DISTRIBUTED ALGORITHMS FOR LOCALIZATION IN
WIRELESS SENSOR NETWORKS

NICOLA PIOVESAN

Master’s degree in Telecommunication Engineering
Department of Information Engineering
University of Padova

April 2016

Nicola Piovesan: Distributed algorithms for localization in Wireless Sen-
sor Networks, Master’s degree in Telecommunication Engineering, ©
April 2016

SUPERVISORS:
Prof. Tomaso Erseghe

LOCATION:
Padova

ABSTRACT

In this thesis work we introduce the concept of localization in Wire-
less Sensor Networks, starting from ranging measurements available
at sensor nodes. Different measurements methods are explained.

We consider different solutions available in the literature and then
we introduce the distributed localization algorithms proposed by two
recent publications: the first solves the localization problem by opti-
mizing a convex relaxation of the original problem, while the second
solves the original non-convex problem in an ADMM fashion.

We initially exploit ADMM to speed up the convergence of the
convex algorithm in terms of number of required iterations. Then,
we propose an hybrid ADMM algorithm that initially considers the
convex problem, exploiting its fast convergence and then switches
to the original non-convex problem, in order to refine the achieved
results.

ii

CONTENTS

I
1

II

INTRODUCTION 1
INTRODUCTION 3
1.1 Localization 5
1.1.1 Centralized and distributed approaches 5
OVERVIEW ON MEASUREMENT METHODS 9
2.1 Received Signal Strength Indicator 9
2.1.1 Errors 10
2.2 Time of Flight 11
2.2.1 Errors 12
2.3 The Cramer Rao Lower Bound 13
2.3.1 Computation of the CRLB 14
2.4 Some derivation from the CRLB computation 15
LOCALIZATION ALGORITHMS 19
CONVEX RELAXATION OF THE PROBLEM 21

3.1 The localization problem 21
3.2 Make the problem convex 23

3.3 Analytical solution to minimization problem 24
3.4 Distributed localization 25
3.4.1 Proof of the problem equivalence 26

3.4.2 Gradient and Lipschitz constant of g =~ 27
3.4.3 Gradient and Lipschitz constant of h 28

3.4.4 Analytical solution to orthogonal projection func-

tions 29
3.5 Distributed Parallel Algorithm 29
3.6 Numerical simulations 30

ALTERNATING DIRECTION METHOD OF MULTIPLIERS
4.1 Compact form of the problem 37
4.2 Distributed ADMM algorithm 37

4.2.1 ADMM iterative algorithm 38

4.2.2 Distributed ADMM solution 39
APPLICATION OF ADMM IN A CONVEX SCENARIO 43
5.1 Gradient of the node position update function 44
5.2 Hessian of the node position update function 45
5.3 Numerical simulations 46

5.3.1 Simulations on the 40 nodes network 46

5.3.2 Simulations on large networks 47
APPLICATION OF ADMM IN A NON-CONVEX SCENARIO
6.1 Gradient of the node position update function 50
6.2 Hessian of the node position update function 50
6.3 Update of the penalty parameters 50

35

49

vi

CONTENTS

6.4 Convergence of the ADMM algorithm in non-convex

scenarios 51

6.5 Numerical simulation 52
6.5.1 Simulations on the 40 nodes network 52
6.5.2 Simulations on large networks 54

AN HYBRID SOLUTION 57

7.1 Detection of the switch moment 58

7.2 On the choice of good penalty parameters 59
7.3 Numerical simulations 61

NUMERICAL SIMULATIONS AND PERFORMANCES COM-
PARISONS 65

8.1 40 nodes network 66

8.2 500 nodes network 68

8.3 1000 nodes network 70

8.4 Time complexity 71

8.5 Robustness of the algorithm 72

8.6 Achieved performance in a moving network 73
8.7 Conclusions on numerical simulations 74

9 CONCLUSIONS 75

BIBLIOGRAPHY 77

LIST OF FIGURES

Figure 1
Figure 2

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Errors in RSSI measurements. 10

Two-way approach for sensors clocks synchro-
nization. 13

Example of network used in the computation
of the CRLB for different densities cases. 16
Lower bound on RMS of localization error us-
ing different measurement methods. 17

An example of WSN composed of 40 nodes. 22

Convex envelope of a function. 23
Examples of distinguished cases in analytical
formulation of problem (22). 24

Example of network and its arc-node incidence
matrix. 26

Performances of the distributed parallel algo-
rithm for the N=40 nodes network. 31
Average RMSE performance measure for the
N = 40 nodes network versus the iteration
number. 32

RMSE performance measure for the N = 500
and N = 1000 nodes network versus the itera-
tion number. 33

Average RMSE performances of ADMM algo-
rithm in convex scenario applied to the 40 nodes
network. Different noise realizations are con-
sidered. Continuous lines indicate performances
for noise standard deviation o = 103, dashed
lines for 0 = 102, dash-dotted lines for o =

1071 46
Performances of ADMM algorithm in convex
scenario applied to a 40 nodes network. 47

RMSE performances of ADMM algorithm in
convex scenario, for different penalty term val-
ues. 48

Average RMSE performances of ADMM algo-
rithm in non-convex scenario applied to the 40
nodes network. 53

Performances of ADMM algorithm in non-convex

scenario applied to a 40 nodes network. 54
RMSE performances of ADMM algorithm in
non-convex scenario, for different penalty term
values. 55

vii

Figure 18
Figure 19
Figure 20
Figure 21

Figure 22

Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30

Figure 31
Figure 32

Comparison of the introduced localization al-
gorithms performances. 58

RMSE performances of hybrid ADMM algo-
rithm on 500 nodes network. 61

Amount of nodes (in percentage) that have switched
to the non-convex mode, for each iteration. 62
Hybrid ADMM approach on the 1000 nodes
network for different threshold values. 62
Average RMSE performances of Hybrid ADMM
approach on the 40 nodes network for differ-
ent threshold values. 63

Network composed of 40 nodes, of which 10
(indicated by red dots) are anchor nodes. 66
RMSE performances provided by the discussed

algorithms on the 40 nodes network /1 67
RMSE performances provided by the discussed
algorithms on the 40 nodes network /2 68

Network composed of 500 nodes, of which 10
(indicated by red dots) are anchor nodes. 69
500 nodes network. RMSE performance of dis-
cussed algorithms. 69

Network composed of 1000 nodes, of which 20
(indicated by red dots) are anchor nodes. 70
1000 nodes network. RMSE performance of the
discussed algorithms. 71

Average time at iteration t, T* and maximum
time at iteration t, T}, measured on the 500
nodes network. 72

Robustness of the algorithms. 73

RMSE performance of the ADMM-H algorithm

in a moving network. 74

LIST OF TABLES

Table 1
Table 2

Table 3

Table 4

viii

Parameters for CRLB computation 15
Algorithms parameters for the 40 nodes net-
work test 66

Algorithms parameters for the 500 nodes net-
work test 68

Algorithms parameters for the 1000 nodes net-
work test 70

ACRONYMS

ACRONYMS

ADMM Alternating Direction Method of Multipliers
CRLB Cramer Rao Lower Bound

GPs Global Positioning System

KKT Karush Kuhn Tucker

LOS Line of Sight

ML Maximum Likelihood

RMS Root Mean Square

RMSE Root Mean Square Error

RSS Received Signal Strength

RSSI Received Signal Strength Indicator
SDP Semi-Definite Programming

SNR Signal to Noise Ratio

TOA Time of Arrival

TOF Time of Flight

WSN Wireless Sensor Network

ix

Part1

INTRODUCTION

INTRODUCTION

In recent years smart sensors became easiest to be developed thanks
to the advent of new technologies, in particular thanks to the prolif-
eration of Micro-Electro-Mechanical System (MEMS) technology and
advances in RF communications. This kind of sensors are the basic
unit of Wireless Sensor Networks (WSNs), which are extending our
ability to monitor and control the physical world.

WSNs can be used either for monitoring and tracking applications.
Monitoring include, for example, indoor/outdoor environmental mon-
itoring, seismic monitoring, health monitoring, power monitoring,
while tracking include tracking of objects, animals, humans and ve-
hicles.

Sensor nodes can sense, measure and gather information from the
environment and transmit these data to the user. They are character-
ized by their reduced dimension, limited processing and computing
resources, and their low costs. There actually exist mechanical, biolog-
ical, chemical, optical and magnetic sensors, which allow the deploy-
ment of densely distributed sensor networks that can be used for a
very large range of monitoring applications, from marine to soil and
atmospheric context, as we will explain in the next paragraph.

Sensors are also provided of a radio for wireless communications
in order to allow them to transfer data to a base station which collects
information from all the sensors. This provides to the user continuous
and spatially dense observations on the environment.

The main source of power is the battery. Sensor can also be pro-
vided of a secondary power supply that harvests power from the
environment. A classic example of this are solar panels. Sensors need
to last for years or even decades without battery replacement; for this
reason the consumption of power must be taken seriously in consid-
eration.

A WSN usually has little or not infrastructure. It is composed of
a number of sensor nodes (few tens to thousands) working together.
We can distinguish two types of WSNs:

e structured: All or some of the nodes are deployed in a pre-planned
manner, in this way their location is known.

o unstructured: Contains a dense collection of sensor nodes. Sen-
sors may be deployed in an ad hoc' manner into the field.

The advantage of using structured networks is that fewer nodes are
needed since their location can be chosen in order to optimize the

1 Sensor nodes can be placed randomly

INTRODUCTION

coverage, while ad hoc deployments can have uncovered regions. De-
spite this, structured networks cannot always be deployed since we
must consider in which specific environment sensors will be placed.

As we mentioned before, sensors have limited resources. This in-
cludes a limited amount of energy, short communication range, low
bandwidth and limited processing and storage.

TYPES OF SENSOR NETWORKS There exists different kinds of sen-
sor networks and their main characteristic is where they are deployed.
They can typically be placed on land, underground and underwater.
Depending on the environment a sensor network faces different chal-
lenges and resource constraints. There exists five types of WSN:

e terrestrial: It consists of hundreds to thousands nodes deployed
either in an ad hoc or in a pre-planned manner. Terrestrial sen-
sor nodes can be equipped with a secondary power source;

* underground: It consists of a number of sensor nodes placed un-
derground or in a cave to monitor underground conditions. In
this case, additional sink nodes are placed above ground to re-
lay data from sensor nodes to the base station. The communica-
tion part is very important in this context because data transfer
must be reliable through soil, rocks, water and other mineral
contents that contribute to signal losses and high attenuation.
Other important aspects are the deployment, that requires care-
ful planning and energy and cost considerations. Energy is also
important because sensors are equipped with a limited battery
power and after the deployment, it is difficult to access to the
sensor and then to recharge it.

* underwater: It consists of a number of sensor nodes deployed
underwater. Usually these nodes communicate using acoustic
waves and this comports limited bandwidth, long propagation
delay and signal fading issue. Underwater sensor nodes, like
in the underground case, are equipped with a limited battery
which cannot be replaced or recharged.

* multi-media: This kind of sensor network enable monitoring and
tracking of events in a multi-media form, such as video, audio
and imaging. In this case, sensors are equipped with cameras
and microphones and they must be deployed in a pre-planned
manner in order to guarantee coverage.

* mobile: It consists of a number of sensor nodes that can move
and interact with the physical environment. They have the abil-
ity to sense, compute and communicate like static nodes but
they also have the ability to re position and organize themself
in the network. Information gathered by a mobile node can be

1.1 LOCALIZATION

communicated to another node when they are within a range
of each other.

EXAMPLES OF APPLICATIONS Today WSNs are used in a large
variety of applications. There exists smart structures that actively re-
spond to earthquakes and make buildings safer. WSNs are employed
in agriculture to reduce costs and environmental impact by watering
and fertilizing only when necessary. Traffic monitoring systems use
WSNs data to better control stoplights and alert drivers in case of
traffic jams. Environmental monitoring networks can sense air, wa-
ter and soil quality to identify the source of pollutants in real time.
WSNs are also used in smart cities, for example for the parking slots
management. Each parking slot owns a node of the network and the
collected data can be used to identify unpaid parking tickets.

1.1 LOCALIZATION

An important challenge in WSNSs is localization. In fact, it is fundamen-
tal to know the position of each sensor from which the base station
is receiving data, in order to give sense to these data. The localiza-
tion problem is yet extremely crucial for lots of applications since
it can open up new ways of reducing power consumption. The first
idea that can came into mind is to solve the problem by adding a
Global Positioning System (GPS) receiver on the nodes. This is theo-
retically a feasible idea but for large networks of small, cheap and low
power devices there are several considerations (cost, size and power
usage) that preclude this way of solving the problem. Moreover, GPS
receivers can be used only in outdoor applications, then this technol-
ogy cannot be considered for indoor WSNs.

The localization problem aims at estimating the sensor nodes po-
sitions starting from ranging measurements of the distance between
a node and its neighbors. Ranging can be performed using many ap-
proaches. The most common are Received Signal Strength Indicator
(Rssl) and Time of Flight (TOF). The first represents a low-complexity
technique and RSSI measures are today available in many wireless
receivers. The TOF provides more reliable distances but the imple-
mentation of this technique is harder. In both cases the localization is
done solving a Maximum Likelihood (ML) estimation problem, which
is a non-convex problem of high dimensionality [10]. Some of the net-
work nodes have known positions in order to guarantee a unique
solution to the problem. These nodes are called anchor nodes.

1.1.1 Centralized and distributed approaches

There exists two main approaches to the resolution of this problem
and we can resume them in the centralized and distributed paradigms.

INTRODUCTION

The centralized paradigm expects that every node sends its informa-
tion, in this case its ranging measurements, to a central processing
unit that run the localization algorithm. If the nodes positions is re-
quired only at the central unit this is sufficient; in case each node
must know its position, the central unit has to communicate to every
node its computed position.

This kind of paradigm presents several problems. The main prob-
lem regards the traffic bottleneck since each node must send data to a
unique central node. Furthermore, we must consider that this traffic
grows while the network expands. This implies a scalability problem
which affects the communication part as well as computation, since
the localization problem solved by the central node becomes increas-
ingly complex. Other highlighted problems concern the resilience to
failure, the security and privacy issues that are typical when a cen-
tralized paradigm in considered.

