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Abstract

Estimation of precise cosmological parameters has been a longstanding challenge in modern
cosmology. Forthcoming cosmological surveys such as DESI, Euclid, SPHEREX, and the Roman
space telescope will allow us to observe a large fraction of the sky and provide a very detailed map
of the large-scale structure of the universe. The vast amount of data collected from these surveys
will make small scales accessible with high precision. The small, non-linear scales will help shed more
light on unresolved topics in cosmology, such as explaining cosmological tensions, examining the early
universe, studying neutrinos, and so on.
In this work, we address such questions by applying a set of different estimators to the Quijote-png
halo catalogues and Quijote-massive neutrinos halo catalogues at non-linear cosmological scales, up
to kmax = 0.5hMpc−1 to find the best approach to constrain Primordial non-Gaussianity (PNG)
which gives insight into the early universe and total neutrino mass Mν . We use various summary
statistics including the power spectrum, bispectrum, halo mass function, marked power spectrum, and
marked modal bispectrum to train deep neural networks (NN) and perform likelihood-free inference
of cosmological, PNG, and Mν parameters. We also look into a thorough comparison of summary
statistics to determine their optimal combination in terms of PNG and Mν sensitivity.
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Chapter 1

Introduction

The standard ΛCDM model is both a boon and a bane for our current understanding of the universe.
It quite well explains the formation of large-scale structures, the state of the early universe, and the
cosmic abundance of different types of matter and energy. On the other hand, despite the standard
ΛCDM model’s continued success in observations, there is growing interest in expanding cosmology
beyond it because of some profound theoretical challenges, like the enigmatic physical origin of dark
matter and dark energy and the apparent discrepancies between the observed and predicted clustering
properties of cold dark matter (CDM) on small scales, which leave a large unanswered gap.

The standard model involves an early period where the density perturbations are very close to the
Gaussian field with all pertinent information contained in the power spectrum, which is the Fourier
transform of the two-point correlation function. The evolution of the universe to low redshifts resulted
in these fluctuations becoming non-Gaussian on small scales owing to the nonlinear gravitational
evolution. This leads to information leakage from the two-point function to higher-order statistics.

Neutrinos with finite mass suppress the small-scale power spectrum below the neutrino
free-streaming scale. The suppression is proportional to the sum of the neutrino masses. This allows
us to measure the total neutrino mass (Mν), determining which is one of the major challenges in
cosmology as traditional power spectrum analysis is no longer applicable in the non-linear regime.

Another challenge is extracting primordial non-Gaussianity (PNG) information, especially in the
case of equilateral shape, which we will focus on in this thesis from the non-Gaussianity produced
by non-linear gravitational dynamics at low redshifts due to its comparatively weak signal. PNG
is the deviation of the primordial perturbation distribution from Gaussianity. Improving the current
constraint on the parameter fNLequil that characterizes the size of Equilateral PNG can help us develop
a unique insight into the physics of the early universe.

The analysis of the large-scale structure of the Universe (LSS) at small, non-linear scales holds
significant promise for such cosmological problems. Current and forthcoming cosmological surveys
such as DESI, Euclid, SPHEREX, and the Roman space telescope will allow us to observe a large
fraction of the sky and provide very detailed maps of the large-scale structure of the universe. The vast
amounts of data collected from these surveys, i.e., all the small-scale modes, cannot be analyzed using
fully analytical models hence leveraging into higher-statistical-significance measurements becomes
imperative to extract meaningful insights.

In this work, we perform a thorough analysis of the dark matter halo field using various summary
statistics and their combinations in Quijote N-body simulations [Villaescusa-Navarro et al., 2020a].
We explore simulations with PNG initial conditions (Quijote-PNG) [Coulton et al., 2023] and
simulations with massive neutrinos at non-linear cosmological scales, up to kmax = 0.5hMpc−1, aiming
to identify the most effective methods for constraining f equilNL and total neutrino mass Mν respectively.

We use neural networks (NN) for likelihood-free inference using the moment network method
developed by [Jeffrey and Wandelt, 2020] which is advantageous as it allows exploration across a broad
range of parameter values without assuming a specific fiducial cosmology or relying on Gaussian
likelihood assumptions. It directly maps the summary statistics to the final parameters, bypassing
the need to evaluate covariance or assume a particular form for the likelihood function.

We compare different combinations of summary statistics such as the power spectrum, modal
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CHAPTER 1. INTRODUCTION

bispectrum, halo mass function, marked power spectrum and marked modal bispectrum over a wide
range of parameters in our neural network to determine their optimal combination in terms of f equilNL

and Mν parameters sensitivity and help break degeneracies of them and the cosmological parameters.
This method represents some of the initial efforts in the direction of future applications to PNG and
Mν parameter inference on real data from galaxy surveys which will require the need to use more
realistic galaxy mocks.

The thesis is organized as follows. In Chapter 2, we start with a basic overview of cosmology
and then move on to discuss the early universe and the inflationary scenario. This chapter also
includes discussions on the dynamics during that epoch, as well as brief introductions to primordial
non-Gaussianity and massive neutrinos. Moving to Chapter 3, we discuss different cosmological
perturbation theories, covering both linear and non-linear scales, alongside the insights from N-body
simulations crucial for understanding density fluctuations, particularly at small, strongly non-linear
scales. Chapter 4 explores the theory of summary statistics used in our analysis, examining their
dependence on PNG conditions and massive neutrinos. In Chapter 5, we detail the dataset and
methodology we employed, featuring the use of NN for analysis. Finally, Chapter 6 presents the
findings derived from our study.
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Chapter 2

Introduction to Cosmology

2.1 The Center of the Universe

One of the foundations of modern cosmology is the Cosmological Principle. If we view it over a large
scale, the universe is independent of the position i.e. homogeneous and independent of direction i.e.
isotropic to a first approximation. The spacetime geometry that is consistent with the universe being
homogeneous and isotropic is given by the Friedmann-Robertson-Walker Metric(FRW) metric.

ds2 = −c2dt2 + a(t)2
(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)

, (2.1)

where k = 0, k = +1 and k = −1 for flat, positively curved and negatively curved space-like
3-hypersurfaces, respectively. Whereas, a(t) is the scale factor that incorporates the expansion of
the universe.1 For ease of notation, we will restrict most of our discussion to the case k = 0.
We can write the FRW metric in the flat space i.e. taking the form of the Minkowski metric with the
scale factor.

ds2 = − dt2 + a2(t) dσ2 (2.2)

where

dσ2 = γij dx
i dxj (2.3)

with

γij = δij + k
xixj

1− k(xkxk)
(2.4)

We can notice that by using the polar coordinates we can get to equation Eq. (2.1). The polar
coordinate used in the equation (2.1) refers to the observer comoving with the expansion of the
universe. We get the physical distance by multiplying the comoving distance with the scale factor.
We can redefine the radial coordinate as

dχ =
dr√

1− kr2
(2.5)

such that,

ds2 = −dt2 + a(t)2
[

dχ2 + f(χ)2(dθ2 + sin2 θdϕ2)
]

(2.6)

1The line element in (2.1) has a scaling symmetry i.e a → λa, r → r
λ
, k → λ2k. We can use this freedom to set the

scale factor to unity today i.e a0 = 1
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CHAPTER 2. INTRODUCTION TO COSMOLOGY

where,

f(χ) =











sinhχ, k = −1

χ, k = 0

sinχ, k = +1

(2.7)

This form of metric is particularly convenient for studying the propagation of light. Light travels
along the null geodesic ds2 = 0 so to make the propagation of light in FRW similar to the Minkowski
space we introduce conformal time,

dτ =
dt

a(t)
, (2.8)

Substituting it in (2.6) we get

ds2 = −a(τ)2
[

dτ2 −
(

dχ2 + f(χ)2(dθ2 + sin2θdϕ2)
)]

(2.9)

2.2 Friedmann Equation

The dynamics of the way the universe evolves are determined by the Einstein equation.

Gµν = Rµν −
1

2
gµνR = 8πGTµν (2.10)

This relates to the Einstein tensor Gµν which is a measure of the “space-time curvature” of the FRW
universe to the stress-energy tensor where Tµν describes the “matter content” of the universe.

2.2.1 Space-time Curvature

Let us compute the Einstein tensor on the l.h.s. of the Einstein equation Gµν = Rµν − 1
2gµνR

The Ricci tensor is given by :

Rµν = Γα
µν,α − Γα

µα,ν + Γβ
µνΓ

α
αβ − Γβ

µαΓ
α
νβ (2.11)

Let us see the Christoffel symbols for the FRW metric:

Γ0
µν =









0 0 0 0

0 ȧa
1−kr2

0 0

0 0 r2aȧ 0
0 0 0 r2aȧ sin2 θ









(2.12a)

Γ1
µν =









0 ȧ/a 0 0

ȧ/a kr
(1−kr2)

0 0

0 0 (kr2 − 1)r 0
0 0 0 (kr2 − 1)r sin2 θ









(2.12b)

Γ2
µν =









0 0 ȧ/a 0
0 0 1/r 0
ȧ/a 1/r 0 0
0 0 0 − sin θ cos θ









(2.12c)

Γ3
µν =









0 0 0 ȧ/a
0 0 0 1/r
0 0 0 cos θ/ sin θ
ȧ/a 1/r cos θ/ sin θ 0









(2.12d)
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CHAPTER 2. INTRODUCTION TO COSMOLOGY

Here we used simplifications that the FRW metric is diagonal, and it does not depend on φ.

The components of the Ricci tensor are:

R00 = −3∂t(
ȧ

a
)− 3(

ȧ

a
)2 (2.13a)

= −3

(

ä

a
− (

ȧ

a
)2 + (

ȧ

a
)2
)

(2.13b)

= −3
ä

a
(2.13c)

R11 = ∂t(
ȧa

1− kr2
) + ∂r(

kr

1− kr2
)− ∂r(

kr

1− kr2
)− 2∂r(

1

r
)

+
ȧa

1− kr2
3
ȧ

a
+

kr

1− kr2
(

kr

1− kr2
+

2

r
)

− 2
ȧ

a

ȧa

1− kr2
− (

kr

1− kr2
)2 − 2(

1

r
)2

(2.14a)

=
äa+ ȧ2

1− kr2
+ 3

ȧ2

1− kr2
+ 2

k

1− kr2
− 2

ȧ2

1− kr2
(2.14b)

=
äa+ 2ȧ2 + 2k

1− kr2
(2.14c)

R22 = r2∂t(aȧ) + ∂r((kr
2 − 1)r)− ∂θ(

cos θ

sin θ
)

+ 3Γt
θθΓ

θ
tθ + Γr

θθ(Γ
r
rr + 2Γθ

rθ)− 2(Γt
θθΓ

θ
tθ + Γr

θθΓ
θ
θr)−

cos2 θ

sin2 θ

(2.15a)

= r2(äa+ ȧ2) + 3kr2 − 1 +
1

sin2 θ
+ r2ȧ2 − kr2 − cos2 θ

sin2 θ
(2.15b)

= r2(äa+ 2ȧ2 + 2k) (2.15c)

R33 = ∂αΓ
α
φφ − ∂φΓ

α
αφ + Γα

φφΓ
β
αβ − Γβ

φαΓ
α
φβ (2.16a)

= r2 sin2 θ(äa+ 2ȧ2 + 2k) (2.16b)

The Ricci scalar then comes out to be

R = gµνRµν = 3
ä

a
+

1− kr2

a2
äa+ 2ȧ2 + 2k

1− kr2

+
1

a2r2
r2(äa+ 2ȧ2 + 2k) +

1

a2r2 sin2 θ
r2 sin2 θ(äa+ 2ȧ2 + 2k)

(2.17a)

= 3
ä

a
+ 3

äa+ 2ȧ2 + 2k

a2
(2.17b)

= 6

[

ä

a
+ (

ȧ

a
) +

k

a2

]

. (2.17c)

We find that the non-zero components of the Einstein tensor Gµ
ν = gµλGλν

G0
0 = 3

[(

ȧ

a

2)

+
k

a2

]

(2.18a)

Gi
j =

[

2
ä

a
+

(

ȧ

a

2)

+
k

a2

]

δij (2.18b)

*
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2.2.2 Stress-energy Tensor

For the universe to be isotropic and homogeneous it is forced to be a perfect fluid. Perfect fluids have
a stress-energy tensor like :

Tµν = (ρ+ P )uµuν + Pgµν (2.19)

where uµ is the 4-velocity of the fluid element. It is diagonal in the comoving frame, in which
uµ = (1, 0⃗).
If we take the covariant divergence of the Einstein tensor Gµν we get zero; so the stress-energy tensor
must also have ∇µT

µν = 0. One key emphasis here is that the covariant derivative of the stress-energy
tensor is not a conservation equation unlike in special relativity where the equation ∂µT

µν describes
a conservation equation, a local one.
In GR we get a conserved quantity if the metric doesn’t depend on some coordinate (≡ something
constant). We denote Killing Vectors, a vector oriented in the direction of symmetry. But in cosmology,
we do not have symmetry with respect to time translation, so there is no time-like Killing vector ξµ
such that ξν∇µT

µν represents the conservation of energy.
This equation, ∇µT

µν follows from the fact that our fluid follows its equations of motion. Let us
explore the meaning of these equations. If, in the equation ∇µT

µ
0 = 0, we find

∇µT
µ
0 = ∂µT

µ
0 + Γµ

µλT
λ
0 − Γλ

µ0T
µ
λ = 0 (2.20a)

the term T i
0 vanishes by isotropy. So we get,

∂tρ+ Γµ
µ0ρ− Γλ

µ0T
µ
λ = 0 (2.20b)

From (2.12b),(2.12c),(2.12d) we see that Γλ
µ0 vanishes unless λ and µ are spatial indices equal to each

other, in which case it is ȧ
a .The above equation therefore reads :

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 (2.20c)

To find the other two Friedmann equations we compare the time-time equation and the space-space
equation of the Einstein equations to the stress-energy tensor i.e comparing (2.19) to (2.18a) and
(2.18b) respectively To relate the sources of matter to the evolution of the scale factor in the FRW
metric (2.9),

ä

a
= −4πG

3
(ρ+ 3P ) (2.21a)

(

ȧ

a

)2

=
8πG

3
ρ− k

a2
(2.21b)

The space-space equation is not a dynamical equation, since it contains no second-time derivatives:
it is a constraint on the evolution of the system. However, the three Friedmann equations are not
independent: the time-time one can be found from (2.21a) and (2.20c).
We define

(

ȧ
a

)

≡ H, the Hubble parameter which is the measure of the expansion rate of the universe,
measured in Km.s−1.Mpc−1.
The above equations (2.20c),(2.21a),(2.21b) describe how the universe expands and lay the groundwork
for all further discussion of cosmology. We can solve the Friedmann equations by an equation of state
that relates ρ to P.

w =
P

ρ
. (2.22)

6



CHAPTER 2. INTRODUCTION TO COSMOLOGY

Plugging it in the continuity equation (2.20c) we get:

log ρ

log a
= −3(1 + w) =⇒ ρ ∝ a−3(1+w) (2.23)

ρ(a) ∝











a−4, radiation: w = 1
3

a−3, matter: w = 0

constant, dark energy: w = −1

(2.24)

It makes intuitive sense that the energy density of relativistic particles decreases as the universe
expands, not only because the average number of particles per unit volume decreases (V ∝ a3), as it
does for non-relativistic matter, but also because of the relativistic Doppler shift, which increases the
negative power of the scaling factor by one. In contrast, dark energy has a constant energy density.
Assuming the universe is composed of three different kinds of fluids, radiation, matter, and dark
energy, then each has successively dominated the energy budget of the universe and shaped its history
at various epochs.
Now, combining (2.23) with the first Friedmann equation (2.12b) we get the time dependence of the
scale factor.

a(t) ∝
{

t
2

3(1+w) , if,w ̸= −1

eHt, if,w = −1
(2.25)

We can observe that for w = 0, which corresponds to a Universe dominated by non-relativistic matter,
we get a(t) ∝ t2/3. Now, for w = 1/3, which corresponds to relativistic particles (radiation), we get
a(t) ∝ t1/2. The last and very relevant case is w = −1, corresponding to a fluid exerting negative
pressure, which leads to the second solution in Eq. (2.25), i.e. an exponential expansion describes the
Dark Energy.

2.3 The Cosmological Constant

When Einstein developed his theory of general relativity, the prevailing belief was that the Universe was
static. However, this contradicted the Friedmann equations, which showed that a Universe evolving
according to them could not be static unless the acceleration a⃗ was zero. namely

ρ = −3P (2.26)

Since a fluid with such property did not seem to be physically reasonable, Einstein modified Eq. (2.10)
by introducing the cosmological constant term Λ to counterbalance the gravitational attraction

Rµν −
1

2
gµνR = 8πGTµν − Λgµν , (2.27)

in such a way that it does not change the covariant character of the equations. It can be shown that
for an appropriate choice of Λ, one indeed obtains a static cosmological model. In order to recover a
form similar to the Eq. (2.10), we rewrite the stress-energy tensor in a more compact way

T̄µν = Tµν −
Λ

8πG
gµν (2.28)

= (P̄ + ρ̄)uµuν + P̄ gµν , (2.29)

so that

Rµν −
1

2
gµνR = 8πGT̄µν (2.30)

7



CHAPTER 2. INTRODUCTION TO COSMOLOGY

In Eq. (2.29), the effective pressure P̄ and the effective density ρ̄ are related to the corresponding
quantities for a perfect fluid by

P̄ = P − Λ

8πG
, ρ̄ = ρ+

Λ

8πG
(2.31)

Although after the discovery of the expansion of the Universe in the late 1920s, there was no
need for a term that made the Universe static, the cosmological constant remained a subject of great
interest and it is today the simplest possible explanation for the observed accelerated expansion of the
Universe. The standard model of cosmology that incorporates the effects of the cosmological constant
is the ΛCDM model.

One cosmological model that involves the cosmological constant is the de Sitter Universe. In this
model, the Universe is dominated by a positive cosmological constant, which suppresses all other
matter contributions, making the Universe empty (ρ = 0),(P = 0) and flat (k = 0). Under these
conditions, the effective pressure and density are related to the cosmological constant through equation
(2.31) we get,

P̄ = −ρ̄ = − Λ

8πG
, (2.32)

which, if replaced in Eq. (2.21b) gives

ȧ2

a2
= H2 =

Λ

3
, (2.33)

corresponding to a Hubble parameter constant in time.The solution to this equation is an
exponential expansion, where the scale factor increases as a function of time

a ∝ exp

(
√

Λ

3
t

)

, (2.34)

This exponential expansion means that test particles move away from each other due to the
repulsive gravitational effect of the positive cosmological constant.

2.4 Cosmic Distances

The Universe is observed to be expanding, and the scale factor a(t) is increasing with time. This
expansion also affects the photons that were emitted a long time ago far away and reach us today,
which become redshifted due to the stretching of space. Therefore, it is convenient to define a quantity
that describes the distance - and time - of a patch of the Universe we are observing based on this
physical effect. For that, we define the redshift z as

z + 1 =
a(t0)

a(t)
(2.35)

where t is the time when the signal was emitted and t0 is today. The scale factor is defined up to a
multiplicative constant, and it’s usually assumed a(t0) = 1, so z+1 = a(t)−1. As we know, the causal
connection of points in space-time is determined by whether they are inside or outside each other’s
lightcone. Lightcones are the solutions to the equation

ds2 = 0, (2.36)

where ds2 is the space-time interval between two events. In other words, the lightcone of an event
consists of all the events that could potentially receive a signal from the first event, assuming the
signal travels at or below the speed of light.2 Any event inside the past lightcone of another event
can be causally influenced by it, while any event outside the future lightcone cannot be influenced by

2In this section we use c = 1
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it. With ds2 a suitable metric, in our case the FRW metric Eq. (2.6), assuming a homogeneous and
isotropic Universe and taking dΩ = 0,the comoving particle horizon is then,

rp(t) ≡ χ(t) =

∫ t

0

dt′

a(t′)
=

∫ a

0
d ln a

(

1

aH

)

= τ (2.37)

where in the last equality we exploited the relation we found earlier for the conformal time Eq.
(2.8)3.

The comoving horizon is therefore the logarithmic integral of the comoving Hubble radius 1
aH ,

which we will define below. The related physical particle horizon is

dp(t) = a(t)rp(t) = a(t)

∫ t

0

dt′

a(t′)
(2.38)

due to the scale factor in the denominator and the fact that a(t) → 0 as t goes to 0, the particle
horizon could become infinite, meaning that an observer would be in causal connection with the whole
Universe. Using Eq. (2.25), we can find an approximate expression for dp(t) for w > −1/3, or else we
can notice that the integral diverges. Using the Hubble parameter in the FRW model which is

H =
2

3(1 + w)t
(2.39)

With w = 0, a spatially flat matter-dominated universe, H = 2/3t and a ∝ t
2
3 . With w = 1/3, a

spatially flat radiation-dominated universe, we have H = 1/2t and a ∝ t
2
3 . we can write Eq. (2.38) as

dp(t) ≃
3(1 + w)

1 + 3w
t =

2

1 + 3w

1

H
(2.40)

We take into note that w > −1/3 implies ä < 0, a decelerating expansion which means we have a
finite particle horizon only in the case of a primordial universe characterized by a decelerating universe.
Now, let us look into the Hubble time and the comoving Hubble radii.

tH =
a

ȧ
=

1

H
(2.41)

rH =
RH

a
=

1

ȧ
=

1

aH
4 (2.42)

The Hubble radius, which is given by (aH)−1, represents the distance that particles can travel
during one expansion time. It is a measure of whether particles can communicate with each other
within a given time frame, based on their comoving separation λ. In contrast, the particle horizon
represents the maximum distance from which particles can reach us within the age of the Universe.
Thus, while both the Hubble radius and particle horizon are related to the causal connection of
particles, they differ conceptually in that the former measures whether particles can communicate
within a given time frame, while the latter measures the maximum distance from which particles can
reach us.

1. if λ >particle horizon, then the particles could never have communicated.

2. if λ >(aH)−1 then the particles can’t communicate now.

3The main benefit of working with conformal time: light rays correspond to straight lines at 45◦ angles in the χ− τ
coordinates. If instead, we had used physical time t, then we would find the light cones for curved space-times would be
curved.
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2.5 Cosmic Accounting: The Universe’s Energy Budget

As we saw previously in solving the Friedmann equations using the equation of state w, the universe
is composed of various ingredients, which prompts us to consider their individual contributions to the
cosmic energy budget. In this section, we explore the cosmic accounting of the universe’s energy
budget and investigate the different components that make up the cosmic inventory. We follow
[Baumann, 2022] for the discussion. Let us look back into Eq. (2.21b) and re-write it using the
Hubble parameter H, we get

H2 =
8πG

3
ρ− k

a2
(2.43)

We will use the subscript ’0’ to denote the quantities evaluated today, at t = t0. Considering a flat
universe(k = 0) the density required for it corresponds to the critical density today denoted by ρc

ρcrit,0 =
3H2

0

8πG
(2.44)

We use critical density to define dimensionless density parameters

ΩI,0 ≡
ρI,0
ρcrit,0

(2.45)

We can write the Friedmann equation Eq. (2.43) as

H2(a) = H2
0

[

Ωr,0

(a0
a

)4
+Ωm,0

(a0
a

)3
+Ωk,0

(a0
a

)2
+ΩΛ,0

]

(2.46)

where I = (r,m, k,Λ) stands for radiation, matter, curvature, and vacuum energy contribution
respectively and we defined a curvature density parameter Ωk,0 ≡ −k

(a0H0)2
. From now on we will

drop the subscript ”0” and just write it as Ωr which means the radiation density today. So Eq. (2.46)
becomes

H2

H2
0

= [Ωra
4 +Ωma

3 +Ωka
2 +ΩΛ] (2.47)

At the current time, the scale factor is a(t0) = 1 and H = H0.Substituting the values in (2.47) we get

Ωtotal = Ωr +Ωm +Ωk +ΩΛ = 1 (2.48)

so, we can say that the density parameter represents the energy content of the universe. Observations
show that the universe is filled with radiation(r), matter (m), and dark energy(Λ).

|Ωk| ≤ 0.01,Ωr = 9.4× 10−5,Ωm = 0.32,ΩΛ = 0.68 (2.49)

As we can see, the curvature only accounts for 1% of the total energy budget. Curvature’s effects
were inconsequential earlier(the curvature contribution is only 10−2).The matter density parameter is
further split into Baryons(b) and DM(c).
The predictions of primordial nucleosynthesis, which postulates that the density of protons and
neutrons in the early Universe affects the efficiency with which fusion occurs, provide the best current
constraints on the baryon density of the universe. Deuterium and other elements found in primordial
gas clouds have been studied, and the results suggest that the density parameter of baryonic matter is
Ωb = 0.05. The majority of the matter density parameter is contained in non−baryonic matter called
DM Ωc = 0.27.This 27% of the universe’s energy budget is one of the most enigmatic substances in
the universe, which has been an active topic of research.
Of the radiation contribution majority of it comes in the form of the photons from the cosmic microwave
background (CMB) however, experiments such as the Planck satellite have found clear evidence for
relativistic particles in addition to the known Photons and is compatible with the expected cosmic
neutrino contribution[Akrami et al., 2019]. This will be explored in more detail in Chapter 2.9.
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2.6 Thermal History of the Universe

In this section, we outline the thermal history of the standard hot big bang universe as the temperature
of the plasma decreased from approximately 1011K to 108K, following [Weinberg, 2008]. During this
period, two significant events occurred: neutrinos decoupled from the plasma, and shortly afterwards,
electrons and positrons annihilated, leading to the heating of photons relative to neutrinos. Our goal
is to understand how these events influenced the evolution of the energy densities of photons and
neutrinos.

