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Introduction

Log-linear models are the most commonly used to model categorical variables. In

this work the focus will be on ordinal variables and their symmetric relationships

in contingency tables. In particular, models for rater agreement will be presented

to analyse matched-pairs data. That is, in a pair each observation uses the same

ordinal scale. Matched-pairs data are usually presented in contingency tables whose

row and column variables are identical.

These data occur in multiple situations:

� each subject is observed at two different times,

� each subject is observed in two different sites,

� given opinion by one person on two different topics with the same response

scale,

� given opinion by two people on the same topic.

This work will focus on the last situation and describe models to analyze agreement

between two judges.

Furthermore, inference based on the likelihood will be central to the analysis.

The maximum likelihood estimator will be presented in view of its well-known

asymptotic properties and its vast application. However, its behavior in finite sam-

ples may be unsatisfactory. Hence different approaches to improve its properties

will be depicted and some of them will be examined through Monte Carlo simu-

lations.
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Chapter 1

Ordinal variables and inference

based on the likelihood

1.1 Ordinal variables and contingency tables

An ordinal variable is a categorical variable with an ordered categorical scale. Let

Y be an ordinal variable and c the number of its levels. Let n be the number of

observations in a sample and n1, ..., nj, ..., nc the frequencies in the categories. The

sample proportions are given by pj = nj/n, j = 1, ..., c.

In a square contingency table, let X be the row ordinal variable and Y be the

column ordinal variable and c the number of levels each. Let nij be the frequency

of the cell in the i-th row and j-th column, i, j = 1, ..., c, and n the total sample

size. The sample proportions are given by pij = nij/n. Hence,
∑

i

∑
j pij = 1 and

{pij} is the sample joint distribution. The sample marginal distributions are given

by p+j and pi+. It follows that
∑

i pij = p+j and
∑

j pij = pi+. For a given i, pj|i

denotes the proportion in category j. Then, pj|i = nij/ni+ and
∑

j pj|i = 1 for all

i, i = 1, ..., c.

In a square 2× 2 table, the odds ratio is defined by

θ̂ =
p1|1/p2|1
p1|2/p2|2

.
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4 Section 1.3 - Inference based on the likelihood in parametric models

If θ̂ > 1, the proportion of subjects that gave response 1 is greater in row 1 than

in row 2.

1.2 Model specification

Let yi be the observation of a univariate variable Yi and xi = (xi1, ..., xip) be the

vector of observations of covariates, i = 1, ..., n. Let X be the n× p matrix, with

rows x>1 , ...,x
>
n .

The problem of specifying a regression model for Yi can be divided into two

steps:

� specify the model for the response distribution,

� link the parameters of this model to the covariates.

For the first step, it is essential to analyze the type of the response distribution

and its characteristics (symmetry etc.). For the second step, the link function

between the expected value of the response and covariates will be assumed as

known. In particular, let E(Yi) = µi = θ(xi; β).

1.2.1 Model specification levels

Models can be divided into three categories, depending on the level of specification:

parametric, semi-parametric and non-parametric.

Parametric models are those in which the distribution on Yi is fully specified

apart from a vector of unknown parameters. The Gaussian linear model or logistic

regression are examples of parametric models.

Semi-parametric models are indexed by an unknown finite dimensional parameter

and an unknown component not expressed by a finite number of constants (such

as a function). The Gaussian linear regression with second order hypothesis is an

example.

Finally, in non-parametric models the distribution of Yi is specified except for an

unknown component which cannot be described by a finite number of constants.

This work will deal with parametric models.
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1.3 Inference based on the likelihood in parametric

models

Let F be a parametric family of density functions

F = {pY (y; θ) : θ ∈ Θ ⊂ Rp}.

When dealing with discrete data, pY (y; θ) is a probability mass function. Through

the data y we would like to define the data-generation process Y . To uniquely

identify the true parameter θ0, two conditions must be met:

� θ must be identifiable: if θ1 6= θ2, pY (y; θ1) and pY (y; θ2) are different distri-

butions,

� correct specification of F : let p0(y) be the true density of Y , we must have

p0(y) ∈ F .

Some inferential procedures are valid under regularity conditions, which request

� the likelihood to be a regular function,

� the support of Y to not depend on the parameter θ,

� order inversions of differentiation and integration to be allowed.

1.3.1 The likelihood function

Let y be the vector of observations and F be the statistical model, the likelihood

function is defined as

L(θ) = L(θ; y) = c(y)pY (y; θ),

where L(θ) : Θ→ [0,+∞).

In a regression model, Y = (Y1, ..., Yn) and Yi are independent for all i = 1, ..., n.

Hence, the likelihood function is

L(θ) = pY (y; θ) =
n∏
i=1

pYi(yi; θ).
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The log-likelihood function is

l(θ) = log(L(θ)) = log(pY (y; θ)) = log

(
n∏
i=1

pYi(yi; θ)

)
=

n∑
i=1

log(pYi(yi; θ)),

where l(θ) = −∞ if L(θ) = 0.

1.3.2 Likelihood quantities

The first derivative of l(θ) is usually called score

l∗(θ) = l∗(θ; y) =

(
∂l(θ)

∂θ1
, ...,

∂l(θ)

∂θp

)>
.

The opposite of the second derivative of l(θ) is called observed information

j(θ) = j(θ; y) = − ∂
2l(θ)

∂θ∂θ>
.

The Fisher information is defined as the expected value of the observed information

i(θ) = Eθ{j(θ;Y )}.

Under regularity conditions, the following identities hold:

� Eθ(l∗(θ)) = 0, θ ∈ Θ

� Eθ(l∗l
>
∗ ) = i(θ) for each θ ∈ Θ.

They are also known as Bartlett identities.

1.3.3 Maximum likelihood estimator

A maximum likelihood estimate of θ is a value of θ that maximizes L(θ). Since

the logarithm is a monotonic function, l(θ) is usually maximized with respect to

θ. We assume that θ̂ exists and is unique. Once we consider the random variables

Yi, we obtain the maximum likelihood estimator (MLE).

Under regularity conditions, θ̂ is a solution of the equation
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l∗(θ) =
∂l

∂θ
= 0.

This equation is called likelihood equation, which must in general be solved numer-

ically.

It can be shown that under regularity conditions the MLE has the following

properties as n→ +∞:

� consistency : θ̂
p−→ θ0

� asymptotic normality :
√
n(θ̂ − θ0)

d−→ Np (0, i(θ0)
−1), with i(θ0) = lim

n→∞
i(θ0)
n

.

i(θ0) may be estimated by i(θ̂) or by j(θ̂).

1.3.4 Confidence regions and tests

Confidence regions and tests can be based on three asymptotically pivotal quantities

having an asymptotic distribution χ2
p under θ. These are the Wald, likelihood ratio

and score pivotal quantities.

The Wald pivot is

We(θ) = (θ̂ − θ)>j(θ̂)(θ̂ − θ). (1.1)

To test the null hypothesis H0 : θ = θ0, large values of We(θ0) are considered

significant against H0.

The likelihood ratio pivot is

W (θ) = 2(l(θ̂)− l(θ)). (1.2)

To test the null hypothesis H0 : θ = θ0, large values of W (θ0) are considered

significant against H0.

The score pivot, also known as Lagrange Multiplier Test, has the following struc-

ture

Wu(θ) = l∗(θ)
>i(θ)−1l∗(θ) (1.3)

It is based on the restricted model instead of the unrestricted. The basic idea

is that, if the null hypothesis is true, the first derivatives of the log-likelihood
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evaluated at the restricted parameter vector will be approximately zero. To test

that, the reasoning is analogous to the Wald test.



Chapter 2

Generalized linear models

2.1 Introduction

Generalized linear models (GLM) were introduced by Nelder & Wedderburn (1972)

to generalize the linear model.

Let y1, ..., yn be observations on independent random variables Y1, ..., Yn each

with probability density or mass function of the exponential dispersion family form

pYi(yi; θi, φ) = exp

{
θiyi − b(θi)
ai(φ)

+ c(yi;φ)

}

for some sufficiently smooth functions b(·), c(·) and a(·). Let mi be fixed observa-

tion weights, i = 1, ..., n.

The expected value and the variance of Yi are then

E(Yi) = µi = b′(θi),

V ar(Yi) = ai(φ)b′′(θi) = ai(φ)V (µi),

where b′(θi) and b′′(θi) are the first and second derivatives of b(θi) with respect to

θi. V (µi) is called the variance function and allows the heteroscedasticity of the

model.

A link function is assumed to be known and aims to link the mean µi of the

response variable to the covariates linearly in the parameters. Let ηi be the linear

9
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predictor and g(·) the link function. Hence, the model assumes

g(µi) = ηi = x>i β,

where x>i is the i-th row of the covariates matrix and β is the parameters vector.

When θi = g(µi), g(·) is called canonical link function.

2.2 Inference based on the likelihood in GLM

Assuming independence, the response variables Y1, ..., Yn have joint distribution

equal to the product of the marginal distributions. Hence, the log-likelihood func-

tion is

l(β, φ) =
n∑
i=1

yiθi − b(θi)
ai(φ)

+
n∑
i=1

c(yi;φ) (2.1)

where θi = θi(µi) = θi(g
−1(x>i β)).

When g(·) is canonical, the log-likelihood simplifies to

l(β, φ) =
n∑
i=1

yix
>
i β − b(x>i β)

ai(φ)
+

n∑
i=1

c(yi;φ).

