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Introduction

The Hall effect was first observed in 1879 by E.H. Hall, who discovered that if a block of con-
ducting material with a current along a certain direction (e.g. Ix along x) is placed in a magnetic
field, an electrostatic potential difference VH is produced perpendicularly to both the magnetic
field and the current along the wire [1], [2], [3], [4].
Hall’s attention derives from reading Maxwell’s “Electricity and Magnetism” during Professor
Rowland’s lectures at the John Hopkins University in Maryland. Maxwell affirmed that if we
apply a magnetic force to a conductor with an electric current flowing along it, only the conduc-
tor will be altered by the presence of the magnetic field while the current will not be affected.
Hall did not agree with this statement and he suggested that the current itself should be affected
by the magnet acting on the wire.
In October 1879 he started a series of experiments and finally deduced that “if the current in
a fixed conductor is itself attracted by a magnet, the current should be drawn to one side of the
wire and therefore the experienced resistance should be increased”, discovering the Hall effect [5].

The Hall effect found numerous applications in various branches of science and technology. For
instance, it was initially used for chemical sample classification and later on it impacted the
electronics field; in fact new sensors based on Indium Arsenide semiconductor compounds were
developed in order to measure DC or static magnetic fields without keeping the sensor in motion
and in the 1960s the Hall elements were combined with integrated amplifiers giving birth to the
Hall switch. Moreover the Hall effect was studied when applied to ferromagnets.

Until 1980 nobody expected a quantized Hall effect might exist, which is independent from im-
purities and interface effects of the semiconductor as it depends only on fundamental constants,
i.e. the Planck constant h and the electric charge e [6].
In this year the integer quantum Hall effect was discovered by Klaus von Klitzing, for which he
won the Nobel Prize in 1985 [7], [8]. He found out that the Hall resistance assumes an exact
quantization at integer values of the filling factor, showing the presence of plateaux as function
of the applied magnetic field.
The discovery of the quantum Hall effect (QHE) was possible thanks to systematic measure-
ments on silicon field-effect transistors and thanks to the pioneering work of physicists such
as Fowler, Fang, Howard and Stiles, who showed that new quantum phenomena are visible
if the electrons of a conductor are confined within lengths of the order of 10 nm. From this
moment, the two-dimensional electron gas system (2DEG) becomes the most efficient device
able to observe the quantum Hall effect; these systems are also important in other fields, e.g.
in microelectronics as they allow to describe optical and electrical properties of microelectronic
devices.
In 1982 a new phenomenon came up, namely the same plateaux of the Hall resistance observed in
the integer quantum Hall effect were seen surprisingly at fractional filling factors: Tsui, Stormer
and Gossard discovered this behaviour at a filling factor of 1

3 and its theoretical explanation is
due to Laughlin, who proposed a solution to the fractional quantum Hall effect problem [9], [10].
Furthermore the discovery of the quantum Hall effect brought an improvement in the accuracy
with which the metrology institutes are able to maintain and compare electrical resistance stan-
dards. In fact the quantized Hall resistance is used thoroughly in the field of measurements in
which resistive devices for scaling and measuring physical quantities are needed [11], [12], [13],
[14], [15], [16].
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The aim of this work is to study the Hall effect in its generality, starting from a basic description
given by classical mechanics and electrodynamics and then moving towards a more complex vi-
sion of this phenomenon due to the quantum nature of the electromagnetic interaction. We will
focus our attention on the integer quantum Hall effect, going through its main characteristics
from a theoretical point of view, and also briefly discuss the fractional quantum Hall effect. To
conclude we will consider an important application of the Hall effect in the field of metrology,
the measurement of the fine-structure constant.

The structure of this work is as follows.
In Chapter 1 we will present the classical theoretical basis of the Hall effect, first in an ideal
case and afterwards taking into account the impurities of the conducting material.
In Chapter 2 we will consider a quantistic approach; we will describe the main features of the
integer quantum Hall effect and we will introduce the fractional one.
Finally, in Chapter 3 we will study the applications of the quantum Hall effect in metrology; we
will underline the difference between common standard resistors and the quantum Hall resis-
tance and we will present the measurement of the fine-structure constant based on the quantum
Hall effect.
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1 Classical Hall Effect

Due to the application of a magnetic field
#»

B to a wire or a strip of metal, an electric potential
VH proportional to the current and to

#»

B develops; the electric field associated to this potential
is perpendicular to the external field itself and to the electric current flowing along the entire
length of the wire [1], [2], [5]. This phenomenon is called the Hall effect and in this Chapter we
will present its classical description.

1.1 Classical description of the Hall effect

Let us consider a conducting material with length l, width a and thickness b as shown in Figure
1.

Figure 1: Schematic view of the Hall effect experiment

We start by assuming that the conductor has a carrier of charge q, either positive or negative.
Then, we will call n the charge carrier number density, i.e. the number of carriers per unit
volume, and vx the charge carrier’s drift velocity. We define the current Ix passing through the
sample in the x direction as

Ix = Jxab = nqvxab (1.1)

where Jx is the current density and ab the cross-section area of the conducting slab.
Even though we expect each charge carrier to move randomly, as a consequence of the external
field we assume that the particles are drifted along the x axis.
We thus have that

vx =< vx > and < vy >=< vz >= 0 (1.2)

i.e. the x-component of the velocity of the charge carriers in the conductor’s volume is taken
to be its average value and due to the hypothesis made above that the other two remaining
components are considered null [3].
Because of the magnetic field applied transversely to the current in the conductor (as shown in
Figure 1), we have a Lorentz force

#  »

FL = q #»v × #»

B (1.3)

which deflects the charge carriers in the negative y direction when we consider positive charges
and in the positive y direction when considering negative charges, as q → −q; eventually the
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carriers run against the edges of the slab. We thus observe that the charges start to accumulate
along the edge of the conductor and as a result an electric field

#»

EH = EH,yûy grows in the
opposite y direction (the positive y direction for positive carriers and the negative one for the
electrons) in order to prevent the accumulation. In other words a new force

#»

FH = q
#»

EH = qEH,yûy (1.4)

gets created and it counteracts the Lorentz force.
In equilibrium, the transverse field

#»

EH will balance
#»

F L and the only current that remains is in
the x direction. This field

#»

EH orthogonal to both
#»

B and Ix was called the Hall field.
Let us focus our attention on its properties. Being at steady state:

| #»

FH | = | #»

F L|,
qEH,y = qvxBz, (1.5)

EH,y = vxBz .

From (1.1) it follows that

EH,y =
Ix
nqab

Bz . (1.6)

The important conclusion of this derivation is that, as we anticipated, the Hall field is orthogonal
to the value of the applied field

#»

B and to the current along the wire Ix.
Experimentally, the measurable quantity is the Hall voltage VH , which is the potential difference
associated to the Hall field

#»

EH .
Hence,

VH = −
∫︂ a

0
EH,y dy

= −EH,ya

= − 1

nq

IxBz

b

(1.7)

where the quantity

RH =
1

nq
(1.8)

is called the Hall coefficient.