For massless particles described by the Fermi-Dirac or Bose-Einstein distributions, the energy
density is given by

ρ(T ) =

{

g π2

30T
4 Boson

7
8g

π2

30T
4 Fermion

(2.50)

where g counts the number of distinct spin states. The entropy density for massless particles is
given by

s(T ) =
4ρ(T )

3T
(2.51)

It is convenient to define a quantity g⋆ which counts the spin states for all particles and antiparticles,
with an additional factor 7

8 for fermions. With this definition, the total energy density and entropy
density of the Universe during radiation domination are given by

ρ(T ) = g⋆
π2

30
T 4 (2.52)

s(T ) =
4

3
g⋆
π2

30
T 3 (2.53)

In an expanding universe, the first law of thermodynamics implies that for particles in equilibrium,
the comoving entropy density is conserved:

a3s(T ) = const (2.54)

A straightforward consequence of this conservation is that for radiation in free expansion, the
temperature evolves inversely with the scale factor:

T ∝ 1

a
(2.55)

Let’s now apply this understanding to the early universe.
At a temperature of 1011K(T ∼ 10MeV), the universe was filled with photons, electrons, positrons,

and neutrinos (and antineutrinos) of three species, all in thermal equilibrium with negligible chemical
potential.5. As the temperature of the plasma dropped below approximately 1010K (around 1 second
after the end of inflation), the rate of collisions between neutrinos and electrons/positrons could no
longer keep up with the universe’s expansion rate. Consequently, neutrinos fell out of equilibrium and
began free expansion. Meanwhile, electrons and positrons remained in equilibrium with photons, and
their number densities decreased with the falling temperature, effectively vanishing by the time the
temperature reached T ∼ 10 keV.

For simplicity, we will assume that neutrinos decoupled instantaneously before electron-positron
annihilation and will later discuss how more detailed calculations might modify the results. Non-zero
neutrino masses can be neglected here as long as mν ≲ 1 keV, a condition supported by current
observational bounds [Aghanim et al., 2020].

From this point forward, we will differentiate the temperature of neutrinos, Tν , from that of
photons, Tγ . Before neutrino decoupling, frequent interactions maintained thermal equilibrium

5There was also a much smaller density of baryons and dark matter, but they are not significant for the discussion
above
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between neutrinos and photons, ensuring a common temperature. After the universe became
transparent to neutrinos, they retained their relativistic Fermi-Dirac distribution, with a temperature
decreasing inversely with the scale factor. In contrast, photons were heated by the annihilation of
electrons and positrons. The conservation of comoving entropy allows us to compute the relative
temperatures at later times. After neutrino decoupling, but before electron-positron annihilation,
the thermal plasma contained two spin states of photons, plus two spin states each of electrons and
positrons, which means that during this period,

gbefore⋆ = 2 +
7

8
(2 + 2) =

11

2
(2.56)

After electron-positron annihilation, only the two spin states of photons remained, and so

gafter⋆ = 2 (2.57)

Since Tν ∝ a−1 during this period, the comoving entropy conservation can be expressed as

gbefore⋆ T 3
γ,before

T 3
ν,before

=
gafter⋆ T 3

γ,after

T 3
ν,after

(2.58)

Using the fact that Tγ,before = Tν,before, we find

Tγ,after
Tν,after

=

(

11

4

)1/3

(2.59)

We see that in the instantaneous neutrino decoupling limit, the annihilation of electrons and
positrons raised the temperature of photons relative to that of neutrinos by a factor of (11/4)1/3 ≃ 1.40.

After electron-positron annihilation, assuming three species of light neutrinos and antineutrinos,
each with one spin state, the radiation density of the Universe is

ρr =
π2

30

[

2T 4
γ + 6

7

8
T 4
ν

]

=
π2

15

[

1 + 3
7

8

(

4

11

)4/3
]

T 4
γ (2.60)

It is conventional to define a quantity Neff which gives the radiation energy density in terms of the
effective number of neutrino species as

ρr =
π2k4B
15ℏ3c3

[

1 +
7

8

(

4

11

)4/3

Neff

]

T 4
γ (2.61)

where we have restored kB, c and ℏ for completeness. In the instantaneous neutrino decoupling
approximation described above, we found Neff = 3. In the real Universe, however, the decoupling of
neutrinos is not instantaneous, and the residual coupling of neutrinos at the time of electron-positron
annihilation increases Neff by a small amount in the Standard Model.

Unlike photon decoupling at temperature kBT ∼ 0.2eV, active neutrino decoupling at T ∼
10MeV−0.1MeV takes place over many tens of Hubble times, with the result that we expect distortions
in the relic neutrino energy spectra relative to the thermal relativistic Fermi-Dirac distribution.
Standard Model Boltzmann neutrino transport calculations show that these distortions change Neff

at the percent level, with the current best estimate predicting Neff = 3.046 [Mangano et al., 2005]. In
section 2.9 we will see how neutrinos leave a detectable imprint on cosmological observations.

2.7 The Early Universe

The shortcoming of FRW cosmology is that it is unable to explain why the universe we observe is
homogeneous and isotropic on larger scales without a finely tuned set of initial conditions, and how
the initial seed perturbations for structure formation were generated.

In this chapter, we delve into two of the primary problems of the Hot Big Bang model: the horizon
problem and the flatness problem. We explore how inflation, an early period of accelerated expansion,
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can drive the primordial Universe towards homogeneity and isotropy, even if it begins in a more generic
initial state, and also how quantum fluctuations that arise during the inflationary period can give rise
to the formation of primordial black holes.

2.7.1 The Horizon Problem

Previously we introduced Hubble radii (rH = (aH)−1) Eq.(2.42) and comoving particle horizon τ
(2.37) as an integral of the comoving Hubble radii. We could observe that for a universe dominated
by the fluid equation of state, w > −1/3 the Hubble radius and the comoving particle horizon grow
monotonically with time which implies that the comoving scales entering the horizon today have been
far outside the horizon at CMB decoupling. However, we find the CMB to be extremely homogeneous.
In other words, at the time of the last scattering, the universe was expected to be homogeneous only
on small scales since wider scales would not have been causally connected. However, the observation
of the nearly homogeneous CMB suggests that the universe was extremely uniform even on larger
scales that should have been independent of each other which was surprising.
To overcome the horizon problem, it’s important to consider the causal contact between particles.
If a region, denoted by λ, has a typical size (constant in comoving scales) that is smaller than
(aIHI)

−1, then the particles within that region were in causal contact. However, if λ becomes larger
than (aIHI)

−1 after a sufficient period of inflation, then these particles can no longer communicate.
Therefore, before crossing the Hubble radius and becoming causally disconnected, these particles had
the opportunity to communicate with each other and reach similar conditions. This implies that
everything within the Hubble sphere at the beginning of inflation, which is (aIHI)

−1, was in causal
contact.
We can hence observe that the horizon problem can be resolved if the comoving Hubble radius at
the beginning of inflation, (aIHI)

−1, exceeds the radius of the observable universe, (a0H0)
−1. In this

scenario, the entire observable universe would have been contained within the comoving Hubble radius
at the onset of inflation.
The duration of the inflation to solve the horizon problem is given by the means of e-folds which is
defined as,

N = ln

(

aE
aI

)

(2.62)

from the requirement (aIHI)
−1 > (a0H0)

−1 we get N ≈ 60

Figure 2.1: Left : Development of the inflationary universe’s (aH)−1 comoving Hubble radius. Inflation
causes the co-moving Hubble sphere to contract and then expand. Hence, inflation serves as a tool to
”zoom in” on a smooth sub-horizon patch. Right : Solution of the horizon problem. All scales that are
relevant to cosmological observations today were larger than the Hubble radius until a ∼ 10−5. These
scales were, however, smaller than the Hubble radius at sufficiently early eras and were consequently
causally related. Similarly, the scales of cosmological interest came back within the Hubble radius in
relatively recent times.[Baumann, 2012]
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2.7.2 The Flatness Problem

We saw in section 2.5 that the current measurements of the density parameters are compatible with
a flat universe Ωtotal ≃ 1.But the question arises how does Ω evolve with time? We can write the
Friedmann equation Eq. (2.43) as

Ω(t)− 1 =
k

H(t)2a(t)2
∝ k

a2−3(1+w)
= ka3w+1 (2.63)

We observe that for both radiation (w = 1/3) and matter (w = 0), we see that if Ω−1 ̸= 0 at a certain
early time then it will grow as a2 or a4 respectively and then the geometry of the present Universe is
expected to be curved. So the near-flatness, we observe today requires the value of Ω(t) to be one.
By manipulating the Friedmann equation Eq. (2.43) we find

Ω−1(z)− 1 = (Ω−1
0 − 1)

(

T0
T (z)

)2

. (2.64)

Let us extend this to the Planck epoch because the density at a time tP ≈ 10−43s must have
been very close to the critical density. The temperature at that time was TP = 1032K. T0 is the
temperature today.

If we compute TPl/T0 we get approximately 1032.
This means that

Ω−1(zPl)− 1 ≈ (Ω−1
0 − 1)10−64 . (2.65)

.As a result, the Universe should have needed to be extraordinarily finely tuned in order to imitate
the flatness we observe today.

Using the Hubble radius, we can write to examine how the inflationary phase responds to this
issue.

Ω(t)− 1 =
k

H(t)2a(t)2
= kr2H (2.66)

In standard cosmology, the comoving Hubble radius grows with time, therefore one expects the
quantity |Ω(t)− 1| to grow with time and the geometry of the present Universe to be curved. But, if
the universe undergoes a phase where the Hubble radius shrinks, this would bring Ω(t) closer to 1. It
can be shown that the universe must expand by 60 e-foldings to achieve the flatness we observe today,
as in the case of the horizon problem.

2.7.3 Dynamics of Inflation

In the previous section, we saw that for inflation to take place we need a phase of accelerated expansion
(ä > 0) where the Hubble radius(rH) shrinks.
We can see from the Friedmann Eq. (2.21a) that for an accelerated expansion

ä = −4πG

3
(ρ+ 3P ) > 0 ⇒ P <

−ρ
3

(2.67)

which we previously encountered in the de-Sitter model where we found a(t) ∝ exp(
√

Λ
3 t) and the

expansion is driven by cosmological constant Λ, so we can have a calculated guess that the inflation
can’t be driven by matter or radiation. In the current interpretation, Λ is linked to the quantum
fluctuations of the vacuum. The vacuum expectation value of the stress-energy tensor gives the
energy generated by these fluctuations.Using Eq. (2.19) and Eq. (2.32) we can write

⟨Tµν⟩ = −⟨PΛ⟩gµν =
Λ

8πG
gµν (2.68)

As a result, in this instance, the stress-energy tensor’s vacuum expectation value functions as the
cosmological constant that promotes the expansion. This provides an indication of what to anticipate
from a theory describing the inflationary mechanism.
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Scalar(Inflaton) Field

To satisfy Eq. (2.67) let us introduce a minimally coupled(i.e not coupled with gravity or any other
field ) scalar field φ with a suitable potential V (φ) which is a self-interaction of the field. We can
write its Lagrangian as

Lφ = −1

2
gµν∂µφ∂νφ− V (φ) (2.69)

The action is in the form of

S = SEH + Sφ + Smatter (2.70)

where SEH is the Einstein-Hilbert action for the metric, Sφ is the action for the field φ, while
“matter” encompasses all the other fields but we can ignore it thanks to the no-hair cosmic theorem.

S =
1

16πG

∫

d4x
√−gR+

∫

d4x
√
gLφ[φ, gµν], . (2.71)

We are using the invariant volume element d4x
√−g representing the physical 4-volume regardless

of the coordinates. Now, we can find the equation of motion for the inflaton field by the Klein-Gordon
equation by varying the action with respect to φ.

□φ =
∂V

∂φ
. (2.72)

where □ is the covariant D’Alembert operator.

□φ =
1√−g (g

µν√gφ,µ),ν . (2.73)

and in a flat FRW metric Eq. (2.1)
√−g = a3 the evolution of φ becomes

□φ =
1

a3
∂0(g

00a3∂0φ) +
1

a3
∂i(g

iia3∂iφ) = ∂φV (2.74)

−φ̈− φ̇3
ȧ

a
+

∇2

a2
φ = ∂φV (2.75)

φ̈+ 3Hφ̇− ∇2φ

a2
= −∂φV . (2.76)

where 3Hφ̈ appears as a friction term that is represented as a scalar field rolling down its potential
suffering friction due to the expansion of the universe. If we consider the homogeneous background
field, it will be constant in space, so the above equation evolves as

φ̈+ 3Hφ̇ = −∂φV . (2.77)

The stress-energy tensor associated with the scalar field can be defined by

T (φ)
µν = − 2√−g

δSφ
δgµν

= −2
∂Lφ

∂gµν
+

2√−gLφ
∂
√−g
∂gµν

= −2
∂Lφ

∂gµν
+ Lφgµν (2.78)

= ∂µφ∂νφ+ gµν

[

−1

2
gαβ∂αφ∂βφ− V (φ)

]

. (2.79)
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If we compare it with Eq. (2.19) we find that φ(t) behaves like a perfect fluid with

P = −1

2
gαβ∂αφ∂βφ− V (φ) (2.80)

ρ = −1

2
gαβ∂αφ∂βφ+ V (φ) (2.81)

uµ =
∂µφ

|∂φ| (2.82)

|∂φ| =
√

−gαβ∂αφ∂βφ . (2.83)

We start by considering φ(t, x) and split it as

φ(x, t) = φ(t) + δφ(x, t) (2.84)

where φ(t) is the classical field that is the expectation value of the inflaton field(⟨φ(t, x)⟩ = φ(t)) and
δφ(x, t) represents the quantum fluctuations around φ(t). Now,

∣

∣

∣

∣

δφ(x, t)

φ(t)

∣

∣

∣

∣

≪ 1 (2.85)

as quantum fluctuation is negligible in comparison to the classical value. These fluctuations are what
generated the density fluctuation which creates anisotropies in the CMB photons. Let us drop the ”t”
and indicate the value of the classic inflaton field by φ. On explicitly computing the energy-momentum
tensor of the classical background φ we find,

T 0
0 = −

(

1

2
φ̇(t)2 + V (φ)

)

= −ρφ (2.86)

T i
j =

(

1

2
φ̇2(t)− V (φ)

)

δij = Pφδ
i
j . (2.87)

This is the perfect fluid energy-momentum tensor. Therefore, if

V (φ) ≫ φ̇2, (2.88)

we get Pφ ≃ −ρφ =⇒ wφ ≃ −1 i.e the quasi-de Sitter expansion.
So, we see that if the potential energy is greater than the kinetic energy this scalar field gives inflation.
For better intuition let us simplify the system and assume the vacuum expectation value of the inflaton
to be constant i.e ⟨φ(t, x)⟩ = φ̄ then the stress-energy tensor becomes

⟨Tµν⟩ = −gµνV (φ), (2.89)

Comparing it to Eq. (2.68) we see that the potential of the inflaton field V (φ) represents the vacuum
energy associated with φ which drives the acceleration.

Slow Roll Conditions

Let us try to understand under what conditions the scalar field may initiate inflation. The equation
of motion for the homogeneous scalar field is given in Eq. (2.77). To satisfy the condition given in
Eq. (2.88) the scalar field should slowly roll down its potential. The easiest way to satisfy the slow
roll condition is to require that there exist regions of field-configuration space where the potential is
sufficiently flat. Considering the potential to be flat the acceleration of the field should be negligible
i.e

φ̈≪ 3Hφ̇ (2.90)

We can also say that at a sufficiently late time the scalar field is driven by friction term. Therefore,

3Hφ̇ ≈ −∂φV (2.91)
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Figure 2.2: A possible shape of the potential for Slow-Roll Inflation [Baumann, 2012]

We expect that V and all of its derivatives change very slowly with φ. This means that in this
equation we have ∂φV ≈ const, as well as H ≈ const: this is the same equation that is obeyed by a
particle under a constant force and friction: it will then reach the asymptotic “terminal velocity” and
move with a constant φ̇0.

So, the slow-roll condition is,

φ̈≪ (3Hφ̇), (−∂φV ) (2.92)

Let us now combine it with the Friedmann equation (2.43),

H2 =
8πG

3
(ρφ + ρm + ρr)−

k

a2
. (2.93)

The matter and radiation densities scale like a−3 for ρm, a−4 for ρr; in this early phase the scalar
field dominates the dynamics, so the equation will simplify to

H2 ≈ 8πG

3
V (φ) . (2.94)

so, for a slow roll case, the Hubble parameter is nearly a constant and the scale factor is given by
a(t) ∝ exp(Ht).
We saw the slow roll conditions which are necessary for successful inflation. Next, we will parameterize
it.

These are the parameters we need to quantify in order to determine how closely the potential
matches our expectations. It is given by ϵ and η. Let us start with the first parameter.
We define ϵ as,

ϵ = − Ḣ

H2
. (2.95)

As we saw previously for inflation to take place the Hubble radius shrinks. So let us write this in
terms of the ϵ parameter.

d(aH)−1

dt
=

−ȧH + aḢ

(aH)2
= −1

a

(

1−
(

−Ḣ
H2

))

= −1

a
(1− ϵ) (2.96)
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so we see that if ˙rH < 0 implies that ϵ≪ 1.
Using Eq. (2.91) and Eq. (2.94) we can write ϵ as,

ϵ = − Ḣ

H2
= +4πG

φ̇2

H2
≈ 3

2

φ̇2

V
=

1

16πG

(

∂φV

V

)2

, (2.97)

so the condition ϵ≪ 1 can also be written as

(∂φV )2

16πGV 2
≪ 1 (2.98)

(∂φV )2

V
≪ 16πGV =

2

3
H2 (2.99)

1

V

(

∂V

∂φ

)2

≪ H2 . (2.100)

on using Eq. (2.95) we can see that it is exactly the slow roll condition in Eq. (2.88), So, we see
that ϵ gives a bound on the first derivative of the potential and corresponds to the conditions of the
potential being flat and the kinetic energy being small compared to the potential.
The second derivative of the potential is controlled by the parameter η which is defined as,

η = − φ̈

Hφ̇
, (2.101)

and we can also define

η =
1

3

∂2φV

H2
=

1

8πG

∂2φV

V
. (2.102)

We can see that η ≪ 1 is equivalent to

∂2V

∂φ2
≪ H2 (2.103)

We can show that these three parameters are related δ = η − ϵ.
We start from Eq. (2.91) and differentiate it with respect to the time we get

φ̈ ≈ − d

dt

(

∂φV

3H

)

(2.104)

= − 1

3H
∂2φV φ̇− ∂φV

3

(

− Ḣ

H2

)

ϵ

(2.105)

= −φ̇H
∂2φV

3H2
− ∂φV

3
ϵ (2.106)

= −φ̇Hη − ∂φV

3
ϵ (2.107)

− φ̈

Hφ̈
= η − ϵ (2.108)

δ = η − ϵ, . (2.109)

which is the desired result. We see that δ ≪ 1 corresponds to the condition φ̈ ≪ −∂φV , which is
required in order to neglect the acceleration term in the Klein-Gordon equation. So, the condition
δ ≪ 1 ensures that we move towards an attractor solution in the friction-dominated regime i.e., it
will then reach the asymptotic “terminal velocity” and move with a constant φ̇. Also, for inflation
to solve the horizon and the flatness problem we need a phase of accelerating expansion that lasts
sufficiently long. For this to happen, we need ϵ ∼ const, since ϵ ∼ φ̇ while δ ∼ φ̈, so requiring δ ≪ 1
also ensures this. .
In summary, the slow-roll approximation described in Eq. (2.88) and Eq. (2.92) implies the
inflationary potential’s flatness under conditions Eq. (2.97) and Eq. (2.102).
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2.7.4 Inflation-Induced Cosmological Perturbations

Inflationary cosmology relies on understanding the evolution of quantum fluctuations of the inflaton
field δφ(x, t), which give rise to primordial energy density perturbations that persist after inflation
and form the basis of the large-scale structures observed in the Universe. These fluctuations arise on
extremely small scales within the comoving Hubble radius during inflation, but the rapid expansion
of space during this epoch stretches them out to cosmological scales. As the Hubble radius begins
to increase faster than the scale factor after inflation ends, these fluctuations eventually re-enter
the Hubble radius during the radiation or matter-dominated eras. The fluctuations that re-enter
around 60 e-foldings before reheating have physical wavelengths that can be observed through various
methods, such as the analysis of CMB anisotropies. The resulting inflationary spectrum provides a
unique and distinct signature of inflation that can help us understand the origins of structure in the
Universe.

Figure 2.3: Creation and evolution of perturbations in the inflationary universe. On subhorizon scales,
quantum mechanics produces fluctuations. During inflation, comoving scales, k−1, stay constant in
the comoving Hubble radius, but (aH)−1 diminishes and the perturbations leave the horizon, where
they remain frozen until horizon re-entry at later times. The fluctuations change into anisotropies in
the CMB and disturbances in the LSS after horizon re-entry. Taken from [Baumann, 2012]

Dynamics of Quantum Fluctuations: Qualitative Analysis

Let us now describe qualitatively how the quantum fluctuations of a generic scalar field evolve during
an inflationary stage. We saw the dynamics of the scalar field obey the Klein-Gordon Eq. (2.76)
which we Taylor expand up to linear order around the background value for both φ Eq. (2.84) and

for the potential V (φ) ≈ V0 + δφ (∂V∂φ )
∣

∣

∣

φ0

. Assuming the perturbation is indeed small we can write

the Klein-Gordon equation for the fluctuation as

δ̈φ+ 3H ˙δφ− ∇2

a2
δφ = −∂

2V (φ)

∂φ2
δφ . (2.110)

Let us move to the Fourier space which is more convenient for the problem. We can write,

δφ(x, t) =
1

(2π)3

∫

d3k eik·xδφk(t) . (2.111)

Since the field is real, δφk = δφ∗
−k.

Now we will write the Klein-Gordon equation for the quantum fluctuation in Fourier space.
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δ̈φk + 3H ˙δφk +
k2

a2
δφk = −∂2φ(V )δφk . (2.112)

If we consider a massless scalar field ∂2φ(V ) ≈ 0 which corresponds to the requirement of the
parameter η ≪ 1 which we discussed in the previous section. So, we can write the above equation as

δ̈φk + 3H ˙δφk +
k2

a2
δφk ≃ 0 (2.113)

Now let us distinguish between the sub-horizon(λ < rH) and the super-horizon(λ > rH)
regimes on the basis of the comoving wavelength λcoma(t) = λphysical ≃ 2π/kphysical

• sub-horizon(λ < rH):

λ≪ 1

aH
=⇒ k

aH
≫ 1 (2.114)

We can write Eq. (2.113) as

δ̈φk + (3H2 +
k2

a2
)δφk = δ̈φk +

k2

a2
δφk ≃ 0 (2.115)

where we used the Hubble time scale tH = H−1 as the time reference and the sub-horizon
condition Eq. (2.114). So we observe that in the sub-horizon regime, the Fourier transform
of the quantum fluctuations of the scalar field δφk can be described by a harmonic oscillator
equation with a frequency term given by the factor k/a(t) where the scale factor depends upon
time as a(t) ∝ eHt. This behaviour is expected, as at small scales inside the horizon, the local
space-time appears flat like Minkowski space-time, and the expansion of the universe is negligible.

• super-horizon(λ > rH):

λ≫ 1

aH
=⇒ k

aH
≪ 1, (2.116)

In this regime, we proceed as in the sub-horizon regime and observe that for the above condition
given in Eq. (2.116)

3H2δφk ≪ 1

a2
k2δφk (2.117)

which shows that the friction term is dominant with respect to the Laplacian, therefore we can
write Eq.(2.113) as

φ̈k + 3Hδ̇φk ≃ 0 (2.118)

The solution for the above second-order differential Eq. (2.118) is given by

δφk = A+Be−3Ht. (2.119)

from this, we can interpret that as the exponential term decays and we get towards a constant
fluctuation. In other words, as time increases the fluctuation oscillates until the wavelength gets
larger than the Hubble horizon (maximum distance of causal connection), as soon as it is larger,
the fluctuations can’t interact nor grow and they cease to oscillate and get ”frozen-in”
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Dynamics of Quantum Fluctuations: exact solution

In this section, we will discuss the exact solution to the dynamics of quantum fluctuation of a more
generic scalar field δ̂φ(τ,x) that includes quantum field theory effects and the mass term given by
∂2φV . As done in the previous section, we explore the solution in the sub-horizon and super-horizon
limits.

