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Abstract
Synchronous machines are nowadays widely used and, due to the increasing energy
demand, the development of ever higher efficiency is essential for energy saving.
Optimization is playing a crucial role to achieve this goal. Moreover, after the
Pareto concept has been introduced, multi-objective optimization became more and
more employed among real-world engineering problems. In the last decades, the
necessity for minimizing costs and obtaining efficient products at the same time
led to an evolution process in both design and optimization methods. Nowadays,
analytical modelling is typically used only during the preliminary stage and the
actual design is entrusted to a finite element analysis. However, the time-stepping
method in FEA becomes computationally highly expensive for machine optimization,
which often requires a large number computations. Thus, by applying a response
surface methodology to the design space it is possible to obtain surrogate functions,
which play the role of actual functions in the optimization process and allow to save
lots of time. Despite this, when dealing with problems having several optimization
variables and a wide domain, surrogates are very likely to be inaccurate. Based on
this notions, the development of a fast and accurate optimization design method in
case of synchronous machine induced a thought of employing a clustering algorithm.
To wrap it all up, a clustering-based surrogate optimization design is applied to
a 16 kW surface permanent magnet SM and the achievements are illustrated. A
two-dimensional time-stepping finite element method, integrated in Aalto’s FCSMEK
software, was used to perform all stages of the design requiring a simulation.
Keywords Permanent magnet machines, Energy efficiency, Finite element analysis,

Design optimization, Particle swarm optimization, Pareto optimization,
Sampling methods, Clustering algorithms
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Symbols and Abbreviations

Symbols
A linear current density [A/m]
a number of parallel paths in winding
B magnetic flux density [T]
B1peak peak value of the fundamental air gap flux density [T]
Byoke maximum flux density of the yokes [T]
Bmax maximum value of the rectangular air gap flux density [T]
C1 individual cognition parameter
C2 social learning parameter
c number of candidates for the LHS
Dr external rotor diameter (air gap diameter) [m]
Ds internal stator diameter (air gap diameter) [m]
F distribution function
f supply frequency [Hz], fitness/objective function
fs surrogate function
gbest global best position
Hc coercivity [A/m]
hPM eight of the permanent magnet [m]
hyr height of the rotor yoke [m]
hys height of the stator yoke [m]
kCus space factor for copper
kFe space factor for iron
kw1 winding factor of the fundamental
kρ experimental factor for Schuisky equation [W s2/m4]
Lmd direct-axis magnetizing inductance [H]
Lmq quadrature-axis magnetizing inductance [H]
l axial length of the machine [m]
l′ effective core length [m]
lav average length of a coil turn [m]
lrpm axial length of the permanent magnets [m]
M number of clusters
m number of phases
N number of samples, number of turns in series in a phase winding
n synchronous speed [1/s], number of optimization variables
ns synchronous speed [rpm]
P shaft power [W], number of particles of the PSO population
PCu stator resistive losses [W]
Pex additional losses [W]
PFe iron losses [W]
Pρ mechanical losses [W]
Pρ,f friction losses [W]
Pρ,w windage and ventilator losses [W]
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p number of pole pairs
pbest personal best position
Q total number of stator slots
q number of slots per pole and phase
R resistance [Ω]
RDC DC equivalent resistance [Ω]
rand1 random value parameter for cognitive component
rand2 random value parameter for social component
s number of samples of the RSM
Um tot peak value of the total magnetic voltage [A]
Um δ magnetic voltage over the air gap [A]
Um ts magnetic voltage over the stator tooth [A]
Um PM magnetic voltage over the permanent magnet [A]
Um ys magnetic voltage over the stator yoke [A]
Um yr magnetic voltage over the rotor yoke [A]
V velocity vector
Vr rotor volume [m3]
vR tangential velocity of the rotor surface [m/s]
W winding pitch [m]
w inertia weight, weighted-sum method values
X position vector
Xd direct-axis reactance [H]
Xq quadrature-axis reactance [H]
x optimization variable
zQ number of conductors in a slot

αCu temperature coefficient of copper resistivity [K−1]
αPM relative width of the permanent magnet
β surrogate coefficients vector
β surrogate coefficient
δ air gap width [m]
Θ temperature rise in copper wires [◦C]
σCu conductivity of copper [S/m]
σFtan tangential tension [Pa]
τp pole pitch [m]
τu stator slot pitch [m]
Φ total flux [Wb]
Φm air gap (main) flux [Wb]
Φσ leakage flux [Wb]
ω electric angular velocity [rad/s]

Operators∑︁n
i=1 sum over index i, with i = 1...n

A · B dot product of vectors A and B
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Abbreviations
2D two-dimensional
3D three-dimensional
AC alternating current
BBD Box-Behnken design
CCD central composite design
DC direct current
DOE design of experiments
FEA finite element analysis
FEM finite element method
GA genetic algorithms
LHS latin hypercube sampling
MAE mean absolute error
MOO multi-objective optimization
MRE mean relative error
PM permanent magnet
PMSM permanent magnet synchronous machine
PRS polynomial response surface
PSO particle swarm optimization
RSM response surface methodology
SOO single-objective optimization
SPMSM surface permanent magnet synchronous machine
STD standard deviation
SyRM synchronous reluctance machine



12



13

1 Introduction

1.1 Background
The synchronous machine has long been the most important of the electromechanical
power conversion devices, playing a key role both in the the production of electricity
and in certain special drive applications. The machine soon underwent rapid develop-
ments and permanent magnets immediately proved their potential, being to replace
the stator wound poles of a conventional motor. Since the beginning, the evolution
process of the electrical machine has been progressing with the aim of optimizing [1]
[2]. As most of the engineering problems, also in the permanent magnet synchronous
machines the main concerns have always been maximizing earns and minimizing
losses [3]. Also optimization itself has had its evolutionary process; in fact, before
the introduction of the Pareto concept it was not fully exploited.

In general, the concept of optimization can be applied to every type of engineering
design, including simple analytical equations. Although the analytical modelling
of any kind of electrical machine have been formalized by many authors in the last
decades, such models are typically used only during the preliminary design stage
because they are obviously based on hypothesis in order to simplify their modelling.
Consequently, the design procedure of such machines requires a finite element analysis
(FEA) is employed to evaluate the design aspects disregarded in the first stage. In
recent works, automated design procedures assisted by optimization algorithms and
coupled with FEA have proved to be very efficient. However, several design iterations
can be needed and the computational time can be easily become unacceptable [4].
Several methodologies and techniques came up in order to decrease the computational
burden of an optimization design assisted by FEA. The Box-Behnken design (BBD),
which is a response surface method, has revealed to be a powerful tool for this
purpose, proving to be at the same time quite accurate. It permits to express the
experimental relation between design variables and design functions (objectives and
constraints) through simple second-degree polynomial functions. The latter are then
called surrogate functions and are the ones being evaluated in the optimization
routine [5].

1.2 Thesis Objectives
This work performs a multi-objective optimization design of a 160 kW surface
permanent magnet synchronous machine. The objectives of the study, as the previous
section has anticipated, will be the efficiency and the cost of the motor. The method
which has been developed was based on the need to identify an alternative to the
classic surrogate BBD that, in our case, did not lead to valuable solutions. For this
purpose, a surrogate design based on clustering is proposed. We will see in which way
and the reason why the clustering can ensure reliability to the surrogate optimization
design.
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1.3 Thesis Structure
The thesis is divided into five chapters. In Chapter 1 background and motivation of
the thesis are explained. Chapter 2 presents the literature review of the theoretical
background and the history of synchronous machines, with a focus on permanent
magnet synchronous machine. Chapter 3 introduces the design theory and the
methodology which has been developed. Chapter 4 contains the the results and
findings of the developed method. Chapter 5 depicts the final achievements of the
conducted research work and the indication of future research perspectives related
to this thesis.
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2 Literature Review
Designing a surface permanent magnet synchronous machine (SPMSM) demands
theoretical knowledge in rotating electrical synchronous machines, thus academic
aspects are treated in Section 2.1. To pursue a multi-objective optimization (MOO)
design certain optimization principles are crucial; they are discussed in Section 2.2.
Design of experiments (DOE), which is a systematic and rigorous approach that
applies techniques to data collection, is discussed in Section 2.3.

2.1 Introduction to Synchronous Machine
Nowadays, synchronous machines are still used primarily for large generators of
electrical power at hydro, nuclear, or thermal power stations; quite commonly they
can have power ratings of several hundred MVA. Like most rotating machines, a
synchronous machine can operate also as a motor both in large sizes, like pumps in
generating stations, and in small sizes. Depending on the application they may be
requested either constant speed or variable speed, for example in industrial drives [2].

Since the outset, the evolution process of the electrical machine has been evolv-
ing with the intention of optimizing. These machines have become virtually ideal
converters of energy and nowadays they require to have more and more techni-
cally and economically standards. This was permitted by constant innovation and
enhancements in manufacture, testing and operation conditions [1].

The introduction of permanent magnets (PM) was, in all likelihood, the most
important advancement in the development of the synchronous machine. Other key
aspects that have led to major progress were the consolidation of a robust theoretical
knowledge and software-assisted design.

2.1.1 History of the machine and Development of Permanent Magnets

The beginnings of the synchronous machine are found in the last decades of the
18th century. Once several prominent scientists devised fundamental concepts for
multiphase alternating-current machines, in 1887 F. A. Haselwander built the first
three-phase synchronous generator and tried it out in practice. After a few years, in
1891, another decisive landmark in the development of this machine took place when
the first long-distance transmission of high voltage three-phase power from Lauffen to
Frankfurt began. Consequently, many countries committed themselves to a common
effort for the improvement of the synchronous machine. Not surprisingly, in the past,
it has long been the most remarkable of the electromechanical power-conversion
devices, playing the major role in the production of electricity [1] [6].

The introduction of permanent magnets derived came from the necessity to design
high-efficient machines. The manufacture and experimentation of these began in the
early twentieth century with the production of carbon, cobalt and wolfram steels.
A remarkable improvement was due to the discovery of aluminium-nickel-cobalt
(AlNiCo) materials, in the 1930s, which are still used nowadays at temperature of 300
◦C and above. Ferrites were first introduced in the 1950s and, due to their low price,
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they are still dominant on the market. Another considerable step was taken in the
1960s, when the compounds of rare-earth metals and cobalt were invented. After the
discovery of these materials, the last important advance was the neodymium-iron-
boron (NdFeB) permanent magnets in 1983, which still nowadays yield the highest
energy product [7].

2.1.2 Working Principles and Machine Structure

The main feature of the synchronous machine is that, unlike asynchronous, the
current linkage component created by the rotor operates independently of the stator,
this might explain why they’re often known to as doubly excited machines [7].

In steady state conditions, the rotor rotates at the same constant speed of the air
gap stator field; it is called synchronous speed. As long as all constraints of any kind
are respected, after a brief synchronization transient, the machine will run at the
synchronous speed, proportional to the frequency and inversely proportional to the
pole pairs:

ns = 60 · f

p
(1)

where ns stands for the synchronous speed of the machine, f represents the supply
frequency of the stator winding and p the number of pole pairs.

Since they’re double excited, the flux in the air gap is therefore the resultant of
the fluxes due to both rotor and stator current. This implies that this machine can
draw both lagging and leading reactive current from the alternating current (AC)
supply system but, if the rotor field winding provides just the necessary excitation,
the stator will draw no reactive current and the motor will operate at a power factor
equal to one [2]. Still, since the air gap flux caused by the stator current is not
compensated spontaneously, the current in the rotor field has to be adjusted when
needed in order to work in the ideal working condition of unitary power factor [7]. If
the rotor excitation current is decreased, lagging reactive current will be drawn from
the AC source to aid magnetization by the rotor field current. On the other hand, if
the rotor field current is increased, leading reactive current will be drawn from the
AC source to oppose magnetization by the rotor field current. Both cases will result
in a power factor other than one [2].

Over time, the stator structure of this type of machine has become practically
consolidated, with distributed three phases AC windings which originates the rotating
stator magnetic field. On the other hand, the rotor construction of a synchronous
machine can be various and it leads to different types of machine depending on the
excitation system, as depicted in Figure 1: separately excited synchronous machine,
synchronous reluctance machine (SyRM) and permanent magnet synchronous machine
(PMSM) [7]. .

In a separately excited synchronous machine the rotor is powered with a single-
phase winding supplied with direct current (called field winding current), which can
be conducted via slip rings to the rotor. In this way a quite fast-responding control
for the excitation current is easily achievable. Besides this, it is well known that
the main disadvantage of this machine is the requirement of constant maintenance
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Figure 1: Synchronous machine family sorted according to the type of excitation
system [8].

for the brushes and, for this reason, several brushless excitation systems have been
developed [7].

Synchronous reluctance machine is the simplest of synchronous machines; the
rotor consists of soft magnetic material, such as laminated silicon steel, which has
multiple projections acting as salient magnetic poles through magnetic reluctance.
The objective is to create a maximum difference between the direct-axis inductance,
which is minimize, and the quadrature one, which is maximize. In order to improve
some aspects of the machine, embedding magnets on the q-axis can help to reduce
even further the q-axis reactance. In this case they are so named permanent-magnet-
assisted synchronous reluctance machines [7].

In permanent magnet synchronous machines the current linkage component by

Figure 2: Salient poles with windings in a separately excited synchronous machine
[8]. Direct-axis, d, and quadrature-axis, q, have a remarkable effect on salient-pole
machines behaviour [8].
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the rotor is generated directly by the permanent magnets[7].
According to their magnetic circuits, electrical machines can be further divided

into two main categories, as depicted in Figure 1: salient-pole machines, in which the
field windings are concentrated, and nonsalient-pole machines, where the magnetizing
windings are spatially distributed [8]. This definition is clearly related to a separately
excited synchronous machine, but the concept can be easily extended to any type of
machine.

Another aspect that must be considered is the difference between d-axis and
q-axis. In general, a direct-axis quantity is one whose magnetic effect is along the
field pole axis, while a quadrature-axis quantity is one whose magnetic effect is along
the perpendicular to field pole axis [9].

Permanent Magnet Synchronous Machine

We have seen that permanent magnets are used on the rotor instead of a wound
field. The advantages of the permanent magnet type are that no supply is needed for
the rotor so the construction can be robust and reliable. Moreover, the steady state
efficiency and power factor at full load are in most cases better than the equivalent
induction motor [10].

The disadvantage is that the excitation is fixed, thereby controlling power factor
via excitation is no longer possible. In addition, the designer must either choose the
shape and disposition of the magnets to match the requirements of one specific load,
or seek a general purpose compromise [10].

Early permanent magnets suffered from the tendency to be demagnetised by
the high stator currents during starting, and from a restricted maximum allowable
temperature. Much improved versions using high coercivity rare-earth magnets were
developed during the 1960s to overcome these problems [10].

The features of a PMSM are determined from the rotor construction; Figure 3
illustrates different permanent magnet rotor constructions. If the magnets are set on
the rotor surface, as illustrated in 3(a), the rotor is in principle nonsalient, since the
relative permeability of NdFeB magnets is around one. Embedded magnets, like in
3(b), give rise to a machine in which the quadrature-axis synchronous inductance is
higher than the direct-axis synchronous one. Also the pole shoe construction, 3(c)
produces a similar inductance ratio.