The Hall coefficient is negative when the Hall field
#»

EH points in the negative y direction and it
is positive when

#»

EH is in the opposite direction. To put it in another way, the Hall coefficient
is negative if the charge carriers are negative, it is positive if the charge carriers are positive.
Historically, Hall’s original data were consistent with the negative sign of the electron later
discovered by Thomson.

1.2 Hall Effect in metals and semiconductors

The classical model considered above explains the Hall effect in an ideal case as we have not
considered the possibility of impurity scatterings. When we study the Hall effect in real mate-
rials this model doesn’t apply perfectly, therefore some corrections are needed.

As we have just said, the charge carriers undergo collisions with lattice imperfections, impurities
and thermal vibrational quanta (known as phonons). Hence, the charge carriers move against
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a resistance and they lose energy [4].
The carriers are subjected to the following forces

m
d #»v

dt
= q(

#»

E + #»v × #»

B)− m #»v

τ
(1.9)

where m is the mass of the charge carrier, τ the mean time between scatterings (also known as
relaxation time) and

#»

F retard = −m
#»v

τ
(1.10)

is the retarding force which effectively describes the resistance caused by the collisions.
In equilibrium, the retarding force balances the Lorentz force due to the external fields and the
equation (1.9) reduces to

0 = q(
#»

E + #»v × #»

B)− m #»v

τ
, (1.11)

from which we get the components of the average velocity #»v

vx =
qτ

m
(Ex + vyBz),

vy =
qτ

m
(Ey − vxBz), (1.12)

vz =
qτ

m
Ez

and the components of the current density

Jx = nqvx =
nq2τ
m

1 +
(︂
qBz

m τ
)︂2

(︂
Ex +

qBz

m
τEy

)︂

Jy = nqvy =
nq2τ
m

1 +
(︂
qBz

m τ
)︂2

(︂
Ey −

qBz

m
τEx

)︂
(1.13)

Jz = nqvz =
nq2τ

m
Ez

By defining the conductivity1 as

σ =
nq2τ

m
(1.14)

1Taking into account the Drude model for electrical conduction and knowing that the momentum p can be
written as a product of force and time, the particle momentum is p = qEτ , where q is its charge and τ is the
relaxation time introduced before.
We also know that p = mv, where m is particle’s mass and v its velocity, and that the current density J = nqv =
σE. Substituting the derived definition of the velocity v = p

m
= qEτ

m
, we get that:

J = nq
qEτ

m
=

nq2τ

m
E

Therefore the conductivity σ is equal to nq2τ
m

.
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and the cyclotron frequency2 as

ωc =
qBz

m
(1.15)

the relations (1.13) can be written as

Jx =
σ

1 + (ωcτ)2
(Ex + ωcτEy)

Jy =
σ

1 + (ωcτ)2
(Ey − ωcτEx) (1.16)

Jz = σEz

Let us solve the equations above under the condition that Jy = Jz = 0. The result is

Jx =
σ

1 + (ωcτ)2

(︂ 1

ωcτ
Ey + ωcτEy

)︂
=
σEy

ωcτ

= σEx

(1.17)

where in the last line we have used the fact that Ey = ωcτEx.
Knowing that in general the Hall coefficient is defined as [1]

RH
def
=

Ey

BzJx
(1.18)

and using the relations (1.15) and (1.17) we have just obtained, we thus find the same definition
we gave in the first section (1.8):

RH =
1

nq
(1.19)

We have worked under the hypothesis that Jy = Jz = 0 as the Hall coefficient does not depend
on the magnetic field only under these circumstances. In general this is not the case.
Furthermore the Hall coefficient depends on temperature and this dependence is explained by
the quantum description of the Hall effect; in fact the classical Hall coefficient is found to be a
limiting value at high temperatures.

2It is the frequency with which a charged particle moves perpendicularly to an external magnetic field
#»
B.

Knowing that the charged particle follows a circular orbit, the cyclotron frequency can be obtained from the
following relation:

mv2

r
= qBv

where r is the radius of the circular orbit and B = | #»
B| is the module of the magnetic field.

Since ω = v
r
, it follows that ω = qB

m
= ωc.
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2 Quantum Hall Effect

In the classical theory of the Hall effect the electric current is made up of many charge carri-
ers which move independently of each other. The next step is to take into account that the
electrons are quantum particles that obey the Fermi-Dirac statistics and that, according to the
Pauli exclusion principle, identical fermions cannot occupy the same quantum state in a given
quantum system. We will discuss the quantized version of the Hall effect (QHE) which can be
either integer or fractional [6], [7].
A two-dimensional electron gas (2DEG) subjected to low temperatures and strong magnetic
fields is required to observe the quantized Hall effect. We discuss this kind of systems in more
detail in the Appendix A.1.

2.1 Integer Quantum Hall Effect

Classical electrons subjected to a magnetic field follow circular cyclotron orbits; in quantum
mechanics these orbits are quantized.
Let us define the system we will work with as an electron gas free to move in the x and y
directions and confined in the z direction. We shall now solve the Hamiltonian eigenvalue
problem knowing that the system is submerged in a magnetic field in the z direction

#»

B = B #»u z:

H|Ψ(x, y, z) >= ϵ|Ψ(x, y, z) > (2.1)

where Ψ(x, y, z) is the wavefunction characterizing the system, H is the Hamiltionan operator
and ϵ the eigenvalue associated to the Hamiltonian, which we aim to find. Before writing ex-
plicitly both the Hamiltonian and the wavefunction, we need to make two assumptions.
In this section we will ignore the presence of the spin, which adds the following energy contri-
bution:

ϵs = sgµBB (2.2)

where s = ±1
2 is the electron spin quantum number, g is the Landé factor and µB is the Bohr

magneton.
We shall then impose on the electromagnetic potential associated to the magnetic field

#»

B the
following Landau gauge

#»

A =

⎛⎝ 0
BX
0

⎞⎠ and Φ = 0 (2.3)

where
#»

A is the electromagnetic vector potential and Φ is the scalar potential; X is the x-
component of the position operator.
Finally the Hamiltonian is

H =
1

2m

(︂
#»

P − e
#»

A
)︂2

+ V (z)

=
Px

2

2m
+

1

2m

(︂
Py − eBX

)︂2
+
Pz

2

2m
+ V (z)

(2.4)

where
#»

P is the canonical momentum, e is the electric charge and V (z) is a generic potential
applied to the system; later on we will specify what kind of potential we are considering. Notice
that we are going to set the speed of light c = 1 for the rest of our work.
Therefore, let us substitute the Hamiltonian (2.4) into (2.1):[︂Px

2

2m
+

1

2m

(︂
Py − eBX

)︂2
+
Pz

2

2m
+ V (z)

]︂
Ψ(x, y, z) = ϵΨ(x, y, z) (2.5)
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where ϵ represents also the total energy.
Since the magnetic field affects the motion only in the xy plane, the wavefunction can be
factorized

Ψ(x, y, z) = ψ(x, y)ψ(z) (2.6)

It follows that the energy eigenvalues are the sum of two contributions

ϵ = ϵxy + ϵz (2.7)

Let us focus initially on the z direction; the Schrödinger equation becomes[︂
− ℏ2

2m

∂2

∂z2
+ V (z)

]︂
ψ(z) = ϵzψ(z) (2.8)

In order to simplify the discussion, let us consider an infinite potential well of width L. In this
case the wavefunctions are

ψ(z) = ψnz(z) =

√︃
2

L
sin

(︂nzπz
L

)︂
(2.9)

and the z-eigenvalues are

ϵz =
ℏ2

2m

π2nz
2

L2
(2.10)

with nz = 1, 2, 3, ... .