We start by redefining the field as,

δ̂φ(τ,x) = a(τ)δφ(τ,x), (2.120)

here we need to take into note that we are using conformal time τ instead of cosmic time. Now, we
can write the generic scalar field δ̂φ(τ,x) as a linear combination of the creation-annihilation operators
(

ak, a
†
k

)

δ̂φ(τ,x) =
1

(2π)3

∫

d3k
[

uk(τ)ake
ik·x + u∗k(τ)a

†
ke

−ik·x
]

(2.121)

and time-dependent mode functions uk(τ) that obeys a normalization condition

u′∗k (τ)uk(τ)− u∗k(τ)u
′
k(τ) = −i (2.122)

such that commutation rules are given by

[ak, ak′ ] =
[

a†k, a
†
k′

]

= 0, (2.123)
[

ak, a
†
k′

]

= ℏδ(3)
(

k− k′
)

. (2.124)

In the Minkowski space-time the solutions i.e the mode functions are described by plane waves
such as

uk(τ) ∼
e−iωkτ

√
2ωk

, ωk =
√

k2 +m2. (2.125)

However, in the case of an expanding FRW Universe, we have a curved space-time, and we expect
a more complicated expression for uk(τ). Since, in quantum field theory on curved space-time, the
choice of the vacuum state is not unique enough to determine the mode functions due to the presence
of the gravitational field. This means that different choices of vacuum state can result in different sets
of mode functions, which can affect the physical properties of the theory. So, in short in quantum
field theory on curved space-time there is an ambiguity with the choice of the vacuum state, therefore
uk(τ) is not a priori fixed.
Looking at the equivalence principle as a guiding principle, modes uk(τ) at very short distances must
reproduce the form for the ordinary flat space-time quantum field theory, which is the plane waves.
So, we require

k

aH
→ ∞ =⇒ uk(τ) ∼

e−ikτ

√
2k

,
√

k2 +m2 ≃ k (2.126)

which is the Bunch-Davies condition on the vacuum state, which states that in the limit of small scales
and for initial times the mode functions are given by

uk(τ) →
e−ikτ

√
2k

. (2.127)

To motivate the inflationary vacuum state we try to recall our previous discussion that at a sufficiently
early time all the modes of cosmological interest were deep inside the horizon i.e, which implies
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k/aH ≫ 1 so, we can write wk ≃ k and there the mode function is given by Eq. (2.127)
Before rewriting equation 1.2.45 in the Fourier space, we will explicitly change the time coordinate
going from the reference time t to the conformal time τ such that

d

dt
−→ d

dt

dτ

dτ
=

1

a

d

dτ
(2.128)

let us perform the calculations term by term using the coordinate change in equation (2.128). On
the left-hand side of equation (2.112) we have

δφ̈k =
1

a

d

dτ

[

1

a

d

dτ

(

δφ̂k

a

)]

(2.129)

=
1

a

d

dτ

[

1

a

(

δφ̂′
k

a
− a′

a2
δφ̂k

)]

(2.130)

=
1

a

(

δφ̂′′
k

a2
− 2

a′

a3
δφ̂′

k − a′′

a3
δφ̂k − 3

a′2

a4
δφ̂k − a′

a3
δφ̂′

k

)

(2.131)

=
δφ̂′′

k

a3
− 2

a′

a4
δφ̂′

k − a′′

a4
δφ̂k + 3

a′2

a5
δφ̂k − a′

a4
δφ̂′

k, (2.132)

and

3Hδφ̇k = 3
1

a2
da

dτ

1

a

d

dτ

(

δφ̂k

a

)

(2.133)

= 3
a′

a4
δφ̂′

k − 3
a′2

a5
δφ̂k (2.134)

Finally, putting all the results together, we obtain

δφ̂′′
k − a′′

a
δφ̂k + k2δφ̂k = −∂2φV a2δφ̂k (2.135)

which in terms of the mode functions can be written as

u′′k(τ) +

(

k2 − a′′

a
+ ∂2φV a

2

)

uk(τ) = 0. (2.136)

From this, we can see why we chose to use the re-scaled version δφ̂k. We can notice that the
ansatz is basically a harmonic oscillator with a time-dependent frequency changing according to the
accelerated expansion of the universe. Let us look at the behaviour of the mode function in the
sub-horizon and super-horizon regimes for a de Sitter Universe and a quasi-de Sitter Universe.

Solution in de-Sitter

To solve the equation we will first consider the de-Sitter expansion where H = constant, ϵ→ 0 and we
assume the inflation is massless i.e m2

φ = ∂2φV = 0 Under these conditions, we can write the conformal
time given by Eq. (2.8) as

dτ =
dt

a(t)
= dte−Ht (2.137)

where we used the a(t) ∝ eHt. After integration, we obtain the corresponding scale factor which
reads as
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a(τ) = − 1

Hτ
(τ < 0) (2.138)

and

a′′

a
= 2a2H2 (2.139)

which on plugging it into Eq. (2.136) gives

u′′k(τ) +
(

k2 − 2a2H2
)

uk(τ) = 0. (2.140)

In the sub-horizon(k ≫ aH) limit, Eq. (2.140) becomes

u′′k(τ) + k2uk(τ) = 0 ⇒ uk(τ) =
e−ikτ

√
2k

(2.141)

where we chose the Bunch-Davies vacuum state. As predicted in the qualitative analysis in the
previous section, the behaviour of quantum fluctuations with wavelength within the cosmological
horizon oscillates as we saw before in a flat space-time quantum field theory. This is what was
expected for wavelengths much smaller than the Hubble radius scale where it is a good approximation
to approximate the space-time as flat.

In the super-horizon regime (k ≪ aH), Eq. (2.140) approximates as

u′′k(τ)−
a′′

a
uk(τ) = 0 (2.142)

whose solution is simply given by

uk(τ) = B(k)a(τ)

growing mode

+C(k)a(τ)−2

decaying mode

. (2.143)

We see that the solution has a growing and a decaying mode where the decaying mode decays in
time as a(τ)−2, so we can neglect the decaying mode because even if the amplitude increases it will
decay quickly. Therefore the amplitude of the physical fluctuation reads as

|δφk| ∝
|uk|
a(τ)

= |B(k)| (2.144)

In the above equation, we can see that the “growing mode” is actually asymptotically constant
on super-horizon scales since |B(k)| is independent of τ . To determine the scale of B(k) we need
to match the super-horizon and sub-horizon solutions, so it is basically a link between the quantum
perturbation at horizon exit time during inflation and perturbation at horizon re-entry time during
radiation or matter-dominated era. We thus evaluate |B(k)| at the time of horizon crossing during
inflation and we get

|B(k)|a =

∣

∣

∣

∣

e−ikτ

√
2k

∣

∣

∣

∣

(2.145)

|δφk| = |B(k)| = 1

a
√
2k

=
H√
2k3

. (2.146)
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The fluctuation gets “frozen in” at horizon crossing:

|δφk| =
H√
2k3

. (2.147)

Without proof, we will state the following result: the exact solution for the perturbation growth
in De Sitter space-time is

uk(τ) =
eikτ√
2k

(

1− i

kτ

)

. (2.148)

As shown above, the physics underlying small scales below the horizon is described by special
relativity, while quantum fluctuations around the vacuum expectation value of the scalar field are
treated using quantum field theory in flat space-time. These fluctuations have a mean value of zero
due to the nature of the vacuum state, which is characterized by the creation and annihilation of
particles with a net number of particles equal to zero.

During inflation, the comoving Hubble radius shrinks, causing the rapid expansion to stretch
the wavelength of the quantum fluctuations. This results in all fluctuations generated at sub-horizon
scales exiting the horizon, where their amplitudes become frozen and are not affected by causal contact.
After inflation ends, the comoving horizon begins to grow again, causing all fluctuations to re-enter
the horizon with an imprint of their primordial fluctuations generated by inflation but with a much
larger physical wavelength.

Solution in Quasi- de Sitter

In this section, we will see how to solve the equation (2.136) explicitly

u′′k(τ) +

[

k2 − a′′

a
+ a2m2

]

uk(τ) = 0 , (2.149)

where τ is the conformal time, while m2 = ∂2V
/

∂φ2 . The stage in which m2 = 0 is the
quasi-de-Sitter stage. Now we will consider that H is not a constant, instead, we will consider the
effect of a nonzero slow-roll parameter ϵ = −Ḣ/H2 ≪ 1. .We will use the relation

ä

a
= H2(1− ϵ) , (2.150)

which can be proven by straightforward manipulation.

Using the definition of the conformal time, we can show that the scale factor for small values of ϵ
becomes

τ = − 1

aH(1− ϵ)
(2.151)

Using this, we find that to first order

(aH)2 ≈ (1 + 2ϵ)/τ2 (2.152)

therefore we can re-write Eq. (2.150) using Eq. (2.152) in terms of conformal time as,

a′′

a
= a2H2(2− ϵ) = 2

(1 + 2ϵ)

τ2

(

1− ϵ

2

)

≈ 2

τ2

(

1 +
3

2
ϵ

)

. (2.153)

Substituting this for a′′/a the equation becomes
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u′′k(τ) +

[

k2 − ν2 − 1/4

τ2

]

uk(τ) = 0 , (2.154)

where ν2 = 9/4 + 3ϵ. This is a Bessel equation: these equations are generally in the form

z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = 0 . (2.155)

The solutions are called Hankel functions, assuming ν as constant the general solution is given as

uk(τ) =
√
−τ
[

c1(k)H
(1)
ν (−kτ) + c2(k)H

(2)
ν (−kτ)

]

(2.156)

where H
(2)
ν = H

(1)∗
ν . We want to impose the asymptotic behaviour of the solution: let us start

with

• Sub-horizon (k/aH ≫ 1):
. This means that

uk(τ) =
1√
2k
e−ikτ ,

and the asymptotics of the Hankel functions are

H(1)
ν (x) ∼

√

2

πx
exp
(

i
(

x− π

2
ν − π

4

))

∼ eix√
x

(2.157)

for x≫ 1. This works well for us: we can set c2(k) = 0 and only use c1(k).

We must choose

c1(k) =

√
π

2
exp

(

i

(

ν +
1

2

)

π

2

)

(2.158)

in order to have the correct normalization. Then, our solution will read

uk(τ) =

√
π

2
exp

(

i(ν +
1

2
)
π

2

)√
−τH(1)

ν (−kτ) , (2.159)

• Super-horizon (k/aH ≪ 1):
We have the asymptotic x≪ 1 expansion of the Hankel function:

H(1)
ν (x) ∼

√

2

π
e−iπ/22ν−3/2 Γ(ν)

Γ(3/2)
x−ν ∼ x−ν , (2.160)

therefore

uk(τ) ≈ exp

(

i(ν − 1

2
)
π

2

)

2ν−3/2 Γ(ν)

Γ(3/2)
(−kτ)1/2−ν 1√

2k
, (2.161)

25



CHAPTER 2. INTRODUCTION TO COSMOLOGY

so for getting the modulus |δφk| = |uk|/a we can use the fact that τ ∼ −1/aH, therefore |δφk| ≈
−Hτ |uk|. Inserting the expression we have for uk we get,6

|δφk| ≈ 2ν−3/2 Γ(ν)

Γ(3/2)

H√
2k3

(

k

aH

)3/2−ν

(2.162)

≈ H√
2k3

(

k

aH

)3/2−ν

≈ H√
2k3

(

k

aH

)−ϵ

, (2.163)

which holds at super-horizon scales. In the De Sitter case, the exact result reads

uk(τ) ∝
√
−τH(1)

3/2(−kτ) =
e−ikτ

√
2k

(

1− i

kτ

)

. (2.164)

Let’s take a step forward in generalizing the scalar field with non-zero mass, denoted by m2 = ∂2V
∂φ2 .

We require this mass to be much smaller than the Hubble parameter, H. This condition ensures that
the scalar field can drive inflation through slow-roll. Specifically, we need the slow-roll parameter
ηV = m2

3H2 ≪ 1.
The reason for this requirement is that a massive scalar field (compared to H2) would not be able

to maintain the slow-roll conditions needed for inflation. In other words, its mass would dominate
over the Hubble friction term and prevent the scalar field from smoothly rolling down its potential.

Then, the m2a2 term in the equation represents the mass term of the scalar field in an expanding
universe which can be written as

m2a2 = 3ηa2H2 =
3η

τ2
, (2.165)

but we also know that

a′′

a
=

2

τ2

[

1 +
3

2
ϵ

]

, (2.166)

Hence, the equation can still be recast into the same Bessel form but this time only the coefficient of
the τ−2 term changes.

The equation will read

u′′k(τ) +

[

k2 − ν2 − 1/4

τ2

]

uk(τ) = 0 , (2.167)

with ν2 = 9/4 + 3ϵ− 3η. Then, the solution has exactly the same form as before:
on super-horizon scales, with k ≪ aH, we have

|δφk| =
H√
2k3

(

k

aH

)3/2−ν

ν ≈ 3

2
+ ϵ− η . (2.168)

It’s worth noting that the previous computation doesn’t only apply to an inflaton field, but also
to any scalar field evolving during this phase of the universe’s expansion. However, it’s important
to consider the field’s mass - it can be shown that if m2 is much greater than H2, the super-horizon
fluctuations of the field will have difficulty being excited and the field will remain in its vacuum state.
So, if it’s another scalar field, it needs to be light to be able to generate super-horizon fluctuations.

6Expanded to first order in ϵ, so that 3/2− ν ≈ −ϵ.
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2.7.5 The Power Spectrum

The power spectrum is a useful quantity to characterize the statistical properties of a Gaussian
perturbation field which helps us to connect theoretical predictions with observational.7

The properties of a Gaussian random field δ(t,x) that represents a fluctuation in a point of
space-time, such as the density fluctuation, can be described by an infinite set of correlation functions.
These functions are defined as:

ξ (x1,x2) = ⟨δ (t,x1) δ (t,x2)⟩ , (2.169)

ξ (x1,x2,x3) = ⟨δ (t,x1) δ (t,x2) δ (t,x3)⟩ , (2.170)

... (2.171)

ξ (x1,x2, . . . ,xN ) = ⟨δ (t,x1) δ (t,x2) . . . δ (t,xN )⟩ , (2.172)

where the ⟨·⟩ symbol refers to the ensemble average.
In the case of Gaussian random fields, they are determined by the two-point correlation function,

i.e. the first definition in equation (2.169). For reflection-symmetric Gaussian processes, the correlation
function for odd N is identically zero, whereas those characterized by even N can be written as a
combination of ξ (x1,x2).
The homogeneity condition implies that the statistical properties of the field are the same at every
point in space. This means that the two-point correlation function, which characterizes the statistical
dependence between two points in space, should only depend on the distance between the two points
and not on their absolute positions. The isotropy condition applied to the two-point correlation
function means that it should be invariant under spatial rotations. This implies that it should only
depend on the magnitude of the separation vector between two points, and not on its direction.
Therefore, the correlation function should only depend on the relative distance, and not on the relative
orientation or direction of the separation vector between the two points ξ(r) = ξ (|x1 − x2|).

Knowing that the Fourier transform of the fluctuation reads as

δ(t,x) =
1

(2π)3

∫

d3keik·xδk(t) (2.173)

we define the power spectrum P (k) as

⟨δk1(t)δk2(t)⟩ = (2π)3δ(3) (k1 + k2)P (k), (2.174)

and we show that the power spectrum is the Fourier transform of the two-point correlation function
ξ(r). In fact

ξ(r) = ⟨δ(t, x+ r)δ(t, x)⟩ (2.175)

=

〈

1

(2π)3

∫

d3keik·(x+r)δk(t)
1

(2π)3

∫

d3k′eik
′·xδk′(t)

〉

(2.176)

=
1

(2π)6

∫

d3k

∫

d3k′eik·(x+r)ek
′·x ⟨δk(t)δk′(t)⟩ (2.177)

=
1

(2π)3

∫

d3k

∫

d3k′eik·(x+r)eik
′·xδ(3)

(

k+ k′
)

P (k) (2.178)

=
1

(2π)3

∫

d3keik·rP (k). (2.179)

The plus is there since we wrote δ(k)δ(k′) instead of δ(k)δ∗(k′): if we included the conjugate then the
argument of the δ would be k − k′, due to the fact that since δ(x) is real we have δ∗(k) = d(−k).

7Perturbations close to Gaussian.
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Another relevant quantity is the variance of the fluctuations defined as

σ2 ≡
〈

δ2k
〉

=
1

(2π)2

∫

dkk2P (k) (2.180)

We further introduce the dimensionless power spectrum

P(k) ≡ k3

2π2
P (k), (2.181)

by which Eq. (2.180) becomes

σ2 =

∫ ∞

0

dk

k
P(k) (2.182)

The scale dependence of P(k) is given by the spectral index

ns(k)− 1 =
d lnP(k)

d ln k
. (2.183)

If the spectral index is scale-invariant, i.e. ns = const, then the power spectrum P(k) can be
generally written as

P(k) = As

(

k

k0

)ns−1

, (2.184)

where k0 is a pivot scale. A useful way to categorize different power spectra is through the
spectral index, denoted by ns. The Harrison-Zel’dovich power spectrum, corresponding to ns = 1,
is scale-invariant and does not depend on the cosmological scale k and As = P(k0) . A blue-tilted
power spectrum, with ns > 1, implies that perturbations have more power on small scales than on
large scales. Conversely, a red-tilted power spectrum, with ns < 1, indicates that there is less power
on small scales compared to large scales. The power spectrum of the fluctuations of the inflaton field
at lowest order in the slow-roll parameters. Using the fact that δφk(t)

∗ = δφ−k(t) and that it can be
written as a combination of creation-annihilation operators 8 we obtain

⟨δφk(t)δφ
∗
k′(t)⟩ = (2π)3δ(3)

(

k− k′
)

|δφk|2 . (2.185)

Comparing this result with equation (2.174) we have

Pδφ(k) = |δφk(t)|2 , Pδφ(k) =
k3

2π2
|δφk|2 . (2.186)

In particular, using the result in (2.168) we find that at super-horizon scales the power spectrum
reads as

Pδφ(k) =

(

H

2π

)2( k

aH

)3−2ν

. (2.187)

8Writing the L.H.S of (2.185) in terms of creation and annihilation operators: we have

⟨0| aa |0⟩ = ⟨0| a†a |0⟩ = ⟨0| a†a† |0⟩ = 0 ,

while
⟨0| aa† |0⟩ = ⟨0|

[

a, a†
]

|0⟩

δ(3)(k−k′)

−⟨0| a† |0⟩

=0

so,
⟨δφkδφ

∗
k′⟩ = (2π)3|δφk|

2δ3(k− k
′)
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2.7.6 From Quantum to Cosmological Fluctuations

During inflation, the inflaton field fluctuations δφ arise at sub-horizon scales and are stretched by
the rapid expansion of the Universe until they exit the horizon and freeze at super-horizon scales,
as shown in section (2.7.4). Later on, these fluctuations re-enter the region of causal connection and
interact through physical processes. In this section, we investigate how the quantum perturbations
during inflation relate to the primordial density perturbations that act as the seeds for the current
cosmic structure.

Due to the presence of these fluctuations, different regions of the Universe complete inflation
at slightly different times. This is demonstrated by considering the equation of motion of the
homogeneous inflaton field (2.77) and splitting the scalar field as

φ(x, t) = φ0(t) + δφ(x, t) , (2.188)

Now taking its derivative with respect to cosmic time we get

...
φ + 3Hφ̈ = −∂2ϕV (φ)φ̇ =⇒ ∂2t (φ̇) + 3H∂t(φ̇) = −∂2ϕV (φ)φ̇ (2.189)

we notice that the resulting equation has the same form as Eq. (2.112) except for the Laplacian
term. In the limit where this term can be neglected, δφ and φ obey the same equation. In particular,
taking the Fourier transform of the Laplacian term

1

a2
∇2(δφ)

F→ −k
2

a2
δφk (2.190)

we have that it vanishes in the limit of large scales, i.e. for k that tends to 0. This implies that
the Laplacian term can be ignored on large scales, and we can assume a coarse-graining process that
is valid for the discussion of inflationary fluctuations.

The Wronskian operator, a mathematical tool that enables us to determine whether a group of
solutions to a differential equation are linearly independent or linearly dependent, is used to analyze
this system. Given two homogeneous fields φ(t) and ψ(t), the Wronskian is defined as

W (φ, ψ) = φ̇ψ − ψ̇φ

{

̸= 0 two linearly independent solutions,

= 0 two linearly dependent solutions.
(2.191)

In our case, the Wronskian has the following form

W (φ̇0, δφ) = φ̈0δφ− φ̇0
˙δφ . (2.192)

If we further derive with respect to time, we obtain that

Ẇ = ˙̈φ0δφ+ φ̈0
˙δφ− φ̈0

˙δφ− φ̇0δ̈φ (2.193)

= δφ
(

−3Hφ̈0 − V ′′φ̇0

)

− φ̇0

(

−3H ˙δφ− V ′′δφ
)

(2.194)

= −3H
(

φ̈0δφ− φ̇0
˙δφ
)

= −3HW (φ̇0, δφ) . (2.195)

which has a solution decaying with time given by

W (φ̇0, δφ) = e−3Ht (2.196)

Thus, using the conditions (2.191), at large scales δφ and φ̇0 are related. In particular

29



CHAPTER 2. INTRODUCTION TO COSMOLOGY

δφ(t,x) ∝ φ̇0 ⇒ δφ(t,x) ≃ (−δt(x))φ̇0 (2.197)

where the proportional constant −δt(x) must have the dimensionality of time as δφ(t,x)is space
dependent(x that represents a large region of the Universe) whereas φ̇0 is not.So, by reverse-Taylor
expansion, the full field is given by

φ(t,x) = φ0(t) + δφ(t,x) (2.198)

≃ φ0[t− δt(x)]. (2.199)

The inflaton field is subject to a temporal shift given by

δt(x) ≃ −δφ(t,x)
φ̇(t)

(2.200)

The expression (2.199) tells us that at each point in space x, the field φ takes on the same values
as the field φ0 at a slightly earlier time t− δt(x). In other words, the value of the field at each point
evolves in time, but the evolution is slightly delayed at each point. This is because the field at each
point feels the influence of its surroundings, and fluctuations in the surrounding field cause the field
at that point to evolve differently than if it were completely isolated.

This interpretation is intuitive if we consider the analogy of waves on a water surface. Imagine
that we drop a pebble in the middle of a still pond, creating a circular wave pattern. As the waves
propagate outward, the shape of the wave pattern at any point in the pond depends on the position
and shape of the waves at all other points. Similarly, in a fluctuating field like φ, the value of the field
at any point depends on the values of the field at all other points.

In this sense, the delayed evolution of the field at each point can be thought of as a result of the
time it takes for information to propagate through the field. Information about fluctuations in the
field has to propagate from one point to another, and this takes time. Therefore, the evolution of the
field at each point is slightly delayed relative to the evolution of the field as a whole. As a consequence,
also the expansion of the Universe is different in different parts of the Universe.
We introduce the fluctuations in the number of e-folds N Eq. (2.7.1) given by the primordial curvature
perturbation ζ

ζ = δN = Hδt ≃ −Hδφ

φ̇
(2.201)

where in the last passage we used Eq. (2.200). We now show that during inflation the primordial
curvature perturbation induces fluctuations in the density field. Let us consider the expression of ρ in
equation (2.86), then

−Hδρ

ρ̇
≃ −H ∂φV (φ)δφ

−3H(ρ+ p)
, (2.202)

≃ H
3Hφ̇δφ

−3Hφ̇2
≃ −Hδφ

φ̇
, (2.203)

where in the first passage we used the continuity equation (2.20c) during inflation. Therefore,
ζ ≃ −Hδρ/ρ̇. An important property of ζ is that it remains constant outside the horizon for adiabatic
matter perturbations[Bartolo et al., 2004]. Therefore, given a scale k, we can evaluate ζ at the time
of horizon crossing t(k)exit , knowing that it maintains the same value until it re-enters the horizon at
t(k)enter during radiation or matter domination.

The power spectrum of the curvature perturbation can be derived using Eq. (2.201)

Pζ ≃
H2

φ̇2
Pδφ =

(

H2

2πφ̇

)2(
k

aH

)3−2ν

(2.204)
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and at the time of horizon exit (k ≈ aH), we have

Pζ =

(

H2

2πφ̇

)2
∣

∣

∣

∣

∣

t(k)exit

. (2.205)

The curvature perturbation ζ introduced in Eq.(2.201) is a particular form of the gauge-invariant
curvature perturbation on uniform-density hyper-surfaces defined as

ζ ≡ −ψ −H
δρ

ρ̇
(2.206)

where ψ is the scalar perturbation of the diagonal spatial component of the FRW metric known as
the Bardeen Potential. In fact, in Eq. (2.201) we considered the gauge choice ψ = 0, called uniform
curvature gauge.
To calculate the curvature perturbation on large scales we can consider the curvature perturbation on
comoving surfaces which in the case of the scalar field reads as,

Rc = ψ +H
δφ

φ̇
, (2.207)

which is the metric perturbation in the comoving space-time slicing(observer which sees the cosmic
expansion as isotropic). It can be shown that both Rc and ζ are gauge invariant and on large scales
they are equal,

Rc = −ζ = ψ +H
δφ

φ̇
, (2.208)

The scale index of the power spectrum can be parameterized using a scale dependence of the spectral
index ns (2.184):

Pζ = As(
k

k0
)ns−1+ 1

2
αsln(k/k0)+

1
3!
βsln2(k/k0)+...., (2.209)

where As is the scalar amplitude and the coefficients αs,βs are, respectively, called ”running of
spectral index” and ”running of running” parameters. They are independent of k and are obtained
by Taylor expansion of the spectral index. In the slow roll approximation, we can write Pζ(k) as a
function of the slow roll potential and its derivatives, hence we can write the running parameters as
a function of the slow roll parameters[Baumann, 2012].

1− ns = 2η − 6ϵ (2.210)

αs = −2ξ2 + 16ηϵ− 24ϵ2 (2.211)

βs = 2σ3 ++2ξ2(η − 12ϵ)− 32ϵ(η2 − 6ηϵ+ 6ϵ2). (2.212)

In the standard slow-roll inflation models, αs and βs are highly suppressed by slow-roll parameters.
However, in the large-running mass inflation model, these parameters would be relatively large.

2.8 Primordial Non-Gaussianity

Previously, we saw that for a single field inflationary model, the action considered is that of a single
field coupled to gravity Eq. (2.71) and the leading order term in this expansion is quadratic in the
small fluctuations around the homogeneous background. Since a free field can be viewed as a collection
of harmonic oscillators, and these oscillators begin in their ground state, the resulting fluctuations
are Gaussian to the leading order. However, there can be deviations from the Gaussian initial
conditions [Maldacena, 2003] when the conditions for the standard inflationary model are not met,
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like, in the case of the multi-field inflation [Polarski and Starobinsky, 1994] or the curvaton scenario
[Lyth and Wands, 2002]. For a detailed review of the generation of primordial non-Gaussianity
(PNG) from different inflationary models refer to [Bartolo et al., 2004] and the references therein .

In the context of Gaussian random fields, all information is encapsulated in the power spectrum.
The bispectrum, which is the Fourier transform of the three-point correlation function, is significant
as it serves as the lowest-order statistic capable of distinguishing non-Gaussian features from Gaussian
perturbations.