When φ is known, the score function can be obtained by first-order differentia-

tion of the log-likelihood. The likelihood equations for β are

lr =
n∑
i=1

(yi − µi)
V ar(Yi)

∂µi
∂βr

= 0, (2.2)

with r = 1, ..., p.

When g(·) is canonical, these equations simplify to

n∑
i=1

1

ai(φ)
yixir =

n∑
i=1

1

ai(φ)
µixir,

with r = 1, ..., p.

The score equations can be written in the matrix form as

D>V −1(y − µ) = 0, (2.3)
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where (y − µ) = (y1 − µ1, ..., yn − µn)>, V = diag[V ar(Yi)], i = 1, ..., n, and D is a

n× p matrix with generic element

dir =
∂µi
∂βr

=
1

g′(µi)
xir,

with i = 1, ..., n and r = 1, ..., p.

2.3 Iterative weighted least squares

The score equations have generally no explicit solution for β, hence an iterated

numeric algorithm is needed. This paragraph explores the iterative weighted least

squares, also known as IWLS.

Let lβ the vector with elements lr and jββ the (β, β) block of the information

matrix about β and φ. The (j + 1)-th iteration give the approximation

β̂(j+1) = β̂(j) + [j
(j)
ββ ]−1l

(j)
β , (2.4)

where the superscript (j) indicates the evaluation at β̂(j). In this expression, jββ

can be replaced with its expectation iββ.

From this expression, the following can be derived

X>WXβ̂(j+1) = X>Wz(j), (2.5)

where the generic element of z(j) is z
(j)
i = x>i β̂

(j) + (yi − µi)g′(µi), i = 1, ..., n. The

variable z(j) is usually called adjusted dependent variable and can be interpreted as

the linear approximation of g(yi).

When the algorithm converges, we will have

β̂ = (X>ŴX)−1X>Ŵ ẑ

with ẑ = Xβ̂ + û.

For further details, see Salvan, Sartori & Pace (2020, Section 2.3.6).
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2.4 Log-linear models

We will now focus on log-linear models. They are usually employed for count

responses, such as the number of people in a queue, the number of trees alive in

forest, the number of articles published by a certain journalist, etc.

In log-linear models

� the response variable Yi is a count with mean µi,

� the link-function is the logarithm.

Let X be the matrix of covariates and x>i its i-th row, i = 1, ..., n. Let x>i β

be the linear predictor.

Hence, a log-linear model has the following structure, i = 1, ..., n,

log(µi) = x>i β.

2.4.1 Poisson log-linear model

It is natural to choose the Poisson distribution for the response variable. This will

lead to the Poisson log-linear model.

In this case, the log-likelihood function is

l(β) =
n∑
i=1

{yi log(µi)− µi},

where µi = g−1(x>i β) = exp(x>i β).

For r = 1, ..., p, the likelihood equations are

n∑
i=1

yixir =
n∑
i=1

ex
>
i βxir. (2.6)

In this model,

µi = exp

(
p∑
r=1

βrxir

)
= (eβ1)xi1 ...(eβp)xip .

Hence, when xir increases by one unit, the mean µi increases by a multiplicative

factor eβr , given the others covariates.
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To evaluate the goodness of fit, the deviance can be used if n is fixed and µi is

large enough, for all i = 1, ..., n. In a Poisson model, the deviance is approximately

equal to the Pearson’s statistics

D(y; µ̂) = 2
n∑
i=1

{yi log
yi
µ̂i
− yi + µ̂i} = 2

n∑
i=1

{oi log
oi
ai
− oi + ai}

.
=

n∑
i=1

(oi − ai)2

ai
, (2.7)

with oi = yi and ai = µ̂i. When µ̂i is sufficiently large for all i = 1, ..., n, the

deviance follows a χ2
n−p distribution under the model.

To improve the model, interactions between covariates could be added or the

negative binomial distribution used instead of the Poisson one when overdispersion

is present. For further details see Salvan, Sartori & Pace (2020, chap. 5).





Chapter 3

Models for rater agreement

3.1 Introduction

To model cell counts in contingency tables log-linear models are used. In this

chapter we will investigate models for agreement between two observers or raters.

Firstly, it is crucial to highlight the difference between agreement and associa-

tion. As explained by Agresti (2019, Section 8.5), strong agreement requires strong

association, but strong association can exist without strong agreement. For exam-

ple, if we have two raters A and B and rater B classifies subjects systematically

one level higher than rater A, we will have strong positive association but poor

agreement.

In the first place, the independence model will be recalled and its possible poor

fit shown by an example. In fact, observed ratings on the main diagonal are usu-

ally higher than expected by chance. For this reason, a quasi-independence model

will be introduced. However, for ordinal variables, given disagreement, positive

association still occurs: the ordinal agreement model tries to detect this pattern.

Eventually, overall agreement can be split up into three components: chance

agreement (what would occur even if classifications were independent), agreement

due to a baseline between the ratings and an increment that reflects agreement

in excess of that occurring simply from chance agreement and from the baseline

association. Further details about this heuristic division can be found in Agresti

(1988) and about the following models in Agresti (2010, Section 8.5).

15
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3.2 Notation

In square tables, let A be a factor whose categories are displayed on the rows and

r be the number of rows. Let B be another factor whose categories are displayed

on the columns and c be the number of columns. Let uj be the score for the

j-th category of factor A, j = 1, ..., r, and vh be the score for the h-th category

of factor B, h = 1, ..., c. For instance, ordered category scores may be uj = j and

vh = h. Yjh is the random variable that describes the frequency corresponding

to the j-th row and h-th column, j = 1, ..., r and h = 1, ..., c. Let yjh be the

observed frequency corresponding to the j-th row and h-th column, j = 1, ..., r and

h = 1, ..., c. The total sample size is y++ =
∑r

j=1

∑c
h=1 yjh. The sample marginal

distributions are yj+ =
∑c

h=1 yjh, j = 1, ..., r, and y+h =
∑r

j=1 yjh, h = 1, ..., c.

Let λ, λA and λB be the parameters related respectively to the intercept, the

indicator variables for factor A and the indicator variables for factor B. λAj is the

parameter related to the j-th level of factor A and λBh is the parameter related

to the h-th level of factor B, j = 1, ..., r and h = 1, ..., c.

When dealing with matched-pairs data, A and B are ordinal variables and have

the same categories. Hence, in this particular case, r = c and uj = vj, j = 1, ..., r.

A and B will be the explanatory variables to model the frequency of each cell.

3.3 Independence model

The independence model assumes independence among the ordinal variables. Al-

though it usually fits poorly, Agresti (2010) described it as a baseline due to its

possible interpretation as the grade of agreement expected if no association occurs.

In fact, positive standardized residuals ideally stay on the main diagonal and reveal

the presence of agreement because observed frequencies are higher than expected

by the model. Oppositely, disagreement occur less than expected by chance, hence

off-the-diagonal standardized residuals are expected to be negative.
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Let µij be the expected number of subjects classified as i by rater A and as j

by rater B. The independence model assumes

log(µjh) = λ+ λAj + λBh , (3.1)

with j = 1, ..., r and h = 1, ..., r.

3.3.1 Inference on independence model

In the independence model, the log-likelihood function has the following structure:

l(λ, λA, λB) =
r∑
j=1

r∑
h=1

yjh log µjh −
r∑
j=1

r∑
h=1

µjh

= y++λ+
r∑
j=1

y+jλ
A
j +

r∑
h=1

y+hλ
B
h −

r∑
j=1

r∑
h=1

exp(λ+ λAj + λBh ).

Therefore, the first-derivatives of the log-likelihood function are the following

∂l

∂λ
= y++ −

r∑
j=1

r∑
h=1

exp(λ+ λAj + λBh ) = y++ − µ++

∂l

∂λAj
= yj+ −

r∑
j=1

r∑
h=1

exp(λ+ λAj + λBh ) = yj+ − µj+

∂l

∂λBh
= y+h −

r∑
j=1

r∑
h=1

exp(λ+ λAj + λBh ) = y+h − µ+h

The MLE satisfies yj+ = µj+ and y+h = µ+h and these also imply y++ = µ++,

j = 1, ..., r and h = 1, ..., r.

3.4 Quasi-independence model

The quasi-independence model adds a parameter δ to describe agreement and has

the following structure
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log(µjh) = λ+ λAj + λBh + δI(j = h), (3.2)

where I(j = h) = 1 if j = h and I(j = h) = 0 otherwise.

The model is called of quasi-independence because, when j 6= h, variables A and

B are independent.

The MLE fit can be easily implemented by the usual software. The model

fit can be evaluated by the deviance if µjh are sufficiently large, with degrees of

freedom

rr − [1 + (r − 1) + (r − 1) + 1] = rr − 2r.

To improve the model fit, the parameter δ could be assumed as dependent of

the j − th category. That is, when j = h and δj > 0, the expected frequency µjj

is higher than expected by chance, but these differences are not the same for all

j, j = 1, ..., r.

3.5 Ordinal agreement model

The ordinal agreement model uses two parameters, β and δ, to describe the agree-

ment. The parameter δ describes the association on the main diagonal, while β is

informative on the agreement off that diagonal.

The model has the following structure

log(µjh) = λ+ λAj + λBh + βujuh + δI(j = h) (3.3)

It should be noticed that, when j = h, µjh represents the frequency of agreement

for the j-th category. In this case, an additional constant δ is added to the linear

predictor: it can interpreted as the agreement in excess.