As the vector potential does not depend on neither Y nor Py, it commutes with the Hamiltonian.
For this reason we can choose the solution of the Schrödinger equation for the x and y directions
to be

ψ(x, y) = u(x)eikyy (2.11)

where ky is the y-component of the wave vector, ky =
py
ℏ with py being the eigenvalue of the

operator Py. Therefore ψ(x, y) is the product of a plane wave in the y direction and an unknown
function of x.
The eigenvalue problem is solved as follows:[︂

− ℏ2
2m

∂2

∂x2 + 1
2m

(︂
Py − eBX

)︂2]︂
ψ(x, y) = ϵxyψ(x, y)

=⇒
[︂
− ℏ2

2m
∂2

∂x2 + 1
2m

(︂
py − eBX

)︂2]︂
u(x) = ϵxyu(x) (2.12)

where in the second line we have solved the problem for the y direction knowing that the
wavefunction is given by the exponential eikyy and therefore the operator Py is replaced by its
eigenvalue py.
We can easily note a similarity with the harmonic oscillator Hamiltonian; hence, let us impose
that

1

2
mω2(x0 −X)2

!
=

1

2m

(︂
py − eBX

)︂2

=
e2B2

2m

(︂ py
eB

−X
)︂2

=
1

2
m
e2B2

m2

(︂ py
eB

−X
)︂2

(2.13)

It follows that

ωc =
eB

m
and x0 =

py
eB

(2.14)
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where ωc is again the cyclotron frequency and x0 is the center of the cyclotron orbit, which can
be rewritten as a function of the magnetic length lB

3

x0 =
ℏky
eB

= l2Bky (2.15)

At this point we already know the energy eigenvalues, which are exactly the harmonic oscillator
eigenvalues:

ϵxy = ϵnx = ℏωc

(︂
nx +

1

2

)︂
(2.16)

with nx = 0, 1, 2, ... . We can notice that the energy depends only on nx and not on ky which
means that states with the same value of nx but with different ky are degenerate. These energy
levels are called Landau levels and they are equally spaced with the gap between each level
proportional to the magnetic field applied.
Analogously to the harmonic oscillator, for the wavefunctions we find:

u(x) = unx(x− x0) =
1√

2nxnx!

(︂mωc

πℏ

)︂ 1
4
e−

mωc
2ℏ (x−x0)2hnx

(︂√︃mωc

ℏ
(x− x0)

)︂
(2.17)

where hnx represents the Hermite polynomials.
Therefore we conclude that

ϵ = ℏωc

(︂
nx +

1

2

)︂
+

ℏ2

2m

π2nz
2

L2
(2.18)

and the total wavefunction has the following form

Ψ(x, y, z) = unx(x− x0)e
ikyyψ(z)

=
1√

2nxnx!

(︂mωc

πℏ

)︂ 1
4
e−

mωc
2ℏ (x−x0)2hnx

(︂√︃mωc

ℏ
(x− x0)

)︂
eikyy

√︃
2

L
sin

(︂nzπz
L

)︂ (2.19)

2.1.1 Degeneracy of states in the integer quantum Hall effect

We have just seen how the wavefunction depends on nx and ky while the energy eigenvalues
depend only on nx. Let us make a step forward as it is worth learning about this degeneracy
of states at each Landau level [8].

In order to proceed we need to choose a region in the xy plane, for example a sample of finite
dimensions Lx and Ly. Let us calculate the number of states inside this region.
Since Ly is finite we can cosider our system in a box put in the y direction which causes the
quantization of ky in units of 2π

Ly
.

On the other side we cannnot make the same assumption for the x direction because of the
Landau gauge which is not translational invariant along x. This means that the intermediate

3Classically we know that a charged particle in a magnetic field
#»
B follows a circular orbit whose radius is

given by the Newton’s law: r = mvc
qB

where v is the module of its velocity and m its mass.
In quantum mechanics we can ask ourselves what is the smallest radius allowed by the uncertainty principle.
This question is possible as the radius r is proportional to mv = p (where p is the module of the momentum).
Here it comes Heisenberg uncertainty principle: the uncertainties of the particle’s position and momentum are
related by ∆x∆p ≥ ℏ

2
.

For our particle orbiting we have that ∆x = 2r and ∆p = 2mv = 2 qBr
c

and by replacing the uncertainties in the

equation up to a multiplicative factor of 1
8
we get that r =

√︂
ℏc
qB

, which is exactly the magnetic length (remember

that in our discussion c = 1).
In other words the magnetic length has the physical meaning of the smallest radius of a circular orbit in a
magnetic field allowed by the Heisenberg principle.
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calculations will not be translational invariant but at the end the physics will be invariant under
all symmetries.
We already know that the wavefunction is localised around the center of the cyclotron orbit x0,
which must physically lie within the interval

0 ≤ x0 ≤ Lx (2.20)

From the relation (2.15) we obtain a condition for ky:

0 ≤ ky ≤ Lx

l2B
(2.21)

and we extract also the amount that separates the center coordinates x0 of each Landau level [7]

∆x0 =
ℏ
eB

∆ky

=
ℏ
eB

2π

Ly

=
h

eBLy

(2.22)

where h = 2πℏ is the Planck constant .
Now we can calculate the number of states we were looking for:

N0 =
Lx

∆x0
=
eBLxLy

h
(2.23)

which corresponds to the number of flux quanta in the sample, that can be thought as the
magnetic flux contained within the area 2πl2B.
Therefore the degeneracy factor per unit area is

N =
N0

LxLy
=
eB

h
(2.24)

It is relevant to notice that N is independent of any semiconductor’s parameters such as its
mass.
Moreover the greater the magnetic field is, more are the states that occupy each Landau level,
which means that there is more confinement in the system as less energy levels are occupied.