The distributed paradigm is well suited for our case, where the prob-
lem is naturally distributed since we are dealing with nodes which
are distributed in the space. We denotes with this paradigm an algo-
rithm with no central units, where all nodes perform the same type
of computations. This is the approach considered in this thesis work.
In particular we can distinguish between two types of distributed
WSN localization problem: the first type tries to solve the original
non-convex problem. In some cases this approach can be dependent
on the quality of the algorithm initialization. The second type of prob-
lem is a convex relaxation of the non-convex problem. The tightness
of the convexification determines how close the solution to this prob-
lem approximates the original non-convex problem solution.

We must remind that these are sub-optimal methods that provide
a solution which is not guaranteed to be global or local minimization
point since the original and relaxed problem do not exactly coincide.
Convex relaxation methods also increase the computational complex-
ity of the problem [16].

In the past years a lot of approaches have been studied. Lot of
them consider algorithms which are not guarantee to converge. An
example of them are the linear approaches of [18] and [15], the multi-
dimensional scaling approach of [6], the distributed gradient descent
method of [9] and the spatially constrained local problem formulation
of [8]. Other methods with convergence guarantee are based on con-
vex relaxation techniques that cast the problem into a convex problem
solved in a distributed fashion. The most used approach is the edge-
based Semi-Definite Programming (SDP) relaxation introduced in [25]
and [22], and the Alternating Direction Method of Multipliers (ADMM)
approach covering convex relaxation [23].

A new relaxation approach is introduced in [24] in which the orig-
inal ML problem is relaxed using the convex envelope of a distance
function. This problem is then solved using a parallel distributed al-

1.1 LOCALIZATION

gorithm with convergence guarantee. Another way to solve the local-
ization problem is investigated in [11] where the proposed algorithm
solves the original non-convex ML problem applying the ADMM
paradigm in order to decompose the centralized non-linear problem
in a number of non-linear local problems. Since ADMM guarantees
convergence only in convex scenarios, the proposed algorithm is mod-
ified in such a way that penalty coefficients are locally increased in
the presence of appropriate conditions.

In this thesis work we analyze the convex relaxation approach in-
troduced in [24] and we show how it is possible to reduce the number
of iterations required for the convergence of the algorithm using an
ADMM approach. We follow investigating the approach introduced
in [11], in which ADMM is applied to the original non-convex ML
formulation. Then we provide a new method that consists in a combi-
nation of the convex and non-convex approaches. More precisely, we
will use the non-convex method to refine the rough convex solution.

OVERVIEW ON MEASUREMENT METHODS

In the previous section we cited the concept of ranging measurements.
In fact, each node must be able to provide to the algorithm a mea-
surement that allows to estimate the distance to its neighbors. These
measurements could be attained using different modalities, e.g., RE,
infrared, acoustic or a combination of these.

An important discussion must be done on the quality of the mea-
surements. In fact, range measurements used for localization are mea-
sured in a physical medium that introduces errors. We can distin-
guish between two kinds of errors:

* Time-varying errors: The errors can be due to additive noise and
interference. They can be reduced by averaging multiple mea-
surements over time. This is a good way to mitigate this kind of
errors because, usually, in localization applications, time delays
are acceptable.

* Environment-dependent errors. They depend on the physical envi-
ronment, specifically on the arrangement of the objects near the
network (e.g., buildings, furniture, trees). In a network of sta-
tionary sensors, these errors are almost constant over time but
since the environment is unpredictable, these errors are unpre-
dictable too and they are, for this reason, modeled as random.

In the following sections we show how it is possible to obtain mea-
surements that allow to estimate the nodes distances. In particular
we examine the Received Signal Strength Indicator (RSSI) and Time of
Flight (TOF) measurements.

2.1 RECEIVED SIGNAL STRENGTH INDICATOR

The RSSI is one of the most used approach to WSN localization. The
Received Signal Strength (RSS) is defined as the voltage measured by a
receiver’s circuit. In some cases the RSS is reported as the power, that
is the squared magnitude of the signal strength. Since the network
nodes can communicate using several technologies, we can consider
the RSS of REF, acoustic and other signals.

The RSS of RF signals can be measured by each node receiver
during the normal data communication without requiring additional
hardware or energy usage. This is a big advantage of this method,
which is relatively inexpensive and simple to implement. The main
disadvantage is that these measurements are notoriously unpredictable
since they heavily depend on the transmission power (which is not

10

OVERVIEW ON MEASUREMENT METHODS

Pr /Pt (dB)

(a) Effects of path loss (red line), path (b) The real area of communi-

loss and shadowing (blue line), cation of a node is not the
path loss, shadowing and multipath theoretical circle because of
(green line) on the SNR shadowing and multipath

errors

Figure 1: Errors in RSSI measurements.

exactly known at the receiver) and the environment in which the net-
work is deployed.

We know that in free space the power of a signal decays propor-
tionally to the square of the distance between the transmitter and the
receiver, as highlighted by the free space path loss equation

2
FSPL = <4;[d) (1)

This is not true in real world channels where environment dependent
errors increase the signal power reduction. These errors are caused
by multipath signals and shadowing.

2.1.1 Errors

Multipath signals with different amplitudes and phases reach the re-
ceiver and they can sum destructively or constructively depending on
the frequency. This fact causes frequency-selective fading. To dimin-
ish this effect could be used a spread-spectrum method that averages
the received power over a wide range of frequencies.

The second source of errors that we listed is the shadowing. This
is an attenuation of the signal due to obstructions (e.g, walls, build-
ings) between the transmitter and the receiver, that a signal must pass
through or diffract around. Since the environment in which the WSN
is deployed is unknown, the shadowing is modeled as random. In
Figure 1 we can see how these source of errors affect the SNR and the
communication area of nodes.

In the real world, the main received power decays proportionally
to d7 ", where n,, is the path-loss exponent and its value is typically

2.2 TIME OF FLIGHT

in the range 2 < n, < 4. The mean power at distance d is frequently
modeled as

P(d) = Po — 101, logdi (2)
0

where Py is the power (in dBm) received at a short reference distance
do. The difference between the measured received power and its av-
erage, which corresponds to the shadowing contribution, is modeled
as a log-normal [20]. We indicate with o4p the standard deviation
of the received power (expressed in dBm). This value is relatively
constant with distance and typically it assumes values in the range
4 < ogg < 12. [21]. We indicate with x the coordinate vector which
contains the positions of network nodes, defined as

x:[X'I/"-IXTL/y]/'-'/yn] (3)

and with d;; the distance between node i and node j computed as

dij = \/(Xi_xj)z + (i —Uj)z (4)

The power received at node i (in dBm) and transmitted by node j,
indicated as Py j, is distributed as

f(Pij =plx) =N (p;P (di;) , 03p) (5)

which corresponds to the value at p of a Gaussian probability den-
sity function with mean P (di,j) and variance , GéB. The log-normal
model suggests that RSS-based range estimates have variance propor-
tional to their actual range, and this is the reason why RSS errors are
referred to as multiplicative, in comparison with the additive TOF
errors.

2.2 TIME OF FLIGHT

The TOF method consists on using the amount of time required by the
transmitted signal (RF, acoustic or other) to reach the receiver, to esti-
mate the distance between the transmitter and the receiver. The time
at which the receiver detects the signal corresponds to the time of
transmission plus a propagation time delay. This time delay is quan-
tified as

%

Ti,)' =
Vp

(6)
where v, is the speed of the signal propagation, which for RF is ap-
proximately 10° times as fast as the speed of light. It is easy to see that
from this equivalence we can compute the distance between node i
and node j. We must take into consideration that additive noise and
multipath signals hamper the receiver’s ability to estimate the arrival
time of the Line of Sight (LOS) signal.

11

12

OVERVIEW ON MEASUREMENT METHODS

2.2.1 Errors

We just saw that additive noise and multipath signals must be consid-
ered because they are an important source of errors. To estimate the
Time of Arrival (TOA), which is the time at which the signal reaches
the receiver, in a scenario where we have only additive noise, we can
consider the time that maximize the cross-correlation between the
received signals and the known transmitted signal. For a given band-
width and SNR, the time delay estimate can only achieve a certain
accuracy which is bound by the Cramer Rao Lower Bound (CRLB). If
we consider a signal with bandwidth B with B << F., where F. is the
central frequency, with signal and noise power which are constant
over the signal bandwidth, we can provide the bound

1

TOA) > -«
var(TOA) > ¢ BT F2sNR

(7)
where T; is the signal duration (in seconds). If the system is designed
to achieve a sufficiently high SNR, the bound provided by (7) can be
achieved in a multipath-free channel.

In multipath channels the errors can be many times greater than
in the channel affected only by additive noise. This is due to the fact
that all the late arriving multipath components are self-interference
that decrease the SNR of the LOS signal. In this scenario, the receiver
must find the first-arriving peak because it is not true that the LOS
signal will be the strongest of the arriving signals. To do this we can
use a threshold method in which we measure the first time that the
cross-correlation crosses a pre-determined value.

Errors in TOA estimation are essentially caused by:

* Early-arriving multipath. In this case many multipath signals ar-
rive right after the LOS signal and they contribute to the cross-
correlation obscuring the location of the peak caused by the
LOS signal. This problem typically causes small errors which
are very difficult to combat.

o Attenuated LOS. The LOS signal is attenuated compared to the
late-arriving multipath components. This causes the loss of the
LOS signal, which is mistaken for noise. The attenuated LOS is
a source of large errors but it is a severe problem only in low
dense WSNSs, in which the inter-sensor distance is high.

Finally, we must consider that errors in TOA estimations can also be
due by delays in the transmitter and receiver hardware and software.

For short-range measurements, the measured time delay can be
modeled with a Gaussian distribution

d; ;
f(Ty; =thx) =N <t,' v” + u, o%) (8)
P

2.3 THE CRAMER RAO LOWER BOUND

node j

node i T

1

Figure 2: Two-way approach for sensors clocks synchronization.

where pt and o2 are the time delay mean and variance. As for the
RSS case, x is the vector that contains the nodes positions. The mean
error ut can be estimated by the localization algorithm and subse-
quently subtracted.

Finally, the presence of large errors make the tail of the measured
TOA distribution heavier than a Gaussian, complicating the model.
To solve this problem we can consider a mixture distribution.

Since the measurements of distance is based on the signal time of
flight, it is particularly important to detect the exact value of Ty ;. To
do this we need to have synchronized times at the transmitter and
the receiver.

If the receiver clock is synchronized to the transmitter clock, the
value of T;; can easily be computed subtracting the known transmit
time from the measured time of arrival. In sensor networks the algo-
rithms for time synchronization reports precision of the order of 10us.
This is a good precision for acoustic signals but not for RF signals. A
typical solution to this problem is the two-way TOA measurements ap-
proach, shown in Figure 2. In this method, sensor i sends a signal to
sensor j, which immediately replies with its own signal. So, sensor i
can compute

-1

Ti,)' = —— +S]~

5)

where Tt is the time of transmission of the signal at node i, T" is
the time of arrival of the reply sent from sensor j, at node i and s)fi
is a reply delay internal to the sensor j. This value can be known or
measured and sent to sensor i to be subtracted.

2.3 THE CRAMER RAO LOWER BOUND

The CRLB provides a way to calculate the lower bound on the covari-
ance of any unbiased estimator that uses RSS or TOF. This is a good
tool to design and to compare localization algorithms. The CRLB is a
function of several WSN parameters, which are:

e number of nodes and number of anchor nodes;

13

14

OVERVIEW ON MEASUREMENT METHODS

¢ geometry of the sensor network;

e whether localization is in two or three dimensions;

* type of measurement implemented (i.e., RSS of TOF);
* channel parameters (o4g and n, in RSS, o1 in TOA);
¢ which pairs of sensors make measurements;

¢ unknown parameters that must be estimated (clock bias for
TOF);

In the simulation results shown in Chapter 8 and in all the localization
algorithms performance graphs shown in this work, we consider the
CRLB in order to provide a simple way to judge the implemented
algorithms.

2.3.1 Computation of the CRLB

In order to compute the CRLB we suppose to perform a two dimen-
sional localization and to know the channel and device parameters
(i.e., transmit powers and n, for RSS measurements, clock biases for
TOF). We proceed to the calculation of the CRLB for the estimate of
the nodes position vector x, defined in (3).

First, we need to form three n x n matrices, where n corresponds
to the number of non-anchor nodes. These matrices are called Fy,
Fyy and Fy,. The k, 1 element of each matrix is calculated as:

Foy], , = { Y2 ieHK) (xk —x1)° /Ay k=1
xxli,1 =
Y (1) (xk —x)? /Ay, k#1

_ YZieH(k) (xx —xi) (Yx — i) /Ay k=1
[FXy]k,l - ¢ (10)
Yo (U e =x) (ye —y1) /di . k#1
[Foul., = { Y 2ieno (Y —yi)? /Ay k=1
yylk1 = 2,
Yoo (U Yy —y1)*/di;, k#1

where d; ; is the real distance between node i and node j. The channel
constant y and the exponent s are functions of the measurements type
and they are reported in Table 1. The indicator function Iy (1) is
used to include the information only if sensor k made a measurement
with sensor 1, and it is defined as

1 leH(k)
I = (11)
i { 0 otherwise

Then, we form the 2n x 2n Fisher information matrix (FIM) corre-
sponding to the 2n coordinates in x that need to be estimated

F= [F;X Fxy] (12)
ny F‘Jy

2.4 SOME DERIVATION FROM THE CRLB COMPUTATION

MEASUREMENT CHANNEL CONSTANT Y EXPONENT S

TOA y=1/(vpor)? s =2
2
10
RSS Y= <GdBl:gp1O> s =4

Table 1: Parameters for CRLB computation

The CRLB matrix can be computed calculating the inverse matrix of
F. The diagonal of F~! contains 2n values which are the variance
bounds for the 2n parameters of x.

2.4 SOME DERIVATION FROM THE CRLB COMPUTATION

It is interesting to look at how the variance bound changes by scal-
ing the sensor network. We want to understand what happens when
the geometry and connectivity of the network are kept constant, but
the network dimensions are scaled up proportionally. We distinguish
between the two examined measurements types:

e TOA: the CRLB will remain constant with a scaling of dimen-
sions. This is due to the fact that s = 2 makes the fractions in
(10) unit-less; the units come from the variance of the ranging
error, v, oT.

¢ RSS: CRLB is proportional to the network size. The equality
s = 4 makes the ratios in (10) have the units of 1/ distance?, so
the variance bound takes its units of distance?.

Obviously the channel parameters change slowly with the change of
the path lengths but these scaling characteristics are a good approxi-
mation.

The bound on standard deviation of the localization error is also
proportional to (1/y)%.