It is well known that embedding the magnetic material completely inside the
rotor structure wastes a significant proportion of the flux produced by the magnet in
leakage components of the rotor. On the other hand, embedded magnets are both
mechanically and magnetically protected.

Synchronous reluctance machine has torque density not as high as an equivalent
PM machine while its power factor is rather low. PMs, either ferrite magnets or rare-
earth magnets, are inserted into a SyRM’s flux barriers to improve its performance,
as shown in 3(d). Thus, it becomes a hybrid machine and its characteristics lie in
between SyRM and PM machine with the benefit that torque and power factor can
be significantly improved [11].
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(a) (b) (c) (d)

Figure 3: Different rotors a permanent magnet synchronous machine [8]: (a) surface
permanent magnets; (b) embedded permanent magnets; (c) salient pole shoe; (d)
reluctance rotor equipped with permanent magnets.

2.1.3 Inductances

In general rotating electrical machines theory, the total flux Φ consists of the main flux
(air gap flux) Φm and the leakage flux Φσ. The electromechanical energy conversion
lies in the air gap flux portion, while the leakage part does not participate. The
main flux has to cross the air gap of the machine, since it plays fundamental role of
connecting electromagnetically both the stator and the rotor (that is why it is also
named air gap linkage flux). On the other hand, leakage fluxes, which occurs both in
rotor and stator, comprise all the flux components that do not cross the air gap and
those components crossing the air gap that do not participate in the formation of
the main flux linkage. The air gap flux corresponds to the magnetizing inductance
Lm, whereas the leakage component corresponds to a leakage inductance Lsσ [7].

Along the rotor surface the air gap may vary in direct and quadrature directions,
which leads to different inductances in the direct-axis and quadrature-axis, respec-
tively Ld and Lq. In both directions, the inductances consist of the magnetizing
inductance, Lmd and Lmq, and the leakage inductance Lsσ [7]:

Ld = Lmd + Lsσ (2)

and
Lq = Lmq + Lsσ. (3)

In the case o a machine operating at a constant frequency (constant speed),
reactances can be employed:

Xd/q = 2πfLd/q. (4)

More precisely, direct-axis synchronous reactance is defined as the reactance
offered to the stator flux when the peak of the rotating stator magnetic field is
directed along the d-axis; this situation is represented in Figure 4(a). Under this
condition, the air gap width is minimum hence the reluctance is also minimum and
the stator flux is maximum [9].
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(a) (b)

Figure 4: Salient pole synchronous machine [9]: (a) direct-axis synchronous reactance;
(b) quadrature-axis synchronous reactance.

When the peak of stator magnetic field coincides with the quadrature-axis, the
reactance offered to the stator flux is called quadrature-axis reactance. In Figure
4(b), the peak the stator rotating field is along the perpendicular to the d-axis. In
this case, the air gap width is maximum thus the reluctance is maximum as well and
the stator flux is minimum [9].

As depicted in Figure 4, in salient-pole synchronous machine the air gap is clearly
non-uniform and, in particular, Ld is bigger than Lq as anticipated by Figure 1. But
due to uniform air gap in nonsalient-pole synchronous machine, both Ld and Lq

are equal; for instance, this happens in the case of a SPMSM, where the air gap
remains constant and the machine is electrically symmetrical because of unitary
relative permeability of NdFeB magnets.

Leakage Flux Components

The calculation of leakage inductances from the structural dimensions of the
machine is a rather demanding task. Thus, in this paragraph it is only given a brief
and representative explanation.

The flux components that do not cross the air gap self-evidently belong to the
leakage flux. Among these components, represented in Figure 5, there are:

• Pole leakage flux;

• Slot leakage flux;

• Tooth tip leakage inductance;

• End winding leakage flux.

To determine the leakage flux, leakage flux paths have to be investigated. Paths of
pole leakage fluxes of a salient-pole machine are shown in Figure 5(a), while flux
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paths of both pole and slot leakage of a nonsalient-pole machine are illustrated in
Figure 5(b). The tooth tip leakage inductance is determined by the magnitude of
leakage flux flowing in the air gap outside the slot opening. This flux leakage is
illustrated in the upper part of Figure 5(c) and its current linkage in the slot causes
a potential difference between the teeth on opposite sides of the slot opening. End
winding leakage flux results from all the currents flowing in the end windings, as
represented in Figure 5(d).

(a) (b)

(c) (d)

Figure 5: Leakage flux components not crossing the air gap [8]: (a) pole leakage fluxes
of a salient-pole machine; (b) pole and slot leakage of a nonsalient-pole machine;
(c) leakage flux components of a coil winding contained in slots of a nonsalient-pole
machine; (d) end winding leakage flux.

Leakage fluxes that cross the air gap are included in the air gap flux. An air gap
flux does not completely link the windings of the machine to each other. The reasons
for incomplete linking are: short pitching, skewing and the spatial distribution of
the windings. A weakening of the linking between the stator and rotor windings is
not usually regarded as leakage, but it has to be taken into account. The spatial
distribution of the windings causes an air gap (or harmonic) flux leakage. These
leakage flux components crossing the air gap are included in the air gap flux [8].

2.1.4 Losses Estimation

The machine efficiency can be determined by calculating or measuring the total losses.
The most convenient way of defining the losses of an electrical machine is classifying
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the loss components according to their origin or structure [6]. The losses in the
synchronous machine, like other electrical machines, can be classified as following:

• The resistive losses are caused by the current flowing through stator and rotor
windings and also rotor bars. The resistive losses occur in the stator winding
due to the supply current, while in case of separately excited synchronous
machine, the direct current (DC) is responsible for resistive losses in rotor
winding. The resistive losses can be estimated based on the DC equivalent
resistance RDC value of the winding as:

PCu = mI2
rmsRDC , (5)

where m is the number of phases and Irms is the root mean square value of
the current. A more accurate estimation of resistive losses can be achieved by
means of the AC resistance of the phase winding instead of the DC one [6].

• The iron losses are usually given by manufacturers in a combined way, which
means that even if hysteresis losses differ from eddy current losses, these two
components are not usually given separately. According to standard calculations,
the core losses are found by subdividing the magnetic circuit of the machine in
n components, in which the flux density is approximately constant. Once the
masses mF e,n of the different areas n have been computed have been calculated,
the iron losses of the different parts of the machine can be approximated as
follows:

PFe,n = kF e,nP15

(︄ ˆ︁Bn

1.5

)︄2

mF e,n, (6)

where ˆ︃Bn is the peak value of the flux density and P15 indicates the losses
per mass unit at the flux density peak value of 1.5 T at 50 Hz. For manual
calculations, the empirical correction coefficients kF e,n takes empirically into
account various phenomena as: pure sinusoidal flux variation never occurs
alone in any parts of the machine, field harmonics are present, stresses created
in the punching of the sheet increase the loss index [8].

• The additional losses are caused by several different phenomena, some of them
can be very difficult to calculate accurately. They include for example, the losses
caused by the skin effect in conductors, which have not been taken into account
in PCu by using the RDC . Permeance harmonic losses in the rotor surface
permanent magnets caused by the stator slot openings are also considered in
the additional losses. However, due to the difficulty of the calculations and to
the impossibility of having an accurate estimation, they can be assumed as:

Pex = 0.005 · P. (7)

• The mechanical losses are a consequence of different mechanical issues, like
bearing friction and windage. Bearing friction losses Pρ,f depend on the shaft
speed, bearing type, properties of the lubricant and the load on the bearing



23

and, according to SKF manufacturer [12], bearing friction losses in the normal
operating conditions are:

Pρ,f = 0.5ΩµFDbearing, (8)

where Ω is the angular frequency of the shaft supported by a bearing, µ
the friction coefficient, F the bearing load and Dbearing the inner diameter
of the bearing [7]. Windage losses become more and more significant with
increasing machine speed. These losses are a consequence of the friction between
the rotating surfaces and the surrounding gas, usually air. An experimental
equation that include both windage and ventilator losses Pρ,w was given by
Schuisky [13]:

Pρ,w = kρDr(l + 0.6τP )v2
r , (9)

where kρ is an experimental factor (Table 9.2 [8]) and vr the surface speed of
the rotor.

• The permeance harmonic losses PP MEC are produced by the stator slot openings;
however, the calculation is a rather laborious task [14].

2.2 Optimization
Maximizing earns and minimizing losses have always been two fundamental design
concerns in engineering problems. Since, for most fields of knowledge, the complexity
of optimization problems increases as technology and science advance, there’s a
growing need in develop methods and algorithms useful both for enhance and speeding
up the design. Quite often, examples of engineering problems that require an
optimization process in the planning stage are in energy conversion and distribution
and in mechanical design [3].

The aim of any optimization study is to determine a vector of variables X =
[x1, x2, ...xn] that minimizes, or maximizes, the function f(X). This is called fitness
function, or objective function, and it may assess how good or bad is the set of
variables X. On the other hand, the vector X is known as position vector; it
represents a variable model and it is a n-dimensional vector, where n represents the
number of variables affecting the objective that may be determined in the problem
[3].

In order to find the optimum, such investigation can be performed through several
criteria and for this reason there are as many approaches that one could perform. In
spite of a wide range of methods that could be used, there is not a main one that is
considered to be the best for any kind of problems. One optimization approach that
is appropriate for a problem might not be so for another one; it depends on several
features (for example, whether the function is differentiable and its concavity). To
solve a problem, one must understand different optimization methods and must be
able select the algorithm that best fits on the problem’s features [3].

Genetic algorithms (GA) was one of the first design optimization tool for in-
dustrial engineers capable of success. Back in the 1970’s, GA was already used for
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problem solving and it was proved to be a significant contribution for scientific and
engineering applications. The main innovation was that GA does not implement
a mathematically guided algorithm and optima is obtained by the evolution from
generation to generation without demanding mathematical formulation. The search
for the optimal by means of a population which evolves according to a stochastic,
discreet and nonlinear process turned out to have such a great success to lead, in
a few years, the development of another even more successful method: the particle
swarm optimization [15].

2.2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a metaheuristic algorithm based on the
concept of swarm intelligence that is appropriate to optimize continuous nonlinear
functions. The method comprises a very simple concept implemented in a few lines
of computer code which requires only primitive mathematical operators; thereby, the
algorithm is computationally inexpensive in terms of both memory requirements and
speed [16].

The origins of the method date back to early of 1990s, when several studies
regarding the social behavior of animal groups, such as flocks and shoals, were
developed. These studies showed that some animals belonging to a certain group are
able to share information among them [3]. Inspired by these works, James Kennedy
and Russell Eberhart proposed in 1995 the Particle Swarm Optimization algorithm
that emulates the interaction between members to share information [17].

PSO has roots in two main component methodologies. Perhaps more obvious
are its ties to artificial life in general, in particular to swarming theory, but it is
also related to evolutionary computation, having ties to both genetic algorithms and
evolutionary programming [18].

Two paradigms, both implementing the swarm concept, have been proposed
in that work: one globally oriented and the other one locally oriented, which were
initially denominated respectively “Gbest” and "Lbest" algorithms by the two authors.
The former was the most successful one by far but, to be precise, the one proposed in
1995 is the inertial version of the "Gbest" algorithm but, over the years, a lot of other
forms have been proposed as variations of that classic formulation. For instance, the
linear-decreasing of the inertia weight is is nowadays the most common and robust
formulation of the globally oriented version. Besides variations in the method itself,
hybrid models or even quantum inspired approach optimization techniques have been
applied to PSO [3].

Interest and research in PSO have been significant because since the outset tests
found the implementation to be effective with several kinds of optimization problems
and in combination with other existing algorithms [17].

In the following paragraphs, only the "Gbest" algorithm is take into consideration,
being the state-of-the-art form of particle swarm optimization, namely the simplest
one and the most basic to understand better other derivations [3].
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The Concept

This method performs the search of the optimal solution through particles whose
trajectories are adjusted by a stochastic and a deterministic component [17]. The
system is originally initialized with a random population of P particles, which are
randomly assigned also the initial velocities. The particles are then “flown” through
the domain and each keeps track of its coordinates in hyperspace which are associated
with the best solution (fitness) it has achieved so far. The position vector with that
fitness is stored and it’s called pbest, while the best solution itself correspond to
f(pbest). Another “best” value is also tracked since the "global” version of the
particle swarm optimizer keeps track of the overall best value; its location, obtained
thus far by any particle in the population is called f(gbest). The concept consists
of, at each time step, changing the velocity (accelerating) each particle toward its
pbest and gbest. Acceleration is weighted by a random term, with separate random
numbers being generated for acceleration toward pbest and gbest [16].

The Structure

The diagram in Figure 6, which shows the flowchart of the algorithm, might help
in order to understand the logical thread of the procedure. The whole population is

Figure 6: PSO flowchart.
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initially made up by an array of P particles with random positions and velocities
having n dimensions. For each particle the objective is evaluated and the pbest is
initialized with a copy of the first population of particles. The gbest is initialized
with a copy of the position which has the best fitness.

After this first evaluation, the iterative cycle starts and it goes on until a stopping
criterion is satisfied. For each particle the velocities are updated according to

V t+1 = w · V t + C1 · rand1 · (pbest − X t) + C2 · rand2 · (gbest − X t). (10)

The above equation denotes that there are three different contributions to a particle’s
movement affected by five different parameters.

The parameter w is named inertia weight and it reveals important for balancing
the the overall motion of the population; in fact, we can say that the algorithm
exploits a global search (also known as exploration) when higher values are set, while
it turns into a local search (known as exploitation) when lower values are chosen.
Velocity update equation’s first term is a product between parameter w and particle’s
previous velocity, which is the reason it denotes a particles’ previous motion into the
current one. Hence, for example, if w = 1, the particle’s motion is fully influenced
by its previous motion, so the particle may keep going in the same direction. On
the other hand, if 0 ≤ w < 1, such influence is reduced, which means that a particle
rather goes to other regions in the search domain. Therefore, as the inertia weight
parameter is reduced, the swarm may explore more areas in the searching domain,
which means that the chances of finding a global optimum may increase. However,
there is a price when using lower w values, which is the simulations turn out to have
an higher computational time [3].

One may notice that the value of wit is one of the main differences between the
inertial formulation of PSO, where it is a positive constant value, and other versions
derived from it. In the linear-decreasing formulation it is linearly decreased in the
course of the iterations; starting from high values to low values it promotes a global
exploration in the beginning while it turns into a local exploitation during the last
iterations, which is quite logical because at the end of the routine particles should
be converging towards the region in which the best solution is probably found [3].

The individual cognition term, which is the second term of Equation 10, is
computed by means of the difference between the particle’s own best position, pbest,
and its current position X. One may notice that the idea behind this term is that as
the particle gets more distant from the pbest position, the difference pbest − X t

must increase; therefore, this term increases, attracting the particle to its best own
position. The parameter C1 existing as a product in this term is a positive constant
and it is an individual cognition parameter, and it weighs the importance of particle’s
own previous experiences. The other parameter that composes the product of second
term is rand1, and this is a random value parameter with [0, 1] range. The role
played by the random parameter is quite important, as it increases the most likely
global optima avoiding premature convergences [3].