Then it is possible to define the filling factor ν, which is the ratio between the density of states
in a two-dimensional electron gas (2DEG) and the density of states at the Landau levels

ν
def
=
N2DEG

N
= N2DEG

h

eB
(2.25)

where N2DEG represents the number of moving carriers per unit area in the two-dimensional
electron system.
The filling factor is an integer when there is an exact number of fully occupied Landau levels:
in this case we deal with the integer quantum Hall effect.
Otherwise the filling factor can be fractional and give rise to the fractional quantum Hall effect,
which will be the topic of the next section.
In addition we can read off the quantum limit from the dependence of ν on the magnetic field
B. Since ν is inversely proportional to the value of the magnetic field if the magnetic field tends
to infinity, ν tends to zero and as consequence the electrons will fill the lowest Landau level. So
in this limit one recovers the classical Hall effect.
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2.1.2 Quantized Hall resistance in the integer quantum Hall effect

Let’s now determine the quantized Hall resistance RH using the concepts presented above.
In the first Chapter we have already found the classical expression for the Hall Voltage (1.7)
and for the 2DEG system the voltage assumes the exact same definition. Let us rewrite it as
follows:

VH =
BI

eN2DEG
(2.26)

where we have used the density of electrons per unit area and not per unit volume and I is still
the current flowing along the sample.
Defining the Hall resistance as the ratio between VH and I and working under the condition
that ν energy levels are fully filled, we have

RH =
B

eN2DEG
=

B

eνN
=

h

νe2
(2.27)

where we have used respectively the relations (2.25) and (2.24) in the last two lines.

What can be deduced from this expression?
If the carrier density N2DEG and the magnetic field

#»

B assume values which permit to have an
integer filling factor ν, then the Hall resistance RH is always quantized.
In other words, when the filling factor is integer, the Hall resistance is constant while the mag-
netic field varies.
Moreover when the transverse resistivity ρxy sits on a plateau, the longitudinal resistivity ρxx
becomes zero and it spikes only when ρxy jumps to the next plateau. Under these conditions
the conductivity σxx

4, which is the current flow in the direction of the electric field, vanishes
too since the electrons can move freely only perpendicularly to the electric field. Hence, what
happens is that there is a steady current flowing without any dissipation.

Now let’s confront the quantum behaviour of the Hall resistivity with the classical one. Equa-
tions (1.18) and (1.19) yield the general relation [8]:

RH =
ρxy
B

=⇒ ρxy =
B

ne
(2.29)

As regards the longitudinal resistivity, from the Drude model we get that:

ρxx =
1

σxx
=

m

ne2τ
(2.30)

where we have used the definition (1.14). Note that ρxx does not depend on the applied magnetic
field as shown in Figure 2.

4In two dimensions the relation
#»
J = σ

#»
E can be written as:(︃

Jx

Jy

)︃
=

[︃
σxx σxy

σyx σyy

]︃(︃
Ex

Ey

)︃
(2.28)

In the Hall effect, due to rotational invariance in the z axis, ρxx = ρyy and ρxy = −ρyx. Therefore we have that
σxx = ρxx

ρ2xx+ρ2xy
and σxx = − ρxy

ρ2xx+ρ2xy

9



Figure 2: Longitudinal (in red) and transverse (in
blue) Hall resistivity of a 2DEG as function of the
magnetic field. Each axis is divided in units of h

e2 .

Figure 3: Longitudinal (in red) and transverse (in
blue) Hall resistivity as functions of the magnetic
field in the classical prediction.

We can easily see that the Hall resistivity in a two-dimensional electron gas system does not
increase linearly with the magnetic field

#»

B as in the classical case but it exhibits plateaux as
#»

B
increases.

2.1.3 Laughlin’s Gedankenexperiment

We have just seen that the Hall resistance assumes quantized values but we have not explained
why these plateaux exist in the first place; therefore we are going to explain in a heuristic way
the physical reason of why this occurs [7], [8], [17].

The existence of the plateaux is due to disorder, i.e. the presence of impurities in the experi-
mental sample. This impurity effect is represented by an additional potential term Vimp, which
is responsible for the resistance plateaux.
What we expect is that it will remove the degeneracy of the eigenstates and as a primary
consequence there is the broadening of the energy spectrum. Moreover the disorder causes the
change of extended states into localised ones, where we define as extended a state which spreads
throughout the whole system and as localised a state which is limited to lie in a restricted region
of space.
The importance of this difference lies in the fact that only extended states can transport charge
from one side of the sample to the other and therefore they are the ones that contribute to the
conductivity.

10



Figure 4: Density of states without disorder Figure 5: Density of states with disorder

How does the conductivity behave at this point? Let us suppose that we have filled all the
extended states in a certain Landau level and we start adding new electrons but rather than
jumping to the next Landau level, we fill the localised states. The conductivity doesn’t change
since the localised states do not contribute to the charge transportation. That is exactly what
happens with the resistance plateaux.
The problem that now emerges is that, when we obtained the quantized values of the Hall
resistance, we did not make a distinction between localised and extended states. Thus, the
following question arises: is the definition of the Hall resistivity different now? No, it is not.
In fact the current carried by the extended states increases in order to compensate the lack of
current related to the localised states. We now explain why.

Let us consider a two-dimensional surface folded to form a cylinder of radius R and length L,
which has electrodes fixed at the edges. As before, let us apply a magnetic field normal to the
cylindrical surface knowing that the x axis is parallel to the axis of the cylinder and the y axis
points upwards.
Along the axis of the cylinder we place a solenoid, which generates an inside magnetic flux Φ
that does not exist at the surface of the cylinder.

Figure 6: Cylindrical surface considered in Laughlin’s dissertation

Even though the magnetic field of the solenoid exists only inside the solenoid itself, the magnetic
vector potential assumes a finite value on the surface and influences the electrons’ motion, as

11



predicted by the Aharonov-Bohm effect.
The vector potential of the magnetic field is the same we have already introduced in the equation
(2.3).
Regarding the vector potential acting on the surface of the cylinder, it has the following form

#»

AΦ =

⎛⎝ 0

− Φ
2πR
0

⎞⎠ (2.31)

which can be deduced by applying the Gauss Theorem:

Φ =

∫︂
dΣBx

=

∫︂
dΣ (

#»∇× #»

AΦ)x

=

∮︂
#»

AΦ · d #»

l

= 2πR | #»

AΦ|

(2.32)

where Σ indicates the surface of the cylinder. In the second line we have used the definition of
the magnetic field

#»

B =
#»∇× #»

AΦ.
What happens if the flux changes from Φ to Φ +∆Φ?
The electron wavefunction changes its phase:

ψ( #»r ) → ψ( #»r )e
i
ℏ eχ(

#»r ) with χ( #»r ) =
∆Φ

2πR
y (2.33)

since the change of the flux can be considered as a gauge transformation [18].
However we have to pay attention to a subtlety: the electron system is not simply connected
and we need to consider boundary conditions as there might be the possibility that the gauge
transformation linked to the change of flux is not allowed.
We have two paths to follow depending on the type of electron state we are considering, namely
extended states or localized ones.

When the electron state extends in the y direction, it means that the region where the wave-
function ψ( #»r ) is finite surrounds the cylinder in the y direction. Therefore, the condition the
wavefunction has to fulfill is

ψ(x, y + 2πR) = ψ(x, y) (2.34)

and applying the gauge transformation we get:

ψ(x, y + 2πR)e
i
ℏ eχ(x,y+2πR) = ψ(x, y)e

i
ℏ e[χ(x,y+2πR)+∆Φ]

= ψ(x, y)e
i
ℏ eχ(x,y)

(2.35)

Thus, in order for the gauge transformation to be allowed:

∆Φ =
h

e
n (2.36)

This requirement essentially means that a continuous gauge transformation is not possible.