When j 6= h, the frequencies µjh express disagreement. The relation between

log(µjh) and uj is linear in β when uh is fixed; viceversa the relation between

log(µjh) and uh is linear in β when uj is fixed.
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3.5.1 MLE for the ordinal agreement model

The kernel of the log-likelihood function is

l(λ, λA, λB) =
r∑
j=1

r∑
h=1

yjh log µjh −
r∑
j=1

r∑
h=1

µjh

=
r∑
j=1

r∑
h=1

yjh(λ+ λAj + λBh + βujuh + δI(j = h))+

−
r∑
j=1

r∑
h=1

exp(λ+ λAj + λBh + βujuh + δI(j = h)).

Hence, the likelihood equations are the following:

∂l

∂λ
= y++ −

r∑
j=1

r∑
h=1

exp(λ+ λAj + λBh + βujuh + δI(j = h)) = y++ − µ++ = 0

∂l

∂λAj
= yj+ −

r∑
h=1

exp(λ+ λAj + λBh + βujuh + δI(j = h)) = yj+ − µj+ = 0

∂l

∂λBh
= y+h −

r∑
j=1

exp(λ+ λAj + λBh + βujuh + δI(j = h)) = y+h − µ+h = 0

∂l

∂β
=

r∑
j=1

r∑
h=1

yjhujuh −
r∑
j=1

r∑
h=1

ujuhµjh = 0.

Log-likelihood functions are concave for log-linear models, hence a maximum can

be generally found. Infinite estimates occur for β when no pairs of observations

agree or no pairs of observations disagree or, in other words, when all observations

are on the main diagonal or all of them are off the diagonal. Usual software for

generalized linear model can easily implement the MLE fit.

As for log-linear models, the deviance can be interpreted as goodness of fit only

if yjh are sufficiently high. Its degrees of freedom are
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rr − [1 + (r − 1) + (r − 1) + 2] = rr − 2r − 1.

In the ordinal agreement model odds ratios can be interpreted as measures that

the raters agree rather than disagree. For categories j and h, the odds ratio is

τjh =
πjjπhh
πjhπhj

where πjh is the population proportion for the element j, h. For the ordinal agree-

ment model, log(τjh) = (uj−uh)2β+2δ. If β > 0 and δ > 0, the odds ratio increases

when categories j and h are far from each other. The sample odds ratios will be

obtained by computing the corresponding sample proportions.

3.6 Example: movie critics

An application of the models presented in this chater will be illustrated. The

dataset in Table 8.7 in Agresti (2010, Section 8.5) contains information about two

movie critics’ opinions. Table 3.1 summarizes ratings of 160 movies given by Gene

Siskel and Roger Ebert for at-the-time Chicago newspaper from April 1995 to

September 1996. In each cell, the absolute frequency of the matched ratings by

Siskel and Ebert is displayed.

Table 3.1: Ratings of movies given by Gene Siskel and Roger Ebert

Ebert Rating

Siskel Rating Con Mixed Pro

Con 24 8 13
Mixed 8 13 11

Pro 10 9 64

In table 3.2 the same data are displayed into three columns. The first one

shows Siskel’s rating, the second one shows Ebert’s rating and the third one shows

the observed frequencies of the matched-data. The following columns show the

fitted values of the independence model, the quasi-independence model assuming

δ constant, the quasi-independence model assuming δ varying with the level of

the rating and the ordinal agreement model, respectively. In the rater agreement
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model, we have imposed Con = 1, Mixed = 2, Pro = 3 to estimate β. Both the

quasi-independence models with constant δ and variable δ seem to perform the

best in terms of fitted frequencies and residual deviance and indicate the presence

of agreement on the main diagonal. On the other hand, the independence model

has the highest AIC which suggests that its performance is poor and that the

variables are not independent. In the ordinal agreement model, the parameter β

is not statistically significant which means that, when one variable is fixed, there

is no linear association. More details on the R code can be found in Appendix .

Siskel Ebert Obs. Ind. Quasi-ind.c Quasi-ind. O.A.

Con Con 24 11.8 24.1 24.0 25.1
Mixed Con 8 8.4 6.2 7.9 6.8

Pro Con 10 21.8 11.6 10.1 10.1
Con Mixed 8 8.4 6.3 8.1 7.1

Mixed Mixed 13 6.0 14.9 13.0 13.0
Pro Mixed 9 15.6 9.1 8.9 9.9
Con Pro 13 24.7 14.5 12.9 12.9

Mixed Pro 11 17.6 11.2 11.1 12.2
Pro Pro 64 45.6 62.3 64.0 62.9

Table 3.2: Fitted values of ratings by Siskel and Ebert
Obs. = observed frequencies, Ind. = independence model,
Quasi-ind.c = quasi-independence model with constant δ,
Quasi-ind. = quasi-independence model with variable δj ,
O.A. = ordinal agreement model





Chapter 4

Improvements in inference based on

the likelihood

4.1 Introduction

In GLMs the MLE is usually the preferred estimator because it is asymptotically

unbiased, consistent and efficient under regularity conditions and, as highlighted in

chapter 1, inferential procedures based on Wald, score or likelihood ratio perform

well in large samples. However, small sample sizes (or when the sample size is not

enough larger than the number of parameters to estimate) may cause the spoiling

of these asymptotic properties and procedures.

As described by Kosmidis (2014), a repository of methods is available to re-

duce mean and median bias and can be divided in explicit and implicit methods.

Explicit methods of bias correction aim to estimate a function B(θ) so that

θ̃ = θ̂ −B(θ)

has the smallest bias. We will firstly discuss the so-called location-adjusted MLE,

which is based on a higher order approximation of the MLE. Despite their theoret-

ical stability, they generally involve tedious formulae or high computational effort.

In addition, the existence of the MLE is required by explicit methods but it is

23
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not generally guaranteed. For these reasons, section 4.3 and section 4.4 will ana-

lyze implicit methods of bias reduction (BR) which are based on score adjustment.

Many simulation studies have provided empirical support not only to the property

of these methods of reducing mean and median bias but also of dealing with infi-

nite estimates. As it will be shown, the solution of the adjusted likelihood equation

can be computed through IWLS.

In section 4.5 we will study the mean BR and median BR estimators in the

quasi-independence model and study their finite sample properties through Monte-

Carlo simulations. In particular, δ will be our parameter of interest. The package

brglm2 at Kosmidis (2020) will be used to estimate the coefficients.

4.2 Location-adjusted mean bias correction

In regular parametric models the MLE is asymptotically unbiased and Eθ(θ̂) = θ+

O(n−1) by expansion of decreasing powers of n. Cox & Hinkley (1974, Section 9.2)

proved that the asymptotic mean bias of the MLE can be corrected by the explicit

formula

θ̃ = θ̂ − b(θ̂)/n,

where the solution θ̃ has bias of order o(n−1).

Cordeiro & McCullagh (1991) extended this result for GLMs, where θ = (β, φ).

The mean bias correction has the formulae

bβ = −i−1ββA
∗
β (4.1)

and

bφ = −i−1φφA
∗
φ, (4.2)

where A∗β = X>Wξ, ξ is a p-vector with generic element ξi =
hid

′
i

2diwi
, hi is the i−th

diagonal element of the matrix H = X(X>WX)−1X>W and d′i = ∂2µi
∂η2i

, i = 1, ..., n.

For details on A∗φ, see Kosmidis et al. (2020, Section 2.2).
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The expression of the explicit bias corrected estimator for β given by Kosmidis

et al. (2020) is

(X>ŴX)−1X>Ŵ (ẑ + φ̂ξ̂),

where z is the vector of “working” covariates with generic element zi = ηi + (yi −

µi)/di and ẑ is its estimator based on MLE. As for section 2.3, the explicit correc-

tion can be performed iteratively up to convergence and then replace the covariate

z by its correction z + φξ. In Poisson models with g(·) = log(·), φξ = h
2meη

.

Differently from MLE, the generic update of β̂ depends on φ. Hence, when the

dispersion parameter in unknown, an estimate of φ is necessary to compute the

bias corrected estimator for β and the updates of β̂ and φ̂ need to be simultaneous.

However, neither i−1φφ nor A∗φ depend on β hence the bias correction estimator for

φ requests the knowledge of φ̂ only.

4.3 Mean bias-reduced adjusted score functions

Implicit mean bias reduction methods consist in modifying the score equations by

a term A∗ to reduce the MLE bias.

For GLMs, Firth (1993) showed that the adjusted score equations

l∗β + A∗β = 0 and l∗φ + A∗φ = 0 (4.3)

deliver estimators β̂∗ and φ̂∗ with mean bias of smaller asymptotic order than the

MLE.

To solve the adjusted score equations, quasi-Fisher scoring algorithm is com-

monly used. Although there is no theoretical proof of its convergence to the bias-

reduced estimator, many empirical studies have shown no evidence of divergence.

The generic updates for β and φ are

β(j+1) = βj + [i
(j)
ββ ]−1l

∗(j)
β − bjβ, (4.4)

φ(j+1) = φj + [i
(j)
φφ]−1l

∗(j)
φ − bjφ. (4.5)
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As for the location-adjusted mean bias corrected estimator, the algorithm re-

quires to estimate β and φ simultaneously when the dispersion parameter is un-

known since bβ generally depends on φ.

The invariance property under linear transformations applies to mean BR esti-

mators in terms of the mean bias of the transformed estimators. This property

is particularly relevant in categorical regressions interested in inference on arbi-

trary contrasts. However, mean BR estimators are not invariant under nonlinear

transformations on the parameters.

4.4 Median bias-reducing adjusted score functions

Similarly to adjusted score equations to reduce mean bias, Kenne Pagui et al.

(2017) proposed to adjust score equations in order to reduce median bias compared

to the MLE estimator. The ambition is to obtain an estimator whose probability to

underestimate and overestimate the corresponding parameter is as close as possible

to 0.5.