Finally, the third term is the social learning one. Because of it, all particles in
the swarm are able to share the information of the best point achieved regardless of
which particle had found it, for example, gbest. Its format is just like the second
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term, the one regarding the individual learning. Thus, the difference gbest − X t

acts as an attraction for the particles to the best point until found at some iteration.
Similarly, C2 is a social learning parameter, and it weighs the importance of the
global learning of the swarm. And rand2 plays exactly the same role as rand1 [3].

Figure 7: Each particle’s position is updated according to the three contributions: 1)
w · V t; 2) C1 · rand1 · (pbest − X t); 3) C2 · rand2 · (gbest − X t).

After calculating the new velocities, each particle’s position is easily updated as

X t+1 = X t + V t+1. (11)

Considering both Equation 10 and 11, Figure 7 illustrates the updating process
of a particle’s position in a bi-dimensional problem with variables x1 and x2. The
arrowhead of the new position vector X t+1

i has to stay inside the rhombus formed by
the two vectors C1(pbesti − X t

i ) and C2(gbesti − X t
i ) because of the two random

parameters with [0 1] range.
After the positions have been updated, for each particle the objective is evaluated

and compared with the previous best personal value; in this way, if f(X t+1
i ) <

f(pbestt
i) then it becomes pbestt+1

i = X t+1
i . The same evaluation is made with the

previous global best: if in the present iteration there is a particle i in the position
X t+1

i such that f(X t+1
i ) < f(gbestt), it will be gbestt+1 = X t+1

i [16].
If the termination criterion of the iterations has been appropriately selected, once

it has been achieved, the population of particles has converged into a small region of
the domain where the best solution is located; the optimum found by the algorithm
is given by f(gbest) and its position is stored in gbest.

The Constraints

Implementing an optimization problem often requires to consider some design
constraints. Specific constraints on optimization variables are practically always
present, but other general design constraints are growing in demand since design
optimizations are becoming more and more articulated.
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Constraints on variables are basically defined once the domain of the optimization
routine is set. Most of the times in real engineering problems, each variable may
require to be investigated within range that must be established in advance by the
designer. Thus, the original PSO algorithm has to be modified to include dynamic
maximum velocity function and bouncing technique to enhance particles to remain
within the defined domain. Forcing the speed to remain within a maximum value is
really useful for avoiding particles to get straight to the boundaries. On the other
hand, the bounce method is used to bounce inside the domain again particles that
have escaped from the boundaries [19]. This technique, which allows the algorithm
not to loose any particle, includes more than one possibility to choose the position
in which the particle has to be returned: randomly, by reflecting and by damping
are three different bouncing techniques. These latter and other two possibilities are
illustrated in Figure 8.

Figure 8: Different techniques to treat particles going beyond the boundary [20]:
(a) for absorbing boundaries the velocity of the particle is zero and the particle is
stopped at the boundary; (b) for reflecting boundaries the sign of the velocity is
reversed and the particle is reflected back to the search space after the impact; (c)
for invisible boundaries the particle is allowed to escape the boundary of the search
space and is ignored by the fitness evaluator; (d) for damping boundaries part of
the velocity is absorbed by the boundary during the impact and the particle is then
reflected back with a lesser velocity of a reversal of sign.

When dealing with real engineering issues, the design might require, apart from
more than one objective to be optimize, other constraints; they are particular
conditions that have to be verified in order to obtain an acceptable solution. In that
case, not only fitness functions must be taken into account during the optimization
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algorithm. Considering what we have seen before, we are allowed to call simply
boundaries the constraints on variables, while from now on constraints are the design
specifications given by functions which must be evaluated without being optimized.
In principle the optimization algorithm, even before finding optimal solutions, must
take care that solutions satisfy the constraints; if they can’t be met, no fitness
function will matter [19].

In the specific case of PSO by making a small adjustment the algorithm will
be able to perform a research method which considers the constraints. The two
following rules are the key point of the modification that must be introduced in the
algorithm [19]:

• in particles in which constraints are not satisfied, the constraints become part of
the objective function; this means that the discrepancy between the evaluated
value and the required limit value is numerically evaluated and minimized.
In this way particles are moved towards regions which are closer to meet the
constraints with respect to others. Basically it is the same concept applied
when minimizing the real objective function.

• particles respecting constraints are better than ones which don’t.

In particular, these two rules directly affect the way pbest and gbest are defined.

2.2.2 Multi-Objective Optimization

Multi-objective optimization is an integral part of optimization activities and has a
tremendous practical importance, since almost all real-world optimization problems
are, in addition to being nonlinear, ideally suited to be modeled using multiple
conflicting objectives [21]. It has been applied to many fields of science and engi-
neering; more commonly in the latter applications, designers are making decisions
between clashing objectives, such as maximizing performance while minimizing fuel
consumption and emission of pollutants of a vehicle. Similarly, in the field of electrical
machinery, efficiency and cost represent two conflicting targets [22].

Due to lack of suitable solution techniques, the classical means of solving such
problems were primarily focused on artificially converting multiple objectives into
a single-objective optimization (SOO) problem. The difficulty of finding a single
optimum solution arose because such problems give rise to a set of trade-off optimal
solutions (known as Pareto optimal solutions). However, after that, the evolutionary
assets have been to solve a multi-objective optimization problem as it is. This means
that it becomes important to find not just one optimal solution, but as many of
them as possible. In this way, any two such solutions constitute a trade-off between
the objectives, namely, one is better in terms of one objective, but this betterment
comes only from a sacrifice on the other objectives. In this sense, all such trade-off
solutions are optimal solutions to a MOO problem and only the users, in the face of
entirely practical considerations, will be in a better position to make a choice [21].

For better approach MOO problems, two types of plots are needed. The first one
depicts the design space and it illustrates graphically the optimization variables; in
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the simplest case, only two optimization variables affect the problem and the plane
will be described by x1 and x2, as depicted in Figure 9(a). It might be used to plot
the isolines of the objective functions as well as to display the value of the variables
yielding the Pareto front. Moreover, this chart can be useful to visualize any kind of
boundary on the variables, as depicted by the dotted lines in Figure 9(a). On the
other hand, criterion space, also called objectives space, can be depicted whit axes
identifying the objective functions. Again, in the easiest case represented by Figure
9(b), only two fitness function are investigated and the plane will be described by
the axes f1 and f2. Constraints and boundaries of x1, x2, ...xn can be translated into
the criterion space as well, by solving them in terms of f1, f2, ...fn even though this
last step is often of no practical use [22].

(a) (b)

Figure 9: Multi-objective optimization work spaces: (a) design space, with upper
(U) and lower (L) boundaries represented by the dotted lines; (b) criterion space.

The concept of correct design can thus be summarized through two elementary
concepts [22]:

• Attainability: each point in the design space can be mapped to a point in the
criterion space, nonetheless the opposite may not be true. In fact, we are only
interested in the attainable points in the criterion space, namely, those which
can be linked to a point in the design space. With regard to Figure 10, they
are the blue and the red dots; on the contrary, the green dot cannot be linked
to any couple of parameters in the design space.

• Feasibility: More easily, the feasibility of a design means that no constraint is
infringed in the design space. Still looking at Figure 10, the blue dot is the
only one which meet both the constraints, namely it stays within the design
boundaries.

Before introducing the Pareto approach, a few methodologies of studying a MOO
problem by turning it into a SOO one are briefly introduced.
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Methods with Articulations of Preferences

Since a primary goal of multi-objective optimization is to model a designer’s
preferences, these methods are categorized depending on how the designer articulates
these preferences: methods with a priori articulation of preferences or methods with
a posteriori articulation of preferences. As discussed earlier, by specifying some
preferences, the MOO is converted to a SOO problem, leading to a single solution
[22].

Articulating preferences a priori may be enunciated in terms of goals or the relative
importance of different objectives. Most of these methods incorporate parameters,
which are coefficients, exponents, constraint limits, and so on, that can either be set to
reflect designer preferences and be continuously altered. The two most representative
are illustrated below [22]:

• The weighted-sum method is the simplest and most common approach; it easily
combines multiple objectives into one single-objective scalar function, as

f(X) =
N∑︂

i=1
wi · fi(X), (12)

with
N∑︂

i=1
wi = 1, (13)

where wi are the weight values, set by the decision maker, which generally
reflect the relative importance of the N objectives. The designer may either
set wi to reflect preferences before solving the problem or methodically alter
them to yield different optimal points; in fact, involving weights in this way,
can be either used to generate a single solution or multiple solutions.

• Another possible approach comes from the possibility to minimize the “distance”
to an ideal utopia point f(0) in the objectives space. The new objective f ′ to
be minimize, can be represented as follows:

f ′(X) =
N∑︂

i=1
wi · (fi(X) − fi(0)), (14)

where fi(0) is the utopia value for the ith objective function.

Methods with a posteriori articulation of preferences are needed when it’s difficult
for the designer to express preference a priori. Several methods belong to this category
and also, in a MOO problem, applying the genetic algorithm is often considered a
posteriori method [22].

Non-Dominated Solutions and Pareto-Optimal Solutions

The idea of Pareto optimality, summarized by the shape of the Pareto front itself,
can be easily appreciate in the criterion space noticing that, for any point on the
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front, an objective function cannot be further reduced without increasing the other
objective function. Therefore, it becomes evident that a point in the feasible design
space is called Pareto optimal if there is no other point in the set that reduces at
least one objective function without rising another one. It is big to note that the
Pareto optimal set is always on the boundary of the feasible criterion space [22].

Most multi-objective optimization algorithms use the concept of domination. In
these algorithms, two solutions are compared on the basis of whether one dominates
the other or not. Assuming any number of objective functions, the following def-
inition covers mixed problems with minimization of some objective functions and
maximization of the rest of them. A solution X1 is said to dominate the other
solution X1 if both the following conditions are true [21]:

1. The solution X1 is no worse than X2 in all objectives;

2. The solution X1 is strictly better than X2 in at least one objective.

Let us consider a two-objective optimization problem with five different solutions
shown in the objective space, as illustrated in Figure 10(a). Let us also assume that
the objective function 1 f1 needs to be maximized while the objective function 2 f2
needs to be minimized. Since both objective functions are of equal importance to us,
it is usually difficult to find one solution which is best with respect to both objectives.
However, by using the above definition of domination, it is possible to decide which
solution is better among any two given solutions in terms of both objectives. For
example, comparing solutions 1 and 2, we observe that solution 1 is better than
solution 2 in both objective function 1 and 2. Thus, both of the above conditions
for domination are satisfied and we may write that solution 1 dominates solution 2.
We take another instance of comparing solutions 1 and 5. Here, solution 5 is better
than solution 1 in the first objective and solution 5 is no worse (they are equal) than
solution 1 in the second objective. Thus, both the above conditions for domination
are also satisfied and we may write that solution 5 dominates solution 1. Since the
concept of domination allows a way to compare solutions with multiple objectives,
most multi-objective optimization methods use this domination concept to search
for non-dominated solutions [21].

Continuing with the comparisons in the previous section, let us compare solutions
3 and 5 in Figure 10(a). We observe that solution 5 is better than solution 3 in
the first objective, while solution 5 is worse than solution 3 in the second objective.
Thus, the first condition is not satisfied for both of these solutions. This simply
suggests that we cannot conclude that solution 5 dominates solution 3, nor can we
say that solution 3 dominates solution 5. When this happens, it is customary to say
that solutions 3 and 5 are non-dominated with respect to each other because both
objectives are of equal importance. For a given finite set of solutions, we can perform
all possible pair-wise comparisons and find which solution dominates which and
which solutions are non-dominated with respect to each other. At the end, we expect
to have a set of solutions, any two of which do not dominate each other and also,
for any solution outside of this set, we can always find a solution in this set which
will dominate the former. Thus, this particular set has a property of dominating all
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(a) (b)

Figure 10: Criterion space of a two-objective optimization problem: (a) set of five
solutions; (b) corresponding non-dominated fronts, or levels.

other solutions which do not belong to this set. In simple terms, this means that the
solutions of this set are better compared to the rest of the solutions. This set is given
a special name. It is called the non-dominated set for the given set of solutions. In
the example problem, solutions 3 and 5 constitute the non-dominated set of the given
set of five solutions. Thus, we define a set of non-dominated solutions as follows:
among a set of solutions, the non-dominated set of solutions are those that are not
dominated by any member of the set. When the set is the entire search space, the
resulting non-dominated set is called the Pareto-optimal set. Like global and local
optimal solutions in the case of single-objective optimization, there could be global
and local Pareto-optimal sets in multi-objective optimization [21].

Finding the non-dominated set of solutions from a given set of solutions is similar
in principle to finding the minimum of a set of real numbers. In the latter case, when
two numbers are compared to identify the smaller number, a ‘<’ relation operation
is used. In the case of finding the non-dominated set, the dominance relation can
be used to identify the better of two given solutions. Here, we discuss one simple
procedure for finding the non-dominated set (we call here the best non-dominated
front). Many MOO problems, apart from requiring to find the best non-dominated
solutions of a population, may require to sort a population according to different
non-domination levels. When the above concept is applied to the five solutions of
Figure 10(a), we obtain three non-dominated fronts as shown in Figure 10(b). From
the dominance relations, the solutions 3 and 5 are the best, followed by solutions
1 and 4. Finally, solution 2 belongs to the worst non-dominated front. Thus, the
ordering of solutions in terms of their non-domination level is as follows: ((3,5), (1,4),
(2)) [23] [21].

2.3 Design of Experiments
Design of experiments (DOE) is a methodology that can be considered a branch of
applied statistics, which deals with planning, conducting, analysing, and interpreting
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controlled tests to evaluate the factors that control the value of a real function.
DOE is a powerful data collection and analysis tool that can be used in a variety
of experimental situations. DOE have been widely used to understand systems and
improve designs. For many designed experiments, the available region is a known
hyperspace (or hyperdomain) [24].

2.3.1 Sampling

Sampling is used worldwide in computer modeling related to performing safety
assessments, manufacturing equipment and designing; in the latter case, it became
particularly successful combined with optimization schemes [25].

(a) (b)

Figure 11: Cumulative distribution functions of a variable: (a) general type; (b)
continuous uniform type.