For the TOA case, it means that the error is proportional to the
time delay standard deviation o, which is an intuitive result. For the
RSS case, it means that the localization error is proportional to the
ratio o4g/nyp, so, if we are operating in a high path-loss exponent en-
vironment, we will have higher power usage but also a more accurate
localization.

It is interesting to see how the CRLB changes while the nodes den-
sity increases. To do that we consider a sensor network located in a
20m x 20m square. This area contains L? sensors, L for each edge of
the square, and the 4 of them which are in the corners are anchors
nodes. An example is reported in Figure 3.

We consider both types of measurements introduced, with these
parameters:

* RSS: ogg/np = 1.7

15

16

OVERVIEW ON MEASUREMENT METHODS

20@ ® ® ® o

15@ | | ® ®

100 | | ® ®

L A S R

Figure 3: Example of network used in the computation of the CRLB for dif-
ferent densities cases. In this example a 25 nodes network (L = 5)
is located in a 20m x 20m square.

* TOA: o1 =6.Ins, vp =3~ 103m/s

Since we have a lower bound for each node, we consider the Root
Mean Square (RMS) value, which we calculate as

RMS =

g (13)
The RMS gives us an average of the bound over the entire 12 — 4
nodes with unknown location. From Figure 4 we can see that the best
lower bound is approached for v = oo, which is the case in which
each sensor can communicate with every sensor of the network. The
other curves show the bound for the more realistic cases r = 10m and
T = 15m. For the chosen parameters we can see that in the realistic
cases, TOA outperform RSS for low node densities but if the density
increases RSS can perform as well as TOA. Obviously, this is true for
the chosen parameters and the used network geometry. We also see
that the RSS bound decreases more rapidly than TOA as the density
increases.

2.4 SOME DERIVATION FROM THE CRLB COMPUTATION

(b) RSS
g G 3 ‘ ——T=00 i
g = VA -4A- I=15m
A = Y -A-T=10mM
& 2 2l
o o
S S
o o
: 2.
0 |
5 10 15
Devices per side Devices per side

(c) Comparison between TOA and RSS measurements

3.5 I I
Ky —— RSS, r=00
35 -4-RSS, r=10m |
—o—TOA, r=c0

2.5 A -o-TOA=10m

Lower bound on RMS error (m)

O | | |
4 6 8 10 12 14

Devices per side

Figure 4: Lower bound on RMS of localization error using different measure-
ment methods. The r parameter indicate the ray of communication
of the node.

17

Part II

LOCALIZATION ALGORITHMS

CONVEX RELAXATION OF THE PROBLEM

The first important thing to do, before introducing different distributed
algorithms, is to define the typical localization problem.

The Wireless Sensor Network (WSN) § = {N, £} is composed of N
nodes with ranging capabilities. Each node is a member of the node
set N ={1,---, N}, while € is the edge set.

The exact position of node i is indicated as x; € R™ and it is a n-
dimension value, where n represents the number of Cartesian coordi-
nates (n = 2 for 2D localization, n = 3 for 3D localization). Neighbors
of node i are denoted as N; and we define a node j,j € Nj as neighbor
of node i if an estimate 1i;,1 € N,j € N;j of the true Euclidean distance
dij = [[xi —xjl| is available on both sides of the link.

The set of nodes with known position is A and these nodes are
called anchors. The subset of anchors whose distance to node i is quan-
tified by a noisy measurement, is A; C A.

In this chapter we will provide a convex relaxation of the original
localization problem, according to what recently proposed by Soares,
Xavier, and Gomes [24] and then, we will numerical simulate the
performance of this approach on three different sensor networks.

3.1 THE LOCALIZATION PROBLEM

As we mentioned before, we want to estimate the sensors positions
x = {xi : 1 € N} from the available measurements rij,i ~ j € € and
from known anchors positions x; = a;j,i € A. We assume that we
are dealing with zero-mean, independent and identically distributed,
additive Gaussian measurement noise.

The maximum likelihood estimator for the sensor positions is the
solution of the optimization problem

1 1
mxinzi (lei—lel—rij)z+z > E(Hxi_akn_rij)z (14)

i~j i keAy

where first term of (14) takes into consideration the ranging mea-
surements between sensors, and the second term considers ranging
measurements between sensors and anchors.

Problem (14) is non-convex and so, difficult to solve [23], never-
theless, it has a global minimum because the function we want to
minimize is continuous and coercive [24].

It is useful to write this problem in another form, which will sim-
plify the subsequent formulation of its convex relaxation.

21

22

CONVEX RELAXATION OF THE PROBLEM

Figure 5: An example of WSN composed of 40 nodes. Anchor nodes are
indicated in red. Edges indicate that the pair of nodes can commu-
nicate. This is one of the networks used in the later simulations.

We define dé (z) the squared Euclidean distance of point z to set C.

2 . 2
— inf ||z —
de (z) ylrele llz —yll (15)

The spheres generated by the noisy measurements 1y are represented
by the sets

Sy ={zeR": |zl =y;}

(16)
S8ap =1z € R™:[lz—ay]| = i}

where the first set contains the points in the space R™ whose distance
to the origin is equal to rij, while the second one takes into consider-
ation the known positions of anchor nodes and contains the points in
the space R™ whose distance to the k-anchor node is equal to rix.

We are, at this point, able to write the squared Euclidean distance
of a generic point z to these set by using (15).

d3 (z)= inf |z—yl?
Y lIyll=y; (17)
di, (z)= inf [z—yl?
i lly—axll=Tix

Taking into consideration functions (17), we can now rewrite problem
(14) as

. 1 1
mme gdéﬁ (xi —xj) +Z Z Edéam (xi) (18)
i~

i keA;

3.2 MAKE THE PROBLEM CONVEX

—-0.5 0 0.5

Figure 6: The squared distance to the ball Ci; = {z € R:[z| < 0.5} (dotted
line) is the convex envelope of the squared distance to the sphere
Sij = {z€ R: [z =0.5} (dashed line). The range measurement
value, in this case, is i; = 0.5.

The non-convexity of this last problem follows from the non-convexity
of functions (17) which we can consider the building blocks of this new
formulation.

3.2 MAKE THE PROBLEM CONVEX

In the previous section we introduced the localization problem and
we rewrote it as a function of squared Euclidean distance functions
ds (z). Now, we want to look for a way to find a convex problem
which is similar to the original non-convex problem. In order to do
this we will work on the non-convex functions (17).

We can proceed introducing the sets

1) = {Z e R™:lzf| < rl)}

(19)
Cay =1z € R™ [z —ag|l < 1k}

which correspond to the convex hulls of sets (16). We can use these
sets to define the convex envelope of the building blocks (17) as

déij (z) = inf |z—yl?

Hyll\ru (20)
d2 (z)= inf |z—yl?
Cay (2 = ly—adli<re Y

The concept of convex envelope is illustrated in Figure 6 as a one-
dimensional example. Its definition is pretty simple: if we consider a
function vy, the convex envelope (or convex hull) of this function is its
best possible convex under-estimator, conv y (x) = sup{n(x) : n <
v, 1 is convex} and in general it is hard to determine.

These functions are the building blocks of the convex relaxation of
Problem (18), which can be written as

mlnf szzu Xi — —|—Z Z deak Xi) (21)

i~j i keA;

23

24 CONVEX RELAXATION OF THE PROBLEM

(a) case |lzll <7ty (b) case[lzl| > 35 () case [lz—ak[l < rik(d) case [z —ay|| > rix

Z—ay .
Tl

Figure 7: Examples of distinguished cases in analytical formulation of prob-
lem (22) (figures (a) and (b)) and problem (25) (figures (c) and (d)).

It is important to underline that the function in Problem (21) is an
under-estimator of (18) but it is not the convex envelope of the origi-
nal problem. Nevertheless, it can be demonstrated that in WSN local-
ization applications it is a good approximation [24].

3.3 ANALYTICAL SOLUTION TO MINIMIZATION PROBLEM

We just derived a convex relaxation of problem (18). The building
blocks of the optimization function of both problems (18) and (21)
require the finding of infimum values. We can find these minimum
values using numerical ways but this is poorly acceptable in terms
of computation time of the final localization algorithm, so it is pretty
smart, at this point, to find an analytical solution to these minimiza-
tion problems.

Let’s start with the first term of equation (21), which corresponds
to a summation of déu functions, with

dg, (z) = inf [z—yl? (22)
lyll<Tyj
This function reaches its minimum when y = z. This solution is not
always licit but we can say that the optimum solution corresponds to
the closest allowed point y to z. We distinguish between two cases:

e if ||lz|| < 7y, then z is a member of the set from which we
can choose y, so the value that minimize the function is y =
z which allows the function to achieve its minimum possible
value déu =0

e if ||z]| > ri; then the value of y that minimize the term is on
the boundary of the circle |ly|| = ri; and, more specifically, it
corresponds to the intersection between the circle and the line
that connect the point z to the origin, which is y = Z;7i;. With

this value, the solution is déij (z) = (|lzll — ri]-)z.

To summarize these results, we can write:

a3, (2) =1 (2l —75;) - (lzll — ;) (23)

3.4 DISTRIBUTED LOCALIZATION

while the value of y that minimize the function is
z
y=1(llzll =) - Tzl +1(ryy —llzll) -z (24)

where 1 (-) is the unit step function.
The second term of (21) makes use of the building block

¢, (z)= inf Jz—yl? (25)

k [ly—ax|I<rik
The only difference with the previous case is the set which defines
the admissible y values. In this case the distance of point y from
the known position of the anchor k must be lower or equal to Tiy.
After considering the two separate cases as before, we find that this
function can be re-written as
2

déaik (z) =1 (llz—axll —rir) - ([lz — axll — Tix) (26)
which corresponds to the solution given by
Z— ax

Hrik> +1(rix —llz—axll) -z (27)

y =1(llz—ax|| —Tix) - (ak +
llz —ax

3.4 DISTRIBUTED LOCALIZATION

We are at this point interested in the development of a synchronous
distributed algorithm in which all nodes work in parallel, in order
to find their locations. To do this, we need to compute the gradient
of the cost function and its Lipschitz constant. We proceed to rewrite
Problem (21) in an equivalent form, which allows to simplify the cal-
culations.

~ 1 1
mxinf = Edé (Ax) + E E Ed%am (xi) (28)
i keA;

with A =M®®I,.
The symbol ® indicates the Kronecker product, which is defined as

anB---amB
A®B = (29)
am1B--~amnB

M is the arc-node incidence matrix of the network G, I,, is the iden-
tity matrix of size n and C is the Cartesian product of the balls Cy;
corresponding to all the edges of the network.

The algorithm requires that, during the setup, an arbitrary direc-
tion for each edge is set. This choice is stored in the M matrix, which
is defined as

1 if arcj starts at node i
Mi; = ¢ —1 ifarcjends at node i (30)

0 otherwise

25

26

CONVEX RELAXATION OF THE PROBLEM

Figure 8: Example of network and its arc-node incidence matrix.

An example of arc-node incidence matrix is reported in Figure 8.
To simplify the calculation of the gradient and Lipschitz constant,
we divide equation (28) into the summation of two functions

minf (x) = g (x) + h (x) (31)

X

where

900 =13 (AN, hx)=Y (), hil)= Y Sde,, (x)

i keA;
(32)
We also introduce the following functions to simplify the notation
— 1 d2
d)eij (Z) - 2 eij (Z)
1

(2) = 5d%, (2

(33)
be

aik
3.4.1 Proof of the problem equivalence

We want to prove that the simplified Problem (28) is equivalent to
Problem (21). Considering that the second term of (28) is a simple
decomposition in summation of functions of the second term of equa-
tion (21), we only need to prove the equivalence of the first terms. The

3.4 DISTRIBUTED LOCALIZATION

product of matrix M with the x vector is the vector (x; —x;:i~j).
Function g (x) can be written as

—

g(x) = >d§ (Ax)

N =N

= — inf ||Ax—yH2 (by definition (15))
yec

1
=2 inf Y Ixi—x —yyl?
2 lyslisry £ 1Yy (34)

1 . 2
=3 inf [x; —x; —yyll© (%)
i lyijll <5

1 .
- Z Edéij (xi —x;j) by definition (15)

i~

where in step (*) we take in consideration the fact that all the terms
are non-negative and the constraint set is a Cartesian product. This
allows us to exchange inf with the summation.

This proves that the two problems are equivalent.

3.4.2 Gradient and Lipschitz constant of g

It can be demonstrated [14] that the function in (20), which we just
defined as bey; (z), is convex, differentiable and its gradient is

Ve, (z) =z—Pe,; (z) (35)

where Pe; () is the orthogonal projection of z onto the closed convex
set Cij, which we can write as

Pe,, (z) = argmin|lz —yl| (36)
yeCy

It can also be demonstrated [24] that function ¢¢,; has a Lipschitz
continuous gradient with constant Ly, = 1.

We define the function ¢e which is the result of summing all the
functions ¢¢,;. This function allows us to write g (x) = de (Ax). Con-
sidering (35), we can write the gradient of the g function as

Vg (x) = ATVde (Ax)

= A" (Ax—Pe (AX)) (37)
= Lx— A"Pe (Ax)

27

28

CONVEX RELAXATION OF THE PROBLEM

where £L = ATA =L®1,, and L is the Laplacian matrix of the graph.
This gradient is Lipschitz continuous and we can proceed with calcu-
lations to find the Lipschitz constant.

Vg (x) = Vg (y) | = |AT (Ve (Ax) — Ve (Ay)) |
< lIAll|Ax — Ayl|
< AP x -yl
= Amax (ATA) [Ix—yll
= Amax (L) [Ix—yll (Kronecker product property)
< 2maxlix —yll [7]
(38)

where [|A]| is the maximum singular value norm and 8max is the max-
imum node degree of the network G. From the definition of Lipschitz
constant we can recognize that Ly = 28max-

3.4.3 Gradient and Lipschitz constant of h

We defined the h function as a summation of h; functions so the gradi-
ent of h (x) is Vh(x) = (Vh; (x1),..., Vhy (xn)). From the definition
of h; as summation of d)@aik functions, we can write

Vhi (xi) = Z Voe,,, (xi)

keA;

(39)
=Y x—Pe, (xi)
keA;
The next step is calculating the Lipschitz constant for each h;.
IVhi (i) = Vhi ()l < ||) Ve, (xi)— Y Ve, (yi)
keA; keA;
(40)
<) HVCIDGQ.Ik (xi) = Ve, (yi) } i
keA;
< Milllxi — yill
From this result we can see that it is Ly, = [Ail, so the Lipschitz

constant of the h; function correspond to the cardinality of the set of
anchors which are neighbors of node i. This allows us to calculate the
overall Lipschitz constant

IVh (x) — Vh (y)ll = \/Z IVhy (xi) — Vha (y)I12

< \/Z A4 s~y)
i

<max (JAil :1eN) - [[x—yll

3.5 DISTRIBUTED PARALLEL ALGORITHM

that is L, = max (|Ai] : i € N).