For GLMs the adjusted score equations have the following structure

lβ + A†β = 0 and lφ + A†φ = 0.

According to Kosmidis et al. (2020, chap 2.4) and using its notation, explicit

formulae for A†β and A†φ have the form

A†β = X>W (ε+Xu) and A†φ =
p

2φ
+

∑n
i=1m

3
i a

′′′
i

6φ2 +
∑n

i=1m
2
i a

′′
i

.

As for mean BR estimators, quasi-Fisher scoring algorithm is a valid method to

solve the adjusted score equations and the guarantee of its convergence has vast

empirical evidence although no theoretical foundation.

The generic updates for β and φ are

β(j+1) = (X>W (j)X)−1X>W (j)(z(j) + φ(j)ξ(j)) + φ(j)u(j), (4.6)
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φ(j+1) = φ(j)

{
1 + φ(j)

∑
(q

(j)
i − ρ

(j)
i )∑

m2
i a

′′(j)
i

+ φ(j)

∑
m3
i a

′′′(j)
i

3(
∑
m2
i a

′′(j)
i )2

+ (φ(j))2
p∑

m2
i a

′′(j)
i

}
. (4.7)

For further details, see Kosmidis et al. (2020, Section 2.4). Equation (4.7) reveals

that the generic update for β of the median BR can be expressed as a translation

by φu of the mean BR update for β.

Median BR estimators are invariant under general component-wise transforma-

tions of the parameters concerning the median bias reduction improvement, but

they are not invariant under linear transformations. For instance, this feature is

particularly favorable when a dispersion parameter in unknown and needs to be

estimated empirically.

4.5 Simulation experiments

This paragraph will analyze the behavior of the MLE estimator (subsection 1.3.3),

the mean BR estimator (section 4.3) and the median BR estimator (section 4.4)

through Monte Carlo simulations. The interest will be on the quasi-independence

model for contingency tables presented in section 3.4, whose general structure is

Equation (3.2) and special attention will be given to δ due to its crucial inter-

pretation in the quasi-independence model for matched-pairs data. We assume the

model estimated by the maximum likelihood as the true generating process of the

observed data.

The library brglm2 (Kosmidis, 2020) will be used. The function brglm fit fits

a generalized linear model using explicit and implicit bias reduction methods. The

type argument can be used to specify the type of score adjustment. Among the

available options, we will use

� type = “AS mean” which implements the mean BR score adjustment in Firth

(1993),

� type = “AS median” which implements the median BR score adjustment in

Kenne Pagui, Salvan & Sartori (2017).
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It is possible to apply the function update to a glm and specify the arguments

method = “brglm2” and type, too.

The function movies sim is defined to compute the main steps of the analysis

given a dataframe suitable for the quasi-independence model (section 3.4). The

input int is an integer which the frequencies are divided by; Nsim specifies the

number of pseudo-samples to simulate; seme specifies the seed. Firstly, movies sim

fits the MLE model based on the observed data and simulate Nsim pseudo-samples.

Notice that the sample size is not fixed because of the Poisson distribution assump-

tion. For each pseudo-sample estimates and standard errors are computed from the

MLE estimator, the mean BR estimator and the median BR estimator using the

library brglm2, Kosmidis (2020). Afterwords we compute the sample mean and

median among all pseudo-samples by each estimator. The number of iterations of

the quasi-Fisher scoring algorithm and the number of times the estimated standard

errors are greater than 3 are saved to detect the possibility of divergence.

At first, the true model is fitted on movies data in Table 3.1. As shown

in Table 4.1, the mean BR and median BR estimators tend to be more precise

than the MLE when estimating the parameters in terms of bias and have lower

mean squared error (MSE). The probability of underestimation (PU) of the MLE is

farther from 0.5 than that of the mean BR estimator and median BR estimator.

The coverage probability is closer to the nominal value 0.95 for the mean BR

estimator and median BR estimator than for the MLE.

We expect these results to be more evident when the sample size is smaller

hence we analyze the data in Table 3.1 with frequencies divided by 5 and with

frequencies divided by 10, rounded to integers in both cases. The sizes of the

pseudo-samples will be generally smaller than in the first case because of the dif-

ferent values of the intercepts in the true models. As highlighted in Table 4.2,

when frequencies are divided by 5 differences in the behavior between the esti-

mators are more noticeable in terms of bias, probability of underestimation and

MSE. The MAE of the three estimators takes close values due to its robustness.

Table 4.3 reports the estimators sample properties when the observed frequencies
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are divided by 10. The bias and the MSE of the MLE are particularly high com-

pared to those of the mean BR and median BR. However, the three estimators

have similar behavior in terms of MAE and coverage probability although differ-

ences are slightly more noticeable than in the situations with higher sample sizes.

The three estimators may cause different results of the quasi-Fisher scoring al-

gorithm, too. The presence of divergence will be discussed later in this section.

Table 4.1: Movie critics data

Estimation method Bias PU MSE MAE Coverage se > 3

MLE 0.0146 0.4705 0.0307 0.1184 0.9441 0
mean BR 0.0022 0.4987 0.0293 0.1161 0.9529 0

median BR 0.0042 0.4948 0.0296 0.1167 0.9509 0

Table 4.2: Movie critics data divided by 5

Estimation method Bias PU MSE MAE Coverage se > 3

MLE 0.0947 0.4580 1.1082 0.2725 0.9475 30
mean BR -0.0013 0.5180 0.1526 0.2508 0.9654 0

median BR 0.0144 0.5046 0.1721 0.2588 0.9586 0

Table 4.3: Movie critics data divided by 10

Estimation method Bias PU MSE MAE Coverage se > 3

MLE 2.1205 0.4408 81.1205 0.4723 0.9810 1710
mean BR 0.0088 0.5203 0.4018 0.3798 0.9783 0

median BR 0.0866 0.4990 0.6666 0.4129 0.9766 0

To further investigate the behavior of the mean BR estimator and median BR

estimator, rectangular contingency tables are analyzed, too. In particular, the fac-

tor ebert in section 3.6 has been converted into a dicotomic variable merging

the levels Con and Mixed into a new level Con, such as in Table 4.4. The quasi

independence model in Equation (3.4) is adapted to rectangular tables. In this

case, the parameter δ is still related to a binary variable which equals to 1 if the
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ordinal variables are on the same level, 0 otherwise, yet only frequencies corre-

sponding to levels existing in both variables may be affected by the influence of

rater agreement.

Analogously to square tables, different sample sizes are taken into consideration

by dividing the frequencies by a fixed factor. In particular, observed frequencies of

Table 4.4 are divided by 5 and by 10, respectively. As expected, estimated biasness

and MSE of the mean BR estimator and median BR estimator tend to be lower

than those of the MLE estimator, particularly when sample size decreases. The

probability of underestimation gradually drifts apart from 0.5 when sample size

decreases and specifically for the MLE estimator rather than for the mean BR

estimator and median BR estimator.

The presence of divergence of the algorithm when estimating the parameters

is not easy to evaluate in R for GLMs. Since it usually causes high standard

errors and in the true models the standard errors are small, the number of times

when the estimated standard error is higher than 3 has been counted. In all

the situations in the analysis, the frequency for the mean BR estimator and the

median BR estimator is zero which indicates no presence of divergence. However,

the estimated standard errors based on the MLE tend to grow particularly when

the sample size increases and this may be a clue of divergence of the algorithm.

In addition to high standard errors, the number of iterations may be informative

on the effort to estimate the parameters. In particular, it can be noticed that the

number of iterations generally increases when sample size decreases. Although it

happens that mean BR and median BR estimations require more iterations than

MLE, for the MLE the maximum number of iterations is fixed at 25.

Table 4.4: Ratings of movies given by Gene Siskel and Roger Ebert transformed in
a rectangular table

Ebert Rating

Siskel Rating Con Pro

Con 32 13
Mixed 21 11

Pro 19 64
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Table 4.5: Movie critics rectangular data

Estimation method Bias PU MSE MAE Coverage se > 3

MLE 0.0220 0.4764 0.0488 0.1459 0.9493 0
mean BR 0.0014 0.5129 0.0460 0.1419 0.9599 0

median BR 0.0097 0.4995 0.0471 0.1430 0.9550 0

Table 4.6: Movie critics rectangular data divided by 5

Estimation method Bias PU MSE MAE Coverage se > 3

MLE 0.2477 0.4583 3.9299 0.3319 0.9669 90
mean BR 0.0038 0.5335 0.2474 0.3036 0.9784 0

median BR 0.0518 0.4995 0.3091 0.3151 0.9730 0

Table 4.7: Movie critics rectangular data divided by 10

Estimation method Bias PU MSE MAE Coverage se > 3

MLE 3.7948 0.4184 110.8098 0.6235 0.9987 2022
mean BR -0.0050 0.5561 0.6100 0.4694 0.9957 0

median BR 0.1996 0.4889 1.0995 0.5407 0.9954 0

Finally, the distributions of the estimators for δ have been plotted. The his-

tograms are generally coherent with the black line, which follows a normal distri-

bution with mean equal to the true value of δ in each simulation study and sample

standard error of the estimates. It is noticeable that the MLE estimator produces

outliers when the sample size decreases, while the mean BR estimator and median

BR estimator have a tendency to be slightly positively skewed in rectangular tables

with small sample sizes.

Further details on the R code can be found in the Appendix .