Let us consider the other case. When the electron state is localized in the y direction, there is
no need to impose boundary conditions since the wavefunction vanishes and there is no way to
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keep track of how the phase changes. In other words a continuous transformation is allowed.
But what would happen if the gauge transformation could not eliminate the variation in the
flux?
Let us consider for now an ideal system without impurities; we find ourselves in the case in
which the wavefunctions are delocalized. Therefore, the effect of ∆Φ is the translation of the
electron wavefunctions in the x direction by ∆x = ∆Φ

2πRB , which can be deduced by looking at
the total vector potential which can be written as

#»

A +
#»

AΦ = B

⎛⎝ 0

X − Φ
2πRB
0

⎞⎠ (2.37)

Now we start taking into account also the impurities, thus we need to introduce an impurity
potential Vimp.
As long as the effect of the impurities is small, the wavefunctions are delocalized and they sim-
ply move along the x direction, as said before. When ∆Φ = h

e , each wavefunction has moved
to the position occupied previously by the next wavefunction. But when the impurity potential
increases, localized electron states appear in the y direction and, as we have already discussed,
in this situation the gauge transformation is allowed: these localized states will not move as
they change only in phase while the extended electron states keep moving in the x direction
and it might happen that some of them may go through the localized states.
Thus, the effect of a change in the magnetic flux in the solenoid is to carry extended wavefunc-
tions in the direction parallel to the axis of the cylinder. Here we give a simplified representation
of the transportation of the wavefunctions.

Figure 7: Transportation of wavefunctions in the x direction due to a change in the solenoid flux

The importance of this discussion comes from the fact that the integer quantum Hall effect can
be observed when the Fermi level is in the band of localized states between the Landau levels
and the extended states with the energy lower than the Fermi energy are fully occupied.
What happens is that the electrons in the extended states move to the next ones when the
solenoid flux increases by a factor of h/e and therefore we can see the transportation we have
been talking about.

The last step remaining is to show that when every extended state below the Fermi level is
fully occupied, then the Hall resistance assumes quantized values which are independent of the
position of the Fermi level as long as it is in between localized states.
Let us calculate the expectation value of the current density in the y direction, as the current
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flows in this way:

jy =

⟨︂∑︁
i

e
m

[︂
Pi,y − eAy(ri)

]︂⟩︂
2πRL

=

⟨︂
∂
∂Φ

(︂∑︁
i

1
2m

[︂
P 2

i,x +
(︂
Pi,y − eAy

)︂2]︂
+ Vimp(ri)

)︂⟩︂
L

=
1

L

⟨︂∂H
∂Φ

⟩︂
=

1

L

∂ϵ

∂Φ

(2.38)

in the second line we have used the fact that the current operator can be obtained as the flux
derivative of the Hamiltonian considering also the impurity potential Vimp(ri), applying Fara-
day’s law; in addition in the last line we have used that the expectation value of the derivative of
the Hamiltonian is the derivative of the expectation value of the Hamiltonian, i.e. the derivative
of the total energy ϵ of the system.
Let us now assume that the current does not depend on the flux Φ; therefore, we substitute the
partial derivative ∂ϵ

∂Φ with a finite difference ∆ϵ
∆Φ .

The expression for ∆ϵ can be obtained by the following reasoning. Having applied an electro-
static potential difference between the edges of the cylinder, the current flows in the system and
it creates a magnetic field parallel to the cylinder axis; this magnetic field interacts with the
magnetic flux of the solenoid. Therefore, in order to change the magnetic flux of the solenoid
from Φ to Φ + ∆Φ, we need energy, which is precisely ∆ϵ = eV ν, where V is the potential
applied and ν corresponds to the number of filled Landau levels.
Inserting this expression into the equation (2.38), we get:

jy =
1

L

eV ν

h/e
= ν

e2

h
Ex (2.39)

where E is the electric field, which can be obtained remembering that it can be written as the
ratio between the electrostatic potential and a length.
Knowing that the current density is related to the electric field through the conductivity

σxy = ν
e2

h
(2.40)

and that the conductivity is the inverse of the resistivity we get:

ρxy =
h

νe2
= RH (2.41)

In this way we have finally shown that the Hall resistance is quantized, as we expected.

2.2 Fractional Quantum Hall Effect

What we have done up to now is essentially studying a quantum system of electrons which do
not interact with each other. What if we start considering the electron-electron interaction?
The result of this research is the discovery of the existence of Hall resistance plateaux also at
fractional filling factors [8].

14



Figure 8: Longitudinal (ρxx) and transverse (ρxy) Hall resistivity of a 2DEG as a function of the magnetic
field with the addition of plateaux at fractional filling factors

What we are going to present in this Section is just an introduction to the fractional quantum
Hall effect as a deeper explanation would require the knowledge of quasi-particles, quasi-holes
and more generally of quantum field theory in a two-dimensional space [9], [10].
To convince you of the complexity of this topic, we just need to focus on the first problem we
encounter, which regards the degeneracy. Let’s see why.
Assume that we have a filling factor ν < 1 which means that the lowest Landau level is partially
occupied. The number of states for each Landau level was already calculated in the Section
above (2.23). The number of ways we can fill νN0 of these states is given by the binomial
coefficient (︃

N0

νN0

)︃
≃

(︂1
ν

)︂νN0(︂ 1

1− ν

)︂(1−ν)N0

(2.42)

where we have used the Stirling approximation; this relation represents an enormous number
of ways to arrange the states. In other words we have a Landau level which is macroscopically
degenerate.

Considering the interaction between the electrons we would expect that this degeneracy would be
lifted. And here it lies our second problem: how can we operate? We could use the perturbation
approach but this would mean to diagonalise a macroscopically large matrix, which is quite hard.
The solution was given by Laughlin [9], who described the fractional quantum Hall effect at
filling factors

ν =
1

m
(2.43)

with m being an odd integer.
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3 Applications of the quantum Hall effect in metrology

In 1900 Max Planck envisioned the idea of using fundamental constants for the definition of
measurement units; along this line, the unexpected observation of a quantized Hall resistance
opened a new way to the determination of fundamental constants and to the realization of a
standard resistance which is independent of the characteristics of the device [12], [13]. The
quantum Hall effect can provide an invariable reference standard of resistance more stable
compared to any other one [11].
In this Section we are going to retrace the main reasons for the quantized Hall resistance to be
a point of reference in metrology and we will link the quantum Hall effect to the determination
of the fine-structure constant [14], [16], [19].