Each inflationary model makes specific predictions regarding the bispectrum of the primordial
perturbations in the gravitational potential Φk hence accurately calculating the primordial bispectrum
of cosmological perturbations is a crucial area of research for enhancing our understanding of the early
universe. The bispectrum BΦ (k1, k2, k3) of these perturbations is defined as:

⟨Φ (k1) Φ (k2) Φ (k3)⟩ ≡ (2π)3δD (k123)BΦ (k1, k2, k3) (2.213)

where kij ≡ k1+k2 so that the Dirac delta function here is δD (k123) ≡ δD (k1 + k2 + k3). Together
with the assumption of statistical homogeneity and isotropy for the primordial perturbations, this
implies that the bispectrum is a function of the triplet defined by the magnitude of the wavenumbers
k1, k2 and k3 forming a closed triangular configuration. Additionally. we can write

BΦ (k1, k2, k3) ≡ fNLF (k1, k2, k3) (2.214)

where F (k1, k2, k3) encodes the functional dependence of the primordial bispectrum on the specific
triangle configurations and fNL is the dimensionless PNG amplitude that measures the strength of
the PNG signal.9

Predictions for both the amplitude fNL and the functional dependence F (k1, k2, k3) vary
significantly between different inflationary models. Below is a brief description of the three main
templates of primordial bispectrum shapes. For more details refer to [Meerburg et al., 2019] and
references therein.

The parameter space of single-field models is well-described by the so-called equilateral and
orthogonal templates.[Creminelli et al., 2006, Chen et al., 2007]

Bequil
Φ (k1, k2, k3) = 6A2f equilNL ×

{

− 1

k4−ns

1 k4−ns

2

− 1

k4−ns

2 k4−ns

3

− 1

k4−ns

3 k4−ns

1

− 2

(k1k2k3)
2(4−ns)/3

+

[

1

k
(4−ns)/3
1 k

2(4−ns)/3
2 k4−ns

3

+ 5 perms.

]}

(2.215)

Bortho
Φ (k1, k2, k3) = 6A2forthoNL ×

{

− 3

k4−ns

1 k4−ns

2

− 3

k4−ns

2 k4−ns

3

− 3

k4−ns

3 k4−ns

1

− 8

(k1k2k3)
2(4−ns)/3

+

[

3

k
(4−ns)/3
1 k

2(4−ns)/3
2 k4−ns

3

+ 5 perms.

]}

(2.216)
The bispectrum for multi-field models is typically of the local type(for a review refer

[Byrnes and Choi, 2010]) given by

Blocal
Φ (k1, k2, k3) = 2f localNL [PΦ (k1)PΦ (k2) + PΦ (k1)PΦ (k3) + PΦ (k2)PΦ (k3)]

= 2A2f localNL

[

1

k4−ns

1 k4−ns

2

+ cycl.

]

.
(2.217)

9”NL” stands for non-linear
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To use non-Gaussianities as a probe of the early Universe and the details of inflation, it is essential to
measure both the shape of the primordial bispectrum and the magnitude of its signal, specifically by
constraining the fNL parameter. The detection of non-Gaussianities can provide a way to distinguish
between the different classes of inflationary models and eliminate those that don’t predict such an
amount of deviation from the exact Gaussian distribution.

2.9 Neutrino Mass

In section 2.6, we discussed how neutrinos decoupled from the plasma in the early universe. These
relic neutrinos leave detectable imprints on cosmological observations. The energy distribution and
dynamics of these relic neutrinos have significant consequences for the evolution of the Universe.

Initially, the relic neutrinos were relativistic from the time of their decoupling through to
recombination. Due to the expansion and cooling of the Universe, their momenta redshifted as pν ∝
1/a, eventually causing the energy of most relic neutrinos to be dominated by their rest mass rather
than their momentum. Consequently, the energy density in non-relativistic neutrinos contributes to
the matter budget of the Universe today. However, since neutrinos were relativistic for much of the
Universe’s history, their gravitational clustering differs qualitatively from that of cold dark matter
(CDM) particles. This difference allows us to distinguish between the contributions of neutrinos and
cold dark matter to the overall matter density [LESGOURGUES and PASTOR, 2006]. In this section,
we review how neutrino mass affects the evolution of the neutrino energy density and the gravitational
clustering of matter following [LESGOURGUES and PASTOR, 2006, Abazajian et al., 2016].

Current constraints from the cosmic microwave background (CMB) on Neff [Aghanim et al., 2020]
align closely with the Standard Model expectation of three species of neutrinos and antineutrinos,
each described by a relativistic thermal Fermi-Dirac distribution. The distribution function for each
species of neutrinos and antineutrinos is given by

fν(p) =
1

eap/Tν0 + 1
(2.218)

where Tν0 ≈ 1.7× 10−4 eV(1.95K) is the temperature today [Workman et al., 2022]. In Standard
Model physics, the spectral shape of the neutrino phase space distribution is preserved with the
expansion, so relic neutrinos have retained the relativistic Fermi-Dirac momentum distribution
inherited from decoupling even as the individual neutrinos became non-relativistic.

Now, we write the neutrino energy density as

ρν =
∑

i

∫

d3p

(2π)3

√

p2 +m2
νi

eap/Tν0 + 1
(2.219)

where mνi are the three neutrino mass eigenstates. For Tν/a ≫ mνi the neutrino energies are
dominated by their momenta and the total energy density behaves like radiation

ρν |early ≈ 7π2

40
(Tν0)

4 1

a4
∝ a−4 (2.220)

While for Tν0/a≪ mνi the energy density behaves like matter

ρν |late ≈
∑

i

mνin̄ν ∝ a−3 (2.221)

where n̄ν is the number of neutrinos and antineutrinos in each mass eigenstate

n̄ν =

∫

d3p

(2π)3
2

eap/Tν0 + 1
≈ 113

a3
cm−3 (2.222)

For a neutrino of mass mνi, the transition between these two regimes
(

kBTν(a) ∼ m2
νi

)

occurs at
redshift znr ∼ 300 (mνi/0.05 eV). Using Eq. 2.221, the fractional energy density in neutrinos today
can be written as
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Ωνh
2 ≈

∑

imνi

93 eV
(2.223)

The individual masses of the neutrino states are unknown but neutrino oscillation data specifies
the square of two mass splittings ∆m2

12 = 7.54× 10−5 eV,
∣

∣∆m2
13

∣

∣ ≈ 2.4× 10−3 eV [Olive et al., 2014].
These mass splittings, in combination with the neutrino number density, give a lower limit on the
contribution of neutrinos to the cosmic energy budget [Abazajian et al., 2016]

Ωνh
2 ≳ 0.0006 (2.224)

At z ≪ znr, the matter density of the Universe, which enters into the Hubble equation, is the sum
of the CDM, baryon, and massive neutrino energy densities Ωm = Ωc+Ωb+Ων . Whereas, at z ≫ znr,
the matter density is solely made up of the baryon and CDM parts while neutrinos contribute to the
radiation density.

Neutrinos do not contribute to gravitational collapse until they transition to a nonrelativistic state.
Before this transition, neutrinos free-stream out of gravitational wells, leaving behind cold dark matter
(CDM) and baryons. As a result, primordial fluctuations in the neutrino density are damped on scales
smaller than the horizon at znr. In comoving coordinates, this scale is represented by a wave number.

knr ≡ anrH (anr) ≈ 0.003

(

Ωm

0.3

mν

0.05 eV

)1/2

h/Mpc (2.225)

Once the neutrinos are non-relativistic, their finite velocity dispersion still prevents them from
clustering on scales smaller than the typical distance a neutrino travels in a Hubble time, vν/H(a)
where vν ≈ 3.15Tν0/ (amν) the mean neutrino velocity. In analogy with the Jeans criterion for
gravitational collapse, the neutrino free-streaming scale is defined in comoving coordinates as

kfs(a) ≡
√

3

2

aH(a)

vν(a)
≈ 0.04a2

√

Ωma−3 +ΩΛ

( mν

0.05 eV

)

h/Mpc (2.226)

On scales larger than knr, adiabatic perturbations in the densities of neutrinos, baryons, and
cold dark matter (CDM) are coherent and can be described by a single perturbation to the total
matter density δm = δρm/ρm. On smaller scales, where neutrino perturbations have decayed, only
perturbations in CDM and baryons remain, such that δm = δcb (Ωc +Ωb) /Ωm. The remaining
perturbations in CDM and baryons grow more slowly because the neutrino energy density affects
the expansion rate but not the source potentials. These two effects lead to a suppression in the
amplitude and growth rate of matter perturbations with wavenumbers k > kfs compared to a universe
with massless neutrinos and to density perturbations with k < knr. The net change in the amplitude
of perturbations with k > knr mainly depends on the fractional energy density in massive neutrinos
(assuming Ωc + Ωb is fixed) but also retains a slight sensitivity to the individual neutrino masses
through dependence on anr.

An estimate of the effect of massive neutrinos on the growth of structure can be made by studying
the evolution of matter perturbations in the two regimes k ≪ kfs and k ≫ kfs. In the synchronous
gauge, linear perturbations to the matter density with wavenumbers k ≪ kfs evolve as

δ̈m + 2H(a)δ̇m − 3

2
ΩmH

2
0a

−3δm = 0 for k ≪ knr (2.227)

which has solutions δm ∝ a, a−
3
2 during the matter dominated era.

On scales where the neutrino perturbations have decayed, perturbations to matter density are just
in the CDM and baryon components

δm(k ≫ kfs) ≈ (δρc + δρb)/ρm = (1− fν)δcb (2.228)

where fν = Ων/Ωm and δcb = (δρc + δρb)/(ρc + ρb), but the neutrino energy density still contributes
to the Hubble friction. In this limit, linear perturbations to the CDM and baryon density evolve as

34



CHAPTER 2. INTRODUCTION TO COSMOLOGY

δ̈m + 2H(a)δ̇m − 3

2
ΩcbH

2
0a

−3δm = 0 for k ≫ kfs (2.229)

where Ωcb = Ωc + Ωb and Ωcb < Ωm for a cosmology with massive neutrinos. Equation (2.229) has

the approximate solutions during the matter-dominated era of δcb ∝ a1−
3
5
fν , a−

3
2
+ 3

5
fν for fν ≪ 1

[LESGOURGUES and PASTOR, 2006].
The matter-dominated solutions provide a straightforward estimation of how massive neutrinos

affect the amplitude of matter perturbations. In a cosmology with fixed Ωch
2, the evolution of

perturbations behaves similarly whether neutrinos have mass (fν ̸= 0) or are massless (fν = 0)
until the scale factor reaches anr. After anr, perturbations with wavenumbers k ≫ kfs exhibit slower
growth (as indicated by Eq. (2.229), where the growing mode scales as ∝ a1−

3
5
fν ) compared to those

with k ≪ kfs (as per Eq. (2.227), which scales as ∝ a). Thus, at a given scale factor a during
the matter-dominated era, the overall difference in the growth of perturbations with k ≫ kfs can be
approximated as follows:

δcb(k ≫ kfs, a | fν)
δcb(k ≫ kfs, a | fν = 0)

∼
(

a

anr

)− 3
5
fν

(2.230)

The difference in the amplitude of the matter’s power spectra is then

Pmm(k ≫ kfs, a | fν)
Pmm(k ≫ kfs, a | fν = 0)

∼ (1− 2fν)
Pcb(k ≫ kfs, a | fν)

Pcb(k ≫ kfs, a | fν = 0)
∼
(

1− 2fν −
6

5
fν ln

(

a

anr

))

(2.231)

On the other hand, the evolution of the large-scale modes is identical,

Pmm(k ≪ kfs, a | fν)
Pmm(k ≪ kfs, a | fν = 0)

= 1 (2.232)

where Pmm represents the power spectrum of total matter fluctuations including CDM, neutrinos,
and baryons, while Pcb denotes the power spectrum involving only CDM and baryons. The expression
above tends to overestimate the impact of neutrino mass by assuming an instantaneous transition
from relativistic to non-relativistic states. Furthermore, it neglects the influence of the cosmological
constant at later epochs. Incorporating the actual evolution of δcb through anr and accounting for the
cosmological constant leads to a more accurate assessment.

Pmm(k ≫ kfs | fν)
Pmm(k ≫ kfs | fν = 0)

≈ 1− 6fν (2.233)

at a = 1. Note that this expression assumes fixed Ωch
2,Ωbh

2 so that matter-radiation equality
is not changed by neutrino mass and that and ΩΛ = 1 − Ωm is fixed by adjusting h so that the
onset of cosmological constant domination is also unchanged. Alternatively, assuming fixed Ωm and
decreasing Ωcb to account for Ων makes matter-radiation equality, which occurs while the neutrinos
are relativistic, slightly later so that the suppression is increased to

Pmm(k ≫ kfs | fν)
Pmm(k ≫ kfs | fν = 0)

≈ (1− 8fν) (2.234)
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Chapter 3

Perturbation Theory and the

Formation of Large-Scale Structures

One of the most sought-after questions in modern cosmology is understanding the large-scale
structures of the universe we see today. Previously in section 2.7.4 we saw how quantum fluctuations
during inflation that grow to super-horizon scales induce the primordial density perturbations. These
perturbations are induced in the dark matter field once they re-enter the horizon. As they grow over
the age of the universe, baryons accumulate in the gravitational potential wells of these dark matter
density fluctuations eventually forming the structures we observe due to gravitational instabilities.

Cosmological Perturbation Theory (PT) aims at comprehending the dynamical evolution of the
density and velocity fields of matter perturbations. This perturbative technique works especially
well when characterizing the dynamics of gravitational instabilities at large scales, where density
fluctuations are still tiny. On these large scales, structure creation is often thought to be primarily
driven by gravity inside the PT framework. At small scales, however, this assumption falters as
non-gravitational factors start to affect the distribution of matter for example the effects of the
pressure forces of the baryons.

Furthermore, the predictive ability of PT is ultimately limited by the strong non-linear nature of
gravitational evolution. At small scales (kNL(z = 0) ≈ 0.25h/Mpc [Dodelson and Schmidt, 2020]),
strong non-linearities and non-perturbative effects dominate the dynamics, making perturbative
approaches ineffective. These scales are characterized by complex interactions and feedback
mechanisms that require more advanced modelling techniques, frequently involving numerical
simulations and semi-analytical methods.

However, there is a quasi non-linear regime in which the non-linear evolution of matter can
still be adequately described by higher-order corrections to linear PT that could provide important
information about the change from linear to fully non-linear scales. This approach allows the utility of
PT beyond its strictly linear domain, bridging the gap between large-scale predictions and small-scale
complexities.

Moreover, PT offers a framework for comprehending the statistical properties of matter
distribution, like the power spectrum and bispectrum, which hold information about the universe and
are crucial for restricting cosmological models and understanding data from extensive surveys.

PT operates under two main assumptions:

• On large scales baryonic pressure is neglected i.e. baryon is treated as cold as it cools rapidly
after recombination and is approximated as collisionless. cold dark matter (CDM) and baryons
are treated as pressureless single-field.
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• Since CDM particles are non-relativistic, at scales smaller than the Hubble radius (rH) the
equations of motion reduce to those of Newtonian gravity.

In this chapter, we will discuss the Eulerian and Lagrangian framework of the standard PT and
follow Ref. [Bernardeau et al., 2002] and references within it for our discussion.

3.1 Euler Perturbation Theory

3.1.1 The Vlasov Equation

When we consider gravitational instabilities in an expanding universe we need to account for the
departures from the homogeneous universe. The positions are described by their comoving coordinates
x (r = a(τ)x where r is the physical coordinate) and the equations of motion are described in terms
conformal time τ . The conformal expansion rate is defined as H ≡ d ln a/dτ = Ha where H is the
Hubble constant. We then define the density contrast δ(x) by,

ρ(x, τ) ≡ ρ̄(τ)[1 + δ(x, τ)], (3.1)

the peculiar velocity u with

v(x, τ) ≡ H x+ u(x, τ), (3.2)

and the cosmological gravitational potential Φ with

ϕ(x, τ) ≡ −1

2

∂H

∂τ
x2 +Φ(x, τ), (3.3)

so that the latter is sourced only by density fluctuations, as expected. The Poisson equation reads,

∇2Φ(x, τ) =
3

2
Ωm(τ)H 2(τ)δ(x, τ)

= 4πGρ̄(τ)δ(x, τ), (3.4)

In the following, the spatial variable will only be comoving coordinates, therefore all space
derivatives should be interpreted as being performed with respect to x. Then, the equation of motion
can be written as,

dp

dτ
= −am∇Φ(x), (3.5)

where,

p = amu, (3.6)

Now we define the Vlasov equation which is a a non-linear partial differential equation that
describes the evolution of the particle number density in phase space. The particle number density
in phase space is defined by the distribution function f(x,p, τ); phase-space conservation implies the
Vlasov equation,

df

dτ
=
∂f

∂τ
+

p

ma
· ∇f − am∇Φ · ∂f

∂p
= 0, (3.7)

The non-linearity is induced by the fact that the potential Φ depends through the Poisson equation
on the integral of the distribution function over momentum ( i.e. momentum average) (which gives
the density field, see Eq.(3.8) below).
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3.1.2 Eulerian Dynamics

In practice, we are usually interested in solving the evolution of the spatial distribution rather than
the full phase-space dynamics. This is obtained by taking momentum moments of the distribution
function.

∫

d3pf(x,p, τ) ≡ ρ(x, τ), (3.8)
∫

d3p
p

am
f(x,p, τ) ≡ ρ(x, τ)u(x, τ), (3.9)

∫

d3p
pipj
a2m2

f(x,p, τ) ≡ ρ(x, τ)ui(x, τ)uj(x, τ) + σij(x, τ), (3.10)

The zeroth order moment Eq.(3.8) relates the phase space density to the local mass density field,
The higher order moments Eq.(3.9) and Eq.(3.10) define the peculiar velocity flow u(x, τ) and the
stress tensor σij(x, τ). The equation for these fields follows from taking moments of the Vlasov
equation. The zeroth moment gives the continuity equation describing the mass conservation,

∂δ(x, τ)

∂τ
+∇ · {[1 + δ(x, τ)]u(x, τ)} = 0, (3.11)

and subtracting u(x, τ) times the continuity equation from the first moment gives the Euler
equation which describes the conservation of momentum

∂u(x, τ)

∂τ
+ H (τ)u(x, τ) + u(x, τ)·∇u(x, τ) =

−∇Φ(x, τ)− 1

ρ
∇j (ρσij) . (3.12)

We can observe in the above equations that the continuity equation couples the zeroth (ρ) to the
first moment (u) of the distribution function similarly, the Euler equation couples the first moment
(u) to the second moment (σij), and so on.
Now that the phase-space information has been integrated out, an ansatz is considered for the
cosmological fluid’s equation of state i.e. the stress tensor (σij).

The first assumption that we considered at the beginning of the chapter is that the cosmological
structure formation is driven by cold matter which has negligible pressure and velocity dispersion.
The stress tensor in Eq.(3.10) characterizes the deviation of particle motions from a single coherent
flow (single stream), for which the first term will be the dominant contribution. Therefore, it is a
good approximation to set σij ≈ 0, at the initial stages of gravitational instability when structures
did not have time to collapse and virialize. As time goes on, this approximation will break down at
progressively larger scales, but at present times at the scales relevant to large-scale structure, this
approximation is extremely handy. The breakdown describes the generation of velocity dispersion
due to multiple streams, known as shell crossing

At large scales, when fluctuations are small, linear perturbation theory provides an adequate
description of cosmological fields. In this regime, different Fourier modes evolve independently
which conserves the primordial statistics. Therefore we combine the equations eq.(3.4), eq.(3.11)
and eq.(3.12) and transform it into Fourier space to get the equation of motion for gravitational
instabilities which are characterised by the overdensity δ̃(k, τ) and velocity divergence θ̃(k, τ) . These
are the continuity and Euler equations in Fourier space.
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∂δ̃(k, τ)

∂τ
+ θ̃(k, τ) = −

∫

d3k1 d3k2δD (k− k12)α (k1,k2) θ̃ (k1, τ) δ̃ (k2, τ) , (3.13)

∂θ̃(k, τ)

∂τ
+ H (τ)θ̃(k, τ) +

3

2
ΩmH

2(τ)δ̃(k, τ) = −
∫

d3k1 d3k2δD (k− k12)

×β (k1,k2) θ̃ (k1, τ) θ̃ (k2, τ) , (3.14)

( δD denotes the three-dimensional Dirac delta distribution) where kij = ki+kj the functions.The
left-hand side of the above equations is the linear part, while the right-hand side contains the non-linear
evolution that generates mode couplings, imprinted in functions

α (k1,k2) ≡
k12 · k1

k21
, β (k1,k2) ≡

k212 (k1 · k2)

2k21k
2
2

. (3.15)

Now, coming back to our assumption for the vanishing stress tensor we will try to investigate
further the Poisson, continuity and Euler equations i.e. eq.(3.4), eq.(3.11) and eq.(3.12) respectively
for the three unknown ρ, u and Φ. in the next section.

3.1.3 Linear Solution

At large scales1, the fluctuation fields can be assumed to be small compared to the homogeneous
contribution described by the first terms in eq.(3.11) and eq.(3.12). Therefore, it follows that we can
linearize them to obtain the equations of motion in the linear regime.

∂δ(x, τ)

∂τ
+ θ(x, τ) = 0, (3.16)

∂u(x, τ)

∂τ
+ H (τ)u(x, τ) = −∇Φ(x, τ), (3.17)

where θ(x, τ) ≡ ∇ · u(x, τ) is the divergence of the velocity field as mentioned before.
Now a velocity field, as any vector field, can be completely described by its divergence θ(x, τ) and its
vorticity w(x, τ) ≡ ∇× u(x, τ), whose equations of motion follow from Eq.(3.17)

∂θ(x, τ)

∂τ
+ H (τ)θ(x, τ) +

3

2
Ωm(τ)H 2(τ)δ(x, τ) = 0 (3.18)

∂w(x, τ)

∂τ
+ H (τ)w(x, τ) = 0 (3.19)

On solving Eq. (3.19) we see that vorticity evolution is given by, w (τ) ∝ a−1, i.e. in the linear
regime any initial vorticity decays away due to the expansion of the Universe. To get the density
contrast evolution we will take the time derivative of Eq.(3.18) and replace it in Eq.(3.16) and use the
Poisson equation Eq.(3.4) to get,

d2D1(τ)

dτ2
+ H (τ)

dD1(τ)

dτ
=

3

2
Ωm(τ)H 2(τ)D1(τ) (3.20)

where δ(x, τ) = D1(τ)δ
1(x, 0), and D1(τ) is the linear growth factor which describes the growth

of the overdensity field from some reference time τ = 0 to some later time τ . The second term in
the above equation is the friction term that arises due to the Hubble flow whereas the third term is
the force term. Since it is a second-order differential equation, it has two independent solutions, let’s

denote the fastest growing mode D
(+)
1 (τ) and the slowest one D

(−)
1 (τ). The evolution of the density

is then

δ(x, τ) = D
(+)
1 (τ)A(x) +D

(−)
1 (τ)B(x), (3.21)

1not to confuse with large scale modes
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where A(x) and B(x) are two arbitrary functions of position describing the initial density field
configuration, whereas the velocity divergence [using Eq.(3.16)] is given by

θ(x, τ) = −H (τ) [f (Ωm,ΩΛ)A(x) + g (Ωm,ΩΛ)B(x)] , (3.22)

f (Ωm,ΩΛ) ≡
d lnD

(+)
1

d ln a
=

1

H

d lnD
(+)
1

dτ
g (Ωm,ΩΛ) =

1

H

d lnD
(−)
1

dτ
, (3.23)

Let us discuss three different cases -

• The Einstein-de Sitter Universe i.e when Ωm = 1,ΩΛ = 0,

D
(+)
1 = a, D

(−)
1 = a−3/2, f(1, 0) = 1 (3.24)

We see that the density fluctuations grow as the scale factor which is consistent with our intuition
that, as time evolves overdense regions attract more matter and become overdense

• When Ωm < 1,ΩΛ = 0 we have (x ≡ 1/Ωm − 1).

D
(+)
1 = 1 +

3

x
+ 3

√

1 + x

x3
ln[

√
1 + x−

√
x] D

(−)
1 =

√

1 + x

x3
, (3.25)

and the logarithmic derivative can be approximated by [Peebles, 1976]

f (Ωm, 0) ≈ Ω3/5
m , (3.26)

As Ωm → 0(x≫ 1), D
(+)
1 → 1 and D

(−)
1 → x−1 and perturbations cease to grow.

• Where there is only matter and vacuum energy

In this case the linear growth factor admits the integral representation as a function of Ωm and
ΩΛ

D
(+)
1 = H(a)

5Ωm

2

∫ a

0

da

a3H(a)
, (3.27)

So, we see that the growth factor describes the scale-independent growth at late times. Now,
we would like to relate the potentials during this time to the primordial curvature perturbations.
Using the Poisson equation, Eq. (3.4) in Fourier space, we relate the linear density contrast to the
gravitational potential fluctuations :

k2Φ(k) = 4πGρ̄δ1k =
3

2
H

2Ωmδ
1
k. (3.28)

Now the curvature perturbations can be related to the gravitational potential of the perturbed
FLRW metric, for components with a barotropic equation of state, as:

Φ(k) = −3(1 + w)

(5 + 3w)
ζ(k), (3.29)

Using Eq. (3.28) and (3.29) we get the following equation which relates over-densities to primordial
potential.