Latin Hypercube Sampling

The latin hypercube sampling (LHS) is a statistical method for generating a
near-random sample of parameter values from a multidimensional distribution. Its
uses a stratified sampling scheme to improve the coverage of the input space. The
stratification is accomplished by dividing the vertical axis on the graph of the
distribution function F (x) of a random variable xj into N non-overlapping intervals
of equal length, where N is the number of computer runs to be made (number
of samples). The distribution function describing an experiment where there is
an arbitrary outcome that lies between certain boundaries which are defined by a
maximum xjU and a minimum xjL value for each variable is of continuous uniform type.
Through F −1(x), these N intervals divide the horizontal axis into N equiprobable,
but not necessarily equal-length, intervals. Thus, the x-axis has been stratified into
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Sample Variable 1 Variable 2 Variable 3

1 0.1805 0.0020 0.9883
2 0.2774 0.3561 0.8703
3 0.6829 0.4889 0.4681
4 0.8772 0.9742 0.6576
5 0.0564 0.7591 0.5492
6 0.9689 0.6405 0.0914
7 0.7077 0.2738 0.2738
8 0.5570 0.8397 0.3199
9 0.3815 0.5289 0.1971
10 0.4095 0.1778 0.7071

Table 1: Values of 10 LHS samples of a three-variable domain with [0 1] [0 1] [0 1]
boundaries [26].

N equiprobable and non-overlapping intervals, as represented in the two different
cases of Figure 11. The next step in the LHS requires the random selection of a
value within each of the N intervals on the vertical axis. When these values are
mapped through F −1(x), exactly one value will be selected from each of the intervals
previously defined on the horizontal axis [25].

The content of Table 1 represents an example of sample matrix S resulting from
the MATLAB function ”lhsdesign”; it is a N × n matrix whose columns contain the
LHS for each variable xj that are randomly chosen within the intervals. After that,
a random process is required to ensure a random ordering of the values within each

Figure 12: Three variable domain sampled with LHS method, according to Table 1
[26].
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Figure 13: 2D section of the LHS distribution of variables 1 and 2 according to Table
1 [26].

column of the matrix. Figure 12 represent the sample distribution of Table 1 in a 3D
space [26], while Figure 13 helps to figure out how the variables are homogeneously
sampled.

This structure ensures that the entire range of every input variable dominating the
model response, is completely covered. This means that a single sample will provide
useful information when some input variables dominate certain responses while other
input variables dominate other responses. By sampling over the entire range, each
variable has the opportunity to show up as important. If an input variable is not
important, then the method of sampling would be of little or no concern [25].

Random Sampling and LHS

Simple random sampling enjoys widespread use in simulation applications, so it is
important to compare it with LHS. One way to do this is to compare the variability of
estimates obtained from the two procedures. Let x1 and x2 be to independent input
variables for a computer model. Using order statistics, the expected probabilistic
coverage of the joint input space x1 and x2 under random sampling for a sample of
size N is given as (︃

N − 1
N + 1

)︃2
. (15)

On the other hand, LHS requires that one value be selected from each of the
extreme intervals. Using the expected values from these intervals gives the expected
probabilistic coverage of the joint input space for two variables under LHS for a
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sample of size N as (︃
N − 1

N

)︃2
. (16)

For n ≥ 2 the expression in Equation 16 is always greater than the expression in 15,
so LHS can be expected to provide better probabilistic coverage of the input space
than a simple random sample [25].

2.3.2 Surrogate Model

A surrogate is a function that approximates an objective function. Most engineering
design problems require experiments or simulations to evaluate objectives and con-
straints of the design, which are both functions of the design variables. However, a
single simulation or experiment can take hours, or even days to complete; in this way,
a surrogate becomes useful because it takes little time to evaluate. For instance, an
algorithm that looks for a point that minimizes a fitness function can be simply based
on the evaluation of the surrogate on thousands of points. Thereby, the outgoing
best value is an approximation of the real objective function and, for this reason,
one must be careful that the achieved solution is enough accurate [27].

The most popular and easy modeling approach in order to construct the surrogate
is polynomial response surface (PRS). The PRS uses a linear polynomial to approx-
imate the objective and the coefficients are determined through an experimental
evaluation. The general equation of a surrogate quadratic model with the PRS
method is

fs(X) = β0 +
n∑︂

i=1
βixi +

n∑︂
i=1

n∑︂
j=1

βijxixj, (17)

where xi is the i-th component of the n-dimensional position vector and β0, βi and βij

are the parameters that have to be estimated which can be arranged in an appropriate
order to form the column vector β [28].

Response Surface Methodology

One of the most commonly used experimental designs for constructing surrogates
is the response surface methodology (RSM). The method was introduced by George
E. P. Box and K. B. Wilson in 1951. The main idea of RSM is to use a sequence
of designed experiments to obtain an optimal response of the surrogate function.
More precisely, the RSM is a statistic technique to make an approximate response
surface model with results obtained through experiment or simulation to express
the experimental relation of design variables with the objective as a mathematical
equation, namely the surrogate function [5].

Firstly, we have to choose the range of boundaries fort the input variables, or
factors, and it is wise not only to try extreme values. First of all, because in some
cases extreme values result in runs that are not feasible; moreover, extreme ranges
might move one out of a smooth area of the response surface into some jagged region,
leading to low accuracy. Secondly, the number of levels of the experimental design
must be defined. Experiments are run at different variable values, called levels. Each
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run of an experiment involves a combination of the levels of the investigated factors.
For instance, the standard layout for a 2-level design uses +1 and −1 notation to
denote the "high level" and the "low level" respectively, for each variable as shown
in Table 2. However, a two-level factorial design cannot estimate quadratic effects
between two points as a three-level does, thus it easily becomes too rough for practical
applications [29].

x1 x2

-1 -1
+1 -1
-1 +1
+1 +1

Table 2: Two-level full factorial design of a two-variables problem [29].

Quadratic response surfaces models, as described by Equation 17, can be calibrated
using full factorial designs with three or more levels for each factor, but these
designs generally require more runs than necessary to accurately estimate model
parameters [30]. Table 3 shows how a three-level full factorial design quickly becomes
unacceptable, in terms of runs, as the number of variables investigated increases.
The last column in Table 3 shows the number of terms present in a quadratic model
for each case, excluding the term β0. This problem was the motivation for creating
’fractional factorial’ designs [29].

Number Run Number of coefficients
of variables combinations for quadratic model

2 9 6
3 27 10
4 81 15
5 243 21
6 729 28

Table 3: Three-level full factorial design [29].

The next two paragraphs discuss designs for calibrating quadratic models that
are much more efficient, using three or five levels for each factor, but not using all
combinations of levels, namely a ’fractional factorial’ design [30].

The Box-Behnken design (BBD) is an independent quadratic three-level design,
in which the run combinations are at the midpoints of edges of the process space and
at the center. With reference to Figure 14, in a three-variable space, the geometry of
this design suggests a sphere within the process space such that the surface of the
sphere protrudes through each face with the surface of the sphere tangential to the
midpoint of each edge of the space [29].

A Box-Wilson central composite design, commonly called central composite design
(CCD), contains an embedded factorial or fractional factorial design with center
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Figure 14: Run combinations of a three-variable BBD [31].

points that is augmented with a group of ’star points’ that allow estimation of
curvature. If the distance from the center of the design space to a factorial point is
±1 unit for each factor, the distance from the center of the design space to a star
point is |α| > 1. The precise value of α depends on certain properties desired for the
design and on the number of factors involved. Depending on where the star points
are placed, there are three varieties of central composite designs: circumscribed,
inscribed an faced (or face centered). Only the latter, the face centered design, is
taken into consideration. In it, the star points are at the center of each face of the
factorial space, so α = ±1. This variety requires three levels of each factor.

Table 4 contrasts the structures of the methodologies above discussed. In both
cases, the center points are run more times to allow for a more uniform estimate of

Figure 15: Run combinations of a three-variable CCD faced [31].
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the prediction variance over the entire design space.

BBD CCD

x1 x2 x3 x1 x2 x3

-1 -1 0 -1 -1 -1
-1 +1 0 -1 -1 +1
+1 -1 0 -1 +1 -1
+1 +1 0 -1 +1 +1
-1 0 -1 +1 -1 -1
-1 0 +1 +1 -1 +1
+1 0 -1 +1 +1 -1
+1 0 +1 +1 +1 +1
0 -1 -1 -1 0 0
0 -1 +1 +1 0 0
0 +1 -1 0 -1 0
0 +1 +1 0 +1 0
0 0 0 0 0 -1
0 0 0 0 0 +1
0 0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Table 4: Structures of three factors BBD (15 runs) and CCD (20 runs) [31] [32].

2.3.3 Clustering

Clustering is the task of grouping a set of items such that items in the same group
(cluster) are more similar to each other than to those in other groups. It is commonly
used for analysing data instances which do not include any class attribute, hence
the need to group them together using the concept of "maximizing the intraclass
similarity and minimizing the interclass similarity". Thus, this translates to the
clustering algorithm which identifies and groups instances which have a higher
measure of similarity, as opposed it separates instances which are much less-similar
to one another. The analysis itself, in fact, involves applying one or more clustering
algorithms with the goal of finding hidden patterns [33]. If such homogeneous groups
are found, these may be named and their attributes be defined; one can choose either
the group mean as the representative prototype of instances in the group or the
possible range of attributes [34].

The easiest form of clustering is partitional clustering, which goal is to partition
a given data set in such a way that a specific criteria are optimized. At this point,
there are many clustering criteria that can be performed, but the most widely used
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one is the clustering error criterion which computes the squared distance between
each point and the corresponding cluster center, taking into account the sum of
these distances for all the points. The most well-known method for minimizing the
clustering error is the k-means algorithm, which is discussed in the next paragraph
[35].

The k-means Algorithm

The k-means algorithm finds locally optimal solutions with respect to the clus-
tering error. It is a fast iterative algorithm that has been used in many clustering
applications. It is a point-based clustering method that starts with the cluster centers
(centroids) initially placed at arbitrary positions and proceeds by moving at each
step the cluster centers in order to minimize the clustering error [35].

The procedure follows a simple and easy way to classify a given data set (generally
called particles or points) through a certain number of clusters (assume k clusters)
fixed a priori. The main idea is to define k centroids, one for each cluster. These
centroids should be placed in a smart way because of different location causes different
result. So, the better choice is to place them as much as possible far away from each
other. The next step is to take each point belonging to a given data set and associate
it to the nearest centroid. When no point is pending, the first step is completed and
an early grouping is done. At this point we need to re-calculate k new centroids as
barycenters of the clusters resulting from the previous step. After we have these
k new centroids, a new binding has to be done between the same data set points
and the nearest new centroid. A loop has been generated and two corresponding
iterations are shown in Figure 16. As a result of the entire loop we may notice that
the k centroids change their location step by step until no more changes are done. In
other words, convergence is achieved when centroids do not move any more. Finally,
we can say that this algorithm aims at minimizing an objective function, in this case
a squared error function. The objective function J , also known as clustering error, is

J =
k∑︂

i=1

n∑︂
i=1

||x(j)
i − cj||2, (18)

where ||x(j)
i − cj||2 is the squared Euclidean distance metric between a data point xi

and the cluster centre cj , n is the number of data points in the jth cluster. Minimizing
J simply means to assign each point to the cluster with the nearest centroid [36].

Thereby, the algorithm is composed of the following steps [36]:
1. Place k points into the space represented by the particles that are being

clustered. These points represent initial group centroids;

2. Assign each particle to the group that has the closest centroid;

3. When all objects have been assigned, recalculate the positions of the k centroids;

4. Repeat steps 2 and 3 until the centroids no longer move. This produces a
separation of the particles into groups from which the metric to be minimized
can be calculated.
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Figure 16: K-means algorithm. The data set of particles are shown as dots, and
cluster centroids are shown as crosses: (a) Original dataset; (b) random initial cluster
centroids; (c-f) illustration of running two iterations of k-means. In each iteration, we
assign each particle to the closest cluster centroid (shown by "painting" the training
examples the same color as the cluster centroid to which is assigned); then we move
each cluster centroid to the mean of the points assigned to it [37].

Although it can be proved that the procedure will always terminate, the k-means
algorithm does not necessarily find the most optimal configuration, corresponding
to the global objective function minimum. In fact, the k-means algorithm is a local
search procedure and it is well known that it suffers from the serious drawback that
its performance heavily depends on the initial starting conditions. In other words,
the main disadvantage of the method lies in its sensitivity to the initial randomly
selected cluster centres. Therefore, in order to obtain near optimal solutions using
the k-means algorithm several runs must be scheduled differing in the initial positions
of the centroids [35] [36].

Choosing the number of cluster represents another fundamental aspect; given any
k, the algorithm will always find k centers whether they are fixed or not. There are
various way in order to establish the k number [34]:

• In some applications k is defined;

• The maximum allowed distance (namely the maximum clustering error per
cluster or total) may also be set;

• Plotting data may be helpful to visualize the structure of data;
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• Validation of the groups can be done manually by checking whether clusters
actually code meaningful groups of the data or not.
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3 Research Methodology
In this chapter, the entire design procedure is described step by step. Before
introducing the content of each section, the logical thread is introduced according to
the five stages diagram in Figure 17.

According to the design theory outlined in Section 3.1, starting from certain
established characteristics and parameters, we can perform a theoretical design
procedure and obtain a first geometry of the machine, as represented in the starting
block.

Although the analytical modelling and design of SPMSM machines have been
formalized by many authors in the last decades, such models are typically used
during the preliminary design stage. They are obviously based on hypothesis and
approximations in order to simplify their modelling and restrict the design space
dimension. Consequently, the design procedure of such machines was conventionally
divided in two steps: first an analytical model is used to carry out a preliminary design
and then a Finite Element Analysis (FEA) is employed to evaluate the design aspects
disregarded in the first stage The number and the influence of such neglected aspects
depend on the accuracy and on the initial hypothesis of the employed analytical model.
But in recent works, the analytical design procedures assisted by FEA coupled with
optimization algorithms have been presented as an alternative of the two steps design
procedure. Those design strategy do not make use of any hypothesis and therefore
have the advantages of considering all the design aspects during the performance
evaluations [4].

Figure 17: Flowchart of the entire full design procedure.

Therefore, the first approach might be to couple the optimization algorithm
directly with the FEA but the weakness of such methodology lies on the computational
burden required to carry out the optimization. The latter depends on two factors:
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the computational time required to evaluate the performance of a single machine
candidate and the number of functional evaluations needed by the optimization
algorithm to converge to the optimal solutions. Several methodologies and techniques
have been presented in literature in order to decrease the computational burden of
the whole optimization, the key issue of design optimization [4].

In this work, the design of a 160 kW SPMSM is faced adopting an optimization
methodology based on surrogate functions. In particular, the optimization design is
conducted using the Box-Behnken design, which is a response surface method [5].

Moreover, this work proposes a clustered surrogate-assisted optimization in which
several small clusters (or subdomains) are first created by the clustering algorithm
and then local surrogate functions are built for each cluster. Finally, in each cluster,
the local surrogates assists the optimization algorithm searching for optima. The
clustering technique leads to certain important design benefits that will be further
discussed; despite that, it will also cause an increase of the computational burden
[38].

To wrap it all up, the analytical design procedures is assisted by a FEA which is
coupled with a multi-objective optimization algorithm conducted using the surrogates
built for every clusters. If we look at the flowchart, this proposed optimization design
methodology, which comes after the preliminary design, is represented by the three
rectangular action blocks inside the blue rectangle.