Now we know everything is necessary to calculate what we really
need, namely the gradient and the Lipschitz constant of function f.
The gradient of the minimization problem objective function f can be
computed by summing the gradient of the g and the h functions.

Vf(x) = Vg (x) + Vh(x)

) 2 xea, X1 —Pe,, (x1) (42)
— Lx—A"Pe (Ax) + :

ZkeA xn —Pe, (Xn)
n nk

In the same way, the Lipschitz constant of f can be obtained by sum-
ming the Lipschitz constants of functions h and g.

— 28, 4+ max (A 11 € N) 43)

3.4.4 Analytical solution to orthogonal projection functions

The minimization problems introduced by the use of orthogonal pro-
jections can be analytically solved in a very similar way to what we
showed in Section 3.3. The following equations show how the pro-
jection of a z point to sets Ci; or Cq,,, which corresponds to a con-
strained minimization problem, can be computed in an analytical way.

. VA
Pe,, (z) = argmin|iz —yl|| = (m) 1(llzll — i) +z- 1 (v — llzll)
e [z

. Z—a
Pe, (z) = argm1n||z—y|\ = (Hz_a]]:HTik+ak> 1 (llz— akll — rik)

aix
Y€Cay

+z-1(rix —llz—axll)
(44)

3.5 DISTRIBUTED PARALLEL ALGORITHM

The distributed parallel algorithm can be implemented following the
Nesterov’s optimal method [19] thanks to the Lipschitz continuity of
the gradient of .

We initially consider the first term of (42), that we previously named
Vg (x). The i-th entry of £x can be computed by node i consider-
ing estimates of its own positions and its neighbors positions. It is
Lx =8ix; — ZjeNi x;, where 0; is the degree of node i.

In the second part we have A'Pe (Ax). We can write Pe (Ax) =
{Pe,; (xi —Xj)}i-jee. Each term of this projection depends only on the

29

30

CONVEX RELAXATION OF THE PROBLEM

edge terminals and the noisy measurements ri;. The product with AT
collects, for each node, the sum of the projections relative to edges
where it intervenes, with positive or negative signs depending on the
arbitrary edge directions. Summing up we can write

(ATPe (AX)). = Z cij,iPey; (xi —xj) (45)
JEN;

where c(;j ;) denotes the entry (i~j,1i) in the arc-node incidence
matrix M.

The second term of equation (42) can be easily implemented using
equation (39).

Finally, the position update requires the computation of the gradi-
ent of the cost with respect to the coordinates of node i, evaluated
at the extrapolated point w;, where this value can be previously cal-
culated as w; = x; (k—1) + t—ﬁ (xi (k—1) —x4 (k—2)), using a stan-
dard application of Nesterov’s method [24].

The final parallel distributed algorithm is reported in Algorith-
mus 1. The required inputs are the noisy measurements between
neighbors nodes which are indicated as rij, in the case we are dealing
with non-anchor nodes, and with r;; in the case one of the nodes in
an anchor. The other required input value is the Lipschitz constant L;
which depends on the geometry of the network, in particular on the
maximum node degree and on the maximum number of anchors that
can be neighbors of a single node. This value can be computed using
equation (43).

Input : L;, {ry[i ~ j}{rilk € A}
Output : x
k=0;
each node i chooses random x; (0) = x; (—1);
while some stop criterion is not met, each node i do
k=k+1;
wi =xi (k—1)+ 55 (xi (k—1) —x; (k—2))
node i broadcast w; to its neighbors;
Vgi (Wi) = 8iwi = T jen, Wi+ Tjen, €m0 Pey (Wi —wj)
Vhi (wi) =2 yecq, Wi —Pc,, (Wi)
xi (k) = wy — Lif (Vgi (wi) + Vhy (wy))
end
return X = x (k)

Algorithmus 1 : Parallel algorithm

36 NUMERICAL SIMULATIONS

We want to examine the performance of this algorithm on different
networks. In particular, we will deal with three different networks.

36 NUMERICAL SIMULATIONS

The accuracy of the algorithms is measured by the Root Mean Square
Error (RMSE) per sensor, which we define as

E[[lx']| »
VN

where x* are the computed nodes positions at iteration t, x are the real
locations of network nodes, N is the total number of nodes and the
average E takes into account the mean over the different Monte Carlo
realizations. The noisy range measurements are generated according
to

RMSE =

Tij = dij +Vij (47)

where dij is the true Euclidean distance between node i and j, while
{vij :1eN,je Ni} are independent Gaussian random variables with
zero mean and standard deviation o.

The first network consists of 40 nodes and it corresponds to the ex-
ample network shown in Figure 5. Nodes are distributed on a square
of unit side and 10 of them are anchor nodes (they are indicated
by red circles). The edges shown in the figure represent the avail-
able ranging measurements and it is guaranteed that at least three
measurements with neighbors are available to each node, in order to
avoid multiple solutions to the optimization problem. The noise level
is 0 = 107" In Figure 9a we can see the path followed by values
x' as iteration t progress. All paths start from the x° = 0 point, and
the crosses indicate the nodes positions at t = 200. We note that for
some nodes the computed locations are very close to the real posi-
tions indicated by the circles. The RMSE evolution over the number
of iterations performed by the algorithm is reported in Figure gb

() (b)
1071 & =
K g :
§ i .
M0 E
10_3?'TTTTJL"fTTi:J'T'TE
10° 10! 102

iterations

Figure 9: Performances of the distributed parallel algorithm for the N=40
nodes network. (a) Convergence path. Circles indicate the correct
positions of network nodes, while crosses indicate positions x* at
iteration t = 200. (b) RMSE performance.

31

32

CONVEX RELAXATION OF THE PROBLEM

100 ‘

102 — ——
10° 10! 102
iterations

Figure 10: Average RMSE performance measure for the N = 40 nodes net-
work versus the iteration number.

The second test is performed on the 40-nodes network, but in this
case we average the RMSE over 50 noise realizations for each noise
level. The considered noise standard deviations are 0 = 107}, 0 =
1072 and ¢ = 1073. In Figure 10, the algorithm performances for
the three noise levels are shown. In particular we note that there are
small differences in the RMSE values at convergence between the o =
1072 and o = 103 cases. The algorithm, for o = 10~ noise level,
converges faster but to an higher RMSE value.

The last test is performed on larger networks, provided as bench-
mark tests for localization algorithms by [26]. The first one is com-
posed of 500 node, of which 10 are anchor nodes, while the second is
composed of 1000 nodes, of which 20 are anchors. These networks are
a very useful tool to test algorithms performance because the large di-
mension guarantee the presence of lots of nodes configuration cases
that may make the localization difficult. In Figure 11a and Figure 11b
the RMSE evolution over the iterations number is shown for both 500
nodes and 1000 nodes cases. Considering the RMSE performance of
all the testing networks, we note that the convergence is faster for
smaller network.

36 NUMERICAL SIMULATIONS

(a) 500 nodes (b) 1000 nodes
100 E T T T T “““:— 100 E T T T T “““:—
%101 g E %101 g E
o2 b LT T 1 102k |
C T il (RN [O A B B WA 1
10° 10! 102 109 10! 102
iterations iterations

Figure 11: RMSE performance measure for the N = 500 and N = 1000 nodes
network versus the iteration number.

33

ALTERNATING DIRECTION METHOD OF
MULTIPLIERS

The Alternating Direction Method of Multipliers (ADMM) is a simple
but powerful algorithm that solves optimization problems decompos-
ing them into smaller local sub-problems, which are easier to handle.
The solutions to these local subproblems are coordinated to find the
solution to a global problem. This algorithm is well suited for dis-
tributed optimization and in the latest years it found several applica-
tions in different areas.

It was first introduced in the mid 1970s in the works [12] and [13]
but similar ideas emerged as early as the mid-1950 [5]. Today this
approach finds new interests thanks to the presence of large-scale
distributed computing systems and the needs to solve massive opti-
mization problems.

There exists several formulations of the ADMM algorithm. In this
work we refer to the formulation presented in the Bertsekas book [3],
also used in [11].

In this chapter we want to exploit the ADMM to improve the per-
formances of the algorithm introduced in Chapter 3, in particular to
reduce the number of iterations necessary to the algorithm to con-
verge.

We underline that the parallel distributed algorithm seen in Chap-
ter 3, requires the exchange of information at each iteration. More in
detail, every node has to broadcast the w; vector to its neighbors. This
means that, reducing the total number of iterations performed by the
algorithm implies a lower number of communications between nodes
and so a less usage of energy.

In order to introduce the algorithm in a generic way, which will be
useful for further applications with different optimization functions,
we will perform all the calculations and derivations starting from a
generic problem, that we indicate as

min Z fi/j (HXi —Xj ||)
i~j

wrt x;,1eN (48)

s.t. xg =ay, Vke A

We need to put this problem in a form which is suitable for the
application of the ADMM. To do this, we duplicate the x; variables.
In this way, the generic node i owns its copy of variables x; which is
represented by X;;,j € Ni U{i}. In particular, the first element of this

35

36

ALTERNATING DIRECTION METHOD OF MULTIPLIERS

vector contains the position of node 1, X; ; = xj, while the remaining
ones represent its neighbors positions X; ; = xj,j € Nj.

The previous problem can be rewritten into a new form taking in
consideration these duplicated variables.

min Z fiy (IKei —%ijll)

i~j
w.r.t)A(ilj, ieN,jeN;u {i} (49)
s.t.)’Zj,i = 5\(1,1/ VieN, j € Ni

f(k,k = ay, Yk e A

where X; ; is the replica of variable x; available at node j.

The formulation used in Problem (49) is probably the most intuitive
form of replication for variables X; ; but yet not the most appropriate
in terms of performance.

An alternative form, which is better suited for the application of
ADMM, consists on rewriting the equivalence X;; = X; ; as

Xii—Xij =Xj,i —Xjj
DA (50)
Xii T Xij = Xj,i TXj
which corresponds to the constraints X; ; = Xi,; and X ; = Xj ;.
With this new representation of the equivalence we can rewrite the
minimization problem into a new form.

)

w.r.t. f(ili,)’zi’j,Z]i’j,Zzli,j, ieN,jeN;

min) fi; (ki — %4

i~

st X1 —Xij =214, Vie N,jeN;

ﬁi,i -+)A(i/j =Z2ij, Vie N,j € N; (51)
Z14; = 21,51, ViEN,j €Nj
z2:5 =225, Vi€ N,j € Ny

Xy k = Ak, Vk e A

In this new formulation of the ADMM problem, we used two aux-
iliary variables, z1;; and z;;j, which needs to belong, respectively,
to linear spaces 21 = {z1,i; =—21,j:} and 2, = {221 =22, }, in
order to force equivalence (50).

This is the definitive problem formulation that we will use but, in
order to develop the ADMM algorithm, it may be useful to rewrite it
in a compact form which will allow to simplify the algorithm code, its
performance and, nevertheless, the understandability of this solution.

4.1 COMPACT FORM OF THE PROBLEM

4.1 COMPACT FORM OF THE PROBLEM

First, we can group together all variables used by the generic node
i. They are the position vectors X;; and the auxiliary variables z; ; j,
7 ,j, that can be grouped in

. Xii Z1 4] .
X = [ol] ’ zy = HIEN (52)
[Xi,j] JEN; [Zz,i,j] JEN;

Each node of the network owns a X; and a z; vector. All of them can
be collected in the global vectors X = [Xil;c and z = [z;]; -
With these new vectors definitions the reference problem becomes

min) Fy (%)
ieN
wrt. XxeX,ze 2
s.t. Aixi =z, Vie N

(53)

where F; are the local cost functions, which are defined as

Fi (%) = Z fi (I%ii — X5l (54)
JEN:
Variables X and z belong, respectively, to linear spaces
X = {)A(|)A(k/k =ay, Vk € .A}

. . (55)
2 ={zlz11; =214 221 = 22,1, Vi€ N,j € Ni }

Matrices A; are full rank and defined as

1]\1i —INi

A= ® I, (56)

1Ni INi

where Nj = [Nj| is the neighbors cardinality, In, an identity matrix of
size N and Ty, a column vector of length N; with all entries equal to
one. The Kronecker product with the I, matrix is used to duplicate
the values for each dimension of the total considered n dimensions.

4.2 DISTRIBUTED ADMM ALGORITHM

There exists several versions of the ADMM algorithm, which, more-
over, is the most used method for distributed coordination of agents
[3] [5]- In this section we will refer to the formulation of Bertsekas [3].
We start by writing the optimization problem as

min F (X)
wrt. XxeX,zeZ (57)

st. Ax=1z

37

38

ALTERNATING DIRECTION METHOD OF MULTIPLIERS

where the object function F (X) = > ;- Fi (Xi) is a separable function
which correspond to the summation of local objective function F; over
all the nodes of the network. The A matrix is a block diagonal matrix
that can be built as A = diag (Aj,i € N).

To find the solution of Problem (57) we look for the stationary
points of the augmented Lagrangian function, which is defined as

. . . 1 .
L(X,z A;c) = Z <Fi (%) + A (Aiki —zi) + Ci |A1X3 _Zi|2) (58)
ieN

where the vector A = [Ai];cy collects the Lagrangian multipliers of
all the nodes and, at the same way, the vector ¢ = [c;];cy collects the
penalty parameters of all the nodes. These penalty parameters must
always be positive and they weight the penalty term.

The stationary points of the augmented Lagrangian function (58)
correspond to the Karush Kuhn Tucker (KKT) stationary points of
Problem (57). Furthermore, if the object function is differentiable,
these points also correspond to local minima [17].

The KKT stationary points are identified by conditions

Ax—z=0
Ei (VFi (%) +A{A) =0, VieN
ALZ (59)
zeZ

ﬁk,k =ay, Vke A

where we introduced the function

diag (0,In,)® I, 1€ A

that it is used to neglect the equality in the first coordinate entry (of
length n) when dealing with anchor nodes.

4.2.1 ADMM iterative algorithm

To look for stationary points of the augmented Lagrangian function,
L, we perform an alternating search, which, at every iteration t, per-
forms an update of vectors X, z and A. We define the values of these
vectors at each iteration t by using the notation X', z* and A*.