δ1(k) = − 2(1 + w)

(5 + 3w)Ωm

k2

a2H2
T (k, τ)D

(+)
1 ζ(k). (3.30)

where D1(τ) is the growth factor discussed above and T (k) is the transfer function that defines
the evolution of perturbations across the horizon crossing and radiation/matter transition epochs. For
the matter-dominated era, it reduces to 2

2Notice we have changed to redshift(z) from scale factor
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δ1(k) = −2

3

k2

ΩmH2
0

T (k)D
(+)
1 Φ(k) =M(k, z)Φ(k,z) (3.31)

3.1.4 Eulerian Non-Linear Perturbation Theory

We will now consider the density and velocity fields evolution beyond the linear approximation3. To
do so, we shall first make a self-consistent approximation, that is, we will characterize the velocity
field by its divergence, and justify that the vorticity degrees of freedom can be neglected.

Taking the curl of Eq. (3.12) and temporarily restoring the stress tensor contribution (σij) to the
conservation of momentum we can write the vorticity equation of motion as

∂w(x, τ)

∂τ
+ H (τ)w(x, τ)−∇× [u(x, τ)×w(x, τ)] = ∇×

(

1

ρ
∇ · σ⃗

)

, (3.32)

Let us now look into two cases. In the first case, if the primordial vorticity vanishes, we see that
σij ≈ 0, as in the case of a pressureless perfect fluid. So, in the absence of primordial vorticity σij
remains zero at all times. In the next case, if the initial vorticity is non-zero, we saw in the previous
section that in the linear regime vorticity decays due to the expansion of the Universe; however, it can
be amplified non-linearly through the third term in Eq. (3.31). In what follows, we shall assume that
the initial vorticity vanishes, thus Eq. (3.31) together with the equation of state σij ≈ 0 guarantees
that vorticity remains zero throughout the evolution.

PT assumes that it is possible to expand the density and velocity fields about the linear solutions
by effectively treating the variance of the linear fluctuations as a small parameter and assuming no
vorticity in the velocity field [[Dodelson and Schmidt, 2020][Bernardeau et al., 2002]]. Linear solutions
correspond to simple (time-dependent) scaling of the initial density field; which we can write as

δ(x, t) =

∞
∑

n=1

δ(n)(x, t), θ(x, t) =

∞
∑

n=1

θ(n)(x, t), (3.33)

where δ(1) = D1(τ)δ(x, 0) and θ
(1) = −H δ(1) are linear in the initial density field as we saw before,

δ(2) and θ(2) are quadratic in the initial density field, etc.

3.1.5 General Solutions in Einstein-de Sitter Cosmology

Let’s first consider an Einstein-de Sitter Universe, for which Ωm = 1 and ΩΛ = 0 and scaling out
an overall factor of H from the velocity field brings Eq. (3.13) and Eq. (3.14) into homogeneous
form in τ or, equivalently, in a(τ). As a consequence, these equations can formally be solved with the
following perturbative expansion [Goroff et al., 1986, Jain and Bertschinger, 1994],

δ̃(k, τ) =
∞
∑

n=1

an(τ)δn(k), θ̃(k, τ) = −H (τ)
∞
∑

n=1

an(τ)θn(k), (3.34)

where only the fastest-growing mode is taken into account. Remarkably, it implies that the
PT expansions defined in Eq. (3.32) are expansions with respect to the linear density field with
time-independent coefficients. At small a the series are dominated by their first term, and since
θ1(k) = δ1(k) from the continuity equation, δ1(k) completely characterizes the linear fluctuations.

The equations of motion, Eqs. (37-38) determine δn(k) and θn(k) in terms of the linear fluctuations
to be:

δn(k) =

∫

d3q1 . . .

∫

d3qnδD (k− q1...n)Fn (q1, . . . ,qn) δ1 (q1) . . . δ1 (qn) , (3.35)

θn(k) =

∫

d3q1 . . .

∫

d3qnδD (k− q1...n)Gn (q1, . . . ,qn) δ1 (q1) . . . δ1 (qn) , (3.36)

3Given the smallness of the spacetime perturbations we can continue to work to linear order in the potential
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here Fn and Gn are homogeneous functions of the wave vectors {q1, . . . ,qn} with degree zero.
They incorporate the non-linear mode coupling induced by gravity and are constructed from the
fundamental mode coupling functions α (k1,k2) and β (k1,k2) according to the recursion relations
(n ≥ 2, see [Goroff et al., 1986, Jain and Bertschinger, 1994] for a detailed derivation):

Fn (q1, . . . ,qn) =

n−1
∑

m=1

Gm (q1, . . . ,qm)

(2n+ 3)(n− 1)
[(2n+ 1)α (k1,k2)Fn−m (qm+1, . . . ,qn)

+2β (k1,k2)Gn−m (qm+1, . . . ,qn)] , (3.37)

Gn (q1, . . . ,qn) =
n−1
∑

m=1

Gm (q1, . . . ,qm)

(2n+ 3)(n− 1)
[3α (k1,k2)Fn−m (qm+1, . . . ,qn)

+2nβ (k1,k2)Gn−m (qm+1, . . . ,qn)] , (3.38)

where k1 ≡ q1 + . . .+ qm,k2 ≡ qm+1 + . . .+ qn,k ≡ k1 + k2. Up to third order, the symmetrized
kernels (i.e. sum of the n-th order kernels over all possible permutations of the modes) for the density
field are:

F1(k) = 1, (3.39)

F
(s)
2 (k1,k2) =

5

7
+

1

2

k1 · k2

k1k2

(

k1
k2

+
k2
k1

)

+
2

7

(

k1 · k2

k1k2

)2

, (3.40)

F
(s)
3 (k1,k2,k3) =

7

54

[

F
(s)
2 (k1,k2)α (k3,k12) + F

(s)
2 (k2,k3)α (k1,k23) + F

(s)
2 (k3,k1)α (k2,k31)

+G
(s)
2 (k1,k2)α (k12,k3) +G

(s)
2 (k2,k3)α (k23,k1) +G

(s)
2 (k3,k1)α (k31,k2)

+
2

27

[

G
(s)
2 (k1,k2)β (k12,k3) +G

(s)
2 (k2,k3)β (k23,k1) +G

(s)
2 (k3,k1)β (k31,k2)

]

, (3.41)

F
(s)
4 (k1,k2,k3,k4) =

1

792

[

2G
(s)
2 (k1,k4)

(

18F
(s)
2 (k2,k3)α (k1 + k4,k2 + k3) + 8G

(s)
2 (k2,k3)β (k2 + k3,k1 + k4)

)

+ 2G
(s)
2 (k1,k3)

(

18F
(s)
2 (k2,k4)α (k1 + k3,k2 + k4) + 8G

(s)
2 (k2,k4)β (k1 + k3,k2 + k4)

)

+ 2G
(s)
2 (k1,k2)

(

18F
(s)
2 (k3,k4)α (k1 + k2,k3 + k4) + 8G

(s)
2 (k3,k4)β (k1 + k2,k3 + k4)

)

+ 6G
(s)
3 (k1,k2,k3) (9α (k1 + k2 + k3,k4) + 4β (k1 + k2 + k3,k4))

+ 6G
(s)
3 (k1,k2,k4) (9α (k1 + k2 + k4,k3) + 4β (k3,k1 + k2 + k4))

+ 6G
(s)
3 (k1,k3,k4) (9α (k1 + k3 + k4,k2) + 4β (k2,k1 + k3 + k4))

+ 6G
(s)
3 (k2,k3,k4) (9α (k2 + k3 + k4,k1) + 4β (k1,k2 + k3 + k4))

+ 36F
(s)
2 (k1,k4)G

(s)
2 (k2,k3)α (k2 + k3,k1 + k4)

+ 36F
(s)
2 (k1,k3)G

(s)
2 (k2,k4)α (k2 + k4,k1 + k3)

+ 36F
(s)
2 (k1,k2)G

(s)
2 (k3,k4)α (k3 + k4,k1 + k2)

+ 54F
(s)
3 (k1,k2,k3)α (k4,k1 + k2 + k3) + 54F

(s)
3 (k1,k2,k4)α (k3,k1 + k2 + k4)

+54F
(s)
3 (k1,k3,k4)α (k2,k1 + k3 + k4) + 54F

(s)
3 (k2,k3,k4)α (k1,k2 + k3 + k4)

]

, (3.42)
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while for the velocity divergence field they are:

G1(k) = 1, (3.43)

G
(s)
2 (k1,k2) =

3

7
+

1

2

k1 · k2

k1k2

(

k1
k2

+
k2
k1

)

+
4

7

(

k1 · k2

k1k2

)2

, (3.44)

G
(s)
3 (k1,k2,k3) =

1

18

[

F
(s)
2 (k1,k2)α (k3,k12) + F

(s)
2 (k2,k3)α (k1,k23) + F

(s)
2 (k3,k1)α (k2,k31)

+G
(s)
2 (k1,k2)α (k12,k3) +G

(s)
2 (k2,k3)α (k23,k1) +G

(s)
2 (k3,k1)α (k31,k2)

]

+
2

9

[

G
(s)
2 (k1,k2)β (k12,k3) +G

(s)
2 (k2,k3)β (k23,k1) +G

(s)
2 (k3,k1)β (k31,k2)

]

, (3.45)

G
(s)
4 (k1,k2,k3,k4) =

1

792

[

2G
(s)
2 (k1,k4)

(

6F
(s)
2 (k2,k3)α (k1 + k4,k2 + k3) + 32G

(s)
2 (k2,k3)β (k2 + k3,k1 + k4)

)

+ 2G
(s)
2 (k1,k3)

(

6F
(s)
2 (k2,k4)α (k1 + k3,k2 + k4) + 32G

(s)
2 (k2,k4)β (k1 + k3,k2 + k4)

)

+ 2G
(s)
2 (k1,k2)

(

6F
(s)
2 (k3,k4)α (k1 + k2,k3 + k4) + 32G

(s)
2 (k3,k4)β (k1 + k2,k3 + k4)

)

+ 6G
(s)
3 (k1,k2,k3) (3α (k1 + k2 + k3,k4) + 16β (k1 + k2 + k3,k4))

+ 6G
(s)
3 (k1,k2,k4) (3α (k1 + k2 + k4,k3) + 16β (k3,k1 + k2 + k4))

+ 6G
(s)
3 (k1,k3,k4) (3α (k1 + k3 + k4,k2) + 16β (k2,k1 + k3 + k4))

+ 6G
(s)
3 (k2,k3,k4) (3α (k2 + k3 + k4,k1) + 16β (k1,k2 + k3 + k4))

+ 12F
(s)
2 (k1,k4)G

(s)
2 (k2,k3)α (k2 + k3,k1 + k4)

+ 12F
(s)
2 (k1,k3)G

(s)
2 (k2,k4)α (k2 + k4,k1 + k3)

+ 12F
(s)
2 (k1,k2)G

(s)
2 (k3,k4)α (k3 + k4,k1 + k2)

+ 18F
(s)
3 (k1,k2,k3)α (k4,k1 + k2 + k3) + 18F

(s)
3 (k1,k2,k4)α (k3,k1 + k2 + k4)

+18F
(s)
3 (k1,k3,k4)α (k2,k1 + k3 + k4) + 18F

(s)
3 (k2,k3,k4)α (k1,k2 + k3 + k4)

]

, (3.46)

From above we can see that the first order is just the linear solution and hence F1(k) = 1 and
G1(k) = 1. In an Einstein-de-Sitter Universe (where, f = 1), the n-th order growth factor is Dn = Dn

1 .
The difference in the above equations between ΛCDM and Einstein-de-Sitter Universe is a factor of
Ωm/f

2 and its value is very close to unity [Bernardeau et al., 2002].
Since the growth rate in ΛCDM is found to be f ≈ Ω0.59

m therefore, we can safely take all the higher
order growth factors in ΛCDM to beDn = Dn

1 and use the kernel results of Einstein-de-Sitter Universe.
So, the equations Eq. (3.34) and Eq. (3.35) allow us to calculate how the universe evolves

non-linearly very neatly. An intuitive representation of the perturbative expansion which is analogous
to Feynman’s diagram of quantum field theory can be seen in Fig 3.1.

The second order density field δ(2) is connected by joining two instances of initial (linear) density
field with an F2 kernel. Similarly, the nth order field is made by joining n initial density fields with
the nth order kernel Fn. The analogous rules hold for the expansion of the velocity divergence.
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Figure 3.1: Diagrammatic representation of the second-order density field δ(2) (left) and the nth

order density field(right). In each case, the final density field is connected to n initial density
fields by the interaction kernel Fn (with n = 2 in the case of δ(2)). Analogous diagrams describe
the velocity divergence θ(n) in terms of kernelsGn. Here the time arguments are suppressed for
clarity.[Dodelson and Schmidt, 2020]

3.2 Lagrangian Perturbation theory

3.2.1 Lagrangian Dynamics

We saw that the Eulerian PT describes the evolution of the density and velocity fields from a
fixed comoving coordinate system. Another way to formulate non-linear perturbation theory is by
using Lagrangian Perturbation Theory (LPT) which follows the trajectories of the fluid elements
[Zel’dovich, 1970, Buchert, 1989, Bouchet, 1996]. The idea is to parameterise each particle in the
cosmic fluid instead of taking the Lagrangian of all the particles. The displacement field Ψ(q) is the
dynamical parameter in this formalism. It connects the initial Lagrangian positions q of the fluid
elements, with the final Eulerian positions x. which is defined as:

x(τ) = q+Ψ(q, τ) (3.47)

We can write the equation of motion for the particle’s trajectory as

d2x(τ)

dτ2
+ H

dx

dτ
= ∇xΦ(x), (3.48)

where again Φ is the gravitational potential fluctuations and the subscript in the gradient subscript
denotes the Eulerian position. The divergence of the above equation gives

J(q, τ)∇x

[

d2Ψ

dτ2
+ H

dΨ

dτ

]

=
3

2
ΩmH

2(J − 1), (3.49)

Where we have used the Poisson equation Eq. (3.4) and conservation of particles in an infinitesimal
volume between the two frames, i.e. ρ̄d3q = ρ(x, τ)dx = ρ̄[1 + δ(x)]d3x. The Jacobian transformation
that connects the two frames is given by

Jd3q = d3x⇒ J = det

∣

∣

∣

∣

∂xi
∂qi

∣

∣

∣

∣

= det

∣

∣

∣

∣

δij +
∂Ψi

∂qj

∣

∣

∣

∣

, (3.50)

which gives

1 + δ(x, τ) =
1

J(q, τ)
, (3.51)
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Using the chain rule on the divergence in Eulerian space 4, we can get the final equation of the
displacement field as

[δij +Ψi,j(q, τ)]
−1

[

d2Ψi,j(q, τ)

dτ2
+ H

dΨi,j(q, τ)

dτ

]

=
3

2
ΩmH

2J(q, τ)− 1

J(q, τ)
(3.52)

where Ψi,j = ∂Ψi

∂qj
. This approach, however, breaks down at shell crossing, a phenomenon that

occurs when particles come very close to each other, eventually acquiring the same Eulerian coordinate
x despite originating from different Lagrangian points q. This convergence happens over time due to
the time-dependent relationship between the Eulerian and Lagrangian coordinates Eq. (3.46). The
Jacobian can be expanded as

J = det

(

δij +
∂Ψi

∂qj

)

= 1 +∇q ·Ψ(q, τ)

+
1

2



(∇q ·Ψ(q, τ))2 −
∑

i,j

Ψi,jΨj,i





+
1

6



(∇q ·Ψ(q, τ))3 − 3∇q ·Ψ(q, τ)
∑

i,j

Ψi,jΨj,i

+2
∑

i,j,k

Ψi,jΨj,kΨk,i



+ . . .

while the EOM of the fluid trajectory can be solved perturbatively as

Ψ(q, τ) = Ψ(1)(q, τ) + Ψ(2)(q, τ) + . . . (3.53)

3.2.2 Linear Solution

The linear part of the Jacobian, i.e. the first two terms of Eq. (3.35), are used in this first
approximation. The inverse of the Jacobian transformation matrix will be now

[δij +Ψi,j(q, τ)]
−1 ≃ δij −Ψi,i,

5 (3.54)

Using, Eq. (3.54) and the linear part of the Jacobian expansion, we can derive the linear solution
as:

1 + δ(1)(x, τ) =
1

J(q, τ)
≃ 1−∇q ·Ψ(q, τ) ⇒

∇q ·Ψ(1)(q, τ) = −D(+)
1 (τ)δ(1)(q), (3.55)

where we split the time part from the spatial part in the growing linear solution. The linear
density field δ(1)(q) is the initial condition field, which evolves with the linear growth factor under the
divergence of the displacement field. The linear growth factor in LPT is the same as in Eulerian PT.
Therefore, in the first order, the position of the particle in Eulerian space can be written using Eq.
(3.46) and Eq. (3.56) as :

4

∂

∂xi

=
∂qi
∂xi

∂

∂qi
=

(

δij +
∂Ψi

∂qj

)−1
∂

∂qj

5using det(I +A) = 1 + tr(A) + O
(

A2
)

I

45



CHAPTER 3. PERTURBATION THEORY AND THE FORMATION OF LARGE-SCALE STRUCTURES

x(τ) = q−∇−1
q δ(1)(x, τ), (3.56)

while the velocity field is given by

u(τ)
dx

dτ
= −fH ∇−1

q δ(1)(x, τ), (3.57)

where f is the linear growth rate same as in the Eulerian PT. For the Poisson equation, we can
relate the displacement field divergence with the gravitational potential in Lagrangian space, under
the assumption of an irrotational gravity field, as

∇q ·Ψ(1)(q, τ) = −∇2
qΦ

(1)(q, τ) = −δ(1)(x, τ), (3.58)

which leads to
Ψ(1)(q, τ) = −∇qΦ(q, τ). (3.59)

Zel’dovich [Zel’dovich, 1970] used the linear solution and tried to approximate the dynamical
equation by extrapolating it into the non-linear regime which is known as the (Zel’dovich
approximation (ZA). This was done by exchanging the divergence of the displacement field with
the tidal tensor (traceless part). From Eq. (3.50) we get

ρ(x, τ) =
ρ̄(τ)

det
∣

∣

∣δij +
∂Ψi

∂qj

∣

∣

∣

=
ρ̄

|(1− λ1D1(τ)) (1− λ2D1(τ)) (1− λ3D1(τ))|
, (3.60)

where the variables λi are the eigenvalues of the tidal tensor field Ψi,j . The power of this result
lies on the fact that, we can predict the future of a collapsing region (i.e. (1 − λD1(τ)) = 0) and
determine the structure this point belongs to. If the eigenvalues are all positive, while one of them
is larger than the rest (i.e. λ1 > λ2, λ3 ), we get a pancake shape. This indicates that the element
collapses in one direction. However, the ZA breaks down before the point reaches the final steps of
collapse. A spherical collapse occurs in the case where all eigenvalues are positive, but now equal in
size. If two of them are positive and one negative (i.e. λ1, λ2 > 0, 0 < λ3 ), then the collapse happens
in 2 dimensions and therefore the point belongs to a filament. In the case where two of them are
negative and only one is positive (i.e. λ1, λ2 < 0, λ3 > 0 ) the element belongs to a wall. Finally,
negative eigenvalues correspond to a growing mode, which indicates that the point belongs to a void.

3.2.3 Second-order solution

For LPT there is no known recursive solution for the expression of higher order like in Eulerian PT.
The solution must be performed order by order. The second-order Lagrangian PT (2LPT) can improve
significantly the predictions, for the density and velocity fields over the linear solution.This is because
the second-order solution to Eq. (3.51) accounts for the correction to the Zel’dovich approximation
(ZA) displacement due to tidal effects [Buchert et al., 1994, Melott et al., 1995, Bouchet, 1996,
Bernardeau et al., 2002]. Now, we will use Eq. (3.53) and consider terms up to second order. We will
then substitute these terms into the equation of motion, Eq. (3.51), to get

d2Ψ
(2)
i,i

dτ2
+ H

dΨ
(2)
i,i

dτ
− 3

2
H

2ΩmΨ
(2)
i,i = −3

4

[

(

Ψ
(2)
k,k

)2
−Ψ

(2)
i,j Ψ

(2)
j,i

]

, (3.61)

where the linear solution of the displacement field has been also used in the above derivation.
Separating, as before, the second-order solution into a time and a spatial part, we get

Ψ
(2)
k,k(q, τ) =

D2(τ)

2D2
1(τ)

∑

i ̸=j

(

Ψ
(1)
i,i (q, τ)Ψ

(1)
j,j (q, τ)−Ψ

(1)
i,j (q, τ)Ψ

(1)
j,i (q, τ)

)

, (3.62)
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where the time-dependent part of Ψ(2) is denoted as D2(τ) which is the second-order growth factor.
It has been shown that in ΛCDM cosmology[Bouchet, 1996] ,

D2(τ) ≃
−3D2

1(τ)Ω
−1/143
m

7
. (3.63)

By using the Poisson equation together with the displacement field relation at second order (i.e.
Ψ(2)(q, τ) = ∇qΦ

(2)(q, τ)
)

We can further simplify the second-order result as,

∇qΦ
(2)(q, τ) ≃ −3

7
Ω−1/143
m

∑

i>j

(

Φ
(1)
,ii (q, τ)Φ

(1)
,jj (q, τ)−

[

Φ
(1)
,ij (q, τ)

]2
)

, (3.64)

On Expanding the linear results for the position and velocity of a fluid element we get,

x(q, τ) = q−D1∇qΦ
(1)(q, τ) +D2∇qΦ

(2)(q, τ), (3.65)

u(q, τ) = −f1H ∇−1
q Φ(1)(q, τ) + f2H ∇−1

q Φ(2)(q, τ), (3.66)

For flat models with a non-zero cosmological constant ΩΛ, we have for 0.01 ≤ Ωm ≤ 1
[Bouchet, 1996]:

f1 ≈ Ω5/9
m , f2 ≈ 2Ω6/11

m . (3.67)

While extending the solution to the third order displacement field provides a slightly better description
of under-dense regions and additional substructures in high-density regions [Bouchet, 1996], it offers
a minimal improvement over 2LPT, as noted by [Buchert et al., 1994, Melott et al., 1995].

We can use LPT to generate initial conditions for N -body numerical simulations. The first step
involves generating random Gaussian density fluctuations in Fourier space, by using the definition of
the power spectrum i.e.

δk =
√

PL
mA exp(iϕ)

)

, (3.68)

with a random amplitude (i.e. fluctuation around
√

PL
m ) and a phase. Then it can be connected to

the linear part of the gravitational potential Φ1
k using Eq. (3.59). To go to the second-order effects we

then solve Eq. (3.65) which is the corresponding equation for the second-order gravitational potential.
These relations can be easily linked, in Fourier space, to the displacement field at each order. The
final step is to inverse-Fourier transform these results, to get the linear and second-order perturbative
solutions of the displacement field. Finally, these displacements can be used in Eq. (3.66) to move
the particles from their starting grid points and assign to them an initial velocity Eq. (3.67).

3.3 N-body Simulation

The density fluctuation becomes strongly non-linear on small scales, at these scales the PT breaks down
and one has to leverage numerical simulations to study their evolution. The current state-of-the-art
numerical simulations can follow the dynamics up to about 1012 particles [Maksimova et al., 2021]. A
thing to keep in mind is that when we say dark matter particles these do not stand for actual dark
matter particles rather, they represent small elements of the dark matter distribution in phase space.
The mass of the particle m is only a numerical parameter and it is determined by the total amount of
matter in the simulation volume divided by the number of particles. So, a higher resolution simulation
has more particles with correspondingly smaller mass. N-body simulations discretize the phase space
into N elementary volumes ”particles” with well-defined positions, velocities and masses and follow
the evolution of these test particles due to the action of gravity.
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The basic steps of an N-body simulation proceed as follows.

1. Implementation of initial conditions ([Michaux et al., 2020, Sirko, 2005] and references therein)

2. Calculating force by solving the Poisson equation.

3. Update position and velocities of particles using integrators that preserve the phase space volume.
eg the Leapfrog method [Hockney and Eastwood, 1981]

4. Go back to step 2. until the simulation is completed.

The methods used for these simulations mainly differ in how the Poisson equation is solved which
corresponds to gravitational forces(for a review check [Trenti and Hut, 2008]). There are two primary
algorithmic approaches for this task.

The first one is the grid-based method also known as the Particle-Mesh method(PM) in which, each
particle’s mass is distributed onto a 3D grid to create a smooth density field. This can be achieved
using various methods such as the Cloud-in-cell (CIC)[Birdsall and Fuss, 1997] method Piece-wise
Spline (PCS) etc. The grid can either have a fixed resolution or be adaptively refined in regions with
high particle density. The Poisson equation is then solved for the potential, Φ, using the Fast Fourier
Transform (FFT)[Press et al., 2007], or other efficient numerical methods for adaptively refined grids.
Finally, the potential gradient is interpolated to each particle’s position to compute gravitational
forces.

Next is the tree algorithm [Barnes and Hut, 1986] which expands gravitational forces into
multipoles, focusing on the lowest-order contributions from distant particles. This method efficiently
approximates forces by grouping distant particles and treating them collectively.

Both the grid-based and tree algorithms employ force smoothing [Dehnen, 2001], known as
”softening,” on small scales to prevent nonphysical particle-particle interactions. This adjustment
is necessary because simulation particles represent aggregated mass distributions rather than discrete
physical particles.

The computational expense of both tree algorithms and adaptive grid methods scales
approximately as O(N logN) with the number of particles O(N). This contrasts sharply with the
direct summation of forces [Wang et al., 2015], which scales as O(N2) and would be prohibitively
expensive for simulations involving billions of particles.

Then there are hybrid methods such as the P3M and PM-Tree codes [Springel et al., 2005]. The
P3M (Particle-Particle-Particle-Mesh) algorithm enhances the dynamic range of the Particle-Mesh
(PM) algorithm by efficiently handling long-range gravitational interactions. However, in scenarios
where particles cluster strongly, a substantial number of particles interact directly with each other,
resulting in a computational complexity of O(N2) and slows down the computations. To mitigate this
issue, adaptive mesh techniques are employed. These adapt the spatial resolution of the mesh, refining
it in regions of high particle density. Adaptive P3M [Norman and Bryan, ] implementations thus
maintain computational efficiency by scaling with O(N log(N)), similar to tree codes. This adaptive
approach ensures that computational resources are focused where they are most needed, optimizing
performance. Alternatively, another strategy involves hybridizing the PM algorithm with a tree code
for short-range force calculations[Springel et al., 2005]. This hybrid PM-Tree scheme leverages the
efficiency of PM for long-range interactions and the locality-handling capabilities of tree codes for
short-range interactions.