The set of procedures which aims to divide the initial domain into several small
clusters, is investigated in Section 3.2. Section 3.3 describes the construction of the
surrogate functions. After that, the implemented optimization algorithm is discussed
in Section 3.4. Finally, optimal points coming from the design optimization are
evaluated by means of the FEA and in Section 3.5, as meant by the ending block of
Figure 17.

As previously anticipated, this work suggests an outset investigation of the entire
starting domain in order to find the most suitable regions that can fulfill some specific
project requirements and, as a consequence, lead the design to better results.

Figure 18: Overview on the design stages that need a FEM simulation.

As shown in Figure 18, three stages of the whole design process need finite element
method (FEM) simulations; thus, some general information about the employed 2D
FEM software and its routines are given in Section 3.6. You must always keep in
mind that almost the whole computational time of the entire design stays in the
finite element simulations.
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In order to proceed with the FEM simulation, the software needs to receive as
input a set of parameters (mostly concerning electrical and geometrical characteristics
of the machine). These input data (or input parameters) are computed starting from
a set of defined variables. Section 33.7, introduces these optimization variables and
analyse the contents of the analytical routine implemented to calculate of parameters
asked by the software.

From now on, as far as we are concerned, it is essential to distinguish between:

• Variables: They are the starting point of the analytical assessments; we may call
them optimization variables, or even input variables. These are the variables
employed in the optimization routine, thereby, surrogates need to be need to
be built upon them.

• Parameters: They are the results assessed by the analytical calculations and, in
this work, it is worthwhile to refer to them as input parameters or input data.

3.1 Design Theory of Surface Permanent Magnet Synchronous
Machine

The step by step procedure outlined in this section is designed in particular for
the analytical evaluation of a three-phase synchronous motor with rotor surface
permanent magnets [14].

3.1.1 Initial Data and Choice of Materials

The type of machine and construction are primarily defined (synchronous motor with
rotor surface permanent magnets in our case), after that, the design of the machine
begins considering some fundamental characteristics, which are [7]:

• Rated power.

• Rated speed.

• Rated frequency.

• Number of pole pairs.

• Rated voltage of the machine.

Different kind of circumstances impose the choice of all the mentioned features which
are clarified in the outset and that will affect the further calculations without the
possibility of being changed. The number of phases m and the rated line-to-line
voltage U , for instance, usually depend on the features of the system in which the
machine has to be installed. On the other hand, the rated power P together with
the rated speed n represent two design specifications governed by the purpose that
the machine must achieve. Rather, number of polar pairs p and frequency f deserve
a separate discussion: in fact, since it would be necessary to adhere to the speed
specification, choosing an adequate number of polar pairs could be not sufficient to
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achieve a working frequency congruent to the one of the power supply network. They
are directly correlated as stated in Equation 1 and for this reason it could become
necessary to install a frequency converter to couple the machine with the grid. Even
though a good frequency converter is fundamental to achieve the best sinusoidal
shape of the voltage supply and to avoid harmonics injection in the net, it will not
be discussed since it is irrelevant for the final purpose of this work [7].

The choice of the materials, which could be considered the first real trade-off
between performances and cost, is governed by circumstances of every kind. Since the
procedure later requires a FEM simulation, it is necessary that the materials selected
for these calculations can be implemented within the software. Regarding this work,
the two materials which need particular attention are the permanent magnet and
the ferromagnetic material of the core.

According to what has just been stated, the chose permanent magnet is the
Neorem model 495a, a sintered NdFeB magnet developed by the same name company
[39]; the demagnetization curves for different temperatures are illustrated in Figure
19.

The laminated material for the core regions comes from the Cogent company
and it is a fully processed electrical steel with a sheets thickness of 0.50 mm, called
M700-50A [40]. The characteristic of the peak magnetic field strength with the peak
magnitude polarization at 50 Hz is shown below in Figure 20.

The designer must make sure that they can work under certain conditions with
particular attention to temperature, environmental conditions and mechanical stress.
Undoubtedly, the study of the thermal regime represents one the most difficult but
fundamental challenge of the design, in order to have temperatures as accurate as

Figure 19: Typical demagnetization curves B(H) and J(H) at different temperatures
[39].
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Figure 20: B-H curve of M700-50A at 50 Hz.

possible to make sure that materials work under the right conditions and also to
develop a reliable design. Nevertheless, since these concerns do not fall within the
goals of the research, the temperature of the rotor is fixed at 100 ◦C, whereas the
stator, including the windings, it’s supposed to work at the temperature of 90 ◦C.

3.1.2 Main Dimensions, Air Gap and Stator Windings

The term “main dimensions” refers to the equivalent core length l′ and the air gap
diameter (or inner stator diameter) Ds. Investigating the field diagram of the ends
of the machine, like the one proposed in Figure 21, it is possible to figure out the
influence of proximity to the edge in the flux density. This latter decreases gradually
to zero along the axial coordinate but, in the first part, it remains approximately
constant and it participates in the torque production; this is what the effective length
of the machine takes into consideration. Moreover, since in the case of the SPMSM
it’s important to get a sufficient magnetic flux, it is recommended that the permanent
magnet axial length lrP M must be greater than the stator core one l. In order to
achieve a good flux density even towards the end of the air gap δ, it has been proved
that it must be at least

lrP M = l + 2δ. (19)

As far as the above considerations concern us, we’re allowed to consider the equivalent
core length of the machine equal to the effective axial length of the permanent magnets.

The tangential stress in the air gap σF tan acting upon the rotor surface is the
responsible of the torque T generation. It depends on the local linear current density
A, on the local flux density B and on the phase shift between the two fundamentals
of them. The tangential stress, which value has been selected according to Table 6.4
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Figure 21: Orthogonal field behaviour at the end of the machine [8].

[7], gives the starting point for the design and it defines the size of the rotor, thus
the rotor volume Vr in accordance with the desired torque T

T = P

2πn
, (20)

as evidenced by
T = 2σF tanVr. (21)

By creating a system between

Vr = 1
4πD2

r l′, (22)

which is an empirical relationship for standard synchronous machines with more than
one pole pair, and

l′

Dr

= π

4p

√
p, (23)

it is possible to determine the equivalent core length and the outer diameter of the
rotor.

The air gap width comes from practical considerations which, over the years,
have been brought together to provide some empirical equations depending on the
power and on the characteristics of the machine that, in our case, led to

δ = 0.18 + 0.006P 0.4

1000 . (24)

After this first evaluation, for heavy duty machines, the air gap is usually increased
about 60%. Since in this machine no cooling channel is planned, it is immediate to
obtain the inner diameter of the stator with

Ds = Dr + 2δ (25)
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and the effective length of the stator and rotor core with

l = l′ − 2δ. (26)

Following, all parameters concerning the stator winding are determined. As a first
remark, a two-layer integral slot it’s chosen so that it is possible to take a winding
pitch W multiple of the single stator slot pitch τu, but shorter than the stator pole
pitch τp, as it is schematically depicted by Figure 22. This practical technique helps
in order to reduce harmonic content of the air gap flux density, producing a more
sinusoidal distribution of the current linkage.

Figure 22: Winding step shortening [8].

Once the number of slots per pole and phase q is chosen, the total number of
stator slots Q can be easily determined by

Q = 2pmq. (27)

To get a first estimation of the number of coils turns in a phase winding N it’s
necessary to estimate the maximum value of the rectangular flux density Bmax. Table
6.2 [7] provides some typical peak values of the fundamental air gap flux density
B1peak, which differs from the amplitude of the rectangular flux density given by the
PMs. The latter is calculated in relationship to the Fourier series of a rectangular
wave and basically it depends on the relative magnet width αP M ; as this last one
increases the amplitude of the rectangular wave decreases in order to obtain the same
fundamental value (first harmonic), in agreement with Figure 23 and the following
equation:

Bmax = πB1peak

4sin
(︂

αP M π
2

)︂ . (28)

The winding factor of the fundamental kw1 and, consequently, the number of coil
turns in series in a phase winding are affected by the short pitching. It is reasonable
to deduce that as the winding pitch decrease the winding factor decrease as well,
which can be more precisely pointed out by the following formula:

kw1 =
2 sin

(︂
π
2 W

)︂
· sin

(︂
π

2m

)︂
Q

mp
sin

(︂
π P

Q

)︂ . (29)

Reducing the winding pitch, also affects the number of coil turns, as evidenced by

N =
√

2EP M

ωkw1αP MBmaxτP l′ , (30)
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Figure 23: Different values of αP M require different amplitudes of rectangular flux
densities to get an equal first harmonic.

where the induced voltage EP M is assumed to be

EP M = U√
3

. (31)

The last parameter about the stator winding to be figure out is the number of
conductors in a slot zQ, that has to be an even number in a two-layer winding;
choosing a suitable number of parallel paths a can help, as it can be appreciated by

zQ = 2amN

Q
. (32)

The number that results must be rounded to the nearest even number and then used
to calculate the new value of coil turns, which will consequently result integer as well.

3.1.3 Tooth Width and Stator Slot Dimensions

To keep the induced voltage EP M unchanged, the Bmax needs to be changed in
accordance with the new number of coils turns in series, as can be established from
Equation 31, by using

Bmax new = zQ non rounded

zQ rounded
Bmax old. (33)

The apparent flux penetrating the slot pitch Φsd is

Φsd = Bmaxl′τu (34)

and once the apparent tooth flux density Bd is given, with reference to Table 6.2 [7],
it is possible to determine the tooth width bd considering that between two sheets of
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iron there’s a little insulation layer, described by the space factor kF e. The equation
is given by

bd = Φsd

kF elBd

(35)

and Figure 24 shows a cross-section of the stator tooth useful to appreciate the
previous formulas. The real tooth width should be incremented by 0.1 mm in order
to take into consideration that the punching process influences the crystal structure
of the iron, decreasing the permeability near the cut.

For defining the stator slot dimensions, an estimation of the stator current Is is
needed

Is = P

m U√
3ηcosϕ

; (36)

nevertheless, it can be quite coarse since both the values of the efficiency η and power
factor cosϕ are defined in the initial design stage. For calculating the area of one
single conductor Scs the following is used

Scs = Is

aJs

, (37)

in which Table 6.3 [7] can be employed to set the stator current density Js. The
value of the wound area of the stator slot SCus is now given by

SCus = zQScs

kCus

, (38)

where kCus is the copper space factor of the slot due to insulation between conductors
and between conductors and iron.

The choice of the stator slot shape starts with having some fixed dimensions
concerning precisely the insulation layer that separates the conductors from the iron.
Afterwards, all the others dimensions are obtained according to geometrical formulas
with some important cautions, that will be discussed in detail in the Subsection 3.7.
The designer must manage to find a shape in accordance with number of conductors,
number of layer winding, insulation layers and so on, especially taking into account
the wound area previously calculated.

3.1.4 Height of Yokes and Permanent Magnets

The flux penetrating the air gap and the teeth section Φm is

Φm = αP MBmaxl′τP (39)

and it is divided into two equal parts at the stator and rotor yokes. From the following
two equations it is possible to deduce the height of the stator yoke hys and rotor
yoke hyr with

hys = hr = Φm

2kF elByoke

. (40)
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Figure 24: Cross-section of a stator tooth [8].

The maximum flux density of the yokes Byoke can be selected in accordance with
Table 6.2 [7]. When calculating the height of the permanent magnet, we must
consider that the total magnetic voltage Umtot must be equal to the current linkage
of the permanent magnet Hc · hP M , as summarized by the following equation:

Umtot = Hc · hP M = Umδ + Umts + UmP M + 1
2Umys + 1

2Umyr. (41)

Each component of the total magnetic voltage, illustrated in Figure 25, must be
calculated separately by calculating the line integral of the magnetic field strength
along the path. For instance, the magnetic potential difference Umys over the whole
stator yoke has to be determined by integrating between the two poles of the stator
yoke integration path. Once all the heights are known, it is easy to determine the
outer diameter of the stator Dse and the rotor core outer diameter Dyri.

All the geometrical dimensions of the machine have now been defined; next,
electrical characteristics are investigated.

3.1.5 Resistance and Inductances Calculation

Windings are usually made of copper and the conductivity of commercial copper
wire, at room temperature of 20 ◦C, is σCu = 57 · 106 S/m and it varies with the rise
temperature Θ as follows

σCu = σCu20◦C

1 + ΘαCu

. (42)
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Figure 25: Ideal integration path line, indicated by the thick black dotted line, for
the calculation of magnetic voltages in a two pole SPMSM [8].

The temperature coefficient of the copper resistivity is αCu = 3.81 · 10−3 K−1. An
accurate definition of the winding length is a fairly difficult task but preliminary
calculations can be made by applying empirical equations. The average length lav of
a coil turn of a slot winding lav of low-voltage machines is given approximately as

lav = 2l + 2.4W + 0.1. (43)

The DC resistance of a phase winding R can be finally estimated with

R = Nlav

σCuaScs

, (44)

which takes into account the effective section of the conductors together with the
number of coils turns in series in a phase winding and the number of parallel paths.

Referring to the theoretical aspects underlined within the Subsection 2.1.3, in a
multiphase winding the d-axis magnetizing inductance Lmd of a three-phase machine
can be calculated with the following:

L[md] = m

2 · 2
π

· µ0 · l′ · 1
2p

· 4
π

· τP

δef

· (kw1 · N)2, (45)

where δef is the effective air gap, which considers also the reluctance of the iron.
Due to the symmetrical structure of the machine in question, the q-axis magnetizing
inductance Lq is equal to the d-axis one.



56

Figure 26: Clustering procedure illustrated step by step.

On the other hand, the leakage inductance of a machine can be calculated as the
sum of the following partial different leakage inductances, as shown in Subsection
2.1.3:

• Air gap leakage inductance.

• Slot leakage inductance.

• Tooth tip leakage inductance.

• End-winding leakage inductance.

3.2 Clustering Process
Once the theoretical design is completed, all the geometrical aspects are defined
so that the initial geometry of the machine can be characterised. Before involving
the design optimization procedure, which starts with the clustering process here
discussed, it becomes fundamental to choose the optimization variables, which will
be fully examined in Section 3.7. For now, it is enough to know that, in order to
proceed with this stage of the design, the optimization variables are required. In
particular, the input information of the optimization process consist in the upper and
lower boundaries of each variable; that means, an n-dimensional domain is inspected
in the design, and final results can only stay within this one.

The clustering process is analysed with reference to the scheme outlined in Figure
26, which denotes the various steps to follow before getting the final clusters.

3.2.1 Latin Hypercube Sampling

The latin hypercube sampling ensures a homogeneous distribution of the candidates
within the starting hyperdomain. What is executed in this step is schematically
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shown in the two tables of Figure 27, which shows at first the inputs, namely the
domain boundaries, and then the outputs of the LHS function, namely the candidates.

It can easily be deduced that the choice of the number of candidates c represents
an important trade-off between carefulness and computational cost. In fact, a large
number guarantees a denser sampling and consequently it is more likely to identify
regions with better features; on the other hand, we should remember that for each
candidate a FEM simulation is carried out. This makes the computational time of
this step quite relevant; therefore, increasing too much the amount of candidates
may lead to a depreciation of one of the most important matters in the proposed
design methodology.