Conclusions

This work aimed to describe the presence of agreement in contingency tables relying

on Agresti (2010) and analyze the studies conducted by Cox & Hinkley (1974),

Firth (1993), Kenne Pagui, Salvan & Sartori (2017) and Kosmidis, Kenne Pagui &

Sartori (2020) to improve MLE properties in finite samples. In setting our work

ground, we recalled inference based on the likelihood and the GLMs, giving deeper

details on log-linear models. We then focused on the models for rater agreement

and we adapted them to an example on movies critics as proposed by Agresti

(2010). The poor performance of the independence model was shown, while the

introduction of a parameter δ to describe agreement revealed a great improvement

in the model fit. Additionally, we recalled the ordinal agreement model which may

express a linear relationship between the ordinal variables.

Furthermore, attention was paid to some improvements of the MLE based on

both explicit and implicit methods. Specifically, the location-adjusted mean bias

correction (Cox & Hinkley, 1974), the mean BR estimator (Firth, 1993) and median

BR estimator (Kenne Pagui, Salvan & Sartori (2017) and Kosmidis, Kenne Pagui &

Sartori (2020)) were described as valid methods to reduce the bias of the MLE in

samples. Finally, some simulation experiments showed the decrease of the estimator

bias and gave further empirical support of the convergence of the quasi-Fisher

scoring algorithm when the mean BR estimator and the median BR estimator are

adopted.
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Appendix

The appendix reports the R chunk developed for the movies example in sec-

tion 3.6 and to analyze the estimators in section 4.5.
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Chapter 3
Contingency table

# Rows: Siskel Rating
# Col: Ebert Rating

table_movie <- matrix(c(24, 8, 13,
8, 13, 11,
10, 9, 64), byrow = TRUE, ncol = 3)

names <- c("Con", "Mixed", "Pro")

colnames(table_movie) <- names
rownames(table_movie) <- names
table_movie

## Con Mixed Pro
## Con 24 8 13
## Mixed 8 13 11
## Pro 10 9 64

Build up the dataset to be used in models

library(tidyverse)

## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --

## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.1.2 v dplyr 1.0.6
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1

## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
names <- c("Con", "Mixed", "Pro")
siskel <- as.factor(c(names, names, names))
ebert <- as.factor(c("Con", "Con", "Con", "Mixed", "Mixed", "Mixed", "Pro", "Pro", "Pro"))
freq <- as.vector(table_movie)

movies <- tibble(siskel, ebert, freq)

# Create important dummy variables.
# *diag* takes the value 1 if the corresponding *freq* is on the main diagonal
# of the contigency table, 0 otherwise.
diag <- as.integer(movies$siskel == movies$ebert)
# *pro.d* takes the value 1 if both *siskel* and *ebert* are "Pro", 0 otherwise.
pro.d <- as.integer(movies$siskel == movies$ebert & movies$ebert == "Pro")
# *mixed.d* takes the value 1 if both *siskel* and *ebert* are "Mixed", 0 otherwise.
mixed.d <- as.integer(movies$siskel == movies$ebert & movies$ebert == "Mixed")
# *con.d* takes the value 1 if both *siskel* and *ebert* are "Con", 0 otherwise.
con.d <- as.integer(movies$siskel == movies$ebert & movies$ebert == "Con")

movies <- tibble(siskel, ebert, freq, diag, pro.d, mixed.d, con.d)
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Models

# 1. Independence model
model.ind <- glm(freq ~ siskel + ebert, data = movies, family = poisson)
summary(model.ind)

##
## Call:
## glm(formula = freq ~ siskel + ebert, family = poisson, data = movies)
##
## Deviance Residuals:
## 1 2 3 4 5 6 7 8
## 3.1068 -0.1391 -2.8284 -0.1520 2.4704 -1.8076 -2.5998 -1.6911
## 9
## 2.5590
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.4692 0.1995 12.380 < 2e-16 ***
## siskelMixed -0.3409 0.2312 -1.474 0.140391
## siskelPro 0.6122 0.1851 3.307 0.000943 ***
## ebertMixed -0.3365 0.2390 -1.408 0.159260
## ebertPro 0.7397 0.1875 3.944 8.02e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 102.215 on 8 degrees of freedom
## Residual deviance: 43.233 on 4 degrees of freedom
## AIC: 93.424
##
## Number of Fisher Scoring iterations: 5
fitted(model.ind)

## 1 2 3 4 5 6 7 8 9
## 11.8125 8.4000 21.7875 8.4375 6.0000 15.5625 24.7500 17.6000 45.6500
#2. Quasi-independence model : constant delta

model.delta <- update(model.ind, ~ . + diag)
summary(model.delta)

##
## Call:
## glm(formula = freq ~ siskel + ebert + diag, family = poisson,
## data = movies)
##
## Deviance Residuals:
## 1 2 3 4 5 6 7 8
## -0.02966 0.67707 -0.48692 0.63654 -0.41933 -0.03218 -0.40679 -0.05824
## 9
## 0.21653
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##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.0904 0.1965 10.636 < 2e-16 ***
## siskelMixed -0.2603 0.2459 -1.059 0.28980
## siskelPro 0.3623 0.2059 1.759 0.07853 .
## ebertMixed -0.2448 0.2543 -0.963 0.33574
## ebertPro 0.5853 0.2061 2.840 0.00452 **
## diag 1.0937 0.1706 6.412 1.44e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 102.2148 on 8 degrees of freedom
## Residual deviance: 1.4942 on 3 degrees of freedom
## AIC: 53.686
##
## Number of Fisher Scoring iterations: 4
fitted(model.delta)

## 1 2 3 4 5 6 7 8
## 24.145587 6.234626 11.619787 6.332054 14.571073 9.096873 14.522359 11.194301
## 9
## 62.283340
#3. Quasi-independence model : delta based on the ii-th element

model.wdelta <- update(model.ind, ~. + pro.d + con.d + mixed.d)
summary(model.wdelta)

##
## Call:
## glm(formula = freq ~ siskel + ebert + pro.d + con.d + mixed.d,
## family = poisson, data = movies)
##
## Deviance Residuals:
## 1 2 3 4 5 6 7 8
## 0.00000 0.03482 -0.03092 -0.03454 0.00000 0.03281 0.02727 -0.02949
## 9
## 0.00000
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.21771 0.39572 5.604 2.09e-08 ***
## siskelMixed -0.15060 0.35064 -0.430 0.66755
## siskelPro 0.09464 0.38394 0.246 0.80530
## ebertMixed -0.12608 0.37462 -0.337 0.73645
## ebertPro 0.33967 0.37687 0.901 0.36744
## pro.d 1.50687 0.41578 3.624 0.00029 ***
## con.d 0.96035 0.44527 2.157 0.03102 *
## mixed.d 0.62392 0.48302 1.292 0.19645
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
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## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 1.0221e+02 on 8 degrees of freedom
## Residual deviance: 6.0515e-03 on 1 degrees of freedom
## AIC: 56.198
##
## Number of Fisher Scoring iterations: 3
fitted(model.wdelta)

## 1 2 3 4 5 6 7 8
## 24.000000 7.901913 10.098087 8.098087 13.000000 8.901913 12.901913 11.098087
## 9
## 64.000000
#4. Linear rater agreement model
model.ra <- glm(freq ~ siskel + ebert + as.integer(siskel):as.integer(ebert)

+ diag, data = movies, family = poisson)
summary(model.ra)

##
## Call:
## glm(formula = freq ~ siskel + ebert + as.integer(siskel):as.integer(ebert) +
## diag, family = poisson, data = movies)
##
## Deviance Residuals:
## 1 2 3 4 5 6 7 8
## -0.21286 0.44089 -0.03941 0.34357 0.00000 -0.30080 0.03482 -0.34467
## 9
## 0.13298
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.1686 0.2136 10.151 < 2e-16 ***
## siskelMixed -0.6371 0.4685 -1.360 0.17386
## siskelPro -0.4354 0.8707 -0.500 0.61703
## ebertMixed -0.6010 0.4553 -1.320 0.18687
## ebertPro -0.1951 0.8522 -0.229 0.81888
## diag 0.8587 0.2997 2.865 0.00417 **
## as.integer(siskel):as.integer(ebert) 0.1939 0.2055 0.944 0.34531
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 102.21480 on 8 degrees of freedom
## Residual deviance: 0.58746 on 2 degrees of freedom
## AIC: 54.779
##
## Number of Fisher Scoring iterations: 4
fitted(model.ra)

## 1 2 3 4 5 6 7 8
## 25.057950 6.816921 10.125129 7.067179 13.000000 9.932821 12.874871 12.183079
## 9

Appendix 39



## 62.942050
tibble(siskel = siskel, ebert = ebert, observed = freq,

independence = fitted(model.ind),
ind.delta = fitted(model.delta),
ind.wdelta = fitted(model.wdelta),
ordinal.agreement = fitted(model.ra))

## # A tibble: 9 x 7
## siskel ebert observed independence ind.delta ind.wdelta ordinal.agreement
## <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Con Con 24 11.8 24.1 24.0 25.1
## 2 Mixed Con 8 8.4 6.23 7.90 6.82
## 3 Pro Con 10 21.8 11.6 10.1 10.1
## 4 Con Mixed 8 8.44 6.33 8.10 7.07
## 5 Mixed Mixed 13 6.00 14.6 13.0 13
## 6 Pro Mixed 9 15.6 9.10 8.90 9.93
## 7 Con Pro 13 24.7 14.5 12.9 12.9
## 8 Mixed Pro 11 17.6 11.2 11.1 12.2
## 9 Pro Pro 64 45.6 62.3 64 62.9