3.1 Standard resistors and their limitations

Before beginning with the proper discussion, we need to clarify what we intend by talking about
reproducibility and accuracy.
Reproducibility is a measure of the degree of agreement of the results of measurements of the
same quantity fulfilled under a variety of conditions. Accuracy is a measure of the deviation of
measurement results from the true value, which we quantify through the uncertainty associated
to the quantity we are observing [11].
In order to have an efficient reference resistor, we need to look at these yardsticks.

Until the discovery of the quantum Hall effect and therefore of the quantum Hall resistance,
the metrology institutes used the 1 Ω and 10 kΩ resistors to maintain standards of resistance.
Actually these kinds of resistors are still used as travelling standards to compare resistance stan-
dards between the laboratories since the measurements regarding the quantum Hall resistance
are not frequent and most of the laboratories do not possess them.
The most common types of standard resistors are the Thomas-type 1 Ω, the Australian Com-
monwealth Scientific and Industrial Research Organization (CSIRO)-type 1 Ω and the Electro-
Scientific Industries SR 104 10 kΩ.
The problem of using these resistors as reference comes from their own limitations as their
measured resistance varies with temperature, humidity, pressure, frequency of the measuring
current, the voltage applied to the resistors itself during measurements but the list goes on since
they can be influenced by time and by the chemical nature of the material they are wrapped in.

Just to give an example, let us report some results of the resistance varying with time.
Up to 1960 the only way to keep track of the stability of the resistance was to compare it with
respect to other resistors, which although were changing in time too.
Fortunately, in 1964 the Commonwealth Scientific and Industrial Research Organization (CSIRO)
began to participate in international comparisons of resistance standards organized by the Bu-
reau international des poids et mesures (BIPM) and this gave the possibility of verifying that
the 1 Ω resistors were drifting in a constant way with respect to the standards given by the
CSIRO.
We can see this kind of behaviour in the data concerning the resistance Ω69−BI , which is the
mean value of six 1 Ω resistance standards; in fact it was compared to the Ohm determined at
the CSIRO and to other resistors of the BIPM.
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Figure 9: Variation of Ω69−BI with time from 1964 to 1986. The bars represent the total combined
standard uncertainties.

In the 1980s the establishment of the quantum Hall resistance standard in the major national
metrology institutes allowed different laboratories to determine the variations in time of their
resistors; for example the National Institute of Standards and Technology (NIST) found that
its resistance standard, which was based on a group of 1 Ω resistors, was drifting at a rate of
52.9 nΩ/year with a 1σ uncertainty of 4 nΩ/year.
The same fate regards other types of resistors, such as the 100 Ω resistor which is used as a
transfer standard5 for the BIPM.

Figure 10: Variation of the resistance of a 100 Ω standard measured by the quantum Hall resistance
standard for ten years.

5Measurement standard used as an intermediate device when comparing two other standards. Examples of
typical transfer standards are DC volt sources and single value standard resistors, capacitors or inductors.
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3.2 Determination of the Ohm

In the previous section we have seen resistance comparisons used as a yardstick to maintain the
accuracy of a particular resistance. But a resistance can also be measured directly applying the
International System (SI) definition of the Ohm.
Starting from 1956, the Ohm determination comes from an electrostatics theorem formulated
by Thompson and Lampard, for which we refer to [11].
Nevertheless no laboratory has carried out periodic routine Ohm determinations, except for the
CSIRO, because of the difficulty in reaching the required accuracy. This lack of accessibility is
the practical limitation of maintaining resistance standards by using the determination of the
Ohm.

3.3 The quantum Hall resistance as a resistance standard

The quantum Hall resistance (2.27) was already introduced in the previous Chapter, let us recall
it here:

RH =
h

νe2
(3.1)

which can be written as a function of the von Klitzing constant RK = h
e2

RH =
RK

ν
(3.2)

In order to maintain the coherence of the SI and of all mechanical and electrical measurements
it is important to be able to link the RH to the Ohm; this is achieved through the von Klitzing
constant itself, which is also known as RK−90 because it was in 1990 when it was established to
take the conventional value

RK−90 = 25812.807 Ω (3.3)

with an uncertainty of 2× 10−7 with respect to the SI value of RK [11], [15].
Today the value has been adjusted by the Committee on Data for Science and Technology
(CODATA):

RK−90 = 25812.807557 Ω (3.4)

with an uncertainty of 6.8 parts in 1010 [20]; this value for RK−90 represents the mean of the
three most accurate direct measurements of RK with respect to the Ohm and the value following
from the calculation of α as, in fact, the von Klitzing constant is linked to the fundamental
constants by the relation

RK−90 =
µ0c

2α
(3.5)

where µ0 = 4π×10−7 H/m is the magnetic permeability in vacuum, c the speed of light (which is
defined since October 1983 as c = 299792458 m/s with less than 4 parts in 109 uncertainty [14])
and α the fine-structure constant.
From further revisions made by the SI, from 2019 onward the ratio between RK = h/e2 and
RK−90 is exact [21]. Thus,

1Ω90 =
RK

RK−90
Ω = (1 + 1.7793. . . × 10−8) Ω (3.6)

i.e. the 1990 conventional unit of resistance Ω90 exceeds the SI unit of resistance Ω by the
fractional amount 1.7793. . . × 10−8; this implies that a resistance measured in the unit Ω90 will
have a numerical value that is smaller by this fractional amount than the numerical value of
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the same resistance measured in the SI resistance Ω.

The very first application of the quantum Hall effect is the determination of the drift coefficient
in standard resistors, as we have already seen in the paragraphs above; this is possible thanks
to the fact that the quantum Hall resistance is more stable and more reproducible than any
other wire resistor. In addition, it does not depend on device geometry, material and fabrication
process, the carrier mobility and density, the plateau number or other factors and, contrary to
atomic clocks, the quantized Hall resistance does not depend on the gravitational field [22].

3.4 Determination of the fine-structure constant

The quantum Hall effect opened the way also to another important achievement, i.e. a new
method to obtain Sommerfeld’s dimensionless fine-structure constant α, which is usually es-
timated starting from the quantum electrodynamics (QED) theory. The measurement of α
provided by other methods such as the quantum Hall effect itself would be a test for the valid-
ity of the QED theory since an eventual disagreement between the estimated values of α would
point at an inconsistency in the QED theory.
The fine-structure constant is the relativistic correction introduced by Sommerfeld in order to
explain the fine-structure splitting in the energy levels of the hydrogen atom, while in electrody-
namics the fine-structure constant quantifies the strength of the interaction between electronic
charges and the electromagnetic field [14], [16].