Figure 27: Inputs and outputs of latin hypercube sampling.

3.2.2 Candidates Selection

In order to proceed with the selection of candidates, it is fundamental to choose the
subjects, or criteria, of this preliminary investigation within the domain. Basically,
there have to be certain relevant features for the design that, in case they were not
met somewhere inside the domain, would lead to the possibility to exclude a priori
those regions from the search of optimums.

To make the concept easier, it is worthwhile to mention directly the criteria that
have been chosen for this task. As one may also notice from Figure 28, these are the
efficiency, the output power and the power factor. These operating conditions must
pursue some project targets and, consequently, the design optimization could be
made more effective by looking for optimal solutions only in the zones of the domain
next to the promoted candidates.

3.2.3 Clustering

The candidates which pass the selection step are most probably scattered within the
initial domain so it becomes necessary to group them before proceeding with the
design. At this point, clustering means nothing more than grouping the promoted
candidates and creating smaller domains.

The clustering algorithm takes into account the space distribution of the promoted
candidates and, in a very illustrative way, one could say that the ones close to each
other have more chances to be aggregated in the same cluster.
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Figure 28: Example of a candidates selection in a n-dimensional domain based on
certain specified selection criteria.

So far, it was said that employing LHS together with a selection step allows to
create clusters that will focus the design towards better regions. But there is another
fundamental advantage that deserves to be considered: in fact, clustering itself was
firstly planned in order to increase the accuracy of the design. To figure out this
point it is necessary to look at the the next stage: the construction of surrogate
functions. Without waiting for the results, that will confirm what is about to be
said, one might immediately understand that the smaller the domain, the more its
surrogate functions will be able to represent accurately the functions they are called
to replace.

So, the number of clusters represent another important trade-off, this time between
accuracy and computational cost. Similarly as before, a high number of clusters
implies an improved precision of surrogate functions because smaller subdomains
will come up. Differently, the computation time would increase because each cluster
demands the construction of its own surrogate functions and further a new optimum
analysis.

3.3 Construction of Surrogates
Once the clustering has been carried out, to each of the cluster we must assign, in
the best way we are granted, the functions that will replace certain "real" operating
conditions implemented in the optimization routine. Obviously, we never know the
real operating status of the machine and by "real" it is simply meant the ones arising
from the FEM simulation. It is worth wile to mention, as an example, the functions
required by this specific work: efficiency, output power and power factor.

Quadratic functions are chosen to characterize the evolution of the surrogates, as
depicted in Equation 17. During the optimization process, starting from position
vectors X given by the particles, surrogates can be easily computed once β coefficients
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are defined. Basically, building surrogates means to calculate a set of coefficients for
each demanded function in each domain.

Figure 29: Example of a matrix system with 10 samples and a three variables domain.
Each variable is represented by the second number of the subscript, while the first
number one refers to the sample: Xs = [xs_1, xs_2, ...xs_n]

It is done by defining a system of equations, which can be more easily seen as a
matrix system, as illustrated in Figure 29. Each cluster is sampled accordingly with
Box-Behnken methodology, which provides the group of samples within the defined
boundaries; then, the sample matrix S is built still according to Equation 17. Each
sample is computed by the software and the arising results f are represented in the
right side vector. At this point, the surrogation coefficients can be calculated by
inverting the sample matrix and calculating

β = S−1f. (46)

The number of lines in the sample matrix depends on the applied RSM because
performing a different sampling method will also result in a different number of
samples; on the other hand, columns reflect the grade of the surrogate functions.
Both the number of lines and columns are obviously affected by the number of
variables n of the problem.

3.4 Optimization
At this point, boundaries and surrogate functions are known, now it is time for
the multi-objective optimization process itself, which will lead to a set of optimal
solutions for each cluster.

In order to provide the final solutions, this stage employs:

• PSO, that is responsible for the way the population evolves looking for opti-
mums.

• Pareto concept, that defines the way objectives are processed, namely how
optimal solutions are chosen.
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The design constraints, representing conditions that the machine must achieve, are
considered bot within the PSO and Pareto algorithms. First of all, we can say that
they differ from objectives because they just need to be respected, without being
optimized. Again, to simplify the analysis, let’s take immediately into considerations
the features which have been examined in this work.

Constraints are output power P and power factor cosϕ, both evaluated by means
of surrogate functions. It is clear that solutions must satisfy some requirements both
in therms P and cosϕ which have to be known by the designer. For instance, it is
reasonable to assume that an electric motor may require output power values within
a certain range and, at the same time, a power factor above the minimum required
by the power network.

Objective functions are efficiency and cost; the latter was chosen not to be
evaluated by means of a surrogate. The choice is clearly evident both in terms
of convenience and in terms of accuracy. Firs of all, one more surrogate function
increases the complexity of the routine and the computational time; besides that,
by using the same analytical calculations that will be illustrated in Section 3.7, it is
possible to calculate it without requiring extra effort. This is achievable because, in
this work, only materials are taken into account for the cost computation so, once all
the geometrical aspects of the machine are found, the price required by each part of
the machine can be estimated by multiplying its volume by the price per unit volume
of that specific material. Some reliable prices of NdFeB magnets and electrical steel
are given in Table 5.

Material Price range in euro/m3 Price range in euro/kg

NdFeB magnet 235000 ÷ 253000 31.8 ÷ 33.7
Electrical steel 5210 ÷ 5550 0.668 ÷ 0.702
Copper 6 ÷ 7

Table 5: Price ranges of the three main materials employed in a SPMSM construction.
The electric steel and the permanent magnet prices have been provided by some
manufacturers [41] [42], while the price of copper can be found in the live stock
market of materials [43].

3.4.1 Multi-objective Optimization Routine

The process carried out by the routine in the optimization stage is explained with
reference to the diagram in Figure 30. Firstly, as depicted by the figure, there are
some parameters characterizing the whole process that need to be established. These
are:

• The PSO parameters (inertial, cognitive, social).

• The number of particles of the PSO population.

• The number of iterations of the routine.
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• The dimension of the archive.

The number of particles and iterations represent a critical trade-off within the
optimization stage. Excessively high values result in a significant increase in the
execution time of the routine and, at the same time, may also prove to be redundant.
However, a low number of particles and iterations can lead the optimization process
not to converge.

Figure 30: Optimization process scheme: the three main progression steps of the
population evolution are shown in capital letters inside the three action blocks.

The archive is nothing more than the place where the best solutions so fare are
located, being updated iteration by iteration. Basically, a big archive result in a high
number of solutions that will need to be checked after the optimization stage. The
following paragraphs describe the evolution of the routine.

Initial Population

At first, the whole population has to be initialized. A Latin Hypercube Sampling is
performed to ensure a homogeneous distribution of particles within each cluster. This
can help in order to and avoid certain areas from remaining unexplored, improving the
convergence of the algorithm. Instead, the first population of velocities is randomly
chosen keeping in mind that speeds are assigned a maximum limit.

Exploration

The population of particles is moved by means of the PSO algorithm. As we
might know from the theory in Section 2.2.1, each particle moves according to three
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components. The inertia coefficient is decreased is kept constant while the others
two are not, according to the values originally set in the algorithm that was provided
[19]. The personal best of each particle is chosen in agreement with the concept of
domination, showed in Subsection 2.2.2; in addition, we must remember that every
position respecting the constraints dominates all the ones that do not respect them,
whatever the value of the objectives. The global best is the same for the entire
population and it is randomly chosen within particles in the archive belonging to the
first Pareto level. In this way, as shown in the scheme, the archive is exploited by
PSO for the exploration [23].

Archive

Since a finite number of solutions may be part of the archive, criteria must be
given to determine how it has to be filled. First of all, particles that do not respect
the constraints should not even be taken into consideration. Secondly, particles
which stay in the lowest Pareto levels are given more importance, which means
that particles that belonging to high levels are gradually discarded as the archive is
updated.

3.5 Design Assessment
Once the entire optimization design (that includes clustering, surrogation and op-
timization) is concluded, a number of optimal solutions are obtained in the final
archive, for each cluster. However, the Pareto fronts arising do not refer to FEM
simulation directly because the design process employs surrogate functions. As a
result, it is known that a design based on surrogate optimization is affected by error.

At this point, it is necessary to check the "real" machine’s operating conditions of
optimal solutions in the final archive. To have surrogate conditions verified, a FEM
analysis is carried out and the same FCSMEK software is exploited.

In practice, in a real design situation, it is crucial to have the highest accuracy in
predicting the operating conditions of the machine, since it might required to choose
a solution for the production.

In this work, this stage is employed to appreciate the mismatch between surrogate
results and FEM ones. Thus, the same surrogates which have been provided by a
RSM and exploited during the optimization algorithm must be verified. Therefore,
by considering this specif task, it is reasonable to proceed in this way:

• Firstly, the efficiency of each particle in the final archive resulting from the
FEM simulation is analysed. Rather, there is no need to worry about the
cost because it is certainly not affected by error. The mismatch between the
surrogate efficiency and the one arising from the software may lead the designer
not to consider certain points in the final archive, in case they do not belong
to the Pareto front of the FEM solutions.

• Secondly, but not less important, power factor and output power arising from
the software simulation have to be verified as well; optimal solutions that do
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not meet these constraints have to be discarded.

The two items can also be applied in the opposite way, namely by first searching for
points that meet the constraints and then taking the dominants.

Figure 31 illustrates these two considerations, with reference to a a general process
of surrogate Pareto optimization. Plotting the objectives space in the two cases, as
illustrated in Figure 31(a), can help in order to visualize the discrepancy between
the FEM outcomes and the surrogate Pareto front.

Moreover, different types of error analysis can be employed to have an idea about
the goodness of the evaluation by means of the surrogate functions for each cluster.
This is useful for a designer in order to characterize the accuracy of the design
optimization methodology; such methods for the error computation are presented in
Appendix A.

(a) (b)

Figure 31: Design assessment of a surrogate multi-objective optimization with a
FEM software. Blue solutions come from surrogate optimization, while red ones
correspond to their FEM simulations. Two passages are required: (a) points crossed
with "X" have to be discarded because, applying Pareto, they are dominated; (b)
points crossed with "X" do not respect both the design constraints, thereby only
points circled in red pass the final design selection.

3.6 Introduction to FCSMEK
FCSMEK is a collection of routines for 2D finite element electromagnetic analysis
of synchronous or asynchronous radial flux machines, based on the solution of the
magnetic vector potential. The tool, programmed in FORTRAN, was developed as a
result of the research conducted by Antero Arkkio in his thesis [44]. Some of the
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Figure 32: Flowchart of the FCSMEK routines execution.

most significant routines are briefly introduced below, in the same order in which
they are performed for this work, as shown in Figure 32.

The software demands a set of machine input parameters, which can be easily
computed by means of a MATLAB script and then, after being converted in the
appropriate data format, copied in the data file folder which is read by the software
at the beginning of the simulation.

MESH generates a 2D mesh with finite elements for the cross-sectional geometry
of the machine. The program itself will deduce the smallest symmetry sector; on the
other hand, the user has the possibility to choose the order of the finite elements as
input from terminal [45][46].

In SYDC, the calculation of the operating characteristics of the synchronous
machine is based on the solution of a DC field. The circuit equations for the stator
winding are constructed based on a two-axis model solved together with the field
equation. From the static FE solution, the program is able to obtain the initial
stat the initial state for the time-stepping simulation. In order to provide all the
necessary for the FEM computation, also the temperature of the rotor and stator
are requested as input parameters of this routine [45][46].

CIMTD correspond to the time-stepping finite element analysis for the syn-
chronous machine. The circuit equations for the stator winding, field winding and
damping cage are solved together with the field equation in each time step; the rotor
rotates during the simulation. The routine requires as input data the information
concerning the time-stepping [45][46].

Once the finite element analysis is completed, a post-processing study can be
conducted by means of four routines [45][46]:
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• teho: program for computing effective and average values for operating charac-
teristics from the results of the time-stepping program CIMTD.

• curplot: program for plotting machine characteristics computed by the CIMTD
routine as function of time.

• cimplot: program for generating plots of flux, flux-density and iron-loss distri-
butions.

• cimpiir: program for plotting finite element meshes created by program MESH.

In this task, the computation of the electromagnetic losses is performed through
the time-stepping simulation, thus the optimization design methodology uses data
outcoming from the CIMTD routine.

However, losses computed from a SYDC analysis, which computationally takes
much less time, must not deviate too much from the time-stepping ones and they
could be helpful to get a first check of the machine characteristics.

3.7 Analytical Calculations
The purpose of the analytical calculations, performed within the homonym routine,
is to assess all the parameters of a SPMSM, both geometrical and electrical, starting
from the defined set of optimization variables. These calculation steps represent
a fundamental crossroads between the design theory of electric machines and the
optimization.

Even though it is not directly visible in the diagram of Figure 17, this routine is
engaged in several circumstances as shown in Figure 33. As we can see, it is mostly
employed to generate input data required by the software for the simulation.

Observing the figure, begin blocks suggests the "status" of the variables, i.e.:
candidates arising from LHS, samples employed by RSM and final archive solutions.
On the other hand, end blocks in the right side mean directly the stage in which
analytical calculation are required; in fact, they match the left side blocks of the
diagram of Figure 17.

The routine is exploited also during the optimization stage; We have seen that
the cost only depends on materials and geometry of the machine which, in fact, can
be determined by the same calculations.Thus, when particles are moved through the
cluster, analytical calculations allow to determine the value of the second objective
function.

Before analysing the procedure with the analytical calculations it is worth to
make some considerations on the collection of parameters required by the software
employed for this task.

Table 6 shows all the parameters that need to be defined for the FEM simulation,
namely input parameters, in the specific case of this work. As may be seen, during
the entire design process parameter can be established at different times and in
different ways. As reported in the right column, parameters can be:
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Parameter Type

Machine type Outset
Number of poles Outset
Supply frequency Outset
Number of phases Outset
Length of the stator core Design choice
Length of the rotor core Design choice
Outer diameter of the stator Design choice
Filling factor of a stator slot Design choice
Number of parallel paths Design choice
Stator winding layers Design choice
Winding pitch Design choice
Stator slots shape Design choice
Rotor poles shape Design choice
Stator core material Design choice
Stator slot wedges material Design choice
Permanent magnet material Design choice
Rotor core material Design choice
Rotor shaft material Design choice
Stator winding material Design choice
Air gap width Variable
Stator tooth width Variable
Inner diameter of the stator Variable
Length of permanent magnets Variable
Height of permanent magnets Variable
Relative width of permanent magnets Variable
Rotation angle of the rotor Variable
Stator winding temperature Estimated
Rotor temperature Estimated
Effective length of the machine Calculated
Number of stator slots Calculated
Number of conductors in a stator slot Calculated
Stator slot dimensions Calculated
Outer diameter of the rotor Calculated
Inner diameter of the rotor Calculated
Average length of a coil Calculated
Resistance of a stator phase Calculated
End-winding reactance Calculated
Moment of inertia of the rotor Calculated

Table 6: Input data collection required by the software; all the possible missing
dimensions of the machine depend and can be obtained from the above ones.
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• Fixed in the outset: they are characteristics defined by the project requirements
or by the plant in which the machine has to be installed.