First, starting points are selected for all of these variables. In partic-
ular, we set random initial points X°, that need to verify the equiva-

4.2 DISTRIBUTED ADMM ALGORITHM

lence f(?i =%%.,j € N; and consequently A° = 0 and z° = AX°.

At each iteration, the update follows as

%1 € argminL (%,2%,A%; ¢Y)
XeX
2z € argminL ()?t+],z, ALt (61)
zeZ

41 t ot (A gt+]] :
AT =At+ et (AR =2zt vieN

A special consideration must be done on the importance of the penalty
terms c}, that it is proven need to be well set in order to reach the con-
vergence [2].

We will use the ADMM algorithm both with convex and non-convex
functions. In the first case it is guaranteed that the limit point of (61)
identifies a global minimum. In the non-convex scenario, the algo-
rithm may find a local, rather than a global, minimum and this can
affect the optimality of the localization solution.

4.2.2 Distributed ADMM solution

The iterative approach shown in Section 4.2.1 cannot be used in a
distributed way because, as can be seen in equations (61), this ap-
proach needs a global knowledge of the whole variables set. We need
to enable each node to update its variables, in particular the triplet
(X,z,A), in an autonomous way using information gathered from its
neighbors.

Let’s start looking at equations (61). In particular, we see that the
third equation does not need to be reviewed since it can already be
locally computed. We need, on the contrary, to revise the first and the
second equation.

The update of the nodes positions, shown in the first equation of
(61), can be formulated as the local update of variables)A(-l‘, ieN,
according to
€ arg r;clin Fi (%) + %cf (% — y;‘)T D; (X —y}) (62)

Xi€eXi

ot+1
Xg

where x; belongs to the set

R (Ni+1) id A
X; = . Nt 1e . ¢ (63)
{Xi S]Rn(it)|xi,i = ai} ie A
and the y! variables are defined as
TAT o s M
y =DO'AT (2 -3, A= (64

1

Both in the 9(;‘“ and y’{ definitions we used the D; matrix, which is

2N; o)
' Ni ® In (65)
On, 2In,

D; =AJA; =

1

39

40

ALTERNATING DIRECTION METHOD OF MULTIPLIERS

This matrix is by construction positive definite, with eigenvalues 2
and 2Nj. The role of the quadratic term in (62) is that of pushing the
solution towards y!, defined in (64).

We can now continue with the second line of (61), which performs
the update of auxiliary variables z. To perform this update in a dis-
tributed fashion, we use the following equation

2 =Ly (AR*HT £ AY) (66)

where we denote the projection associated with the linear space Z
using the function Ly .

Messages shared by nodes are indicated as m;. In particular, they
are defined as

mtt! — ’JLeNi = AT HAL (67)

This definition enables us to rewrite (66) in a form that allows the
local computation and, consequently, the application to a distributed
scenario.

1 1 mtt! — mtt]
1ij = 3 My — M0)
1
t+1 _ e t+1
224 T 3 (mz,i,j +m2,j,i)

This concludes the derivation of locally update functions that en-
ables the development of a distributed ADMM algorithm, which is
resumed in Algorithmus 2.

4.2 DISTRIBUTED ADMM ALGORITHM 41

fort =0 to oo do
if t =0 then
Initialize local position X?

Build messages m{ = A;x?
else
Update local positions X} via (62)
Build messages m} = A&} —1—7\;“_] / c§_1
end
= Broadcast values mf‘,i,j to region j € N
< Receive values mij,i from region j € N;
Evaluate the mixing values z} via (68)
if t = 0 then

| Reset memory A9 =0
else

| Update memory At =AF! + i1 (At —2t)
end
Eventually update c}
Evaluate yt = D 'Al (zF —At/c})

end
Algorithmus 2 : Parallel processing algorithm at node 1i. Variable t
represents the iteration number.

APPLICATION OF ADMM IN A CONVEX SCENARIO

In Chapter 3 we saw how it is possible to relax the optimization prob-
lem using a convex relaxation of the original localization problem
function. Now, we want to apply the ADMM algorithm in this sce-
nario. We must pay attention, in particular, to two aspects. The first
regards the update function of the position vector x;, that, as shown
in (62), needs the resolution of a minimization problem. To this aim
we use the fmincon solver provided by the MATLAB Optimization Tool-
box.

To reduce the solver computation time and increase the solution ac-
curacy, we will need to provide to the solver the gradient and hessian
of the minimization problem objective function, that we will compute
in the next section.

The second aspect concerns the penalty parameters c; that, in this
scenario, will be fixed values. The convex relaxation guarantees, in
fact, that the ADMM algorithm will converge to the global minimum.

To simplify the application of the ADMM algorithm, we will work
with a problem which is very similar to the convex problem (21).

) 1
H}(ln Z Edéi]’ (Xi - xj)
1~)

st. xx = ay,Vk e A

(69)

where ay is the n-dimensional position of the k-th anchor node.
Initially, we need to derive the local objective function used in the

Distributed ADMM algorithm. This function can be derived from the

ADMM objective function, defined in Problem (57) as F (X), consider-

ing (54)
F(x) = Z Fi (%) = Z Z fij (||%ii—%u]]) (70)
ieN iENjeEN;

It is possible to rewrite the objective function of the convex problem
as

[12
2548, (i—x) =) | 2 748, (xi—x) (71)
i~j iEN \jeN;
where the % term is used because the two summations consider two
times each edge. From this equality and from (70) we can see that

1
o (e 5ol) = 103, (35— %))

43

44

APPLICATION OF ADMM IN A CONVEX SCENARIO

which corresponds to the building block of the problem objective func-
tion. This allows us to define the local problem objective function as

. 1 oo
Fi (Xi) = Z Zdéw‘ (Xii — i) (73)
JEN;
Given this, we can write the node position update function, which we
just defined in (62), as

1 1
%1 cargmin | Zdéu (Rii—%ij) | + Ec{ (% —y)) Dy (ki —yt)
X €X; jeNi

(74)

This function will be used in the following sections to derive the gradi-
ent and hessian functions that are useful to improve the computation
time of the solver used by the ADMM algorithm.

5.1 GRADIENT OF THE NODE POSITION UPDATE FUNCTION

To simplify the derivation of (74) we start deriving the first term,
which corresponds to the F; function. Considering the definition of
de,; given in (15) and the following analytical solution given in (23),
we can rewrite function F; as

1
Fi (%) = Z 1 (&, — %45

JEN;

—Tij)21 (I1%i,i — Xl — 735) (75)

Since the X;i; term appears in every term of the summation, the
derivative of F; with respect to X; ; will be defined by a summation,
which is

0 1 i
Fi (%) = Z 7 (1 - HATU> (Rix—Xij) 1 (IRi1— X3l —745)

0Xi i N Xii — Xi,j
(76)

With this equation we can calculate the first two elements of the gra-
dient vector. For the others, which correspond to the derivative of F;
with respect to the x and y components of the j-th neighbor location,
we calculate

0 1 Tij
T F (k) =——[1=—— Y V(% =%)T(1%: —% | — 145
af(i,j i (1) 2 < Hf(i,i — f(i,j) (1,1 1,)) (H i1 i,j || 1])

(77)

We now look at the second term of the objective function. Considering
that the D; matrix is symmetric, the gradient of the cost function can
be computed as

0 . .
T fe (%) =ci-Di (X% —yi) (78)
Xi

5.2 HESSIAN OF THE NODE POSITION UPDATE FUNCTION

So the gradient of the node position update function, f,, is

A af?uFi ()A(l) 0 ~
Vio(Xi) = 3 T (s + ch (%) (79)
[af(ij Fi (xi) EN; Xi

5.2 HESSIAN OF THE NODE POSITION UPDATE FUNCTION

After calculating the gradient of the node position update function,
we need to provide to the solver the Hessian function. Like in the
previous section we initially consider the first term of (74), which
corresponds to (75). By deriving (76) and (77), we find

(Rt — %) (Rii —Xij) T

5 N 3
]

Tis 1 0
+]_# .. 8
(H\)<o 1)] %

02 . 1
@Fi (Xi) = 7 Z Ty

JEN;

32 2 1 (Xii — Xi) (’A‘ii_’A‘ii)T
F ()= — F: (%) = —— | s ¥ ’ ’ ’
0%iXi,i e %) 0%iiXi,j =73 [” %60 — %] |

+]—% 1o Si,j (81)
Xi,i_xi,j‘ 0 1

[(% —%i5) (Rii %)
rij ‘3

A

xi,

+ 1—% P si,j (82)
Hxi,i_xi,j‘ 0 1

where si; = 1 (lI%,i — %i,jll — 7ij)- The hessian of the second term can
easily be computed as

i~ Xi,j

aZ
a)(A~2fC (Xi) = CJiC Dy (83)
i

Collecting all the computed parts, we can finally define the hessian
of the node position update function as

[%R %F %F: |
0%;; 0Xi,iXi,1 0Xq,iXi,N;
32T, 9%, 0 0
He (k) = | e o +cf-Di (84)
. O .. 0
9%F; 9%F;
L OXiNXii 0 0 OXi,N; Xi,N; |

45

46

APPLICATION OF ADMM IN A CONVEX SCENARIO

100

c=10"*

c=5-10"3

c=5-10"2

----- i
. IRZIUN W)
~
~.
~.

1072 — —
10° 107 10

iterations

Figure 12: Average RMSE performances of ADMM algorithm in convex sce-
nario applied to the 40 nodes network. Different noise realiza-
tions are considered. Continuous lines indicate performances for
noise standard deviation o = 10~3, dashed lines for 0 = 1072,
dash-dotted lines for o = 107!

5.3 NUMERICAL SIMULATIONS

The ADMM algorithm considered in this section is structured like
Algorithmus 2 and no updates are performed on the penalty parame-
ters {ci}icv. The only degree of freedom we have is the value of these
parameters, that impacts on the RMSE performances.

In this section we will also identify the best parameters choices, that
will be used in Chapter 8 to compare all the algorithms introduced
in this thesis work. Like in Chapter 3, we will perform our tests on
three different networks.

5.3.1 Simulations on the 40 nodes network

We want to test the algorithm considering 50 different noise realiza-
tions for each noise standard deviation, ¢ = 1073, 0 = 102 and
o=10"".

It is fundamental to understand how the choice of the penalty pa-
rameters impacts on the RMSE performances. In Figure 12 we show
the RMSE performance for three ¢ choices, where {ci}icn = c.

The first choice, ¢ = 10—, leads to bad results: the RMSE, in the
o = 107" case, converges to an high value while in the other cases it
converges to good values but too slowly.

The ¢ = 5- 1072 choice, leads to a good RMSE value at convergence
in the 0 = 107! case but in the other two cases, the RMSE value at
convergence is bad and, for all the noise levels, the convergence is
slow.

5.3 NUMERICAL SIMULATIONS 47

(a) (b) (c)
10! ET T 10! === 10‘); SEsEE====
100) 1100 a |
B i B i 1071 E E
1011 | 10Tk E g i
02| | o) | w2}
10731 103k i |
45 | \ 45 | 1 1073 p==--- i
]O— L LI |]O— | IANERNA VENi C I T TTT I m
10° 10! 102 10° 10! 102 10° 10! 102
iterations iterations iterations

Figure 13: 40 nodes network. (a) target function value f (X) over the itera-
tions number; (b) primal feasibility gap P(t) (red line) and sta-
tionary gap S(t) (blue line); (c) RMSE performance

Finally, the best choice is ¢ = 5-1073, which guarantees a good
RMSE value for all the noise level cases, and a fast convergence, in
only 20 iterations.

It is interesting to examine other aspects of the algorithm conver-
gence and in order to do this, we consider a single noise realization
of the 40 nodes network, with o = 1073. The penalty parameter is set
to the optimal value ¢ =5-1073.

In Figure 13a, we can observe the evolution of the target function
f(x) =Y ien fij (Xi —%;j) minimization, as a function of the iterations
number.

The convergence is also illustrated in Figure 13b, showing the fast
convergence to zero of the primal feasibility and stationary gaps, ac-
cording to the first two lines of (59).

P(t) = ||Axt —zt||?

S(0 = 5 |[B: (VF () + AT)
ieN

The convergence to zero of these two functions, in the convex sce-
nario, is a guarantee that the global minimum is reached. in fact, the
others condition in (59) are valid throughout the process.

Finally, from Figure 13c we can see that the RMSE reaches its mini-
mum value after 20 iterations.

5.3.2 Simulations on large networks

Now we want to find a good penalty parameter value for our large
networks, which are composed of 500 nodes in the first case and 1000
nodes in the second one.

48

APPLICATION OF ADMM IN A CONVEX SCENARIO

(@) (b)

100 S o 100 e S

c=2-10"73

10!

10—2

| Lo | | | Lol | L]

10° 10! 102 100 10! 102
iterations iterations

Figure 14: RMSE performances of ADMM algorithm in convex scenario, for
different penalty term values. Dashed lines indicate CRLB. (a) 500
nodes network; (b) 1000 nodes network.

In Figure 14a we can see the RMSE performances in the 500 nodes
network, for three different penalty parameter values. For ¢ = 1074
we have bad performance since the algorithm convergence is very
slow compared with the other two choices. With ¢ = 2-1073 and
¢ = 1072, the algorithm converges to almost the same RMSE value
but the best choice for the ¢ parameter is the first, that guarantees a
faster convergence, in less than 20 iterations.

The same test is finally performed on the 1000 nodes network,
which is the larger in which we perform our simulations. In this case,
RMSE performances are shown in Figure 14b.

Looking at the RMSE performance we can identify the best choice
between the proposed penalty parameters, which is ¢ = 1073, In this
case the algorithm converges after 50 iterations.

APPLICATION OF ADMM IN A NON-CONVEX
SCENARIO

In this chapter we apply the ADMM algorithm discussed in Chapter 4
in a non-convex scenario, like the one proposed by Erseghe [11].

In this case the convergence of the algorithm will be more difficult
because the functions we need to optimize may present several local
minima and the algorithm may get stuck on one of them. For this
reason we need to define a good method to update the penalty pa-
rameters {ci}icyy in order to guarantee the convergence. We also need
to put a limit to the grown of the Lagrange multiplier.