Chapter 4
Improvements of likelihood on the quasi-indep. model with constant delta

library(tidyverse)
library(brglm2)
library(ggplot2)
library(gridExtra)

##
## Caricamento pacchetto: 'gridExtra'

## Il seguente oggetto è mascherato da 'package:dplyr':
##
## combine
movies_sim <- function(dati, int = 1, Nsim = 10000, seme = 123){

# reduce the frequences by *int*
movies <- dati %>% mutate(freq = round(freq/int))

# models based on MLE, mean BR and median BR
movies.ML <- glm(freq ~ ebert + siskel + diag, family = poisson, data = movies)
movies.br.m <- update(movies.ML, method = "brglmFit", type = "AS_mean")
movies.br.med <- update(movies.ML, method = "brglmFit", type = "AS_median")

# save coefficients and simulate data
beta <- coef(movies.ML)
betasd <- summary(movies.ML)$coefficients[,2]
set.seed(seme)
simdata <- simulate(movies.ML, nsim = Nsim)

# define matrix (Nsim x n.coef)
ml <- br.m <- br.med <- ml.se <- br.m.se <- br.med.se <-
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matrix(NA, nrow = Nsim, ncol = length(beta))
iter <- matrix(NA, nrow = Nsim, ncol = 3)
noconv <- rep(0,3)

# save estimates of each coef based on each sample
for(i in 1:Nsim){
current_data <- within(movies, freq <- simdata[[i]])

ml_fit <- update(movies.ML, data = current_data)
brm_fit <- update(movies.br.m, data = current_data)
brmed_fit <- update(movies.br.med, data = current_data)

ml[i,] <- summary(ml_fit)$coef[,1]
ml.se[i,] <- summary(ml_fit)$coef[,2]

br.m[i,] <- summary(brm_fit)$coef[,1]
br.m.se[i,] <- summary(brm_fit)$coef[,2]

br.med[i,] <- summary(brmed_fit)$coef[,1]
br.med.se[i,] <- summary(brmed_fit)$coef[,2]

iter[i,1] <- ml_fit$iter
iter[i,2] <- brm_fit$iter
iter[i,3] <- brmed_fit$iter

if( max(summary(ml_fit)$coef[,2]) > 5)
noconv[1] <- noconv[1] + 1

if( max(summary(brm_fit)$coef[,2]) > 5)
noconv[2] <- noconv[2] + 1

if(max(summary(brmed_fit)$coef[,2]) > 5)
noconv[3] <- noconv[3] + 1

}

# Comparison of the mean of the MLE estimators
ml_mean <- colMeans(ml)
br.m_mean <- colMeans(br.m)
br.med_mean <- colMeans(br.med)

mean_coef <- tibble(coef = beta, MLE = ml_mean, BRmean = br.m_mean,
BRmedian = br.med_mean)

# Comparison of the median of the MLE estimators
ml_med <- apply(ml, 2, median)
br.m_med <- apply(br.m, 2, median)
br.med_med <- apply(br.med, 2, median)

med_coef <- tibble(coef = beta, MLE = ml_med, BRmean = br.m_med,
BRmedian = br.med_med)

# tibble for coef[6] = delta
tib <- tibble(ml = ml[,length(beta)], ml.se = ml.se[,length(beta)],

br.m = br.m[,length(beta)], br.m.se = br.m.se[,length(beta)],
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br.med = br.med[,length(beta)], br.med.se = br.med.se[,length(beta)])

return(list(dati = movies, mod1 = movies.ML, mod2 = movies.br.m, mod3 = movies.br.med,
beta = beta, betasd = betasd, ml = ml, br.m = br.m, br.med = br.med,
ml.se = ml.se, br.m.se = br.m.se, br.med.se = br.med.se,
mean_coef = mean_coef, med_coef = med_coef, delta = tib,
iter = iter, noconv = noconv))

}

# Estimates for the model based on *movies*
obj1 <- movies_sim(movies)

obj1$delta

## # A tibble: 10,000 x 6
## ml ml.se br.m br.m.se br.med br.med.se
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.833 0.162 0.827 0.161 0.827 0.161
## 2 0.935 0.168 0.926 0.166 0.927 0.166
## 3 1.18 0.192 1.17 0.189 1.17 0.189
## 4 1.25 0.176 1.24 0.173 1.24 0.174
## 5 1.26 0.170 1.25 0.168 1.25 0.168
## 6 0.939 0.166 0.930 0.164 0.931 0.165
## 7 1.18 0.173 1.17 0.171 1.17 0.171
## 8 1.33 0.185 1.32 0.182 1.32 0.183
## 9 1.05 0.171 1.04 0.169 1.04 0.170
## 10 1.31 0.185 1.30 0.183 1.30 0.183
## # ... with 9,990 more rows
p1 <- ggplot(obj1$delta, aes(x = ml)) +

geom_histogram(aes(y = ..density..), bins = 50, fill = "turquoise4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(ml, mean = as.numeric(obj1$beta[6]), sd(ml))),

size = 0.8, color = "grey23") +
labs(title = "Distribution of MLE for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics") +
theme(title = element_text(size = 9, face = "bold"))

p2 <- ggplot(obj1$delta, aes(x = br.m)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "hotpink4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.m, obj1$beta[6], sd(br.m))),

size = 0.8, color = "grey23") +
labs(title = "Distribution of mean BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics") +
theme(title = element_text(size = 9, face = "bold"))

p3 <- ggplot(obj1$delta, aes(x = br.med)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "darkgoldenrod3", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.med, obj1$beta[6], sd(br.med))),

size = 0.8, color = "grey23") +
labs(title = "Distribution of median BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics") +
theme(title = element_text(size = 9, face = "bold"))

Appendix 42



p1

0.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5

de
ns

ity

Data: movies critics
Distribution of MLE for delta through Monte Carlo simulations

p2

Appendix 43



0.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5

de
ns

ity

Data: movies critics
Distribution of mean BR estimator for delta through Monte Carlo simulations

p3

Appendix 44



0.0

0.5

1.0

1.5

2.0

0.5 1.0 1.5

de
ns

ity

Data: movies critics
Distribution of median BR estimator for delta through Monte Carlo simulations

# Estimates for the model based on *movies* with *freq* divided by 5

obj2 <- movies_sim(movies, 5)

obj2$delta

## # A tibble: 10,000 x 6
## ml ml.se br.m br.m.se br.med br.med.se
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.19 0.368 1.13 0.347 1.14 0.351
## 2 1.26 0.436 1.18 0.401 1.20 0.411
## 3 0.753 0.357 0.724 0.340 0.727 0.344
## 4 1.68 0.467 1.54 0.424 1.57 0.432
## 5 1.71 0.571 1.52 0.490 1.58 0.512
## 6 0.828 0.415 0.787 0.390 0.789 0.394
## 7 1.05 0.321 1.01 0.308 1.02 0.311
## 8 1.31 0.445 1.22 0.409 1.24 0.417
## 9 0.874 0.363 0.838 0.345 0.842 0.349
## 10 1.02 0.405 0.971 0.379 0.976 0.385
## # ... with 9,990 more rows
p4 <- ggplot(obj2$delta, aes(x = ml)) +

geom_histogram(aes(y = ..density..), bins = 50, fill = "turquoise4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(ml, obj2$beta[6], sd(ml))), size = 0.8, color = "grey23") +
labs(title = "Distribution of MLE for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics, frequencies divided by 5") +
theme(title = element_text(size = 9, face = "bold"))
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p5 <- ggplot(obj2$delta, aes(x = br.m)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "hotpink4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.m, obj2$beta[6], sd(br.m))), size = 0.8, color = "grey23") +
labs(title = "Distribution of mean BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics, frequencies divided by 5") +
theme(title = element_text(size = 9, face = "bold"))

p6 <- ggplot(obj2$delta, aes(x = br.med)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "darkgoldenrod3", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.med, obj2$beta[6], sd(br.med))), size = 0.8, color = "grey23") +
labs(title = "Distribution of median BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics, frequencies divided by 5") +
theme(title = element_text(size = 9, face = "bold"))
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# Estimates for the model based on *movies* with *freq* divided by 10

obj3 <- movies_sim(movies, 10)

obj3$delta

## # A tibble: 10,000 x 6
## ml ml.se br.m br.m.se br.med br.med.se
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.02 0.522 0.931 0.471 0.943 0.479
## 2 0.300 0.624 0.302 0.549 0.284 0.570
## 3 0.229 0.473 0.240 0.437 0.226 0.447
## 4 2.44 1.08 1.83 0.729 2.06 0.827
## 5 0.818 0.681 0.727 0.583 0.728 0.610
## 6 1.43 0.760 1.17 0.606 1.23 0.625
## 7 2.35 1.02 1.79 0.689 1.98 0.769
## 8 0.619 0.515 0.589 0.469 0.583 0.478
## 9 1.66 0.766 1.35 0.608 1.41 0.638
## 10 0.133 0.512 0.156 0.468 0.137 0.482
## # ... with 9,990 more rows
p7 <- ggplot(obj3$delta, aes(x = ml)) +

geom_histogram(aes(y = ..density..), bins = 50, fill = "turquoise4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(ml, obj3$beta[6], sd(ml))), size = 0.8, color = "grey23") +
labs(title = "Distribution of MLE for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics, frequencies divided by 10") +
theme(title = element_text(size = 9, face = "bold"))
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p8 <- ggplot(obj3$delta, aes(x = br.m)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "hotpink4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.m, obj3$beta[6], sd(br.m))), size = 0.8, color = "grey23") +
labs(title = "Distribution of mean BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics, frequencies divided by 10") +
theme(title = element_text(size = 9, face = "bold"))

p9 <- ggplot(obj3$delta, aes(x = br.med)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "darkgoldenrod3", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.med, obj3$beta[6], sd(br.med))), size = 0.8, color = "grey23") +
labs(title = "Distribution of median BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics, frequencies divided by 10") +
theme(title = element_text(size = 9, face = "bold"))
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# Let *ebert* be a binary variable. Column *mixed* has been incorporated in column *Con*

movies32 <- movies
movies32$freq[movies32$ebert == "Con"] <-

movies32$freq[movies32$ebert == "Con"] + movies32$freq[movies32$ebert == "Mixed"]
movies32 <- movies32[movies32$ebert != "Mixed",]
movies32