So, once the N-body simulation is processed it generates ”snapshots” of particle locations and
velocity at various time points. We can compute the density field by assigning particles to a grid which
allows us to measure various summary statistics like the power, spectrum Bi-spectrum and perform
cosmological analysis. We can also search for gravitationally bound groups of particles, known as dark
matter halos, that can reveal the location of galaxies.
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Chapter 4

Statistical Analysis of Random Cosmic

Field

4.1 Random fields

A significant challenge in modern cosmology is identifying appropriate tools to analyze the
distribution of density fluctuations, their initial conditions, and their subsequent evolution. The
current explanation for the large-scale structure of the Universe posits that the present distribution
of matter on cosmological scales results from the growth of primordial, small seed fluctuations in an
otherwise homogeneous Universe, amplified by gravitational instability.

Testing cosmological theories that characterize these primordial seeds is inherently statistical
rather than deterministic. This is due to the lack of direct observational access to primordial
fluctuations, which would provide definite initial conditions for deterministic evolution equations.
Moreover, the timescale for cosmological evolution far exceeds the period over which we can make
observations, preventing us from following the evolution of individual systems. Instead, we observe
different objects at various stages of their evolution through our past light cone.

The observable Universe is modelled as a stochastic realization of a statistical ensemble of
possibilities. The objective is to make statistical predictions based on the properties of the primordial
perturbations that lead to the formation of large-scale structures. According to the cosmological
principle, which asserts that the Universe is homogeneous and isotropic on large scales, cosmological
models assume that the statistical properties of density fluctuations are uniform across widely
separated regions of the Universe.

A crucial assumption in cosmology is that the observable part of the Universe is a fair sample of
the whole. This implies that statistical measures, such as correlation functions, should be considered
averages over the ensemble. However, we only have one realization of the Universe. The fair
sample hypothesis posits that samples from well-separated regions of the Universe are independent
realizations of the same physical process, and there are enough independent samples in the observable
Universe to be representative of the statistical ensemble. The hypothesis of ergodicity further states
that averaging over many realizations is equivalent to averaging over a sufficiently large volume.
[Verde, 2008][Bernardeau et al., 2002]

Theories are limited to predicting the statistical characteristics of the density contrast δ(x).
The cosmological principle requires that this density contrast forms an isotropic and homogeneous
random field, of which the observable Universe is one realization. Among the models explaining
the large-scale structure of the Universe, those based on the inflationary paradigm are most widely
considered. In the simplest single-field models, these generate adiabatic, Gaussian initial fluctuations,
with the origin of stochasticity lying in quantum fluctuations generated in the early Universe.
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In cosmology, the scalar field δ(x) suffices to define the initial fluctuations field and, ideally, the
current matter and galaxy distribution. Identifying the right tools to analyze the distribution of
density fluctuations, their initial conditions, and their evolution is a major challenge in the study of
cosmic structures. In the following sections, we will discuss some of these tools in detail.

For a cosmic random field, such as matter density, the infinite volume condition of the ergodic
hypothesis is not satisfied, due to the limited size of the observable Universe. In this case, the
ensemble average of an observable overall realization is equal to the spatial average. This means
that the ensemble average of any cosmological quantity will be an estimator of its true value. The
expectation value of the n-point correlation function (=i.e. the nth central moment for a multivariate
joint probability density distribution of the density field ρ(x) is defined as [Gnedenko, 1998].

⟨(ρ (x1)− ρ0) (ρ (x2)− ρ0) . . . (ρ (xn)− ρ0)⟩ =
∫

V
(ρ (x1)− ρ0) (ρ (x2)− ρ0) . . . (ρ (xn)− ρ0)

× p [ρ (x1) , ρ (x2) , . . . , ρ (xn)] (4.1)

Here ρ is the expectation value of the average density field and the integration is over the infinite
volume. Then the Fourier transformation of the joint probability density function is given by the
characteristic function M(t) as:

M(t) = ⟨exp(tρ)⟩ =
∫

P (ρ)etρ dρ (4.1)

Using the series expansion of the exponential function, we get:

etρ =
∞
∑

n=0

(tρ)n

n!
(4.2)

Substituting this series expansion into the integral, we obtain:

M(t) =

∫

P (ρ)

(

∞
∑

n=0

(tρ)n

n!

)

dρ (4.3)

Interchanging the order of summation and integration, we have:

M(t) =
∞
∑

n=0

tn

n!

∫

P (ρ)ρn dρ (4.4)

The integral
∫

P (ρ)ρn dρ represents the n-th moment of ρ, denoted as ⟨ρn⟩. Therefore, the
characteristic function can be written as:

M(t) =
∞
∑

n=0

tn

n!
⟨ρn⟩ (4.5)

where ρ = ρ1, ρ2, . . . , ρn is a vector. The expectation value of ⟨ρn⟩ is the raw moment, i.e.
the expectation value for ρ0 = 0, and it is related to the central moments through the binomial
transformation. Taking logarithm of Eq. 3.2 we get the n-th cumulants as:

lnM(t) =
∑

n=1

tn

n!
⟨ρn⟩c (4.2)

Equating the two, after expanding the Maclaurin series of lnM(t), we can get the relationship
between cumulants and central moments of the density random field. Lets us see the the one-point
results for the first four:
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⟨ρ⟩c = ⟨ρ⟩ (4.6)
〈

ρ2
〉

c
=
〈

ρ2
〉

− ⟨ρ⟩2c (4.7)
〈

ρ3
〉

c
=
〈

ρ3
〉

− 3
〈

ρ2
〉

c
⟨ρ⟩c − ⟨ρ⟩3c (4.3)

〈

ρ4
〉

c
=
〈

ρ4
〉

− 4
〈

ρ3
〉

c
⟨ρ⟩c − 3

〈

ρ2
〉2

c
− 6

〈

ρ2
〉

c
⟨ρ⟩2c − ⟨ρ⟩4c , (4.8)

For the overdensity field, δ(x), these relations can be derived by normalizing with the average
density. Since the first central moment of the random overdensity fluctuations is zero (i.e. ⟨δ⟩ = 0 ),
the above equations are significantly simplified.

When working with multipoint correlation functions, it is important to consider all permutations
of the random field between points. The cumulant is the fundamental statistical measure of interest
since it represents a set of independent quantities that fully characterize the perturbations’ probability
distribution function (PDF). Cumulants are commonly referred to in the literature as connected
correlation functions, a term derived from quantum field theory and Feynman diagrams eg.Fig.
3.1. The covariance is the second-order cumulant, or two-point cumulant, while the variance is the
first-order cumulant, or one-point cumulant (i.e., the diagonal component).

Now, most inflationary models predict a Gaussian distribution for the initial density fluctuations
due to the quadratic nature of the action. In the multi-variant case, we have

P [δ (x1) , δ (x2) , . . . , δ (xn)] =
1√

2π det(C)
exp

[

1

2
δiC

−1
ij δj

]

(4.4)

where Cij = ⟨δiδj⟩c is the covariance and δi ≡ δ (xi). Substituting the Gaussian PDF in the
characteristic function, all the odd cumulants vanish while the even are obtained by the sum of the
product of the ensemble averages of two-point correlators, with all possible combinations between the
different positions. This is encoded in the Wick’s theorem of quantum and classical field theories as

⟨δ1δ2 . . .⟩ =
∑

pairings pairs

∏

(i,j)

⟨δiδj⟩c (4.5)

However, in the case of a primordial non-Gaussian(PNG) perturbation field, the even-order
cumulants are non-zero which implies that these higher-order correlators are a direct indication of
the departure from Gaussianity. However, in the case of LSS, non-zero higher-order cumulants are
seen due to the non-linear nature of gravity, which induces couplings between different modes and one
of the challenging tasks is to disentangle the PNG signals from the late time evolution. In contrast,
CMB probes see fluctuations immediately, following decoupling, making them free of such nonlinear
influences.

4.2 Two-point correlation function and power spectrum

As we saw in section 2.7.5 the two-point correlation function of the density field is the ensemble average
of δ at two different points. It is given by

⟨δ (x1) δ (x2)⟩ = ⟨δ (x1) δ (x2)⟩c = ξ(r), (4.6)

and taking the Fourier transform of ξ(r) we get to Eq. 2.179 where the quantity P (k) is the
Fourier coefficient of the two-point correlation function, called the power spectrum. We saw strictly
positive for a continuous random field δ(x) and it is non-zero only for equal and opposite wavenumbers.

Now, let us try to understand what the power spectrum actually measures and look into Eq. 2.180,
which is the one-point second cumulant (ξ(0)) of the linear overdensity field and we write it here again,

σ2 =
〈

δ2(k)
〉

c
=

∫

dk

2π2
k2P (k) (4.7)
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From the equation, we see that the power spectrum characterizes the amplitude of the density
fluctuations around the mean background value.

Now, we will define the smoothed linear matter density contrast δR, over a radius R(M) =

(3M/4πρ̄m)1/3, as1

δR(k, z) =WR(k)δ(k, z). (4.8)

. A popular choice for the filter is WR(k) = 3(sin kR − kR cos(kR))/(kR)3, which is the Fourier
transform of the spherical top-hat window function 2. Hence, we can write a smoothed linear power
spectrum PR(k) as in Eq. 3.29, where now M(k, z) is replaced by MR(k, z) = WR(k)M(k, z). The
smoothed mass variance of the density field, at mass scale M , is defined as

σ2R(z) =
〈

δ2R(k)
〉

c
=

1

2π2

∫

k2PR(k, z)dk (4.9)

For a density random field with a well-defined average (ρ > 0), it is evident that the mass
variance must diminish towards zero as the radius R extends indefinitely (i.e., limR→∞ σ2(R) = 0).
Consequently, the two-point correlation function must also approach zero for large separations (i.e.,
ξ(r → ∞) → 0). This leads to the condition:

∫

d3r ξ(r) = 0 (4.10)

where the integral spans across all space. As a consequence, there exist distances r where ξ(r) < 0.
Another significant property of the two-point correlation function, arising from the ergodicity of the
density random field, is its maximum value at zero separation (i.e., ξ(0) > |ξ(r)|). Finally, Eq. (3.85)
defines the correlation length as:

r2c =

∫

dr r2|ξ(r)|
∫

dr |ξ(r)| (4.11)

This quantity characterizes how far correlations persist in the density fluctuation field, indicating
the extent to which a localized perturbation influences the surrounding system.

4.2.1 Perturbative Expansion: up to one-loop

In the previous chapter, we saw that the perturbative solution to the density and the velocity depended
on the PT scheme we used, for the first-order (linear) fields. Now we will write the linear matter power
spectrum using the linear part of the expansion. Using Eq 3.29 we get:

〈

δ(1)m (k1) δ
(1)
m (k2)

〉

c
=M (k1, z)M (k2, z) ⟨Φ (k1) Φ (k2)⟩c ⇒

PL
m(k, z) =M2(k, z)PΦ(k) (4.12)

where Φ is the primordial Bardeen gravitational potential, with a power spectrum given by,

Pϕ(k) =
9

25

2π2

k3
A

2
s

(

k

k0

)ns−1

(4.13)

where we used Eqs. (2.181, 2.184 and 3.29). Here we have used in the perturbative solution the transfer
function, incorporated through the Poisson relation of the linear density field with the primordial
gravitational potential Eq. 3.31.

Now, we proceed to derive higher-order corrections to the linear power spectrum, from the
perturbative solution of the matter and velocity fields which is done by using the perturbative

1In the above equation, M is the mass originating from the matter inside the region of size R(M) and ρ̄m is the
average density of the Universe at present time.
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expansion of a field and substituting it in the two-point correlation function Eq. 2.174. Keeping
only the non-zero combinations, after taking into account the cumulant relation, results in a series of
terms with an increasing power of the linear field. The terms that have the power of the linear solution
to the n-th order denote the n th-loop correction to the linear order, which is also called tree-level
order. The above process leads to:

〈

X(k, z)X
(

k′, z
)〉

c
=
〈

X
(1)
k (z)X

(1)
k′ (z)

〉

c
+ 2

〈

X
(1)
k (z)X

(2)
k′ (z)

〉

c

+
〈

X
(2)
k (z)X

(2)
k′ (z)

〉

c
+ 2

〈

X
(1)
k (z)X

(3)
k′ (z)

〉

c
+ . . .⇒

P (k, z) = P (0)(k, z) + P (1)(k, z) + . . . (4.14)

where the zero loop term is just the linear power spectrum (i.e. P (0)(k, z) ≡ PL
m(k, z)

)

and

P (1)(k, z) is the 1-loop correction. The fieldX denotes a quantity that can have a perturbative solution,
e.g. matter overdensity and velocity fields. In the case of Gaussian initial conditions, all the odd
terms in each loop order are zero3, according to Wick’s theorem. In the Eulerian PT, the higher-order
perturbative terms are given in Eq. 3.35 and Eq. 3.36 for the density and velocity fields respectively.
Gaussian initial conditions, the 1-loop results in standard PT are [Bernardeau et al., 2002]

P (1)(k, z) = P22(k, z) + P13(k, z) (4.15)

where

P22(k, z) ≡ 2

∫

[

F
(s)
2 (k− q,q)

]2
PL
m(|k− q|, z)PL

m(q, z)d3q (4.16)

P13(k, z) ≡ 6PL
m(k, z)

∫

F
(s)
3 (k,q,−q)PL

m(q, z)d3q (4.17)

One-loop corrections describe the primal effects of mode coupling and can give a quantitative
estimation of the breakdown scales of standard PT. The first part of the 1-loop contribution (i.e.
P22(k, z) ) is positive definite and describes the mode coupling between waves with wave vectorsk−q
and q, coming from the presence of the second order standard PT kernel. On the other hand, the
P13 term is negative and does not exhibit any mode coupling, i.e. it is just a term proportional to
the linear power spectrum. This term can be interpreted as the nonlinear correction to the standard
α(τ)l linear growth.

[Jeong and Komatsu, 2006] demonstrated that the power spectrum, including up to 1-loop
corrections, agrees with simulations to within 1 % accuracy for redshifts in the range 1 < z < 6
and on quasi-nonlinear scales. However, beyond a certain scale, 1-loop corrections become insufficient
to accurately describe the power spectrum in simulations, necessitating the use of higher-order
corrections, such as 2-loop corrections.

To characterize the degree of non-linear evolution when including one loop correction corrections,
it is convenient to define scales in real space, R0, as the scale where the smoothed linear variance
is unity σ2 (R0) = 1. Additionally, one can use the dimensionless power spectrum and define the
non-linear scales kNL, as those where P (kNL) = 4πk3NLP (kNL) = 1 [Bernardeau et al., 2002].

4.3 Three-point correlation function and bispectrum

The lowest higher-order correlator, beyond the two-point correlation function we can take into account
is the three-point correlation function. It is defined as

⟨δ (x1) δ (x2) δ (x3)⟩ = ⟨δ (x1) δ (x2) δ (x3)⟩c = ξ (x1,x2,x3) (4.18)

3eg.
〈

X
(1)
k

(z)X
(2)

k′ (z)
〉

c
= 0
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The Fourier transform of the three-point correlation function is known as the bispectrum which is
written as:

⟨δ (k1) δ (k2) δ (k3)⟩ c = (2π)3δD (k1 + k2 + k3)B (k1,k2,k3) (4.19)

The Dirac delta function in the above equation enforces the condition of translational invariance,
implying that the wave vectors ki form the sides of a closed triangle (i.e., k1 + k2 + k3 = 0). Due to
statistical isotropy, the bispectrum B (k1,k2,k3) depends only on the magnitudes of the wave vectors,
ki = |ki|, and the distances between points, rij = |rij |. The bispectrum provides crucial insights into
the nonlinear evolution of the density and velocity fields, as it captures information from the nonlinear
regime

The relationship between the three-point correlation function in real space and its Fourier
transform, the bispectrum, is given by:

ξ (x1,x2,x3) =

∫

d3k1

(2π)3

∫

d3k2
(2π)3

d3k3
(2π)3

δD (k1 + k2 + k3)B (k1,k2,k3) e
i(k1·x1+k2·x2+k3·x3) (4.20)

Now let us consider the perturbative expansion of the quantity X we get:

⟨X (k1, z)X (k2, z)X (k3, z)⟩c =
〈

X(1) (k1, z)X
(1) (k2, z)X

(1) (k3, z)
〉

c

+
〈

X(1) (k1, z)X
(1) (k2, z)X

(2) (k3, z)
〉

c
+
〈

X(1) (k1, z)X
(2) (k2, z)X

(1) (k3, z)
〉

c

+
〈

X(2) (k1, z)X
(1) (k2, z)X

(1) (k3, z)
〉

c
+ . . .⇒ (4.21)

B (k1, k2, k3, z) = B111 (k1, k2, k3, z) +B112 (k1, k2, k3, z) + 2 perm + . . . (4.22)

Let’s recall the application of Wick’s theorem for a Gaussian random field, where the
first-order term vanishes. Moving to the second-order density field, we find

〈

X(1)X(1)X(2)
〉

c
∝

〈

X(1)X(1)X(1)X(1)
〉

c
, leading us to the four-point correlator. In the Gaussian case, this is expressed

through pairs of the product of two-point correlators. Now, let’s outline the tree-level bispectrum of
the matter field:

BG (k1, k2, k3, z) ≡ B112 = 2
[

F2 (k1,k2)P
L
m (k1, z)P

L
m (k2, z)

+ F2 (k2,k3)P
L
m (k2, z)P

L
m (k3, z)

+ F2 (k3,k1)P
L
m (k3, z)P

L
m (k1, z)

]

(4.23)

The configuration dependence of BG stems from the kernel F2, which includes terms like α (k1,k2)
arising from the gradient of the density with the velocity field (represented by the u∇δ term in
the continuity equation) and contributions from the (u∇) · u term in the Euler equation which is
gravity-induced. Consequently, the tree-level bispectrum exhibits high sensitivity to the nonlinear
effects of gravity, enhancing the amplitude of the three-point correlator. Its scale dependence originates
from the linear power spectrum, which amplifies the anisotropic characteristics of the bispectrum on
large scales (refer to [Liguori et al., 2010] and the references therein). To be able to study the shape
of the tree-level bispectrum we introduce the reduced bispectrum quantity as [Fry, 1984]:

Q ≡ B (k1, k2, k3, z)

PL
m (k1, z)PL

m (k2, z) + PL
m (k2, z)PL

m (k3, z) + PL
m (k1, z)PL

m (k3, z)
, (4.24)

which at tree-level is independent of redshift [Fry, 1984] and scale dependencies of the gravity
contribution [Fry, 1994]. Now, varying the angle θ that satisfies the translation invariance k1+k2+k3 =
0 and generating triangle configurations by fixing k1, k2 and z it can be shown that it is easier to find
galaxies in a row than in an equilateral configuration physically which means that filaments are the
preferred structures in the Universe [Liguori et al., 2010].
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Now, let’s consider the case of primordial non-Gaussianity (PNG), where additional terms appear
in the bispectrum even at the tree-level. The bispectrum is an ideal tool for studying PNG due to its
high sensitivity to non-linearities. However, this sensitivity also presents a challenge: we must carefully
remove any contributions arising from gravitational evolution to draw meaningful conclusions about
the primordial Universe. The first non-zero term in this context is B111, which represents the linearly
extrapolated primordial bispectrum of the gravitational potential as predicted by inflationary models.
It is given by:

BI (k1, k2, k3, z) ≡ B111 (k1, k2, k3, z) =M (k1, z)M (k2, z)M (k3, z)BΦ (k1, k2, k3) (4.25)

Let us see in the case of the local primordial non-Gaussianity, the primordial gravitational field is
written as a Taylor expansion around the Gaussian part as,

Φ(x) = ΦG(x) + f localNL

(

Φ2
G(x)−

〈

Φ2
G(x)

〉)

+ . . . (4.26)

Plugging this expansion in Eq. (4.20), where now X = Φ, we get a similar expression to that of
the tree-level bispectrum. Note that the kernel F2 will not be present, due to the primordial nature
of Φ. taking into account the Poisson equation, as well as by using the local expansion of Φ, we get
up to second order:

δlin (k, z) =M(k, z)Φ(k)

=M(k, z)Φ(1)(k) + f locNL M(k, z)Φ(2)(k)

=M(k, z)ΦG(k) +M(k, z)f locNL

∫

d3q1
(2π)3

d3q2
(2π)3

δD (k− q12) ΦG (q1) ΦG (q2)

= δ
(1)
lin (k, z) + f locNLδ

(2)
lin (k, z) (4.27)

The first-order results, which coincide with the Gaussian case, are given by δ(1)(k, z) ≡
δ
(1)
lin (k, z) = M(k, z)ΦG(k). Plugging this in B111, we get Eq, (2.217) [Creminelli et al., 2006].

The signal coming from the primordial bispectrum is much smaller than the tree-level gravitational
bispectrum [Sefusatti and Komatsu, 2007].

4.3.1 One-loop matter bispectrum

The 1-loop corrections to the tree-level bispectrum is given in an analogous way to the power spectrum
(

B = B(0) +B(1)
)

, i.e. by adding higher order solutions of the density field in the connected correlator
and keeping terms up to some power of the linear density field. For Gaussian initial conditions, we get
four terms that constitute the bispectrum 1-loop, involving up to fourth order perturbative solution,
i.e. B(1) = B222 +BI

321 +BI
321 +B411.

Each term is given as follows [Scoccimarro, 1997, Scoccimarro et al., 1999, Bernardeau et al., 2002]

B222 ≡8

∫

d3q

(2π)3
PL
m(q, z)F

(s)
2 (−q,q+ k1)P

L
m (|q+ k1| , z)

× F
(s)
2 (−q− k1,q− k2)P

L
m (|q− k2| , z)F (s)

2 (k2 − q,q) (4.28)

BI
321 ≡6PL

m (k3, z)

∫

d3q

(2π)3
PL
m(q, z)F

(s)
3 (−q,q− k2,−k3)P

L
m (|q− k2| , z)

× F
(s)
2 (q,k2 − q) + 5 perm (4.29)

BII
321 ≡6PL

m (k2, z)P
L
m (k3, z)F

(s)
2 (k2,k3)

∫

d3q

(2π)3
PL
m(q, z)F

(s)
3 (k3,q,−q)

+ 5 perm, (4.30)

B411 ≡12PL
m (k2, z)P

L
m (k3, z)

∫

d3q

(2π)3
PL
m(q, z)F

(s)
4 (q,−q,−k2,−k3)

+ 2 perm. (4.31)
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For non-Gaussian initial conditions, there are additional terms introduced in the above,
contributing at each order with up to O

(

δ6
)

. They are given by [Sefusatti, 2009]:

B
(1)
NG = BII

112 +BI
122 +BII

122 +BI
113 +BII

113 (4.32)

The first non-trivial term, involving up to second-order solutions of the density field, is

BII
112 ≡=

∫

d3q

(2π)3
F

(s)
2 (q,k3 − q)TI (k1,k2,q,k3 − q) + 2 perm (4.33)

This correction to the O
(

δ4
)

terms of the matter bispectrum Eq. (4.22) is negligibly small, due
to the kernel suppression [Scoccimarro et al., 2004]. The remaining terms of the 1-loop correction are
listed below [Sefusatti, 2009]:

BI
122 = 2PL

m (k1, z)

[

F
(s)
2 (k1,k3)

∫

d3q

(2π)3
F

(s)
2 (q,k3 − q)BI (k3, q, |k3 − q|) + (k3 ↔ k2)

]

+ 2 perm.

= F
(s)
2 (k1,k2)

[

PL
m (k1, z)P12 (k2) + PL

m (k2, z)P12 (k1)
]

+ 2 perm. (4.34)

BII
122 = 4

∫

d3q

(2π)3
F

(s)
2 (q,k2 − q)F

(s)
2 (k1 + q,k2 − q)BI (k1, q, |k1 + q|)

× PL
m (|k2 − q| , z) + 2 perm. (4.35)

BI
113 = 3BI (k1, k2, k3)

∫

d3q

(2π)3
F

(s)
3 (k3,q,−q)PL

m(q, z) + 2 perm., (4.36)

BII
113 = 3PL

m (k1, z)

∫

d3q

(2π)3
F

(s)
3 (k1,q,k2 − q)BI (k2, q, |k2 − q|) + (k1 ↔ k2) + 2 perm. (4.37)

4.3.2 Marked Statistics

The commonly used statistics to extract cosmological information for eg. the power spectrum is
significantly affected by the mass of the most massive objects, and is expected to be suboptimal
when extracting information embedded in low-density regions [Rimes and Hamilton, 2005]. The idea
of marked statistics is to give more weight to low-density regions and extract information from there.