• Free: they are the variables on which the entire design methodology is based.

• Fixed for design choice: they depend on choices made by the designer depending
convenience and availability.

• Estimated: only the temperatures in our case are estimated, since no study
about the thermal regime will be carried out.

• Calculated: these parameters depend on the design methodology, namely on
the theoretical procedure used as reference, implemented in the analytical
routine and they are derived from the calculations.

In machine design, there are a considerable number of possible free parameters
and, when looking for an optimal solution, the choice becomes extremely complicated
[7]. Free parameters, in design optimization, become no other than the optimization
variables. Increasing their number, besides raising the computational time, can lead
to some geometrical or electrical incongruities because certain parameters dependent
on each other; this issue is the reason why theoretical calculations are needed.

3.7.1 Routine for Analytical Calculations

Starting from outset parameters, choices made by the designer, temperature estima-
tions and optimization variables the routine allows to define the whole geometry of
the machine. The procedure refers to the same design theory illustrated in Section
3.1.

Firstly, all the initial characteristics and materials are implemented in the algo-
rithm, as in Section 3.1.1. Apart from that, some geometrical parameters are chosen
to be fixed design choices in order to meet a secondary target which was, in this
specific task, the space occupied by the machine. They are stator outer diameter
and machine length, both provided by the theoretical design calculations.

Figure 33: Stages where analytical calculations are employed.
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After some outset assessments, the routine computes the main dimensions of the
machine and the winding parameters with the same equation given in Section 3.1.2.
The main challenge in this step is to properly approximate the number of conductors
in a stator slot, since in a two-layer winding it has to be an even number.

Figure 34: Shape of the stator slot.

After that, all the stator slot dimensions are figured out by taking into considera-
tion the observation made in Section 3.1.3. In order to build a correct geometry, it
is necessary to respect the limit of the stator current density, which is determined
in accordance with the required stator current that is, in turn, set with regard to
the chosen working conditions. The cross section area of the copper is consequently

Figure 35: Main dimensions in the stator slot.
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constant and represents the geometrical starting point of the slot design; it is also
reasonable to fix it if we consider to use the same wire whatever the final geometry of
the machine is. The chosen shape of the stator slot is illustrated in Figures 34, while
Figure 35 shows in details all the stator slot dimensions that have to be determined.
Certain dimensions are fixed a priori and they cannot change during the optimization
process. For instance, with reference to Figure 35, the size of the insulating layer
between conductors and iron h6 is kept constant and the slot separator h′ is assumed
to be null. The parameters which define the shape of the last part of the slot between
the air gap and the conductors, h1, h2 and b1 are preferred constant as well. At first,
the procedure allows to calculate b4c and then iterates in order to find the values of
h5 and b5c which give the same round value of the wound area previously computed.
After that, all the other dimensions and the total area of one slot are computed.

Figure 36: Shape of the rotor slot.

The size of the rotor yoke is computed as described in 3.1.4 and considering the
shape chosen for the rotor pole, illustrated in Figure 36. Since the initial estimation
of the number of turns was correlated to the maximum value of the rectangular flux
density, it is necessary to calculate the new value of Bmax derived from the new
number of conductor per slot. After that, the height of the rotor yoke is determined.

The latest calculation are intended to compute the resistance and the end-winding
leakage reactance, as depicted in Section 3.1.5.
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4 Results and Discussion
This chapter justify step by step the reasons why the methodology was developed
through graphs and practical analysis of the achieved results. Section 4.1 makes
some initial observations about the computational burden and the achievement of
convergence in the algorithm. Section 4.2 presents the improvements obtained by
applying clustering within the proposed methodology. Finally, Section 4.3 makes
some practical considerations which need to be taken into account when employing
the method.

4.1 Computational Burden and Convergence
The computational burden always represent one of the main issue for any kind of
design. As depicted by the previous chapter, the proposed methodology employs the
FEA, which constitutes the majority of computational burden in this work. The aim
of this section is to figure out how a different number of FEM simulations affects the
time required by the design.

In this chapter, three simple names will be used to identify as many different MOO
methods that one could perform, in order to characterize the different concepts. We
will simply call them method 1,2 and 3; the numbers indicate increasing complexity.
They can be summarized as follows:

1. PSO directly assisted by FEA;

2. PSO based on FEM assisted BBD (Subsection 4.2.1);

3. PSO based on FEM assisted clustered BBD (Subsection 4.2.2).

Obviously, the Pareto concept is considered to be employed in the same way. This
means that all the three methods use the same MOO routine with the same number
of iterations ITE, particles P and solutions in the archive DARC . Thus, different
design approaches leads to different number of runs as depicted in Table 7, in which:
NCLU is the number of clusters, S is number of run combinations (samples) of a
n-variable BBD (Table 8) and C is the number of the initial LHS candidates.

Method Number of computer runs

1 ITE · P
2 S + DARC

3 C + NCLU · (S + DARC)

Table 7: Number of computer runs required by the three methods. With reference
to 2 and 3.

Apart from the formulas, it is also worth looking at the examples given in Table 9.
In the latter numbers are given in the case of a time-stepping finite element analysis
(CIMTD) executed with FCSMEK. With the computer that was made available,
every single CIMTD routine required around 30 seconds. We must be aware that,
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Number of variables Run combinations

3 15
4 27
5 46
6 54
7 62
8 120

Table 8: Number of runs depending on the number of variables, or design factors, n
for a BBD.

although this time can change from machine to machine, the computational load
will vary in a proportional way for the three methods.

Regarding Table 9, some values have to be discussed so that we can say that
the choice of parameters in the left column is not random. The first row takes into
account a four-variable MOO, while the second one a six-variable MOO. Obviously,
the higher the number of optimization variables the more expensive the problem
becomes. For instance, in the second example it is reasonable to expect that an
higher number of particles is needed to find the region of convergence. In addition,
a large number of variables may also require more candidates for the initial LHS
exploration, more clusters and more solutions to be included in the archive.

As one may notice, coupling FEM directly with PSO becomes rather an expen-
sive demand in terms of running time; hence the choice is definitely to base the
optimization design on surrogate functions, as suggested by methods 2 ans 3. In
second place we might notice that employing clustering causes a slight increase in the
computational burden. However, the computational burden of the third still remains
largely sustainable compared to the first one. The following section will discuss the
advantages of clustering despite the small increase in time.

Example Method 1 Method 2 Method 3

ITE = 1000; P = 50;
S = 46; DARC = 50; 17 days 50 minutes 4 hours 5 minutes
C = 200; NCLU = 3

ITE = 1000; P = 100;
S = 62; DARC = 100; 34 days 1 hour 25 minutes 8 hours 45 minutes
C = 400; NCLU = 4

Table 9: Two different cases of computational burden required by a time-stepping
FEA performed with CIMTD routine in FCSMEK: first row with n = 4 and second
row with n = 6.

One key issue that deserves a little comment is the number of iterations. According
to theory, we must know that a non-dominated Pareto algorithm is able to establish
the level of each non-dominated front. Hence, it is reasonable to be satisfied once a
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good portion of the points in the archive belong to the first level. In this regard, it is
necessary to employ an algorithm able to show us the progress of the optimization
process, namely the level in which each particle is situated within the non-dominated
fronts. Obviously, the larger the size of the archive the longer it will take to
have a completely first level front in the same design space with the same routine.
Consequently, also the choice of the dimension of the archive is important. If it is too
large, it will slow down the algorithm and might also prove useless because several
solutions at the end would remain out of the first non-dominated front (unless we
choose a very high number of iterations). On the other hand, too few solutions in
the archive cannot cover properly the whole design space and the MOO study would
not be exhaustive.

Regarding the convergence of the algorithm, a further aspect which deserves to be
mentioned concerns the fact that the the entire set of optimal solutions arising from
an optimization process in one single domain should turn out to have close values
of the optimization variables. If this does not happen, it might that the particles
have not reached convergence in the design space. This has always occurred during
the work whatever the design domain was clustered or not and whatever was the
number of clusters. In practice, this means that all the optimum of the same final
archive figure out machines having very similar features. On the other hand, it is
quite obvious that each final archive is related to a region of convergence different
from all the others. This confirm that the employed multi-objective optimization
algorithm can applied in every domain (or subdomain) and it will always converge if
a sufficient number of iterations is set.

4.2 Optimization by Box-Behnken Design in a SPMSM
In this section the achieved results are shown by first observing the objective space.
In particular, the most interesting analysis comes from the comparison between the
Pareto front that emerges from the surrogate optimization and the FEM results
arising from the same solutions. In fact it is evident from the very beginning that it
may be too inaccurate to rely the conclusions exclusively on surrogate results, which
is basically the reason why a FEM assessment of optimal solutions is proposed in
the last stage of design. In this chart, the x-axis represents the cost which is directly
related to a specific geometry of the machine. In fact, when a solution is set in
the final archive its values of optimization variables are saved; they unequivocally
distinguish one and only one machine built from the variables by means of the
analytical calculation routine. In this way, the two points points (one surrogate and
the other assessed with FEM) referring to the same machine lie vertically to each
other because they have the same price, which depends exclusively on the geometry of
the SPMSM. Therefore, we are allowed to think that the cost identifies the machine
(this consideration is due mainly to the fact that the cost it is not surrogate).

After that another analysis must be carried out on constraints, which have to be
checked since they are surrogate as well. Still, the key point of the representation is
to notice how much surrogate optimal solutions differs from the FEM assessment
outcomes. It is no longer necessary to take the cost into account for this purpose, so
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each value in the x-axis simply represents a different machine.

4.2.1 Method Without Clustering

According to the previous section, we know that employing a RSM and build
surrogates allows to reduce very significantly the computational time. The first idea
that might to be taken into consideration is to apply the Box-Behnken design (which
is the chosen RSM four out task) to the entire domain of optimization variables.
Figure 37 illustrates both the Pareto front arising from the surrogate optimization
and the corresponding actual values of the FEM assessments. You can immediately
notice the discrepancy in values between the red and the blue curve, which is clearly
more than 1% in terms of efficiency. A second consideration can also be made: the
blue curve is no longer a Pareto front at all, being almost flat. Thus, from the blue
points of Figure 37 the designer could only consider the machine represented by the
first point on the left. In fact all the others, despite being more expensive, appear
to have more or less the same efficiency which basically means that many solutions
turn out to be no longer in the final Pareto front. As far as we are concerned, we
are allowed to call "final front" the one represented by the FEM assessed results.
Therefore, two rather negative aspects emerge in the objective space:

• The design is not accurate;

• The design is not worthwhile.

Moreover, it is not enough to look only at the efficiency given by FEM assessment
because the design requires also the machine to respect the constraints. Figures
38(a) and 38(b) shows what happens respectively in the case of the output power
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FEM assessment resultssurrogate optimal solutions

Figure 37: Comparison between the surrogate Pareto front and the results given by
FEM in the case of BBD applied in the entire design space.
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Figure 38: Constraints comparison between the surrogate solutions and the results
given by FEM with BBD applied in the entire design space: a) output power; b)
power factor.

and power factor. With regard to the output power, FEM computations are not too
divergent compared to the the surrogate results and we can just notice that the latter
are a little lower. On the other hand, the power factor is really bad evaluated by
surrogate functions. In fact, it turns out that almost all the optimal solutions have a
cosϕ between 0.82 and 0.86, which is quite different if compared to the surrogate
values which stays between 0.94 and 1.

Now, we should be aware that the last stage of the methodology requires to
discard all the points which do not meet the constraints. For this reason, it becomes
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practical at this point knowing which values could be required by the project. Just
for exemplification purpose, we can take into considerations the last row of Table 12
and by looking at Figure 38 we can see that there would be no suitable solutions for
the design; in particular, no point assessed with FEM respects constraints on the
power factor which was required to be at minimum 0.92. On the other hand, the
output power is evaluated by the surrogate with more accuracy and all the assessed
points stay within the required range of P , which was for this task.

In conclusion, it is evident that applying Box-Behnken design in the entire
variables domain, apart from being inaccurate and unprofitable for performing a
surrogate optimization study, could even reveal to be faulty. Thus, in general we
could see that this happens when applying a RSM in a design space that is too wide.
In fact, what happened with method 2 is that surrogate functions of cosϕ was so
much inaccurate that it did not lead to acceptable solutions on the entire final front.
It has to be clear that there are some project requirements on the machine (the
design constraints) which must necessarily be fulfilled to make it feasible.

4.2.2 Clustering-Based Method

The outcomes of the previous paragraph suggest the need to develop a different
methodology that can somehow restrict the design space in which the BBD has to
be applied. The first approach that one might perform is to split the starting design
domain in order to obtain smaller subdomains, which joined together form the full
domain. Then, in each of these subdomains a surrogate BBD followed by a surrogate
MOO study should be performed, leading to a number of final archives equal to
the number of subdomains. It can be deduced from Table 10 that this approach
would become quite expensive in terms of computational burden. Moreover, it would
certainly not be easy to manage too many solutions coming from the archives.

Number of Subdomains dividing each Subdomains dividing each
variables (n) variable in 2 parts (2n) variable in 3 parts (3n)

2 4 9
3 8 27
4 16 81
5 32 243
6 64 729
7 128 2187
8 256 6561

Table 10: Number of resulting subdomains dividing every optimization variable by
two and three.

Instead, by simply making use of clustering it can be obtained a design much
more selective and simplified. LHS followed by a selection of the candidates provide
the k-means algorithm a set of suited particles to be clustered. In this task, the
k-means clustering algorithm has been carried out four times in order to observe
what can be achieved with a different number of clusters, from 2 to 6.
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Figure 39: Surrogate optimal solutions in the final archive and corresponding FEM
of a six-cluster surrogate BBD. Objective functions in cluster number: a) 2; b) 4. P
in cluster number: c) 2; d) 4. cosϕ in cluster number: e) 2; f) 4.
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Figure 39 shows the same kind of charts as Figures 37 and 38 but this time, as it
has just been said, the optimization process is based on a BBD applied in different
clusters. Only the results arising from two out of six clusters are depicted. To be
precise, the results presented in the left column are taken from the second cluster,
while the right column refers to the fourth cluster. The most visible consequence
that one might notice is that the curves of the results arising from FCSMEK better
maintains the desired "Pareto shape", thereby the multi-objective study is worthwhile
and the target is reached. Moreover, by applying the RSM in a smaller design space
the error decreases, which implies that the working conditions are evaluated more
accurately by means of the surrogates. For instance, in Figure 39(a) the difference
between the two performed efficiencies is almost negligible, while Figure 39(b) shows
a discrepancy less than 0.1% which is still much better than the divergence of 1%
in method 1. In addition, also the design constraints are better evaluated with
clustering. In particular, Figures 39(c) and 39(e), which both refer to the same
cluster of 39(a), have very accurate surrogates since both P and cosϕ evaluated with
FCSMEK differ notably less than 1%. On the other hand, Figures 39(d) and 39(f)
confirm that the surrogate functions built on the fourth cluster are slightly more
inaccurate, in accordance to what occurs in Figure 39(b).