The first thing we need to define, is the non-convex problem, which
is

min) fi; (|[xi —x;|])
i~j (86)
s.t. xgy =ay, Vke A
where we use the following log-likelihood function
1 2
fiy ([P =x]1) = = (rgy =[P =) (87)

ij

q

where O'iz)- is the noise standard deviation that we assume always

equal to 1 without loss in generality. The local problem objective func-
tion is easily defined as

R =Y fii(lxi—xl) =3 (y—Ix—x[)° 68

JEN; JEN:

From this equation we can see that we are dealing with a non-convex
quadratic problem. Function (88) is used by the algorithm to update
the positions estimates of each node, like in the convex scenario.

Like in the previous chapter we need to calculate the gradient and
hessian functions that will be used by the solver to improve accuracy
and computation time.

49

50 APPLICATION OF ADMM IN A NON-CONVEX SCENARIO

6.1 GRADIENT OF THE NODE POSITION UPDATE FUNCTION

We need to compute the gradient of the local objective function Fy
with respect to the position of the generic node 1, which is indicated
as X; i, and with respect to the position of the j-th neighbor of 1, X; ;.

0 . Tis R R
aTmFl (Xi) = — Z 2 ()A(l) 1) (xi,j _xi,j)

= i)

(89)

Xij Xii — Xij ‘ ‘ a

a .-
aAiFi (%) =2 <ATU 1) (Xii —Xi)
Since the gradient of the cost is the same that we calculated in (78),

we can compute the gradient of the node position update function
like in (779), but considering the derivatives of F; calculated in (89).

6.2 HESSIAN OF THE NODE POSITION UPDATE FUNCTION

Like in the previous chapter we proceed with the calculation of the
hessian function. We initially compute the second derivatives of F;.

> o o V(% 2. AT
9 Fi (§(1) =2 Z [rij (Xl’l Xlr)) (xl,l Xl,]) n

aT%l JEN; H’A‘iri — Xi,j ‘3
T‘ij 1 0
T L 0
< Hxi,i_xi,jH><O 1)] 90
02 . 0?2 . (f(n—f(ij)(fqi—ﬁij)T
Frarai Xi) = o F (X)) =2 |ry— : —
K% 0%, iXi,; Xii— %]

Tij 10
1——Y9
+< *tf*mH)(O 1)] o

Ti 1 0
L -
+(H*i,i—*i,jH) (O 1)] (92)

Then we can calculate the hessian by using equation (84) with these
equations.

63 UPDATE OF THE PENALTY PARAMETERS

In this scenario we are dealing with non-convex functions, as we de-
scribed in the first part of the chapter. This means that in some cases

64 CONVERGENCE OF THE ADMM ALGORITHM IN NON-CONVEX SCENARIOS 51

the algorithm suggested in Chapter 4 may fail to converge, in particu-
lar when a feasible but not optimal point is approached. An efficient
countermeasure to this problem is the update of the penalty terms c;.

A good way to solve the non-convergence problem is, in fact, to
increase the value of these parameters while the algorithm proceeds
on its iterations, as suggested by several works [2] [1] [4] [11].

In order to introduce the penalty parameters update function, we
define the current local primal gap as

e =||Axt —zi]| (93)

where |[|-[|, is an infinity norm, that coincides with the maximum
absolute value.

A good idea is to decide to update the local penalty values if the
local primal gap, Iy do not decrease sufficiently. We need then, to
define a threshold that establishes when the decrease is sufficient,
through the parameter 6.. We also need to guarantee that the penalty
parameters increase through the network if at least one local primal
gap is not sufficiently decreasing.

We collect all of these requirements in the following penalty param-
eters update function

t t—1
t— < max Cjt_]> ALl s Bl (94)
jeENU{i} 5. ,otherwise

where 6. > 1 but close to 1 and where 0, < 1.

This update function requires the exchange of the penalty param-
eters ci; between nodes, since it needs to maximize c].t_1 ,j e Ny U{il
This data exchange can be done at the same time with the exchange
of values m". Furthermore, equation (94) guarantees that for a prop-
erly descending primal local gap T, the penalty constant ¢; through
the network will converge to a unique value.

64 CONVERGENCE OF THE ADMM ALGORITHM IN NON-CONVEX
SCENARIOS

We described the peculiarities of non-convex scenarios in the previous
section. The update of the penalty parameters introduced in equation
(94) is however not sufficient to guarantee the convergence of the algo-
rithm. In this section we complete the discussion on a modified ADMM
algorithm that guarantees the converge also in non-convex scenarios.
In addition to the penalty parameters update function, we need
to bound the Lagrange multipliers and the search for updates x}, in
order to guarantee the convergence.
To bound the Lagrange multipliers, we substitute the update func-
tion
A=A et (At -2t (95)

1

52

APPLICATION OF ADMM IN A NON-CONVEX SCENARIO

with
AL = Pr AT i (AL —2)] (96)

where the function P, performs a clipping of the vector entries in
the range [—Amax, Amax]. To bound the search for positions updates x{
we replace the set

Rn(Ni+1) id A
Xi= . Nit+1) 1o -§Z (97)
with
GF: (X)) < = .
. { (RalFe (k) <F ()} iga o8
{Xi|Fi (xi) <F (P) ; Xii = ai} icA

where P is some initial position estimate for which F (p) < oco.

It is proved [11] that for a good choice of parameters, the algo-
rithm converges. In particular they must be chosen in a correct range,
namely c‘f >0,0c>1,0<0. <1and Apax > 0.

It is also proved that the algorithm converges to a local minimum
if there is a finite iteration value to such that for t > to the penalty
parameters {c}{ }icy are not updated and the Lagrange multipliers are
not clipped.

We must take care of the choice of the initial value of c; i since
if this value is too high, the convergence will be slow. A good way
of approaching the problem, is to set the penalty constants to a small
value and then slowly increase them, setting 6. ~ 1. However, to pre-
vent unwanted clipping actions on the Lagrange multipliers, we set
dmax to a big value, typically 103 or 104, but obviously in dependence
with the considered case.

65 NUMERICAL SIMULATION

We now perform numerical simulations on all the previous seen net-
works, in order to find good parameters for the ADMM algorithm in
non-convex scenario. The algorithm considered in this section, corre-
sponds to Algorithmus 2, with local problem objective functions de-
fined as (88), Lagrange multipliers update function (96) and penalty
parameters update function (94).

All the coming simulations have been computed with fixed values
of 5. = 1.01, 0. = 0.98, Amax = 10%. The only freedom degree is so
represented by the starting penalty parameter {c{}ic = c.

6.5.1 Simulations on the 40 nodes network

We want to see how the algorithm behaves when considering differ-
ent noise standard deviations. To do this we consider three different

65 NUMERICAL SIMULATION

]OOE e ! -

F c=5-10"2

~ c=10""1]

e S e s—— c=2-10""

I e :
Y %
fey= S ==---=—-— == :
1073 — .

10° 10! 102

iterations

Figure 15: Average RMSE performances of ADMM algorithm in non-convex
scenario applied to the 40 nodes network. Different noise realiza-
tions are considered. Continuous lines indicate performances for
noise standard deviation o = 10~3, dashed lines for 0 = 1072,
dash-dotted lines for ¢ = 10~

noise levels (c = 107", 0 = 1072, 0 = 1073) and 50 noise realizations
for each of these levels.

From Figure 15 we can observe the RMSE performance for three
different starting penalty parameter choices.

All the choices guarantee a good RMSE convergence value in the
o = 107" case. Looking at the two other noise levels, ¢ = 1072 and
o = 1073, we can observe that the ¢ = 5-10~2 choice guarantees
better performances in both cases.

Note that the algorithm converges faster when the noise level is
high, but the achieved RMSE value is high. With less noise, the con-
vergence is slower but we achieve better RMSE values.

Now, we consider a single noise realization of the 40 nodes network.
The noise standard deviation, in this case, is ¢ = 10~2 and the starting
penalty parameter is set to the optimum value that we just found,
d=5.-10"2,vie N

In Figure 16a we can see how the target function, defined as f (x) =
Zie ~ i (fq — f(j), decreases as the number of iterations grows.

The RMSE performance is shown in Figure 16b, where we observe
that the the convergence value is very close to the CRLB (dashed line).
The algorithm converges after 40 iterations.

Finally, in Figure 16c we see the increase of the penalty parameter
value over the network, as the iteration number grows.

53

54

APPLICATION OF ADMM IN A NON-CONVEX SCENARIO

(a) (b)

]02 T T TTTTTT[T T T 1 11717]OOE T T T \\\\\?
10711
S 1N I S N AR A =S
Il Il \\\\” Il |]O E 1 1 lllllll 1 1 llllllz
10° 10! 102 10° 10! 102
iterations iterations

0.14 | N
012 R
0.1} R
81072 .
6-1072 | . | | |]
20 40 60 80 100
iterations

Figure 16: 40 nodes network. (a) target function value f (X) over the itera-
tions number; (b) RMSE performance; (c) update of penalty coef-
ficients.

6.5.2 Simulations on large networks

Like in the previous chapters we want to examine the algorithm per-
formances in large networks. We perform simulations of the ADMM
algorithm in non-convex scenario on two large networks: the first has
500 nodes, of which 10 are anchors; the second has 1000 nodes, of
which 20 are anchors.

The RMSE performance on the 500 nodes network is shown in Fig-
ure 17a for different penalty parameters starting value {c¥} = c, Vi €
N. We can observe that the best RMSE value is approached with
¢ =5-10"2, in less than 40 iterations.

In Figure 17b we can see the RMSE performance on the 1000 nodes
network, instead. In this case the best starting value for the penalty
parameters is ¢ = 2- 1072 that allows the algorithm to converge to an
RMSE value which is close to the bound provided by the CRLB, in
less than 200 iterations.

We observe that the number of iterations required by the algorithm
to converge increases with the network size and the noise level.

65 NUMERICAL SIMULATION

(@) (b)

100 100

c=2-10"3

c=2.-10"2

c=5.10"2

107

102

10° 10! 102 10° 10! 102
iterations iterations
Figure 17: RMSE performances of ADMM algorithm in non-convex scenario,

for different penalty term values. (a) 500 nodes network; (b) 1000
nodes network.

55

AN HYBRID SOLUTION

The proposal of this thesis work, introduced in the first chapter, is to
analyze two localization approaches. We saw in Chapter 3 how we
can relax the original localization problem in order to find a convex
function to optimize. This solution presents some problems, as we
have seen in the numerical simulation sections, because it does not
allow to reach good RMSE performances.

In Chapter 5 we introduced a way to reduce the number of itera-
tions required by the algorithm introduced in Chapter 3 to converge,
using an ADMM approach.

In Chapter 6 we exploited the ADMM algorithm considering the
original non convex localization problem.

To motivate the approach that we will introduce in this chapter,
we now compare the performances found through numerical simu-
lations in the previous chapters, considering the best found penalty
parameters, c. More detailed comparisons will be discussed in Chap-
ter 8, so we now compare the three presented solutions only in an
example case.

The considered network is composed of 40 nodes, of which 10 are
anchors nodes. The noise level is ¢ = 1073.

We refer to the algorithm introduced in Chapter 3 as SF'. The
ADMM approach in convex scenario, which is an enhancement of the
SF algorithm, is named ADMM-SF. We refer instead to the ADMM
algorithm in non-convex scenario, discussed in Chapter 6, as ADMM.

From Figure 18 we can note that the ADMM-SF approach signif-
icantly improves the performance of the SF algorithm. The RMSE
value at convergence is slightly better, in the considered network, but
we can generally say that the two algorithms achieve the same RMSE
value at convergence. However the number of iterations required by
ADMM-SF to converge is much lower than the SF algorithm. SF con-
verges after 100 iterations, while ADMM-SF requires only 15 itera-
tions.

As we said, the RMSE value achieved by these two algorithms is
not too good, as we can note looking to the CRLB bound, indicated
in the figure by the dashed line.

A better result is provided by the ADMM algorithm in non-convex
scenario which can reach an RMSE value which is close to the bound.
The algorithm converges in a little more than 60 iterations but the
RMSE value reached by this algorithm can motivate its usage.

1 due to the name of the work by Soares, Xavier, and Gomes [24]

57

58

AN HYBRID SOLUTION

100 — ————

5 — SF z

S — ADMM-SF

I ADMM |

1071]
(m i |
(é) —
10721 1
1073 == =

C | L] | | il

100 10! 102

iterations

Figure 18: 40 nodes network with noise level o = 1073. Comparison of the
three introduced localization algorithms performances.

The basic idea is that we can exploit the fast convergence of the
ADMM-SF algorithm to enhance the performance of the ADMM algo-
rithm in the first part of its running. The proposed algorithm will start
considering the convex relaxation of the original localization problem.
When the algorithm begin to converge, it switches to the non-convex
problem, in order to refine the achieved results and reach a better
RMSE value.

7.1 DETECTION OF THE SWITCH MOMENT

In the hybrid ADMM algorithm we distinguish between two opera-
tional modes

* convex mode: In this mode the algorithm runs optimizing the
relaxed convex problem in a distributed ADMM fashion;

* non-convex mode: In this mode the algorithm runs optimizing
the original non-convex localization problem in a distributed
ADMM fashion.

As we said, the algorithm starts optimizing the convex problem. The
considered penalty parameter during this stage, is called c*° and,
since the algorithm does not perform the update of this parameter
in the convex scenario, this value is constant when the algorithm is
running in convex mode. Defining the set

CM = {t : iteration t performed in convex mode} (99)

7.2 ON THE CHOICE OF GOOD PENALTY PARAMETERS

whe can say that
cl =c%, Vvt € M (100)

for a generic node 1.

We also define with c"¢ the penalty parameter used by the hybrid
algorithm when switching to the non-convex mode. In this case, the
algorithm performs the update of this parameter like discussed in
Section 6.3, so this penalty parameter will not remain constant during
the execution in non-convex mode.

By defining with tg,, the time instant in which the algorithm switches
from the convex mode to the non-convex mode, we can write

CFSW _ Cnc

i (101)

The nodes localization takes place in a distributed fashion and for
this reason each node must detect autonomously when is the time
to switch to the non-convex mode. It is important to find a good
measure that results helpful to the node to detect when to switch to
the non-convex mode. We define the current local primal gap as

rt = HAQA(T{ — ZH ‘OO (102)

with [|-||, being an infinity norm, which corresponds to the maximum
absolute value.

We can exploit this value to detect the switching moment. In order
to do this, we define a threshold t . Each node must switch to the
non-convex mode when It < .

The threshold value is an important parameter, indeed if its value
is too high, nodes rapidly switch to the non-convex mode, and the
benefits of this approach are null. However, if the threshold is too
low, the nodes switch to the non-convex mode too slowly, and the
algorithm requires lots of iterations to convergence.

