celltypes, particularly between cancer epithelial, B and T

cells.

Figure 24: UMAP plots of the datasets integrated using 4 data integration techniques, grouped by source dataset.
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Figure 25: UMAP plots of the datasets integrated using 4 data integration techniques, grouped by celltype.

Conclusions and final considerations

In recent years, the field of bioinformatics has experienced a growth unprecedented in its history.

The advent of new technological advances has enabled the collection of ever-increasing amounts of

data and the execution of increasingly complex calculations and scientific simulations. This has

allowed for the study of medical conditions in ways that were previously impossible. However, in

order to have sufficient data to draw meaningful conclusions, it is often necessary to integrate

together datasets originating from different studies and obtained under different environmental

conditions and with different protocols. As single-cell omics is still a relatively novel field, the

standardization of methods and procedures is still in many ways ongoing.

43



The main objective of this project was to analyze the performance of various integration tools, in

order to determine the most effective ones in the context of breast cancer. Given the abundance of

existing literature on Python-based methods, this project focused on R-based integration techniques,

specifically RPCA, FastMNN, Harmony, and LIGER. To achieve this, the first step was to identify

prelabeled breast cancer datasets, which were then loaded and processed. Due to the nascent nature

of the field, there are as yet no established standards regarding data type and structure, which made

this step especially challenging. Afterwards, I wrote the code for data integration and for the

metrics. I experimented with different approaches to identify the most effective method, particularly

in terms of computational efficiency, given the substantial data volume and the time required for

computation. In addition to learning the R programming language, I had to gain familiarity with the

statistical framework underlying the analysis, which relied heavily on machine learning methods. I

also had to develop a working knowledge of cancer biology to evaluate the results and their

biological implications.

The project presents several limitations. First, the availability of only two datasets limits the

possibility for meaningful comparisons in larger studies. Second, time constrictions meant that the

testing of only four data integration techniques in their standard forms was achievable, without

extensive experimentation with algorithm parameters. A third limitation was the reliance on

datasets that were prelabeled for celltype, which introduced an unknown variable in the

benchmarking process, as the specific labeling methodology was not described in the studies and is

not standardized in the field. Moving forward, a future expansion of this project could address these

limitations by using a broader range of unlabeled datasets, which could be then labeled using a

common, unified methodology. Additionally, more integration techniques could be tested, each

using a variety of different parameter settings. The introduction of objective metrics to assess

computational and time complexity would provide an additional measure for evaluating usability

and efficiency in practical settings.
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