Let us derive the value of α as a combination of fundamental constants obtained experimentally
[14]:

α =
(︂µ0c

2

)︂(︂ h
e2

)︂−1

LAB
(1ΩSI/1ΩLAB) (3.7)

α2 =
(︂4R∞

c

)︂(︂µB
µp′

)︂(︂2e
h

)︂−1

LAB
(γp′,low)LAB(1ΩLAB/1ΩSI) (3.8)

α2 =
(︂2R∞

c

)︂(︂µB
µp′

)︂(︂mn

mp

)︂(︂µp′
µn

)︂(︂ h

mn

)︂
(3.9)

where γp′,low is the proton gyromagnetic ratio measured in the low-field limit (B ≤ 1 mT ), the
prime “ ′ ” indicates protons in a spherical sample at pure H2O at the temperature of 25◦C, µp′

is the magnetic moment of the protons under said conditions and µn the magnetic moment of
neutrons, µB is the Bohr magneton, R∞ is the Rydberg constant for infinite mass6, mn and mp

are the masses of respectively neutron and proton.
The parentheses “ () ” in the equations above are used to represent the uncertainty of the quan-
tities in brackets; in other words each term contained in the “ () ” brackets has an uncertainty
equal to 0.01 ppm (parts per million).
In the end, the term (1ΩSI/1ΩLAB) is for conversion since the standards of the laboratories can
be different from the Ohm standard of the SI.

The equation (3.7) gives the esteem of α determined by the quantum Hall effect. The equation
(3.8) derives from the alternating current AC Josephson’s method (Appendix A.2) while the

6The infinity symbol derives from the premise that the nucleus of the atom whose spectrum we are observing

is much heavier than a single orbiting electron. The CODATA value is: R∞ = mee
4

8ϵ02h3c
= 10973731.568160(21)

cm−1.

19



equation (3.9) is based on the relation

h

mn
= λnvn (3.10)

where λn is the de Broglie wavelength7 of the neutron and vn is its velocity.
We report in Figure 11 some values of α−1 derived by different laboratories with different
methods around 1985.

Figure 11: Comparison of α−1 values: in the graphic QH stands for quantum Hall effect, meaning that
α was derived by equation (3.7) and analogously Jγ stands for the determination by the AC Josephson’s
method with reference to the equation (3.8); ae and µhfs come from QED experiments. In the x axis you
can find the decimal digits that follow the value 137 associated to α−1; for example the number 0.0360
in the x axis has to be read as α−1 = 137.0360. Moreover in brackets there are the abbreviations of the
laboratories who measured α.

As regards the determination of the fine-structure constant related to the quantum Hall effect,
α−1

QH is in agreement with the other data shown in Figure 11 within the experimental un-
certainties. For example the value of α−1

QH proposed by NBS-BL group (National Bureau of
Standards and Bell laboratories, in the USA) agrees with α−1

Jγ obtained in the NBS experi-
ments.
Despite this conclusion, there are some measurements (like Jγ(NIM), Jγ(V NIM) and Jγ(NPL))
which do not seem to agree with the QH ones; this discrepancy, which is greater than the ex-
perimental uncertainty, is caused by the existence of a systematic uncertainty in the evaluation
of γp′,low which is related to dimensional measurements of the instrumental apparatus, e.g. the
mean solenoid diameter, and to the type of detector coil used since different detector coils gen-
erate different results [14], [23].

7The equation (3.10) can be easily deduced knowing that the momentum of the neutron can be written as
pn = mnvn and using the de Broglie relation λn = h

pn
we find that

pn = mnvn =
h

λn
=⇒ h

mn
= λnvn

where we have inverted the terms in the last passage.
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Now, let us confront the esteem of the fine-structure constant coming from the quantum Hall
effect and the one based on QED theory.
The most accurate values of αQED derive from two measurements which are the anomalous
magnetic moment of the electron8 (αae

−1 = 137.035993−+0.05 ppm) and the hyperfine splitting9

of the muonic ground state (αµhfs
−1 = 137.035988−+ 0.18 ppm) [14].

With reference to Figure 11, the first thing we ought to note is that there is no inconsistency
within 0.1 ppm in the QED theory, since the results just presented are in agreement; secondly
we can easily see that the values of the fine-structure constant given by the quantum Hall effect
and the QED theory are coherent (αCMP = αQED) within 1 ppm.

As we have said before, the values of the fine-structure constant discussed above are dated back
to 1985 but since then more accurate measurements have been carried out.

Figure 12: Comparison of α−1 values. In the x axis you can find the digits that follow the value 137.03
associated to α−1; the error bars correspond to one-standard-deviation uncertainties. Moreover there
are the labels of the laboratories who made the respective measurement with the last two digits denoting
the year in which the result was reported.

The latest recommended value of the fine-structure constant, achieved through metrology ex-
ploiting the quantum Hall Effect, is α−1 = 137.035 999 084(21) with a relative standard uncer-
tainty ur

10 of 1.5× 10−10 (in Figure 12 it is reported as CODATA-18) [21].
This recommended value of the fine-structure constant was obtained through a least-squares

8It was discovered in 1947 by P. Kusch and H. M. Foley.
The gyromagnetic ratio (known as g value) of the electron was determined while measuring the Zeeman spectra
of the gallium atom in a constant magnetic field [24]. The g value of the electron derived from the Dirac theory is
exactly an integer two and the difference between the measured g value and Dirac’s one is called the anomalous
magnetic moment of the electron [25]

ae =
g − 2

2
= 0.00115965218073 (28)

9The energy shifts connected with the hyperfine structure are due to the interactions between the nucleus and
the electron clouds, which generate internally electric and magnetic fields. These shifts are orders of magnitude
smaller than the one related to the fine structure.

10We indicate as relative standard uncertainty the dimensionless uncertainty defined as ur(X) = u(X)
|X| , i.e. the

ratio between the absolute standard uncertainty of the experimental data X and the quantity itself.
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procedure, which is based essentially on the assumption that the data follow a normal proba-
bility distribution [26].
We report here the results of the measurements relevant for the determination of the CODATA
value of α, also shown in Figure 12:

• α−1 = 137.035999150(33) with ur = 2.4× 10−10 [21];

• α−1 = 137.035998998(85) with ur = 6.6× 10−10 [27];

• α−1 = 137.035999048(28) with ur = 2.0× 10−10 [21].

The last two measurements have been derived exploiting the photon recoil in atom interfer-
ometry, a field which prevailed in the past two decades thanks to the improvement of atomic,
molecular and optical Physics. For instance, the laboratory of Berkeley used an atom inter-
ferometer based on laser-cooled 133Cs in order to provide an esteem of h/mCs. The value of
α obtained in this way agrees with the less-accurate value from a 87Rb atom-interferometry
measurement carried out by Laboratoire Kastler-Brossel (LKB) in France.
Essentially, atom interferometers measure α by measuring the recoil kinetic energy transferred
from or to an atom of generic mass mAt after the scatter of a photon with momentum ℏk has
happened. The photon wavenumber k is monitored by an optical laser comb and it measures
h/mAt which appears in the relation from which we can determine α [28]:

α2 = 2
R∞
c

mAt

me

h

mAt
(3.11)

To summarize, the fine-structure constant has been measured by various methods, e.g. the
AC Josephson effect, the electron anomalous magnetic moment effect, photon recoil in atom-
interferometry and the quantum Hall effect. All these results are in overall agreement and this
fact has as direct consequence the confirmation of the consistency of theory and experiment
across Physics. Future upgrades consist of increasing the accuracy of α by 1 or 2 orders of
magnitude.
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Conclusion