Marked density fields are weighted density fields where their weight can represent galaxy properties,
halo merger histories or environmental densities defined as a weighted sum over particle positions
[Skibba et al., 2006, Balaguera-Antoĺınez, 2014, Beisbart and Kerscher, 2000]. So, The key statistic is
the marked density field, defined as a weighted sum over particle positions[Philcox et al., 2020];

ρM (x) =
∑

i

δD (x− xi)m (xi) =

∫

dx′

[

∑

i

δD
(

x′ − xi

)

m
(

x′
)

]

δD
(

x− x′
)

, (4.38)

where δD is a Dirac delta and i runs over all matter particles. In the above expression, m(x) is the
mark, defined as a local overdensity as in [Massara et al., 2021]:

m(x) =

(

1 + δs
1 + δs + δR(x)

)p

≡
(

1 +
δR(x)

1 + δs

)−p

(4.39)

where δR(x) is the matter overdensity filtered on scale R using Top-Hat filter of radius R, the bias δs
is a density parameter and the exponent p being user-defined parameters. Defining the sample density
field n (x′) =

∑

i δD (x′ − xi), Eq. (4.38) can be rewritten as:

ρM (x) = m(x)n(x) = m(x)n̄[1 + δ(x)], (4.40)

where n̄ = ⟨n(x)⟩ is the average density. In order to convert Eq. (4.40) into an overdensity field, we
require the mean density:

⟨ρM (x)⟩ = ⟨n(x)m(x)⟩ = n̄m̄, (4.41)
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where we have defined m̄ as ⟨n(x)m(x)⟩/⟨n(x)⟩, i.e., the average of m(x) weighted by the number
density field. The marked overdensity field is thus

δM (x) ≡ ρM (x)− ⟨ρM ⟩
⟨ρM ⟩ =

1

m̄
m(x)[1 + δ(x)]− 1. (4.42)

So, we see that depending on the parameters in Eq. (4.39) i.e R, δs,p we can define our marks.
The exponent p and the bias δs dictate how much the value of the local density δR impacts the final
mark. When p is close to zero or δs is very large, the mark m(x) tends to unity. Moreover, when p
is positive, galaxies in low-density environments are up-weighted compared to those in high-density
regions. This means that mark power spectra with p > 0 are more sensitive to low-density regions,
while the opposite happens when p is negative.

Recent studies have demonstrated that measuring the power spectrum [Massara et al., 2021,
Massara et al., 2023] and bispectrum [Jung et al., 2024a] of the marked density field reveals new
cosmological information beyond what is captured by the standard power spectrum. This additional
information originates from higher-order statistics embedded in the marked field.

Halo Mass function

Halos are assumed to form on the peaks of the smoothed underlying matter overdensity field when
its value exceeds some threshold value δc. Therefore, the number of created objects depends on the
distribution of points that exceed such a threshold. In the early work of [Press and Schechter, 1974],
it was found that the mass function can be expressed in terms of the height of the peaks, by using
the spherical collapse model. It states that in a smoothed linear contrast field in Lagrangian space

δ
(1)
R (q), a spherical region of radius R with uniform density and enclosed mass M = (4π/3)ρ̄mR

3,

where ρ̄m is the mean co-moving density at time t, will collapse to form a bound object when δ
(1)
R

exceeds a threshold δc (spherical collapse threshold). Assuming Gaussian statistics for the smoothed
overdensity field, one can write the probability of having a halo with mass greater thanM as a fraction
of a Lagrangian volume by

pG

(

δ
(1)
R > δc

)

=
1√

2πσ(R)

∫ ∞

δc

dδ exp

[

−1

2

δ2

σ2(R)

]

(4.43)

where σ(R) is the smoothed variance of the density field over a radius R [Eq.(3.84)]. The
Lagrangian volume fraction that encloses the halo with mass greater than M is given by:

F (> M) =
1

ρ̄m

∫ ∞

M
d lnM ′M ′nh

(

M ′
)

= pG

(

δ
(1)
R > δc

)

(4.44)

where nh(M) is the co-moving number density of halos above mass M . Differentiating over the
halo mass M gives

f(M) ≡ −dF (> M)

dM
(4.45)

which leads to the mass function of halos

dF

dM
= −nh(M)M =

1√
2πσ(R)

exp

[

−1

2

δ2

σ2(R)

]

d

dM

(

δc
σR

)

⇒

nh(M) = − 2ρ̄m√
2π

δc
σ2R

1

M

dσR
dM

exp

[

−1

2

δ2

σ2(R)

]

(4.46)

The factor 2 in front of the mean density is introduced to recover the proper normalisation and to
get the total mass after the integration over the whole range of M , i.e.

∫∞
0 dMMnh(M) = ρ̄m/2. It

is convenient to parametrize the mass function with a multi-
plicity function f(ν) as:
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nh(M, z) =
dN

d lnM
=
ρ̄m
M
f(ν)

∣

∣

∣

∣

d ln ν

d lnM

∣

∣

∣

∣

(4.47)

where ν(M, z) = δc/σR(M, z) is the height of the peak. In the Press-Schechter (PS) formalism
this function is simply:

fPS(ν) =

√

2

π
νe−ν2/2 (4.48)

The PS mass function has a dependence on redshift and cosmological parameters, as well as on
the primordial power spectrum, therefore it has a universal character [Sheth and Tormen, 1999] (ST
hereafter). The mass function shows that an increasing halo mass leads to high-peaks (ν ≫ 1) and
therefore to more rare objects. The opposite happens for low-mass halos, which seem to be a common
case during the process of halo formation. In ST [Sheth and Tormen, 1999] a modified version of the
PS mass function is proposed to improve the agreement with simulations

fST (ν) = A

√

2q

π

(

1 +
1

(qν2)p

)

νe−
qν2

2 (4.49)

where A = 1/ (1 + 2−pΓ(0.5− p)/
√
π) ≈ 0.322184, q = 0.707 and p = 0.3.

Although the PS formalism predictions on the form of the mass function are in agreement with
simulations, it does not treat properly the small overdensities that might exist inside the Lagrangian
radius. This is due to the fact that the PS formalism considers the whole smoothed region as one
halo. In other words, all the points inside the halo exceed the threshold value, which is not generally
true for realistic cases. This is known as the cloud-in-cloud problem and excursion set formalism was
introduced [Bond et al., 1991] to solve it. The latter approach adds the first-crossing condition, where
it states that a region belongs to a bound structure only if the smoothing radius R has the maximum

value, in order for δ
(1)
R to reach the threshold δc.

HMF is known to be sensitive to non-Gaussian initial conditions. Depending on these initial
conditions, it skews the distribution by changing the abundance of massive halos. It was proposed as
an interesting complementary probe of primordial non-Gaussianity (PNG) to the bispectrum in several
studies [Matarrese et al., 2000, Desjacques et al., 2009, Sefusatti and Komatsu, 2007, Sefusatti, 2009].
A major advantage of the HMF is that it directly depends on the PNG amplitude parameter fNL.
Therefore, it does not exhibit the bϕ–fNL degeneracy that affects the scale-dependent power spectrum
signature.

In the case of massive neutrinos, the free streaming of the non-relativistic neutrinos counteracts
gravitational collapse, the fundamental process of cosmic structure formation. This leads to a
significant suppression in the average number density of massive structures which is particularly
evident in the high-mass end of the HMF. For a fixed amplitude of primordial curvature perturbations,
the degree of suppression in the number density of dark matter halos depends on the total neutrino
mass Mν . As the neutrino mass increases, the suppression in the comoving number density of dark
matter halos becomes more pronounced so HMF is also sensitive to the total neutrino mass Mν

[Marulli et al., 2011, Brandbyge et al., 2010].
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Chapter 5

Methodology and Data Analysis

The traditional way to put constraints on cosmological parameters from observational data is to
compare summary statistics to theoretical predictions. However, an important question that arises is
which statistic or combination of statistics should be used to gain the maximum information.

We previously saw that for Gaussian density fields, the power spectrum or correlation function
fully describes the field, making them the primary tools in cosmological data analysis. These statistics
are effective at high redshifts or on large scales at low redshifts, where the universe resembles a
Gaussian density field. The CMBmeasurements from [Akrami et al., 2019] have limited the primordial
universe to be weakly non-Gaussian. However, CMB is limited to high-redshift observations and is
insensitive to low-redshift phenomena like the transition from the matter-dominated epoch to the Dark
Energy-dominated epoch.

Currently active and upcoming three-dimensional (3D) surveys such as the Euclid mission[EUC, ]
and Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) [Rub, ] will allow us to
observe a large fraction of the sky and provide very detailed maps of the large-scale structure of the
universe. The vast amounts of data collected from these surveys, i.e. all the small-scale modes will
offer greater constraining power. In three-dimensional surveys, a significant portion of the modes exists
on scales ranging from mildly to non-linear, where the density field exhibits non-Gaussian behaviour.
This non-Gaussianity causes information to propagate from the two-point function to higher-order
statistics. It is currently an open question as to what is the statistic or set of statistics that will help
in improving the constraints on cosmological parameters.

Numerical simulations are essential for tackling this challenge. They provide powerful means to
obtain theoretical predictions in fully non-linear regimes (section 3.3) and in both real- and redshift
space for any considered statistic. This capability is crucial for extracting cosmological information
from non-linear modes, thereby tightening the constraints on cosmological parameters and enhancing
our understanding of fundamental physics. The Quijote simulations help in quantifying the information
content of various statistics in the fully non-linear regime.

Moreover, advanced statistical techniques such as machine learning and deep learning to perform
LFI are being explored to identify new and optimal statistics for extracting cosmological information
[Jung et al., 2024b, Alsing et al., 2019, Charnock et al., 2018]. These methods require extensive
datasets for training, which the Quijote simulations provide, thereby supporting the analysis of data
from new and upcoming surveys.
It was shown in [Bayer et al., 2021] and [Coulton et al., 2023] using the Quijote simulation that the
information we can extract on the cosmological parameters using solely the power spectrum saturates
at scales k = 0.2hMpc−1 and that adding higher-order correlation functions helps in improving
constraints on higher scales, greater than k = 0.2hMpc−1.

The main aim of this thesis is to develop a machine learning pipeline to perform LFI and identify
different summary statistics and combinations of summary statistics that can be used to constrain the
sum of massive neutrino (Mν), f

equil
NL and other cosmological parameters by extending the analysis to

non-linear scale upto to kmax = 0.5hMpc−1 leveraging on the Quijote simulation and Quijote-PNG
simulations.
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In this chapter, we will discuss our approach to constraint Mν , f
equil
NL and the cosmological

parameters using the Quijote simulation by using Likelihood-free inference using Moment Network
[Jeffrey and Wandelt, 2020]. Firstly, we describe the Quijote Simulation used for analysis, followed by
the summary statistics used for constraining the parameters. Then we define the method implemented
i.e. Likelihood-free inference using moment neural network followed by a summary of machine learning
and the neural network model we implemented. Finally, we discuss the indicators we use for evaluating
the moment prediction

5.1 Quijote Simulation

The analyses presented in this paper are based on the Quijote [Villaescusa-Navarro et al., 2020a]

sets of simulations for Mν , and Quijote-PNG [Coulton et al., 2023] sets of simulations for f equilNL

respectively.
These are dark matter only N-body simulations of volume 1

(

h−1Gpc
)3
, containing 5123 CDM

particles each for PNG and Mν , and an extra 5123 neutrino particles for Mν . The simulation is
run using the TreePM code GadGet-III [Springel et al., 2005] from initial conditions generated at
z = 127 using 2LPTPNG [Coulton et al., 2023] and Zel’dovich approximation [Zel’dovich, 1970] for
the simulations with PNG and Mv respectively. [Villaescusa-Navarro et al., 2020a] uses Zel’dovich
approximation and not the second-order Lagrangian perturbation theory (2LPT) for simulation with
massive neutrinos as it is currently unknown how to predict 2LPT in massive neutrino models. In
particular, there is no estimate for the two significant quantities, the second-order scale-dependent
growth factor, and growth rate, necessary to calculate the 2LPT in the presence of massive neutrinos
We consider dark matter halos with M > 3.2× 1013 h−1M⊙ corresponding to a mean tracer density1

of n̄(z = 0) = 1.55 × 10−4 h3Mpc−3, which are identified in each simulation by the standard
Friends-of-Friends (FoF) algorithm [Davis et al., 1985] by setting the linking length parameter to
b = 0.2 and considering halos with more than 20 dark matter particles.

• For PNG we mainly use a set of 1000 simulations with varying amounts of equilateral PNG, with
f equilNL ∈ [−600, 600], and the cosmological parameters are changed within Ωm ∈ [0.1, 0.5],Ωb =
[0.049], σ8 ∈ [0.6, 1.0],ns ∈ [0.8, 1.2] and h ∈ [0.5, 0.9] where the parameters are distributed in a

Latin hypercube (LH f equilNL )

• ForMv we use a set of 2000 simulations with varying amounts ofMν(eV) ∈ [0, 1], Ωm ∈ [0.1, 0.5],
Ωb =∈ [0.03, 0.07], σ8 ∈ [0.6, 1.0], ns ∈ [0.8, 1.2] and h ∈ [0.5, 0.9] where the parameters are
distributed in a Latin hypercube with massive neutrinos (nwLH).

5.2 Summary Statistics Estimators

In this section, we describe the different statistical probes we use from the halo catalogues generated
by the Quijote and Quijote PNG simulations in red-shift space, specifically looking at non-linear
scales up to kmax = 0.5hMpc−1 .

We use halo summary statistics as halos are a biased tracer of the underlying matter density field
and galaxies form within these halos. So, studying the statistical properties of halos to gain inference
on cosmological parameters is a crucial first step in drawing conclusions from real observational data.

5.2.1 Power Spectrum

To measure the halo power spectrum, we use the standard estimator [Feldman et al., 1994] as described
in [Jung et al., 2024a] given by:

1It is the average number density of tracers in a given volume.
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P̂ (ki) =
1

V Ni

∑

k∈∆i

δ(k)δ∗(k), (5.1)

where δ(k) is the density field in Fourier space defined on a grid, the k-range has been divided
into bins ∆i of width equal to the fundamental mode, V is the survey volume, and Ni is the number
of vectors k in each bin.

5.2.2 Bispectrum

To extract the halo bispectrum information we use modal estimators as shown in [Jung et al., 2023].
They can be efficiently extracted from data by measuring the following modal coefficients:

β̂n =
1

V

∫

d3xMp(x)Mq(x)Mr(x), (5.2)

where

Mp(x) ≡
∫

d3k

(2π)3
qp(k)δ(k)
√

kP (k)
eik·x, (5.3)

for a well-chosen basis of one-dimensional functions qp(k) and mode triplets n↔ (p, q, r).
Modal estimators [Fergusson et al., 2012] are based on constructing complete, orthogonal bases of

separable bispectrum templates (“bispectrum modes”) and finding their amplitudes by fitting them
to the data (For a review refer to [Liguori et al., 2010] [Jung et al., 2022]). This procedure can be
made fast, using a KSW type of approach [Komatsu et al., 2005] which takes advantage of the fact
that certain theoretical bispectrum templates can be written in a separable form. This means the
bispectrum can be broken down into products of functions of individual wave vectors. By leveraging
the separability, the computational complexity is significantly reduced. Instead of summing over all
possible triplets of modes (which is computationally expensive), the problem is reduced to summing
over individual modes multiple times, which is much faster.
The vector of estimated mode amplitudes is referred to as the “mode spectrum.” This mode spectrum
is theory-independent and it contains all the information that needs to be extracted from the data. It
is also possible to obtain theoretical mode spectra, by expanding primordial shapes in the same modal
basis used to analyse the data. This allows us to measure fNL for any given primordial bispectrum
template, by correlating the theoretical mode vectors, which can be quickly computed for any shape,
with the data mode spectrum. This feature makes modal techniques ideal for analyses of a large
number of competing models. Also important is that non-separable bispectra are expanded with
arbitrary precision into separable basis modes. Therefore the treatment of nonseparable shapes is
always numerically efficient in the modal approach. Finally, the data mode spectrum can be used, in
combination with measured mode amplitudes, to build linear combinations of basis templates, which
provide a model-independent reconstruction of the full data bispectrum.

5.2.3 Halo Mass Function

In addition to the halo power spectrum and bispectrum, we extract the halo mass function (HMF)
defined using:

dn

d logM
=

1

V

Nh
∑

i=1

1

∆ logM
, (5.4)

where:

•
dn

d logM is the number density of halos per unit comoving volume per logarithmic mass bin,

• V is the comoving volume of the simulation or survey,

• Nh is the number of halos within the mass bin [M,M +∆M ],
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• ∆ logM is the width of the logarithmic mass bin.

We measure it in the Quijote simulations using 15 logarithmic bins corresponding to halo masses
M between approximately 2.0 × 1013 and 4.6 × 1015M⊙/h which is the same binning used in
[Bayer et al., 2021] where the counted halos each contain between 30 and 7000 dark matter particles.

5.2.4 Marked Statistics

In our analysis, we extend the standard power spectrum and bispectrum calculations to include
marked statistics as discussed in section 4.3.2. We saw that these marked statistics provide additional
cosmological insights by weighting the density field with a mark function before computing its spectral
properties. Let us write down the equation again.

m(x;R, p, δs) =

[

1 + δs
1 + δs + δR(x)

]p

, (5.5)

where δR(x) was the local density field, smoothed with a top-hat filter at scale R.δs and p were the
parameters that adjusted the sensitivity and enhancement of low and high-density regions, respectively.

Recent studies [Massara et al., 2021, Massara et al., 2023, Jung et al., 2024a] have demonstrated
that measuring the power spectrum of the marked density field reveals new cosmological information
beyond what is captured by the standard power spectrum. This additional information originates
from higher-order statistics embedded in the marked field.

In our analysis, we use both the power spectrum and the bispectrum of the marked density field.
The bispectrum of the marked field requires more computational resources compared to its power
spectrum counterpart due to its higher-order nature.

To explore the cosmological implications effectively, we focus on four distinct marks characterized
by the following parameter choices. These specific parameter configurations were identified in
[Massara et al., 2023] as providing the most stringent constraints on cosmological parameters when
analyzing galaxy catalogues derived from the Quijote N-body simulations.:

• Scale R: [30, 25, 20, 30] h−1Mpc

• Power p: [1, 1, 1, 1]

• Sensitivity δs: [0.10, 0.25, 0.50, 0.50]

In the case of massive neutrinos marked bispectrum, we only use the following values for R,p, δs :
[20,1,0.50] i.e the smallest smoothing scale due to the large computational time required for calculating
the combination.

5.3 Method

5.3.1 Likelihood Free Inference

In cosmological data analysis, we frequently encounter situations where we can generate mock
data through sophisticated forward simulations, yet are unable to formulate a tractable likelihood
function.2 For instance, the physics associated with non-linear structure formation on small
scales [Springel et al., 2005, Villaescusa-Navarro et al., 2020b, Klypin et al., 2011], baryonic feedback
[Springel et al., 2018] etc., can be captured to varying extents by simulations however, developing
compact and accurate models for the statistical properties of these processes remains challenging.
Similarly, on the measurement side, it can be difficult to incorporate complicated noise models,
selection bias etc., into the likelihood function.

2The likelihood function is a function of the parameters of a statistical model, given observed data. It measures the
plausibility of different parameter values, based on how likely the observed data is under those parameter values.
Formally, let X = (X1, X2, . . . , Xn) be a set of observed data points, and let θ be the parameters of the statistical model.
If f(X | θ) denotes the probability density function (or probability mass function, for discrete data) of the data given
the parameters, the likelihood function L(θ | X) is defined as L(θ | X) = f(X | θ)
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The standard approach is to construct an approximate likelihood that aims to capture as much
of the known physics and measurement processes underlying the data as possible, hoping that
the adopted approximations do not lead to biased posterior inferences. Even if the means and
variances of inferences are not significantly biased, assessing tensions between data sets (Marshall
et al. 2006), combining inferences, and comparing models can be strongly affected by posterior
tail probabilities[Krywonos et al., 2024], which are unlikely to be accurate when using popular
likelihood approximations. Moreover, traditional methods like Fisher information and Markov Chain
Monte Carlo (MCMC) [Verde, 2008] introduce significant computational complexities. Evaluating
likelihood functions in high-dimensional parameter spaces is computationally expensive. MCMC,
while effective for exploring complex posterior distributions, often demands extensive computational
time to ensure convergence, especially in scenarios involving numerous parameters or complex
dependencies[Akeret et al., 2013]. These challenges underscore the need to explore alternative
approaches, such as likelihood-free methods, which can mitigate computational burdens while
accommodating the complexities inherent in cosmological data analysis

Likelihood-free inference (LFI) also known as simulation-based inference(SBI) allows us to
perform Bayesian inference using only forward simulations, free from any likelihood assumptions or
approximations. This approach has great appeal for cosmological data analysis, as including complex
physical processes, instrumental effects, selection biases, etc., into a forward simulation is typically
much easier than incorporating these effects into a complicated likelihood function.

There are several methods to implement likelihood-free inferences, with the simplest incarnation
being Approximate Bayesian Computation (ABC). ABC involves drawing parameters from a
proposal distribution, simulating mock data, and then accepting or rejecting the parameters
based on whether the simulated data falls within an ϵ-ball around the observed data
[Alsing et al., 2019, Alsing et al., 2018]. Another widely used method is Density-estimation
likelihood-free inference (DELFI), which aims to train a flexible density estimator for the target
posterior from a set of simulated data-parameter pairs. DELFI can yield high-fidelity posterior
inference from orders of magnitude fewer simulations than traditional ABC-based methods
[Papamakarios, 2019, Alsing et al., 2018, Alsing et al., 2019, Lueckmann et al., 2019].

In this thesis, we use likelihood-free inference using a fully connected neural network (NN) and
implementing the Moment Network method introduced by [Jeffrey and Wandelt, 2020].

5.3.2 Moment Network

The primary objective of any inference problem is estimating the posterior probability density
p(θ | x) of a set of parameters θ given some observed data x where the posterior p(θ | x) contains all
beliefs and uncertainties about the unknown quantities θ. However, for physical inference problems
involving high-dimensional parameter spaces, the whole high-dimensional posterior distribution is
not required nor interpretable. Instead, the objective is frequently to find the marginal one-
and two-dimensional posterior distributions of the parameters. The posterior estimations are then
primarily utilized to calculate posterior moments. Moment Networks eliminate the need to estimate
posterior density and instead focus on estimating parameter location, scale, and covariance (including
higher-order moments).

The above model outputs two numbers per parameter, the mean (µi)and standard deviation (σi)of
the marginal posterior 5.1:

µi(X) =

∫

θi

p (θi | X) θi dθi, , (5.6)

σi(X) =

∫

θi

p (θi | X) (θi − µi)
2 dθi., (5.7)

where p (θi | X) is the marginal posterior over the parameter i :
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p (θi | X) =

∫

θ
p (θ1, θ2, . . . , θn | X) dθ1 . . . dθi−1dθi+1 . . . dθn. (5.8)

In this notation, X represents the summary statistics. Following the moment network method, the
loss for the NN function is defined as [Villaescusa-Navarro et al., 2022]:

L =
∑

i∈params

log





∑

j∈batch

(θi,j − µi,j)
2





+
∑

i∈params

log





∑

j∈batch

(

(θi,j − µi,j)
2 − σ2i,j

)2



 .

(5.9)

which differs from the original one presented by [Jeffrey and Wandelt, 2020],

L =
∑

i∈params

∑

j∈batch

(

(θi,j − µi,j)
2 +

(

(θi,j − µi,j)
2 − σ2i,j

)2
)

. (5.10)

In the loss defined in [Villaescusa-Navarro et al., 2020a] we see that the arithmetic sum is replaced
by the sum of the logarithm of each term (either posterior mean or posterior standard deviation)
which was found to provide much tighter and reliable values for µiand σi than its original version.
The reason behind this is that by taking the logarithm of each term before summing the losses are
effectively multiplied rather than summed. This adjustment mitigates the issue mentioned above by
rescaling all terms to a comparable magnitude. Consequently, the loss function assigns similar weight
to all terms, preventing certain parameters from overshadowing others and allowing for more balanced
parameter estimation.

5.3.3 Neural Network Model

Before going into the NN model let’s briefly try to understand the very basics of machine learning.

Supervised and unsupervised learning are the two primary methods of machine learning. The
distinction between the two lies in the fact that in supervised learning, the network is provided with
a label in addition to the data sample; in contrast, unsupervised learning lacks this knowledge. This
implies that the various strategies may be used to learn either independently in the case of unsupervised
learning or dependently in the case of supervised learning, depending on the dataset and the issue. We
use supervised learning, which enables the model to evaluate its current performance in comparison
to the genuine values.
NN have multiple layers of nodes; one input, one or many hidden, and one output layer. Each node has
a threshold which is defined by the activation function, and only if the output is above the threshold
will the information be carried to the next layer. The model will fine-tune by learning the best weights
to apply to each node in order to get the output which is the closest to the true value. There are
different hyperparameters which are set prior to beginning the training, and these are introduced
briefly in the following paragraphs.

Nodes and Layers

Neural networks consist of interconnected layers of nodes. Each node processes input data using a
weighted sum, which passes through an activation function to determine if the output should propagate
to the next layer. The network typically includes:

• Input Layer: Receives input data features.

• Hidden Layers: Intermediate layers that perform transformations on the input data.

• Output Layer: Produces the final output prediction.
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Optimizers

Optimization is crucial in achieving the goal of any machine learning algorithm. The optimizer updates
the model parameters iteratively to minimize the error function. Two widely used optimizers are:

• Gradient Descent: Calculates gradients for the entire dataset and updates weights accordingly.

• Adam (Adaptive Moment Estimation): Combines momentum and squared gradients to
adaptively adjust learning rates for each parameter.

Learning Rate

The learning rate is a hyperparameter that controls the step size of the optimizer during training.
A higher learning rate accelerates convergence but may risk overshooting the optimal solution, while
a lower learning rate requires more epochs for convergence but is less likely to overshoot. Adaptive
learning rates that adjust during training are often preferred for improved convergence efficiency.

Batch Size

Batch size refers to the number of data samples processed in one iteration of the optimizer. Common
choices include batch, mini-batch, or stochastic (one sample) gradient descent. Batch size affects
training time per epoch and can influence model performance when combined with learning rate
adjustments.

Regularization

Regularization techniques constrain a model’s capacity to prevent overfitting and improve
generalization to unseen data. Below mentioned are three most commonly used regularization
techniques are

• L1 Regularization: Adds a penalty proportional to the sum of the absolute values of the model
weights to the loss function:

Lregularized = Loriginal + λ
∑

i

|wi|

This technique shrinks the less important feature’s coefficient to zero thus, removing some
features altogether. It works well for feature selection in case we have a huge number of features.