## # A tibble: 6 x 7
## siskel ebert freq diag pro.d mixed.d con.d
## <fct> <fct> <dbl> <int> <int> <int> <int>
## 1 Con Con 32 1 0 0 1
## 2 Mixed Con 21 0 0 0 0
## 3 Pro Con 19 0 0 0 0
## 4 Con Pro 13 0 0 0 0
## 5 Mixed Pro 11 0 0 0 0
## 6 Pro Pro 64 1 1 0 0
obj32 <- movies_sim(movies32, 1)

obj32$delta

## # A tibble: 10,000 x 6
## ml ml.se br.m br.m.se br.med br.med.se
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1.34 0.232 1.31 0.228 1.32 0.229
## 2 0.811 0.207 0.798 0.205 0.803 0.206
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## 3 0.983 0.218 0.964 0.215 0.972 0.216
## 4 0.930 0.214 0.912 0.211 0.920 0.212
## 5 0.932 0.199 0.918 0.196 0.923 0.197
## 6 1.36 0.244 1.33 0.239 1.35 0.241
## 7 1.43 0.230 1.40 0.226 1.41 0.227
## 8 0.889 0.209 0.873 0.207 0.880 0.207
## 9 0.990 0.224 0.970 0.220 0.979 0.221
## 10 1.03 0.203 1.01 0.201 1.02 0.201
## # ... with 9,990 more rows
p10 <- ggplot(obj32$delta, aes(x = ml)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "turquoise4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(ml, obj32$beta[5], sd(ml))), size = 0.8, color = "grey23") +
labs(title = "Distribution of MLE for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics in rectangular table") +
theme(title = element_text(size = 9, face = "bold"))

p11 <- ggplot(obj32$delta, aes(x = br.m)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "hotpink4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.m, obj32$beta[5], sd(br.m))), size = 0.8, color = "grey23") +
labs(title = "Distribution of mean BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics in rectangular table") +
theme(title = element_text(size = 9, face = "bold"))

p12 <- ggplot(obj32$delta, aes(x = br.med)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "darkgoldenrod3", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.med, obj32$beta[5], sd(br.med))), size = 0.8, color = "grey23") +
labs(title = "Distribution of median BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics in rectangular table") +
theme(title = element_text(size = 9, face = "bold"))

p10
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# Let *ebert* be a binary variable. Column *mixed* has been incorporated in column *Con*.
# Frequencies divided by 5.

obj32b <- movies_sim(movies32, 5)

obj32b$delta

## # A tibble: 10,000 x 6
## ml ml.se br.m br.m.se br.med br.med.se
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.311 0.467 0.286 0.445 0.295 0.449
## 2 0.783 0.427 0.726 0.405 0.749 0.411
## 3 2.27 0.665 2.03 0.585 2.12 0.611
## 4 1.01 0.447 0.942 0.423 0.972 0.430
## 5 -0.0157 0.477 -0.0186 0.453 -0.0165 0.459
## 6 1.34 0.622 1.17 0.557 1.24 0.575
## 7 1.17 0.530 1.07 0.491 1.10 0.499
## 8 1.03 0.521 0.929 0.486 0.965 0.495
## 9 1.63 0.564 1.47 0.515 1.53 0.529
## 10 1.10 0.440 1.02 0.416 1.05 0.423
## # ... with 9,990 more rows
p13 <- ggplot(obj32b$delta, aes(x = ml)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "turquoise4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(ml, obj32b$beta[5], sd(ml))), size = 0.8, color = "grey23") +
labs(title = "Distribution of MLE for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics in rectangular table, frequencies divided by 5") +
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theme(title = element_text(size = 9, face = "bold"))

p14 <- ggplot(obj32b$delta, aes(x = br.m)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "hotpink4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.m, obj32b$beta[5], sd(br.m))), size = 0.8, color = "grey23") +
labs(title = "Distribution of mean BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics in rectangular table, frequencies divided by 5") +
theme(title = element_text(size = 9, face = "bold"))

p15 <- ggplot(obj32b$delta, aes(x = br.med)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "darkgoldenrod3", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.med, obj32b$beta[5], sd(br.med))), size = 0.8, color = "grey23") +
labs(title = "Distribution of median BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics in rectangular table, frequencies divided by 5") +
theme(title = element_text(size = 9, face = "bold"))
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# Let *ebert* be a binary variable. Column *mixed* has been incorporated in column *Con*
# Frequencies divided by 10.

obj32c <- movies_sim(movies32, 10)

obj32c$delta

## # A tibble: 10,000 x 6
## ml ml.se br.m br.m.se br.med br.med.se
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 -1.29e-16 0.707 -5.34e-17 0.639 3.97e-17 0.653
## 2 9.59e- 1 0.688 8.22e- 1 0.618 8.75e- 1 0.635
## 3 1.10e+ 0 0.906 8.46e- 1 0.742 9.31e- 1 0.779
## 4 1.21e+ 0 0.662 1.06e+ 0 0.588 1.12e+ 0 0.612
## 5 9.07e- 1 0.724 7.47e- 1 0.637 8.04e- 1 0.658
## 6 1.51e+ 0 0.721 1.26e+ 0 0.609 1.36e+ 0 0.647
## 7 2.42e+ 1 49916. 2.04e+ 0 1.03 2.79e+ 0 1.71
## 8 2.42e+ 1 48441. 1.95e+ 0 1.05 2.75e+ 0 1.79
## 9 1.63e+ 0 1.11 1.20e+ 0 0.855 1.37e+ 0 0.920
## 10 1.36e+ 0 0.814 1.11e+ 0 0.693 1.20e+ 0 0.720
## # ... with 9,990 more rows
p16 <- ggplot(obj32c$delta, aes(x = ml)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "turquoise4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(ml, obj32c$beta[5], sd(ml))), size = 0.8, color = "grey23") +
labs(title = "Distribution of MLE for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics in rectangular table, frequencies divided by 10") +
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theme(title = element_text(size = 9, face = "bold"))

p17 <- ggplot(obj32c$delta, aes(x = br.m)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "hotpink4", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.m, obj32c$beta[5], sd(br.m))), size = 0.8, color = "grey23") +
labs(title = "Distribution of mean BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics in rectangular table, frequencies divided by 10") +
theme(title = element_text(size = 9, face = "bold"))

p18 <- ggplot(obj32c$delta, aes(x = br.med)) +
geom_histogram(aes(y = ..density..), bins = 50, fill = "darkgoldenrod3", color = "antiquewhite1") +
geom_line(aes(y = dnorm(br.med, obj32c$beta[5], sd(br.med))), size = 0.8, color = "grey23") +
labs(title = "Distribution of median BR estimator for delta through Monte Carlo simulations",

x = "", subtitle = "Data: movies critics in rectangular table, frequencies divided by 10") +
theme(title = element_text(size = 9, face = "bold"))
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Data: movies critics in rectangular table, frequencies divided by 10
Distribution of MLE for delta through Monte Carlo simulations

p17

Appendix 59



0.0

0.2

0.4

0.6

−2 0 2 4

de
ns

ity

Data: movies critics in rectangular table, frequencies divided by 10
Distribution of mean BR estimator for delta through Monte Carlo simulations
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Data: movies critics in rectangular table, frequencies divided by 10
Distribution of median BR estimator for delta through Monte Carlo simulations

# Analysis

analysis <- function(object){

# Biasness
bias <- apply(object$mean_coef, 2, '-', object$beta)

## Coverage probability
# proportion of (beta_hat - beta) / se(beta) <= z(1-alpha/2)
cp.ml <- ((object$delta$ml - object$beta[length(object$beta)]) / object$delta$ml.se

<= qnorm(0.95)) %>% mean
cp.brm <- ((object$delta$br.m - object$beta[length(object$beta)]) / object$delta$br.m.se

<= qnorm(0.95)) %>% mean
cp.brmed <- ((object$delta$br.med - object$beta[length(object$beta)]) /

object$delta$br.med.se
<= qnorm(0.95)) %>% mean

## Probability of underestimation
pu.ml <- ((object$delta$ml - object$beta[length(object$beta)]) /

object$delta$ml.se <= 0) %>% mean
pu.brm <- ((object$delta$br.m - object$beta[length(object$beta)]) /

object$delta$br.m.se <= 0) %>% mean
pu.brmed <- ((object$delta$br.med - object$beta[length(object$beta)]) /

object$delta$br.med.se <= 0) %>% mean

## MSE
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mse.ml <- (object$delta$ml - object$beta[length(object$beta)])ˆ2 %>% mean
mse.br <- (object$delta$br.m- object$beta[length(object$beta)])ˆ2 %>% mean
mse.brmed <- (object$delta$br.med - object$beta[length(object$beta)])ˆ2 %>% mean