Conducting similar inspections to the ones above in all the clusters, whatever it
is the set number of clusters, it was observed that efficiency and power factor were
always evaluated at higher values by surrogates than the actual (FEM) ones, while
it did not happen systematically with output power.

4.2.3 Comparative Analysis of the Accuracy

At this point, in order to obtain a more detailed analysis, it is necessary to link the
accuracy of the surrogates to a certain feature of the clusters. One might immediately
think about comparing the size of the clusters, which aspect was actually already
anticipated in the observations that led to the development of the third method. In
particular, in each cluster the relative hypervolume has been computed. The concept,
which is explained in Appendix B, allows to get an idea of the size of the subdomain
compared to whole design domain.

Table 11 shows the comparison between the mean relative error (see Appendix
A) in the evaluation of surrogates efficiency, output power and power factor. One
might immediately notice that the hypervolume of the cluster heavily affects the
error. So now we have results proving that the dimension of the cluster is the most
important feature which affects the accuracy of Box-Behnken surrogate functions
within the cluster.

However, using the k-means algorithm we are not able to set a limit in the
dimensions. Thus, the only thing that we can do is to change the number of clusters
and by doing that we can be sure that also the dimensions of the the clusters will
change. It is quite logical to think that by choosing a higher number of clusters it
will be much more likely that they will be smaller on average; this is ensured by the
fact that promoted candidates that participate in clustering are always the same.

Note that in Table 11 the case study with five clusters presents only four results.
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In fact, it might happen that the optimization algorithm cannot reach any suitable
solution within one cluster. This occurs when in that specific subdomain no parti-
cle was ever in the condition of respecting both the constraints during the whole
optimization process, thus the archive has remained empty.

To better appreciate how the accuracy of surrogates improves using clustering
let’s take a look at the trends in Figure 40, where the standard deviation (STD) is
shown in relation to the relative hypervolume. As we can see from Figures 40(a) and
40(c), both the η and the cosϕ demonstrate a great enhancement in the application of
the methodology, if we compare the STD computed without clustering (which is the
one having relative hypervolume equal to 1). On the other hand, the surrogate output
power was already quite good accurate even without employing clustering, as one
might notice from Figure 40(b). Despite this result might contrast a little our thesis,
we can still figure out a positive trend observing Figure 41, which illustrates the STDP

without considering the non-clustered solutions. In fact, the chart distribution shows
that the possibility of obtaining an accurate surrogate function for P decreases very
quickly as the hypervolume increases. The same type of behavior can be observed
by zooming the bottom left part of graphs about STDη and STDcosϕ. .

Number of Relative MRE
clusters employed hypervolume η P cosϕ

1 1 0.011978 0.01793 0.15582
2 0.0096434 0.0014267 0.082046 0.056262

0.061697 0.0013388 0.11881 0.062877
3 0.0010169 0.00070619 0.069102 0.032988

0.012132 0.0021882 0.11367 0.08373
0.016796 0.0013786 0.10777 0.063842

4 9.1543e-07 0.00045885 0.025683 0.015805
9.4327e-06 0.00043031 0.05291 0.018511
0.00015375 0.0011096 0.069941 0.043503
0.013604 0.0014332 0.074238 0.050499

5 3.5531e-05 0.0010818 0.063628 0.042457
0.0015208 0.00051552 0.048239 0.023518
0.0027262 0.0013444 0.10662 0.061672
0.0049471 0.0015088 0.086538 0.066827

6 8.4813e-09 2.9994e-05 0.0012071 0.0016961
9.4327e-06 0.00043 0.052718 0.018438
1.0225e-05 3.4078e-05 0.0001819 0.00029961
0.0003225 0.0010498 0.05749 0.037945
0.0011033 0.0021456 0.10475 0.073802
0.0027155 0.001365 0.10968 0.063619

Table 11: Relative error of the three surrogate function in each cluster. Within each
case study, clusters are ordered in ascending order of relative hypervolume.
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Figure 40: Surrogate optimal solutions in the final archive and corresponding FEM
of a six-cluster surrogate BBD. Objective functions in cluster number: a) 2; b) 4. P
in cluster number: c) 2; d) 4. cosϕ in cluster number: e) 2; f) 4.

4.2.4 Achievements using the Clustering

In the first part of this paragraph we will try to figure out if, in addition to greater
accuracy, clustering has also revealed to find better optimal solutions. For this purpose
we must observe Figure 4.2.4 very carefully. The four charts present the results
arising from the five clusters with the same color. At first, in 42(a) surrogate clustered
solutions (green) are compared to the ones arising without employing clustering
(orange) in the criterion space. One might notice that most of the solutions given by
the BBD applied in the entire design space dominate the ones arising by employing
clustering. However, this does not happen in Figure 42(b) where this time the same
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Figure 41: Detail of Figure 40(b): STD of the surrogate output power that refers to
the design with clusters.

optimal solutions as before are represented with the results coming from the FEM
simulations. By having set the same scale in the two y-axis, one might notice at first
the greater reliability of a clustering assisted design. Apart from the this, Figure
42(b) shows that using clustering leads to better solutions, especially in terms of
efficiency. This last observation is important and allows us to say that employing
clustering within a surrogate optimization BBD leads not only to more accurate
evaluations, but might also helps to find better results.

Despite everything, one should also reply that by observing Figure 42(b) there
is no reason to exclude all the orange solutions because some of them, thanks to
the low coast, are not dominated by the blue ones. Nevertheless, we might also
remember the observations already made at the end of the paragraph which analyses
the method number 2: most of the orange points do not belong to the Pareto front
at all and none of them meet the design constraints once assessed with FEM.

Now, the weak points of the surrogate design must be considered. Thus, a simple
but efficient procedure, resuming with what has been said at the end of 3.5, is
illustrated in the last two charts in Figure 4.2.4. Starting by applying Pareto, the
designer must take into account only the solutions situated in the first non-dominated
front, namely the Pareto optimums. To make it easy, Figure 42(c) has taken from
Figure 42(b) only the points included in the first Pareto level, by simply applying the
concept of domination. After that, we know that only the FEM assessed solutions
meeting the required values of P and cosϕ will be finally considered. Therefore, from
Figure 42(c) to Figure 42(d) other points have been excluded.

In this task, once the whole design process has been performed, we have found a
set of optimal machines which satisfy the two project requirements of P and cosϕ.
The range of price goes approximately between 560 and 600 EUR, while the efficiency
stays between 97.4 and 97.7 %. When choosing the final solution for the machine,
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Figure 42: Comparison in the objective space of optimal solutions between not
clustered and five-cluster design with: a) surrogate efficiency; b) FEM efficiency.
Procedures which allow to achieve the final optimal solutions by considering the FEM
assessed results: c) removing solutions that do not belong to the first non-dominated
Pareto front; d) removing solutions which do not respect the design constraints.

it is the designer’s job to make posteriori evaluations on results depicted in Figure
42(d):

• If more concerned with efficiency, the choice would fall on the most right point;

• If more concerned about the price, the choice would fall on the most left point;

• If efficiency and cost still have no reason to be preferred to each other, a point
in the middle of the final front could be appropriate.
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4.3 Further Observations
This chapter illustrates some choices that have been made during the execution of
the routines.

During the process, several criteria must be defined, as depicted in Table 12. As
we might remember from Subsection 3.2.2 in the candidates selection within the
clustering process, also the efficiency was a criterion but it is not shown in the table
which refers only to constraints. The reason why the criteria in the initial stage were
made less restrictive is that particles which pass the selection are only supposed to
be located in regions with better features than others. Setting excessively restrictive
conditions in the first stage could lead to the exclusion of potentially very good
regions. In fact, it could be that a region of space which contains optimal points is
discarded because only low-performance samples within it are selected by the LHS.
In this way, one may agree that the more densely the initial domain is sampled, the
more restrictive the conditions can be imposed.

Stage Output power [kW] Power factor

Clustering 154 < P < 171 0.90
Optimization 160 < P < 165 0.94

Design assessment 160 < P < 170 0.92

Table 12: Constraints which have been chosen within the entire process.

Afterwards, still looking at Table 12, it is quite reasonable to assume that
constraints in the last stage are not the same as in the optimization one. It is
worth to give less prohibitive values in the optimization stage, expecting that FEM
results can turn out to be slightly different because of surrogation. It is important
to understand that the minimum required values that the final design cannot fail to
respect are the ones in the final assessment. For example, if we take into account
the results of the previous paragraphs, which arise from a five-cluster and six-cluster
surrogate design, no solution would satisfy a minimum power factor of 0.94 once
assessed with FEM.

Figure 43: Triangular mesh of the machine arising from the preliminary calculations.
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During the execution of the routine, many other numbers and parameter was
chosen. Regarding the FEA, a triangular mesh and linear elements were chosen. The
arising mesh is illustrated in Figure 43. Four periods were taken for the time-stepping
simulation, each one divide into three hundred time steps.

For the optimization process, around sixty thousand iterations were required in
order to obtain a first level Pareto archive with one hundred solutions.
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5 Conclusions
In this thesis, a clustering-based surrogate multi-objective optimization technique
has been developed. The method has been implemented in the design of a surface
permanent magnet synchronous machine. The operating conditions of the machine
were performed in CIMTD routine incorporation with the FEM solver software FC-
SMEK provided by Aalto University. All scripts, functions and plots were developed
in MATLAB, starting from the analytical design of the machine. Certain parameters
have been chosen to be the optimization variables of the design and, according to
the analytical results, the boundaries of the design space have been set. A latin
hypercube sampling was performed within the initial domain and only the candidates
which adhered the established design constraints were taken to the next step, namely
clustering. The latter was the main improvement, proved to have very positive and
significant consequences within surrogate optimization design. After the promoted
candidates have been clustered, a Box-Behnken design (which a response surface
methodology) was carried out for each cluster. BBD allowed to get different surrogate
functions within them: efficiency, output power and power factor. A multi-objective
particle swarm optimization algorithm, based on surrogates, was applied to solve
this problem by searching for the Pareto front. The two objectives of the task were
efficiency and cost (calculated based on materials), but within the process the design.
After having obtained a Pareto front for each cluster the optimal solution are run in
FCSMEK, giving rise to the actual results.

The application of a RSM has significantly reduced the computational burden of
the design. In fact, if we had coupled the optimization algorithm with FEM it would
have taken days to get the solutions every time.

The comparison between actual results and evaluations made by the surrogate
functions in the case of clustering-based design and non-clustered design allowed us
to draw many valuable conclusions, listed below:

• The accuracy increases when applying clustering. This has been explained by
the relationship between the surrogate error and the relative hypervolume of
the design space in which the RSM is applied. Also, we have seen how accuracy
of the surrogates might reveal crucial especially in the evaluation of the design
constraints; in the worst case, no feasible solution is reached.

• Good maintenance in the shape of the actual Pareto front when clustering is
applied. This leads to many more solutions being considered acceptable once
analysing the criterion space of actual results.

• The clustering-based design give rise to better actual results, which is still
mainly due to the greater accuracy.

In conclusion we must say that employing clustering within surrogate MOO allows
to have a design which is:

• Affordable in terms of computational burden.

• Accurate in the evaluation made by surrogate.
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• Worthwhile and feasible with respect to the final actual achievements.

Finally, there are several things that can be done to further develop the method.
For instance, to a improve the accuracy and the reliability of it, one might go into
deep with clustering methods. In fact, apart the k-means algorithm, many other
methodologies exist and could help in order to optimize the grouping and the number
of clusters. Other than that, the central composite design might also be tested in
the same way we have done with BBD.

Besides the method itself, there are many other relevant aspects that should be
enhanced to take this kind of design to the next level. For instance, it would be
possible and interesting to perform a multi-objective optimization study where both
the objective functions are surrogate. For this purpose, by employing FCSMEK one
may consider to build a surrogate of the torque ripple and minimize it, which is such
a demanded target in this kind of machines. Just to give some more ideas, a further
analysis that may be added in the design of a SPMSM is the analytical computation
of temperature of the permanent magnet. The thermal analysis always represent on
of the main issue in engineering and it is not really treated in FCSMEK, which just
ask for it as input parameter. Thus, since we have kept the temperature constant,
the next step should be to compute the temperature of the permanent magnet within
the analytical calculations and add it as design constraint.
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A Errors in Surrogates Functions
All the three types of errors that are illustrated in A.3, A.1 and A.2 are employed in
this work in order to find the discrepancy between the surrogate values and the actual
value of the function being represented by the surrogates. The first two are adopted
in a classical manner, while the third one needs to be observed in further detail
as its formulation deviates from the conventional criteria. They are all computed
referring to the optimal machines resulting in the final archive, which includes DARC

optimum.

A.1 Mean Absolute Error
The mean absolute error (MAE) measures the average magnitude of the errors in a
set of evaluations, without considering their direction. It’s the average over the test
samples of the absolute differences between surrogate and actual function where all
individual differences have equal weight. It is expressed by

MAEi = 1
DARC

DARC∑︂
i=1

|fi − fi,s|, (A1)

where fi is the actual ith function and fi,s is its surrogate.

A.2 Mean Relative Error
The mean relative error (MRE) measures the relative magnitude of the errors in a
set of evaluations, without considering their direction. It’s the average over the test
samples of the relative differences between surrogate and actual function where all
individual differences have equal weight. It is expressed by

MREi = 1
DARC

DARC∑︂
i=1

.

⃓⃓⃓⃓
⃓fi − fi,s

fi

⃓⃓⃓⃓
⃓ . (A2)

A.3 Standard deviation
The standard deviation (STD) is a statistic concept and is a measure of the amount
of variation (or dispersion) of a data set over a reference, such as the arithmetic mean
or their estimation. In this work we are more concerned with the second concept,
as we are interested in the measure of dispersion between the actual function value
and the surrogate value of each sample. The STD is given in the same units as the
function which is considered and it is computed as

STDi =

⌜⃓⃓⎷ 1
DARC

DARC∑︂
i=1

(fi − fi,s)2. (A3)
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B Relative Hypervolume
The concept of relative hypervolume turned out to be helpful in this work to quantify
the size of clusters. First of all, let’s clarify when and why considering the relative
one might be the only suitable choice. It becomes necessary to employ the relative
quantification if not all the employed optimization variables are described by the
same physical quantity. Apart from that, it also provides a more practical relation-
ship between the hyperspace being occupied by one cluster and the entire design
hyperspace. As first approach, it is fundamental to realize that if the boundaries of
a subdomain coincide with those of the entire design space, its relative hypervolume
would be 1. Dealing with n design variables, it can be easily computed as:

hypervolumej =
(︃

x1U,j − x1L,j

x1U − x1L

)︃
·
(︃

x2U,j − x2L,j

x2U − x2L

)︃
· ... ·

(︃
xnU,j − xnL,j

xnU − xnL

)︃
, (B1)

where xiU,j and xiL,j are the upper and the lower boundaries of the ith design variable
in the jth cluster, while xiU xiL are the boundaries of the same variable in the entire
design space.
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