• L2 Regularization: Adds a penalty proportional to the sum of the squared values of the model
weights to the loss function:

Lregularized = Loriginal + λ
∑

i

w2
i

This method penalizes large weights, promoting smoother model responses, reducing sensitivity
to noise in the training data, and avoiding overfitting.

• Dropout: A regularization technique where a fraction of neurons is randomly deactivated during
each training iteration:

Dropout(x) = x ·mask

where the mask is a binary vector sampled from a Bernoulli distribution. Dropout prevents
overfitting by ensuring that the model does not rely on any specific neurons.
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Figure 5.1: Moment Neural Network Architecture

Network Training and Architecture.

We perform our NN training in the ”CloudVeneto” server using Nvidia V100 GPU. We start by
splitting our data randomly into training, validation and test sets in the ratio of 60 %,20% and 20%
respectively. This is done to avoid hidden correlations between the data from the same simulation that
we do not want the network to learn. The input layer consists of various combinations of summary
statistics and we are interested in their constraining capabilities. This is followed by a normalization
layer and a variable number of hidden layers with varying numbers of nodes. The output layer
concatenates two sets of variable mean and sigma described in a moment with the number of nodes
equal to the number of parameters.
For the hidden layers, we use the Scaled Exponential Linear Unit (SELU) activation function
[Klambauer et al., 2017]. The SELU activation function is defined as:

SELU(x) = λ

{

x if x > 0

αex − α if x ≤ 0
(5.11)

where λ ≈ 1.0507 and α ≈ 1.67326. The weights are initialized using the prescription in
[He et al., 2015], which is commonly known as He initialization. An ”L2” layer weight regularizer
is used to prevent overfitting. We also apply dropout to each hidden layer [Srivastava et al., 2014] to
further regularize the model.

The hidden layer is then followed by the output layer that concatenates the two sets of variables
described in the moment, i.e., the mean and the sigma values of each parameter. To ensure that the
sigma values are positive, we use the ELU+1 activation function [Jung et al., 2024a], which is defined
as:

where ELU (Exponential Linear Unit) is defined as:

ELU(x) + 1 =

{

x+ 1 if x > 0

ex if x ≤ 0
(5.12)

For the means, we use a linear activation function, which is simply:
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Linear(x) = x (5.13)

The weights are initialized similarly to the hidden layers along with the ”L2” layer weight regularizer.

Now, The training is performed using the Adam optimizer [Kingma and Ba, 2017], with a cyclical
learning rate [Smith, 2017]. We chose to use a cyclic learning rate as it helps the optimizer avoid falling
into the local minima and saddle points by periodically varying the learning rate between a lower and
upper bound. So, Instead of using a fixed learning rate or a monotonically decreasing schedule, CLR
allows the learning rate to increase and decrease in a cyclical fashion.

The neural network architecture includes several hyperparameters that were optimized using
Bayesian optimization [O’Malley et al., 2019]. This technique explores different values within specified
ranges to find the best-performing configuration. We performed 50 trials for hypertuning the NN model
with Mν and 30 trials for f equilNL . The decision to use fewer trials for f equilNL was primarily driven by the
need to avoid extensive computational time. The hyperparameters and their ranges are as follows:

• Number of Layers : The number of hidden layers varies between 1 and 8.

• Architecture : The number of nodes in each hidden layer ranges from 8 to 1024, with increments
of 32.

• Dropout Rate : The dropout rate ranges from 0.1 to 0.5, sampled logarithmically.

• Learning Rate: The learning rate ranges from 10−5 to 10−2, sampled logarithmically.

• Regularization Rate : The ”L2” regularization rate ranges from 10−5 to 10−1, sampled
logarithmically.

• Cyclic Base Learning Rate : The base learning rate for cyclical learning ranges from 10−5

to 10−2, sampled logarithmically.

• Batch Size: The batch size can take values of [16, 32, 64, 128, 256, 512].

The network is then trained and to evaluate our neural network’s (NN) learning capacity, we
examine the ”training” vs ”validation loss” plots shown in Figure 6.1. The training loss indicates how
effectively the model performs on the training data, while the validation loss measures its performance
on a separate dataset, known as the validation set. This validation set helps us evaluate how well the
model generalizes to unseen data, beyond its training data. We stop the training when the validation
loss does not decrease for 100 epochs.

5.3.4 Evaluators

To evaluate the quality of moment predictions.

• Firstly, we calculate the coefficient of determination for each parameter defined as :

R2(θ̂) ≡ 1−
∑

i

(

θi − θ̂(xi)
)2

∑

i

(

θi − θ̄
)2 , (5.14)

where i runs over simulations in the test set, θi represents the true parameter for the i-th
simulation, θ̄ is the average of the true parameter across the test set, and θ̂(xi) is the posterior
mean estimate from the i-th simulation.
An R2 value close to 1 indicates that the mean posterior estimate of the parameters is close to
the average of the true value of the parameter hence it indicates a close recovery of the true
parameters, while R2 = 0 suggests that using the average value as a prediction is as good as the
estimator. A thing to note is that R2 can be negative if the estimator performs worse than simply
using the average value. The coefficient of determination assesses the quality of the posterior
mean estimates.
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• To evaluate the second moment, we use a different metric χ2. For each parameter, we compute:

χ2(θ̂, σ̂) ≡ 1

N

∑

i

(

θi − θ̂(xi)
)2

σ̂2(xi)
, (5.15)

where σ̂(xi) is the predicted standard deviation for the i-th simulation, and N is the number
of simulations in the set. If the model overfits to get a reduced σ̂(xi) the χ2 shoots up and if
it underestimates the sigma we get a χ2, The closer to 1, the better the calibration. For each
trained network, We calculate χ2 using the simulations in the validation set and discard all those
where |χ2 − 1| > 0.5.
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Chapter 6

Results and Discussion

As we mentioned in the previous chapter one of the primary objectives of this thesis is to determine
which statistics, or combinations of them, yield the greatest information about cosmological parameters
at small, non-linear scales, as was indicated in the preceding chapter. To achieve this, we developed a
neural network pipeline that uses the moment network approach to carry out likelihood-free inferences.
As both f equilNL and Mν show significant signals at small, non-linear scales, we tested our pipeline on two
distinct datasets: Quijote-PNG, which has non-Gaussian initial conditions, and the Quijote dataset
with massive neutrinos included to assess the efficacy of our pipeline.

This chapter is divided into two sections. Firstly we discuss our results of the model on f equilNL LH
which has non-gaussian initial conditions and then we discuss it for ”nwLH” i.e latin-hypercube with
massive neutrinos.

6.1 f
equil
NL LH

In order to evaluate our neural network’s (NN) learning capacity, we examine the training vs validation
loss plots shown in Figure 6.1.

We see a consistent pattern over the course of our tests with different combinations of summary
statistics i.e. both the training and validation losses decrease over time. Most importantly, our model
does not overfit the training data since the validation loss is constantly less than or comparable to the
training loss. This analysis affirms that our neural network effectively learns from diverse combinations
of summary statistics, representing varied training data, and demonstrates strong generalization to
unseen data. This is evident from the consistent stabilization and convergence observed in both
training and validation losses. The stability and convergence of these metrics across different sets of
summary statistics underscore the model’s ability to extract meaningful patterns and relationships
from the data.

In Fig. 6.3 and Fig. 6.2 we present an overview of our primary finding. In Fig 6.3 we plot different
evaluators for checking the accuracy of our model’s ability to constrain the parameters on a test set,
and in Fig. 6.2 we show the standard deviation prediction of the NN model. The power spectrum
(Pk0), which is important to constrain the conventional cosmological parameters, is taken for granted
in our study and we determine what additional single summary statistic may be added to it to increase
further constraints on f equilNL .

From Fig. 6.2 we can see that adding the marked power spectrum (MP0 0) to the power spectrum
(Pk0) outperforms both Pk0 and Bk0.1 Adding the marked power spectrum or marked bispectrum
to the power spectrum and bispectrum does not result in any significant changes in the standard
deviation.

As noted in [Jung et al., 2023, Jung et al., 2024a], the HMF significantly improves the constraints

on cosmological parameters, especially f equilNL . Based on this insight, we included HMF in our analysis.
We observed that incorporating HMF into any combination enhances the accuracy of our constraints.

1We found that the mark with the smallest smoothing scale (R = 20, p = 1, δs = 0.5) gives results as good as the
combination of the three others, which was also noted in [Jung et al., 2024a].
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Figure 6.1: Loss plot for a combination of different summary statistics trained in f equilNL LH

Figure 6.2: Standard deviation prediction of the NN model for different combinations of summary
statistics in f equilNL LH. The colour scale gives the ratio of each error with respect to its equivalent
computed using only the power spectrum and bispectrum.
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Notably, the best-performing combination of statistics is Pk0 + MP0 0 + HMF, achieving a standard
deviation of 241.58 on f equilNL .

Now, let’s examine Fig. 6.3, where we sometimes notice a drop in accuracy when adding more
observables. To understand this, it is important to recall that better accuracy generally requires either
a large set of input features for the model to learn from or highly informative features. In our case, we
are limited by the available training data, and having a larger training set would improve the accuracy
in constraining the parameters. Additionally, some statistics are strongly correlated, so adding new
features to the existing ones may not provide additional relevant information. This redundancy can
negatively impact the training, resulting in a drop in accuracy, which we observe in the case of the
standard deviation predictions.

Figure 6.3: Different evaluators for assessing the model’s accuracy in predicting f equilNL , Ωm, h, ns,
and σ8 parameters using combinations of power spectrum (Pk0), bispectrum (Bk0), marked power
spectrum with smallest smoothing scale (MP0 0), combination of all marked power spectra (MP0),
and combination of all marked bispectra (MB0). Each column represents a specific combination.

In Fig.6.4 we show the predictions of different parameters from the NN which was trained on Pk0,
MP0 0, and HMF and applied to the test f equilNL LH which shows the best constraints. We observe a
very high R2 value of 0.99 for Ωm and 0.98 for σ8 indicating that the model has very high accuracy in
predicting these parameters. In the case of h, ns, and f

equil
NL we see the scatter in the standard deviation

is more considerable than Ωm and σ8 indicating the influence of other cosmological parameters in each
simulation. The trend in the bias as a function of true value for h, ns, and f

equil
NL indicates that the
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Figure 6.4: Predictions of parameters for the best-performing network trained on the combination of
the Pk0, MP0 0, and HMF statistics, applied to the test set of the fNL LH. Left panel — Comparison
of the true and predicted values of Ωm. The lines span the predicted 1σ about the predicted value.
Centre panel — Predicted standard deviations as a function of the true parameter value. The mean
standard deviation is also shown, compared with the root mean squared errors (RMSE) of the mean
predictions. Right panel — Bias of the mean prediction in units of the predicted standard deviations.
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predictions are bounded by the prior. If the true value is near the edge of the prior, the model struggles
more with the prediction. The results for other combinations are presented in B.1.

6.2 nwLH

As we mentioned before massive neutrinos also show strong signals at small non-linear scales so we
tried implementing our NN pipeline to LH data with massive neutrinos. We discuss our results below.

Figure 6.5: Loss plot for a combination of different summary statistics trained in nwLH

We see in Fig. 6.5 that even for the nwLH data set, our model learns well on the training
set. The training and validation losses consistently decrease over time, indicating effective learning.
Additionally, the validation loss remains lower than or comparable to the training loss, suggesting that
the model is not overfitting and is generalizing well to unseen data. This pattern is consistent with
the results observed from other data sets and combinations of summary statistics, further validating
the robustness and reliability of our model.

In Fig. 6.6, we plot the standard deviation prediction of the NN for different combinations of
summary statistics trained and tested on the nwLH dataset. We observe that adding marked statistics
to the power spectrum, even in the case of massive neutrinos, provides better constraints than adding
the bispectrum. The constraints are improved further when adding marked statistics with the smallest
smoothing scale compared to the sum of all the marks, both when added to the power spectrum
alone and to both the power spectrum and bispectrum. Additionally, we observe that adding the
marked bispectrum does not significantly improve the constraints. However, adding the Halo Mass
Function (HMF) improves the constraints on Mν . Overall, the best constraint on Mν is found with
the combination of statistics Pk0 + Bk0 + MP0 0 + HMF, achieving a standard deviation of 0.2493.
In Figure 6.7, we notice a pattern similar to what we saw with the equilateral shape of fNL likelihood
(LH) i.e Fig. 6.3, where accuracy decreases when certain observables are added. This trend shows
that our ability to accurately predict outcomes is limited by the amount of data we have and how
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Figure 6.6: Standard deviation prediction of the NN model for different combinations of summary
statistics in nwLH. The colour scale gives the ratio of each error with respect to its equivalent computed
using only the power spectrum and bispectrum.
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closely related the different statistics are. [Jung et al., 2024a] showed that increasing the number of
samples results in improved accuracy. This suggests that if we gather more data, we might overcome
the accuracy drop we observe and handle the challenges posed by statistical correlations and data
limitations more effectively.

Figure 6.7: Different evaluators for assessing the model’s accuracy in predicting f equilNL , Ωm, h, ns,
and σ8 parameters using combinations of power spectrum (Pk0), bispectrum (Bk0), marked power
spectrum with smallest smoothing scale (MP0 0), combination of all marked power spectra (MP0),
and combination of all marked bispectra (MB0). Each column represents a specific combination.

In Fig.6.8 we present the predictions made by our neural network (NN) model trained on Pk0,

MP0 0, and HMF data, applied to the test case of f equilNL likelihood (LH). Notably, the accuracy of
predicting the parameter Mν is remarkably low. However, when we calculate the standard deviation
based on the uniform prior we used for neutrino masses, which ranges from [0, 1] eV, we expect a
standard deviation of ≈ 0.2887. Interestingly, our model demonstrates an improvement in the mean
sigma, suggesting it is learning meaningful patterns from the data.

The poor accuracy observed could be attributed to firstly, the limited amount of available data.
With insufficient data, the model may struggle to generalize effectively beyond the training set, leading
to inaccurate predictions. Secondly, as discussed before for f equilNL we are limited by the prior which
we can see from the bias trend where it is overestimating the sigma values for lower true values of Mν

and underestimation the higher true values. The results for other combinations of summary statistics
trained in nwLh are presented in B.2.
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Figure 6.8: Predictions of parameters for the best-performing network trained on the combination of
the Pk0, MP0 0, and HMF statistics, applied to the test set of the nwLH. Left panel — Comparison
of the true and predicted values of Ωm. The lines span the predicted 1σ about the predicted value.
Centre panel — Predicted standard deviations as a function of the true parameter value. The mean
standard deviation is also shown, compared with the root mean squared errors (RMSE) of the mean
predictions. Right panel — Bias of the mean prediction in units of the predicted standard deviations.
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Conclusion

In this thesis, we developed a machine learning pipeline to perform Likelihood-Free Inference (LFI)

for Mν , f
equil
NL , and other cosmological parameters using the moment network method. This approach

avoids relying on assumptions or approximations of likelihood. Utilizing the Quijote and Quijote-PNG
simulations, we identified various summary statistics and their combinations to constrain the sum of
massive neutrinos Mν , f

equil
NL , and other cosmological parameters by extending the analysis to non-linear

scales up to kmax = 0.5, h,Mpc−1, where significant signals for both Mν and f equilNL are expected.
We extracted the power spectrum, modal bispectrum, marked power spectrum, marked modal

bispectrum, and halo mass function (HMF) in redshift space from both Quijote and Quijote-PNG halo

catalogues. These were used to examine constraints on Mν and f equilNL , along with other cosmological
parameters. Our analysis focused on the halo field, as halos are biased tracers of the underlying matter
field and are sites of galaxy formation. This approach represents an initial step toward constraining
cosmological parameters using actual observational data.

We found that incorporating marked statistics and the Halo Mass Function (HMF) can show

promising potential for detecting f equilNL signals and provide a moderate contribution to the study of
Mν constraints from the upcoming large-scale structure (LSS) surveys. The best constraints were
observed when adding the marked power spectrum and HMF to our analysis. While we experimented
with different combinations of marks, we found that using the mark with the smallest smoothing scale,
i.e., R = 20, h−1,Mpc, p = 1, and δs = 0.50, provided constraints equivalent to the combination of all
marks. Adding a marked bispectrum, however, did not yield any additional constraints.

Although our neural network (NN) model demonstrated good learning capabilities, as evidenced
by the training vs. validation loss plots in Fig. 6.1 and Fig. 6.5, the accuracy of our model predictions
was low for f equilNL and Mν due to the limited dataset and restrictive prior boundaries.

In the future, we aim to test our model on the matter field for Mν , which has been shown to
provide more constraints as indicated in [Massara et al., 2021]. Additionally, we plan to perform a
Fisher analysis of the combination of different statistics on massive neutrinos for the halo field to
further validate our current findings.
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Appendix A

Window Function

A window function is a mathematical tool which is introduced to treat the analytically random field
as random fields are not differentiable. The smallest comoving scale of the universe is that of the
typical separation between neighbouring galaxies of the order of 1 Mpc. To exclude scales smaller
than R (r < R or k > R−1

)

we can filter the density field with a window function. This can be
done in k-space or x-space. The filtering in x-space is done by convolution. We introduce a (usually
spherically symmetric) window function W (r;R) such that

∫

ddrW (r;R) = 1 (A.1)

(normalization) and W ∼ 0 for |r| ≫ R and define the filtered density field

δ(x;R) ≡ (δ ∗W )(x) ≡
∫

ddx′δ
(

x′
)

W
(

x− x′
)

(A.2)

Here, the desired resolution is indicated by R, and the functions δ(x;R) and W (x;R) are taken
into consideration. We will refer to the following notation as W (x;R), keeping the scale R implicit.
We can now write simply W (r) because we also assume that W is spherically symmetric.

Denote the Fourier coefficients of δ(x;R) by δk(R). We use the Fourier series for δ(x) and δ(x;R),
however, since W (r) vanishes for big r, we can use W̃ (k) instead, which is a Fourier transform. Thus,
a mixed form of the convolution theorem is required. Let’s state it clearly:

δk(R) =
1

V

∫

V
ddxδ(x;R)e−ik·x =

1

V

∫

V
ddxddx′δ

(

x′
)

W
(

x− x′
)

e−ik·x (A.3)

=
1

V

∫

V
ddx′δ

(

x′
)

e−ik·x′

∫

ddrW (r)e−ik·r = W̃ (k)δk, (A.4)

where

W̃ (k) =

∫

ddrW (r)e−ik·r (A.5)

is the Fourier transform of W (r) With our normalization, W (r) has dimension 1/V and W̃ (k) is
dimensionless with W̃ (k = 0) = 1. Since W (r) =W (r) is spherically symmetric, so is W̃ (k) = W̃ (k).
Since W (−r) =W (r), W̃ (k) is real. For the correlations of these filtered Fourier coefficients, we get

⟨δ∗k(R)δk′(R)⟩ = W̃ (k)∗W̃
(

k′
)

⟨δk∗δk′⟩ = 1

V
δkk′W̃ (k)2P (k) (A.6)

so the filtered power spectra are

W̃ (k)2P (k) and W̃ (k)2P(k) (A.7)
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The filtered correlation function is

ξ(r;R) ≡ ⟨δ(x;R)δ(x− r;R)⟩ = 1

(2π)d

∫

ddkeik·rW̃ (k)2P (k) (A.8)

and the variance of the filtered density field is

σ2(R) ≡
〈

δ(x;R)2
〉

= ξ(0; | R) =
∫ ∞

0
W̃ (k)2P(k)

dk

k
(A.9)

The simplest window function is the top-hat window function

WT (r) ≡
1

V (R)
Θ
(

1− r

R

)

(A.10)

and WT (r) = 0 elsewhere, i.e., δ(x) is filtered by replacing it with its mean value within the
distance R.Its Fourier transformation is

W̃T
R (k) = 3

sin(kR)− (kR) cos(kR)

k3R3
, (A.11)

Mathematically more convenient is the Gaussian window function

WG(r) ≡
1

VG(R)
e−

1
2
r2/R2

(A.12)

Where

VG(R) ≡
∫

ddre−
1
2
|r|2/R2

(A.13)

is the volume of WG. The volume of a window function is defined as what
∫

ddrW (r) would be if
W were normalized so that W (0) = 1, instead of the normalization we chose in A.1. For the top hat,
this is the volume over which the filter averages; for others, a generalization of this. The volume of
WG is

VG(R) = (2π)d/2Rd (A.14)

W̃G
R (k) = e−

1
2
(kR)2 (A.15)

There are also other choices available apart from these two.
In principle, there could be some ambiguity on which field has to be smoothed out if the radiation

field δ or the curvature field ζ. However, in linear order, the two possibilities are equivalent, in fact,
if we apply the smoothing procedure to Eq. (??) we obtain

δR(x) =

∫

d3yWR(|x− y|)δ(y) (A.16)

=
2(1 + w)

5 + 3w

1

a2H2

∫

d3yWR(|x− y|)∇2
yζ(y) (A.17)

=
2(1 + w)

5 + 3w

1

a2H2

∫

d3y
{

ζ(y)∇2
yWR(|x− y|) (A.18)

+∇y · [WR(|x− y|)∇yζ(y)− ζ(y)∇yWR(|x− y|)]} , (A.19)

where we have used the relation ψ∇2ϕ = ϕ∇2ψ + ∇ · (ψ∇ϕ − ϕ∇ψ) between two generic scalar
fields ψ(x) and ϕ(x). The second term in the integrand is a surface contribution and vanishes using
the divergence theorem, under the fairly general assumption thatWR and its derivative vanish at large
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scales. Furthermore, at least for the two window functions in equations A.10 and A.12, we have that
∇2

yWR = ∇2
xWR, therefore the above equation reads as

δR(x) =
2(1 + w)

5 + 3w

1

a2H2

∫

d3yζ(y)∇2
xWR(|x− y|) = 2(1 + w)

5 + 3w

1

a2H2
∇2

xζR(x), (A.20)

which is the smoothed version of Eq.(3.30), as we expected. This proves the equivalence between
smoothing out the density or the curvature field at a linear level.

In the end, the complete relation between the smoothed density field and curvature perturbation
reads as

δR(k, τ) = −2(1 + w)

5 + 3w

k2

a2H2
T (k, τ)W̃R(k)D

(+)
1 (τ)ζ(k) =

2

3
T (k, τ)W̃R(k)D

(+)
1 (τ)Φ(k) (A.21)
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Additional Figures

B.1 f
equil
NL LH summary statistics combination plots
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Figure B.1: Predictions of parameters for the best-performing network trained on the combination of
Pk0˙MP0˙0 statistics, applied to the test set of the f equilNL LH.
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Figure B.2: Predictions of parameters for the best-performing network trained on the combination of
Pk0˙MP0 statistics, applied to the test set of the f equilNL LH.
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Figure B.3: Predictions of parameters for the best-performing network trained on the combination of
Pk0˙Bk0˙MP0˙0˙MB0˙HMF statistics, applied to the test set of the f equilNL LH.
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Figure B.4: Predictions of parameters for the best-performing network trained on the combination of
Pk0˙Bk0˙MP0˙0˙MB0 statistics, applied to the test set of the f equilNL LH.
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Figure B.5: Predictions of parameters for the best-performing network trained on the combination of
Pk0˙Bk0˙MP0˙0 statistics, applied to the test set of the f equilNL LH.
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Figure B.6: Predictions of parameters for the best-performing network trained on the combination of
Pk0˙Bk0˙MP0 statistics, applied to the test set of the f equilNL LH.
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Figure B.7: Predictions of parameters for the best-performing network trained on the combination of
Pk0˙Bk0˙HMF statistics, applied to the test set of the f equilNL LH.
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Figure B.8: Predictions of parameters for the best-performing network trained on the combination of
Pk0˙Bk0 statistics, applied to the test set of the f equilNL LH.
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B.2 nwLH summary statistics combination plots
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Figure B.9: Predictions of parameters for the best-performing network trained on the combination of
Pk0˙MP0 statistics, applied to the test set of the nwLH.
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Figure B.10: Predictions of parameters for the best-performing network trained on the combination
of Pk0˙Bk0 statistics, applied to the test set of the nwLH.
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Figure B.11: Predictions of parameters for the best-performing network trained on the combination
of Pk0˙MP0˙0˙HMF statistics, applied to the test set of the nwLH.
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Figure B.12: Predictions of parameters for the best-performing network trained on the combination
of Pk0˙MP0˙0 statistics, applied to the test set of the nwLH.
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Figure B.13: Predictions of parameters for the best-performing network trained on the combination
of Pk0˙Bk0˙MP0 statistics, applied to the test set of the nwLH.
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Figure B.14: Predictions of parameters for the best-performing network trained on the combination
of Pk0˙Bk0˙HMF statistics, applied to the test set of the nwLH.
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Figure B.15: Predictions of parameters for the best-performing network trained on the combination
of Pk0˙Bk0˙MP0˙0˙HMF statistics, applied to the test set of the nwLH.
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Figure B.16: Predictions of parameters for the best-performing network trained on the combination
of Pk0˙Bk0˙MP0˙0 statistics, applied to the test set of the nwLH.
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Figure B.17: Predictions of parameters for the best-performing network trained on the combination
of Pk0˙Bk0˙MP0˙0˙MB0˙0˙HMF statistics, applied to the test set of the nwLH.
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Figure B.18: Predictions of parameters for the best-performing network trained on the combination
of Pk0˙Bk0˙MP0˙0˙MB0˙0 statistics, applied to the test set of the nwLH.
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Dusini, S., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fantaye, Y., Fergusson, J.,
Fernandez-Cobos, R., Finelli, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta,
S., Ganga, K., Génova-Santos, R. T., Gerbino, M., González-Nuevo, J., Górski, K. M., Gratton,
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