## MAE
mae.ml <- abs(object$delta$ml - object$beta[length(object$beta)]) %>%
median

mae.brm <- abs(object$delta$br.m- object$beta[length(object$beta)]) %>%
median

mae.brmed <- abs(object$delta$br.med - object$beta[length(object$beta)]) %>%
median

## Infinite estimates
iter.table <- list(ml.iter = table(object$iter[,1]),

brm.iter = table(object$iter[,2]),
brmed.iter = table(object$iter[,3]))

noconv <- object$noconv

return(list(bias = bias, "Coverage probability" = c(cp.ml, cp.brm, cp.brmed),
"PU" = c(pu.ml, pu.brm, pu.brmed),
"MSE" = c(mse.ml, mse.br, mse.brmed),
"MAE" = c(mae.ml, mae.brm, mae.brmed),
"iter tables" = iter.table,
"frequency of se greater than 3" = noconv
)

)
}

analysis(obj1)

## $bias
## coef MLE BRmean BRmedian
## (Intercept) 0 -0.031260699 -7.163959e-05 -0.0066991749
## ebertMixed 0 -0.003614745 7.496866e-04 -0.0016722739
## ebertPro 0 0.004937764 -2.640192e-03 0.0005378334
## siskelMixed 0 -0.003920953 4.947952e-04 -0.0018765928
## siskelPro 0 0.003275974 8.542530e-05 0.0012689776
## diag 0 0.014633493 2.227490e-03 0.0042116638
##
## $`Coverage probability`
## [1] 0.9441 0.9529 0.9509
##
## $PU
## [1] 0.4705 0.4987 0.4948
##
## $MSE
## [1] 0.03071772 0.02926750 0.02961955
##
## $MAE
## [1] 0.1184029 0.1161062 0.1167387
##
## $`iter tables`
## $`iter tables`$ml.iter
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##
## 3 4 5
## 547 9129 324
##
## $`iter tables`$brm.iter
##
## 2 3 4
## 5969 4030 1
##
## $`iter tables`$brmed.iter
##
## 2 3 4
## 796 9202 2
##
##
## $`frequency of se greater than 3`
## [1] 0 0 0
analysis(obj2)

## $bias
## coef MLE BRmean BRmedian
## (Intercept) 0 -0.208537854 -0.006708122 -0.0460677517
## ebertMixed 0 -0.006387040 0.009948878 0.0027086000
## ebertPro 0 0.072183067 0.005496901 0.0239594444
## siskelMixed 0 -0.052695647 -0.004583374 -0.0206706022
## siskelPro 0 -0.006916033 -0.004138811 -0.0008238712
## diag 0 0.094673451 -0.001324998 0.0144170083
##
## $`Coverage probability`
## [1] 0.9475 0.9654 0.9586
##
## $PU
## [1] 0.4580 0.5180 0.5046
##
## $MSE
## [1] 1.1082014 0.1526082 0.1720791
##
## $MAE
## [1] 0.2725476 0.2508369 0.2588350
##
## $`iter tables`
## $`iter tables`$ml.iter
##
## 3 4 5 6 7 8 18 19 20 21 22 23 24
## 43 3544 5364 974 44 1 5 7 3 2 3 8 2
##
## $`iter tables`$brm.iter
##
## 3 4 5 6 7 8 9 10 11 12 13 18 27
## 915 5845 2451 575 138 36 17 8 4 6 3 1 1
##
## $`iter tables`$brmed.iter
##
## 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19
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## 80 3859 4434 1192 286 80 31 16 5 3 1 3 3 2 1 2
## 20 42
## 1 1
##
##
## $`frequency of se greater than 3`
## [1] 30 0 0
analysis(obj3)

## $bias
## coef MLE BRmean BRmedian
## (Intercept) 0 -3.4650157 -0.033570222 -0.20020800
## ebertMixed 0 -0.6589267 0.013982477 -0.02892473
## ebertPro 0 0.5194667 0.014891414 0.05642192
## siskelMixed 0 -0.6465212 -0.003706696 -0.04661002
## siskelPro 0 0.7017859 0.008594486 0.05565563
## diag 0 2.1204974 0.008786705 0.08658163
##
## $`Coverage probability`
## [1] 0.9810 0.9783 0.9766
##
## $PU
## [1] 0.4408 0.5203 0.4990
##
## $MSE
## [1] 81.1205151 0.4018240 0.6666159
##
## $MAE
## [1] 0.4723059 0.3797605 0.4128591
##
## $`iter tables`
## $`iter tables`$ml.iter
##
## 3 4 5 6 7 17 18 19 20 21 22 23 24 25
## 3 793 4841 2491 162 25 283 304 94 93 213 425 260 13
##
## $`iter tables`$brm.iter
##
## 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## 8 688 2380 2497 1639 815 595 326 265 171 140 102 84 67 56 27
## 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
## 20 27 19 15 9 7 6 5 1 4 6 1 1 4 1 3
## 35 37 38 42 47 49
## 2 2 3 1 1 2
##
## $`iter tables`$brmed.iter
##
## 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
## 125 1113 2295 2120 1546 549 457 363 236 197 106 52 84 77 107 116
## 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
## 95 74 38 36 31 32 16 11 8 9 3 5 8 4 2 9
## 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
## 7 2 6 2 4 2 3 4 2 7 4 2 1 7 1 1
## 52 53 54 55 57 58 59 62 64 73
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## 4 1 1 4 3 1 1 3 2 1
##
##
## $`frequency of se greater than 3`
## [1] 1710 0 0
analysis(obj32)

## $bias
## coef MLE BRmean BRmedian
## (Intercept) 0 -0.036570734 -0.0011779374 -0.011975927
## ebertPro 0 -0.006274213 -0.0012933087 -0.004401333
## siskelMixed 0 0.020407498 0.0030418848 0.009527812
## siskelPro 0 0.012284839 0.0002748273 0.005400394
## diag 0 0.022035009 0.0014008022 0.009661926
##
## $`Coverage probability`
## [1] 0.9493 0.9599 0.9550
##
## $PU
## [1] 0.4764 0.5129 0.4995
##
## $MSE
## [1] 0.04884427 0.04596938 0.04707862
##
## $MAE
## [1] 0.1459329 0.1419001 0.1430497
##
## $`iter tables`
## $`iter tables`$ml.iter
##
## 3 4 5 6
## 4776 5203 20 1
##
## $`iter tables`$brm.iter
##
## 2 3 4
## 9357 642 1
##
## $`iter tables`$brmed.iter
##
## 2 3 4
## 3458 6538 4
##
##
## $`frequency of se greater than 3`
## [1] 0 0 0
analysis(obj32b)

## $bias
## coef MLE BRmean BRmedian
## (Intercept) 0 -0.3429989 -0.0128296950 -0.07619771
## ebertPro 0 -0.1182435 -0.0003900982 -0.01901512
## siskelMixed 0 0.1477840 0.0076533368 0.03228415
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## siskelPro 0 0.1736656 0.0101414537 0.04147001
## diag 0 0.2477334 0.0038002261 0.05181261
##
## $`Coverage probability`
## [1] 0.9669 0.9784 0.9730
##
## $PU
## [1] 0.4583 0.5335 0.4995
##
## $MSE
## [1] 3.9299333 0.2474123 0.3091238
##
## $MAE
## [1] 0.3318644 0.3035779 0.3150959
##
## $`iter tables`
## $`iter tables`$ml.iter
##
## 3 4 5 6 7 8 21 22 23
## 1799 5806 1800 464 40 1 33 44 13
##
## $`iter tables`$brm.iter
##
## 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18
## 3907 4947 631 227 122 69 40 14 9 12 5 6 7 2 2
##
## $`iter tables`$brmed.iter
##
## 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 36
## 294 5809 2848 731 217 37 27 11 15 4 1 2 1 1 1 1
##
##
## $`frequency of se greater than 3`
## [1] 90 0 0
analysis(obj32c)

## $bias
## coef MLE BRmean BRmedian
## (Intercept) 0 -4.689088 -8.742518e-03 -0.26174042
## ebertPro 0 -1.702997 1.680372e-02 -0.09087244
## siskelMixed 0 2.854158 8.828512e-05 0.12809593
## siskelPro 0 2.488106 -5.717505e-03 0.14203831
## diag 0 3.794779 -4.993344e-03 0.19963438
##
## $`Coverage probability`
## [1] 0.9987 0.9957 0.9954
##
## $PU
## [1] 0.4184 0.5561 0.4889
##
## $MSE
## [1] 110.809871 0.609961 1.099466
##
## $MAE
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## [1] 0.6235227 0.4693928 0.5406610
##
## $`iter tables`
## $`iter tables`$ml.iter
##
## 3 4 5 6 7 21 22 23 24
## 484 3385 2734 1335 40 592 1118 277 35
##
## $`iter tables`$brm.iter
##
## 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## 61 3395 2706 964 618 532 402 314 235 154 168 84 84 69 58 36
## 19 20 21 22 23 24 25 26 28 32 33 37 38 39 40 42
## 30 33 11 12 9 4 1 6 2 2 2 1 1 1 1 1
## 45 48
## 2 1
##
## $`iter tables`$brmed.iter
##
## 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## 2 300 2197 2397 1702 1118 507 364 429 257 180 140 73 40 61 59
## 19 20 21 22 23 24 25 26 27 29 30 32 34 35 36 37
## 40 15 16 4 5 3 2 1 1 1 1 1 1 8 7 10
## 38 39 41 42 43 44 45 46 47 48 50 51 52 53
## 8 6 4 5 2 3 8 3 4 3 4 2 5 1
##
##
## $`frequency of se greater than 3`
## [1] 2022 0 0
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