The hybrid ADMM algorithm is resumed in Algorithmus 3

7.2 ON THE CHOICE OF GOOD PENALTY PARAMETERS

Unlike the previous algorithms, in this one we have two penalty pa-
rameters: the first is considered when the hybrid algorithm is running
in convex mode, while the second is considered right after the switch
to non-convex mode.

The best choice for ¢ corresponds to the best ¢ value found when
running the ADMM-SF algorithm. This value must provide a fast
decrease of the target function, as well as the RMSE curve.

For what concern the second parameter, c", it is not true that the
best choice corresponds to what obtained from the running of the
ADMM algorithm. This is caused by the fact that in the hybrid ap-
proach, the non-convex problem does not start from the initial zero

59

60 AN HYBRID SOLUTION

fort =0to oo do
if t =0 then
Initialize local position X3
Build messages m{ = A%}
else
if t <tV then
Update local positions X} via (62) using convex

function (73)
else
Update local positions X} via (62) using non-convex
function (88)
end
Build messages m} = A;x! +A /et
end
= Broadcast values m j toregion j € Nj
<+ Receive values m'; ; from reglon j €Ny
Evaluate the mixing values z! via (68)
if t = 0 then

| Reset memory A9 =0
else

| Update memory At =A! " + i1 (At —2t)
end
Evaluate It = ||Ai%;" — z!|
if It < 7 then

I W =1
end
if t =t then

‘ lec — ¢he
else

if t > t°" then
| Update c! value via (94)

0

else
‘ C:LE — ¢
end
end
Evaluate yt = D 'AT (28 —At/c})

end
Algorithmus 3 : Hybrid ADMM algorithm which exploits convex
and non-convex problems.

7.3 NUMERICAL SIMULATIONS

(a) (b)

61

]OO T T T TTT7T T T T T T 111]OO T T T TTTT T T T T 17
— " =5.10"2
— ¢ — 107!

—1=3-10"2

T 1T 7
T T 17T

I B B

—T1=6-10"2

107

10_2 L1l Ll -2 Lol L1l

I B B

10
10° 10! 102 10° 10!
iterations iterations

Figure 19: RMSE performances of hybrid ADMM algorithm on 500 nodes
network. (a) Simulation with fixed threshold value T = 5-10~2
and different values of ¢™¢; (b) Simulation with fixed ¢™¢ = 10~
value and different thresholds.

value for the nodes positions, but it starts from a raw solution that
needs to be refined.

In the following section we show how the algorithm performance
are affected by the choice of these parameters.

7.3 NUMERICAL SIMULATIONS

We now show some simulation results on our test networks. Like in
the other chapters, we will perform numerical simulations on these
three networks:

* 40 nodes network, of which 10 are anchor nodes;
® 500 nodes network, of which 10 are anchor nodes;
¢ 1000 nodes network, of which 20 are anchor nodes.

Some of the algorithm parameters are fixed, in particular they are
§c = 1.01, 0 = 0.98, Amax = 10%.

The value of ¢ is as well fixed to the best values found in Chap-
ter 5 for each considered network.

In Figure 19a we can see how the non-convex penalty parameter
c™¢ affects the RMSE performance of the algorithm. In particular by
varying its value we can improve the RMSE value that the algorithm
can achieve at convergence. By performing different simulations we
found that a good value for the 500 nodes network is ¢™¢ = 10~".

62

AN HYBRID SOLUTION

100
£ 80| :
(5
T 60| f
=
2 a0f |
S
E |
0 | | | |
0 5 10 15 20 25

iterations

Figure 20: 500 nodes network. Amount of nodes (in percentage) that have
switched to the non-convex mode, for each iteration.

]OOE e o [EEE R T g
= T=10"2 .
& t=2.10"2 |
| t=4.10"2 |
1071 | |
& g |
o~
102 - :
103
10° 107 102

iterations

Figure 21: Hybrid ADMM approach on the 1000 nodes network for different
threshold values. The non-convex penalty parameter is fixed to
Cne =2-1072.

At this point we can try to shift the threshold in order to im-
prove the performance. In Figure 19b we can see that increasing the
threshold value to T = 6 - 1072, the algorithm converges faster. With
T =3-10"2 the algorithm converges in more than 50 iterations while
we can reach the same result in only 20 iterations, by choosing a good
threshold parameter. This implies that the choice of a good threshold
value is fundamental in order to have a fast convergence.

In Figure 20 we can see how the nodes switch from the convex to
the non-convex mode while the algorithm execution proceeds.

We can do the same analysis in the 1000 nodes network, in partic-
ular we can see how the threshold affects the RMSE performances.
After choosing a good value for the non-convex penalty parameter
c™¢ = 2-1072, we can see in Figure 21 how T = 2-1072 may be a
good threshold value.

7.3 NUMERICAL SIMULATIONS

1005 T
- T=10"2 E
- o=10" Toe
= T=7-10"2
1071 F
[-
% i
1072
103 —
10° 10! 102

iterations

Figure 22: Average RMSE performances of Hybrid ADMM approach on the
40 nodes network for different threshold values. The non-convex
penalty parameter is fixed to c™¢ =5-1072.

Finally we consider the 40 nodes network. Like in the previous
chapters we consider 50 noise realizations for each noise level. After
choosing a good penalty parameter, c™¢ = 5- 1072, we can look to the
performances for different threshold values. The RMSE performances
for three different threshold are shown in Figure 22. The best thresh-
old is T = 4 - 1072 that allows the algorithm to converge in only 40
iterations.

63

NUMERICAL SIMULATIONS AND PERFORMANCES
COMPARISONS

In this chapter we will compare the performances of the algorithms
discussed in this thesis work. The considered algorithms are:

e SF: It is the convex relaxation approach proposed by [24] and
discussed in Chapter 3;

o ADMM-SF: 1t is the SF problem implemented in an ADMM
fashion as discussed in Chapter 5;

* ADMM: It is the original non-convex localization problem solved
in an ADMM fashion, as proposed by [11] and discussed in
Chapter 6;

* ADMM-H: 1t is the hybrid algorithm proposed in Chapter 7;

* SDP: It is the Semi Definite Programming approach proposed
by [23].

In order to test the performances of these algorithms we consider
three different networks:

* A network composed of 40 nodes, of which 10 are anchor nodes.
Since this network is small, we consider different noise real-
izations for each investigated noise level. In particular we con-
sider three standard deviation cases: 0 = 10~', 0 = 1072 and
o = 1073, in order to understand how these algorithms behave
with low and high noise levels;

* A network composed of 500 nodes, of which 10 are anchor
nodes. In this case we consider a single realization of the noise,
that provides a noise standard deviation of 0 =2-107%;

* A network composed of 1000 nodes, of which 20 are anchor
nodes. The noise standard deviation is o = 7 - 1073,

As a measure of the performance we will provide the RMSE, which
is calculated as

E 1< —x]]]
VN

where x* are the computed nodes positions at iteration t, x are the real
positions of the nodes and N is the number of nodes in the network.

We will also provide measurements on the algorithm complexity,
considering the mean and maximum execution time at each iteration.

RMSE = (103)

65

66

NUMERICAL SIMULATIONS AND PERFORMANCES COMPARISONS

e ® o
. .
®
R

Figure 23: Network composed of 40 nodes, of which 10 (indicated by red
dots) are anchor nodes.

ALGORITHM cc° cne T 0. dc Amax
SF - - - - - -

ADMM-SF 5-1073 - - 0.98 1.01 10%
ADMM - 5-10"2 - 0.98 1.01 10%

ADMM-H 5-1073 5-102 4-10~%2 0.98 1.01 10*

Table 2: Algorithms parameters for the 40 nodes network test

Defining with T} the time required by node 1 at iteration t to run the
algorithm, we can measure the complexity of the algorithm providing
the mean execution time at iteration t

T =E[T{] (104)
and maximum execution time at iteration t

Tr;ax = max Tlt (105)
i

8.1 40 NODES NETWORK

We consider a network composed by 40 nodes, distributed in a square
of unit size, like in Figure 23. As we can see, there are 10 anchor nodes
which are basically situated on the external part of the network. Each
node can communicate with nodes that are located in a radius of o.3.
We consider 50 noise realizations for each one of the noise standard
deviations.

All the algorithms that we are testing are set with the best param-
eters, that we found in the previous chapters and are resumed in
Table 2.

8.1 40 NODES NETWORK

100 ¢ T — —

i —_SF 1

. — ADMM |

* — ADMM-H |

—SDP 1

} |
>

10° "\ CRIBo =107 = —T—0 =

| 1 1 1 1 1 1 1 ll 1 1 1 1 1 1 1 lA

100 10! 102

iterations

Figure 24: 40 nodes network with noise standard deviation o = 10~ 1. RMSE
performances provided by the discussed algorithms.

In Figure 24 we see what happen when we are dealing with high
noise measurements. In this case the noise level is 0 = 10~.

All the algorithms are able to converge to an RMSE value which is
tight to the CRLB (indicated by the dashed line). In this case, We do
not show the performance of the ADMM-SF algorithm because it is
the same of the ADMM-H algorithm.

We note that the SF curve converges after 4o iterations, while the
ADMM one converges after 15 iterations, meaning that the approach
proposed in Chapter 3 makes sense. A significant improvement is
done by the ADMM-H algorithm that converges in only 5 iterations.
The SDP algorithm converges in a little more than 10 iterations to an
RMSE value which is very tight to the bound.

In Figure 25 we can see the performances of the five algorithms in
the 0 = 1072 and o = 1073 cases. The SF performance in these two
noise levels is almost the same and the algorithm converges in 100
iterations to an RMSE value which is far from the CRLB. In particular
we can note how the RMSE value reached by SF in the 0 = 1072 is
very high compared to the value provided by the bound.

The ADMM-SF algorithm improves, obviously, only the number of
iterations required to converge as we can note from the fact that it
always converges to the RMSE value provided by SF, but faster.

An improvement on the RMSE value is given, instead, by the ADMM
algorithm, that by solving the original non-convex problem, achieves
RMSE values which are, in both cases, close to the bounds. In partic-
ular, in the ¢ = 1072 case the algorithm converges in 45 iterations,

67

68

NUMERICAL SIMULATIONS AND PERFORMANCES COMPARISONS

100 1T ——

107!

RMSE

102 LSREBo =1072 N AN
1073 CB'IJ'B' g'?'\‘l'o'i!'g"'!"!'r'\ """"" b Sl il T ————
100 10! 102

iterations

Figure 25: 40 nodes network. RMSE performances provided by the dis-
cussed algorithms. Dashed lines indicate the results for o = 1072
while solid lines indicate the results for o = 1073.

ALGORITHM cc° cne T 0c dc Amax
SF - - - - - -

ADMM-SF 2103 - - 0.98 1.01 10%
ADMM - 5-10"2 - 0.98 1.01 104

ADMM-H 2.-103 1077 6-10%2 0.98 1.01 10*

Table 3: Algorithms parameters for the 500 nodes network test

while in the 0 = 1073 case the algorithm converges in more than 60
iterations.

Finally, the proposed hybrid approach, indicated in the figure as
ADMM-H, provides the best results. For o = 1072 the algorithm con-
verges in 30 iterations to an RMSE value which is very close to the
bound, while for o = 1073 it converges in a little more than 4o itera-
tions.

Even the performances of the SDP approach [23] are indicated in
the figure and we can note that they are worse than what achieved by
using the ADMM and ADMM-H algorithms.

8.2 500 NODES NETWORK

In Figure 27 we can see the performances of the four discussed algo-
rithms, when performing localization on the 500 nodes network[26]

8.2 500 NODES NETWORK

Figure 26: Network composed of 500 nodes, of which 10 (indicated by red

dots) are anchor nodes.

10°

' CRLB

10_2 [

——SF

— ADMM-SF
— ADMM
— ADMM-H

) S N N |

il

il

10°

102

Figure 27: 500 nodes network. RMSE performance of discussed algorithms.

69

70

NUMERICAL SIMULATIONS AND PERFORMANCES COMPARISONS

Figure 28: Network composed of 1000 nodes, of which 20 (indicated by red
dots) are anchor nodes.

ALGORITHM c°©° cne¢ T 0. dc Amax
SF - - - - - -

ADMM-SF 103 - - 0.98 1.01 10*
ADMM - 2-1072 - 0.98 1.01 10%

ADMM-H 10°3 2-1072 2-107% 0.98 1.01 10°

Table 4: Algorithms parameters for the 1000 nodes network test

shown in Figure 26. All the tested algorithms are set with parameters
indicated in Table 3.

From Figure 27 we note that the SF algorithm requires 50 iterations
to converge while the ADMM-SF solution can achieve the same RMSE
result in only 13 iterations.

Considering the ADMM approach we can see that its RMSE per-
formance curve at convergence is close to the result provided by the
CRLB and the algorithm converges in 35 iterations.

The best result is given by the ADMM-H algorithm that provides,
in only 25 iterations, a result which is slightly better than the result
given by ADMM.

8.3 1000 NODES NETWORK

Like in the previous testing network, the nodes are located in a square
of unit size, but in this case there are 20 anchor nodes, as indicated in
Figure 28.

Performances on this network, are shown in Figure 29, where the
four algorithms are set with parameters indicated in Table 4.

84 TIME COMPLEXITY

100 — —
I ——SF
= —— ADMM-SF
— ADMM

— ADMM-H

1077

RMSE

10—2 L

1073 — —
10° 10! 102

iterations

Figure 29: 1000 nodes network. RMSE performance of the discussed algo-
rithms.

Initially we note that, like in the other networks, the worst localiza-
tion algorithm in terms of RMSE performance, is the SF algorithm,
which converges after more than 100 iterations.

An important improvement is given by the ADMM-SF solution,
which achieves in only 30 iterations, the same RMSE value provided
by SE. To get a better RMSE value, instead, we have to opt for the
ADMM algorithm which is slower to converge but can achieve a
RMSE value which is closer to the CRLB.

Finally, the best performance is provided by the hybrid approach,
which converges to the same value provided by ADMM, but in only
8o iterations.

84 TIME COMPLEXITY

It is interesting at this point, to look at the complexity of the consid-
ered algorithms, in terms of execution times. To do this, we consider
the two measures described by (104) and (105).

The first measure represents the average time over sensor nodes, at
iteration t. The second, which is more meaningful, is the maximum
execution time required by sensor nodes, at iteration t. This value
is particularly interesting, considering that we are dealing with dis-
tributed algorithms that work in a parallel fashion.