In this work we have studied the Hall effect starting by giving the classical basis to understand
it. We have seen that due to the application of an external magnetic field

#»

B to a conducting
material, an electric potential VH proportional to the magnetic field itself and to the current
flowing along the wire develops. What happens is that a Lorentz force forms. The latter deflects
the charge carriers towards the edges and the system reacts with a counteracting force related
to what is known as the Hall field

#»

EH . Experimentally, we can measure the Hall voltage which
depends on the Hall resistance RH .
This classical system represents an ideal case since in practice we also need to consider impurity
scatterings. For this reason, we have rewritten the equation of motion of the carriers and we
have demonstrated that the resistance felt by the charges is the same we have found in the
simplified model without impurities.
The next step consisted in describing the quantum Hall effect associated with the fermionic
nature of the electrons.
For the integer quantum Hall effect, we have solved the Hamiltonian eigenvalue problem and
by doing so we have defined the Landau levels of the system. Moreover, we have obtained the
wavefunctions which depend on two parameters, the integer value nx and the y-component of
the wave vector ky, while the energy eigenvalues depend only on nx. This causes the degeneracy
of states at each Landau level.
In addition, we have focused our attention on the quantum version of the Hall resistance, dis-
covering that it assumes quantized values when the filling factor ν is integer, i.e. it is constant
while the applied magnetic field changes in time. This property of the Hall resistance was
demonstrated by Laughlin through one of his Gedankenexperimente.
In order to give completeness to this work, we have given a brief introduction to the fractional
quantum Hall effect, which is characterized by the presence of resistance plateaux also at frac-
tional filling factors.
In the last Chapter we have considered the applications of the quantum Hall effect in the field
of metrology. We have highlighted how the strong stability and reproducibility of the quantum
Hall resistance give the possibility of using the quantum Hall resistance as a resistance standard
since it is independent of device geometry, material and fabrication process, carrier mobility
and density and of other factors. These advantages opened the way to a precise measurement
of the fine-structure constant α, which is in great agreement with measurements of α obtained
with different methods.

Nowadays the Hall effect has applications in various fields; for example it may assume an
important role in future space travel since it can be used to design engines for average-sized
spacecrafts [29].
Basically, this kind of engine traps electrons with an intense radial magnetic field in a per-
pendicular Hall current moving around the circumference of an annular ceramic channel. The
electrons in the circulating Hall current ionize the onboard propellant, for example the inert
gas xenon, and create an ionized plasma. The plasma is then accelerated by an electric field
producing a thrust. The applications of the Hall effect thruster regard also the orientation
control of the orbiting satellites.
The spacecrafts using a Hall effect propulsion engine can achieve a velocity of 40 km/s with
respect to the 5 km/s velocity of chemical propulsion ones. Moreover, they have a longer av-
erage life and they have less environmental impact since they don’t burn fuels. Unfortunately
the Hall effect propulsion systems need more time to accelerate and this is an inconvenience if
we want to transport a space rocket through the atmosphere. Therefore, there is still work to
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do and the NASA has already started new projects.
As regards the theoretical and physical aspects, the fractional quantum Hall effect still needs
to be understood in full, a microscopic picture of the quantum Hall effect for real devices with
electrical contacts and finite current flow is still missing and no theory yet explains the remark-
able accuracy of the quantum Hall resistance and its variation with temperature, current or
frequency. These are interesting challenges for future research [11], [12].
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A Appendix

In this Appendix we shall motivate briefly some concepts used in the thesis which may help
with the understanding.

A.1 Two-dimensional electron gas system

In order to observe a quantized energy spectrum of the electronic system used in the experi-
ment, a two-dimensional gas (2DEG) is needed: it is essentially an electron gas free to move in
two dimensions as the carriers are confined in a potential such that their motion in the third
direction (usually the z one) is restricted and thus it is quantized; therefore the motion is only
possible in a plane normal to the confining potential [7].

Most two-dimensional electron gases are realized at the surface of a semiconductor like silicon or
gallium arsenide and usually the surface is in contact with an insulator, for example AlxGa1−xAs
for heterostructures and SiO2 for silicon field effect transistors.
The most common 2DEG is the layer of electrons in metal-oxide-semiconductor field-effect
transistors (MOSFEts): when the transistor is in inversion mode, the electrons are confined
close to the semiconductor by a perpendicular electrostatic field.

Figure 13: Representative structures of a two-
dimensional electron gas: (a) Silicon MOSFET;
(b) GaAs−AlxGa1−xAs heterostructures

Figure 14: Typical sample and cross section used
in Hall effect measurements based on a GaAs −
AlxGa1−xAs heterostructure

When the potential well is smaller than the de Broglie wavelength of the electrons, the energy is
divided in electric subbands which correspond to quantized levels for the motion in the direction
normal to the surface.
In order to derive the electronic subbands, it is possible to make the approximation of considering
a triangular potential with an infinite barrier at the surface (z = 0) and a constant electric field
in the region defined by z ≥ 0.
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A.2 Josephson effect

Analogously to the quantum Hall effect, the Josephson effect gave a possibility of developing a
Voltage standard and it contributed to the measuring of the fine-structure constant.
In this section the aim is to give a summary of the bases which characterize this quantum
phenomenon discovered by Brian Josephson in 1962 [20], [30].

The Josephson effect is an example of a macroscopic quantum phenomenon which occurs when
two superconductors11 (S1 and S2) constitute a junction and they are divided by a thin insu-
lating barrier (In), as shown in Figure 15. Unpaired electrons and Cooper pairs12 are able to
cross the region of the weak link.

Figure 15: Representative structure of a Josephson junction

The current flowing through the junction is described by the first (A.1) and the second (A.2)
Josephson relations, which can be derived by solving the Schrödinger equation:

I(t) = Icsinϕ(t) (A.1)

∂ϕ

∂t
=

2eV (t)

ℏ
(A.2)

where ϕ is the phase difference between the two wavefunctions describing the superconductors,
Ic is the critical current of the junction, i.e. the maximum supercurrent which can exist in the
Josephson junction, I(t) and V (t) are respectively the current through and the voltage across
the Josephson junction.
Quite important in the field of metrology is the definition of the Josephson constant KJ , which
can be determined by comparing the Josephson voltage to a voltage standard known in terms
of the SI unit Volt or another method is based on the Watt balance experiment in which the
electrical and mechanical power are compared.
Nowadays the value for KJ is

KJ−90 = 483597.891 GHz V −1 (A.3)

with an uncertainty of 2.5 parts in 108 [20].

11Superconductivity is a state of matter in which the electrical resistance vanishes and magnetic fields do not
penetrate the interior of the superconductor. The superconductor has a critical temperature below which the
resistance drops to zero; an electric current in a superconductor can flow indefinitely.

12In general the Cooper pair is a pair of fermions bound together at low temperatures, as the energy of the
pairing interaction is of the order of 10−3 eV , thermal energy can easily break the link. The Cooper pairs are
directly related to superconductivity.
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