In Figure 30 we compare the average times (dashed lines) and the
maximum times (solid lines) of SE, ADMM-SF and ADMM-H algo-

71

72

NUMERICAL SIMULATIONS AND PERFORMANCES COMPARISONS

—— SF — ADMM-SF — ADMM-H

10735"7_"_f""\'"T'"f""\""f' e —
10 20 30 40 50 60 70 80 90 100
iterations

Figure 30: Average time at iteration t, T* (dashed lines) and maximum time
at iteration t, Tt,, (solid lines) measured on the 500 nodes net-
work.

rithms, measured when performing localization on the 500 nodes net-
work.

From the figure we note that the SF algorithm is the faster, in mean.
This may seem a good thing, compared to the other approaches, but
we must consider that when dealing with a distributed algorithm, we
cannot forget the communication costs. It is true that the SF iterations
are fast in terms of execution time, but the SF approach requires a lot
of iterations in order to converge. This means that it requires a lot of
data exchange between nodes and consequently more energy usage.

Finally, we note that the values of T* and Tt,,, for the ADMM-H
and the ADMM algorithms are very similar and T, in both cases,
decreases after the algorithm convergence.

The value of T}, is very similar between the considered algorithms.
This is an important parameter in order to estimate the algorithm per-
formances since it indicates the maximum time required by a node
in order to execute its job at each iteration. Since we are dealing with
a parallel localization algorithm, each node can proceed with its iter-
ations after receiving data from all its neighbors, so this value repre-
sents a bottleneck on the execution time.

85 ROBUSTNESS OF THE ALGORITHM

An interesting evaluation can be done on the robustness of the dis-
cussed algorithms for what concern the choice of the c penalty pa-
rameter. We derived and showed the optimal values found for each
algorithm. The optimal value of this parameter is related to the net-
work characteristics (e.g., the network size or the connectivity degree).

8.6 ACHIEVED PERFORMANCE IN A MOVING NETWORK

(@) (b)

100 F T T B]OO F F ! ! T B

g 1 - — ADMM-H |

i 1 | — ADMM 1

S 1077 F g 510—‘ E E

R~ B . B .
-2 | | -2 | | | |

10 0 0.1 0.2 0.3 10 0 02 04 06 08 1

C C

Figure 31: Achieved RMSE value at the 20th iteration when running lo-
calization algorithms with different penalty parameter values.
a)ADMM-SF algorithm b) ADMM and ADMM-H algorithms. In
the ADMM-H algorithm c represents the value of the non-convex
mode penalty parameter c"°.

If this value must be chosen very accurately in order to achieve a
good RMSE value, this may be a problem, considering that we usu-
ally don’t have a-priori knowledge on the network characteristics. We
now want check for the robustness of these algorithms and in order
to do this, we run them by varying the value of ¢ and by setting a
maximum number of 20 iterations. This allows to see how much the
RMSE value changes by varying the value of the penalty parameter.
From Figure 31 we can see that ADMM-H is the most robust of the
considered algorithms. In particular, the ADMM algorithm has a big
variability of the achieved RMSE value for low values of c. This hap-
pens in all the algorithms but ADMM-H appears to be more robust
since the variability of the achieved RMSE value is small and this
means that it can achieve a good RMSE value also if it is set with a
non-optimal penalty parameter.

8.6 ACHIEVED PERFORMANCE IN A MOVING NETWORK

It is interesting to see if the proposed ADMM-H algorithm is able to
provide significant results also when the nodes of the network are
moving. To test this we consider the 40 nodes network with range
measurements affected by Gaussian noise with zero mean and stan-
dard deviation o = 1072, In this simple example the nodes speed on
the x and y axes is modeled as N (1073,5-1073) and it is maintained
constant over the time. The testing scenario is shown in Figure 32a
where we can see the path followed by each node. The empty circles
show the initial positions of network nodes, while the filled circles
show the final positions. From the figure we can also note that an-
chor nodes are not moving.

73

74

NUMERICAL SIMULATIONS AND PERFORMANCES COMPARISONS

10 20 30 40 50
Time

Figure 32: RMSE performance of the ADMM-H algorithm in a moving net-
work. (a) Empty circles represent the initial positions of nodes,
while filled circles are the final positions, at time instant 50. Red
circles are anchor nodes. (b) RMSE value achieved at iteration 30
for each time instant.

From Figure 32b we can see that the CRLB changes over the time,
since the network nodes are moving and this affects its characteristics,
e.g., the nodes connectivity. The figure also shows the RMSE value
achieved by the ADMM-H algorithm at each time instant. We can see
that the computed RMSE values follow the bound provided by the
CRLB and this means that the algorithm can successfully be used for
tracking applications.

8.7 CONCLUSIONS ON NUMERICAL SIMULATIONS

From these simulations we can see that the ADMM-SF algorithm, pro-
posed in this thesis work, is a good way to improve the performance
of the SF algorithm, since in all the considered network, it achieves
better results in terms of iterations. From our simulations the ADMM-
SF approach requires to converge from 10% to 30% of the number of
iterations needed by SE.

The second significant comparison is between the ADMM algo-
rithm and the proposed hybrid approach, ADMM-H, since they gen-
erally achieve the same RMSE value at convergence. From our simula-
tions, the ADMM-H algorithm can need only the 50% of the iterations
required by ADMM to converge, like seen in the 1000 nodes network.

CONCLUSIONS

In this thesis we introduced one of the most important problems in
Wireless Sensor Networks: localization. This problem can in fact be
solved in different ways. We saw how it is possible to exploit rang-
ing measurements, available at sensor nodes, to develop distributed
algorithms that work in a parallel fashion, in order to estimate the
positions of each node of the network.

We saw that the algorithm proposed in the work by Soares, Xavier,
and Gomes [24] can be improved, in terms of number of iterations
needed to converge, by using the ADMM approach described in Chap-
ter 4. This allows to decompose the localization problem into smaller
local sub-problems solved in each node of the network. The improve-
ment provided by ADMM is although not sufficient if we want to
reach low RMSE values, since the solution provided by the convex
approach is typically not too precise.

The second approach we investigated, proposed in the work by
Erseghe [11], solves the original non-convex problem in an ADMM
fashion and we saw that this method provides good RMSE values,
which, in most cases, can reach the bound provided by CRLB.

Finally, we introduced an hybrid ADMM approach which starts
by solving the convex problem, exploiting its fast convergence speed,
and then refines the achieved solution by switching to the optimiza-
tion of the original non-convex problem. From the numerical simu-
lations shown in Chapter 8 we found that the proposed approach
reduces the number of iterations required to reach convergence in all
the cases but the improvement is bigger when dealing with large net-
works. This solution is robust on the choice of the penalty parameter
and can also be used for tracking applications.

75

BIBLIOGRAPHY

[1]

[2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Roberto Andreani, Ernesto G Birgin, José Mario Martinez, and
Maria Laura Schuverdt. “On augmented Lagrangian methods
with general lower-level constraints.” In: SIAM Journal on Opti-
mization 18.4 (2007), pp. 1286-1309.

Dimitri P Bertsekas. Constrained optimization and Lagrange multi-
plier methods. Academic press, 2014.

Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed
computation: numerical methods. Vol. 23. Prentice hall Englewood
Cliffs, NJ, 1989.

Ernesto G Birgin and José Mario Martinez. Practical augmented
Lagrangian methods for constrained optimization. Vol. 10. SIAM,
2014.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan
Eckstein. “Distributed optimization and statistical learning via
the alternating direction method of multipliers.” In: Foundations
and Trends® in Machine Learning 3.1 (2011), pp. 1—-122.

Ka Wai Cheung and Hing-Cheung So. “A multidimensional
scaling framework for mobile location using time-of-arrival mea-
surements.” In: Signal Processing, IEEE Transactions on 53.2 (2005),

Pp- 460-470.
Fan RK Chung. Spectral graph theory. Vol. 92. American Mathe-
matical Soc., 1997.

Juan Cota-Ruiz, Jose-Gerardo Rosiles, Pablo Rivas-Perea, and
Ernesto Sifuentes. “A distributed localization algorithm for wire-
less sensor networks based on the solutions of spatially-constrained
local problems.” In: Sensors Journal, IEEE 13.6 (2013), pp. 2181—
2191.

Benoit Denis, Jean-Benoit Pierrot, and Chadi Abou-Rjeily. “Joint
distributed synchronization and positioning in UWB ad hoc
networks using TOA.” In: Microwave Theory and Techniques, IEEE
Transactions on 54.4 (2006), pp. 1896—-1911.

Giuseppe Destino and Giuseppe Abreu. “On the maximum like-
lihood approach for source and network localization.” In: Signal
Processing, IEEE Transactions on 59.10 (2011), Pp. 4954—4970.

Tomaso Erseghe. “A Distributed and Maximum-Likelihood Sen-
sor Network Localization Algorithm Based Upon a Nonconvex
Problem Formulation.” In: Signal and Information Processing over
Networks, IEEE Transactions on 1.4 (2015), pp. 247—258.

77

78

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Daniel Gabay and Bertrand Mercier. “A dual algorithm for the
solution of nonlinear variational problems via finite element
approximation.” In: Computers & Mathematics with Applications
2.1 (1976), pp. 17—40.

R Glowinski and A Marocco. “Sur I’approximation par elements
finis d’ordre un, et la resolution part penalisation-dualite, d"une
class de problems de Dirichlet non lineaires’.” In: Rev. Francaise
Automat, informat. Recherche Ooperationalle Ser. Rouge Anal. Nu-

mer (), pp- 4-2.

JB Hiriart-Urruty and C Lemarechal. “Convex Analysis and
Minimization AlgorithmsSpringer.” In: New York, NY (1993).

Koen Langendoen and Niels Reijers. “Distributed localization
in wireless sensor networks: a quantitative comparison.” In:
Computer Networks 43.4 (2003), pp. 499—518.

Zhi-Quan Luo, Wing-Kin Ma, Anthony Man-Cho So, Yinyu Ye,
and Shuzhong Zhang. “Semidefinite relaxation of quadratic op-
timization problems.” In: IEEE Signal Processing Magazine 27.3
(2010), p. 20.

Olvi L Mangasarian, Robert R Meyer, and Stephen M Robinson.
Nonlinear Programming 3: Proceedings of the Special Interest Group
on Mathematical Programming Symposium Conducted by the Com-
puter Sciences Department at the University of Wisconsin—-Madison,
July 11-13, 1977. Academic Press, 2014.

Guogiang Mao, Baris Fidan, and Brian DO Anderson. “Wireless
sensor network localization techniques.” In: Computer networks

51.10 (2007), pp- 2529-2553.
Yurii Nesterov. “A method of solving a convex programming

problem with convergence rate O (1/k2).” In: Soviet Mathematics
Doklady. Vol. 27. 2. 1983, pp. 372-376.

Neal Patwari, Joshua N Ash, Spyros Kyperountas, Alfred O
Hero III, Randolph L Moses, and Neiyer S Correal. “Locat-
ing the nodes: cooperative localization in wireless sensor net-
works.” In: Signal Processing Magazine, IEEE 22.4 (2005), pp. 54—
69.

Theodore S Rappaport et al. Wireless communications: principles
and practice. Vol. 2. Prentice Hall PTR New Jersey, 1996.

Qingjiang Shi, Chen He, Hongyang Chen, and Lingge Jiang.
“Distributed wireless sensor network localization via sequen-
tial greedy optimization algorithm.” In: Signal Processing, IEEE
Transactions on 58.6 (2010), pp. 3328-3340.

Andrea Simonetto and Geert Leus. “Distributed maximum like-
lihood sensor network localization.” In: Signal Processing, IEEE
Transactions on 62.6 (2014), pp. 1424—1437.

[24]

[25]

[26]

Bibliography

Cldudia Soares, Jodo Xavier, and Jodo Gomes. “Simple and fast
convex relaxation method for cooperative localization in sen-
sor networks using range measurements.” In: Signal Processing,
IEEE Transactions on 63.17 (2015), pp- 4532—4543-

Zizhuo Wang, Song Zheng, Yinyu Ye, and Stephen Boyd. “Fur-
ther relaxations of the semidefinite programming approach to
sensor network localization.” In: SIAM Journal on Optimization
19.2 (2008), pp. 655-673.

Y. Ye. Computational Optimization Laboratory. URL: http://www.
stanford.edu/~yyye/Col.html.

79

http://www.stanford.edu/~yyye/Col.html
http://www.stanford.edu/~yyye/Col.html

	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	1 Introduction
	1.1 Localization
	1.1.1 Centralized and distributed approaches

	2 Overview on measurement methods
	2.1 Received Signal Strength Indicator
	2.1.1 Errors

	2.2 Time of Flight
	2.2.1 Errors

	2.3 The Cramer Rao Lower Bound
	2.3.1 Computation of the CRLB

	2.4 Some derivation from the CRLB computation

	Localization algorithms
	3 Convex relaxation of the problem
	3.1 The localization problem
	3.2 Make the problem convex
	3.3 Analytical solution to minimization problem
	3.4 Distributed localization
	3.4.1 Proof of the problem equivalence
	3.4.2 Gradient and Lipschitz constant of g
	3.4.3 Gradient and Lipschitz constant of h
	3.4.4 Analytical solution to orthogonal projection functions

	3.5 Distributed Parallel Algorithm
	3.6 Numerical simulations

	4 Alternating direction method of multipliers
	4.1 Compact form of the problem
	4.2 Distributed ADMM algorithm
	4.2.1 ADMM iterative algorithm
	4.2.2 Distributed ADMM solution

	5 Application of ADMM in a convex scenario
	5.1 Gradient of the node position update function
	5.2 Hessian of the node position update function
	5.3 Numerical simulations
	5.3.1 Simulations on the 40 nodes network
	5.3.2 Simulations on large networks

	6 Application of ADMM in a non-convex scenario
	6.1 Gradient of the node position update function
	6.2 Hessian of the node position update function
	6.3 Update of the penalty parameters
	6.4 Convergence of the ADMM algorithm in non-convex scenarios
	6.5 Numerical simulation
	6.5.1 Simulations on the 40 nodes network
	6.5.2 Simulations on large networks

	7 An Hybrid solution
	7.1 Detection of the switch moment
	7.2 On the choice of good penalty parameters
	7.3 Numerical simulations

	8 Numerical simulations and performances comparisons
	8.1 40 nodes network
	8.2 500 nodes network
	8.3 1000 nodes network
	8.4 Time complexity
	8.5 Robustness of the algorithm
	8.6 Achieved performance in a moving network
	8.7 Conclusions on numerical simulations

	9 Conclusions
	Bibliography

